WorldWideScience

Sample records for sorbent injection processes

  1. Development of the advanced coolside sorbent injection process for SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Withum, J.A.; Maskew, J.T.; Rosenhoover, W.A. [Consol, Inc., Library, PA (United States)] [and others

    1995-11-01

    The goal of this work was to develop a low-capital-cost process capable of over 90% SO{sub 2} removal as an economically attractive option for compliance with the Clean Air Act. The Advanced Coolside Process uses a contactor to simultaneously remove fly ash and saturate the flue gas with water, followed by sorbent injection into the highly humid flue gas and collection of the sorbent by the existing particulate collector High sorbent utilization is achieved by sorbent recycle. The original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization were exceeded in 1000 acfm pilot plant operations using commercial hydrated lime as the only sorbent. Process optimization simplified the process equipment, resulting in significant cost reduction. Recent accomplishments include completion of equipment testing and sorbent optimization, a waste management study, and a long-term performance test. An economic evaluation for the optimized process projects capital costs 55% to 60 % less than those of limestone forced oxidation wet FGD. The projected levelized control cost is 15% to 35% lower than wet FGD (25% lower for a 260 MWe plant burning a 2.5% sulfur coal), depending on plant size and coal sulfur content.

  2. Alkaline sorbent injection for mercury control

    Science.gov (United States)

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  3. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  4. Retrofit acid gas emission control for municipal waste incineration application of dry sorbent injection

    International Nuclear Information System (INIS)

    Zmuda, J.T.; Smith, P.V.

    1991-01-01

    Dry sorbent injection (DSI) has been successfully demonstrated on coal fired boiler applications as a means of reducing sulfur dioxide emissions. More recently, the dry sorbent injection process was applied to an existing municipal waste incinerator to provide acid gas emission controls. The results obtained from the successful demonstration of the sorbent injection system on an existing municipal incinerator are presented. Removal efficiencies of compounds such as HCl, SO 2 , SO 3 , mercury, and others by the use of sorbent injection are shown. Effects of the DSI system on downstream equipment, such as electrostatic precipitators, fabric filters, ash handling systems, and waste management is included. The impacts of the DSI system on the furnace is also discussed. In this paper a discussion of dry sorbent injection as a means of reducing acid gas and other emissions from existing municipal waste incinerators which may be affected by the regulations is presented. An application case study will outline typical exhaust conditions, expected pollution reductions, capital and operating costs, and type of available sorbents and their costs

  5. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL; SEMIANNUAL

    International Nuclear Information System (INIS)

    Gary M. Blythe

    2002-01-01

    This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period October 1, 2001 through March 31, 2002. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO(sub X) selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Corporation is the prime contractor. This is the fifth reporting period for the subject Cooperative Agreement. During the previous (fourth) period, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant) and a byproduct magnesium hydroxide slurry (at both Gavin and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO(sub 3) formed across the SCR system installed on the unit for NO(sub X) control than at removing SO(sub 3) formed in the furnace. The SO(sub 3) removal results were presented in the

  6. Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Carl Richardson; Katherine Dombrowski; Douglas Orr

    2006-12-31

    This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates

  7. SORBENT/UREA SLURRY INJECTION FOR SIMULTANEOUS SO2/NOX REMOVAL

    Science.gov (United States)

    The combination of sorbent injection and selective noncatalytic reduction (SNCR) technologies has been investigated for simulataneous SO2/NOx removal. A slurry composed of a urea-based solution and various Ca-based sorbents was injected at a range of tempera...

  8. IEA low NOx combustion project Stage III. Low NOx combustion and sorbent injection demonstration projects. V.2

    International Nuclear Information System (INIS)

    Payne, R.

    1991-03-01

    This report summarizes the main results from an IES project concerning the demonstration of low-NO x combustion and sorbent injection as techniques for the control of NO x and SO x emissions from pulverized coal fired utility boilers. The project has built upon information generated in two previous stages of activity, where NO x and SO x control processes were evaluated at both fundamental and pilot-scales. The concept for this stage of the project was for a unique collaboration, where the participating countries (Canada, Denmark and Sweden, together with the United States) have pooled information from full scale boiler demonstrations of low-NO x burner and sorbent injection technologies, and have jointly contributed to establishing a common basis for data evaluation. Demonstration testing was successfully carried out on five wall-fired commercial boiler systems which ranged in size from a 20 MW thermal input boiler used for district heating, up to a 300 MW electric utility boiler. All of these units were fired on high-volatile bituminous coals with sulfur contents ranging from 0.6-3.2 percent. At each site the existing burners were either modified or replaced to provide for low-NO x combustion, and provisions were made to inject calcium based sorbent materials into the furnace space for SO 2 emission control. The results of sorbent injection testing showed moderate levels of SO 2 removal which ranged from approximately 15 to 55 percent at an injected calcium to sulfur molar ratio to 2.0 and with boiler operation at nominal full load. Sulfur capture was found to depend upon the combined effects of parameters such as: sorbent type and reactivity; peak sorbent temperature; coal sulfur content; and the thermal characteristics of the boilers. (8 refs., 58 figs., 6 tabs.)

  9. LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

  10. Simulation of mercury capture by sorbent injection using a simplified model.

    Science.gov (United States)

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  11. TRUEX process solvent cleanup with solid sorbents

    International Nuclear Information System (INIS)

    Tse, Pui-Kwan; Reichley-Yinger, L.; Vandegrift, G.F.

    1989-01-01

    Solid sorbents, alumina, silica gel, and Amberlyst A-26 have been tested for the cleanup of degraded TRUEX-NPH solvent. A sodium carbonate scrub alone does not completely remove acidic degradation products from highly degraded solvent and cannot restore the stripping performance of the solvent. By following the carbonate scrub with either neutral alumina or Amberlyst A-26 anion exchange resin, the performance of the TRUEX-NPH is substantially restored. The degraded TRUEX-NPH was characterized before and after treatment by supercritical fluid chromatography. Its performance was evaluated by americium distribution ratios, phase-separation times, and lauric acid distribution coefficients. 17 refs., 2 figs., 5 tabs

  12. Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-05-01

    This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

  13. Evaluation of Dry Sorbent Injection Technology for Pre-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Carl [URS Group, Inc., Austin, TX (United States); Steen, William [URS Group, Inc., Austin, TX (United States); Triana, Eugenio [URS Group, Inc., Austin, TX (United States); Machalek, Thomas [URS Group, Inc., Austin, TX (United States); Davila, Jenny [URS Group, Inc., Austin, TX (United States); Schmit, Claire [URS Group, Inc., Austin, TX (United States); Wang, Andrew [URS Group, Inc., Austin, TX (United States); Temple, Brian [URS Group, Inc., Austin, TX (United States); Lu, Yongqi [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Lu, Hong [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Zhang, Luzheng [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ruhter, David [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Rostam-Abadi, Massoud [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Sayyah, Maryam [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Ito, Brandon [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States); Suslick, Kenneth [Illinois State Geological Survey - University of Illinois at Urbana-Champaign (United States)

    2013-09-30

    This document summarizes the work performed on Cooperative Agreement DE-FE0000465, “Evaluation of Dry Sorbent Technology for Pre-Combustion CO{sub 2} Capture,” during the period of performance of January 1, 2010 through September 30, 2013. This project involves the development of a novel technology that combines a dry sorbent-based carbon capture process with the water-gas-shift reaction for separating CO{sub 2} from syngas. The project objectives were to model, develop, synthesize and screen sorbents for CO{sub 2} capture from gasified coal streams. The project was funded by the DOE National Energy Technology Laboratory with URS as the prime contractor. Illinois Clean Coal Institute and The University of Illinois Urbana-Champaign were project co-funders. The objectives of this project were to identify and evaluate sorbent materials and concepts that were suitable for capturing carbon dioxide (CO{sub 2}) from warm/hot water-gas-shift (WGS) systems under conditions that minimize energy penalties and provide continuous gas flow to advanced synthesis gas combustion and processing systems. Objectives included identifying and evaluating sorbents that efficiently capture CO{sub 2} from a gas stream containing CO{sub 2}, carbon monoxide (CO), and hydrogen (H{sub 2}) at temperatures as high as 650 °C and pressures of 400-600 psi. After capturing the CO{sub 2}, the sorbents would ideally be regenerated using steam, or other condensable purge vapors. Results from the adsorption and regeneration testing were used to determine an optimal design scheme for a sorbent enhanced water gas shift (SEWGS) process and evaluate the technical and economic viability of the dry sorbent approach for CO{sub 2} capture. Project work included computational modeling, which was performed to identify key sorbent properties for the SEWGS process. Thermodynamic modeling was used to identify optimal physical properties for sorbents and helped down-select from the universe of possible sorbent

  14. Evaluation of inorganic sorbent treatment for LWR coolant process streams

    International Nuclear Information System (INIS)

    Roddy, J.W.

    1984-03-01

    This report presents results of a survey of the literature and of experience at selected nuclear installations to provide information on the feasibility of replacing organic ion exchangers with inorganic sorbents at light-water-cooled nuclear power plants. Radioactive contents of the various streams in boiling water reactors and pressurized water reactors were examined. In addition, the methods and performances of current methods used for controlling water quality at these plants were evaluated. The study also includes a brief review of the physical and chemical properties of selected inorganic sorbents. Some attributes of inorganic sorbents would be useful in processing light water reactor (LWR) streams. The inorganic resins are highly resistant to damage from ionizing radiation, and their exchange capacities are generally equivalent to those of organic ion exchangers. However, they are more limited in application, and there are problems with physical integrity, especially in acidic solutions. Research is also needed in the areas of selectivity and anion removal before inorganic sorbents can be considered as replacements for the synthetic organic resins presently used in LWRs. 11 figures, 14 tables

  15. Sorbent suppliers

    International Nuclear Information System (INIS)

    Vedder, M.

    1994-01-01

    Sorbents are used to absorb or contain spilled and leaking chemicals, oils, lubricants and other process fluids. They are commonly used around the base of machinery in industrial applications, and in remediating oil spills on land and water. Sorbents are made from biodegradable, inorganic or synthetic materials. Organic materials include corn cobs, wood pulp, paper fiber and cotton. Inorganic materials include clay, perlite, expanded silicates and expanded mica. Synthetic sorbents are made from petroleum- or plastic-based materials such as polyurethane, polyethylene or polypropylene. Sorbents are available in a variety of forms, including pads, rolls, booms, pillows and loose particulate

  16. Efficient separations and processing crosscutting program: Develop and test sorbents

    International Nuclear Information System (INIS)

    Bray, L.A.

    1995-09-01

    This report summarizes work performed during FY 1995 under the task open-quotes Develop and Test Sorbents,close quotes the purpose of which is to develop high-capacity, selective solid extractants to recover cesium, strontium, and technetium from nuclear wastes. This work is being done for the Efficient Separations and Processing Crosscutting Program (ESP), operated by the U.S. Department of Energy's Office of Environmental Management's Office of Technology Development. The task is under the direction of staff at Pacific Northwest Laboratory (PNL) with key participation from industrial and university staff at 3M, St. Paul, Minnesota; IBC Advanced Technologies, Inc., American Forks, Utah; AlliedSignal, Inc., Des Plaines, Illinois, and Texas A ampersand M University, College Station, Texas. 3M and IBC are responsible for ligand and membrane technology development; AlliedSignal and Texas A ampersand M are developing sodium titanate powders; and PNL is testing the materials developed by the industry/university team members. Major accomplishments for FY 1995 are summarized in this report

  17. Characterization of gas reburning-sorbent injection technology by-products

    International Nuclear Information System (INIS)

    Mattigod, S.V.; Rai, D.

    1992-01-01

    This paper reports that three samples of fly ashes from pilot-scale tests of gas reburning and sorbent injection (GR-SI) technology were characterized physically, chemically, and mineralogically. Texturally, the samples consist of approximately 97% of the total mass of the sample on average. Approximately 3% of the sample mass consisted of the elements Cl, Mg, P, K, Na, and Ti, and ).4% consisted of trace elements. Major crystalline compounds found in these samples were lime (CaO), anhydrite (CaSO 4 ), and calcium carbonate (CaCO 3 ). The morphology and chemistry of particles in GR-SI samples were similar to those of particles in conventional coal fly ashes. Most of the particles were calcerous. Silicate and alumino-silicate particles were fewer in number, and iron-rich particles were rare. The EP test indicated that extract concentrations of Ag, As, Ba, Cd, Cr, Pb, and Se were sell below the EPA regulatory levels. Predictions of leachate compositions from these types of fly ashes, if disposed of as a landfill at a midwestern U.S. site indicate, that during the first ten years the concentrations of Ca, SO 4 , Na, b, and OH would remain high. The concentrations of minor constituents (As, Ba, Cd, Cd, cu, Cr, Fe, Ni, and Se) in the leachate are predicted to be at trace levels

  18. Data for generation of all Tables and Figures for AIMS-ES publication in 2016 pertaining to dry sorbent injection of trona for acid gas control

    Data.gov (United States)

    U.S. Environmental Protection Agency — emissions data and removal efficiencies for coal combustion utilizing PM control devices and dry sorbent injection of trona specifically for acid gas control. This...

  19. Laboratory study on the high-temperature capture of HCl gas by dry-injection of calcium-based sorbents.

    Science.gov (United States)

    Shemwell, B; Levendis, Y A; Simons, G A

    2001-01-01

    This is a laboratory study on the reduction of combustion-generated hydrochloric acid (HCl) emissions by in-furnace dry-injection of calcium-based sorbents. HCl is a hazardous gaseous pollutant emitted in significant quantities by municipal and hazardous waste incinerators, coal-fired power plants, and other industrial furnaces. Experiments were conducted in a laboratory furnace at gas temperatures of 600-1000 degrees C. HCl gas diluted with N2, and sorbent powders fluidized in a stream of air were introduced into the furnace concurrently. Chlorination of the sorbents occurred in the hot zone of the furnace at gas residence times approximately 1 s. The sorbents chosen for these experiments were calcium formate (CF), calcium magnesium acetate (CMA), calcium propionate (CP), calcium oxide (CX), and calcium carbonate (CC). Upon release of organic volatiles, sorbents calcine to CaO at approximately 700 degrees C, and react with the HCl according to the reaction CaO + 2HCl CaCl2 + H2O. At the lowest temperature case examined herein, 600 degrees C, direct reaction of HCl with CaCO3 may also be expected. The effectiveness of the sorbents to capture HCl was interpreted using the "pore tree" mathematical model for heterogeneous diffusion reactions. Results show that the thin-walled, highly porous cenospheres formed from the pyrolysis and calcination of CF, CMA, and CP exhibited high relative calcium utilization at the upper temperatures of this study. Relative utilizations under these conditions reached 80%. The less costly low-porosity sorbents, calcium carbonate and calcium oxide also performed well. Calcium carbonate reached a relative utilization of 54% in the mid-temperature range, while the calcium oxide reached an 80% relative utilization at the lowest temperature examined. The data matched theoretical predictions of sorbent utilization using the mathematical model, with activation energy and pre-exponential factors for the calcination reaction of 17,000 K and 300

  20. Zinc-oxide-based sorbents and processes for preparing and using same

    Science.gov (United States)

    Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael

    2010-03-23

    Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.

  1. Qualification of the ALKASORB sorbent for the sorption-enhanced water-gas shift process

    Energy Technology Data Exchange (ETDEWEB)

    Van Selow, E.R.; Cobden, P.D.; Dijk, Van H.A.J.; Walspurger, S.; Verbraeken, P.A.; Jansen, D.

    2013-07-01

    For the sorption-enhanced water-gas shift (SEWGS) process, a new sorbent material has been qualified in a reactor of 2 m length under conditions close to industrial designs. The sorbent ALKASORB is a potassium-carbonate promoted hydrotalcite-based compound. ALKASORB is shown to have many favourable properties in comparison to the reference sorbent, in particular with respect to mechanical stability. The cyclic capacity of the new compound is substantially higher than the cyclic capacity of the reference sorbent, and it allows a reduction of the steam requirement of 50%. The sorbent has demonstrated catalytic activity for the water-gas shift reaction that is sufficient to omit a separate catalyst. It is demonstrated that the sorbent remains chemically and mechanically stable during operation of at least 2000 adsorption-desorption cycles, even in the presence of H2S in the feed. H2S is shown not to influence CO2 adsorption capacity and is co-captured with the CO2. In contrast to the reference material that showed mechanical degradation during extended adsorption-desorption cycles, the new material is stable and allows to obtain carbon capture levels exceeding 95% more efficiently and more economically since the required size of the vessels will be smaller.

  2. Flow-injection determination of total organic fluorine with off-line defluorination reaction on a solid sorbent bed.

    Science.gov (United States)

    Musijowski, Jacek; Trojanowicz, Marek; Szostek, Bogdan; da Costa Lima, José Luis Fontes; Lapa, Rui; Yamashita, Hiroki; Takayanagi, Toshio; Motomizu, Shoji

    2007-09-26

    Considering recent reports on widespread occurrence and concerns about perfluoroalkyl substances (PFAS) in environmental and biological systems, analysis of these compounds have gained much attention in recent years. Majority of analyte-specific methods are based on a LC/MS/MS or a GC/MS detection, however many environmental or biological studies would benefit from a total organic fluorine (TOF) determination. Presented work was aimed at developing a method for TOF determination. TOF is determined as an amount of inorganic fluoride obtained after defluorination reaction conducted off-line using sodium biphenyl reagent directly on the sorbent without elution of retained analytes. Recovered fluoride was analyzed using flow-injection system with either fluorimetric or potentiometric detection. The TOF method was tested using perfluorocarboxylic acids (PFCA), including perfluorooctanoic acid (PFOA), as model compounds. Considering low concentrations of PFAS in natural samples, solid-phase extraction as a preconcentration procedure was evaluated. Several carbon-based sorbents were tested, namely multi-wall carbon nanotubes, carbon nanofibres and activated carbon. Good sorption of all analytes was achieved and defluorination reaction was possible to carry out directly on a sorbent bed. Recoveries obtained for PFCAs, adsorbed on an activated carbon sorbent, and measured as TOF, were 99.5+/-1.7, 110+/-9.4, 95+/-26, 120+/-32, 110+/-12 for C4, C6, C8, C10 and C12-PFCA, respectively. Two flow systems that would enable the defluorination reaction and fluoride determination in a single system were designed and tested.

  3. Investigation and demonstration of dry carbon-based sorbent injection for mercury control. Quarterly technical report, July 1, 1996--September 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, T.; Sjostrom, S.; Smith, J. [and others

    1996-11-06

    The overall objective of this two phase program is to investigate the use of dry carbon-based sorbents for mercury control. This information is important to the utility industry in anticipation of pending regulations. During Phase I, a bench-scale field test device that can be configured as an electrostatic precipitator, a pulse-jet baghouse, or a reverse-gas baghouse has been designed, built and integrated with an existing pilot-scale facility at PSCo`s Comanche Station. Up to three candidate sorbents will be injected into the flue gas stream upstream of the test device to and mercury concentration measurements will be made to determine the mercury removal efficiency for each sorbent. During the Phase II effort, component integration for the most promising dry sorbent technology shall be tested at the 5000 acfm pilot-scale.

  4. Enhancing the use of coals by gas reburning-sorbent injection: Volume 4 -- Gas reburning-sorbent injection at Lakeside Unit 7, City Water, Light and Power, Springfield, Illinois. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A demonstration of Gas Reburning-Sorbent Injection (GR-SI) has been completed at a cyclone-fired utility boiler. The Energy and Environmental Research Corporation (EER) has designed, retrofitted and tested a GR-SI system at City Water Light and Power`s 33 MWe Lakeside Station Unit 7. The program goals of 60% NO{sub x} emissions reduction and 50% SO{sub 2} emissions reduction were exceeded over the long-term testing period; the NO{sub x} reduction averaged 63% and the SO{sub 2} reduction averaged 58%. These were achieved with an average gas heat input of 22% and a calcium (sorbent) to sulfur (coal) molar ratio of 1.8. GR-SI resulted in a reduction in thermal efficiency of approximately 1% at full load due to firing natural gas which forms more moisture in flue gas than coal and also results in a slight increase in air heater exit gas temperature. Minor impacts on other areas of unit performance were measured and are detailed in this report. The project at Lakeside was carried out in three phases, in which EER designed the GR-SI system (Phase 1), completed construction and start-up activities (Phase 2), and evaluated its performance with both short parametric tests and a long-term demonstration (Phase 3). This report contains design and technical performance data; the economics data for all sites are presented in Volume 5.

  5. Dry sorbent injection of trona to control acid gases from a pilot-scale coal-fired combustion facility

    Directory of Open Access Journals (Sweden)

    Tiffany L. B. Yelverton

    2016-01-01

    Full Text Available  Gaseous and particulate emissions from the combustion of coal have been associated with adverse effects on human and environmental health, and have for that reason been subject to regulation by federal and state governments. Recent regulations by the United States Environmental Protection Agency have further restricted the emissions of acid gases from electricity generating facilities and other industrial facilities, and upcoming deadlines are forcing industry to consider both pre- and post-combustion controls to maintain compliance. As a result of these recent regulations, dry sorbent injection of trona to remove acid gas emissions (e.g. HCl, SO2, and NOx from coal combustion, specifically 90% removal of HCl, was the focus of the current investigation. Along with the measurement of HCl, SO2, and NOx, measurements of particulate matter (PM, elemental (EC, and organic carbon (OC were also accomplished on a pilot-scale coal-fired combustion facility. Gaseous and particulate emissions from a coal-fired combustor burning bituminous coal and using dry sorbent injection were the focus of the current study. From this investigation it was shown that high levels of trona were needed to achieve the goal of 90% HCl removal, but with this increased level of trona injection the ESP and BH were still able to achieve greater than 95% fine PM control. In addition to emissions reported, measurement of acid gases by standard EPA methods were compared to those of an infrared multi-component gas analyzer. This comparison revealed good correlation for emissions of HCl and SO2, but poor correlation in the measurement of NOx emissions.

  6. The ADESORB Process for Economical Production of Sorbents for Mercury Removal from Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Robin Stewart

    2008-03-12

    The DOE's National Energy Technology Laboratory (NETL) currently manages the largest research program in the country for controlling coal-based mercury emissions. NETL has shown through various field test programs that the determination of cost-effective mercury control strategies is complex and highly coal- and plant-specific. However, one particular technology has the potential for widespread application: the injection of activated carbon upstream of either an electrostatic precipitator (ESP) or a fabric filter baghouse. This technology has potential application to the control of mercury emissions on all coal-fired power plants, even those with wet and dry scrubbers. This is a low capital cost technology in which the largest cost element is the cost of sorbents. Therefore, the obvious solutions for reducing the costs of mercury control must focus on either reducing the amount of sorbent needed or decreasing the cost of sorbent production. NETL has researched the economics and performance of novel sorbents and determined that there are alternatives to the commercial standard (NORIT DARCO{reg_sign} Hg) and that this is an area where significant technical improvements can still be made. In addition, a key barrier to the application of sorbent injection technology to the power industry is the availability of activated carbon production. Currently, about 450 million pounds ($250 million per year) of activated carbon is produced and used in the U.S. each year - primarily for purification of drinking water, food, and beverages. If activated carbon technology were to be applied to all 1,100 power plants, EPA and DOE estimate that it would require an additional $1-$2 billion per year, which would require increasing current capacity by a factor of two to eight. A new facility to produce activated carbon would cost approximately $250 million, would increase current U.S. production by nearly 25%, and could take four to five years to build. This means that there could be

  7. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  8. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L.

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL

  9. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A TANGENTIALLY COAL-FIRED UTILITY BOILER (YORKTOWN LIMB DEMONSTRATION)

    Science.gov (United States)

    The report summarizes activities conducted and results achieved in an EPA-sponsored program to demonstrate Limestone Injection Multistage Burner (LIMB) technology on a tangentially fired coal-burning utility boiler, Virginia Power's 180-MWe Yorktown Unit No. 2. his successfully d...

  10. DEMONSTRATION OF SORBENT INJECTION TECHNOLOGY ON A WALL-FIRED UTILITY BOILER (EDGEWATER LIMB DEMONSTRATION)

    Science.gov (United States)

    The report gives results of the full-scale demonstration of Limestone Injection Multistage Burner (LIMB) technology on the coal-fired, 105 MW, Unit 4 boiler at Ohio Edison's Edgewater Station. eveloped as a technology aimed at moderate levels of sulfur dioxide (SO2) and nitrogen ...

  11. Polymeric supported sorbents for decreasing hazardous metal ions content in wet process phosphoric acid

    International Nuclear Information System (INIS)

    El-Zahhar, A.A.; El-Naggar, H.A.; Ahmed, M.

    2005-01-01

    Procedure for preparation of polymeric supported silica, and their usage for decreasing hazardous metal ion content in wet process phosphoric acid was developed. The procedure is based firstly on extraction silica from rice straw by alkaline treatment , secondly supporting the produced silica on binding polyacrylonitrile (PAN). The produced polymer based sorbent was used for decreasing hazardous metal ions (especially iron) present as inorganic impurities in crud Egyptian phosphoric acid (green acid). Different factors affecting the sorption equilibrium ( contact time, temperature , sorbent mass and batch factor ) were studied. Studying the sorption isotherm revealed that the adsorption data could favorably fit the Langmuir adsorption isotherm. In the dynamic study , the sorption capacity at (Cξ/Cο = 50%) was found to be 28.5 mg/g and the loaded column could be regenerated using 50ml of 0.15 M HNO 3 . The regenerated column could undergo sorption regeneration cycles up to four cycles without significant decrease in the sorption capacity , weight loss or change in the physical properties of the sorbent

  12. Efficiency of Al2O3 supported palladium sorbents in the process of hydrogen isotope exchange

    International Nuclear Information System (INIS)

    Andreev, B.M.; Perevezentsev, A.N.; Yasenkov, V.I.

    1981-01-01

    It is found that in the hydrogen-palladium system while applying the metal to aluminium oxide a considerable increase of the heterogeneous hydrogen isotopic exchange rate is observed due to the increase of its specific surface at 167-298 K temperatures and 350-500 Torr hydrogen pressures. It is shown that in the process of thermal treatment of the supported palladium sorbent resulting in reconstruction of the carrier porous structure, as well as in increasing the metal crystal size, the change of the stage, limiting the isotopic exchange process, occurs. The values of the rate and energy of activation of the hydrogen isotopic exchange are presented [ru

  13. F- and H-Area Seepage Basins Water Treatment System Process Optimization and Alternative Chemistry Ion Exchange/Sorbent Material Screening Clearwell Overflow Study

    Energy Technology Data Exchange (ETDEWEB)

    Serkiz, S.M.

    2000-08-30

    This study investigated alternative ion exchange/sorbent materials and polishing chemistries designed to remove specific radionuclides not removed during the neutralization/precipitation/clarification process.

  14. Optimizing the Costs of Solid Sorbent-Based CO2 Capture Process Through Heat Integration

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-03-18

    The focus of this project was the ADAsorb™ CO2 Capture Process, a temperature-swing adsorption process that incorporates a three-stage fluidized bed as the adsorber and a single-stage fluidized bed as the regenerator. ADAsorb™ system was designed, fabricated, and tested under DOE award DEFE0004343. Two amine-based sorbents were evaluated in conjunction with the ADAsorb™ process: “BN”, an ion-exchange resin; and “OJ”, a metal organic framework (MOF) sorbent. Two cross heat exchanger designs were evaluated for use between the adsorber and regenerator: moving bed and fluidized bed. The fluidized bed approach was rejected fairly early in the project because the additional electrical load to power blowers or fans to overcome the pressure drop required for fluidization was estimated to be nominally three times the electrical power that could be generated from the steam saved through the use of the cross heat exchanger. The Energy Research Center at Lehigh University built and utilized a process model of the ADAsorb™ capture process and integrated this model into an existing model of a supercritical PC power plant. The Lehigh models verified that, for the ADAsorb™ system, the largest contributor to parasitic power was lost electrical generation, which was primarily electric power which the host plant could not generate due to the extraction of low pressure (LP) steam for sorbent heating, followed by power for the CO2 compressor and the blower or fan power required to fluidize the adsorber and regenerator. Sorbent characteristics such as the impacts of moisture uptake, optimized adsorption and regeneration temperature, and sensitivity to changes in pressure were also included in the modeling study. Results indicate that sorbents which adsorb more than 1-2% moisture by weight are unlikely to be cost competitive unless they have an extremely high CO2 working capacity that well exceeds 15% by weight. Modeling also revealed

  15. Process using sorbents for the removal of SOx from flue gas

    International Nuclear Information System (INIS)

    Pinnavaia, T.J.; Amareskera, J.; Polansky, C.A.

    1992-01-01

    This patent describes a process for removing the SO x components from a flue gas stream containing oxygen, sulfur dioxide and sulfur trioxide from the combustion of coal from a coal-fired boiler which comprises combusting the coal in the boiler to provide the flue gas stream and contacting the the gas stream with a heated sorbent composition at 400 degrees to 1000 degrees C wherein the the sorbent before being heated is selected from the group consisting of a layered double hydroxide composition of formula: [M 1-x II M x III (OH) 2 ](A n- ) x/n · yH 2 O wherein M II is a divalent metal cation and M III is a trivalent metal cation selected from the group consisting of Group IIA. IIB and IIIA metals as the cation which form metal oxides and which are capable of reacting with SO 2 to form metal sulfites and SO 3 to form metal sulfates, A is an interlayer anion of charge n- which comprises at least one metal atoms selected from the group consisting of main group metals and transition metals which provide oxidation of sulfur dioxide to sulfur trioxide in an amount sufficient that the layered double hydroxide structure promotes the oxidation of the sulfur dioxide to the sulfur trioxide at the combustion conditions within the coal-fired boiler, wherein y is moles of water

  16. Sorbents for mercury removal from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  17. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  18. Research on using Mineral Sorbents for A Sorption Process in the Environment Contaminated with Petroleum Substances

    Directory of Open Access Journals (Sweden)

    Pijarowski Piotr Marek

    2014-06-01

    Full Text Available A research on diatomite sorbents was carried out to investigate their ability to remove hazardous substances from oil spillages. We used two types of sorbents available on the market with differences in material density and particles size of composition. As sorbents we used Ekoterm oil and unleaded petrol 95 coming from refinery PKN Orlen S.A. Two types of sorbents with similar chemical composition but different granulometric composition were used. They are marked as D1 and C1 samples. The fastest absorbent was C1, but D1 sample was the most absorptive.

  19. Integrated dry NO{sub x}/SO{sub 2} emissions control system sodium-based dry sorbent injection test report. Test period: August 4, 1993--July 29, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.A.; Shimoto, G.H.; Muzio, L.J. [Fossil Energy Research Corp., Laguna Hills, CA (United States); Hunt, T. [Public Service Co. of Colorado, Denver, CO (United States)

    1997-04-01

    The project goal is to demonstrate up to 70% reductions in NOx and SO{sub 2} emissions through the integration of: (1) down-fired low-NOx burners with overfire air; (2) Selective Non-Catalytic Reduction (SNCR) for additional NOx removal; and (3) dry sorbent injection and duct humidification for SO{sub 2} removal. This report documents the sixth phase of the test program, where the performance of dry sorbent injection with sodium compounds was evaluated as a SO{sub 2} removal technique. Dry sorbent injection was performed in-duct downstream of the air heater (ahead of the fabric filter), as well as at a higher temperature location between the economizer and air heater. Two sodium compounds were evaluated during this phase of testing: sodium sesquicarbonate and sodium bicarbonate. In-duct sodium injection with low levels of humidification was also investigated. This sixth test phase was primarily focused on a parametric investigation of sorbent type and feed rate, although boiler load and sorbent preparation parameters were also varied.

  20. Mercury removal sorbents

    Science.gov (United States)

    Alptekin, Gokhan

    2016-03-29

    Sorbents and methods of using them for removing mercury from flue gases over a wide range of temperatures are disclosed. Sorbent materials of this invention comprise oxy- or hydroxyl-halogen (chlorides and bromides) of manganese, copper and calcium as the active phase for Hg.sup.0 oxidation, and are dispersed on a high surface porous supports. In addition to the powder activated carbons (PACs), this support material can be comprised of commercial ceramic supports such as silica (SiO.sub.2), alumina (Al.sub.2O.sub.3), zeolites and clays. The support material may also comprise of oxides of various metals such as iron, manganese, and calcium. The non-carbon sorbents of the invention can be easily injected into the flue gas and recovered in the Particulate Control Device (PCD) along with the fly ash without altering the properties of the by-product fly ash enabling its use as a cement additive. Sorbent materials of this invention effectively remove both elemental and oxidized forms of mercury from flue gases and can be used at elevated temperatures. The sorbent combines an oxidation catalyst and a sorbent in the same particle to both oxidize the mercury and then immobilize it.

  1. Performance of Zn-Fe-Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process

    Science.gov (United States)

    Huang, Z. B.; Liu, B. S.; Wang, F.; Amin, R.

    2015-10-01

    MCM-48 was synthesized using a rapid and facile process at room temperature. A series of 50%Zn-Fe-Mn/MCM-48 sorbents were prepared and their performance of hot coal gas desulfurization was investigated. High breakthrough sulfur capacity (13.2 g-S/100 g sorbent) and utilization (66.1%) of 50%1Zn2Fe2Mn/MCM-48 sorbent at 550 °C was achieved. The characterization results of XRD, BET, TPR and FT-IR revealed that MCM-48 had excellent thermal stability at less than 700 °C, ZnMn2O4 and (Mn, Zn)Fe2O4 were mainly active particles in fresh sorbents which were highly dispersed on support. The MCM-48 mesoporous structure remained intact after eight successive desulfurization/regeneration cycles. The regeneration process of 50%1Zn2Fe2Mn/MCM-48 sorbent was analyzed, it indicated that the breakthrough sulfur capacity decline of sorbent was due to the migration of Zn onto the sorbent surface and Zn accumulated on the surface and vaporized to the exterior from the surface. In the TPO test, the oxidation of Zn was different for 50%Zn/MCM-48 at 700 °C. It revealed that the temperature of regeneration for ZnO sorbent should be higher than 700 °C.

  2. Kinetics Studies on the Process of Zn Removal from Wastewater Using Ultrasonically Activated Sorbents

    Directory of Open Access Journals (Sweden)

    R. Flores

    2017-04-01

    Full Text Available Heavy metals pollution in industrial wastewater is a great environmental challenge. Several techniques and materials have been recently proposed in order to overcome this problem, such as the adsorption process; however, in order to be competitive, new improved low-cost materials must be proposed or developed. In the present work, the remediation of Zn-contaminated water using fly ash and Tonsil was studied. Both materials are considered low-cost sorbents since they are a byproduct of an industrial process, or locally abundant in nature. To increase the Zn uptake, the materials were activated by applying ultrasonic energy. It was found that the pH is an important parameter to be controlled since the larger sorption capacity occurred at pH = 4. Also, the materials activated with ultrasound were able to adsorb greater Zn quantities at the studied experimental conditions. Finally, the kinetics of the adsorption process was analyzed, and several mathematical models were proposed to simulate the experimental data. After making some statistical discrimination, the Lagergren model was selected to represent the sorption of Zn on the different materials studied.

  3. Automated magnetic sorbent extraction based on octadecylsilane functionalized maghemite magnetic particles in a sequential injection system coupled with electrothermal atomic absorption spectrometry for metal determination.

    Science.gov (United States)

    Giakisikli, Georgia; Anthemidis, Aristidis N

    2013-06-15

    A new automatic sequential injection (SI) system for on-line magnetic sorbent extraction coupled with electrothermal atomic absorption spectrometry (ETAAS) has been successfully developed for metal determination. In this work, we reported effective on-line immobilization of magnetic silica particles into a microcolumn by the external force of two strong neodymium iron boron (NdFeB) magnets across it, avoiding the use of frits. Octadecylsilane functionalized maghemite magnetic particles were used as sorbent material. The potentials of the system were demonstrated for trace cadmium determination in water samples. The method was based on the on-line complex formation with diethyldithiocarbamate (DDTC), retention of Cd-DDTC on the surface of the MPs and elution with isobutyl methyl ketone (IBMK). The formation mechanism of the magnetic solid phase packed column and all critical parameters (chemical, flow, graphite furnace) influencing the performance of the system were optimized and offered good analytical characteristics. For 5 mL sample volume, a detection limit of 3 ng L(-1), a relative standard deviation of 3.9% at 50 ng L(-1) level (n=11) and a linear range of 9-350 ng L(-1) were obtained. The column remained stable for more than 600 cycles keeping the cost down in routine analysis. The proposed method was evaluated by analyzing certified reference materials and natural waters. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Modelling of injection processes in ladle metallurgy

    NARCIS (Netherlands)

    Visser, H.

    2016-01-01

    Ladle metallurgical processes constitute a portion of the total production chain of steel from iron ore. With these batch processes, the hot metal or steel transfer ladle is being used as a reactor vessel and a reagent is often injected in order to bring the composition of the hot metal or steel to

  5. Pilot-Scale Evaluation of an Advanced Carbon Sorbent-Based Process for Post-Combustion Carbon Capture

    Energy Technology Data Exchange (ETDEWEB)

    Hornbostel, Marc [SRI International, Menlo Park, CA (United States)

    2016-09-01

    The overall objective of this project is to achieve the DOE’s goal to develop advanced CO2 capture and separation technologies that can realize at least 90% CO2 removal from flue gas steams produced at a pulverized coal (PC) power plant at a cost of less than $40/tonne of CO2 captured. The principal objective is to test a CO2 capture process that will reduce the parasitic plant load by using a CO2 capture sorbent that will require a reduced amount of steam. The process is based on advanced carbon sorbents having a low heat of adsorption, high CO2 adsorption capacity, and excellent selectivity. While the intent of this project was to produce design and performance data by testing the sorbent using a slipstream of coal-derived flue gas at the National Carbon Capture Center (NCCC) under realistic conditions and continuous long-term operation, the project was terminated following completion of the detailing pilot plant design/engineering work on June 30, 2016.

  6. Performance analysis of K-based KEP-CO2P1 solid sorbents in a bench-scale continuous dry-sorbent CO{sub 2} capture process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Cheol; Jo, Sung-Ho; Lee, Seung-Yong; Moon, Jong-Ho; Yi, Chang-Keun [Korea Institute of Energy Research, 152, Gajeong-ro, Yuseong-gu, Daejeon (Korea, Republic of); Ryu, Chong Kul; Lee, Joong Beom [Korea Electric Power Corporation Research Institute, Daejeon (Korea, Republic of)

    2016-01-15

    Korea Institute of Energy Research (KIER) and Korea Electric Power Corporation Research Institute (KEPCORI) have been developing a CO{sub 2} capture technology using dry sorbents. In this study, KEP-CO2P1, a potassium-based dry sorbent manufactured by a spray-drying method, was used. We employed a bench-scale dry-sorbent CO{sub 2} capture fluidized-bed process capable of capturing 0.5 ton CO{sub 2}/day at most. We investigated the sorbent performance in continuous operation mode with solid circulation between a fast fluidized-bed-type carbonator and a bubbling fluidizedbed- type regenerator. We used a slip stream of a real flue gas from 2MWe coal-fired circulating fluidized-bed (CFB) power facilities installed at KIER. Throughout more than 50 hours of continuous operation, the temperature of the carbonator was maintained around 70-80 .deg. C using a jacket-type heat exchanger, while that of the regenerator was kept above 180 .deg. C using an electric furnace. The differential pressure of both the carbonator and regenerator was maintained at a stable level. The maximum CO{sub 2} removal was greater than 90%, and the average CO{sub 2} removal was about 83% during 50 hours of continuous operation.

  7. High SO{sub 2} removal duct injection: A low-cost FGD alternative

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.G. [Sorbent Technologies Corp., Twinsburg, OH (United States)

    1995-12-01

    Sorbent Technologies Corporation, of the United States, is currently developing and demonstrating a new waste free, retrofitable, high-SO{sub 2} removal duct-injection process. Up to 85 percent SO{sub 2} removal is achieved by simply injecting a new dry lime-based sorbent into the flue-gas duct, collecting the sorbent downstream in a particulate collector, and then recycling the sorbent. By avoiding large, expensive components, the process can have low capital costs, making it especially appropriate for smaller, older, less-utilized plants. The key to the new technology is the use of sorbent supports. Supported sorbents are produced by coating hydrated lime onto inexpensive mineral supports, such as exfoliated vermiculite or perlite. Consequently, there are no liquid, sludge, or solid wastes with the new technology. Once saturated with SO{sub 2}, the spent sorbent can be easily pelletized into a valuable soil-conditioning agricultural by-product, for the sustainable development that the future requires. This paper describes Sorbent Technologies` pilot demonstration of supported sorbent injection at the Ohio Edison Company`s R.E. Burger station. The Burger effort is also the first demonstration of the Electric Power Research Institute`s new {open_quotes}COHPAC{close_quotes} baghouse technology in a sorbent-injection desulfurization application.

  8. Physics of the current injection process during localized helicity injection

    Science.gov (United States)

    Hinson, Edward Thomas

    An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.

  9. Warpage analysis in injection moulding process

    Science.gov (United States)

    Hidayah, M. H. N.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Hazwan, M. H. M.

    2017-09-01

    This study was concentrated on the effects of process parameters in plastic injection moulding process towards warpage problem by using Autodesk Moldflow Insight (AMI) software for the simulation. In this study, plastic dispenser of dental floss has been analysed with thermoplastic material of Polypropylene (PP) used as the moulded material and details properties of 80 Tonne Nessei NEX 1000 injection moulding machine also has been used in this study. The variable parameters of the process are packing pressure, packing time, melt temperature and cooling time. Minimization of warpage obtained from the optimization and analysis data from the Design Expert software. Integration of Response Surface Methodology (RSM), Center Composite Design (CCD) with polynomial models that has been obtained from Design of Experiment (DOE) is the method used in this study. The results show that packing pressure is the main factor that will contribute to the formation of warpage in x-axis and y-axis. While in z-axis, the main factor is melt temperature and packing time is the less significant among the four parameters in x, y and z-axes. From optimal processing parameter, the value of warpage in x, y and z-axis have been optimised by 21.60%, 26.45% and 24.53%, respectively.

  10. Automation of radiochemical analysis by flow injection techniques. Am-Pu separation using TRU-resinTM sorbent extraction column

    International Nuclear Information System (INIS)

    Egorov, O.; Washington Univ., Seattle, WA; Grate, J.W.; Ruzicka, J.

    1998-01-01

    A rapid automated flow injection analysis (FIA) procedure was developed for efficient separation of Am and Pu from each other and from interfering matrix and radionuclide components using a TRU-resin TM column. Selective Pu elution is enabled via on-column reduction. The separation was developed using on-line radioactivity detection. After the separation had been developed, fraction collection was used to obtain the separated fractions. In this manner, a FIA instrument functions as an automated separation workstation capable of unattended operation. (author)

  11. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  12. Development and testing of inorganic sorbents made by the internal gelation process for radionuclide and heavy metal separations

    International Nuclear Information System (INIS)

    Egan, B.Z.; Collins, J.L.; Anderson, K.K.; Chase, C.W.

    1995-01-01

    The objectives of this task are to develop, prepare, and test microspheres and granular forms of inorganic ion exchangers to remove radionuclides and heavy metals from waste streams occurring at various sites. Several inorganic materials, such as hexacyanoferrates, titanates, phosphates, and oxides have high selectivities and efficiencies for separating and removing radionuclides such as uranium, technetium, cesium, and strontium, and metals such as cobalt, silver, zinc, and zirconium from aqueous waste streams. However, these sorbents frequently exist only as powders and consequently are not readily adaptable to continuous processing such as column chromatography. Making these inorganic ion exchangers as microspheres or granular forms improves the flow dynamics for column operations and expands their practical applications. Microspheres of several materials have been prepared at ORNL, and the effectiveness of zirconium monohydrogen phosphate and hydrous titanium oxide microspheres for removing radionuclides from hot cell waste solutions has been demonstrated

  13. LOW CONCENTRATION MERCURY SORPTION MECHANISMS AND CONTROL BY CALCIUM-BASED SORBENTS; APPLICATION IN COAL-FIRED PROCESSES

    Science.gov (United States)

    The capture of elemental mercury (Hgo) and mercuric chloride (HgCl2) by three types of calcium (Ca)-based sorbents was examined in this bench-scale study under conditions prevalent in coal fired utilities. Ca-based sorbent performances were compared to that of an activated carbon...

  14. Non-carbon sorbents for mercury removal from flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, G.O.; Dubovik, M.; Cesario, M. [TDA Research Inc., Wheat Ridge, CO (United States)

    2005-07-01

    TDA Research Inc. is developing a new sorbent that can effectively remove mercury from flue gases. It is made of non-carbon based materials and will therefore not alter the properties of the fly ash. The sorbent can be produced as an injectable powder. The paper summarises the initial testing results of the new sorbent. The sorbent exhibited 7.5 to 11.0 mg/g mercury absorption capacity under representative flue gas streams depending on the operating temperature and gas hourly space velocity. The sorbent also showed resistance to sulfur poisoning by sulfur dioxide. 6 refs., 3 figs., 1 tab.

  15. Novel sorbents for environmental remediation

    Science.gov (United States)

    Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Werner, David

    2014-05-01

    Nowadays, one of the major environmental problems is the pollution of aquatic systems and soil by persistent pollutants. Persistent pollutants have been found widespread in sediments, surface waters, and drinking water supplies. The removal of pollutants can be accomplished prior to their discharge to receiving bodies or by immobilizing them onto soil. Sorption is the most commonly applied process, and activated carbons have been widely used. Rapid progress in nanotechnology and a new focus on biomass-based instead of non-renewable starting materials have produced a wide range of novel engineered sorbents including biosorbents, biochars, carbon-based nanoparticles, bio-nano hybrid materials, and iron-impregnated activated carbons. Sorbent materials have been used in environmental remediation processes and especially in agricultural soil, sediments and contaminated soil, water treatment, and industrial wastewater treatment. Furthermore, sorbents may enhance the synergistic action of other processes, such as volatilization and biodegradation. Novel sorbents have been employed for the removal or immobilization of persistent pollutants such as and include heavy metals (As, Cr, Cu, Pb, Cd, and Hg), halogenated organic compounds, endocrine disrupting chemicals, metalloids and non-metallic elements, and other organic pollutants. The development and evaluation of novel sorbents requires a multidisciplinary approach encompassing environmental, nanotechnology, physical, analytical, and surface chemistry. The necessary evaluations encompass not only the efficiency of these materials to remove pollutants from surface waters and groundwater, industrial wastewater, polluted soils and sediments, etc., but also the potential side-effects of their environmental applications. The aim of this work is to present the results of the use of biochar and impregnated carbon sorbents for the removal of organic pollutants and metals. Furthermore, the new findings from the forthcoming session

  16. Effects of injection angles on combustion processes using multiple injection strategies in an HSDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Tiegang Fang; Robert E. Coverdill; Chia-fon F. Lee; Robert A. White [North Carolina State University, Raleigh, NC (United States). Department of Mechanical and Aerospace Engineering

    2008-11-15

    Effects of injection angles and injection pressure on the combustion processes employing multiple injection strategies in a high-speed direct-injection (HSDI) diesel engine are presented in this work. Whole-cycle combustion and liquid spray evolution processes were visualized using a high-speed video camera. NOx emissions were measured in the exhaust pipe. Different heat release patterns are seen for two different injectors with a 70-degree tip and a 150-degree tip. No evidence of fuel-wall impingement is found for the first injection of the 150-degree tip, but for the 70-degree tip, some fuel impinges on the bowl wall and a fuel film is formed. For the second injection, a large amount of fuel deposition is observed for the 70-degree tip. Weak flame is seen for the first injection of the 150-degree tip while two sorts of flames are seen for the first injection of the 70-degree tip including an early weak flame and a late luminous film combustion flame. Ignition occurs near the spray tip in the vicinity of the bowl wall for the second injection events of the 150-degree tip, however, it is near the injector tip in the central region of the bowl for the 70-degree tip. The flame is more homogeneous for the 150-degree tip with higher injection pressure with little soot formation similar to a premixed-charge-compression-ignition (PCCI) combustion. For other cases, liquid fuel is injected into flames showing diffusion flame combustion. More soot luminosity is seen for the 70-degree tip due to significant fuel film deposition on the piston wall with fuel film combustion for both injection events. Lower NOx emissions were obtained for the narrow-angle injector due to the rich air-fuel mixture near the bowl wall during the combustion process. 30 refs., 11 figs., 3 tabs.

  17. Thermal design of heat-exchangeable reactors using a dry-sorbent CO2 capture multi-step process

    International Nuclear Information System (INIS)

    Moon, Hokyu; Yoo, Hoanju; Seo, Hwimin; Park, Yong-Ki; Cho, Hyung Hee

    2015-01-01

    The present study proposes a multi-stage CO 2 capture process that incorporates heat-exchangeable fluidized-bed reactors. For continuous multi-stage heat exchange, three dry regenerable sorbents: K 2 CO 3 , MgO, and CaO, were used to create a three-stage temperature-dependent reaction chain for CO 2 capture, corresponding to low (50–150 °C), middle (350–650 °C), and high (750–900 °C) temperature stages, respectively. Heat from carbonation in the high and middle temperature stages was used for regeneration for the middle and low temperature stages. The feasibility of this process is depending on the heat-transfer performance of the heat-exchangeable fluidized bed reactors as the focus of this study. The three-stage CO 2 capture process for a 60 Nm 3 /h CO 2 flow rate required a reactor area of 0.129 and 0.130 m 2 for heat exchange between the mid-temperature carbonation and low-temperature regeneration stages and between the high-temperature carbonation and mid-temperature regeneration stages, respectively. The reactor diameter was selected to provide dense fluidization conditions for each bed with respect to the desired flow rate. The flow characteristics and energy balance of the reactors were confirmed using computational fluid dynamics and thermodynamic analysis, respectively. - Highlights: • CO 2 capture process is proposed using a multi-stage process. • Reactor design is conducted considering heat exchangeable scheme. • Reactor surface is designed by heat transfer characteristics of fluidized bed

  18. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... position was measured on the polymer μ-parts to evaluate filling behavior of the polymer melt flowing through μ-features. Experimental results obtained under different processing conditions were evaluated to correlate the process parameter levels influence on the selected responses. Results showed...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  19. Silicophosphate Sorbents, Based on Ore-Processing Plants' Waste in Kazakhstan

    Science.gov (United States)

    Kubekova, Sholpan N.; Kapralova, Viktoria I.; Telkov, Shamil A.

    2016-01-01

    The problem of ore-processing plants' waste and man-made mineral formations (MMF) disposal is very important for the Republic of Kazakhstan. The research of various ore types (gold, polymetallic, iron-bearing) MMF from a number of Kazakhstan's deposits using a complex physical and chemical methods showed, that the waste's main components are…

  20. Optimization of Injection Moulding Process Parameters in the ...

    African Journals Online (AJOL)

    ADOWIE PERE

    https://www.ajol.info/index.php/jasem ... Cooling time was found to be the factor with most significant effect on ... Keywords: High Density Polyethylene (HDPE), Injection Moulding, Process .... value of shrinkage behavior is expected to be.

  1. Advancements on the simulation of the micro injection moulding process

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    injection molding, because they are developed for macro plastic parts and they are therefore limited in the capability of modeling the polymer flow in micro cavities properly. However, new opportunities for improved accuracy have opened up due to current developments of the simulation technology. Hence, new......Process simulations are applied in micro injection molding with the same purpose as in conventional injection molding: aiming at optimization and support of the design of mold, inserts, plastic products, and the process itself. Available software packages are however not well suited for micro...

  2. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Low-Cost Sorbents: A Literature Summary

    National Research Council Canada - National Science Library

    Bailey, Susan

    1997-01-01

    The capital and regeneration costs of activated carbon and ion exchange media suggest that better process economics may be achieved with disposable sorbents for the treatment of metals-contaminated...

  4. Improving the accuracy of micro injection moulding process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    and are therefore limited in the capability of modelling the polymer flow in micro cavities. Hence, new strategies for comprehensive simulation models which provide more precise results open up new opportunities and will be discussed. Modelling and meshing recommendations are presented, leading to a multi......Process simulations in micro injection moulding aim at the optimization and support of the design of the mould, mould inserts, the plastic product, and the process. Nevertheless, dedicated software packages for micro injection moulding are not available. They are developed for macro plastic parts...

  5. INJECT and the modeling of waste recycling processes

    Energy Technology Data Exchange (ETDEWEB)

    Gracyalny, E.J.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Enhancements were performed to the computer model CORCON to allow for more general energy and transport processes, thus creating a general equilibrium, chemistry tool for a liquid pool with fluid injection. The summation of these model modifications are referred to as INJECT. It is believed that with these enhancements, INJECT becomes a useful tool to study waste management technologies and materials processing. A demonstration of such was performed with a simulation of pyrolysis and materials extraction of ion exchange resins produced by pressurized water reactors. A 5 kg pool consisting of iron, carbon and alumina was injected with CO{sub 2} and contaminated resin, commonly known as styrene. The injection rates varied from 0.2-1.0 {sub min}{sup L} for the CO{sub 2} and 0.5-1.5 {sub min}{sup g} for the resin. Simulation results indicated that the cesium and zinc contaminants were released as gases, cobalt would be in the metallic phase, cerium remained in the oxidic phase and manganese was found in both the oxidic and metallic phases.

  6. Desulfurization sorbent regeneration

    Science.gov (United States)

    Jalan, V.M.; Frost, D.G.

    1982-07-07

    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above 500/sup 0/C to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent. This method may be used for high-temperature fuel cells.

  7. MODELING OF ELECTRONIC GASOLINE INJECTION PROCESSES IN TWO STROKE ENGINE

    Directory of Open Access Journals (Sweden)

    Hraivoronskyi, Y.

    2013-06-01

    Full Text Available Basic provision of the processes developed mode, occurring in ignition fuel system with electronically controlled two stroke engine with positive ignition are given. Fuel injection process’ calculation results for the case of placing fuel injector into intake system presented.

  8. Effect of processing conditions on shrinkage in injection moulding

    NARCIS (Netherlands)

    Jansen, K.M.B.; van Dijk, D.J.; Husselman, M.H.

    1998-01-01

    A systematic study on the effect of processing conditions on mold shrinkage was undertaken for seven common thermoplastic polymers. It turned out that the holding pressure was always the key parameter. The effect of the melt temperature is slightly less important. Injection velocity and mold

  9. Evaluation of Injection Molding Process Parameters for Manufacturing Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Marwah O.M.F.

    2017-01-01

    Full Text Available Quality control is an important aspect in manufacturing process. The quality of product in injection moulding is influenced by injection moulding process parameter. In this study, the effect of injection moulding parameter on defects quantity of PET preform was investigated. Optimizing the parameter of injection moulding process is critical to enhance productivity where parameters must operate at an optimum level for an acceptable performance. Design of Experiment (DOE by factorial design approach was used to find an optimum parameter setting and reduce the defects. In this case study, Minitab 17 software was used to analyses the data. The selected input parameters were mould hot runner temperature, water cooling chiller temperature 1 and water cooling chiller temperature 2. Meanwhile, the output for the process was defects quantity of the preform. The relationship between input and output of the process was analyzed using regression method and Analysis of Variance (ANOVA. In order to interpolate the experiment data, mathematical modeling was used which consists of different types of regression equation. Next, from the model, 95% confidence level (p-value was considered and the significant parameter was figured out. This study involved a collaboration with a preform injection moulding company which was Nilai Legasi Plastik Sdn Bhd. The collaboration enabled the researchers to collect the data and also help the company to improve the quality of its production. The results of the study showed that the optimum parameter setting that could reduce the defect quantity of preform was MHR= 88°C, CT1= 24°C and CT2= 27°C. The comparison defect quantity analysis between current companies setting with the optimum setting showed improvement by 21% reduction of defect quantity at the optimum setting. Finally, from the optimization plot, the validation error between the prediction value and experiment was 1.72%. The result proved that quality of products

  10. [Impurity removal technology of Tongan injection in liquid preparation process].

    Science.gov (United States)

    Yang, Xu-fang; Wang, Xiu-hai; Bai, Wei-rong; Kang, Xiao-dong; Liu, Jun-chao; Wu, Yun; Xiao, Wei

    2015-08-01

    In order to effectively remove the invalid impurities in Tongan injection, optimize the optimal parameters of the impurity removal technology of liquid mixing process, in this paper, taking Tongan injection as the research object, with the contents of celandine alkali, and sinomenine, solids reduction efficiency, and related substances inspection as the evaluation indexes, the removal of impurities and related substances by the combined process of refrigeration, coction and activated carbon adsorption were investigated, the feasibility of the impurity removal method was definited and the process parameters were optimized. The optimized process parameters were as follows: refrigerated for 36 h, boiled for 15 min, activated carbon dosage of 0.3%, temperature 100 degrees C, adsorption time 10 min. It can effectively remove the tannin, and other impurities, thus ensure the quality and safety of products.

  11. Optimization of SHINE Process: Design and Verification of Plant-Scale AG 1 Anion-Exchange Concentration Column and Titania Sorbent Pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Dominique C. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Abdul, Momen [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Youker, Amanda J. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Rotsch, David A. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Tkac, Peter [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    Argonne National Laboratory has developed a Mo-recovery and -purification system for the SHINE medical technologies process, which uses a uranyl sulfate solution for the accelerator-driven production of Mo-99. The objective of this effort is to reduce the processing time for the acidification of the Mo-99 product prior to loading onto a concentration column and concentration of the Mo-99 product solution. Two methods were investigated: (1) the replacement of the titania concentration column by an anion-exchange column to decrease processing time and increase the radioiodine-decontamination efficiency and (2) pretreatment of the titania sorbent to improve its effectiveness for the Mo-recovery and -concentration columns. Promising results are reported for both methods.

  12. Impact of physical properties of biodiesel on the injection process in a common-rail direct injection system

    International Nuclear Information System (INIS)

    Boudy, Frederic; Seers, Patrice

    2009-01-01

    This paper presents the influence of biodiesel fuel properties on the injection mass flow rate of a diesel common-rail injection system. Simulations are first performed with ISO 4113 diesel fuel on a four-cylinder common-rail system to evaluate a single and triple injection strategies. For each injection strategy, the impact of modifying a single fuel property at a time is evaluated so as to quantify its influence on the injection process. The results show that fuel density is the main property that affects the injection process, such as total mass injected and pressure wave in the common-rail system. The fuel's viscosity and bulk modulus also influence, but to a lessen degree, the mass flow rate of the injector notably during multiple injection strategies as individual properties change the fuel's dampening property and friction coefficient.

  13. Sorbent Scoping Studies

    International Nuclear Information System (INIS)

    Chancellor, Christopher John

    2016-01-01

    The Los Alamos National Laboratory-Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  14. Sorbent Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Lab. (LANL), Carlsbad, NM (United States). Difficult Waste Team

    2016-11-14

    The Los Alamos National Laboratory–Carlsbad Operations (LANL-CO) office was tasked by the DOE CBFO, Office of the Manager to perform a review of the acceptable knowledge (AK) to identify the oxidizers and sorbents in transuranic (TRU) waste streams, to conduct scoping studies on the oxidizers and sorbents identified in AK review to inform the Quality Level 1 (QL1) testing, and to conduct a series of QL1 tests to provide the scientific data to support a basis of knowledge document for determining the criteria for (1) accepting waste at the Waste Isolation Pilot Plant (WIPP) without treatment, (2) determining waste that will require treatment, and (3) if treatment is required, how the treatment must be performed. The purpose of this report is to present the results of the AK review of sorbents present in active waste streams, provide a technical analysis of the sorbent list, report the results of the scoping studies for the fastest-burning organic sorbent, and provide the list of organic and inorganic sorbents to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-001, Oxidizer Scoping Studies, has similar information for oxidizers identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  15. The role of external and internal mass transfer in the process of Cu2+ removal by natural mineral sorbents.

    Science.gov (United States)

    Sljivić, M; Smiciklas, I; Plećas, I; Pejanović, S

    2011-07-01

    The kinetics of Cu2+ sorption on to zeolite, clay and diatomite was investigated as a function of initial metal concentrations. For consideration of the mass transfer phenomena, single resistance models based on both film and intraparticle diffusion were tested and compared. The obtained results suggested that the rate-limiting step in Cu2+ sorption strongly depended on the sorbent type, as well as on initial cation concentration. The decrease in external mass transfer coefficients with the increase in initial metal concentrations was in excellent agreement with expressions based on Sherwood and Schmidt dimensionless numbers. The internal diffusivities through zeolite particles were in the range 1.0 x 10(-11) to 1.0 x 10(-13) m2/min, depending on the Cu2+ concentration and the applied theoretical model.

  16. Properties and reactivity of reactivated calcium-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Davini, P. [Pisa University, Pisa (Italy). Dept. of Chemical Engineering

    2002-04-01

    Calcium-based sorbents used in the process of high temperature desulfurisation of flue gases are partly regenerable by hydration with steam; the best results are obtained for treatment temperatures of approximately 300{degree}C. The regeneration process, and the consequent increase in the sorbent consumption can be correlated to the surface characteristics (BET surface area, porosity and pore size distribution) of the sorbents themselves. In particular, the presence of suitable pore structure, also having pores large enough to let molecules easily penetrate the inner part of the sorbent particles, is very important. 27 refs., 9 figs., 2 tabs.

  17. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    Science.gov (United States)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  18. Large Eddy Simulation of Cryogenic Injection Processes at Supercritical Pressure

    Science.gov (United States)

    Oefelein, Joseph C.

    2002-01-01

    This paper highlights results from the first of a series of hierarchical simulations aimed at assessing the modeling requirements for application of the large eddy simulation technique to cryogenic injection and combustion processes in liquid rocket engines. The focus is on liquid-oxygen-hydrogen coaxial injectors at a condition where the liquid-oxygen is injected at a subcritical temperature into a supercritical environment. For this situation a diffusion dominated mode of combustion occurs in the presence of exceedingly large thermophysical property gradients. Though continuous, these gradients approach the behavior of a contact discontinuity. Significant real gas effects and transport anomalies coexist locally in colder regions of the flow, with ideal gas and transport characteristics occurring within the flame zone. The current focal point is on the interfacial region between the liquid-oxygen core and the coaxial hydrogen jet where the flame anchors itself.

  19. Engineering metal (hydr)oxide sorbents for removal of arsenate and similar weak-acid oxyanion contaminants: A critical review with emphasis on factors governing sorption processes.

    Science.gov (United States)

    Hristovski, Kiril D; Markovski, Jasmina

    2017-11-15

    To create an integrative foundation for engineering of the next generation inexpensive sorbent systems, this critical review addresses the existing knowledge gap in factor/performance relationships between weak-acid oxyanion contaminants and metal (hydr)oxide sorbents. In-depth understanding of fundamental thermodynamics and kinetics mechanisms, material fabrication, and analytical and characterization techniques, is necessary to engineer sorbent that exhibit high capacity, selectivity, stability, durability and mass transport of contaminants under a wide range of operating and water matrix conditions requirements. From the perspective of thermodynamics and kinetics, this critical review examines the factors affecting sorbent performances and analyzes the existing research to elucidate future directions aimed at developing novel sorbents for removal of weak-acid oxyanion contaminants from water. Only sorbents that allow construction of simple and inexpensive water treatment systems adapted to overcome fiscal and technological barriers burdening small communities could pave the road for providing inexpensive potable water to millions of people. Novel sorbents, which exhibit (1) poor performances in realistic operating and water matrix conditions and/or (2) do not comply with the purely driven economics factors of production scalability or cost expectations, are predestined to never be commercialized. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Process Optimization for Injection Moulding of Passive Microwave Components

    DEFF Research Database (Denmark)

    Scholz, Steffen G.; Mueller, Tobias; Santos Machado, Leonardo

    2016-01-01

    The demand for micro components has increased during the last decade following the overall trend towards miniaturization. Injection moulding is the favoured technique for the mass manufacturing of micro components or larger parts with micro-structured areas due to its ability to cost effectively ...... algorithm for modelling, the influence of different moulding parameters on the final part quality was assessed. Firstly a process model and secondly a quality model has been calculated. The results shows that part quality can be controlled by monitoring characteristic numbers....

  1. Development of integrated control system for smart factory in the injection molding process

    Science.gov (United States)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  2. Space-filling polyhedral sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  3. PROCEEDINGS: MULTIPOLLUTANT SORBENT REACTIVITY ...

    Science.gov (United States)

    The report is a compilation of technical papers and visual aids presented by representatives of industry, academia, and government agencies at a workshop on multipollutant sorbent reactivity that was held at EPA's Environmental Research Center in Research Triangle Park, NC, on July 19-20, 1994. There were 16 technical presentations in three sessions, and a panel discussion between six research experts. The workshop was a forum for the exchange of ideas and information on the use of sorbents to control air emissions of acid gases (sulfur dioxide, nitrogen oxides, and hydrogen chloride); mercury and dioxins; and toxic metals, primarily from fossil fuel combustion. A secondary purpose for conducting the workshop was to help guide EPA's research planning activities. A general theme of the workshop was that a strategy of controlling many pollutants with a single system rather than systems to control individual pollutants should be a research goal. Some research needs cited were: hazardous air pollutant removal by flue gas desulfurization systems, dioxin formation and control, mercury control, waste minimization, impact of ash recycling on metals partitioning, impact of urea and sorbents on other pollutants, high temperature filtration, impact of coal cleaning on metals partitioning, and modeling dispersion of sorbents in flue gas. information

  4. Process Condition Monitoring of Micro Moulding Using a Two-plunger Micro Injection Moulding Machine

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Guerrier, Patrick

    2010-01-01

    The influence of micro injection moulding (µIM) process parameters (melt and mould temperature, piston injection speed and stoke length) on the injection pressure was investigated using Design of Experiments. Direct piston injection pressure measurements were performed and data collected using...... a micro injection moulding machine equipped with a two-pluger injection unit. Miniaturized dog-bone shaped speciments on polyoxymethylene (POM) were moulded over a wide range of processing cpnditions in order to characterize the process and assess its capability. Experimental results obtained under...

  5. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-08-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper will cover the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier. 8 refs., 6 figs., 1 tab

  6. Design of engineered sorbent barriers

    International Nuclear Information System (INIS)

    Jones, E.O.; Freeman, H.D.

    1988-01-01

    A sorbent barrier uses sorbent material such as activated carbon or natural zeolites to prevent the migration of radionuclides from a low-level waste site to the aquifer. The sorbent barrier retards the movement of radioactive contaminants, thereby providing time for the radionuclides to decay. Sorbent barriers can be a simple, effective, and inexpensive method for reducing the migration of radionuclides to the environment. Designing a sorbent barrier consists of using soil and sorbent material properties and site conditions as input to a model which will determine the necessary sorbent barrier thickness to meet contaminant limits. The paper covers the following areas: techniques for measuring sorption properties of barrier materials and underlying soils, use of a radionuclide transport model to determine the required barrier thickness and performance under a variety of site conditions, and cost estimates for applying the barrier

  7. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  8. The research of new type stratified water injection process intelligent measurement technology

    Science.gov (United States)

    Zhao, Xin

    2017-10-01

    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  9. Process control and product evaluation in micro molding using a screwless/two-plunger injection unit

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Dormann, B.

    2010-01-01

    A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ-injection......A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ......-injection molding was investigated using the Design of Experiments technique. Injection pressure and piston stroke speed as well as part weight and dimensions were considered as quality factors over a wide range of process parameters. Experimental results obtained under different processing conditions were...

  10. Optimization of injection moulding process parameters in the ...

    African Journals Online (AJOL)

    In this study, optimal injection moulding conditions for minimum shrinkage during moulding of High Density Polyethylene (HDPE) were obtained by Taguchi method. The result showed that melting temperature of 190OC, injection pressure of 55 MPa, refilling pressure of 85 MPa and cooling time of 11 seconds gave ...

  11. Detailed modeling of common rail fuel injection process

    NARCIS (Netherlands)

    Seykens, X.L.J.; Somers, L.M.T.; Baert, R.S.G.

    2005-01-01

    Modeling of fuel injection equipment is a tool that is used increasingly for explaining or predicting the effect of advanced diesel injection strategies on combustion and emissions. This paper reports on the modeling of the high-pressure part of a research type Heavy Duty Common Rail (CR) fuel

  12. Numerical simulation in steam injection process by a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.Jr.; Campos, W.; Lopes, D.; Moura, L.S.S. [Petrobras, Rio de Janeiro (Brazil)

    2008-10-15

    Steam injection is a common thermal recovery method used in very viscous oil reservoirs. The method involves the injection of heat to reduce viscosity and mobilize oil. A steam generation and injection system consists primarily of a steam source, distribution lines, injection wells and a discarding tank. In order to optimize injection and improve the oil recovery factor, one must determine the parameters of steam flow such as pressure, temperature and steam quality. This study focused on developing a unified mathematical model by means of a mechanistic approach for two-phase steam flow in pipelines and wells. The hydrodynamic and heat transfer mechanistic model was implemented in a computer simulator to model the parameters of steam injection while trying to avoid the use of empirical correlations. A marching algorithm was used to determine the distribution of pressure and temperature along the pipelines and wellbores. The mathematical model for steam flow in injection systems, developed by a mechanistic approach (VapMec) performed well when the simulated values of pressures and temperatures were compared with the values measured during field tests. The newly developed VapMec model was incorporated in the LinVap-3 simulator that constitutes an engineering supporting tool for steam injection wells operated by Petrobras. 23 refs., 7 tabs., 6 figs.

  13. In vitro simulation of distribution processes following intramuscular injection

    Directory of Open Access Journals (Sweden)

    Probst Mareike

    2016-09-01

    Full Text Available There is an urgent need for in vitro dissolution test setups for intramuscularly applied dosage forms. Especially biorelevant methods are needed to predict the in vivo behavior of newly developed dosage forms in a realistic way. There is a lack of knowledge regarding critical in vivo parameters influencing the release and absorption behavior of an intramuscularly applied drug. In the presented work the focus was set on the simulation of blood perfusion and muscle tissue. A solid agarose gel, being incorporated in an open-pored foam, was used to mimic the gel phase of muscle tissue and implemented in a flow through cell. An aqueous solution of fluorescein sodium was injected. Compared to recently obtained in vivo results the distribution of the model substance was very slow. Furthermore an agarose gel of lower viscosity an open-pored foam and phosphate buffer saline pH 7.4 were implemented in a multi-channel-ceramic membrane serving as a holder for the muscle imitating material. Blood simulating release medium was perfused through the ceramic membrane including filling materials. Transport of the dissolved fluorescein sodium was, in case of the gel, not only determined by diffusion but also by convective transport processes. The more realistic the muscle simulating materials were constituted the less reproducible results were obtained with the designed test setups.

  14. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  15. Sorbent-based Oxygen Production for Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Vijay [Western Research Inst. (WRI), Laramie, WY (United States)

    2017-01-31

    Project DE-FE0024075 deals with the development of a moderate-temperature sorbent-based oxygen production technology. Sorbent-based oxygen production process utilizes oxygen-storage properties of Perovskites to (1) adsorb oxygen from air in a solid sorbent, and (2) release the adsorbed oxygen into a sweep gas such as CO2 and/or steam for gasification systems or recycled flue gas for oxy-combustion systems. Pure oxygen can be produced by the use of vacuum instead of a sweep gas to affect the pressure swing. By developing more efficient and stable, higher sorption capacity, newer class of materials operating at moderate temperatures this process represents a major advancement in air separation technology. Newly developed perovskite ceramic sorbent materials with order-disorder transition have a higher O2 adsorption capacity, potentially 200 °C lower operating temperatures, and up to two orders of magnitude faster desorption rates than those used in earlier development efforts. The performance advancements afforded by the new materials lead to substantial savings in capital investment and operational costs. Cost of producing oxygen using sorbents could be as much as 26% lower than VPSA and about 13% lower than a large cryogenic air separation unit. Cost advantage against large cryogenic separation is limited because sorbent-based separation numbers up sorbent modules for achieving the larger capacity.

  16. Effects of Injection Rate Profile on Combustion Process and Emissions in a Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fuqiang Bai

    2017-01-01

    Full Text Available When multi-injection is implemented in diesel engine via high pressure common rail injection system, changed interval between injection pulses can induce variation of injection rate profile for sequential injection pulse, though other control parameters are the same. Variations of injection rate shape which influence the air-fuel mixing and combustion process will be important for designing injection strategy. In this research, CFD numerical simulations using KIVA-3V were conducted for examining the effects of injection rate shape on diesel combustion and emissions. After the model was validated by experimental results, five different shapes (including rectangle, slope, triangle, trapezoid, and wedge of injection rate profiles were investigated. Modeling results demonstrate that injection rate shape can have obvious influence on heat release process and heat release traces which cause different combustion process and emissions. It is observed that the baseline, rectangle (flat, shape of injection rate can have better balance between NOx and soot emissions than the other investigated shapes. As wedge shape brings about the lowest NOx emissions due to retarded heat release, it produces the highest soot emissions among the five shapes. Trapezoid shape has the lowest soot emissions, while its NOx is not the highest one. The highest NOx emissions were produced by triangle shape due to higher peak injection rate.

  17. The antimicrobial efficiency of silver activated sorbents

    International Nuclear Information System (INIS)

    Đolić, Maja B.; Rajaković-Ognjanović, Vladana N.; Štrbac, Svetlana B.; Rakočević, Zlatko Lj.; Veljović, Đorđe N.; Dimitrijević, Suzana I.; Rajaković, Ljubinka V.

    2015-01-01

    aqueous phase and microbial cell removal caused by the Ag + -ions from the solid phase (activated surface sites). The results indicated that disinfection process significantly depended on the microbial-activated sites interactions on the modified surface. The chemical state of the activating agent had crucial impact to the inhibition rate. The characterization of the native and modified sorbents was performed by X-ray diffraction technique, X-ray photoelectron spectroscopy and scanning electron microscope. The concentration of adsorbed and released ions was determined by inductively coupled plasma optical emission spectroscopy and mass spectrometry. The antimicrobial efficiency of activated sorbents was related not only to the concentration of the activating agent, but moreover on the surface characteristics of the material, which affects the distribution and the accessibility of the activating agent.

  18. Advanced sorbent development progam; development of sorbents for moving-bed and fluidized-bed applications

    International Nuclear Information System (INIS)

    Ayala, R.E.; Venkataramani, V.S.

    1998-01-01

    The integrated gasification combined cycle (IGCC) power system using high-temperature coal gas cleanup is one of the most promising advanced technologies for the production of electric power from coal in an environmentally acceptable manner. Unlike conventional low-temperature cleanup systems that require costly heat exchangers, high-temperature coal gas cleanup systems can be operated near 482-538 C (900-1000F) or higher, conditions that are a closer match with the gasifier and turbine components in the IGCC system, thus resulting is a more efficient overall system. GE is developing a moving-bed, high-temperature desulfurization system for the IGCC power cycle in which zinc-based regenerable sorbents are currently being used as desulfurization sorbents. Zinc titanate and other proprietary zinc-based oxides are being considered as sorbents for use in the Clean Coal Technology Demonstration Program at Tampa Electric Co.s (TECo) Polk Power Station. Under cold startup conditions at TECo, desulfurization and regeneration may be carried out at temperatures as low as 343 C (650 F), hence a versatile sorbent is desirable to perform over this wide temperature range. A key to success in the development of high-temperature desulfurization systems is the matching of sorbent properties for the selected process operating conditions, namely, sustainable desulfurization kinetics, high sulfur capacity, and mechanical durability over multiple cycles. Additionally, the sulfur species produced during regeneration of the sorbent must be in a form compatible with sulfur recovery systems, such as sulfuric acid or elemental sulfur processes. The overall objective of this program is to develop regenerable sorbents for hydrogen sulfide removal from coal-derived fuel gases in the temperature range 343-538 C (650-1000 F). Two categories of reactor configurations are being considered: moving-bed reactors and fluidized-bed (bubbling and circulating) reactors. In addition, a cost assessment and

  19. On the performance of micro injection moulding process simulations of TPE micro rings

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    , a case study based on the micro injection moulding process of thermoplastic elastomer (TPE) micro rings (volume: 1.5 mm3, mass: 2.2 mg) for sensors application is treated. Injection moulding process simulations using Autodesk Moldflow Insight 2016® were applied with the aim of accomplishing two main...

  20. Novel Sorbent to Clean Up Biogas for CHPs

    Energy Technology Data Exchange (ETDEWEB)

    Alptekin, Gökhan O. [TDA Research, Incorporated, Wheat Ridge, CO (United States); Jayataman, Ambalavanan [TDA Research, Incorporated, Wheat Ridge, CO (United States); Schaefer, Matthew [TDA Research, Incorporated, Wheat Ridge, CO (United States); Ware, Michael [TDA Research, Incorporated, Wheat Ridge, CO (United States); Hunt, Jennifer [FuelCell Energy, Inc., Danbury, CT (United States); Dobek, Frank [FuelCell Energy, Inc., Danbury, CT (United States)

    2015-05-30

    In this project, TDA Research Inc. (TDA) has developed low-cost (on a per unit volume of gas processed basis), high-capacity expendable sorbents that can remove both the H2S and organic sulfur species in biogas to the ppb levels. The proposed sorbents will operate downstream of a bulk desulfurization system as a polishing bed to provide an essentially sulfur-free gas to a fuel cell (or any other application that needs a completely sulfur-free feed). Our sorbents use a highly dispersed mixed metal oxides active phase with desired modifiers prepared over on a mesoporous support. The support structure allows the large organic sulfur compounds (such as the diethyl sulfide and dipropyl sulfide phases with a large kinetic diameter) to enter the sorbent pores so that they can be adsorbed and removed from the gas stream.

  1. Experimental Investigation into Suitable Process Conditions for Plastic Injection Molding of Thin-Sheet Parts

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-04-01

    Full Text Available This study performs an experimental investigation into the effects of the process parameters on the surface quality of injection molded thin-sheet thermoplastic components. The investigations focus specifically on the shape, number and position of the mold gates, the injection pressure and the injection rate. It can be seen that the gravity force entering point improved filling of the cavity for the same forming time and injection pressure. Moreover, it shows the same injection pressure and packing time, the taper-shape gate yields a better surface appearance than the sheet-shape gate. The experimental results provide a useful source of reference in suitable the process conditions for the injection molding of thin-sheet plastic components.

  2. Estimation of radiation dose received by the radiation worker during 18F FDG injection process

    International Nuclear Information System (INIS)

    Jha, Ashish Kumar; Zade, Anand; Rangarajan, Venkatesh

    2011-01-01

    The radiation dosimetric literature concerning the medical and non-medical personnel working in nuclear medicine departments are limited, particularly radiation doses received by radiation worker in nuclear medicine department during positron emission tomography (PET) radiopharmaceutical injection process. This is of interest and concern for the personnel. To measure the radiation dose received by the staff involved in injection process of Fluorine-18 Fluorodeoxyglucose (FDG). The effective whole body doses to the radiation workers involved in injections of 1511 patients over a period of 10 weeks were evaluated using pocket dosimeter. Each patient was injected with 5 MBq/kg of 18 F FDG. The 18 F-FDG injection protocol followed in our department is as follows. The technologist dispenses the dose to be injected and records the pre-injection activity. The nursing staff members then secure an intravenous catheter. The nuclear medicine physicians/residents inject the dose on a rotation basis in accordance with ALARA principle. After the injection of the tracer, the nursing staff members flush the intravenous catheter. The person who injected the tracer then measures the post-injection residual dose in the syringe. The mean effective whole body doses per injection for the staff were the following: Nurses received 1.44 ± 0.22 μSv/injection (3.71 ± 0.48 nSv/MBq), for doctors the dose values were 2.44 ± 0.25 μSv/injection (6.29 ± 0.49 nSv/MBq) and for technologists the doses were 0.61 ± 0.10 μSv/injection (1.58 ± 0.21 nSv/MBq). It was seen that the mean effective whole body dose per injection of our positron emission tomography/computed tomography (PET/CT) staff who were involved in the 18 F-FDG injection process was maximum for doctors (54.34% differential doses), followed by nurses (32.02% differential doses) and technologist (13.64% differential doses). This study confirms that low levels of radiation dose are received by staff during 18 F-FDG injection and

  3. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  4. 3D-CFD Simulation of Confined Cross-Flow Injection Process Using Single Piston Pump

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-12-01

    Full Text Available Injection process into a confined cross flow is quite important for many applications including chemical engineering and water desalination technology. The aim of this study is to investigate the performance of the injection process into a confined cross-flow of a round pipe using a single piston injection pump. A computational fluid dynamics (CFD analysis has been carried out to investigate the effect of the locations of the maximum velocity and minimum pressure on the confined cross-flow process. The jet trajectory is analyzed and related to the injection pump shaft angle of rotation during the injection duty cycle by focusing on the maximum instant injection flow of the piston action. Results indicate a low effect of the jet trajectory within the range related to the injection pump operational conditions. Constant cross-flow was used and injection flow is altered to vary the jet to line flow ratio (QR. The maximum jet trajectory exhibits low penetration inside the cross-flow. The results showed three regions of the flow ratio effect zones with different behaviors. Results also showed that getting closer to the injection port causes a significant decrease on the locations of the maximum velocity and minimum pressure.

  5. The Relative Influence of Turbulence and Turbulent Mixing on the Adsorption of Mercury within a Gas-Sorbent Suspension

    Science.gov (United States)

    Our previous investigations demonstrated that entrained flow or in-flight adsorption can be a more effective and flexible approach to trace gas adsorption than fixed sorbent beds. The present investigation establishes the turbulent mixing that accompanies sorbent injection is an ...

  6. Oil sorbents from plastic wastes and polymers: A review.

    Science.gov (United States)

    Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay

    2018-01-05

    A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. REMOVAL OF ANIONIC SURFACTANTS FROM WASTEWATER BY MAGNETIC MINERAL SORBENTS

    Directory of Open Access Journals (Sweden)

    Oksana Vladimirova Makarchuk

    2016-07-01

    Full Text Available The simplest and most effective method of removing low concentrations of anionic surfactants such as sodium dodecyl benzenesulfonate (SDBS and sodium lauryl sulfate (SLS is adsorption. Among adsorbents the natural clays are cheap and promising for these purposes. However, there are significant difficulties in removal of spent sorbent after the adsorption process. So, the creation of magnetic sorbents that can be effectively removed from water after sorption by magnetic separation will be a successful decision. The aim of this investigation is the creation of cheap and efficient magnetic sorbents based on natural clays and magnetite for anionic surfactant removal from wastewater. We have synthesized a series of magnetic sorbents from different natural clays with a content of magnetite from 2 to 10 wt%. The ability of magnetic sorbents to remove SDBS and SLS from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature and shaking time. Thermodynamic parameters were calculated from the slope and intercept of the linear plots of ln K against 1/T. Analysis of adsorption results obtained at different temperatures showed that the adsorption pattern on magnetic sorbents correspond to the Langmuir isotherm. It is shown that with increasing the content of magnetite in the magnetic sorbents improves not only their separation from water by magnetic separation, but adsorption capacity to SDBS and SLS. Thus, we obtained of cheap magnetic sorbents based on natural clays and magnetite by the easy way, which not only quickly separated from the solution by magnetic separation, but effectively remove anionic surfactants.

  8. Improved Processing of Titanium Alloys by Metal Injection Moulding

    International Nuclear Information System (INIS)

    Sidambe, A T; Figueroa, I A; Todd, I; Hamilton, H

    2011-01-01

    The commercially pure (CP-Ti) and Ti6Al4V (Ti-64) powders with powder size of sub 45-micron were mixed with a water soluble binder consisting of a major fraction of Polyethylene Glycol (PEG), a minor fraction of Polymethylmethacrylate (PMMA) and some stearic acid as surfactant. The pelletised mix was injection-moulded into standard tensile bar specimens and then subjected solvent debinding by water leaching and thermal debinding in an argon atmosphere. The titanium compacts were then subjected to sintering studies using the Taguchi method. The results of the oxygen impurity levels of the sintered parts are presented in this paper. Titanium parts conforming to Grade 2 requirements were achieved for CP-Ti whilst those conforming to Grade 5 were achieved for Ti-64.

  9. Experimental Investigation of Comparative Process Capabilities of Metal and Ceramic Injection Molding for Precision Applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2016-01-01

    and discussion presented in the paper will be useful for thorough understanding of the MIM and CIM processes and to select the right material and process for the right application or even to combine metal and ceramic materials by molding to produce metal–ceramic hybrid components.......The purpose of this paper is to make a comparative study on the process capabilities of the two branches of the powder injection molding (PIM) process—metal injection molding (MIM) and ceramic injection molding (CIM), for high-end precision applications. The state-of-the-art literature does...

  10. Injection Process Control of the Well at the Hydrodynamic Research of Coalbed

    Science.gov (United States)

    Odnokopylov, I. G.; Galtseva, O. V.; Krasnov, I. Yu; Smirnov, A. O.; Karpov, M. S.; Surzhikova, O. A.; Kuznetsov, V. V.; Li, J.

    2017-04-01

    This scientific work is devoted to the study results of water injection process into the well at the hydrodynamic research by using the high pressure unregulated pump. The injection process should be accompanied by the retention of some hydraulic parameters at constant level during some time. Various variants for use of mechatronic nodes for automatization of water injection process are considered. Scheme for reducing the load on the pump and equipment in hydraulic system and also for improving the quality control system with high accuracy is shown. Simulation results of injection process into the well at the pressure and consumption fixation and recommendations for the use of the proposed schemes depending on the technological process are given.

  11. A comparative study of homemade C18 and commercial C18 sorbents for preconcentration of lead by minicolumn solid phase extraction

    International Nuclear Information System (INIS)

    Maltez, H.F.; Curtius, A.J.; Carasek, E.; Melo, L.F.C.; Sales Fontes Jardim, I.C.; Nascimento de Queiroz do, S.C.

    2004-01-01

    A comparative study of commercial C 18 chemically immobilized on silica and homemade C 18 , as sorbents for Pb complexed with 0,0-diethyl-dithiophosphate (DDTP) in a flow injection preconcentration system is reported. The homemade C 18 sorbent was obtained by sorption of poly(methyloctadecylsiloxane) (PMODS) on the silica support followed by immobilization using thermal treatment. The method follows the concept of green chemistry, since there are no toxic residues after synthesis. The complexed Pb was formed in 1.0 mol L -1 HCI medium and retained on the minicolumn filled with the sorbents. The elution was carried out using ethanol, and the richest 210 μL fraction was collected and analyzed by flame atomic absorption spectrometry. Chemical and flow variables were optimized for each sorbent. The results demonstrated that the performance of the proposed homemade C 18 sorbent for preconcentration of Pb complexed with DDTP is very similar to commercial C 18 chemically bonded on silica. By processing 25 mL, the enrichment factors were 129 and 125 for commercial C 18 and homemade C 18 , respectively. The limit of detection for commercial and homemade C 18 was 0.2 μg L -1 and 0.6 μg L -1 , respectively. The relative standard deviation (RSD) was lower than 1.2 % for both sorbents for a Pb concentration of 100 μg L -1 . The method was also applied successfully to the analysis of water samples, and the accuracy was tested by recovery measurements on spiked samples and biological reference material. (author)

  12. MERCURY CONTROL WITH CALCIUM-BASED SORBENTS AND OXIDIZING AGENTS

    Energy Technology Data Exchange (ETDEWEB)

    Thomas K. Gale

    2002-06-01

    The initial tasks of this DOE funded project to investigate mercury removal by calcium-based sorbents have been completed, and initial testing results have been obtained. Mercury monitoring capabilities have been obtained and validated. An approximately 1MW (3.4 Mbtu/hr) Combustion Research Facility at Southern Research Institute was used to perform pilot-scale investigations of mercury sorbents, under conditions representative of full-scale boilers. The initial results of ARCADIS G&M proprietary sorbents, showed ineffective removal of either elemental or oxidized mercury. Benchscale tests are currently underway to ascertain the importance of differences between benchscale and pilot-scale experiments. An investigation of mercury-capture temperature dependence using common sorbents has also begun. Ordinary hydrated lime removed 80 to 90% of the mercury from the flue gas, regardless of the temperature of injection. High temperature injection of hydrated lime simultaneously captured SO{sub 2} at high temperatures and Hg at low temperatures, without any deleterious effects on mercury speciation. Future work will explore alternative methods of oxidizing elemental mercury.

  13. Peat hybrid sorbents for treatment of wastewaters and remediation of polluted environment

    Science.gov (United States)

    Klavins, Maris; Burlakovs, Juris; Robalds, Artis; Ansone-Bertina, Linda

    2015-04-01

    For remediation of soils and purification of polluted waters, wastewaters, sorbents might be considered as an prospective group of materials and amongst them peat have a special role due to low cost, biodegradability, high number of functional groups, well developed surface area and combination of hydrophilic/hydrophobic structural elements. Peat as sorbent have good application potential for removal of trace metals, and we have demonstrated peat sorption capacities, sorption kinetics, thermodynamics in respect to metals with different valencies - Tl(I), Cu(II), Cr(III). However peat sorption capacity in respect to nonmetallic (anionic species) elements is low. Also peat mechanical properties do not support application in large scale column processes. To expand peat application possibilities the approach of biomass based hybrid sorbents has been elaborated. The concept "hybrid sorbent" in our understanding means natural, biomass based sorbent modified, covered with another sorbent material, thus combining two types of sorbent properties, sorbent functionalities, surface properties etc. As the "covering layer" both inorganic substances, mineral phases (iron oxohydroxides, oxyapatite) both organic polymers (using graft polymerization) were used. The obtained sorbents were characterised by their spectral properties, surface area, elemental composition. The obtained hybrid sorbents were tested for sorption of compounds in anionic speciation forms, for example of arsenic, antimony, tellurium and phosphorous compounds in comparison with weakly basic anionites. The highest sorption capacity was observed when peat sorbents modified with iron compounds were used. Sorption of different arsenic speciation forms onto iron-modified peat sorbents was investigated as a function of pH and temperature. It was established that sorption capacity increases with a rise in temperature, and the calculation of sorption process thermodynamic parameters indicates the spontaneity of sorption

  14. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  15. Performance Evaluation of Engineered Structured Sorbents for Atmosphere Revitalization Systems On Board Crewed Space Vehicles and Habitats

    Science.gov (United States)

    Howard, David F.; Perry, Jay L.; Knox, James C.; Junaedi, Christian; Roychoudhury, Subir

    2011-01-01

    Engineered structured (ES) sorbents are being developed to meet the technical challenges of future crewed space exploration missions. ES sorbents offer the inherent performance and safety attributes of zeolite and other physical adsorbents but with greater structural integrity and process control to improve durability and efficiency over packed beds. ES sorbent techniques that are explored include thermally linked and pressure-swing adsorption beds for water-save dehumidification and sorbent-coated metal meshes for residual drying, trace contaminant control, and carbon dioxide control. Results from sub-scale performance evaluations of a thermally linked pressure-swing adsorbent bed and an integrated sub-scale ES sorbent system are discussed.

  16. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  17. Evaluation of optical functional surfaces on the injection moulding insert by micro milling process

    DEFF Research Database (Denmark)

    Li, Dongya; Davoudinejad, Ali; Zhang, Yang

    2017-01-01

    This study presents the optimization of micro milling process for manufacturing injection moulding inserts with an optical functionalsurface. The objective is the optimal surface functionality. Micro ridges were used as the microstructures to realize the function to generate contrast between...

  18. Application of polyurethane foam as a sorbent for trace metal pre-concentration — A review

    Science.gov (United States)

    Lemos, V. A.; Santos, M. S.; Santos, E. S.; Santos, M. J. S.; dos Santos, W. N. L.; Souza, A. S.; de Jesus, D. S.; das Virgens, C. F.; Carvalho, M. S.; Oleszczuk, N.; Vale, M. G. R.; Welz, B.; Ferreira, S. L. C.

    2007-01-01

    The first publication on the use of polyurethane foam (PUF) for sorption processes dates back to 1970, and soon after the material was applied for separation processes. The application of PUF as a sorbent for solid phase extraction of inorganic analytes for separation and pre-concentration purposes is reviewed. The physical and chemical characteristics of PUF (polyether and polyester type) are discussed and an introduction to the characterization of these sorption processes using different types of isotherms is given. Separation and pre-concentration methods using unloaded and loaded PUF in batch and on-line procedures with continuous flow and flow injection systems are presented. Methods for the direct solid sampling analysis of the PUF after pre-concentration are discussed as well as approaches for speciation analysis. Thermodynamic proprieties of some extraction processes are evaluated and the interpretation of determined parameters, such as enthalpy, entropy and Gibbs free energy in light of the physico-chemical processes is explained.

  19. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  20. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  1. Practical aspects of steam injection processes: A handbook for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  2. IMMOBILIZATION OF MICROALGAE ON THE SURFACE OF NEW CROSS-LINKED POLYETHYLENIMINE-BASED SORBENTS.

    Science.gov (United States)

    Vasilieva, Svetlana; Shibzukhova, Karina; Morozov, Alexey; Solovchenko, Alexei; Bessonov, Ivan; Kopitsyna, Maria; Lukyanov, Alexander; Chekanov, Konstantin; Lobakova, Elena

    2018-04-11

    We report on the use of the polyethylenimine-based (PEI) sorbents for immobilization and harvesting of microalgae (MA) cells. Specific materials assessed were porous solid polymers from highly-branched PEI synthesized by cross-linking with epichlorohydrin (ECH) or diethylene glycol diglycidyl ether (DGDE). We estimated the effect of PEI/cross-linker ratio on the MA attachment and biocompatibility of the sorbents with the MA cells. A decrease in the cross-linker percentage resulted in the enhancement of the immobilization efficiency but impaired the cell viability as was manifested by inhibition of the photosynthetic activity of the MA cells. The rate of Chlorella vulgaris cell attachment to the sorbents with ECH was faster as compared to that of the PEI-DGDE-based polymers. The cells immobilized on the PEI-ECH sorbents showed a more profound decline in their viability (assessed via photosynthetic activity). The sorbents with 60% of DGDE were characterized by high immobilization efficiency. These sorbents supported a prolonged cultivation of the immobilized MA without impairing their viability and metabolic activity. We conclude that the sorbents with a lower percentage of DGDE (<30%) and sorbents with ECH are suitable for harvesting of the MA cells intended for immediate downstream processing, potentially without the cell desorption. To the best of our knowledge, this is the first report on successful application of PEI-based sorbents in microalgal biotechnology. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  4. Intelligent methods for the process parameter determination of plastic injection molding

    Science.gov (United States)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  5. Influence of the recycled material percentage on the rheological behaviour of HDPE for injection moulding process.

    Science.gov (United States)

    Javierre, C; Clavería, I; Ponz, L; Aísa, J; Fernández, A

    2007-01-01

    The amount of polymer material wasted during thermoplastic injection moulding is very high. It comes from both the feed system of the part, and parts necessary to set up the mould, as well as the scrap generated along the process due to quality problems. The residues are managed through polymer recycling that allows reuse of the materials in the manufacturing injection process. Recycling mills convert the parts into small pieces that are used as feed material for injection, by mixing the recycled feedstock in different percentages with raw material. This mixture of both raw and recycled material modifies material properties according to the percentage of recycled material introduced. Some of the properties affected by this modification are those related to rheologic behaviour, which strongly conditions the future injection moulding process. This paper analyzes the rheologic behaviour of material with different percentages of recycled material by means of a capillary rheometer, and evaluates the influence of the corresponding viscosity curves obtained on the injection moulding process, where small variations of parameters related to rheological behaviour, such as pressure or clamping force, can be critical to the viability and cost of the parts manufactured by injection moulding.

  6. Feedback correction of injection errors using digital signal-processing techniques

    Directory of Open Access Journals (Sweden)

    N. S. Sereno

    2007-01-01

    Full Text Available Efficient transfer of electron beams from one accelerator to another is important for 3rd-generation light sources that operate using top-up. In top-up mode, a constant amount of charge is injected at regular intervals into the storage ring to replenish beam lost primarily due to Touschek scattering. Top-up therefore requires that the complex of injector accelerators that fill the storage ring transport beam with a minimum amount of loss. Injection can be a source of significant beam loss if not carefully controlled. In this note we describe a method of processing injection transient signals produced by beam-position monitors and using the processed data in feedback. Feedback control using the technique described here has been incorporated in the Advanced Photon Source (APS booster synchrotron to correct injection transients.

  7. Development of composite calcium hydroxide sorbent in mechanical operations and evaluation of its basic sorption properties

    Directory of Open Access Journals (Sweden)

    Gara Paweł

    2017-01-01

    Full Text Available This article presents the results of research carried out on the possibility of obtaining composite calcium hydroxide sorbent in the process of two-step granulation, containing additional compounds of Al, Mg and Fe, and their textural and sorption studies. For this purpose, attempts were undertaken to compact commercial calcium hydroxide powder with six additives in the laboratory roll press. The resulting compacts were crushed and sieved in order to achieve the assumed sieve fraction. Based on the obtained results, basic parameters of the process of formation of composite sorbent have been determined. Both, the selected composite sorbents fractions and additives were subsequently subjected to textural studies (determination of the specific surface area and porosity and sorption capacity performance. In addition, for the better interpretation of the results, thermogravimetric studies were carried out both for the additives and composite sorbents, as well as the grain size distribution of the additives. The results of the physicochemical tests of the obtained composite sorbents were compared with analogic results from the study on fine-grained hydroxide sorbent without additives and carbonate sorbent. The presented results showed that in a two-step granulation process it is possible to obtain the granular Ca(OH2 sorbent, as well as composite sorbents possessing better SO2 sorption capacity in comparison to the powder Ca(OH2 and/or to the calcium carbonate sorbent. This can be attributed to the combination of capability of the sorbent to appropriate thermal decomposition and the formation of a group of pores in the range of 0.07-0.3 microns.

  8. Sol-gel derived sorbents

    Science.gov (United States)

    Sigman, Michael E.; Dindal, Amy B.

    2003-11-11

    Described is a method for producing copolymerized sol-gel derived sorbent particles for the production of copolymerized sol-gel derived sorbent material. The method for producing copolymerized sol-gel derived sorbent particles comprises adding a basic solution to an aqueous metal alkoxide mixture for a pH.ltoreq.8 to hydrolyze the metal alkoxides. Then, allowing the mixture to react at room temperature for a precalculated period of time for the mixture to undergo an increased in viscosity to obtain a desired pore size and surface area. The copolymerized mixture is then added to an immiscible, nonpolar solvent that has been heated to a sufficient temperature wherein the copolymerized mixture forms a solid upon the addition. The solid is recovered from the mixture, and is ready for use in an active sampling trap or activated for use in a passive sampling trap.

  9. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval

    2013-02-01

    Hollow fiber sorbents are pseudo-monolithic separations materials created with fiber spinning technology using a polymer \\'binder\\', impregnated with high loadings of sorbent \\'fillers\\' [1]. To increase purified gas recovery during the sorption step and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers materials and methods to create delamination-free dual layer fiber sorbents, with a porous core and a barrier sheath layer formed using a simultaneous co-extrusion process. Low permeability polymers were screened for sheath layer creation, with the core layer comprising cellulose acetate polymer as binder and zeolite NaY as sorbent fillers. Appropriate core and sheath layer dope compositions were determined by the cloud-point method and rheology measurements. The morphology of the as-spun fibers was characterized in detail by SEM, EDX and gas permeation analysis. A simplified qualitative model is described to explain the observed fiber morphology. The effects of core, sheath spin dope and bore fluid compositions, spinning process parameters such as air-gap height, spin dope and coagulation bath temperatures, and elongation draw ratio are examined in detail. © 2012 Elsevier B.V. All rights reserved.

  10. Synthesis and test of sorbents based on calcium aluminates for SE-SR

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Di Michele, A.; Gallorini, F.; Petrillo, C.; Sacchetti, F.

    2014-01-01

    Highlights: • Synthesis strategy of CaO incorporation into calcium aluminates was approached. • Three innovative sorbents (M1, M2, M3) were synthesized and characterized. • Sorption capacity of developed sorbents was evaluated in multi-cycle processes. • M3 sorbent showed best performance, much higher than conventional CaO ones. • M3 sorbent functionality in SE-SR process was verified. - Abstract: Greenhouse gases emission of power generation plants will be continuously tightened to achieve European targets in terms of CO 2 emissions. In particular, the switching to a sustainable power generation using fossil fuels will be strongly encouraged in the future. In this context, sorption-enhanced steam reforming (SE-SR) is a promising process because it can be implemented as a CCS pre-combustion methodology. The purpose of this study is to develop and test innovative materials in order to overcome main limitations of standard CaO sorbent, usually used in the SE-SR process. The investigated innovative sorbents are based on incorporation of CaO particles into inert materials which significantly reduce the performance degradation. In particular, sorbent materials based on calcium aluminates were considered, investigating different techniques of synthesis. All synthesized materials were packed, together with the catalyst, in a fixed bed reactor and tested in sorption/regeneration cycles. Significant improvements were obtained respect to standard CaO regarding sorption capacity stability exhibited by the sorbent

  11. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  12. Effect of process parameters on flow length and flash formation in injection moulding of high aspect ratio polymeric micro features

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Mostafa, Rania; Islam, Aminul

    2018-01-01

    This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (µIM) with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature an...

  13. Cheap carbon sorbents produced from lignite by catalytic pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Schchipko, M.L. [Inst. of Chemistry of Natural Organic Materials, Akademgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    Some data are presented describing the new technology of carbon sorbent production from powdered lignite in the installation with fluidized bed of catalyst. It was shown the different types of char products with extended pore structure and high sorption ability can be produced from cheap and accessible lignite of Kansk-Achinsk coal pit in pilot installation with fluidized bed of Al-Cu-Cr oxide catalyst or catalytically active slag materials. In comparison with the conventional technologies of pyrolysis the catalytic pyrolysis allows to increase by 3-5 times the process productivity and to decrease significantly the formation of harmful compounds. The latter is accomplished by complete oxidation of gaseous pyrolysis products in the presence of catalysts and by avoiding the formation of pyrolysis tars - the source of cancerogenic compounds. The technology of cheap powdered sorbent production from lignites makes possible to obtain from lignite during the time of pyrolysis only a few seconds char products with porosity up to 0.6 cm{sup 3} /g, and specific surface area more than 400 m{sup 3} /g. Some methods of powdered chars molding into carbon materials with the different shape were proved for producing of firmness sorbents. Cheap carbon sorbents obtained by thermocatalytic pyrolysis can be successfully used in purification of different industrial pollutants as one-time sorbent or as adsorbents of long-term application with periodic regeneration.

  14. Sorbent application on the base of chitosan for radionuclides separation

    International Nuclear Information System (INIS)

    Pivarciova, L.

    2016-01-01

    Radioactive waste contains enormous amounts of radionuclides, which pollute the environment and can cause serious chemical and radiological toxicity threats to lower and higher living organism. Alternative process for the removal of heavy metal ions and radionuclides is sorption, which utilizes various certain natural materials of biological origin. Amino-polysaccharide-based sorbents e.g. chitosan represent suitable materials for binding of metal oxo-anion species because of numerous functional groups -OH and -NH_2 because of their suitable H-bond donor and acceptor sites. The sorbents on the base chitosan prepared through chemical modification were used for removal and separation certain radionuclides from aqueous media. The aim of this work was the study of physicochemical properties of prepared sorbents. The specific surface of sorbents was characterized with BET methods. Point of zero charge was identified with potentiometric titration. The size of particles and shape of sorbents were determined by scanning electron microscope. The sorption experiments for selected radionuclides were conducted under static and dynamic conditions. The effect of various parameters on the sorption "9"9"mTc, "6"0Co and the effect of pH on the separation of radionuclide mixture in the solution were studied. (author)

  15. Dimensional accuracy optimization of the micro-plastic injection molding process using the Taguchi design method

    Directory of Open Access Journals (Sweden)

    Chil-Chyuan KUO KUO

    2015-06-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 µm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5864

  16. Research on Continuous Injection Direct Rolling Process for PMMA Optical Plate

    Directory of Open Access Journals (Sweden)

    HaiXiong Wang

    2014-06-01

    Full Text Available Continuous injection direct rolling (CIDR combined intermittent injection and rolling process is a new technology for molding optical polymer plates with microstructured patterns; research on forming PMMA optical plates is an aspect of it in this paper. The equipment of CIDR process consists of plastic injection module, precision rolling module, and automatic coiling module. Based on the establishing mathematical CIDR models, numerical analysis was used to explode the distribution of velocity, temperature, and pressure in injection-rolling zone. The simulation results show that it is feasible to control the temperature, velocity, and injection-rolling force, so it can form polymer plate under certain process condition. CIDR experiment equipment has been designed and produced. PMMA optical plate was obtained by CIDR experiments, longitudinal thickness difference is 0.005 mm/200 mm, horizontal thickness difference is 0.02/200 mm, transmittance is 86.3%, Haze is 0.61%, and the difference is little compared with optical glasses. So it can be confirmed that CIDR process is practical to produce PMMA optical plates.

  17. Air injection low temperature oxidation process for enhanced oil recovery from light oil reservoirs

    International Nuclear Information System (INIS)

    Tunio, A.H.; Harijan, K.

    2010-01-01

    This paper represents EOR (Enhanced Oil Recovery) methods to recover unswept oil from depleted light oil reservoirs. The essential theme here is the removal of oxygen at LTO (Low Temperature Oxidation) from the injected air for a light oil reservoir by means of some chemical reactions occurring between oil and oxygen. In-situ combustion process, HTO (High Temperature Oxidation) is not suitable for deep light oil reservoirs. In case of light oil reservoirs LTO is more suitable to prevail as comparative to HTO. Few laboratory experimental results were obtained from air injection process, to study the LTO reactions. LTO process is suitable for air injection rate in which reservoir has sufficiently high temperature and spontaneous reaction takes place. Out comes of this study are the effect of LTO reactions in oxygen consumption and the recovery of oil. This air injection method is economic compared to other EOR methods i.e. miscible hydrocarbon gas, nitrogen, and carbon dioxide flooding etc. This LTO air injection process is suitable for secondary recovery methods where water flooding is not feasible due to technical problems. (author)

  18. Evaluation by nanoindentation of technological products manufactured by pulse injection molding process

    Directory of Open Access Journals (Sweden)

    Natova Margarita

    2018-01-01

    Full Text Available During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.

  19. Optimization of injection molding process parameters for a plastic cell phone housing component

    Science.gov (United States)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  20. Numerical investigation of the effect of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine

    International Nuclear Information System (INIS)

    Fan, Baowei; Pan, Jianfeng; Yang, Wenming; Liu, Yangxian; Bani, Stephen; Chen, Wei

    2017-01-01

    Highlights: • For injection timing, the fuel movement is controlled by the intensity of the vortex I. • For injection duration, the fuel movement is controlled by the value of jet flux. • The ideal fuel distribution at ignition timing for high combustion rate is studied. • The optimal injection strategy had an increase in the peak pressure and NO emissions. - Abstract: This work aimed to numerically study the influence of injection strategy on mixture formation and combustion process in a port injection natural gas rotary engine. On the base of a 3D dynamic simulation model which was established in our previous work, some critical information was obtained, which was difficult to obtain through experiment, in terms of the flow field, the fuel distribution, the temperature field and the concentration fields of some intermediates. Simulation results showed that for mixture formation, the movements of fuel in injection stage were mainly controlled by the intensity of the vortex I for injection timing, and the value of jet flux for injection duration respectively. With retarded injection timing, the decreasing intensity of the vortex I resulted in less fuel moving toward the back of the combustion chamber. With the extension in injection duration, the decreasing value of jet flux resulted in more fuel staying at the back of the combustion chamber. For combustion process, the overall combustion rate for injection strategy which had an injection timing of 390 °CA (BTDC) and injection duration of 51.5 °CA (case ID4) was the fastest. This was mainly due to the fact that the accumulation area of fuel was at the middle and front of the combustion chamber. Meanwhile, fuel concentration near the leading and trailing spark plugs was conducive for the flame kernel formation. Compared with the injection strategy which had an injection timing of 450 °CA (BTDC) and an injection duration of 55 °CA (case IT1), the improved combustion rate of case ID4 had a 23% increase in

  1. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  2. Beam-beam dynamics during the injection process at the PEP-II B-Factory

    International Nuclear Information System (INIS)

    Chin, Yong Ho.

    1991-10-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory based on PEP (PEP-2). For symmetric colliders, the primary source of the beam-beam effect is the head-on collision at the interaction point (IP), and this effect can be mitigated by separating the beams during the injection process. For an asymmetric collider, which intrinsically consists of two separate rings, the bunches not only collide at the IP but experience a long-range beam-beam force on the way into and out of the IP region. These collisions are called ''parasitic crossings (PC).'' The parasitic crossings emerge as a potential source of far stronger beam-beam impact during the injection process for the following reason. In the proposed injection scheme of the APIARY-6.3d design, the bunches are injected horizontally into the two rings with large horizontal offset of 8σ Ox sptm where σ Ox sptm is the nominal horizontal storage ring beam size at the end of the septum magnet. Then, the injected beam starts to travel around the ring oscillating horizontally. For the sake of discussion, let us assume that the beam in the other ring has already been fully stored. When the injected beam arrives at the 1st PC, where the two nominal orbits are separated horizontally by about 7.6 times the nominal horizontal beam size of the low energy ring, it may pass through the other beam far more closely than at the nominal separation distance, or it may even strike the other beam head-on

  3. Theory and MHD simulation of fuelling process by Compact Toroid (CT) injection

    International Nuclear Information System (INIS)

    Suzuki, Y.; Hayashi, T.; Kishimoto, Y.

    2001-01-01

    The fuelling process by a spheromak-like compact toroid (SCT) injection is investigated by using MHD numerical simulations, where the SCT is injected into a magnetized target plasma region corresponding to a fusion device. In our previous study, the theoretical model to determine the penetration depth of the SCT into the target region has been proposed based on the simulation results, in which the SCT is decelerated not only by the magnetic pressure force but also by the magnetic tension force. However, since both ends of the target magnetic field are fixed on the boundary wall in the simulation, the deceleration caused by the magnetic tension force would be overestimated. In this study, the dependence of the boundary condition of the target magnetic field on the SCT penetration process is examined. From these results, the theoretical model we have proposed is improved to include the effect that the wave length of the target magnetic field bent by the SCT penetration expands with the Alfven velocity. In addition, by carrying out the simulation with the torus domain, it is confirmed that the theoretical model is applicable to estimate the penetration depth of the SCT under such conditions. Furthermore, the dependence of the injection position (the side injection and the top/bottom injection) on the penetration process is examined. (author)

  4. Micro injection moulding process optimization of an ultra-small POM three-dimensional component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    Replication-based manufacturing processes are a cost effective method for producing complex and net-shaped components [1]. Micro injection moulding has a prominent place among them for its capability of accurately and precisely produce micro plastic parts in large production scale [2], [3......]. In this study, the optimization of the micro injection moulding process of an ultra-small (volume: 0.07 mm3; mass: 0.1 mg) three-dimensional Polyoxymethylene (POM) micro component for medical applications (see Figure 1) is presented. Preliminary experiments highlighted the need for venting channels in order...... with respect to design specifications, the flash areal size was utilized as quality indicator. A design of the experiments approach was carried out in order to study the effects of melt temperature, mould temperature, holding pressure and injection speed. For this task, a two-level full factorial design...

  5. Validation of precision powder injection molding process simulations using a spiral test geometry

    DEFF Research Database (Denmark)

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant ....... The necessary data and the implementation procedure of the new material models are outlined. In order to validate the simulation studies and evaluate their accuracy, the simulation results are compared with experiments performed using a spiral test geometry...... for powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software...

  6. LCI Databases Sensitivity Analysis of the Environmental Impact of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Ana Elduque

    2015-03-01

    Full Text Available During the last decades, society’s concern for the environment has increased. Specific tools like the Life Cycle Assessment (LCA, and software and databases to apply this method have been developed to calculate the environmental burden of products or processes. Calculating the environmental impact of plastic products is relevant as the global plastics production rose to 288 million tons in 2012. Among the different ways of processing plastics, the injection molding process is one of the most used in the industry worldwide. In this paper, a sensitivity analysis of the environmental impact of the injection molding process has been carried out. In order to perform this study, the EcoInvent database inventory for injection molding, and the data from which this database is created, have been studied. Generally, when an LCA of a product is carried out, databases such as EcoInvent, where materials, processes and transports are characterized providing average values, are used to quantify the environmental impact. This approach can be good enough in some cases but in order to assess a specific production process, like injection molding, a further level of detail is needed. This study shows how the final results of environmental impact differ for injection molding when using the PVC’s, PP’s or PET’s data. This aspect suggests the necessity of studying, in a more precise way, this process, to correctly evaluate its environmental burden. This also allows us to identify priority areas and thereby actions to develop a more sustainable way of manufacturing plastics.

  7. Preparation and characterisation of a sorbent suitable for technetium separation from environmental matrices

    International Nuclear Information System (INIS)

    Bartosova, A.; Rajec, P.; Reich, M.

    2003-01-01

    A sorbent based on Aliquat 336 anchored on hydrophobised silica gel support as an ion exchanger was prepared. Prepared sorbent was suitable for separation of technetium-99 from environmental matrices. The sorbent properties, sorption characteristic and distribution coefficient of 99 mTcO 4 - in various medium was studied. The chemical yield of Tc during separation process was determined using 99m Tc tracer and gamma measurement. Typical sorption recoveries of Tc for this sorbent from 0.1 M HNO 3 were more than 98 %. Typical desorption recoveries using 8 M HNO 3 were in the range 92 - 96 %. The commercial TEVA Spec resin from Eichrom Industries for comparison purpose was used as well. It was found that the prepared sorbent is suitable for separation of technetium from environmental matrices. (authors)

  8. Cross-linked poly(tetrahydrofuran) as promising sorbent for organic solvent/oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Yati, Ilker; Ozan Aydin, Gulsah; Bulbul Sonmez, Hayal, E-mail: hayalsonmez@gtu.edu.tr

    2016-05-15

    Highlights: • Poly(tetrahydrofuran) based sorbents were prepared. • PTHF sorbents demonstrate reusability at least for ten times. • PTHF based sorbents show fast and quick absorption-desorption process. • 19 g of oil can be absorbed by 1 g of PTHF based sorbent. - Abstract: In this study, a series of different molecular weights of poly(tetrahydrofuran) (PTHF), which is one of the most important commercial polymers around the world, was condensed with tris[3-(trimethoxysilyl)propyl]isocyanurate (ICS) to generate a cross-linked 3-dimensional network in order to obtain organic solvent/oil sorbents having high swelling capacity. The prepared sorbents show high and fast swelling capacity in oils such as dichloromethane (DCM), tetrahydrofuran (THF), acetone, t-butyl methyl ether (MTBE), gasoline, euro diesel, and crude oil. The recovery of the absorbed oils from contaminated surfaces, especially from water, and the regeneration of the sorbents after several applications are effective. The characterization and thermal properties of the sorbents are identified by Fourier transform infrared spectroscopy (FTIR), solid-state {sup 13}C and {sup 29}Si cross-polarization magic angle spinning (CPMAS) nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC) and thermal gravimetric analyses (TGA), respectively. The new usage area of PTHF is emerged by the preparation of PTHF-based network structure with high oil absorption capacity and having excellent reusability as an oil absorbent for the removal of organic liquids from the spill site.

  9. Process for the enhanced capture of heavy metal emissions

    Science.gov (United States)

    Biswas, Pratim; Wu, Chang-Yu

    2001-01-01

    This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.

  10. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  11. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  12. HIGH RESOLUTION PREDICTION OF GAS INJECTION PROCESS PERFORMANCE FOR HETEROGENEOUS RESERVOIRS

    Energy Technology Data Exchange (ETDEWEB)

    Franklin M. Orr, Jr.

    2004-05-01

    This final technical report describes and summarizes results of a research effort to investigate physical mechanisms that control the performance of gas injection processes in heterogeneous reservoirs and to represent those physical effects in an efficient way in simulations of gas injection processes. The research effort included four main lines of research: (1) Efficient compositional streamline methods for 3D flow; (2) Analytical methods for one-dimensional displacements; (3) Physics of multiphase flow; and (4) Limitations of streamline methods. In the first area, results are reported that show how the streamline simulation approach can be applied to simulation of gas injection processes that include significant effects of transfer of components between phases. In the second area, the one-dimensional theory of multicomponent gas injection processes is extended to include the effects of volume change as components change phase. In addition an automatic algorithm for solving such problems is described. In the third area, results on an extensive experimental investigation of three-phase flow are reported. The experimental results demonstrate the impact on displacement performance of the low interfacial tensions between the gas and oil phases that can arise in multicontact miscible or near-miscible displacement processes. In the fourth area, the limitations of the streamline approach were explored. Results of an experimental investigation of the scaling of the interplay of viscous, capillary, and gravity forces are described. In addition results of a computational investigation of the limitations of the streamline approach are reported. The results presented in this report establish that it is possible to use the compositional streamline approach in many reservoir settings to predict performance of gas injection processes. When that approach can be used, it requires substantially less (often orders of magnitude) computation time than conventional finite difference

  13. Injection molding of Y-TZP powders prepared by colloidal processing

    International Nuclear Information System (INIS)

    Kimura, Y.; Mineshita, O.; Kaga, T.; Tokinaga, T.; Obitsu, M.

    1991-01-01

    TZP powders containing 3mol% Y 2 O 3 were prepared from ZrOCl 2 solution via an aqueous colloidal suspension of ZrO 2 . Processing variables were optimized to obtain powders suitable for injection molding. Wettability of powders with binders, fluidity of melting compound, removal of binder from green body, and properties of sintered body were investigated

  14. Effects of air injection during sap processing on maple syrup color, chemical composition and flavor volatiles.

    Science.gov (United States)

    Air injection (AI) is a maple sap processing technology reported to increase the efficiency of maple syrup production by increasing production of more economically valuable light-colored maple syrup, and reducing development of loose scale mineral precipitates in syrup, and scale deposits on evapora...

  15. Efficient electron injection from solution-processed cesium stearate interlayers in organic light-emitting diodes

    NARCIS (Netherlands)

    Wetzelaer, G. A. H.; Najafi, A.; Kist, R. J. P.; Kuik, M.; Blom, P. W. M.

    2013-01-01

    The electron-injection capability of solution-processed cesium stearate films in organic light-emitting diodes is investigated. Cesium stearate, which is expected to exhibit good solubility and film formation due to its long hydrocarbon chain, is synthesized using a straightforward procedure.

  16. All polymer, injection molded nanoslits, fabricated through two-level UV-LIGA processes

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Marie, Rodolphe

    2012-01-01

    in the micro- and nanoregime is required. To obtain this, injection molding is included in the research process for making several chips (100-1000) with the same layout. The time it takes for the individual chip to be fabricated in this way is much shorter than with conventional cleanroom methods...

  17. Experimental validation of viscous and viscoelastic simulations of micro injection molding process

    DEFF Research Database (Denmark)

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni

    2009-01-01

    The effects of two different rheological models used in the simulation of the micro injection molding (µIM) process are investigated. The Cross-WLF viscous model and the Giesekus viscoelastic model are selected and their performance evaluated using 3D models implemented on two different...

  18. Numerical study on formation process of helical nonneutral plasmas using electron injection from outside magnetic surfaces

    International Nuclear Information System (INIS)

    Nakamura, Kazutaka; Himura, Haruhiko; Masamune, Sadao; Sanpei, Akio; Isobe, Mitsutaka

    2009-01-01

    In order to investigate the formation process of helical nonneutral plasmas, we calculate the orbits of electron injected in the stochastic magnetic field when the closed helical magnetic surfaces is correspond with the equipotential surfaces. Contrary to the experimental observation, there are no electrons inward penetrating. (author)

  19. Deep Bed Iodine Sorbent Testing FY 2011 Report

    International Nuclear Information System (INIS)

    Soelberg, Nick; Watson, Tony

    2011-01-01

    Nuclear fission results in the production of fission products (FPs) and activation products that increasingly interfere with the fission process as their concentrations increase. Some of these fission and activation products tend to evolve in gaseous species during used nuclear fuel reprocessing. Analyses have shown that I129, due to its radioactivity, high potential mobility in the environment, and high longevity (half life of 15.7 million years), can require control efficiencies of up to 1,000x or higher to meet regulatory emission limits. Deep-bed iodine sorption testing has been done to evaluate the performance of solid sorbents for capturing iodine in off-gas streams from nuclear fuel reprocessing plants. The objectives of the FY 2011 deep bed iodine sorbent testing are: (1) Evaluate sorbents for iodine capture under various conditions of gas compositions and operating temperature (determine sorption efficiencies, capacities, and mass transfer zone depths); and (2) Generate data for dynamic iodine sorption modeling. Three tests performed this fiscal year on silver zeolite light phase (AgZ-LP) sorbent are reported here. Additional tests are still in progress and can be reported in a revision of this report or a future report. Testing was somewhat delayed and limited this year due to initial activities to address some questions of prior testing, and due to a period of maintenance for the on-line GC. Each test consisted of (a) flowing a synthetic blend of gases designed to be similar to an aqueous dissolver off-gas stream over the sorbent contained in three separate bed segments in series, (b) measuring each bed inlet and outlet gas concentrations of iodine and methyl iodide (the two surrogates of iodine gas species considered most representative of iodine species expected in dissolver off-gas), (c) operating for a long enough time to achieve breakthrough of the iodine species from at least one (preferably the first two) bed segments, and (d) post-test purging

  20. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  1. GTE blade injection moulding modeling and verification of models during process approbation

    Science.gov (United States)

    Stepanenko, I. S.; Khaimovich, A. I.

    2017-02-01

    The simulation model for filling the mould was developed using Moldex3D, and it was experimentally verified in order to perform further optimization calculations of the moulding process conditions. The method described in the article allows adjusting the finite-element model by minimizing the airfoil profile difference between the design and experimental melt motion front due to the differentiated change of power supplied to heating elements, which heat the injection mould in simulation. As a result of calibrating the injection mould for the gas-turbine engine blade, the mean difference between the design melt motion profile and the experimental airfoil profile of no more than 4% was achieved.

  2. [Alcohol-purification technology and its particle sedimentation process in manufactory of Fufang Kushen injection].

    Science.gov (United States)

    Liu, Xiaoqian; Tong, Yan; Wang, Jinyu; Wang, Ruizhen; Zhang, Yanxia; Wang, Zhimin

    2011-11-01

    Fufang Kushen injection was selected as the model drug, to optimize its alcohol-purification process and understand the characteristics of particle sedimentation process, and to investigate the feasibility of using process analytical technology (PAT) on traditional Chinese medicine (TCM) manufacturing. Total alkaloids (calculated by matrine, oxymatrine, sophoridine and oxysophoridine) and macrozamin were selected as quality evaluation markers to optimize the process of Fufang Kushen injection purification with alcohol. Process parameters of particulate formed in the alcohol-purification, such as the number, density and sedimentation velocity, were also determined to define the sedimentation time and well understand the process. The purification process was optimized as that alcohol is added to the concentrated extract solution (drug material) to certain concentration for 2 times and deposited the alcohol-solution containing drug-material to sediment for some time, i.e. 60% alcohol deposited for 36 hours, filter and then 80% -90% alcohol deposited for 6 hours in turn. The content of total alkaloids was decreased a little during the depositing process. The average settling time of particles with the diameters of 10, 25 microm were 157.7, 25.2 h in the first alcohol-purified process, and 84.2, 13.5 h in the second alcohol-purified process, respectively. The optimized alcohol-purification process remains the marker compositions better and compared with the initial process, it's time saving and much economy. The manufacturing quality of TCM-injection can be controlled by process. PAT pattern must be designed under the well understanding of process of TCM production.

  3. High capacity carbon dioxide sorbent

    Science.gov (United States)

    Dietz, Steven Dean; Alptekin, Gokhan; Jayaraman, Ambalavanan

    2015-09-01

    The present invention provides a sorbent for the removal of carbon dioxide from gas streams, comprising: a CO.sub.2 capacity of at least 9 weight percent when measured at 22.degree. C. and 1 atmosphere; an H.sub.2O capacity of at most 15 weight percent when measured at 25.degree. C. and 1 atmosphere; and an isosteric heat of adsorption of from 5 to 8.5 kilocalories per mole of CO.sub.2. The invention also provides a carbon sorbent in a powder, a granular or a pellet form for the removal of carbon dioxide from gas streams, comprising: a carbon content of at least 90 weight percent; a nitrogen content of at least 1 weight percent; an oxygen content of at most 3 weight percent; a BET surface area from 50 to 2600 m.sup.2/g; and a DFT micropore volume from 0.04 to 0.8 cc/g.

  4. Decontamination formulation with sorbent additive

    Science.gov (United States)

    Tucker; Mark D. , Comstock; Robert H.

    2007-10-16

    A decontamination formulation and method of making that neutralizes the adverse health effects of both chemical and biological compounds, especially chemical warfare (CW) and biological warfare (BW) agents, and toxic industrial chemicals. The formulation provides solubilizing compounds that serve to effectively render the chemical and biological compounds, particularly CW and BW compounds, susceptible to attack, and at least one reactive compound that serves to attack (and detoxify or kill) the compound. The formulation includes at least one solubilizing agent, a reactive compound, a bleaching activator, a sorbent additive, and water. The highly adsorbent, water-soluble sorbent additive (e.g., sorbitol or mannitol) is used to "dry out" one or more liquid ingredients, such as the liquid bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate) and convert the activator into a dry, free-flowing powder that has an extended shelf life, and is more convenient to handle and mix in the field.

  5. Evaluation Of In Situ Steam-Injection Processes For Reduction Of Petroleum Compounds Within An Abandoned Canal

    Science.gov (United States)

    A conceptual approach of a novel application of in-situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were c...

  6. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  7. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  8. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  9. Experimental evaluation of sorbents for sulfur control in a coal-fueled gas turbine slagging combustor

    International Nuclear Information System (INIS)

    Cowell, L.H.; Wen, C.S.; LeCren, R.T.

    1992-01-01

    This paper reports on a slagging combustor that has been used to evaluate three calcium-based sorbents for sulfur capture efficiency in order to assess their applicability for use in a oil-fueled gas turbine. Testing is competed in a bench-scale combustor with one-tenth the heat input needed for the full-scale gas turbine. The bench-scale rig is a two-stage combustor featuring a fuel-rich primary zone an a fuel-lean secondary zone. The combustor is operated at 6.5 bars with inlet air preheated to 600 K. Gas temperatures of 1840 K are generated in the primary zone and 1280 K in the secondary zone. Sorbents are either fed into the secondary zone or mixed with the coal-water mixture and fed into the primary zone. Dry powered sorbents are fed into the secondary zone by an auger into one of six secondary air inlet ports. The three sorbents tested in the secondary zone include dolomite, pressure-hydrated dolomitic lime, and hydrated lime. Sorbents have been tested while burning coal-water mixtures with coal sulfur loadings of 0.56 to 3.13 weight percent sulfur. Sorbents are injected into the secondary zone at varying flow rates such that the calcium/sulfur ratio varies from 0.5 to 10.0

  10. Evidence for supernova injection into the solar nebula and the decoupling of r-process nucleosynthesis.

    Science.gov (United States)

    Brennecka, Gregory A; Borg, Lars E; Wadhwa, Meenakshi

    2013-10-22

    The isotopic composition of our Solar System reflects the blending of materials derived from numerous past nucleosynthetic events, each characterized by a distinct isotopic signature. We show that the isotopic compositions of elements spanning a large mass range in the earliest formed solids in our Solar System, calcium-aluminum-rich inclusions (CAIs), are uniform, and yet distinct from the average Solar System composition. Relative to younger objects in the Solar System, CAIs contain positive r-process anomalies in isotopes A 140. This fundamental difference in the isotopic character of CAIs around mass 140 necessitates (i) the existence of multiple sources for r-process nucleosynthesis and (ii) the injection of supernova material into a reservoir untapped by CAIs. A scenario of late supernova injection into the protoplanetary disk is consistent with formation of our Solar System in an active star-forming region of the galaxy.

  11. Economic trade-offs of additive manufacturing integration in injection moulding process chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    2017-01-01

    Additive Manufacturing has emerged as an innovative set of novel technologies capable of replacing established manufacturing processes due to fabrication of highly complex parts and its continuous improvements of efficiency and cost effectiveness. This study is based on the idea that through...... the creation of synergies between additive and conventional manufacturing technologies it is possible to achieve greater cost advantages and operational benefits than by substituting injection moulding with additive manufacturing. The analysis presented explores the cost advantages that can be secured when...... additive manufacturing is used to support the fabrication of mould inserts for the product development phase of the injection moulding process chain. This study shows that fabrication of soft tooling by mean of AM is economically convenient with a cost reduction between 80% and 90%. Break-even points...

  12. Mass Production Tools and Process Readiness for Uniform Parts—Injection Molding Application

    DEFF Research Database (Denmark)

    Boorla, Srinivasa Murthy; Eifler, Tobias; Howard, Thomas J.

    2017-01-01

    A mass production always aims to produce uniform performing products. Production tools such as pressing dies, casting dies and injection moulds, play a significant role by producing uniform parts for achieving final products. Tool complexity increases when multiple cavities are present. These tools...... pass through several stages of quality maturation, before starting production, where the tool capability for part uniformity can be assessed, corrected and aligned to mass production variables. This research article describes the process of systematic understanding of the impact of variables...... and of finding opportunities to counter them. Application is assessed over a hypothetical plastic injection mould and found feasible. Proposed process could evaluate the tool capability for producing uniform parts, at its digital design verification and its physical validation....

  13. Micro injection moulding process validation for high precision manufacture of thermoplastic elastomer micro suspension rings

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Elsborg Hansen, R.

    Micro injection moulding (μIM) is one of the most suitable micro manufacturing processes for flexible mass-production of multi-material functional micro components. The technology was employed in this research used to produce thermoplastic elastomer (TPE) micro suspension rings identified...... main μIM process parameters (melt temperature, injection speed, packing pressure) using the Design of Experiment statistical technique. Measurements results demonstrated the importance of calibrating mould´s master geometries to ensure correct part production and effective quality conformance...... on the frequency in order to improve the signal quality and assure acoustic reproduction fidelity. Production quality of the TPE rings drastically influence the product functionality. In the present study, a procedure for μIM TPE micro rings production optimization has been established. The procedure entail using...

  14. Comparative analysis of different process simulation settings of a micro injection molded part featuring conformal cooling

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    . In the reported work, process simulations using Autodesk Moldflow Insight 2015® are applied to a micro mechanical part to be fabricated by micro injection molding and with over-all dimensions of 12.0 × 3.0 × 0.8 mm³ and micro features (micro hole, diameter of 580 μm, and sharp radii down to 100 μm). Three...

  15. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that

  16. CO2 removal from biogas with supported amine sorbents : First technical evaluation based on experimental data

    NARCIS (Netherlands)

    Sutanto, Stevia; Dijkstra, J. W.; Pieterse, J. A.Z.; Boon, J; Hauwert, P.; Brilman, D. W.F.

    2017-01-01

    Biogas from fermentation of manure and organic residues produces a gas stream that can be fed into the natural gas grid, provided impurities (CO2, H2S and H2O) are removed according to specifications prior to grid injection. Compared to conventional technologies, supported amine sorbents (SAS) seem

  17. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  18. Sorbent Nanotechnologies for Water Cleaning

    Science.gov (United States)

    Ahmed, Snober

    Despite decades of regulatory efforts to mitigate water pollution, many chemicals, particularly heavy metals, still present risks to human health. In addition to direct exposure, certain metals such as mercury threaten public health due to its persistence, bioaccumulation and bioamplification throughout the food chain. A number of U.S. Federal and State regulations have been established to reduce the levels of mercury in water. Activated carbon (AC) has been widely explored for the removal of mercury. However, AC suffers from many limitations inherent to its chemical properties, and it becomes increasingly challenging to meet current and future regulations by simply modifying AC to enhance its performance. Recently, the performance of nanosorbents have been studied in order to removal pollutants. Nanosorbents utilize the ultra-high reactive surface of nanoparticles for rapid, effective and even permanent sequestration of heavy metals from water and air, thus showed promising results as compared to AC. The goal of this thesis research is to develop nanomaterial-based sorbents for the removal of mercury from water. It describes the development of a new solid-support assisted growth of selenium nanoparticles, their use for water remediation, and the development of a new nanoselenium-based sorbent sponge for fast and efficient mercury removal. The nanoselenium sorbent not only shows irreversible interaction with mercury but also exhibits remarkable properties by overcoming the limitations of AC. The nanoselenium sponge was shown to remove mercury to undetectable levels within one minute. This new sponge technology would have an impact on inspiring new stringent regulations and lowering costs to help industries meet regulatory requirements, which will ultimately help improve air and water quality, aquatic life and public health.

  19. Carbon-Containing Waste of Coal Enterprises in Magnetic Sorbents Technology

    Science.gov (United States)

    Kvashevaya, Ekaterina; Ushakova, Elena; Ushakov, Andrey

    2017-11-01

    The article shows the issues state of coal-mining enterprises carbonaceous wastes utilization, including by obtaining oil-sorbent. The characteristics of the feedstock are presented; experiment methods of obtaining a binder based on the livestock enterprises waste, of forming binder with filler (sawdust, coal waste); of pyrogenetic processing to obtain a sorbent are described. Possible options for the introduction of magnetite (a magnetic component) in the composition of the oil sorbent are considered: on the surface, in the volume of the granule and the magnetite core. In the course of the work it was found that the optimum content of coal dust in the sorbent granules is 75% by weight, and the most effective way of obtaining the magnetic sorbent is to apply the carbon material directly to the "core" of magnetite. However, in this case, the problem of finding an effective binder for magnetite arises. The option of applying magnetite on the surface of a carbon sorbent is not effective. Thus, at present, we use a mixture of coal waste, which binds to the uniform distribution of magnetite in the volume. The developed magnetic sorbents can be used in various weather conditions, including strong winds and icing of water bodies, as well as for small and medium currents.

  20. Sorbent Structural Impacts Due to Humidity on Carbon Dioxide Removal Sorbents for Advanced Exploration Systems

    Science.gov (United States)

    Watson, David; Knox, James C.; West, Phillip; Stanley, Christine M.; Bush, Richard

    2015-01-01

    The Life Support Systems Project (LSSP) under the Advanced Exploration Systems (AES) program builds upon the work performed under the AES Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project focusing on the numerous technology development areas. The CO2 removal and associated air drying development efforts are focused on improving the current state-of-the-art system on the International Space Station (ISS) utilizing fixed beds of sorbent pellets by seeking more robust pelletized sorbents, evaluating structured sorbents, and examining alternate bed configurations to improve system efficiency and reliability. A component of the CO2 removal effort encompasses structural stability testing of existing and emerging sorbents. Testing will be performed on dry sorbents and sorbents that have been conditioned to three humidity levels. This paper describes the sorbent structural stability screening efforts in support of the LSS Project within the AES Program.

  1. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Science.gov (United States)

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Zinc injection implementation process at EDF: risk analysis, chemical specifications and operating procedures

    International Nuclear Information System (INIS)

    Tigeras, A.; Stutzmann, A.; Bremnes, O.; Claeys, M.; Ranchoux, G.; Segura, J.C.; Errera, J.; Bonne, S.

    2010-01-01

    Zinc's ability to replace cobalt from oxides of primary circuit surfaces has provided the first motivation for implementing the zinc addition in BWRs since the mid-1980s. The beneficial results regarding dose reductions have been demonstrated; therefore, this practice has been extended to PWRs since the 1990s, not only for radiation fields considerations, but also for reducing PWSCC. From the beginning of the 2000s, further reasons to inject zinc associated with the fuel management process have been identified (e; g; power increase, high burn-up, and/or cycle length increase). These evolutions must be accompanied by an adapted chemistry program in order to mitigate the crud deposition on fuel assemblies and the consequent AOA/CIPS or localized clad corrosion risks. The source term reduction (due to the decrease of the general corrosion rate of several materials) and the absence of negative impact on alloy cladding in the presence of zinc in the primary coolant are the main reasons for selecting zinc injection as a reliable option for preventing and/or mitigating the effects of fuel deposits. These three PWR motivations (field radiation, components performance, and fuel reliability) are also the major objectives of CANDU®, WWER, and new reactors (EPR, AP1000), where the zinc injection feasibility analyses are in progress in order to improve the safety of their operating conditions. With the purpose of achieving the optimal results of zinc injection, the process's implantation in a unit must be conducted with an appropriate risk analysis, covering all possible domains affected by this primary coolant chemistry modification : safety, fuel and component performance, radioprotection, waste, environment, human and installation security, human and material resources, staff formation, and documentation. EDF has performed a complete analysis of this enlarged scope, relying upon theoretical and experimental results as well as NPP feedback. This paper describes EDF

  3. Effects of parasitic beam-beam interaction during the injection process at the PEP-II B Factory

    International Nuclear Information System (INIS)

    Chin, Y.H.

    1992-06-01

    This paper is concerned with beam-beam effects during the injection process at the proposed asymmetric SLAC/LBL/LLNL B-Factory, PEP-II. It is shown that the parasitic beam-beam interaction can lead to a significant blowup in the vertical size of the injected beam. Simulation results for the horizontal and the vertical injection schemes are presented, and their performances are studied

  4. An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid.

    Science.gov (United States)

    van Staden, J F; Mashamba, Mulalo G; Stefan, Raluca I

    2002-09-01

    An on-line potentiometric sequential injection titration process analyser for the determination of acetic acid is proposed. A solution of 0.1 mol L(-1) sodium chloride is used as carrier. Titration is achieved by aspirating acetic acid samples between two strong base-zone volumes into a holding coil and by channelling the stack of well-defined zones with flow reversal through a reaction coil to a potentiometric sensor where the peak widths were measured. A linear relationship between peak width and logarithm of the acid concentration was obtained in the range 1-9 g/100 mL. Vinegar samples were analysed without any sample pre-treatment. The method has a relative standard deviation of 0.4% with a sample frequency of 28 samples per hour. The results revealed good agreement between the proposed sequential injection and an automated batch titration method.

  5. Improved process for the injection of water for secondary recovery of petroleum

    Energy Technology Data Exchange (ETDEWEB)

    1967-07-24

    In this process for the secondary recovery of petroleum from the formation, an aqueous displacing medium is injected through an injection well in communication with the formation. In this aqueous medium, a polymer is dissolved and the petroleum is thus displaced toward a producing well also in communication with the formation. The polymer is a liquid organic polymer, substantially linear, water-soluble, and having a resistance characteristic of at least 1.5. The polymer is dissolved in water in sufficient quantity such that the viscosity of the displacing medium is 0.5-15% of the viscosity of the crude oil to be displaced. The displacing medium is substantially free of molecular oxygen.

  6. [Application of near-infrared spectroscopy technology in extraction and concentration process of Reduning injection].

    Science.gov (United States)

    Zhang, Ya-Fei; Zuo, Xiang-Yun; Bi, Yu-An; Wu, Jian-Xiong; Wang, Zhen-Zhong; L, Ping; Xiao, Wei

    2014-08-01

    To establish a rapid quantitative analysis method for the content of chlorogenic acid and solid content in the extraction liquid concentration process during the production of Reduning injection by using the near-infrared (NIR) spectroscopy, in order to reflect the concentration state in a real-time manner and really realize the quality control of concentrating process of the extraction and concentration process. The samples during the Jinqing extraction liquid concentration process were collected. After the removal of abnormal samples, the spectra pretreatment and the wave band selection, the quantitative calibration model between NIR spectra and chlorogenic acid HPLC analytical value and solid content was established by using PLS algorithm, and unknown samples were predicted. The correlation coefficients between the chlorogenic acid content and the solid content were respectively 0.992 1 and 0.994 0, and the correlation coefficients of the verification model were respectively 0.994 4 and 0.998 4, with the root mean square error of calibration (RMSEC) of 0.814 6 and 2.656 1 and the root mean square error of prediction (RMSEP) of 0.704 6 and 1.876 7 respectively, and the relative standard errors of predictions (RSEP) were 6.01% and 2.93% respectively. The method is simple, rapid, nondestructive, accurate and reliable, thus could be adopted for the fast monitoring of the chlorogenic acid content and the solid content during the concentration process of Reduning injection extraction liquid.

  7. Application of magnetic sorbent in the removal of cadmium from soils

    Directory of Open Access Journals (Sweden)

    Michal Lovás

    2006-12-01

    Full Text Available A contamination of soil by heavy metals is a common problem at many metalliferous mining sites. There are various treatment processes for the cleanup of soil contaminated with heavy metals. A method designed for the decontamination of soil polluted by Cd is described. The method utilizes a magnetic sorbent – sludges from the hydrometallurgic processing of nickel mineral, activated by milling. The influence of sorbent concentration, pH and microwave energy on the sorption capacity and content of Cd ions in a soil was studed. The effectiveness of Cd desorption from the soil was 75 %, the maximal sorption capacity of sorbent was 9,8 mg/g. The content of Cd in water is function of pH and the concentration of sorbent. The influence of microwave energy (90 W was negligible.

  8. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  9. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    International Nuclear Information System (INIS)

    Marray, Tarek; Jaccquet, Philippe; Moinard-Checot, Delphine; Fabre, Agnes; Barrallier, Laurent

    2011-01-01

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  10. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  11. Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process

    Science.gov (United States)

    Dandang, N. A. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, A. H.; Romlay, F. R. M.; Johari, N. A.

    2017-10-01

    One of the most crucial and time consuming phase in metal injection moulding (MIM) process is “debinding”. These days, in metal injection moulding process, they had recounted that first debinding practice was depend on thermal binder degradation, which demanding more than 200 hours for complete removal of binder. Fortunately, these days world had introduced multi-stage debinding techniques to simplified the debinding time process. This research study variables for solvent debinding which are temperature and soaking time for samples made by MIM CoCrMo powder. Since wax as the key principal in the binder origination, paraffin wax will be removed together with stearic acid from the green bodies. Then, debinding process is conducted at 50, 60 and 70°C for 30-240 minutes. It is carried out in n-heptane solution. Percentage weight loss of the binder were measured. Lastly, scanning electron microscope (SEM) analysis and visual inspection were observed for the surface of brown compact. From the results, samples debound at 70°C exhibited a significant amount of binder loss; nevertheless, sample collapse, brittle surface and cracks were detected. But, at 60°C temperature and time of 4 hours proven finest results as it shows sufficient binder loss, nonappearance of surface cracks and easy to handle. Overall, binder loss is directly related to solvent debinding temperature and time.

  12. Liquid phase epitaxy of abrupt junctions in InAs and studies of injection radiative tunneling processes

    International Nuclear Information System (INIS)

    Bull, D.J.

    1977-01-01

    The p-n junction in a InAs crystal, by liquid phase epitaxy is obtained. The processes of injection and tunneling radiative recombination by emitted radiation from active region of p-n junction for low injection current are studied. (M.C.K.) [pt

  13. Inorganic sorbents for radiostrontium removal from waste solutions: selectivity and role of calixarenes

    International Nuclear Information System (INIS)

    Vijayan, S.; Belikov, K.; Drapailo, A.

    2011-01-01

    The challenge in the remediation of 90 Sr-contaminated waters arises from the need to achieve very high removal efficiencies to meet discharge targets from waste effluents containing relatively high concentrations of non-radioactive cations. Low-cost natural zeolites are not selective for strontium over other divalent cations, notably such ions as calcium; and produce low 90 Sr removal performance, and large volumes of spent sorbent waste. The synthesis and use of selective, synthetic inorganic sorbents could prove to be a feasible approach for high 90 Sr removal efficiencies, and much smaller volumes of secondary solid waste generation. The essential advantages of inorganic sorbents include their stability and resistance to radiation, and the potential for producing stable waste forms such as vitrified glass or ceramics for disposal. However, the cost of strontium-specific sorbents is prohibitive for large-scale applications at present. This paper is a review of the reported information on removal mechanisms and performance of Sr-specific inorganic sorbents. The analysis has revealed promising performance, efficiency and selectivity for strontium removal from solutions containing low and high concentrations of salts. The leading sorbents are crystalline silicotitanate and oxides of metals such as titanium. An initial assessment has also been made of the performance of calixarene-based macrocyclic compounds. These are known for their selectivity for strontium in solvent extraction processes. From the initial strontium removal results in bench-scale tests using different solid substrates, impregnated with calixarene derivatives, only sodium-mordenite impregnated with calyx[8]arene octamide gave an overall strontium removal efficiency in the range of 90 to 95% in the presence of 3.5 ppm calcium. There was no improvement observed for strontium-removal efficiency or selectivity over calcium in the calixarene-impregnated inorganic sorbent matrix. In several tests, the

  14. Effects of Atomization Injection on Nanoparticle Processing in Suspension Plasma Spray

    Directory of Open Access Journals (Sweden)

    Hong-bing Xiong

    2016-05-01

    Full Text Available Liquid atomization is applied in nanostructure dense coating technology to inject suspended nano-size powder materials into a suspension plasma spray (SPS torch. This paper presents the effects of the atomization parameters on the nanoparticle processing. A numerical model was developed to simulate the dynamic behaviors of the suspension droplets, the solid nanoparticles or agglomerates, as well as the interactions between them and the plasma gas. The plasma gas was calculated as compressible, multi-component, turbulent jet flow in Eulerian scheme. The droplets and the solid particles were calculated as discrete Lagrangian entities, being tracked through the spray process. The motion and thermal histories of the particles were given in this paper and their release and melting status were observed. The key parameters of atomization, including droplet size, injection angle and velocity were also analyzed. The study revealed that the nanoparticle processing in SPS preferred small droplets with better atomization and less aggregation from suspension preparation. The injection angle and velocity influenced the nanoparticle release percentage. Small angle and low initial velocity might have more nanoparticles released. Besides, the melting percentage of nanoparticles and agglomerates were studied, and the critical droplet diameter to ensure solid melting was drawn. Results showed that most released nanoparticles were well melted, but the agglomerates might be totally melted, partially melted, or even not melted at all, mainly depending on the agglomerate size. For better coating quality, the suspension droplet size should be limited to a critical droplet diameter, which was inversely proportional to the cubic root of weight content, for given critical agglomerate diameter of being totally melted.

  15. Activation and characterization of waste coffee grounds as bio-sorbent

    Science.gov (United States)

    Mariana; Marwan; Mulana, F.; Yunardi; Ismail, T. A.; Hafdiansyah, M. F.

    2018-03-01

    As the city well known for its culture of coffee drinkers, modern and traditional coffee shops are found everywhere in Banda Aceh, Indonesia. High number of coffee shops in the city generates large quantities of spent coffee grounds as waste without any effort to convert them as other valuable products. In an attempt to reduce environmental problems caused by used coffee grounds, this research was conducted to utilize waste coffee grounds as an activated carbon bio-sorbent. The specific purpose of this research is to improve the performance of coffee grounds bio-sorbent through chemical and physical activation, and to characterize the produced bio-sorbent. Following physical activation by carbonization, a chemical activation was achieved by soaking the carbonized waste coffee grounds in HCl solvent and carbonization process. The activated bio-sorbent was characterized for its morphological properties using Scanning Electron Microscopy (SEM), its functional groups by Fourier Transform Infra-Red Spectrophotometer (FTIR), and its material characteristics using X-Ray Diffraction (XRD). Characterization of the activated carbon prepared from waste coffee grounds shows that it meets standard quality requirement in accordance with Indonesian National Standard, SNI 06-3730-1995. Activation process has modified the functional groups of the waste coffee grounds. Comparing to natural waste coffee grounds, the resulted bio-sorbent demonstrated a more porous surface morphology following activation process. Consequently, such bio-sorbent is a potential source to be used as an adsorbent for various applications.

  16. Investigation on the micro injection molding process of an overmolded multi-material micro component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    and difficult assembly steps, being the plastic molded directly on a metal substrate. In this scenario, an investigation on the fully automated micro overmolding manufacturing technology of a three-material micro component for acoustic applications has been carried out. Preliminary experiments allowed......Micro injection molding (μIM) is one of the few technologies capable of meeting the increasing demand of complex shaped micro plastic parts. This process, combined with the overmolding technique, allows a fast and cost-efficient production of multi-material micro components, saving numerous...

  17. Sorbents for waste water purification from radionuclides and other toxic substances

    International Nuclear Information System (INIS)

    Maddalone, R.F.; MakKlenason, L.Ts.

    1996-01-01

    The TRW firm (USA) developed the system for sorption and disposal of radionuclides, heavy metals and organic substances, based on utilization of carbon sorbents. The sorbent is produced through processing natural coal by alkali-salt solution and has a large specific pores surface (up to 1000 m 2 /g). The sorbent carboxyl ionogenic groups are able of absorbing heavy metals cations from waste waters. Sorption by uranium constituted 30 mg/l. The sorbent with absorbed substances may be burnt (it contains no sulfur) or delivered for vitrification. The volume of disposed materials constitutes in comparison with existing techniques for uranium isotopes 420000 : 1. The costs are reduced up to 0.26 doll/m 2 of reprocessed water. 2 refs., 2 figs., 4 tabs

  18. Chitosan-ferrocyanide sorbent for Cs-137 removal from mineralized alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Egorin, Andrei [Far Eastern Federal Univ., Vladivostok (Russian Federation); Institute of Chemistry FEBRAS, Vladivostok (Russian Federation); Ozyorsk Technical Institute MEPHI, Ozersk (Russian Federation); Tokar, Eduard [Far Eastern Federal Univ., Vladivostok (Russian Federation); Zemskova, Larisa [Institute of Chemistry FEBRAS, Vladivostok (Russian Federation)

    2016-11-01

    An organomineral sorbent based on mixed nickel-potassium ferrocyanide and chitosan to be used in removal of Cs-137 radionuclide from highly mineralized media with high pH has been fabricated. The synthesized sorbent was applied to remove Cs-137 from model solutions under static and dynamic conditions. The effects of contact time, pH, and presence of sodium ions and complexing agents in the process of Cs-137 removal have been investigated. The sorbent is distinguished by increased stability to the impact of alkaline media containing complexing agents, whereas the sorbent capacity in solutions with pH 11 exceeds 1000 bed volumes with the Cs-137 removal efficiency higher than 95%.

  19. Micro-Injection Moulding In-Line Quality Assurance Based on Product and Process Fingerprints

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    2018-01-01

    significant dimensional features of the micro part were measured using a focus variation microscope. Their dependency on the variation of µIM process parameters was studied with a Design of Experiments (DoE) statistical approach. A correlation study allowed the identification of the product fingerprint, i...... of the study showed that the dimensional quality of the micro component could be effectively controlled in-line by combining the two fingerprints, thus opening the door for future µIM in-line process optimization and quality assessment.......Micro-injection moulding (μIM) is a replication-based process enabling the cost-effective production of complex and net-shaped miniaturized plastic components. The micro-scaled size of such parts poses great challenges in assessing their dimensional quality and often leads to time...

  20. Sorbents for the oxidation and removal of mercur

    Science.gov (United States)

    Olson, Edwin S.; Holmes, Michael J.; Pavlish, John Henry

    2017-09-12

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  1. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2008-10-14

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  2. Sorbents for the oxidation and removal of mercury

    Science.gov (United States)

    Olson, Edwin S [Grand Forks, ND; Holmes, Michael J [Thompson, ND; Pavlish, John H [East Grand Forks, MN

    2012-05-01

    A promoted activated carbon sorbent is described that is highly effective for the removal of mercury from flue gas streams. The sorbent comprises a new modified carbon form containing reactive forms of halogen and halides. Optional components may be added to increase reactivity and mercury capacity. These may be added directly with the sorbent, or to the flue gas to enhance sorbent performance and/or mercury capture. Mercury removal efficiencies obtained exceed conventional methods. The sorbent can be regenerated and reused. Sorbent treatment and preparation methods are also described. New methods for in-flight preparation, introduction, and control of the active sorbent into the mercury contaminated gas stream are described.

  3. Sorption of methylxanthines by different sorbents

    Science.gov (United States)

    Dmitrienko, S. G.; Andreeva, E. Yu.; Tolmacheva, V. V.; Terent'eva, E. A.

    2013-05-01

    Sorption of caffeine, theophylline, theobromine, diprophylline, and pentoxyphylline on different sorbents (supercross-linked polystyrene, surface-modified copolymer of styrene and divinylbenzene Strata-X, and carbon nanomaterials Taunit and Diasorb-100-C16T) was studied in a static mode in an effort to find new sorbents suitable for sorption isolation and concentration of methylxanthines. The peculiarities of sorption of methylxanthines were explained in relation to the solution acidity, the nature of the sorbates and their concentration, the nature of the solvent, and the structural characteristics of the sorbents.

  4. Performance and economic assessments of a solid oxide fuel cell system with a two-step ethanol-steam-reforming process using CaO sorbent

    Science.gov (United States)

    Tippawan, Phanicha; Arpornwichanop, Amornchai

    2016-02-01

    The hydrogen production process is known to be important to a fuel cell system. In this study, a carbon-free hydrogen production process is proposed by using a two-step ethanol-steam-reforming procedure, which consists of ethanol dehydrogenation and steam reforming, as a fuel processor in the solid oxide fuel cell (SOFC) system. An addition of CaO in the reformer for CO2 capture is also considered to enhance the hydrogen production. The performance of the SOFC system is analyzed under thermally self-sufficient conditions in terms of the technical and economic aspects. The simulation results show that the two-step reforming process can be run in the operating window without carbon formation. The addition of CaO in the steam reformer, which runs at a steam-to-ethanol ratio of 5, temperature of 900 K and atmospheric pressure, minimizes the presence of CO2; 93% CO2 is removed from the steam-reforming environment. This factor causes an increase in the SOFC power density of 6.62%. Although the economic analysis shows that the proposed fuel processor provides a higher capital cost, it offers a reducing active area of the SOFC stack and the most favorable process economics in term of net cost saving.

  5. Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    Additive manufacturing technologies applied to injection molding process chain have acquired an increasingly important role in the context of tool inserts production, especially by vat polymerization. Despite the decreased lifetime during their use in the injection molding process, the inserts come...... with improvements in terms of production time, costs, exibility, as well as potentially improved environmental performance as compared to conventional materials in a life cycle perspective.This contribution supports the development of additively manufactured injection molding inserts with the use of fiber...

  6. Integrating measuring uncertainty of tactile and optical coordinate measuring machines in the process capability assessment of micro injection moulding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Gasparin, Stefania

    2010-01-01

    Process capability of micro injection moulding was investigated in this paper by calculating the Cp and Cpk statistics. Uncertainty of both optical and tactile measuring systems employed in the quality control of micro injection moulded products was assessed and compared with the specified...... tolerances. Limits in terms of manufacturing process capability as well as of suitability of such measuring systems when employed for micro production inspection were quantitatively determined....

  7. Pilot-scale demonstration of the OSCAR process for high-temperature multipollutant control of coal combustion flue gas, using carbonated fly ash and mesoporous calcium carbonate

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, H.; Thomas, T.J.; Park, A.H.A.; Iyer, M.V.; Gupta, P.; Agnihotri, R.; Jadhav, R.A.; Walker, H.W.; Weavers, L.K.; Butalia, T.; Fan, L.S. [Ohio State University, Columbus, OH (United States)

    2007-07-15

    A pilot-scale study of the Ohio State Carbonation Ash Reactivation (OSCAR) process was performed to demonstrate the reactivity of two novel calcium-based sorbents toward sulfur and trace heavy metal (arsenic, selenium, and mercury) capture in the furnace sorbent injection (FSI) mode on a 0.365 m{sup 3}/s slipstream of a bituminous coal-fired stoker boiler. The sorbents were synthesized by bubbling CO{sub 2} to precipitate calcium carbonate (a) from the unreacted calcium present in the lime spray dryer ash and (b) from calcium hydroxide slurry that contained a negatively charged dispersant. The heterogeneous reaction between these sorbents and SO{sub 2} gas occurred under entrained flow conditions by injecting fine sorbent powders into the flue gas slipstream. The reacted sorbents were captured either in a hot cyclone (about 650{sup o}C) or in the relatively cooler downstream baghouse (about 230{sup o}C). The baghouse samples indicated about 90% toward sulfation and captured arsenic, selenium and mercury to 800 ppmw, 175 ppmw and 3.6 ppmw, respectively.

  8. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    Science.gov (United States)

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  9. Evaluation of Carbon Dioxide Capture From Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven [Univ. of North Dakota, Grand Forks, ND (United States); Srinivasachar, Srivats [Envergex LLC, Sturbridge, MA (United States); Laudal, Daniel [Univ. of North Dakota, Grand Forks, ND (United States); Browers, Bruce [Barr Engineering, Minneapolis, MN (United States)

    2014-12-31

    A novel hybrid solid sorbent technology for CO₂ capture and separation from coal combustion-derived flue gas was evaluated. The technology – Capture of CO₂ by Hybrid Sorption (CACHYS™) – is a solid sorbent technology based on the following ideas: 1) reduction of energy for sorbent regeneration, 2) utilization of novel process chemistry, 3) contactor conditions that minimize sorbent-CO₂ heat of reaction and promote fast CO₂ capture, and 4) low-cost method of heat management. This report provides key information developed during the course of the project that includes sorbent performance, energy for sorbent regeneration, physical properties of the sorbent, the integration of process components, sizing of equipment, and overall capital and operational cost of the integrated CACHYS™ system. Seven sorbent formulations were prepared and evaluated at the lab-scale for energy requirements and CO₂ capture performance. Sorbent heat of regeneration ranged from 30-80 kJ/mol CO₂ and was found to be dependent on process conditions. Two sorbent formulations (designated HCK-4 & HCK-7) were down-selected for additional fixed-bed testing. Additional testing involved subjecting the sorbents to 100 continuous cycles in the fixed-bed reactor to determine performance as a function of time. The working capacity achieved for HCK-4 sorbent ranged from 5.5-8.0 g CO₂/100 g sorbent, while the HCK-7 typically ranged from 8.0-10.0 g CO₂/100 g sorbent. Overall, there was no deterioration in capacity with continuous cycling for either sorbent. The CACHYS™ bench-scale testing system designed and fabricated under this award consists of a dual circulating fluidized-bed adsorber and a moving-bed regenerator. The system takes a flue gas slipstream from the University of North Dakota’s coal-fired steam plant. Prior to being sent to the adsorber, the flue gas is scrubbed to remove SO₂ and particulate. During parametric testing of the adsorber, CO₂ capture achieved using

  10. Modelling of the work processes high-pressure pump of common rail diesel injection system

    Directory of Open Access Journals (Sweden)

    Botwinska Katarzyna

    2016-01-01

    Full Text Available Common rail injection systems are becoming a more widely used solution in the fuel systems of modern diesel engines. The main component and the characteristic feature of the system is rail injection of the fuel under high pressure, which is passed to the injector and further to the combustion chamber. An important element in this process is the high-pressure pump, continuing adequate pressure in the rail injection system. Common rail (CR systems are being modified in order to optimise their work and virtual simulations are a useful tool in order to analyze the correctness of operation of the system while varying the parameters and settings, without any negative impact on the real object. In one particular study, a computer simulation of the pump high-pressure CR system was made in MatLab environment, based on the actual dimensions of the object – a one-cylinder diesel engine, the Farymann Diesel 18W. The resulting model consists of two parts – the first is responsible for simulating the operation of the high-pressure pump, and the second responsible for simulation of the remaining elements of the CR system. The results of this simulation produced waveforms of the following parameters: fluid flow from the manifold to the injector [m3/s], liquid flow from the manifold to the atmosphere [m3/s], and manifold pressure [Pa]. The simulation results allow for a positive verification of the model and the resulting system could become a useful element of simulation of the entire position and control algorithm.

  11. SO{sub 2} retention by reactivated CaO-based sorbent from multiple CO{sub 2} capture cycles

    Energy Technology Data Exchange (ETDEWEB)

    Vasilije Manovic; Edward J. Anthony [CANMET Energy Technology Centre-Ottawa, Ottawa, ON (Canada). Natural Resources Canada

    2007-06-15

    This paper examines the reactivation of spent sorbent, produced from multiple CO{sub 2} capture cycles, for use in SO{sub 2} capture. CaO-based sorbent samples were obtained from Kelly Rock limestone using three particle size ranges, each containing different impurities levels. Using a thermogravimetric analyzer (TGA), the sulfation behavior of partially sulfated and unsulfated samples obtained after multiple calcination-carbonation cycles in a tube furnace (TF), following steam reactivation in a pressurized reactor, is examined. In addition, samples calcined/sintered under different conditions after hydration are also examined. The results show that suitably treated spent sorbent has better sulfation characteristics than that of the original sorbent. Thus for example, after 2 h sulfation, {gt} 80% of the CaO was sulfated. In addition, the sorbent showed significant activity even after 4 h when {gt} 95% CaO was sulfated. The results were confirmed by X-ray diffraction (XRD) analysis, which showed that, by the end of the sulfation process, samples contained CaSO{sub 4} with only traces of unreacted CaO. The superior behavior of spent reactivated sorbent appears to be due to swelling of the sorbent particles during steam hydration. The surface area morphology of sorbent after reactivation was examined by scanning electron microscopy (SEM). Ca(OH){sub 2} crystals were seen, which displayed their regular shape, and their elemental composition was confirmed by energy-dispersive X-ray (EDX) analysis. These results allow the proposal of a new process for the use of CaO-based sorbent in fluidized bed combustion (FBC) systems, which incorporates CO{sub 2} capture, sorbent reactivation, and SO{sub 2} retention. 26 refs., 4 figs., 2 tabs.

  12. Sorption of short-lived radionuclides in a layer of sorbent with spherical granules

    International Nuclear Information System (INIS)

    Karlin, Yu.V.

    1993-01-01

    Sorption methods have found wide application in the purification of liquid radioactive wastes. The working element in sorption methods for this purpose is usually a sorption column with a fixed layer of sorbent. Continuous-action equipment with a moving layer of sorbent is very seldom used. When a fixed layer of sorbent is used its wear and prolonged mixing in the sorption column are reduced to a minimum, and maximum purification is achieved due to the advantages of the dynamic method of sorption over the static method. The time of protective action of the sorbent layer is determined by the time taken for the radionuclide to pass through the sorption column, and for the majority of radionuclides is determined by numerous parameters, including the type of sorbent and radionuclide, the rate of flow through the sorbent, the size of the sorbent granules, etc. The physical and chemical aspects of this process have been investigated in detail, and numerous methods for modeling it mathematically have been developed and have been used to develop methods of designing sorption column apparatus. The specific nature of the radionuclides as unstable materials enables the hypothetical case of a open-quotes perpetualclose quotes sorption filter to be represented. In fact, to achieve this it is only necessary to assume that the half-life of the radionuclide is so small that the rate of decay of the radionuclide in the sorption column (both in the sorbed state and in the aqueous phase of the sorption layer) is equal to the rate that it is fed into the column in the flow of liquid radioactive waste. In this case the sorption front of the radionuclide in the column wall remains fixed after a certain initial period. In this paper, a mathematical model of such a hypothetical filter for the case of spherical sorbent granules is considered

  13. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media

    International Nuclear Information System (INIS)

    Das, Sadananda; Pandey, Ashok K.; Athawale, Anjali A.; Subramanian, M.; Seshagiri, T.K.; Khanna, Pawan K.; Manchanda, Vijay K.

    2011-01-01

    Adsorptive sorbent for bio-aggressive natural aqueous media like seawater was developed by one pot simultaneous synthesis of silver nanoparticles (Ag nps) and poly(ethylene glycol methacrylate phosphate) (PEGMP) by UV-initiator induced photo-polymerization. The photo-polymerization was carried out by irradiating N,N'-dimethylformamide (DMF) solution containing appropriate amounts of the functional monomer (ethylene glycol methacrylate phosphate), UV initiator (α,α'-dimethoxy-α-phenyl acetophenone), and Ag + ions with 365 nm UV light in a multilamps photoreactor. To increase mechanical strength, nano-composite sorbent (Ag-PEGMP) was also reinforced with thermally bonded non-woven poly(propylene) fibrous sheet. Transmission electron microscopy (TEM) of the nano-composite sorbent showed uniform distribution of spherical Ag nanoparticles with particles size ranging from 3 to 6 nm. The maximum amount of Ag 0 that could be anchored in the form of nanoparticles were 5 ± 1 and 10 ± 1 wt.% in self-supported PEGMP and poly(propylene) reinforced PEGMP matrices, respectively. Ag-PEGMP sorbent was found to be stable under ambient conditions for a period of six months. Ag-PEGMP composite sorbent did not exhibit growth at all after incubation with pre-grown Escherichia coli cells, and showed non-adherence of this bacteria to the composite. This indicated that composite sorbent has the bio-resistivity due to bacterial repulsion and bactericidal properties of Ag nanoparticles embedded in the PEGMP. Sorption of U(VI) in PEGMP and Ag-PEGMP nano-composite sorbents from well-stirred seawater was studied to explore the possibility of using it for uranium preconcentration from bio-aggressive aqueous streams. The nano-composite sorbent was used to preconcentrate U(VI) from a process aqueous waste stream.

  14. Reactivity improvement of Ca(OH)2 sorbent using diatomaceous earth (DE) from Aceh Province

    Science.gov (United States)

    Mariana, M.; Mahidin, M.; Mulana, F.; Agam, T.; Hafdiansyah, F.

    2018-04-01

    In this study, the diatomaceous earth (DE) from Aceh Province was used to increase the reactivity of Ca(OH)2sorbent. The high silica (SiO2) content of about 97% in the diatomaceous earth allows the increasing reactivity of Ca(OH)2sorbent by forming calcium silicate hydrate (CSH). The CSH improved the porosity characteristic of the sorbent. The improvement process was performed by mixing Ca(OH)2sorbent, diatomaceous earth and water in a beaker glass at the Ca(OH)2/DE weight ratio of 1:10 for 2 hand then dried at 120 °C for 24 h. The dried sorbent was calcined at 500 °C and 800 °C for 2 h. The activated sorbent was characterized using Scanning Electron Microscopy (SEM) for the morphological properties; X- Ray Diffraction (XRD) for the materials characteristics. The adsorption capacity of thesorbent was tested by methylene blue adsorption. The results showed that the Ca(OH)2/DEsorbent had a higher porosity than the Ca(OH)2 adsorbent.The results also showed that Ca(OH)2/DE which was calcined at higher temperature of 800 °C had a higher adsorption capacity compared to Ca(OH)2/DE which was calcined at lower temperature of 500 °C.

  15. CaO-Based CO2 Sorbents Effectively Stabilized by Metal Oxides.

    Science.gov (United States)

    Naeem, Muhammad Awais; Armutlulu, Andac; Imtiaz, Qasim; Müller, Christoph R

    2017-11-17

    Calcium looping (i.e., CO 2 capture by CaO) is a promising second-generation CO 2 capture technology. CaO, derived from naturally occurring limestone, offers an inexpensive solution, but due to the harsh operating conditions of the process, limestone-derived sorbents undergo a rapid capacity decay induced by the sintering of CaCO 3 . Here, we report a Pechini method to synthesize cyclically stable, CaO-based CO 2 sorbents with a high CO 2 uptake capacity. The sorbents synthesized feature compositional homogeneity in combination with a nanostructured and highly porous morphology. The presence of a single (Al 2 O 3 or Y 2 O 3 ) or bimetal oxide (Al 2 O 3 -Y 2 O 3 ) provides cyclic stability, except for MgO which undergoes a significant increase in its particle size with the cycle number. We also demonstrate a direct relationship between the CO 2 uptake and the morphology of the synthesized sorbents. After 30 cycles of calcination and carbonation, the best performing sorbent, containing an equimolar mixture of Al 2 O 3 and Y 2 O 3 , exhibits a CO 2 uptake capacity of 8.7 mmol CO 2  g -1 sorbent, which is approximately 360 % higher than that of the reference limestone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Sjostrom, Sharon [Ada-Es, Inc., Highlands Ranch, CO (United States)

    2016-06-02

    ADA completed a DOE-sponsored program titled Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture under program DE-FE0004343. During this program, sorbents were analyzed for use in a post-combustion CO2 capture process. A supported amine sorbent was selected based upon superior performance to adsorb a greater amount of CO2 than the activated carbon sorbents tested. When the most ideal sorbent at the time was selected, it was characterized and used to create a preliminary techno-economic analysis (TEA). A preliminary 550 MW coal-fired power plant using Illinois #6 bituminous coal was designed with a solid sorbent CO2 capture system using the selected supported amine sorbent to both facilitate the TEA and to create the necessary framework to scale down the design to a 1 MWe equivalent slipstream pilot facility. The preliminary techno-economic analysis showed promising results and potential for improved performance for CO2 capture compared to conventional MEA systems. As a result, a 1 MWe equivalent solid sorbent system was designed, constructed, and then installed at a coal-fired power plant in Alabama. The pilot was designed to capture 90% of the CO2 from the incoming flue gas at 1 MWe net electrical generating equivalent. Testing was not possible at the design conditions due to changes in sorbent handling characteristics at post-regenerator temperatures that were not properly incorporated into the pilot design. Thus, severe pluggage occurred at nominally 60% of the design sorbent circulation rate with heated sorbent, although no handling issues were noted when the system was operated prior to bringing the regenerator to operating temperature. Testing within the constraints of the pilot plant resulted in 90% capture of the incoming CO2 at a flow rate equivalent of 0.2 to 0.25 MWe net electrical generating equivalent. The reduction in equivalent flow rate at 90% capture was

  17. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    Science.gov (United States)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  18. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Science.gov (United States)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  19. New Sorbents for Removing Arsenic From Water

    Science.gov (United States)

    McConchie, D. M.; Genc-Fuhrman, H.; Clark, M. W.; Caldicott, W.; Davies-McConchie, F. G.

    2004-12-01

    Elevated concentrations of arsenic in the drinking water used in many countries, including some of the poorest developing countries, and recognition that consuming this water can have serious consequences for human health, have led to increased investigations of ways to obtain safe water supplies. Finding new groundwater resources is a possible solution but this is a costly strategy that has no guarantee of success, particularly in areas where water is already a scarce commodity. The alternative is to treat water that is already available, but existing technologies are usually too expensive, too difficult to operate and maintain, or not completely effective when used in less developed countries or remote areas. There is therefore, an urgent need to find a simple and effective but inexpensive sorbent for arsenic that can be used to treat large volumes of water under less than ideal conditions. In this paper we present the results of field and laboratory trials that used a new, highly cost-effective, sorbent to remove arsenic from contaminated water. BauxsolT is the name given to the cocktail of minerals prepared by treating caustic bauxite refinery residues with Mg and Ca to produce a substance with a reaction pH of about 8.5, a high acid neutralizing capacity and an excellent ability to trap trace metals, metalloids and some other ionic species. The trapped ions are tightly bound by processes that include; precipitation of low solubility neoformational minerals, isomorphous substitution, solid-state diffusion, and adsorption; it is also an excellent flocculant. Although ordinary BauxsolT has an excellent ability to bind arsenate, and to a lesser extent arsenite, this ability can be further increased for particular water types by using activated BauxsolT or BauxsolT combined with small amounts of other reagents. Field trials conducted at the Gilt Edge Mine, South Dakota, showed that the addition of BauxsolT to highly sulfidic waste rock reduced the arsenic

  20. SO{sub 2} Retention by CaO-Based Sorbent Spent in CO{sub 2} Looping Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Manovic, V.; Anthony, E.J.; Loncarevic, D.

    2009-07-15

    CaO-based looping cycles are promising processes for CO{sub 2} Capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO{sub 3} in a dual fluidized-bed reactor to produce a pure CO{sub 2} stream suitable for sequestration. Use of spent sorbent from CO{sub 2} looping cycles for SO{sub 2} capture is investigated. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However, final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The results showed that spent sorbent samples from CO{sub 2} looping cycles can be used as sorbents for SO{sub 2} retention in cases where significant porosity loss does not occur during CO{sub 2} reaction cycles. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO{sub 4} product.

  1. Design space development for the extraction process of Danhong injection using a Monte Carlo simulation method.

    Directory of Open Access Journals (Sweden)

    Xingchu Gong

    Full Text Available A design space approach was applied to optimize the extraction process of Danhong injection. Dry matter yield and the yields of five active ingredients were selected as process critical quality attributes (CQAs. Extraction number, extraction time, and the mass ratio of water and material (W/M ratio were selected as critical process parameters (CPPs. Quadratic models between CPPs and CQAs were developed with determination coefficients higher than 0.94. Active ingredient yields and dry matter yield increased as the extraction number increased. Monte-Carlo simulation with models established using a stepwise regression method was applied to calculate the probability-based design space. Step length showed little effect on the calculation results. Higher simulation number led to results with lower dispersion. Data generated in a Monte Carlo simulation following a normal distribution led to a design space with a smaller size. An optimized calculation condition was obtained with 10,000 simulation times, 0.01 calculation step length, a significance level value of 0.35 for adding or removing terms in a stepwise regression, and a normal distribution for data generation. The design space with a probability higher than 0.95 to attain the CQA criteria was calculated and verified successfully. Normal operating ranges of 8.2-10 g/g of W/M ratio, 1.25-1.63 h of extraction time, and two extractions were recommended. The optimized calculation conditions can conveniently be used in design space development for other pharmaceutical processes.

  2. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    Science.gov (United States)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  3. Enhanced visuomotor processing of phobic images in blood-injury-injection fear.

    Science.gov (United States)

    Haberkamp, Anke; Schmidt, Thomas

    2014-04-01

    Numerous studies have identified attentional biases and processing enhancements for fear-relevant stimuli in individuals with specific phobias. However, this has not been conclusively shown in blood-injury-injection (BII) phobia, which has rarely been investigated even though it has features distinct from all other specific phobias. The present study aims to fill that gap and compares the time-course of visuomotor processing of phobic stimuli (i.e., pictures of small injuries) in BII-fearful (n=19) and non-anxious control participants (n=23) by using a response priming paradigm. In BII-fearful participants, phobic stimuli produced larger priming effects and lower response times compared to neutral stimuli, whereas non-anxious control participants showed no such differences. Because these effects are fully present in the fastest responses, they indicate an enhancement in early visuomotor processing of injury pictures in BII-fearful participants. These results are comparable to the enhanced processing of phobic stimuli in other specific phobias (i.e., spider phobia). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry

  5. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...... figure 1). The cavities have different surface topographies on one side, but are otherwise identical (see discussion of other contribution factors)....

  6. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-07-01

    Sodium based sorbents including sodium carbonate may be used to capture carbon dioxide from flue gas. A relatively concentrated carbon dioxide stream may be recoverable for sequestration when the sorbent is regenerated. Electrobalance tests indicated that sodium carbonate monohydrate was formed in a mixture of helium and water vapor at temperatures below 65 C. Additional compounds may also form, but this could not be confirmed. In the presence of carbon dioxide and water vapor, both the initial reaction rate of sodium carbonate with carbon dioxide and water and the sorbent capacity decreased with increasing temperature, consistent with the results from the previous quarter. Increasing the carbon dioxide concentration at constant temperature and water vapor concentration produced a measurable increase in rate, as did increasing the water vapor concentration at constant carbon dioxide concentration and temperature. Runs conducted with a flatter TGA pan resulted in a higher initial reaction rate, presumably due to improved gas-solid contact, but after a short time, there was no significant difference in the rates measured with the different pans. Analyses of kinetic data suggest that the surface of the sodium carbonate particles may be much hotter than the bulk gas due to the highly exothermic reaction with carbon dioxide and water, and that the rate of heat removal from the particle may control the reaction rate. A material and energy balance was developed for a cyclic carbonation/calcination process which captures about 26 percent of the carbon dioxide present in flue gas available at 250 C.

  7. Influence of different process settings conditions on the accuracy of micro injection molding simulations: an experimental validation

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2009-01-01

    Currently available software packages exhibit poor results accuracy when performing micro injection molding (µIM) simulations. However, with an appropriate set-up of the processing conditions, the quality of results can be improved. The effects on the simulation results of different and alternative...... process conditions are investigated, namely the nominal injection speed, as well as the cavity filling time and the evolution of the cavity injection pressure as experimental data. In addition, the sensitivity of the results to the quality of the rheological data is analyzed. Simulated results...... are compared with experiments in terms of flow front position at part and micro features levels, as well as cavity injection filling time measurements....

  8. Effect of Process Parameters on Flow Length and Flash Formation in Injection Moulding of High Aspect Ratio Polymeric Micro Features

    Directory of Open Access Journals (Sweden)

    Abdelkhalik Eladl

    2018-01-01

    Full Text Available This paper reports an investigation of the effects of process parameters on the quality characteristics of polymeric parts produced by micro injection moulding (μIM with two different materials. Four injection moulding process parameters (injection velocity, holding pressure, melt temperature and mould temperature were investigated using Polypropylene (PP and Acrylonitrile Butadiene Styrene (ABS. Three key characteristics of the mouldings were evaluated with respect to process settings and the material employed: part mass, flow length and flash formation. The experimentation employs a test part with four micro fingers with different aspect ratios (from 21 up to 150 and was carried out according to the Design of Experiments (DOE statistical technique. The results show that holding pressure and injection velocity are the most influential parameters on part mass with a direct effect for both materials. Both parameters have a similar effect on flow length for both PP and ABS at all aspect ratios and have higher effects as the feature thickness decreased below 300 μm. The study shows that for the investigated materials the injection speed and packing pressure were the most influential parameters for increasing the amount of flash formation, with relative effects consistent for both materials. Higher melt and mould temperatures settings were less influential parameters for increasing the flash amount when moulding with both materials. Of the two investigated materials, PP was the one exhibiting more flash formation as compared with ABS, when corresponding injection moulding parameters settings for both materials were considered.

  9. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  10. Study of process parameters effect on the filling phase of micro injection moulding using weld lines as flow markers

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2010-01-01

    , the relationships between the filling pattern and the different process parameter settings have to be established. In this paper, a novel approach based on the use of weld lines as flow markers to trace the development of the flow front during the filling is proposed. The effects on the filling stage of process......Micro-injection moulding (micro-moulding) is a process which enables the mass production of polymer microproducts. In order to produce high-quality injection moulded micro-parts, a crucial aspect to be fully understood and optimised is the filling of the cavity by the molten polymer. As a result...... manufactured by micro-electrodischarge machining. A commercially available polystyrene grade polymer has been moulded using a high-speed injection moulding machine. The design of experiment technique was employed to determine the effect of the process parameters on the filling phase of the micro...

  11. Removal of mercury from coal-combustion flue gas using regenerable sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C S; Albiston, J; Broderick, T E; Stewart, R M

    1999-07-01

    The US EPA estimates that coal-fired power plants constitute the largest anthropogenic source of mercury emissions in the US. The Agency has contemplated emission regulations for power plants, but the large gas-flow rates and low mercury concentrations involved have made current treatment options prohibitively expensive. ADA Technologies, Inc. (Englewood, Colorado), in conjunction with the US DOE, is developing regenerable sorbents for the removal and recovery of mercury from flue gas. These sorbents are based on the ability of noble metals to amalgamate mercury at typical flue-gas temperatures and release mercury at higher temperatures. The process allows for recovery of mercury with minimal volumes of secondary wastes and no impact on fly ash quality. In 1997 and 1998, ADA tested a 20-cfm sorbent unit at CONSOL Inc.'s coal-combustion test facility in Library, PA. Results from the 1997 tests indicated that the sorbent can remove elemental and oxidized mercury and can be regenerated without loss of capacity. Design changes were implemented in 1998 to enhance the thermal efficiency of the process and to recover the mercury in a stable form. Testing during autumn, 1998 demonstrated 60% to 90% removal efficiency of mercury from a variety of different coals. However, contradictory removal results were obtained at the end of the test period. Subsequent laboratory analyses indicated that the sorbent had lost over half its capacity for mercury due to a decrease in available sites for mercury sorption. The presence of sulfur compounds on the sorbent suggests that thermal cycling may have condensed acid gases on the sorbent leading to deterioration of the active sorption sites. The regeneration time/temperature profile has been altered to minimize this potential in the upcoming power plant tests.

  12. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya; Kyoungjin An, Alicia; Guo, Jiaxin; Lee, Eui-Jong; Usman Farid, Muhammad; Jeong, Sanghyun

    2016-01-01

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  13. CNTs reinforced super-hydrophobic-oleophilic electrospun polystyrene oil sorbent for enhanced sorption capacity and reusability

    KAUST Repository

    Wu, Jingya

    2016-12-05

    To meet the challenges of global oil spills and oil-water contamination, the development of a low-cost and reusable sorbents with good hydrophobicity and oleophilic nature is crucial. In this study, functionalized carbon nanotubes (CNTs) were wrapped in polystyrene (PS) polymer (PS-CNTs) and electrospun to create an effective and rigid sorbent for oil. Covalent modification and fluorination of CNTs improved their dispersibility and interfacial interaction with the polymer, resulting in a well-aligned CNTs configuration inside the porous fiber structure. Interestingly, the oil sorption process using PS-CNTs was observed to have two phases. First, the oil swiftly entered the membrane pores formed by interconnected nanofibers due to oleophilic properties of the micro-sized void. In the second phase, the oil not only moved to nano interior spaces of the fibers by capillary forces but also adsorbed on the surface of fibers where the latter was retained due to Van der Waals force. The sorption process fits well with the intra particle diffusion model. Maximum oil sorption capacity of the PS-CNTs sorbent for sunflower oil, peanut oil, and motor oils were 116, 123, and 112 g/g, respectively, which was 65% higher than that of the PS sorbent without CNTs. Overall, a significant increase in the porosity, surface area, water contact angle, and oleophilic nature was observed for the PS-CNTs composite sorbents. Not only did the PS-CNTs sorbents exhibited a promising oil sorption capacity but also showed potential for reusability, which is an important factor to be considered in determining the overall performance of the sorbent and its environmental impacts.

  14. Study and modeling of the reduction of sulfur dioxide, nitrogen oxides and hydrogen chloride by dry injection technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wuyin

    1997-05-01

    The potential and mechanism to reduce acid gases, such as sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}) and hydrogen chloride (HCl), by dry Ca-based sorbents have been studied to improve the efficiency of the process and sorbent utilization. Several natural limestones were tested for SO{sub 2} removal. Calcium conversion as high as 45 % was achieved in the first 0.3 s at 1000 deg C, 1000 ppm SO{sub 2} and Ca/S=1. A SO{sub 2} removal efficiency of 95 % was reached at Ca/S=2. Two models for estimating the sulfation of CaO at high temperature are presented. Short-residence-time sulfation is described by a pore size distribution model and long-residence-time sulfation by a particle expansion model. The pore size distribution model explains the effects of particle size, pore size distribution and partial pressure of SO{sub 2}, suggesting these three factors be the most important for CaO conversion. For particles larger than 1-2 {mu}m in furnace sorbent injection, pore diameters of 50-300 Aa are desirable. When large particles or long residence times are used, as in fluidized bed combustion, the particle expansion model shows the particle size and the sorbent type to be the main factors affecting the reaction. By using the selected limestone and additives the simultaneous SO{sub 2}/NO{sub x} removal was also measured. Several ammonium salts as well as urea were tested. Urea was found to give the highest NO{sub x} removal efficiency. To fully utilize the unreacted Ca-based sorbents, the spent sorbents from SO{sub 2} reduction processes were tested in a fixed-bed reactor to measure the capacity for HCl removal at 150-600 deg C. The results showed that all spent materials could react with HCl to some extent. After being calcined and slaked, they even showed the same reactivity as pure Ca(OH){sub 2}. A shrinking core model was derived for fixed-bed reactor. For the best sorbent tested, the multiple sorbent utilization reached about 80 %. 100 refs, 42 figs, 12 tabs

  15. Investigation of the spray characteristics for a secondary fuel injection nozzle using a digital image processing method

    Science.gov (United States)

    Jeong, Haeyoung; Lee, Kihyung; Ikeda, Yuji

    2007-05-01

    There are many ways to reduce diesel engine exhaust emissions. However, NOx emission is difficult to reduce because the hydrocarbon (HC) concentration in a diesel engine is not sufficient for NOx conversion. Therefore, in order to create stoichiometric conditions in the De-NOx catalyst, a secondary injection system is designed to inject liquid HC into the exhaust pipe. The atomization and distribution characteristics of the HC injected from a secondary injector are key technologies to obtain a high NOx conversion because inhomogeneous droplets of injected HC cause not only high fuel consumption but also deterioration of NOx emission. This paper describes the spray characteristics of a secondary injector including the spray angle, penetration length and breakup behaviour of the spray to optimize the reduction rate of the NOx catalyst. In this study, various optical diagnostics were applied to investigate these spray characteristics, the atomization mechanism and spray developing process. The visualization and image processing method for the spray pulsation were developed by high speed photography. The influence of the fuel supply pressure on the spray behaviour and a more detailed spray developing process have been analysed experimentally using image processing. Finally, the experimental results were used to correlate the spray structure to the injection system performance and to provide a design guide for a secondary injector nozzle.

  16. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    International Nuclear Information System (INIS)

    Praher, B.; Straka, K.; Usanovic, J.; Steinbichler, G.

    2014-01-01

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements

  17. Development of crayfish bio-based plastic materials processed by small-scale injection moulding.

    Science.gov (United States)

    Felix, Manuel; Romero, Alberto; Cordobes, Felipe; Guerrero, Antonio

    2015-03-15

    Protein has been investigated as a source for biodegradable polymeric materials. This work evaluates the development of plastic materials based on crayfish and glycerol blends, processed by injection moulding, as a fully biodegradable alternative to conventional polymer-based plastics. The effect of different additives, namely sodium sulfite or bisulfite as reducing agents, urea as denaturing agent and L-cysteine as cross-linking agent, is also analysed. The incorporation of any additive always yields an increase in energy efficiency at the mixing stage, but its effect on the mechanical properties of the bioplastics is not so clear, and even dampened. The additive developing a greater effect is L-cysteine, showing higher Young's modulus values and exhibiting a remnant thermosetting potential. Thus, processing at higher temperature yields a remarkable increase in extensibility. This work illustrates the feasibility of crayfish-based green biodegradable plastics, thereby contributing to the search for potential value-added applications for this by-product. © 2014 Society of Chemical Industry.

  18. Ultrasound based monitoring of the injection moulding process - Methods, applications and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Praher, B., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Straka, K., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Usanovic, J., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at; Steinbichler, G., E-mail: bernhard.praher@jku.at, E-mail: klaus.straka@jku.at, E-mail: jesenka.usanovic@jku.at, E-mail: georg.steinbichler@jku.at [Institute of Polymer Injection Moulding and Process Automation, Johannes Kepler University Linz (Austria)

    2014-05-15

    We developed novel non-invasive ultrasound based systems for the measurement of temperature distributions in the screw-ante chamber, the detection of unmelted granules and for the monitoring of the plasticizing process along the screw channel. The temperature of the polymer melt stored in the screw ante-chamber after the plasticization should be homogeneous. However, in reality the polymer melt in the screw ante-chamber is not homogeneous. Due to the fact the sound velocity in a polymer melt is temperature depending, we developed a tomography system using the measured transit times of ultrasonic pulses along different sound paths for calculating the temperature distribution in radial direction of a polymer melt in the screw ante-chamber of an injection moulding machine. For the detection of unmelted granules in the polymer melt we implemented an ultrasound transmission measurement. By analyzing the attenuation of the received pulses it is possible to detect unwanted inclusions. For the monitoring of the plasticizing process in the channels of the screw an ultrasonic pulse is transmitted into the barrel. By analyzing the reflected pulses it is possible to estimate solid bed and melt regions in the screw channel. The proposed systems were tested for accuracy and validity by simulations and test measurements.

  19. Waste treatment and immobilization technologies involving inorganic sorbents. Final report of a co-ordinated research programme 1992-1996

    International Nuclear Information System (INIS)

    1997-06-01

    A Coordinated Research Programme (CRP) for the application of inorganic sorbents in liquid waste treatment and immobilization was initiated by the IAEA in 1992. The results of this CRP are presented in this report. Fifteen institutions from fourteen countries were involved in this programme. The framework of this CRP was: (1) to conduct fundamental studies on sorbent structure and sorption mechanism; (2) to obtain thermodynamic and kinetic data of the treatment process; (3) to define sorption mechanism of radionuclides on different soils; (4) to identify sorbents appropriate for treatment of liquid waste streams; (5) to develop standard tests to be able to compare results of different groups of investigations. Refs, figs, tabs

  20. HAZARDOUS WASTE INCINERATION: THE IN-SITU CAPTURE OF LEAD BY SORBENTS IN A LABORATORY DOWNFLOW COMBUSTOR

    Science.gov (United States)

    The paper discusses experiments on a 17-kW downflow combustor to determine how sorbent injection into the postflame influenced the particle size distribution of a lead (Pb) aerosol formed from a surrogate Pb-containing waste. n the absence of chlorine (CI), the Pb aerosol size di...

  1. Results of full scale dry injection tests at MSW-incinerators using a new active absorbent

    International Nuclear Information System (INIS)

    Felsvang, K.S.; Helvind, O.

    1991-01-01

    Worldwide incineration of municipal solid waste (MSW) has been utilized to reduce the volume of waste to be disposed of. Increasing environmental concerns over the potential air pollution impacts have led to emission limits for pollutants such as HCl, SO 2 , particulate, and more recently also for mercury and dioxins. For a certain size of incinerators, dry sorbent injection is the preferred technology for air pollution control. This paper describes the development of a new active sorbent, Scansorb, which is particularly suited for use in dry injection processes. The new sorbent is a lime based product with adjustable properties. Scansorb can be produced with a specific surface area of 30 to 100 m 2 /g. Pilot plant development work has shown that a considerable reduction in the absorbent quantity can be achieved when Scansorb is used instead of commercial hydrated lime. Full scale tests performed at four different MSW incinerators have confirmed the viability of the new active absorbent. The full scale tests have demonstrated that more than 50% SO 2 removal can be achieved with Scansorb at quantities much less than with commercial hydrated lime

  2. A Pressure Injection System for Investigating the Neuropharmacology of Information Processing in Awake Behaving Macaque Monkey Cortex.

    Science.gov (United States)

    Veith, Vera K; Quigley, Cliodhna; Treue, Stefan

    2016-03-14

    The top-down modulation of feed-forward cortical information processing is functionally important for many cognitive processes, including the modulation of sensory information processing by attention. However, little is known about which neurotransmitter systems are involved in such modulations. A practical way to address this question is to combine single-cell recording with local and temporary neuropharmacological manipulation in a suitable animal model. Here we demonstrate a technique combining acute single-cell recordings with the injection of neuropharmacological agents in the direct vicinity of the recording electrode. The video shows the preparation of the pressure injection/recording system, including preparation of the substance to be injected. We show a rhesus monkey performing a visual attention task and the procedure of single-unit recording with block-wise pharmacological manipulations.

  3. Development and thermochemical characterizations of vermiculite/SrBr_2 composite sorbents for low-temperature heat storage

    International Nuclear Information System (INIS)

    Zhang, Y.N.; Wang, R.Z.; Zhao, Y.J.; Li, T.X.; Riffat, S.B.; Wajid, N.M.

    2016-01-01

    Novel EVM/SrBr_2 composite sorbents with different salt contents were developed for low-temperature thermal energy storage (TES). Simulative sorption experiment was conducted to obtain the sorption kinetics diagram and identify threshold salt content that composite sorbents can hold without solution leakage. Distribution of salt embedded in EVM was observed by extreme-resolution scanning electron microscopy (ER-SEM). Thermochemical characterizations including desorption performance and desorption heat were fully investigated by analyzing simultaneous thermal analyzer (STA) results. Results reveal that sorption process of composite sorbents is divided into three parts: water adsorption of EVM, water adsorption of SrBr_2 crystal and liquid-gas absorption of SrBr_2 solution. Since SrBr_2 solution can be hold in macrospores of EVM, water uptake and energy storage density are greatly increased. It appears that the composite sorbent of EVMSrBr_240 is a promising material for thermal energy storage, with water uptake of 0.53 g/g, mass energy storage density of 0.46 kWh/kg and volume energy storage density of 105.36 kWh/m"3. - Highlights: • Vermiculite/SrBr_2 composite sorbents were developed for thermal energy storage. • Water uptake of composite sorbents is divided into three phases. • Energy storage density of each sorption phase is evaluated via calculations. • EVMSrBr_240 is chosen as optimal sorbent without solution leakage.

  4. Application of inorganic sorbents for sewage purification from copper

    International Nuclear Information System (INIS)

    Yelizarova, I.A.; Tomchuk, T.K.; Kalinin, N.F.; Vol'khin, V.V.; Levichek, M.S.; Gulyaeva, E.I.

    1986-01-01

    Article presents the results of elaboration of synthesis methods of sorbent on the base of phosphate and magnesium hydroxide. As a result of study the technology of sorbent production with optimal properties was elaborated.

  5. Accuracy of ultrasound-guided injections of thoracolumbar articular process joints in horses

    DEFF Research Database (Denmark)

    Fuglbjerg, Vibeke; Nielsen, J.V.; Thomsen, Preben Dybdahl

    2010-01-01

    in the literature. Objectives: To evaluate factors of affecting the accuracy of intra-articular injections of the APJs in the caudal thoracolumbar region. Method: One-hundred-and-fifty-four injections with blue dye were performed on APJs including the T14-L6 region in 12 horses subjected to euthanasia for reasons...

  6. Numerical simulation of the processes of small-diameter high-current electron beam shaping and injection

    CERN Document Server

    Gordeev, V S; Myskov, G A

    2001-01-01

    With the aid of BEAM 25 program there was carried out the numerical simulation of the non-stationary process of shaping a small-diameter (<= 20mm) high-current hollow electron beam in a diode with magnetic insulation,as well as of the process of beam injection into the accelerating LIA track. The diode configuration for the purpose of eliminating the leakage of electron flux to the anode surface was update. Presented are the results of calculation of the injected beam characteristics (amplitude-time parameters of a current pulse, space-angle distributions of electrons etc.) depending on diode geometric parameters.

  7. A Soft Tooling process chain employing Additive Manufacturing for injection molding of a 3D component with micro pillars

    DEFF Research Database (Denmark)

    Zhang, Yang; Pedersen, David Bue; Segebrecht Gøtje, Asger

    2017-01-01

    The purpose of the research presented in this paper is to investigate the capability of a soft tooling process chain employing Additive Manufacturing (AM) for preproduction of an insert with micro features by injection molding. The Soft Tooling insert was manufactured in a high temperature...... photopolymer by Digital Light Processing (vat photopolymerization). The mold cavity was formed by two insert halves, by design; both inserts have four angled tines, with micro holes (Ø200 μm, 200 μm deep) on the surface. Injection molding with polyethylene was used with the soft tool inserts to manufacture...

  8. Long Life Moving-Bed Zinc Titanate Sorbent

    International Nuclear Information System (INIS)

    Copeland, Robert J.; Cesario, Mike; Feinberg, Daniel A.; Sibold, Jack; Windecker, Brian; Yang, Jing

    1997-01-01

    The objective of this work was to develop and test long-life sorbents for hot gas cleanup. Specifically, we measured the sulfur loading at space velocities typically used for absorption of H 2 S and regenerated the sorbent with diluted air for multiple cycles. Based on the experimental results, we prepared a conceptual design of the sorbent-fabrication system, and estimated the cost of sorbent production and of sulfur removal

  9. Industrial Compositional Streamline Simulation for Efficient and Accurate Prediction of Gas Injection and WAG Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen

    2008-10-31

    Gas-injection processes are widely and increasingly used for enhanced oil recovery (EOR). In the United States, for example, EOR production by gas injection accounts for approximately 45% of total EOR production and has tripled since 1986. The understanding of the multiphase, multicomponent flow taking place in any displacement process is essential for successful design of gas-injection projects. Due to complex reservoir geometry, reservoir fluid properties and phase behavior, the design of accurate and efficient numerical simulations for the multiphase, multicomponent flow governing these processes is nontrivial. In this work, we developed, implemented and tested a streamline based solver for gas injection processes that is computationally very attractive: as compared to traditional Eulerian solvers in use by industry it computes solutions with a computational speed orders of magnitude higher and a comparable accuracy provided that cross-flow effects do not dominate. We contributed to the development of compositional streamline solvers in three significant ways: improvement of the overall framework allowing improved streamline coverage and partial streamline tracing, amongst others; parallelization of the streamline code, which significantly improves wall clock time; and development of new compositional solvers that can be implemented along streamlines as well as in existing Eulerian codes used by industry. We designed several novel ideas in the streamline framework. First, we developed an adaptive streamline coverage algorithm. Adding streamlines locally can reduce computational costs by concentrating computational efforts where needed, and reduce mapping errors. Adapting streamline coverage effectively controls mass balance errors that mostly result from the mapping from streamlines to pressure grid. We also introduced the concept of partial streamlines: streamlines that do not necessarily start and/or end at wells. This allows more efficient coverage and avoids

  10. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first

  11. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

    2002-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC(number s ign)3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO(sub 2). Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO(sub 2)/20% H(sub 2)O, and lowest subsequent to calcination in pure CO(sub 2) at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO(sub 2) in the simulated flue gas. CO(sub 2) evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC(number s ign)3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO

  12. Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI + GPI) engine

    International Nuclear Information System (INIS)

    Huang, Yuhan; Hong, Guang; Huang, Ronghua

    2015-01-01

    Highlights: • A 5D PDF table was used to model the dual-fuel turbulence–chemistry interactions. • The cooling effect of ethanol direct injection (EDI) was examined. • The higher flame speed of ethanol in EDI + GPI increased the thermal efficiency. • The partially premixed combustion in EDI + GPI reduced the combustion temperature. • Ethanol’s low evaporation rate in low temperature led to incomplete combustion. - Abstract: Ethanol direct injection plus gasoline port injection (EDI + GPI) is a new technology to make the use of ethanol fuel more effective and efficient in spark ignition engines. Multi-dimensional computational fluid dynamics modelling was conducted on an EDI + GPI engine in both single and dual fuelled conditions. The in-cylinder flow field was solved in the realizable k−ε turbulence model with detailed engine geometry. The temporal and spatial distributions of the liquid and vapour fuels were simulated with the spray breakup and evaporation models. The combustion process was modelled with the partially premixed combustion concept in which both mixture fraction and progress variable were solved. The three-dimensional and five-dimensional presumed Probability Density Function (PDF) look-up tables were used to model the single-fraction-mixture and two-fraction-mixture turbulence–chemistry interactions respectively. The model was verified by comparing the numerical and experimental results of spray pattern and cylinder pressure. The simulation results showed that the combustion process of EDI + GPI dual-fuelled condition was partially premixed combustion because of the low evaporation rate of ethanol spray in low temperature environment before combustion. Compared with GPI only, the higher flame speed of ethanol fuel contributed to the greater pressure rise rate and maximum cylinder pressure in EDI + GPI condition, which consequently resulted in higher power output and thermal efficiency. The lower adiabatic flame temperature of

  13. Topical Report 5: Sorbent Performance Report

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-05-31

    ADA-ES has completed an extensive sorbent screening program funded primarily through DOE NETL cooperative agreement DE-NT0005649 with support from EPRI and industry cost-share participants. Tests were completed on simulated and actual flue gas. The overall project objective is to address the viability and accelerate development of a solid-based postcombustion CO2 capture technology that can be retrofit to the existing fleet of coal-fired power plants. An important component of the viability assessment was to evaluate the state of development of sorbents and measure key performance characteristics under realistic operating conditions.

  14. LIMITED RUN PRODUCTION USING ALUMIDE® TOOLING FOR THE PLASTIC INJECTION MOULDING PROCESS#1

    Directory of Open Access Journals (Sweden)

    J. Combrinck

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Existing techniques for the production of conventional steel tooling for plastic injection moulding are expensive and time-consuming. As a result, many new products often do not advance beyond the prototype stage. This paper describes an investigation into the possibility of using laser sintered Alumide® (an aluminium-filled nylon material in a novel alternative process for producing hybrid rapid tooling tools. Initial experiments performed by researchers at the Central University of Technology have shown excellent results. An Alumide® tool can be manufactured in a shorter time and at a significantly lower cost than the same size direct metal laser sintered tool.

    AFRIKAANSE OPSOMMING: Bestaande tegnieke vir die vervaardiging van konvensionele staal gietstukke vir die plastiek spuit-giet proses is duur en tydrowend. Die gevolg hiervan is dat baie nuwe produkte nie verder as die prototipe stadium vorder nie. Hierdie artikel ondersoek die moontlikheid om laser gesinterde Alumide® (aluminium gevulde nylon materiaal in ’n nuwe benadering as ’n alternatiewe proses vir die vervaardiging van snel hibried-gietvorms te gebruik. Aanvanklike eksperimente uitgevoer deur navorsers aan die Sentrale Universiteit vir Tegnologie het uitstekende resultate gelewer. ’n Alumide® gietvorm kan vinniger en goedkoper vervaardig word as dieselfde grootte direk metaal gesinterde gietvorm.

  15. Cycle time improvement for plastic injection moulding process by sub groove modification in conformal cooling channel

    Science.gov (United States)

    Kamarudin, K.; Wahab, M. S.; Batcha, M. F. M.; Shayfull, Z.; Raus, A. A.; Ahmed, Aqeel

    2017-09-01

    Mould designers have been struggling for the improvement of the cooling system performance, despite the fact that the cooling system complexity is physically limited by the fabrication capability of the conventional tooling methods. However, the growth of Solid Free Form Technology (SFF) allow the mould designer to develop more than just a regular conformal cooling channel. Numerous researchers demonstrate that conformal cooling channel was tremendously given significant result in the improvement of productivity and quality in the plastic injection moulding process. This paper presents the research work that applies the passive enhancement method in square shape cooling channel to enhance the efficiency of cooling performance by adding the sub groove to the cooling channel itself. Previous design that uses square shape cooling channel was improved by adding various numbers of sub groove to meet the best sub groove design that able reduced the cooling time. The effect of sub groove design on cooling time was investigated by Autodesk Modlflow Insight software. The simulation results showed that the various sub groove designs give different values to ejection time. The Design 7 showed the lowest value of ejection time with 24.3% increment. The addition of sub groove significantly increased a coolant velocity and a rate of heat transfer from molten plastic to coolant.

  16. Development of disposal sorbents for chloride removal from high-temperature coal-derived gases

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, G.N.; Wood, B.J.; Canizales, A. [and others

    1995-11-01

    The objective of this program is to develop alkali-based disposable sorbents capable of reducing HCl vapor concentrations to less than 1 ppmv in coal gas streams at temperatures in the range 400{degrees} to 750{degrees}C and pressures in the range 1 to 20 atm. The primary areas of focus of this program are investigation of different processes for fabricating the sorbents, testing their suitability for different reactor configurations, obtaining kinetic data for commercial reactor design, and updating the economics of the process.

  17. Influence of lignin on properties of wood-inorganic sorbents

    International Nuclear Information System (INIS)

    Remez, V.P.; Charina, M.V.; Klass, S.M.; Shubin, A.S.; Tkachev, K.V.; Isaeva, O.F.

    1986-01-01

    Present article is devoted to influence of lignin on properties of wood-inorganic sorbents. The influence of component composition of matrix on sorption properties of sorbents and their stability in different mediums is studied. The dependence of sorption capacity of sorbent on component matrix composition and its porous structure is defined.

  18. Adsorption of Polycyclic Aromatic Hydrocarbons (PAHS from Aqueous Solutions on Different Sorbents

    Directory of Open Access Journals (Sweden)

    Smol Marzena

    2014-12-01

    Full Text Available This paper presents the results of the possibility and effectiveness of PAHs removal from a model aqueous solution, during the sorption on the selected sorbents. Six PAHs (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene listed by EPA for the analysis in the environmental samples were determined. Model aqueous solution was prepared with RESTEK 610 mix PAHs standard. After the sorption process, decrease in the concentration of individual hydrocarbons was observed. The removal percentage was dependent on the type of sorbent (quartz sand, mineral sorbent, activated carbon. The highest efficiency (98.1% was observed for activated carbon.. The results shows that the sorption processes can be used in aqueous solutions treatment procedures.

  19. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  20. Hot coal gas desulfurization with manganese-based sorbents. Final report, September 1992--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    Hepworth, M.T.; Slimane, R.B.

    1994-11-01

    The focus of much current work being performed by the Morgantown Energy Technology Center (METC) of the Department of Energy on hot coal-derived fuel gas desulfurization is in the use of zinc-based sorbents. METC has shown interest in formulating and testing manganese-based pellets as alternative effective sulfur sorbents in the 700 to 1200{degree}C temperature range. To substantiate the potential superiority of Mn-based pellets, a systematic approach toward the evaluation of the desulfurizing power of single-metal sorbents is developed based on thermodynamic considerations. This novel procedure considered several metal-based sorbents and singled out manganese oxide as a prime candidate sorbent capable of being utilized under a wide temperature range, irrespective of the reducing power (determined by CO{sub 2}/CO ratio) of the fuel gas. Then, the thermodynamic feasibility of using Mn-based pellets for the removal of H{sub 2}S from hot-coal derived fuel gases, and the subsequent oxidative regeneration of loaded (sulfided) pellets was established. It was concluded that MnO is the stable form of manganese for virtually all commercially available coal-derived fuel gases. In addition, the objective of reducing the H{sub 2}S concentration below 150 ppMv to satisfy the integrated gasification combined cycle system requirement was shown to be thermodynamically feasible. A novel process is developed for the manufacture of Mn-based spherical pellets which have the desired physical and chemical characteristics required.

  1. Microstructure of reaction zone in WCp/duplex stainless steels matrix composites processing by laser melt injection

    NARCIS (Netherlands)

    Do Nascimento, A. M.; Ocelik, V.; Ierardi, M. C. F.; De Hosson, J. Th. M.

    2008-01-01

    The laser melt injection (LMI) process has been used to create a metal matrix composite consisting of 80gm sized multi-grain WC particles embedded in three cast duplex stainless steels. The microstruture was investigated by scanning electron microscopy with integrated EDS and electron back-scatter

  2. Optimising the Design Process of the Injection Camshaft by Critical Path Method (CPM

    Directory of Open Access Journals (Sweden)

    Olga-Ioana Amariei

    2016-10-01

    Full Text Available In the present paper a series of advantages of the CPM method are presented, focusing on the optimization of design duration of an injection camshaft, by cost criteria. The minimum duration of finalizing the design of the injection camshaft will be determined, as well as the total cost associated to this project, normally, and then under crash regime. At the end, two types of sensitivity analysis will be performed: Meeting the desire completation time and Meeting the desired budget cost

  3. Predicting sorption of organic acids to a wide range of carbonized sorbents

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2016-04-01

    Many contaminants and infochemicals are organic acids that undergo dissociation under environmental conditions. The sorption of dissociated anions to biochar and other carbonized sorbents is typically lower than that of neutral species. It is driven by complex processes that are not yet fully understood. It is known that predictive approaches developed for neutral compounds are unlikely to be suitable for organic acids, due to the effects of dissociation on sorption. Previous studies on the sorption of organic acids to soils have demonstrated that log Dow, which describes the decrease in hydrophobicity of acids upon dissociation, is a useful alternative to log Kow. The aim of the present study was to adapt a log Dow based approach to describe the sorption of organic acids to carbonized sorbents. Batch experiments were performed with a series of 9 sorbents (i.e., carbonized wood shavings, pig manure, and sewage sludge, carbon nanotubes and activated carbon), and four acids commonly used for pesticidal and biocidal purposes (i.e., 2,4-D, MCPA, 2,4-DB, and triclosan). Sorbents were comprehensively characterized, including by N2 and CO2 physisorption, Fourier transform infrared spectroscopy, and elemental analysis. The wide range of sorbents considered allows (i) discussing the mechanisms driving the sorption of neutral and anionic species to biochar, and (ii) their dependency on sorbate and sorbent properties. Results showed that the sorption of the four acids was influenced by factors that are usually not considered for neutral compounds (i.e., pH, ionic strength). Dissociation affected the sorption of the four compounds, and sorption of the anions ranged over five orders of magnitude, thus substantially contributing to sorption in some cases. For prediction purposes, most of the variation in sorption to carbonized sorbents (89%) could be well described with a two-parameter regression equation including log Dow and sorbent specific surface area. The proposed model

  4. Radon adsorption in fibrous carbon sorbents

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Kish, A.O.; Chudakov, V.A.; Matvejchuk, S.V.; Sokolovskij, A.S.; Ugolev, I.I.

    2006-01-01

    Radon sorption in woven fibrous sorbents 'AUT-M' and 'Busofit' and nonwoven fiber in the temperature range 0-50 degrees centigrade was studied. Adsorption heat of radon from the ambient air in different types of carbon fiber was determined. (authors)

  5. Analysis of Ethane and Diethylbenzene Bridged Sorbents

    Science.gov (United States)

    2017-12-13

    Textiles modified in this manner have been shown to reduce or eliminate transport of chemical warfare agents and simulants across the fabric barrier...B.J. Johnson; B.J. Melde; M.H. Moore; A.P. Malanoski; J.R. Taft, "Improving sorbents for glycerol capture in biodiesel refinement," Materials 10

  6. The process of isothermal compression of gasses at sub-atmospheric pressures through regulated water injection in Braysson cycles

    International Nuclear Information System (INIS)

    Georgiou, Demos P.; Xenos, Triantafyllos

    2011-01-01

    Although the Braysson cycle constitutes the ideal limit for the Combined Cycle Power Plants, its actual implementation has not been achieved due to the difficulty in building the required isothermal compressor. The present study proposes the incorporation of regulated water injection during the final compression, which could maintain the temperature constant due to the evaporation. The analysis for the thermodynamic implications of the injection on the ideal version of the Braysson cycle indicates that the (ideal cycle) efficiency reduction will be minimal. The study provides an analysis for the water injection rate that will permit such a process and shows that the additional work needed to drive the process will not be affected significantly by the injection. In addition, it shows that the minimum temperature of the Braysson cycle will be lower than the corresponding level of the conventional (Gas-Steam turbine Combined cycle plants), something that could improve the efficiency as well. Finally it shows that the process may be expressed by a polytropic relationship of the type pv β = constant, where β ∼ 1.06.

  7. Removal of dissolved textile dyes from wastewater by a compost sorbent

    Science.gov (United States)

    Tsui, L.S.; Roy, W.R.; Cole, M.A.

    2003-01-01

    The objective of this study was to evaluate the potential for treating dye-contaminated waste streams by sorption using compost as a low-cost sorbent. A mature, thermophilic compost sample was used to sorb CI Acid Black 24, CI Acid Orange 74, CI Basic Blue 9, CI Basic Green 4, CI Direct Blue 71, CI Direct Orange 39, CI Reactive Orange 16 and CI Reactive Red 2 from solution using a batch-sorption method. With the exception of the two reactive dyes, the sorption kinetics were favourable for a continuous-flow treatment process with the compost-dye mixtures reaching a steady state within 3-5 h. Based on limited comparisons, the affinity of the compost for each dye appeared to be competitive with other non-activated carbon sorbents. The results suggest that additional research on using compost as a sorbent for dye-contaminated solutions is warranted.

  8. Sodium bicarbonate injection: a small-plant SO sub 2 /NO sub x option

    Energy Technology Data Exchange (ETDEWEB)

    Darmstaedter, E. (NaTec Resources Inc. (USA). Environmental Systems Division)

    1990-12-01

    The sodium bicarbonate injection process provides a cost effective alternative to flue gas desulfurization for smaller power plants. EPRI and NaTec Resources have been conducting demonstrations on coal-fired utility boilers. 90% SO{sub 2} reduction was achieved in EPRI's High-Sulfur Test Centre 4 MW pilot HYPAS installation near Barker, NY. During 1990 Public Service Company of Colorado and NaTec completed a two-phase commercial demonstration for continuous SO{sub 2}/NO{sub x} control on Cherokee Unit 1 to determine levels of urea and injection locations for urea and sodium bicarbonate to minimise NO{sub 2} and NH{sub 3} emissions while maintaining a high level of SO{sub 2} reduction. Methods for sodium sulphate by-product recovery/sale are described - these are higher value than those from the limestone process. Costs for the whole process, driven by sorbent costs, work out typically for a dry sorbent injection/HYPAS system at $610/ton SO{sub 2} removed. 11 refs., 5 figs., 1 tab.

  9. Design process of the nanofluid injection mechanism in nuclear power plants

    Directory of Open Access Journals (Sweden)

    Bang In Choel

    2011-01-01

    Full Text Available Abstract Nanofluids, which are engineered suspensions of nanoparticles in a solvent such as water, have been found to show enhanced coolant properties such as higher critical heat flux and surface wettability at modest concentrations, which is a useful characteristic in nuclear power plants (NPPs. This study attempted to provide an example of engineering applications in NPPs using nanofluid technology. From these motivations, the conceptual designs of the emergency core cooling systems (ECCSs assisted by nanofluid injection mechanism were proposed after following a design framework to develop complex engineering systems. We focused on the analysis of functional requirements for integrating the conventional ECCSs and nanofluid injection mechanism without loss of performance and reliability. Three candidates of nanofluid-engineered ECCS proposed in previous researches were investigated by applying axiomatic design (AD in the manner of reverse engineering and it enabled to identify the compatibility of functional requirements and potential design vulnerabilities. The methods to enhance such vulnerabilities were referred from TRIZ and concretized for the ECCS of the Korean nuclear power plant. The results show a method to decouple the ECCS designs with the installation of a separate nanofluids injection tank adjacent to the safety injection tanks such that a low pH environment for nanofluids can be maintained at atmospheric pressure which is favorable for their injection in passive manner.

  10. Economic Analysis of Additive Manufacturing Integration in Injection Molding Process Chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    The purpose of this research is to analyze how additive manufacturing can create value when it is utilized as a supportive technology to injection molding by quantifying the cost advantages that can be obtained. Tooling for the product development phase is investigated as pilot integration area...... of additive manufacturing with injection molding. Cost considerations are discussed through the development of a cost estimation model. The study shows that integration of additive manufacturing in the product development phase for fabrication of soft tooling is economically convenient with a cost reduction...... of 79,8% and 89,9%. The cost models on additive manufacturing have been built so far on the idea of substituting injection molding with additive manufacturing. In response to this literature gap, this research addresses the advantages of additive manufacturing utilized in a synergistic rather than...

  11. Impact of thermal processes on CO2 injectivity into a coal seam

    International Nuclear Information System (INIS)

    Qu, H Y; Liu, J S; Pan, Z J; Connell, L

    2010-01-01

    The objective of this study is to investigate how thermal gradients, caused by CO2 injection, expansion and adsorption, affect the permeability and adsorption capacity of coal during CO2 sequestration. A new permeability model is developed in which the concept of elastic modulus reduction ratio is introduced to partition the effective strain between coal matrix and fracture. This model is implemented into a fully coupled mechanical deformation, gas flow and heat transport finite element simulator. To predict the amount of CO2 sequested, the extended Langmuir sorption model is used, with parameters values taken from the literature. The coupled heat and gas flow equations, are solved in COMSOL using the finite element method. The simulation results for a constant volume reservoir demostrate that thermal strain acts to significantly reduce both CO2 injectivity and adsorption capacity. These impacts need to be considered in the calculation of the optimum injection rate and the total sequestration capacity.

  12. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  13. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    Science.gov (United States)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  14. PLC and SCADA based automation of injection casting process for casting of uranium-zirconium blanket fuel slugs for metallic fuel fabrication

    International Nuclear Information System (INIS)

    Yathish Kumar, G.; Jagadeeschandran, J.; Avvaru, Prafulla Kumar; Yadaw, Abhishek Kumar; Lavakumar, R.; Prabhu, T.V.; Muralidharan, P.; Anthonysamy, S.

    2016-01-01

    Fabrication of metallic (U-6wt.%Zr) slugs involves melting of binary alloy under vacuum and injection casting into quartz moulds at high pressure. Injection casting system housed inside glove box comprises of high vacuum, induction melting, high pressure control, motion control, mould preheating, chamber cooling, crucible handling and glove box pressure control systems. The technology development for process automation of injection casting system and process optimisation for fabrication of metallic (U-6%Zr) slugs is outlined in this paper. (author)

  15. Injection molded superhydrophobic surfaces based on microlithography and black silicon processing

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Taboryski, Rafael

    2012-01-01

    in detail with an engineering perspective on choice of materials and manufacturability by injection molding. Microscope slides with superhydrophobic properties were succesfully fabricated. Preliminary results indicate a contact angle increase from 95° for the unstructured polymer to a maximum 150......°. The lowest drop roll off angles observed were in the range 1° to 5°....

  16. Conjugate echoes of artifically injected electron beams detected optically by means of new image processing

    International Nuclear Information System (INIS)

    Hallinan, T.J.; Stenbaek-Nielsen, H.C.; Baldridge, J.; Winckler, J.; Malcolm, P.

    1990-01-01

    Following two upward injections of energetic electrons (38 keV and 26 keV) from the Echo 4 rocket-borne electron accelerator, artificial auroral streaks were detected by ground-based low-light-level television. They were delayed relative to the injections by 2.06 s and 2.42 s, respectively. The delays are only 4-5% longer than calculated using a dynamic model of the geomagnetic field. Other field models yielded shorter bounce times. Since the delays were in the inverse ratio of the relativistic velocities calculated for the nominal beam energies, it is concluded that the potential of the payload remained below 1 kV during 45 mA injections at an altitude of 210 km. The echo streaks showed little dispersion in either time or space, indicating that the portion of the beam returning to the northen hemisphere loss cone remained collimated and nearly monoenergetic. But there was a 70% loss in the return flux. A diligent search failed to locate similar echoes from the more powerful injections employed in the Echo 5 and Echo 7 rocket experiments, suggesting flux losses of at least 98% and 92%, respectively. The losses are thought to be due to pitch angle scattering out of the loss cone as the electrons traverse the equatorial region but could also be due to collective beam plasma interactions

  17. Laser melt injection of ceramic particles in metals : Processing, microstructure and properties

    NARCIS (Netherlands)

    Ocelík, V.; De Hosson, J.Th.M.

    2010-01-01

    The objective of this paper is to present an overview of the possibilities of the laser melt injection (LMI) methodology to enhance the surface of light-weighted metals by adding hard ceramic particles in the top layer, with the aim to enhance the wear resistance and to increase the hardness. In

  18. Technical task plan for testing filter box sorbent-paint filter test

    International Nuclear Information System (INIS)

    Kilpatrick, L.L.

    1993-01-01

    At the Savannah River Plant, High Level Waste Engineering (HLWE) asked Interim Waste Technology (IWT) to choose and test a sorbent to add to the ITP filter box that meets the EPA requirement for land disposal of containerized liquid hazardous wastes per Paint Filter Liquids (PFL) test method 9095. This report outlines the process to be used in accomplishing this task

  19. EVALUATION OF SOLID SORBENTS AS A RETROFIT TECHNOLOGY FOR CO2 CAPTURE FROM COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Holly Krutka; Sharon Sjostrom

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process/equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines; 31 carbon based materials; 6 zeolites; 7 supported carbonates (evaluated under separate funding); and 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  20. The use of lightweight expanded clay aggregate (LECA) as sorbent for PAHs removal from water

    International Nuclear Information System (INIS)

    Nkansah, Marian Asantewah; Christy, Alfred A.; Barth, Tanja; Francis, George William

    2012-01-01

    Highlights: ► Effect of contact time on sorption PAH by LECA. ► Effect of mass of sorbent (LECA) on sorption of PAH. ► Sorption Isotherms for PAH-LECA interaction. - Abstract: Lightweight expanded clay aggregate (LECA) has been explored as a sorbent for the removal of PAHs (phenanthrene, fluoranthene and pyrene) from water. The efficacy of LECA as a sorbent for PAHs was assessed using contact time, mass of sorbent and sorption isotherms in a series of batch experiments. Maximum (optimum) sorption was reached at 21 h after which the amount of PAHs sorbed remained almost constant. Batch experiments were conducted by shaking a 100 ml solution mixture of individual PAHs (containing 0.02 mg/L) with LECA. The maximum sorption was 70.70, 70.82 and 72.12%, respectively for phenanthrene, fluoranthene and pyrene when a mass of 0.2 g of sorbent was used. There was an increase in sorption as a result of an increase in mass of sorbent until a maximum was reached at a mass of 4.0 g LECA with 92.61, 93.91 and 94.15% sorption of phenanthrene, fluoranthene and pyrene respectively. Sorption data were fitted to the linearised forms of the Freundlich and Langmuir isotherm models to determine the water-LECA partitioning coefficient. Physical sorption caused by the aromatic nature of the compounds was the main mechanism that governed the removal process while the hydrophobicity of the PAHs also influenced the sorption capacity. LECA can be used as an alternative method for aqueous PAHs removal.

  1. Scaleup tests and supporting research for the development of duct injection technology: Topical report No. 3, Task 3.2: Scale-up testing; Topical report No. 4, Task 3.3: Advanced configurations; Topical report No. 5, Task 3.4: Process controls; Topical report No. 6, Task 3.5: Failure modes; Task 3.6: Waste characterization, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Felix, L.G.; Gooch, J.P.; Merritt, R.L. [Southern Research Inst., Birmingham, AL (United States); Klett, M.G.; Demian, A.G.; Hunt, J.E. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

    1992-08-01

    This document is the third interim report on tests that were conducted at the Duct Injection Test Facility (DITF) operated for the Department of Energy at Unit 5 of the Ohio Power Company`s Muskingum River station in Beverly, Ohio. At the DITF dry calcium hydroxide (Ca(OH)2), an aqueous slurry of Ca(OH){sub 2} (prepared by slaking quicklime), or a mixture of one of these sorbents with waste ash from earlier tests was injected into a slipstream of flue gas from the Unit 5 boiler to achieve partial removal of SO{sub 2} in the flue gas. Up to 50,000 acfm of flue gas was taken from the inlet to the Unit 5 electrostatic precipitator (ESP) for these tests. Water was injected separately with the dry sorbent or as part of the slurry to cool the flue gas and increase the water vapor content of the flue gas. The addition of water, either as a separate spray or in the slurry makes the reaction between the sorbent and the SO{sub 2} more complete; the presumption is that water is effective in the liquid state when it can physically wet the sorbent particles, and not especially effective in the vapor state. Higher values of calcium utilization were obtained with slurry injection than with dry sorbent injection and humidification. Slurries made from reagent slaked lime, mixtures of reagent slaked lime and recycle ash, and from recycle ash alone were injected through the same nozzles used for humidification. The focus of most of these tests was on the constant addition of recycle ash to reduce the amount of slaked lime required for SO{sub 2} removal (for best economics). Testing was continued until the amount of Ca(OH){sub 2} in the recycle ash equaled that predicted for equilibrium Two test cases were evaluated: a low Ca/S ratio (1.0 reagent, 44{degrees}/F approach) for 50% SO{sub 2} removal and a high Ca/S ratio (1.7 reagent, 24{degrees}F approach) for 88% SO{sub 2} removal.

  2. Scaleup tests and supporting research for the development of duct injection technology: Topical report No. 3, Task 3. 2: Scale-up testing; Topical report No. 4, Task 3. 3: Advanced configurations; Topical report No. 5, Task 3. 4: Process controls; Topical report No. 6, Task 3. 5: Failure modes; Task 3. 6: Waste characterization, Duct Injection Test Facility, Muskingum River Power Plant, Beverly, Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Felix, L.G.; Gooch, J.P.; Merritt, R.L. (Southern Research Inst., Birmingham, AL (United States)); Klett, M.G.; Demian, A.G.; Hunt, J.E. (Gilbert/Commonwealth, Inc., Reading, PA (United States))

    1992-08-01

    This document is the third interim report on tests that were conducted at the Duct Injection Test Facility (DITF) operated for the Department of Energy at Unit 5 of the Ohio Power Company's Muskingum River station in Beverly, Ohio. At the DITF dry calcium hydroxide (Ca(OH)2), an aqueous slurry of Ca(OH)[sub 2] (prepared by slaking quicklime), or a mixture of one of these sorbents with waste ash from earlier tests was injected into a slipstream of flue gas from the Unit 5 boiler to achieve partial removal of SO[sub 2] in the flue gas. Up to 50,000 acfm of flue gas was taken from the inlet to the Unit 5 electrostatic precipitator (ESP) for these tests. Water was injected separately with the dry sorbent or as part of the slurry to cool the flue gas and increase the water vapor content of the flue gas. The addition of water, either as a separate spray or in the slurry makes the reaction between the sorbent and the SO[sub 2] more complete; the presumption is that water is effective in the liquid state when it can physically wet the sorbent particles, and not especially effective in the vapor state. Higher values of calcium utilization were obtained with slurry injection than with dry sorbent injection and humidification. Slurries made from reagent slaked lime, mixtures of reagent slaked lime and recycle ash, and from recycle ash alone were injected through the same nozzles used for humidification. The focus of most of these tests was on the constant addition of recycle ash to reduce the amount of slaked lime required for SO[sub 2] removal (for best economics). Testing was continued until the amount of Ca(OH)[sub 2] in the recycle ash equaled that predicted for equilibrium Two test cases were evaluated: a low Ca/S ratio (1.0 reagent, 44[degrees]/F approach) for 50% SO[sub 2] removal and a high Ca/S ratio (1.7 reagent, 24[degrees]F approach) for 88% SO[sub 2] removal.

  3. Pilot scale-SO{sub 2} control by dry sodium bicarbonate injection and an electrostatic precipitator

    Energy Technology Data Exchange (ETDEWEB)

    Pliat, M.J.; Wilder, J.M. [University of Washington, Seattle, WA (United States). Dept. of Civil & Environmental Engineering

    2007-10-15

    A 500 actual cubic feet gas per minute (acfm) pilot-scale SO{sub 2} control study was undertaken to investigate flue gas desulfurization (FGD) by dry sodium sorbents in 400{sup o}F (204.5{sup o}C) flue gases emitted from a coal fired boiler with flue gas concentrations between 350 and 2500 ppm SO{sub 2}. Powdered sodium alkaline reagents were injected into the hot flue gas downstream of the air preheater and the spent reagents were collected using an electrostatic precipitator. Three different sorbents were used: processed sodium bicarbonate of two particle sizes; solution mined sodium bicarbonate, and processed sodium sesquicarbonate. SO{sub 2} concentrations were measured upstream of the reagent injection, 25-ft (7.62 m) downstream of the injection point, and downstream of the electrostatic precipitator. SO{sub 2} collection efficiencies ranged from 40 to 80% using sodium bicarbonate stoichiometric ratios from 0.5 to 3.0. Much of the in-duct SO{sub 2} removal occurred during the first second of reagent reaction time, indicating that the sulfur dioxide-sodium reaction rates may be faster than have been measured for fixed bed measurements reported in the literature.

  4. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at

  5. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    Science.gov (United States)

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating

  6. The Optimisation of Processing Condition for Injected Mould Polypropylene-Nanoclay-Gigantochloa Scortechinii based on Melt Flow Index

    Science.gov (United States)

    Othman, M. H.; Rosli, M. S.; Hasan, S.; Amin, A. M.; Hashim, M. Y.; Marwah, O. M. F.; Amin, S. Y. M.

    2018-03-01

    The fundamental knowledge of flow behaviour is essential in producing various plastic parts injection moulding process. Moreover, the adaptation of advanced polymer-nanocomposites such as polypropylene-nanoclay with natural fibres, for instance Gigantochloa Scortechinii may boost up the mechanical properties of the parts. Therefore, this project was proposed with the objective to optimise the processing condition of injected mould polypropylene-nanoclay-Gigantochloa Scortechini fibres based on the flow behaviour, which was melt flow index. At first, Gigantochloa Scortechinii fibres have to be preheated at temperature 120°C and then mixed with polypropylene, maleic anhydride modified polypropylene oligomers (PPgMA) and nanoclay by using Brabender Plastograph machine. Next, forms of pellets were produced from the samples by using Granulator machine for use in the injection moulding process. The design of experiments that was used in the injection moulding process was Taguchi Method Orthogonal Array -L934. Melt Flow Index (MF) was selected as the response. Based on the results, the value of MFI increased when the fiber content increase from 0% to 3%, which was 17.78 g/10min to 22.07 g/10min and decreased from 3% to 6%, which was 22.07 g/10min to 20.05 g/10min and 3%, which gives the highest value of MFI. Based on the signal to ratio analysis, the most influential parameter that affects the value of MFI was the melt temperature. The optimum parameter for 3% were 170°C melt temperature, 35% packing pressure, 30% screw speed and 3 second filling time.

  7. Recovery of Lithium from Geothermal Brine with Lithium-Aluminum Layered Double Hydroxide Chloride Sorbents.

    Science.gov (United States)

    Paranthaman, Mariappan Parans; Li, Ling; Luo, Jiaqi; Hoke, Thomas; Ucar, Huseyin; Moyer, Bruce A; Harrison, Stephen

    2017-11-21

    We report a three-stage bench-scale column extraction process to selectively extract lithium chloride from geothermal brine. The goal of this research is to develop materials and processing technologies to improve the economics of lithium extraction and production from naturally occurring geothermal and other brines for energy storage applications. A novel sorbent, lithium aluminum layered double hydroxide chloride (LDH), is synthesized and characterized with X-ray powder diffraction, scanning electron microscopy, inductively coupled plasma optical emission spectrometry (ICP-OES), and thermogravimetric analysis. Each cycle of the column extraction process consists of three steps: (1) loading the sorbent with lithium chloride from brine; (2) intermediate washing to remove unwanted ions; (3) final washing for unloading the lithium chloride ions. Our experimental analysis of eluate vs feed concentrations of Li and competing ions demonstrates that our optimized sorbents can achieve a recovery efficiency of ∼91% and possess excellent Li apparent selectivity of 47.8 compared to Na ions and 212 compared to K ions, respectively in the brine. The present work demonstrates that LDH is an effective sorbent for selective extraction of lithium from brines, thus offering the possibility of effective application of lithium salts in lithium-ion batteries leading to a fundamental shift in the lithium supply chain.

  8. New polymer bounces into sorbent market

    International Nuclear Information System (INIS)

    Roy, K.A.

    1991-01-01

    Spectacular spills like the Exxon Valdez capture headlines and dominate conversation, but most releases involve quantities too small to attract media attention. For these spills, companies often rely on sorbents to collect the oil and dispose it. These devices come in a variety of shapes, sizes and absorbent materials, including a new generation of products that offers solid results-literally. This paper reports on the Solidifier which absorbs oil, as well as chlorinated solvents, hydrocarbons and PCBs, and, as the name implies, solidifies into a rubber-like material. A polymer used extensively in the rubber industry is the key to the sorbent's success. Oil and other contaminants, act like catalysts. They dissolve into the polymer, causing its molecules to bond together and form a rubber-like mass. No. 2 diesel fuel oil can be bounced on the floor after it solidifies

  9. Continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process: An efficient diesel treatment by injection of the aqueous phase.

    Science.gov (United States)

    Rahimi, Masoud; Shahhosseini, Shahrokh; Movahedirad, Salman

    2017-11-01

    A new continuous-flow ultrasound assisted oxidative desulfurization (UAOD) process was developed in order to decrease energy and aqueous phase consumption. In this process the aqueous phase is injected below the horn tip leading to enhanced mixing of the phases. Diesel fuel as the oil phase with sulfur content of 1550ppmw and an appropriate mixture of hydrogen peroxide and formic acid as the aqueous phase were used. At the first step, the optimized condition for the sulfur removal has been obtained in the batch mode operation. Hence, the effect of more important oxidation parameters; oxidant-to-sulfur molar ratio, acid-to-sulfur molar ratio and sonication time were investigated. Then the optimized conditions were obtained using Response Surface Methodology (RSM) technique. Afterwards, some experiments corresponding to the best batch condition and also with objective of minimizing the residence time and aqueous phase to fuel volume ratio have been conducted in a newly designed double-compartment reactor with injection of the aqueous phase to evaluate the process in a continuous flow operation. In addition, the effect of nozzle diameter has been examined. Significant improvement on the sulfur removal was observed specially in lower sonication time in the case of dispersion method in comparison with the conventional contact between two phases. Ultimately, the flow pattern induced by ultrasonic device, and also injection of the aqueous phase were analyzed quantitatively and qualitatively by capturing the sequential images. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  11. Fabrication of AlN-TiC/Al composites by gas injection processing

    Institute of Scientific and Technical Information of China (English)

    YU Huashun; CHEN Hongmei; MA Rendian; MIN Guanghui

    2006-01-01

    The fabrication of AlN-TiC/Al composites by carbon-and nitrogen-containing gas injection into Al-Mg-Ti melts was studied. It was shown that AlN and TiC particles could be formed by the in situ reaction of mixture gas (N2+C2H2+NH3) with Al-Mg-Ti melts. The condition for the formation of AlN was that the treatment temperature must be higher than 1373 K, and the amounts of AlN and TiC increased with the increase of the treatment temperature and the gas injection time.It was considered that AlN was formed by the direct reaction of Al with nitrogen-containing gas at the interface of the gas bubble and the melt. However, the mechanism of TiC formation is a combination mechanism of solution-precipitation and solid-liquid reaction.

  12. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  13. Numerical Modeling of Geomechanical Processes Related to CO{sub 2} Injection within Generic Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, Andreas

    2013-05-31

    In this project generic anticline structures have been used for numerical modeling analyses to study the influence of geometrical parameters, fluid flow boundary conditions, in situ stress regime and inter-bedding friction coefficient on geomechanical risks such as fracture reactivation and fracture generation. The resulting stress states for these structures are also used to determine safe drilling directions and a methodology for wellbore trajection optimization is developed that is applicable for non-Andersonian stress states. The results of the fluid flow simulation show that the type of fluid flow boundary condition is of utmost importance and has significant impact on all injection related parameters. It is recommended that further research is conducted to establish a method to quantify the fluid flow boundary conditions for injection applications. The results of the geomechanical simulation show that in situ stress regime is a crucial, if not the most important, factor determining geomechanical risks. For extension and strike slip stress regimes anticline structures should be favored over horizontally layered basin as they feature higher ΔP{sub c} magnitudes. If sedimentary basins are tectonically relaxed and their state of stress is characterized by the uni-axial strain model the basin is in exact frictional equilibrium and fluids should not be injected. The results also show that low inter bedding friction coefficients effectively decouple layers resulting in lower ΔP{sub c} magnitudes, especially for the compressional stress regime.

  14. Rheological behavior of pork Biceps femoris muscle influenced by injection-tumbling process and brine type

    Directory of Open Access Journals (Sweden)

    Livia PĂTRAŞCU

    2014-12-01

    Full Text Available The effect of tumbling time (1-9 h, injection rate (20, 30, 40, and 50 % and k-carrageenan addition (0, 0.25, and 0.5 % on the rheological characteristics of pork Biceps femoris muscle were assessed. The results of the creep-recovery tests were analyzed using Burger’s equation. Increasing tumbling time up to 9 h along with injection rate also increased compliance values and decreased viscosity. K-carrageenan addition showed the occurrence of a more gel-like structure of the brine-meat system, causing further increase of the compliance and strain values. Samples injected with brine were more elastic compared to those containing k-carrageenan. A longer mechanical treatment provided a softer like matrix. Mathematical modeling of creep-compliance data showed a decreasing tendency for viscosity values with k-carrageenan addition. Discrete retarded elastic compliance values increased when adding k-carrageenan to meat-brine system. Addition of k-carrageenan did not affect the equilibrium compliance values.

  15. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  16. Adsorption of Ammonia on Regenerable Carbon Sorbents

    Science.gov (United States)

    Wójtowicz, Marek A.; Cosgrove, Jesph E.; Serio, Michael A..; Wilburn, Monique

    2015-01-01

    Results are presented on the development of reversible sorbents for the combined carbon dioxide, moisture, and trace-contaminant (TC) removal for use in Extravehicular Activities (EVAs), and more specifically in the Primary Life Support System (PLSS). The currently available life support systems use separate units for carbon dioxide, trace contaminants, and moisture control, and the long-term objective is to replace the above three modules with a single one. Data on sorption and desorption of ammonia, which is a major TC of concern, are presented in this paper. The current TC-control technology involves the use of a packed bed of acid-impregnated granular charcoal, which is non-regenerable, and the carbon-based sorbent under development in this project can be regenerated by exposure to vacuum at room temperature. In this study, several carbon sorbents were fabricated and tested for ammonia sorption. Ammonia-sorption capacity was related to carbon pore structure characteristics, and the temperature of oxidative carbon-surface treatment was optimized for enhanced ammonia-sorption performance.

  17. Sol-gel niobia sorbent with a positively charged octadecyl ligand providing enhanced enrichment of nucleotides and organophosphorus pesticides in capillary microextraction for online HPLC analysis.

    Science.gov (United States)

    Kesani, Sheshanka; Malik, Abdul

    2018-04-01

    A niobia-based sol-gel organic-inorganic hybrid sorbent carrying a positively charged C 18 ligand (Nb 2 O 5 -C 18 (+ve)) was synthesized to achieve enhanced enrichment capability in capillary microextraction of organophosphorus compounds (which include organophosphorus pesticides and nucleotides) before their online analysis by high-performance liquid chromatography. The sorbent was designed to simultaneously provide three different types of molecular level interactions: electrostatic, Lewis acid-base, and van der Waals interactions. To understand relative contributions of various molecular level analyte-sorbent interactions in the extraction process, two other sol-gel niobia sorbents were also created: (a) a purely inorganic sol-gel niobia sorbent (Nb 2 O 5 ) and (b) an organic-inorganic hybrid sol-gel niobia sorbent carrying an electrically neutral-bonded octadecyl ligand (Nb 2 O 5 -C 18 ). The extraction efficiency of the created sol-gel niobia sorbent (Nb 2 O 5 -C 18 (+ve)) was compared with that of analogously designed and synthesized titania-based sol-gel sorbent (TiO 2 -C 18 (+ve)), taking into consideration that titania-based sorbents present state-of-the-art extraction media for organophosphorus compounds. In capillary microextraction with high-performance liquid chromatography analysis, Nb 2 O 5 -C 18 (+ve) had shown 40-50% higher specific extraction values (a measure of extraction efficiency) over that of TiO 2 -C 18 (+ve). Compared to TiO 2 -C 18 (+ve), Nb 2 O 5 -C 18 (+ve) also provided superior analyte desorption efficiency (96 vs. 90%) during the online release of the extracted organophosphorus pesticides from the sorbent coating in the capillary microextraction capillary to the chromatographic column using reversed-phase high-performance liquid chromatography mobile phase. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CO2 Capacity Sorbent Analysis Using Volumetric Measurement Approach

    Science.gov (United States)

    Huang, Roger; Richardson, Tra-My Justine; Belancik, Grace; Jan, Darrell; Knox, Jim

    2017-01-01

    In support of air revitalization system sorbent selection for future space missions, Ames Research Center (ARC) has performed CO2 capacity tests on various solid sorbents to complement structural strength tests conducted at Marshall Space Flight Center (MSFC). The materials of interest are: Grace Davison Grade 544 13X, Honeywell UOP APG III, LiLSX VSA-10, BASF 13X, and Grace Davison Grade 522 5A. CO2 capacity was for all sorbent materials using a Micromeritics ASAP 2020 Physisorption Volumetric Analysis machine to produce 0C, 10C, 25C, 50C, and 75C isotherms. These data are to be used for modeling data and to provide a basis for continued sorbent research. The volumetric analysis method proved to be effective in generating consistent and repeatable data for the 13X sorbents, but the method needs to be refined to tailor to different sorbents.

  19. Fundamental mechanisms in flue-gas conditioning. Topical report No. 1, Literature review and assembly of theories on the interactions of ash and FGD sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  20. High temperature capture of CO2 on lithium-based sorbents from rice husk ash.

    Science.gov (United States)

    Wang, Ke; Guo, Xin; Zhao, Pengfei; Wang, Fanzi; Zheng, Chuguang

    2011-05-15

    Highly efficient Li(4)SiO(4) (lithium orthosilicate)-based sorbents for CO(2) capture at high temperature, was developed using waste materials (rice husk ash). Two treated rice husk ash (RHA) samples (RHA1 and RHA2) were prepared and calcined at 800°C in the presence of Li(2)CO(3). Pure Li(4)SiO(4) and RHA-based sorbents were characterized by X-ray fluorescence, X-ray diffraction, scanning electron microscopy, nitrogen adsorption, and thermogravimetry. CO(2) sorption was tested through 15 carbonation/calcination cycles in a fixed bed reactor. The metals of RHA were doped with Li(4)SiO(4) resulting to inhibited growth of the particles and increased pore volume and surface area. Thermal analyses indicated a much better CO(2) absorption in Li(4)SiO(4)-based sorbent prepared from RHA1 (higher metal content sample) because the activation energies for the chemisorption process and diffusion process were smaller than that of pure Li(4)SiO(4). RHA1-based sorbent also maintained higher capacities during the multiple cycles. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. CO_2 capture with solid sorbent: CFD model of an innovative reactor concept

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.

    2016-01-01

    Highlights: • A new reactor solution based on rotating fixed beds was presented. • The preliminary design of the reactor was approached. • A CFD model of the reactor, including CO_2 capture kinetic, was developed. • The CFD model is validated with experimental results. • Sorbent exploitation increasing is possible thanks to the new reactor. - Abstract: In future decarbonization scenarios, CCS with particular reference to post-combustion technologies will be an important option also for energy intensive industries. Nevertheless, today CCS systems are rarely installed due to high energy and cost penalties of current technology based on chemical scrubbing with amine solvent. Therefore, innovative solutions based on new/optimized solvents, sorbents, membranes and new process designs, are R&D priorities. Regarding the CO_2 capture through solid sorbents, a new reactor solution based on rotating fixed beds is presented in this paper. In order to design the innovative system, a suitable CFD model was developed considering also the kinetic capture process. The model was validated with experimental results obtained by the authors in previous research activities, showing a potential reduction of energy penalties respect to current technologies. In the future, the model will be used to identify the control logic of the innovative reactor in order to verify improvements in terms of sorbent exploitation and reduction of system energy consumption.

  2. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Berggren, M.H.

    1989-05-02

    AMAX Research Development Center (AMAX R D) has been investigating methods for enhancing the reactivity and durability of the zinc ferrite desulfurization sorbent. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For the present program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such As size, strength, and specific surface area during 10 cycles of sulfidation and oxidation.

  3. Simple test guidelines for screening oilspill sorbents for toxicity

    International Nuclear Information System (INIS)

    Blenkinsopp, S.A.; Sergy, G.; Doe, K.; Jackman, P.; Huybers, A.

    1998-01-01

    Environment Canada's Emergencies Science Division has established a program to develop a standard test method suitable for evaluating the toxicity of common sorbent materials. Sorbents are used to absorb or adsorb spilled oil and other hazardous materials. They vary widely in composition and packaging. They are often treated with oleophilic and hydrophobic compounds to improve performance and have been used in large quantities during oil spills. Until now, their potential toxicity has never been considered. Three tests have been evaluated to determine how appropriate they are in screening the toxicity of sorbents. Seven toxicity test recommendations for sorbents were presented. 7 refs., 3 tabs., 2 figs

  4. Sorbent selection and design considerations for uranium trapping

    International Nuclear Information System (INIS)

    Schultz, R.M.; Hobbs, W.E.; Norton, J.L.; Stephenson, M.J.

    1981-07-01

    The efficient removal of UF 6 from effluent streams can be accomplished through the selection of the best solid sorbent and the implementation of good design principles. Pressure losses, sorbent capacity, reaction kinetics, sorbent regeneration/uranium recovery requirements and the effects of other system components are the performance factors which are summarized. The commonly used uranium trapping materials highlighted are sodium fluoride, H-151 alumina, XF-100 alumina, and F-1 alumina. Sorbent selection and trap design have to be made on a case-by-case basis but the theoretical modeling studies and the evaluation of the performance factors presented can be used as a guide for other chemical trap applications

  5. Sulphation of calcium-based sorbents in circulating fluidised beds under oxy-fuel combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Garcia-Labiano; Luis F. de Diego; Alberto Abad; Pilar Gayan; Margarita de las Obras-Loscertales; Aranzazu Rufas; Juan Adanez [Instituto de Carboquimica (CSIC), Zaragoza (Spain). Dept. Energy and Environment

    2009-07-01

    Sulphur Retention (SR) by calcium-based sorbents is a process highly dependent on the temperature and CO{sub 2} concentration. In circulating fluidised beds combustors (CFBC's) operating under oxy-fuel conditions, the sulphation process takes place in atmospheres enriched in CO{sub 2} with bed concentrations that can vary from 40 to 95%. Under so high CO{sub 2} concentrations, very different from that in conventional coal combustion atmosphere with air, the calcination and sulphation behaviour of the sorbent must be defined to optimise the SR process in the combustor. The objective of this work was to determine the SO{sub 2} retention capacity of a Spanish limestone at typical oxy-fuel conditions in CFBC's. Long term duration tests of sulphation (up to 24 h), to simulate the residence time of sorbents in CFBC's, were carried out by thermogravimetric analysis (TGA). Clear behaviour differences were found under calcining and non-calcining conditions. Especially relevant was the result obtained at calcining conditions but close to the thermodynamic temperature given for sorbent calcination. This situation must be avoided in CFBC's because the CO{sub 2} produced inside the particle during calcination can destroy the particles if a non-porous sulphate product layer has been formed around the particle. The effect of the main variables on the sorbent sulphation such as SO{sub 2} concentration, temperature, and particle size were analysed in the long term TGA tests. These data were also used to determine the kinetic parameters for the sulphation under oxy-fuel combustion conditions, which were able to adequately predict the sulphation conversion values in a wide range of operating conditions. 20 refs., 5 figs., 2 tabs.

  6. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    Science.gov (United States)

    De Jesus Vega, Marisely

    Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be

  7. Regeneration dynamics of potassium-based sediment sorbents for CO{sub 2} capture

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li-wei; Diao, Yong-fa; Wang, Lin-lin; Shi, Xiao-fang; Tai, Xiao-yan [Donghua University, Shanghai (China)

    2013-08-15

    Simulating regeneration tests of Potassium-Based sorbents that supported by Suzhou River Channel Sediment were carried out in order to obtain parameters of regeneration reaction. Potassium-based sediment sorbents have a better morphology with the surface area of 156.73 m{sup 2}·g{sup −1}, the pore volume of 357.5x10{sup −3} cm{sup 3}·g{sup −1} and the distribution of pore diameters about 2-20 nm. As a comparison, those of hexagonal potassium-based sorbents are only 2.83 m{sup 2}g{sup −1}, 7.45x10{sup −3} cm{sup 3}g{sup −1} and 1.72-5.4 nm, respectively. TGA analysis shows that the optimum final temperature of regeneration is 200 and the optimum loading is about 40%, with the best heating rate of 10 .deg. C·min{sup −1}. By the modified Coats-Redfern integral method, the activation energy of 40% KHCO{sub 3} sorbents is 102.43 kJ·mol{sup −1}. The results obtained can be used as basic data for designing and operating CO{sub 2} capture process.

  8. Losses of neutral injected fast ions due to adiabaticity breaking processes in a field-reversed configuration

    International Nuclear Information System (INIS)

    Takahashi, Toshiki; Inoue, Koji; Ishizuka, Takashi; Kondoh, Yoshiomi; Iwasawa, Naotaka

    2004-02-01

    Losses of neutral beam (NB) injected fast ions from the confinement region of a Field-Reversed Configuration (FRC) with a strong magnetic mirror are numerically analyzed for parameters relevant to NB injection experiments on the FIX (FRC injection experiment) device [T. Asai et al., Phys. Plasmas 7, 2294 (2000)]. Ionization processes of beam particles are calculated by the Monte Carlo method. The confinement of beam ions is discussed with the concept of accessible regions that restrict the ion excursion and are determined from two constants of motion, the kinetic energy and canonical angular momentum, in the case of an axisymmetric and a steady state FRC without an electrostatic field. From the calculation of the accessible regions, it is found that all the fast ions suffer from the orbit loss on the wall surface and/or the end loss. Single particle orbits are also calculated to find a difference of confinement properties from the results by employing the accessible regions. The magnetic moment is observed to show non-adiabatic motions of the beam ions, which cause a gradual orbit loss on the wall even in a case that a strong magnetic mirror is applied. The results show that the correlation of the magnetic moment disappears as the fast ions experience the density gradient around the separatrix surface and the field-null points. (author)

  9. Lead, Chromium and Cadmium Removal from Contaminated Water Using Phosphate Sorbents

    Directory of Open Access Journals (Sweden)

    Fariborz Riahi

    2010-06-01

    Full Text Available Sorption of 3 poisonous metal ions (Pb2+, Cd2+, Cr3+ in aqueous solutions by two phosphate sorbents under dynamic and static conditions was studied. Phosphate sorbents (MgNH4PO4. H2O, Mg3(PO42. 6H2O were synthesized by known procedures. The resulting crystalline samples were analyzed for the contents of Mg2+, Pb2+, P, N using spectrophotometric and elemental analysis methods. Likewise, the amounts of Pb2+, Cd2+, Cr3+ in solutions were determined before and after the sorption process using the atomic absorption method. The relative standard deviations for Pb2+, Cd2+, Cr3+ were 4.7%, 2.17%, and 1.61% and the detection limits were 5 g/L, 0.05 mg/L, and 0.1 mg/L, respectively. The sorbents showed a high performance in the purification of contaminated solutions under static conditions. The sorption capacity levels of Mg3 (PO42. 6H2O and MgNH4 PO4. H2O were 9.8m.mol/gr and 8.9m.mol/gr for Pb2+; 10.5m.mol/gr and 9m.mol/gr for Cd2+; and 6.6m.mol/gr and 5.3m.mol/gr for Cr3+, respectively. Pb2+ , Cd2+, Cr3+. sorption by inorganic phosphate sorbents from solutions is associated with complicated chemical transformations of the sorbents. A proper account of these transformations allows for the sorption process to be optimized. The data on Pb2+, Cd2+, Cr3+ sorption under static conditions (24-h contact of Mg3 (PO42. 6H2O, MgNH4PO4. H2O, with solutions at 20oC and under dynamic conditions were obtained and the sorption behaviors of the metal ions were investigated in response to the sorbents used. It was found that Mg3 (PO42. 6H2O was the best sorbent for Pb2+, Cd2+, Cr3+ under dynamic conditions.

  10. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.; Bessho, Naoki; Bhandari, Dhaval A.; Kawajiri, Yoshiaki; Koros, William J.

    2012-01-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  11. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  12. Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents

    International Nuclear Information System (INIS)

    Boujelben, N.; Bouzid, J.; Elouear, Z.; Feki, M.; Jamoussi, F.; Montiel, A.

    2008-01-01

    New filtration materials covered with metallic oxides are good adsorbents for both cation and anion forms of pollutants. Sfax is one of the most important industrial towns in Tunisia. Its phosphate manufacture in particular is causing considerable amounts of water pollution. Therefore, there is a need to find out a new way of getting rid of this excessive phosphate from water. This work is aimed to examining the potential of three sorbent materials (synthetic iron oxide coated sand (SCS), naturally iron oxide coated sand (NCS) and iron oxide coated crushed brick (CB)) for removing phosphate ions from aqueous solutions. According to our literature survey CB was not used as adsorbent previously. Phosphate ions are used here as species model for the elimination of other similar pollutants (arsenates, antimonates). Optical microscope and scanning electron microscope (SEM) analyses were used to investigate the surface properties and morphology of the coated sorbents. Infra-red spectroscopy and X-ray diffraction techniques were also used to characterize the sorbent structures. Results showed that iron coated crushed brick possess more micro pores and a higher surface area owing to its clay nature. The comparative sorption of PO 4 3- from aqueous solutions by SCS, CB and NCS was investigated by batch experiments. The estimated optimum pH of phosphate ion retention for the considered sorbents was 5. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The sorption capacities of PO 4 3- at pH 5 were 1.5 mg/g for SCS, 1.8 mg/g for CB and 0.88 mg/g for NCS. The effect of temperature on sorption phenomenon was also investigated. The results indicated that adsorption is an endothermic process for phosphate ions removal. This study demonstrates that all the considered sorbents can be used as an alternative emerging technology for water treatment without any side effect or treatment process alteration

  13. Quality control and process capability assessment for injection-moulded micro mechanical parts

    DEFF Research Database (Denmark)

    Gasparin, Stefania; Tosello, Guido; Hansen, Hans Nørgaard

    2013-01-01

    Quality control of micro components is an increasing challenge. Smaller mechanical parts are characterized by smaller tolerance to be verified. This paper focuses on the dimensional verification of micro injection-moulded components selected from an industrial application. These parts are measured...... using an optical coordinate measuring machine, which guarantees fast surface scans suitable for inline quality control. The uncertainty assessment of the measurements is calculated and three analyses are carried out and discussed in order to investigate the influence parameters in optical coordinate...... metrology. The estimation of the total variability of the optical measurements and the instrument repeatability are reported; moreover, the measurement system capability is evaluated according to the measurement system capability indices Cg and Cgk....

  14. Optimization of the injection molding process for development of high performance calcium oxide -based ceramic cores

    Science.gov (United States)

    Zhou, P. P.; Wu, G. Q.; Tao, Y.; Cheng, X.; Zhao, J. Q.; Nan, H.

    2018-02-01

    The binder composition used for ceramic injection molding plays a crucial role on the final properties of sintered ceramic and to avoid defects on green parts. In this study, the effects of binder compositions on the rheological, microstructures and the mechanical properties of CaO based ceramic cores were investigated. It was found that the optimized formulation for dispersant, solid loading was 1.5 wt% and 84 wt%, respectively. The microstructures, such as porosity, pore size distribution and grain boundary density were closely related to the plasticizer contents. The decrease of plasticizer contents can enhance the strength of the ceramic cores but with decreased shrinkage. Meanwhile, the creep resistance of ceramic cores was enhanced by decreasing of plasticizer contents. The flexural strength of the core was found to decrease with the increase of the porosity, the improvement of creep resistance is closely related to the decrease of porosity and grain boundary density.

  15. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    International Nuclear Information System (INIS)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-01-01

    The objective of this project is to develop a simple, inexpensive process to separate CO(sub 2) as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO(sub 2) stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO(sub 2) capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO(sub 2) and H(sub 2)O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport

  17. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  18. 2D Numerical Modelling of the Resin Injection Pultrusion Process Including Experimental Resin Kinetics and Temperature Validation

    DEFF Research Database (Denmark)

    Rasmussen, Filip Salling; Sonne, Mads Rostgaard; Larsen, Martin

    In the present study, a two-dimensional (2D) transient Eulerian thermo-chemical analysis of a carbon fibre epoxy thermosetting Resin Injection Pultrusion (RIP) process is carried out. The numerical model is implemented using the well known unconditionally stable Alternating Direction Implicit (ADI......) scheme. The total heat of reaction and the cure kinetics of the epoxy thermosetting are determined using Differential Scanning Calorimetry (DSC). A very good agreement is observed between the fitted cure kinetic model and the experimental measurements. The numerical steady state temperature predictions...

  19. Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive Organic Carbon into a Bengal Delta Aquifer.

    Science.gov (United States)

    Rawson, Joey; Siade, Adam; Sun, Jing; Neidhardt, Harald; Berg, Michael; Prommer, Henning

    2017-08-01

    Over the last few decades, significant progress has been made to characterize the extent, severity, and underlying geochemical processes of groundwater arsenic (As) pollution in S/SE Asia. However, comparably little effort has been made to merge the findings into frameworks that allow for a process-based quantitative analysis of observed As behavior and for predictions of its long-term fate. This study developed field-scale numerical modeling approaches to represent the hydrochemical processes associated with an in situ field injection of reactive organic carbon, including the reductive dissolution and transformation of ferric iron (Fe) oxides and the concomitant release of sorbed As. We employed data from a sucrose injection experiment in the Bengal Delta Plain to guide our model development and to constrain the model parametrization. Our modeling results illustrate that the temporary pH decrease associated with the sucrose transformation and mineralization caused pronounced, temporary shifts in the As partitioning between aqueous and sorbed phases. The results also suggest that while the reductive dissolution of Fe(III) oxides reduced the number of sorption sites, a significant fraction of the released As was rapidly scavenged through coprecipitation with neo-formed magnetite. These secondary reactions can explain the disparity between the observed Fe and As behavior.

  20. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions

    International Nuclear Information System (INIS)

    Angheloiu, George O.; Hänscheid, Heribert; Reiners, Christoph; Anderson, William D.; Kellum, John A.

    2013-01-01

    Background: Contrast-induced acute kidney injury is a severe condition resulting from the use of radiology contrast in patients with predisposing factors. Hypothesis: We hypothesized that a novel system including a device containing polymer resin sorbent beads and a custom-made suctioning catheter could efficiently remove contrast from an in vitro novel model of circulatory system (MOCS) mimicking the cerebral circulation. Methods: A custom-made catheter was built and optimized for cerebral venous approach. The efficiency of a system made of a polymer resin sorbent beads column (CST 401, Cytosorbents) and this particular catheter was tested in the MOCS running a solution composed of 0.9% saline and radio-contrast. During two series of 18 cycles of first-pass experiments we assessed the catheter's suctioning efficiency and the system's ability to clear radio-contrast injected into the MOCS's cerebral arterial segment. We also assessed the functioning and reliability of the MOCS. Results: Mean suctioning efficiency of the catheter was 84% ± 24%. The polymer sorbent column contrast removal rate was initially 96% and gradually decreased with subsequent cycles in a linear fashion during an experiment lasting approximately 90 minutes. The MOCS had a reliability of 0.9946×min −1 where 1 × min −1 was the optimum value. Conclusion: A system including a polymer resin sorbent beads column and a custom-made suctioning catheter had an excellent initial efficiency in quickly removing contrast from an artificial MOCS mimicking the cerebral circulation. MOCS is an inexpensive and relatively reliable custom-made system that can be used for training or testing purposes

  1. In vitro catheter and sorbent-based method for clearance of radiocontrast material during cerebral interventions

    Energy Technology Data Exchange (ETDEWEB)

    Angheloiu, George O., E-mail: goangheloiu@drmc.org [Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA (United States); Department of Cardiology, Dubois Regional Medical Center, Dubois, PA (United States); Hänscheid, Heribert; Reiners, Christoph [Department of Nuclear Medicine, University of Würzburg, Würzburg (Germany); Anderson, William D. [Cardiology Department, Exempla Healthcare, Denver, CO (United States); Kellum, John A. [CRISMA Center, Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (United States)

    2013-07-15

    Background: Contrast-induced acute kidney injury is a severe condition resulting from the use of radiology contrast in patients with predisposing factors. Hypothesis: We hypothesized that a novel system including a device containing polymer resin sorbent beads and a custom-made suctioning catheter could efficiently remove contrast from an in vitro novel model of circulatory system (MOCS) mimicking the cerebral circulation. Methods: A custom-made catheter was built and optimized for cerebral venous approach. The efficiency of a system made of a polymer resin sorbent beads column (CST 401, Cytosorbents) and this particular catheter was tested in the MOCS running a solution composed of 0.9% saline and radio-contrast. During two series of 18 cycles of first-pass experiments we assessed the catheter's suctioning efficiency and the system's ability to clear radio-contrast injected into the MOCS's cerebral arterial segment. We also assessed the functioning and reliability of the MOCS. Results: Mean suctioning efficiency of the catheter was 84% ± 24%. The polymer sorbent column contrast removal rate was initially 96% and gradually decreased with subsequent cycles in a linear fashion during an experiment lasting approximately 90 minutes. The MOCS had a reliability of 0.9946×min{sup −1} where 1 × min{sup −1} was the optimum value. Conclusion: A system including a polymer resin sorbent beads column and a custom-made suctioning catheter had an excellent initial efficiency in quickly removing contrast from an artificial MOCS mimicking the cerebral circulation. MOCS is an inexpensive and relatively reliable custom-made system that can be used for training or testing purposes.

  2. Assessment of spent mushroom substrate as sorbent of fungicides: influence of sorbent and sorbate properties.

    Science.gov (United States)

    Marín-Benito, Jesús M; Rodríguez-Cruz, M Sonia; Andrades, M Soledad; Sánchez-Martín, María J

    2012-01-01

    The capacity of spent mushroom substrate (SMS) as a sorbent of fungicides was evaluated for its possible use in regulating pesticide mobility in the environment. The sorption studies involved four different SMS types in terms of nature and treatment and eight fungicides selected as representative compounds from different chemical groups. Nonlinear sorption isotherms were observed for all SMS-fungicide combinations. The highest sorption was obtained by composted SMS from Agaricus bisporus cultivation. A significant negative and positive correlation was obtained between the K(OC) sorption constants and the polarity index values of sorbents and the K(OW) of fungicides, respectively. The statistic revealed that more than 77% of the variability in the K(OW) could be explained considering these properties jointly. The other properties of both the sorbent (total carbon, dissolved organic carbon, or pH) and the sorbate (water solubility) were nonsignificant. The hysteresis values for cyprodinil (log K(OW)= 4) were for all the sorbents much higher (>3) than for other fungicides. This was consistent with the remaining sorption after desorption considered as an indicator of the sorption efficiency of SMS for fungicides. Changes in the absorption bands of fungicides sorbed by SMS observed by FTIR permitted establishing the interaction mechanism of fungicides with SMS. The findings of this work provide evidence for the potential capacity of SMS as a sorbent of fungicides and the low desorption observed especially for some fungicides, although they suggest that more stabilized or humified organic substrates should be produced to enhance their efficiency in environmental applications. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  3. Study of the reactive processes during CO2 injection into sedimentary reservoirs: Experimental quantification of the processes at meso-scale

    International Nuclear Information System (INIS)

    Luquot, L.

    2008-11-01

    In order to minimize CO 2 atmospheric concentration, a solution consists in sequestrating CO 2 in geological reservoirs. To estimate long term risks, it is necessary to quantify the couplings between reaction processes as well as structural and hydrodynamical modifications. We realised two experimental benches enabling injecting CO 2 -enriched-brine in conditions corresponding to in situ storage (T ≤ 200 C and P ≤ 200 bar) and developed an experimental protocol using X-Ray microtomography and fluid and rock analyses in order to measure the variations of physical and chemical parameters. The study of carbonated reservoirs near the injection well, allows quantifying different k-phi relationships depending on the dissolution processes and triggered by the local fluid chemical composition and initials conditions. Away from the injection well, we observe carbonate precipitation decreasing the permeability. The study of fractured cap-rock samples shows that alternative percolation of CO 2 -enriched-brine and CO 2 gas increases the fracture permeability. The study of silicated rocks indicates carbonate precipitation in zeolite sandstone and sintered dunite grains. Nevertheless, in zeolite sandstone we also observe the precipitation of clay particles located in the fluid pathways which decrease strongly the permeability. (author)

  4. Phosphorus organic extragents and sorbents of radioactive a heavy metals

    International Nuclear Information System (INIS)

    Trofimov, B.A.; Gusarova, N.K.; Malysheva, S.F.; Sukhov, B.G.

    2002-01-01

    A fundamentally new method for activation of phosphorus in heterogenous super-base media including the conditions of mechanical, ultrasonic and X-ray activation, opening up a new way to C-P bond formation is developed. The method is opens principally new possibilities for direct atom-economic synthesis of previously unknown or difficult to obtain organophosphorus compounds (primary, secondary, tertiary phosphines and phosphine oxides) from elemental phosphorus and orga-nyl halides, electrophilic alkenes, acetylenes and oxiranes. Thus, the phosphothion and phosphorylation of organic compounds with elemental phosphorus, phosphines and phosphine oxides opens the principal new approach to the synthesis of specific and selective extra-gents, sorbents and complex-forming agents which can be used in the processes of purification and disinfecting of soil and water from radioactive and heavy metals

  5. Rubber Fruit Shell (Hevea brasiliensis) as bio sorbent to remove FFA (Free Fatty Acid) content in CPO (Crude Palm Oil)

    Science.gov (United States)

    Pandia, S.; Sinaga, M. S.; Masyithah, Z.; Husin, A.; Nurfadilla, S.; Fitriani; Sipahutar, B. K. S.

    2018-02-01

    This study aimed to discover the effectiveness of the shell of rubber fruit as bio sorbent for removing FFA (Free Fatty Acid) content in CPO (Crude Palm Oil). Methods used in this study were pretreatment, activation (carbonating and chemically) and adsorption process at room temperature. In the beginning, the shell of rubber fruit was cleaned and dried under the sun. Then the shell was cut for about 0.5 cm of length and carbonated in a furnace for 1h at 600°C. After that, they were crushed to pass through 140 meshes and activated using three variations of chemical such as 6 of HNO3, 6N of KOH and 6N of H3PO4 at certain ratio as 1:3, 1:4, and 1:5 (b/v). The adsorption process was carried out using bio sorbent with the highest iodine number in varying bio sorbent dosage and contact time. The highest iodine number was 913.680 mg/g and obtained at the ratio of bio sorbent to 6N of KOH as 1:5. The best removal of FFA content was 91.94% and at 1% bio sorbent dose and 30 min of contact time.

  6. Post-combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M.

    2009-01-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. 340 refs., 21 figs., 8 tabs.

  7. Detoxication and recycling of radioactive waters using selective mineral sorbents

    International Nuclear Information System (INIS)

    Berak, L.

    1980-01-01

    Activated BaSO 4 (designated AB 70) was proposed for use in decontaminating concentrated calcium salt solutions containing a small amount of 226 Ra. The AB 70 concentration factor amounts to 2x1a 3 . A sorption contactor for applying the powder sorbent was proposed and will be tested. The AB 70 sorbent liberates small amounts of sulphates into the decontaminated solution, and thus another suitable mineral sorbent was sought. A new sorbent could be synthetized and tested, called RAS-1 whose Ra/Ca selectivity is comparable to that of AB 70 while its Ra/Ba selectivity is considerably higher. The RAS-1 sorbent is also suitable for radiochemical separation in the analysis and concentration of Ra. (Ha)

  8. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie

    2014-03-01

    Organic-inorganic hybrid materials functionalized with amine-containing reagents are emerging as an important class of materials for capturing carbon dioxide from flue gas. Polymeric silica hollow fiber sorbents are fabricated through the proven dry-jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly(ethyleneimine) to the polymeric silica hybrid material support to improve the CO2 sorption capacity due to the added amine groups. The poly(ethyleneimine) infused and functionalized hollow fiber sorbents are also characterized by a thermal gravimetric analyzer (TGA) to assess their CO2 sorption capacities. © 2014 Elsevier Ltd. All rights reserved.

  9. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  10. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    International Nuclear Information System (INIS)

    Hayashi, Hidetomo; Mori, Tomoki; Okamoto, Masami; Yamasaki, Satoshi; Hayami, Hiroshi

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  11. Poly(ethyleneimine) infused and functionalized Torlon®-silica hollow fiber sorbents for post-combustion CO2 capture

    KAUST Repository

    Li, Fuyue Stephanie; Labreche, Ying; Lively, Ryan P.; Lee, Jong Suk; Jones, Christopher W.; Koros, William J.

    2014-01-01

    -jet/wet-quench spinning process. In our study, a new technique for functionalizing polymeric silica hollow fiber sorbents with poly(ethyleneimine), followed by a post-spinning infusion step was studied. This two step process introduces a sufficient amount of poly

  12. Yttria coating on quartz mould inner surface for fabrication of metal fuel slug using injection casting process

    International Nuclear Information System (INIS)

    Vinod, A.V.; Hemanth Kumar, S.; Manivannan, A.; Muralidaran, P.; Anthonysamy, S.; Sudha, R.

    2016-01-01

    Quartz moulds are used for casting metal alloy of U-Zr slugs by injection casting process. Ceramic (Y_2O_3) coating on inner surface of the quartz mould is provided to avoid silica contamination in the fuel slugs during casting. Experiments were carried out to standardise the coating process and optimising various parameters such as particle size of Y_2O_3, choice of suitable binder, method for application of coating, drying and sintering at high temperature to ensure uniformity and strength of coating. Required Coating thickness of ∼40 μm was achieved on a quartz mould of inner diameter of 4.98±0.01mm. Experimental procedure for coating on inner surface of the quartz tubes using yttrium oxide is described in this work. (author)

  13. Development of a Microwave Regenerative Sorbent-Based Hydrogen Purifier

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Dewberry, Ross H.; McCurry, Bryan D.; Abney, Morgan B.; Greenwood, Zachary W.

    2016-01-01

    This paper describes the design and fabrication of a Microwave Regenerative Sorbent-based Hydrogen Purifier (MRSHP). This unique microwave powered technology was developed for the purification of a hydrogen stream produced by the Plasma Pyrolysis Assembly (PPA). The PPA is a hydrogen recovery (from methane) post processor for NASA's Sabatier-based carbon dioxide reduction process. Embodied in the Carbon dioxide Reduction Assembly (CRA), currently aboard the International Space Station (ISS), the Sabatier reaction employs hydrogen to catalytically recover oxygen, in the form of water, from respiratory carbon dioxide produced by the crew. This same approach is base-lined for future service in the Air Revitalization system on extended missions into deep space where resupply is not practical. Accordingly, manned exploration to Mars may only become feasible with further closure of the air loop as afforded by the greater hydrogen recovery permitted by the PPA with subsequent hydrogen purification. By utilizing the well-known high sorbate loading capacity of molecular sieve 13x, coupled with microwave dielectric heating phenomenon, MRSHP technology is employed as a regenerative filter for a contaminated hydrogen gas stream. By design, freshly regenerated molecular sieve 13x contained in the MRSHP will remove contaminants from the effluent of a 1-CM scale PPA for several hours prior to breakthrough. By reversing flow and pulling a relative vacuum the MRSHP prototype then uses 2.45 GHz microwave power, applied through a novel coaxial antenna array, to rapidly heat the sorbent bed and drive off the contaminants in a short duration vacuum/thermal contaminant desorption step. Finally, following rapid cooling via room temperature cold plates, the MRSHP is again ready to serve as a hydrogen filter.

  14. Preliminary carbon dioxide capture technical and economic feasibility study evaluation of carbon dioxide capture from existing fired plants by hybrid sorption using solid sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Envergex, Srivats; Browers, Bruce; Thumbi, Charles

    2013-01-01

    Barr Engineering Co. was retained by the Institute for Energy Studies (IES) at University of North Dakota (UND) to conduct a technical and economic feasibility analysis of an innovative hybrid sorbent technology (CACHYS™) for carbon dioxide (CO2) capture and separation from coal combustion–derived flue gas. The project team for this effort consists of the University of North Dakota, Envergex LLC, Barr Engineering Co., and Solex Thermal Science, along with industrial support from Allete, BNI Coal, SaskPower, and the North Dakota Lignite Energy Council. An initial economic and feasibility study of the CACHYS™ concept, including definition of the process, development of process flow diagrams (PFDs), material and energy balances, equipment selection, sizing and costing, and estimation of overall capital and operating costs, is performed by Barr with information provided by UND and Envergex. The technology—Capture from Existing Coal-Fired Plants by Hybrid Sorption Using Solid Sorbents Capture (CACHYS™)—is a novel solid sorbent technology based on the following ideas: reduction of energy for sorbent regeneration, utilization of novel process chemistry, contactor conditions that minimize sorbent-CO2 heat of reaction and promote fast CO2 capture, and a low-cost method of heat management. The technology’s other key component is the use of a low-cost sorbent.

  15. Micro Injection Moulding High Accuracy Three-Dimensional Simulations and Process Control

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    Data analysis and simulations of micro‐moulding experiments have been conducted. Micro moulding simulations have been executed by implementing in the software the actual processing conditions. Various aspects of the simulation set‐up have been considered in order to improve the simulation accurac...

  16. Imprint-coating synthesis of selective functionalized ordered mesoporous sorbents for separation and sensors

    Science.gov (United States)

    Dai, Sheng; Burleigh, Mark C.; Shin, Yongsoon

    2001-01-01

    The present invention relates generally to mesoporous sorbent materials having high capacity, high selectivity, fast kinetics, and molecular recognition capability. The invention also relates to a process for preparing these mesoporous substrates through molecular imprinting techniques which differ from convention techniques in that a template molecule is bound to one end of bifunctional ligands to form a complex prior to binding of the bifunctional ligands to the substrate. The present invention also relates to methods of using the mesoporous sorbent materials, for example, in the separation of toxic metals from process effluents, paints, and other samples; detection of target molecules, such as amino acids, drugs, herbicides, fertilizers, and TNT, in samples; separation and/or detection of substances using chromatography; imaging agents; sensors; coatings; and composites.

  17. Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding

    Directory of Open Access Journals (Sweden)

    Manuel Felix

    Full Text Available Abstract Soy Protein Isolate (SPI has been evaluated as useful candidate for the development of protein-based bioplastic materials processed by injection molding. The influence of sorbitol (SB as plasticizer in mechanical properties and water uptake capacity was evaluated in SPI-based bioplastics. A mixing rheometer that allows monitoring torque and temperature during mixing and a small-scale-plunger-type injection molding machine were used to obtain SPI/Plasticizer blends and SPI-based bioplastics, respectively. Dynamic measurements were carried out to obtain mechanical spectra of different bioplastics. Moreover, the mechanical characterization was supplemented with uniaxial tensile tests. Additionally, the influence of SB in water uptake capacity was also evaluated. The introduction of SB leads to increase the rigidity of bioplastics as well as the water uptake capacity after 24h, however it involves a decrease in strain at break. Final bioplastics are plastic materials with both adequate properties for the substitution of conventional petroleum plastics and high biodegradability.

  18. Enhanced durability and reactivity for zinc ferrite desulfurization sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Berggren, M.H.; Jha, M.C.

    1989-10-01

    AMAX Research Development Center (AMAX R D) investigated methods for enhancing the reactivity and durability of zinc ferrite desulfurization sorbents. Zinc ferrite sorbents are intended for use in desulfurization of hot coal gas in integrated gasification combined cycle (IGCC) or molten carbonate fuel cell (MCFC) applications. For this program, the reactivity of the sorbent may be defined as its sulfur sorption capacity at the breakthrough point and at saturation in a bench-scale, fixed-bed reactor. Durability may be defined as the ability of the sorbent to maintain important physical characteristics such as size, strength, and specific surface area during 10 cycles of sulfidation and oxidation. Two base case sorbents, a spherical pellet and a cylindrical extrude used in related METC-sponsored projects, were used to provide a basis for the aimed enhancement in durability and reactivity. Sorbent performance was judged on the basis of physical properties, single particle kinetic studies based on thermogravimetric (TGA) techniques, and multicycle bench-scale testing of sorbents. A sorbent grading system was utilized to quantify the characteristics of the new sorbents prepared during the program. Significant enhancements in both reactivity and durability were achieved for the spherical pellet shape over the base case formulation. Overall improvements to reactivity and durability were also made to the cylindrical extrude shape. The primary variables which were investigated during the program included iron oxide type, zinc oxide:iron oxide ratio, inorganic binder concentration, organic binder concentration, and induration conditions. The effects of some variables were small or inconclusive. Based on TGA studies and bench-scale tests, induration conditions were found to be very significant.

  19. NIFSIL - a composite sorbent for caesium - properties and application

    International Nuclear Information System (INIS)

    Rajec, P.; Orechovska, J.

    1998-01-01

    Samples of the potassium-nickel ferrocyanides K 2 NiFe(CN) 6 , KNi 1,5 Fe(CN) 6 and Ni 2 Fe(CN) 6 were prepared and their properties studied with respect to their use as sorbents for caesium. Caesium is fixed on mixed alkaline-nickel ferrocyanide without structural change. The capacity of Cs retention never reached the theoretic value corresponding to a total release of the monovalent ions of the solid. High distribution coefficients (K D in the order of 10 4 cm 3 /g) determined in batch experiments show that these sorbents have a very high affinity for caesium ions, even in the presence of competing K + , Na + and Ca 2+ ions. The sorbents have a good chemical stability in a wide pH-range (2-12). The irradiation of some sorbent samples with high energy gamma-rays ( 60 Co) of a total dose of 1.10 5 Gy caused no remarkable changes in the sorbent properties (K D , sorption capacity and kinetics, mechanical stability). The sorbents were also tested for 85 Sr and 239 Pu and the results carried out under dynamic and batch experiments have shown that sorbents are not suitable for removal of these radionuclides. Potassium nickel hexacyanoferrate incorporated in silica-gel matrix could compete with others sorbents based on insoluble hexacyanoferrates, has the advantage of good radiation stability and suitable granulometry. The sorbent was prepared on a pilot scale with a capacity about 1000 kg per year with the prospect that it could be easily upgraded to an industrial scale

  20. Experimental study on spray break-up and atomization processes from GDI injector using high injection pressure up to 30 MPa

    International Nuclear Information System (INIS)

    Lee, Sanghoon; Park, Sungwook

    2014-01-01

    Highlights: • We obtain distribution of droplet velocity and diameter using PDPA system. • Transition of a jet break-up processes is visualized using Nd:Yag sheet laser system. • Elevated injection pressure can activate a jet break-up processes. • A limit in injection pressure to enhance droplet atomization is observed. -- Abstract: This paper focuses on the influence of injection pressures up to 30 MPa on single liquid jet break-up and atomization processes. For this purpose, a single jet from a multi-hole GDI injector has been characterized performing visualization and PDPA (phase Doppler particle analyzer) experiments. Using a thin sheet of light generated by a Nd:Yag laser and capturing a sequence of jet development images with a CCD camera, the internal structure was visualized. In order to quantify the droplet diameter and velocity, a 2-D PDPA system were carried out in addition to the spray visualization. Analyzing the images of the internal structure of jet and the result of PDPA, including droplet diameter and velocity distribution with increasing injection pressure up to 30 MPa, the elevated injection pressure on a jet break-up and atomization was characterized. Our experimental results show the existence of a leading edge of the jet observed at the initial stage of injection. This phenomenon revealed relatively large droplets ahead of the main jet then disappeared quickly as lose the droplets momentum. Furthermore, for all injection pressures, unique ‘branch-like structure’ was observed when the jet was fully developed. This structure had many counter rotating branches related to the effect of air-entrainment and rapidly broken down into droplet clusters and droplets. Especially, as increased injection pressure, the time to exhibit the structure and distance between two branches were decreased. In addition, based on the results of droplet diameter and velocity distribution at various injection pressures, we confirmed that the injection

  1. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: zhangfan4060@gmail.com; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-11-15

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m{sup 3}/h to Q = 160 m{sup 3}/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating

  2. Investigation on transient flow of a centrifugal charging pump in the process of high pressure safety injection

    International Nuclear Information System (INIS)

    Zhang, Fan; Yuan, Shouqi; Fu, Qiang; Tao, Yi

    2015-01-01

    Highlights: • The transient flow characteristics of the charging pump with the first stage impeller in the HPSI process have been investigated numerically by CFD. • The hydraulic performance of the charging pump during the HPSI are discussed, andthe absolute errors between the simulated and measured results are analyzed in the paper. • Pressure fluctuation in the impeller and flow pattern in the impeller were studied in the HPSI process. It is influenced little at the beginning of the HPSI process while fluctuates strongly in the end of the HPSI process. - Abstract: In order to investigate the transient flow characteristics of the centrifugal charging pump during the transient transition process of high pressure safety injection (HPSI) from Q = 148 m"3/h to Q = 160 m"3/h, numerical simulation and experiment are implemented in this study. The transient flow rate, which is the most important factor, is obtained from the experiment and works as the boundary condition to accurately accomplish the numerical simulation in the transient process. Internal characteristics under the variable operating conditions are analyzed through the transient simulation. The results shows that the absolute error between the simulated and measured heads is less than 2.26% and the absolute error between the simulated and measured efficiency is less than 2.04%. Pressure fluctuation in the impeller is less influenced by variable flow rate in the HPSI process, while flow pattern in the impeller is getting better and better with the flow rate increasing. As flow rate increases, fluid blocks on the tongue of the volute and it strikes in this area at large flow rate. Correspondingly, the pressure fluctuation is intense and vortex occurs gradually during this period, which obviously lowers the efficiency of the pump. The contents of the current work can provide references for the design optimization and fluid control of the pump used in the transient process of variable operating conditions.

  3. Identifying parameter windows for sulfur removal by direct limestone injection in the rich zone of staged heat engine combustors

    International Nuclear Information System (INIS)

    Colaluca, M.A.

    1990-01-01

    Recent experimental evidence suggests the possibility of sulfur cleanup by direct injection at gas temperatures that do not thermodynamically favor the absorption of sulfur by the limestone. The purpose of this paper is to analytically investigate possible mechanistic explanations of this observed sulfur capture with the goal of evaluating the potential for limestone injection sulfur capture in direct coal fired gas turbine and diesel engine (heat engines) combustion applications. The method was to use current available data on the physical properties of limestone, and the rates of the pertinent reactions, and to develop mathematical models of the processes experienced by the sorbent particles. The models were then used to predict extent of capture at the high-pressure, high-temperature, short residence time conditions of interest. The goal was to first investigate capture in a single-pulse reactor (combustion bomb) and then to extrapolate these results to advanced coal-fired heat engine combustion environments. Model predictions were in good agreement with observed sulfur capture in cold wall combustion bomb studies and suggest that efficient sulfur capture (in excess of 80 percent calcium utilization) may b e possible when limestone sorbents are injected into high-temperature combustion products, even when the gas temperatures exceed the thermodynamically favored temperature window by several hundred kelvins. This behavior is possible because particle temperatures are moderated and held at levels that favor sulfur capture due to the strongly endothermic calcination reaction

  4. Heavy Oil Upgrading and Enhanced Recovery in a Steam Injection Process Assisted by NiO- and PdO-Functionalized SiO2 Nanoparticulated Catalysts

    Directory of Open Access Journals (Sweden)

    Luisana Cardona

    2018-03-01

    Full Text Available This work aims to investigate the effect of active catalytic nanoparticles on the improvement of the efficiency in recovery of a continuous steam injection process. Catalytic nanoparticles were selected through batch-adsorption experiments and the subsequent evaluation of the temperature for catalytic steam gasification in a thermogravimetric analyzer. A nanoparticulated SiO2 support was functionalized with 1.0 wt % of NiO and PdO nanocrystals, respectively, to improve the catalytic activity of the nanoparticles. Oil recovery was evaluated using a sand pack in steam injection scenarios in the absence and presence of a 500 mg/L SiNi1Pd1 nanoparticles-based nanofluid. The displacement test was carried out by constructing the base curves with water injection followed by steam injection in the absence and presence of the prepared treatment. The oil recovery increased 56% after steam injection with nanoparticles in comparison with the steam injection in the absence of the catalysts. The API gravity increases from 7.2° to 12.1°. Changes in the asphaltenes fraction corroborated the catalytic effect of the nanoparticles by reducing the asphaltenes content and the 620 °C+ residue 40% and 47%, respectively. Also, rheological measurements showed that the viscosity decreased by up to 85% (one order of magnitude after the nanofluid treatment during the steam injection process.

  5. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  6. Influence of process parameters on the weld lines of a micro injection molded component

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2007-01-01

    The insufficient entanglement of the molecular chains and the stress amplification at the v-notch of a weld line compromise the mechanical strength of a plastic product, also in the micro scale. To investigate the influence of process parameters on the weld lines formation, a special micro cavity...... was designed and manufactured by µEDM (Electro Discharge Machining). Weld lines were quantitatively characterized both in the two-dimensional (direction and position) and three-dimensional range (surface topography characterization). Results showed that shape and position of weld lines are mainly influenced...

  7. Octahedral molecular sieve sorbents and catalysts

    Science.gov (United States)

    Li, Liyu [Richland, WA; King, David L [Richland, WA

    2010-04-20

    Octahedral molecular sieve sorbents and catalysts are disclosed, including silver hollandite and cryptomelane. These materials can be used, for example, to catalyze the oxidation of CO.sub.x (e.g., CO), NO.sub.x (e.g., NO), hydrocarbons (e.g., C.sub.3H.sub.6) and/or sulfur-containing compounds. The disclosed materials also may be used to catalyze other reactions, such as the reduction of NO.sub.2. In some cases, the disclosed materials are capable of sorbing certain products from the reactions they catalyze. Silver hollandite, in particular, can be used to remove a substantial portion of certain sulfur-containing compounds from a gas or liquid by catalysis and/or sorption. The gas or liquid can be, for example, natural gas or a liquid hydrocarbon.

  8. Potential of Cogon Grass as an Oil Sorbent

    OpenAIRE

    Wiloso, Edi Iswanto; Barlianti, Vera; Anggraini, Irni Fitria; Hendarsyah, Hendris

    2012-01-01

    Experiments on the potential of Cogon grass (lmperata cylindrica), a weed harmful to other plants, for use as a low-cost and biodegradable oil sorbent were carried out under various spill conditions. Flowers of Cogon grass adsorbed much larger amount of high-viscosity lubricating oil (57.9 g-oil/g-sorbent) than that adsorbed by Peat Sorb (7.7 g-oil/g-sorbent), a commercial oilsorbent based on peat. However, the flowers adsorbed only 27.9 g of low-viscosity crude oillgsorbent. In an oil-water ...

  9. Direct injection analysis of fatty and resin acids in papermaking process waters by HPLC/MS.

    Science.gov (United States)

    Valto, Piia; Knuutinen, Juha; Alén, Raimo

    2011-04-01

    A novel HPLC-atmospheric pressure chemical ionization/MS (HPLC-APCI/MS) method was developed for the rapid analysis of selected fatty and resin acids typically present in papermaking process waters. A mixture of palmitic, stearic, oleic, linolenic, and dehydroabietic acids was separated by a commercial HPLC column (a modified stationary C(18) phase) using gradient elution with methanol/0.15% formic acid (pH 2.5) as a mobile phase. The internal standard (myristic acid) method was used to calculate the correlation coefficients and in the quantitation of the results. In the thorough quality parameters measurement, a mixture of these model acids in aqueous media as well as in six different paper machine process waters was quantitatively determined. The measured quality parameters, such as selectivity, linearity, precision, and accuracy, clearly indicated that, compared with traditional gas chromatographic techniques, the simple method developed provided a faster chromatographic analysis with almost real-time monitoring of these acids. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Application of Taguchi method for separation of uranium from acetate bearing wastewater using hydroxamic acid based sorbent

    International Nuclear Information System (INIS)

    Satpati, S.K.; Hareendran, K.; Roy, S.B.; Vaidya, A.; Bankar, V.; Dasgupta, K.; Pal, S.

    2016-01-01

    Separation and recovery of uranium from effluent of nuclear facility has drawn immense attention in separation science research. The acetic acid based uranium solution effluent generated in uranium metal powder production facility was targeted for the study. Solid state separation technique has been employed using hydroxamic acid based chelating sorbent because of several advantages. In the study, the sorbent performances have been evaluated for its important parameters like isotherm, efficiency and kinetics. The equilibrium adsorption capacity (q e ) and distribution coefficient (K d ) of U(VI) have been evaluated as 3.24 mg/g sorbent and 805 ml/g sorbent respectively. Uranium has been recovered using HCl solution. Uranium removal from the feed was found to be more than 95% and the recovery of uranium was more than 99% from the adsorbed phase. Elution process is faster than sorption process. Taguchi optimization method has been applied for designing experimental study and also to identify the optimum operational conditions for uranium separation process.The developed process is useful for separation and recovery of uranium from acetate bearing wastewater generated in uranium processing facilities

  11. Hydraulic and physicochemical processes in direct gas injection; Hydraulische und physiko-chemische Prozesse bei der Direktgasinjektion

    Energy Technology Data Exchange (ETDEWEB)

    Geistlinger, H.; Lazik, D.; Beckmann, A.; Krauss, G. [UFZ-Umweltforschungszentrum Leipzig-Halle GmbH, Dept. Hydrogeologie, Lepzig (Germany)

    2004-07-01

    The direct injection of gases into the subsoil is a promising and cost-effective technology for the remediation of groundwater aquifers. In view of the fact that oxygen is the commonest limiting factor in numerous types of contamination and a large number of organic groundwater pollutants are aerobically degradable this technology is suitable as a relatively broad-band, i.e. relatively nonselective remediation method for the treatment of complex pollutant mixtures consisting of aliphatics and aromatics such as are found in many cases of groundwater contamination at former sites of the chemical industry in Saxony Anhalt. The goal of the present research project was to gain an understanding, at a bench-scale, of the more important processes that determine the efficiency of direct gas injection in porous media (groundwater aquifers), to validate process models and develop prognostic models for existing sites. [German] Das Einbringen von reaktiven Gasen in den Untergrund mittels Direktgasinjektion stellt eine vielversprechende und kostenguenstige in-situ Technologie zur Sanierung kontaminierter Grundwasserleiter dar. Da Sauerstoff der am haeufigsten limitierende Faktor fuer eine Vielzahl von Schadensfaellen ist und eine Vielzahl von organischen Schadstoffen im Grundwasser aerob abbaubar ist, kann dieser Verfahrensansatz als eine ''breitbandige'', d.h. relativ unselektive Sanierungsmassnahme fuer komplexe Schadstoffgemische aus Aliphaten und Aromaten, wie sie bei vielen Grundwasser-Schadensfaellen ehemaliger Chemiestandorte des Landes Sachsen-Anhalt anzutreffen sind, angewendet werden. Ziel des Forschungsprojektes war es, wichtige Prozesse, die die Effizienz von Direktgasinjektionen in poroese Medien (Grundwasserleiter) bestimmen, im Bench-Scale zu verstehen, Prozessmodelle zu validieren und Prognosemodelle fuer reale Standorte zu entwickeln. (orig.)

  12. Analysis of the combined effect of hydrogrinding process and inclination angle on hydraulic performance of diesel injection nozzles

    International Nuclear Information System (INIS)

    Salvador, F.J.; Carreres, M.; Jaramillo, D.; Martínez-López, J.

    2015-01-01

    Highlights: • Effect of inclination angle and rounding radius of diesel nozzle holes is explored. • The study starts with experimental tests and is extended by CFD simulations. • A CFD code with a HEM model for two-phase flow and a RANS approach is used. • Differences in flow parameters, cavitation inception and morphology are analysed. • The flow is generally favoured by low inclination angles and high rounding radius. - Abstract: A computational study to investigate the influence of the orifices inclination and the rounding radius at the orifice inlet (consequence of the hydro-erosive grinding process applied after the orifices machining) over the internal nozzle flow is performed in this paper. The study starts with the analysis of experimental results where the mass flow and momentum flux of two nozzles with very different values of these two variables are compared. This analysis shows relatively small differences in terms of mass flow and momentum flux, since the higher losses associated to the higher deflection of the streamlines with a higher inclination of the orifices are counteracted by the higher rounding radius, which favours the flow entrance to the orifice. To explain this experimental outcome, an extensive computational study involving nine geometries that combine different inclination angles and rounding radius is conducted, in order to quantify the influence of both parameters on the flow separately, as well as to assess the potential of their combination. These geometries are compared in terms of discharge coefficient, critical cavitation conditions and effective injection velocity, among others. Results show differences up to 15% in terms of mass flow rate and 8% for the effective injection velocity among the two extreme cases (lowest inclination and highest hydro-erosion level versus the nozzle with the highest inclination and lowest hydro-erosion level). Given the importance of these phenomena on the subsequent mixing and combustion

  13. Idaho Chemical Processing Plant (ICPP) injection well: Operations history and hydrochemical inventory of the waste stream

    International Nuclear Information System (INIS)

    Fromm, J.; McCurry, M.; Hackett, W.; Welhan, J.

    1994-01-01

    Department of Energy (DOE), United States Geological Survey (USGS), and Idaho Chemical Processing Plant (ICPP) documents were searched for information regarding service disposal operations, and the chemical characteristics and volumes of the service waste emplaced in, and above, the Eastern Snake River Plain aquifer (ESRP) from 1953-1992. A summary database has been developed which synthesizes available, but dispersed, information. This assembled data records spatial, volumetric and chemical input patterns which will help establish the initial contaminant water characteristics required in computer modeling, aid in interpreting the monitoring well network hydrochemical information, and contribute to a better understanding of contaminant transport in the aquifer near the ICPP. Gaps and uncertainties in the input record are also identified with respect to time and type. 39 refs., 5 figs., 5 tabs

  14. On the Injection Molding Processing Parameters of HDPE-TiO2 Nanocomposites

    Science.gov (United States)

    Mourad, Abdel-Hamid I.; Mozumder, Mohammad Sayem; Mairpady, Anusha; Pervez, Hifsa; Kannuri, Uma Maheshwara

    2017-01-01

    In recent years, the development and use of polymeric nanocomposites in creating advanced materials has expanded exponentially. A substantial amount of research has been done in order to design polymeric nanocomposites in a safe and efficient manner. In the present study, the impact of processing parameters, such as, barrel temperature, and residence time on the mechanical and thermal properties of high density polyethylene (HDPE)-TiO2 nanocomposites were investigated. Additionally, scanning electron microscopy and X-ray diffraction spectroscopy were used to analyze the dispersion, location, and phase morphology of TiO2 on the HDPE matrix. Mechanical tests revealed that tensile strength of the fabricated HDPE-TiO2 nanocomposites ranged between 22.53 and 26.30 MPa, while the Young’s modulus showed a consistent increase as the barrel temperature increased from 150 °C to 300 °C. Moreover, the thermal stability decreased as the barrel temperature increased. PMID:28772444

  15. On the Injection Molding Processing Parameters of HDPE-TiO₂ Nanocomposites.

    Science.gov (United States)

    Mourad, Abdel-Hamid I; Mozumder, Mohammad Sayem; Mairpady, Anusha; Pervez, Hifsa; Kannuri, Uma Maheshwara

    2017-01-20

    In recent years, the development and use of polymeric nanocomposites in creating advanced materials has expanded exponentially. A substantial amount of research has been done in order to design polymeric nanocomposites in a safe and efficient manner. In the present study, the impact of processing parameters, such as, barrel temperature, and residence time on the mechanical and thermal properties of high density polyethylene (HDPE)-TiO₂ nanocomposites were investigated. Additionally, scanning electron microscopy and X-ray diffraction spectroscopy were used to analyze the dispersion, location, and phase morphology of TiO₂ on the HDPE matrix. Mechanical tests revealed that tensile strength of the fabricated HDPE-TiO₂ nanocomposites ranged between 22.53 and 26.30 MPa, while the Young's modulus showed a consistent increase as the barrel temperature increased from 150 °C to 300 °C. Moreover, the thermal stability decreased as the barrel temperature increased.

  16. Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality

    International Nuclear Information System (INIS)

    Kang, Gyung Ju; Park, Chang Hyun; Choi, Dong Hoon

    2016-01-01

    Injection molding process variables and gates of an automotive glove box were optimally determined to enhance its injection molding quality. We minimized warpage with satisfying constraints on clamp force, weldline, and profiles of filling and packing. Design variables concerning the injection molding process are temperatures of the mold and the resin, ram speeds, and packing pressures and durations; design variables concerning the gates are the shape of the center gate and locations of two side gates. To optimally determine the design variables in an efficient way, we adopted metamodel-based design optimization, sequentially using an optimal Latin hypercube design as a design of experiment, Kriging models as metamodels that replace time-consuming injection molding simulations, and a micro genetic algorithm as an optimization algorithm. In the optimization process, a commercial injection molding analysis software, MoldflowTM, was employed to evaluate the injection molding quality at design points specified. Using the proposed design approach, the warpage was found reduced by 20.5% compared to the initial warpage, while all the design constraints were satisfied, which clearly shows the validity of the proposed design approach

  17. Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyung Ju [Pusan National University, Busan (Korea, Republic of); Park, Chang Hyun; Choi, Dong Hoon [Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    Injection molding process variables and gates of an automotive glove box were optimally determined to enhance its injection molding quality. We minimized warpage with satisfying constraints on clamp force, weldline, and profiles of filling and packing. Design variables concerning the injection molding process are temperatures of the mold and the resin, ram speeds, and packing pressures and durations; design variables concerning the gates are the shape of the center gate and locations of two side gates. To optimally determine the design variables in an efficient way, we adopted metamodel-based design optimization, sequentially using an optimal Latin hypercube design as a design of experiment, Kriging models as metamodels that replace time-consuming injection molding simulations, and a micro genetic algorithm as an optimization algorithm. In the optimization process, a commercial injection molding analysis software, MoldflowTM, was employed to evaluate the injection molding quality at design points specified. Using the proposed design approach, the warpage was found reduced by 20.5% compared to the initial warpage, while all the design constraints were satisfied, which clearly shows the validity of the proposed design approach.

  18. Testosterone Injection

    Science.gov (United States)

    ... typical male characteristics. Testosterone injection works by supplying synthetic testosterone to replace the testosterone that is normally ... as a pellet to be injected under the skin.Testosterone injection may control your symptoms but will ...

  19. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    Science.gov (United States)

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  20. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    Science.gov (United States)

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  1. The cleaning of the soils polluted by oil and radionuclides by natural sorbents

    International Nuclear Information System (INIS)

    Farajov, M.F.; Shamilov, E.N.; Abdullayev, A.S.; Huseynov, V.I.

    2005-01-01

    Full text : Problem of environmental pollution in oil extracting areas of Absheron peninsula became the very important discussion object lately. It this areas for many years oil and well waters were flowed to environmental areas caused a lot of pools in that areas and at the result the soil and plants were polluted with oil and radionuclides. By last years researches it was revealed that amount of radium 226 oil well water contains 10 - 500 Bq/l. Sometimes amount of radium 226 in polluted soils is increasing to 2000--5000 Bq/l and at the result it is raising probability of entering radionuclides by the way of migration from ground to plants into the nutrition chain cycle. Thus the polluted areas with oil and radionuclides and also when oil spills from oil-pipes by an accident the deactivation of soils is one of the main and most actual problems. In researches for cleaning of polluted soils with radionuclides for the first time were used the phyto sorbent modified breccias forms taken from Chaildag, Gobu, and Lokbatan mud volcano areas. The mineral contain of volcano mud generally consists of clay rocks -(kaolinit, montmorillonit, zeolite, chlorite, biotit) pyrite, and i.e.[2]. The polluted soil samples were taken in Surakhani region from area with the 150 mikroroentgen per hour radiation background. The contain and amount of radionuclides were determined with the radio spectrometer P rogress - Beta - Gamma . Polluted soil samples firstly are washed by hot water and HCl solution by mixing for 3-5 hours. At the next level by adding pieced sorbent into the solution is intensively mixing by mixer and putting for sedimentation for 24 hours. After sedimentation the stiring process is repeated by adding HCl on the sediment again. The soil is stirred by water for last time. Decomposed solutions from soil are adhering and are maked with sorbent again. Thus the soil is quite cleaned from oil and radionuclides by the sorbents we offer. At the same time this sorbents may be

  2. Ruthenium complexing in sorption by granulated sorbents with ethylene diamine and diethyl amine groups

    International Nuclear Information System (INIS)

    Simanova, S.A.; Kolmakova, A.I.; Konovalov, L.V.; Kukushkin, Yu.N.; Kalalova, E.

    1986-01-01

    The sorption process of ruthenium (4) chlorocomplexes - K 2 (RuCl 6 ) macroporous granulated copolymers of glycidylmethacrylate ethylene dimethacrylate with ethylene diamine and diethyl amine has been studied. Sorption has been carried out under the static conditions (at 20 and 98 deg C) from 0.1-2.0 MxHCl and 1.0 M NaCl solutions. It is established that the sorption from acidic solutions proceeds according to anion exchange mechanism with formation of onium chlorocomplexes in the sorbent phase, subjecting to Anderson regrouping during the heating. During the sorption from neutral solutions the second-sphere coordination of polymer amino groups accirs near ruthenium atom and amino-chloride complexes are formed in the sorbent phase

  3. Heat recovery from sorbent-based CO.sub.2 capture

    Science.gov (United States)

    Jamal, Aqil; Gupta, Raghubir P

    2015-03-10

    The present invention provides a method of increasing the efficiency of exothermic CO.sub.2 capture processes. The method relates to withdrawing heat generated during the exothermic capture of CO.sub.2 with various sorbents via heat exchange with a working fluid. The working fluid is provided at a temperature and pressure such that it is in the liquid state, and has a vaporization temperature in a range such that the heat arising from the reaction of the CO.sub.2 and the sorbent causes a phase change from liquid to vapor state in whole or in part and transfers heat from to the working fluid. The resulting heated working fluid may subsequently be used to generate power.

  4. Evaluation of Sorbents for Acetylene Separation in Atmosphere Revitalization Loop Closure

    Science.gov (United States)

    Abney, Morgan B.; Miller, Lee A.; Barton, Katherine

    2012-01-01

    State-of-the-art carbon dioxide reduction technology uses a Sabatier reactor to recover water from metabolic carbon dioxide. In order to maximize oxygen loop closure, a byproduct of the system, methane, must be reduced to recover hydrogen. NASA is currently exploring a microwave plasma methane pyrolysis system for this purpose. The resulting product stream of this technology includes unreacted methane, product hydrogen, and acetylene. The hydrogen and the small amount of unreacted methane resulting from the pyrolysis process can be returned to the Sabatier reactor thereby substantially improving the overall efficiency of the system. However, the acetylene is a waste product that must be removed from the pyrolysis product. Two materials have been identified as potential sorbents for acetylene removal: zeolite 4A, a commonly available commercial sorbent, and HKUST-1, a newly developed microporous metal. This paper provides an explanation of the rationale behind acetylene removal and the results of separation testing with both materials

  5. Efficiency of Oil Removal from Real Storm Water With Different Sorbents

    Directory of Open Access Journals (Sweden)

    Aušra Mažeikienė

    2011-12-01

    Full Text Available Suspended solids and oil products are considered as the most important pollutants in storm water. Surface water flow and changes in pollutant concentration complicate conventional matching techniques and prolong the duration of technological processes; therefore, a comprehensive study on this area is necessary. For this reason, the research and analysis of three different sorbents (“FIBROIL®”, “Duck”, “Reo-dry” were performed in the laboratory. According to the results of the conducted experiment, all three sorbents have similar treatment efficiency: “FIBROIL®” – 99%, “Reo-dry” – 95%, “Duck” – 98%. Filtering rate had an influence on the effectiveness of removing petrol products (slower speed increases effectiveness.Article in Lithuanian

  6. Evaluation of Solid Sorbents As A Retrofit Technology for CO{sub 2} Capture from Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Krutka, Holly; Sjostrom, Sharon

    2011-07-31

    Through a U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) funded cooperative agreement DE-NT0005649, ADA Environmental Solutions (ADA) has begun evaluating the use of solid sorbents for CO{sub 2} capture. The project objective was to address the viability and accelerate development of a solid-based CO{sub 2} capture technology. To meet this objective, initial evaluations of sorbents and the process / equipment were completed. First the sorbents were evaluated using a temperature swing adsorption process at the laboratory scale in a fixed-bed apparatus. A slipstream reactor designed to treat flue gas produced by coal-fired generation of nominally 1 kWe was designed and constructed, which was used to evaluate the most promising materials on a more meaningful scale using actual flue gas. In a concurrent effort, commercial-scale processes and equipment options were also evaluated for their applicability to sorbent-based CO{sub 2} capture. A cost analysis was completed that can be used to direct future technology development efforts. ADA completed an extensive sorbent screening program funded primarily through this project, DOE NETL cooperative agreement DE-NT0005649, with support from the Electric Power Research Institute (EPRI) and other industry participants. Laboratory screening tests were completed on simulated and actual flue gas using simulated flue gas and an automated fixed bed system. The following types and quantities of sorbents were evaluated: 87 supported amines, 31 carbon based materials, 6 zeolites, 7 supported carbonates (evaluated under separate funding), 10 hydrotalcites. Sorbent evaluations were conducted to characterize materials and down-select promising candidates for further testing at the slipstream scale. More than half of the materials evaluated during this program were supported amines. Based on the laboratory screening four supported amine sorbents were selected for evaluation at the 1 kW scale at two different

  7. Paper 58714 - Exploring activated faults hydromechanical processes from semi-controled field injection experiments

    Science.gov (United States)

    Guglielmi, Y.; Cappa, F.; Nussbaum, C.

    2015-12-01

    The appreciation of the sensitivity of fractures and fault zones to fluid-induced-deformations in the subsurface is a key question in predicting the reservoir/caprock system integrity around fluid manipulations with applications to reservoir leakage and induced seismicity. It is also a question of interest in understanding earthquakes source, and recently the hydraulic behavior of clay faults under a potential reactivation around nuclear underground depository sites. Fault and fractures dynamics studies face two key problems (1) the up-scaling of laboratory determined properties and constitutive laws to the reservoir scale which is not straightforward when considering faults and fractures heterogeneities, (2) the difficulties to control both the induced seismicity and the stimulated zone geometry when a fault is reactivated. Using instruments dedicated to measuring coupled pore pressures and deformations downhole, we conducted field academic experiments to characterize fractures and fault zones hydromechanical properties as a function of their multi-scale architecture, and to monitor their dynamic behavior during the earthquake nucleation process. We show experiments on reservoir or cover rocks analogues in underground research laboratories where experimental conditions can be optimized. Key result of these experiments is to highlight how important the aseismic fault activation is compared to the induced seismicity. We show that about 80% of the fault kinematic moment is aseismic and discuss the complex associated fault friction coefficient variations. We identify that the slip stability and the slip velocity are mainly controlled by the rate of the permeability/porosity increase, and discuss the conditions for slip nucleation leading to seismic instability.

  8. Research of a possibility of receiving sorbents for a sewage disposal from a wastage of coal preparation factory

    International Nuclear Information System (INIS)

    Buyantuev, S L; Stebenkova, Y Y; Khmelev, A B; Kondratenko, A S; Shishulkin, S Y

    2017-01-01

    The paper presents the results of the studies of the structure and porosity of the coal cake processed by electric arc plasma. The main limiting factor in processing of coal cakes sorbents is their high water content. As a result of coal washing, the main share of water introduced into the cake falls on hard-hydrate and colloidal components. This makes impossible application of traditional processes of manufacturing from a cake of coal sorbents. Using the electric arc intensifies the processes of thermal activation of coal cakes associated with thermal shock, destruction and vapor-gas reactions occurring at the surfaces of the particles at an exposure temperature of up to 3000 °C, which increases the title product outlet (sorbent) and thereby reduces manufacturing costs and improves environmental performance. The investigation of the thermal activation zone is carried out in the plasma reactor chamber by thermal imaging method followed by mapping-and 3D-modeling of temperature fields. the most important physical and chemical properties of the sorbents from coal cake activated by plasma was studied. The obtained results showed the possibility of coal cake thermal activation by electric arc plasma to change its material composition, the appearance of porosity and associated sorption capacity applied for wastewater treatment. (paper)

  9. Research of a possibility of receiving sorbents for a sewage disposal from a wastage of coal preparation factory

    Science.gov (United States)

    Buyantuev, S. L.; Kondratenko, A. S.; Shishulkin, S. Y.; Stebenkova, Y. Y.; Khmelev, A. B.

    2017-05-01

    The paper presents the results of the studies of the structure and porosity of the coal cake processed by electric arc plasma. The main limiting factor in processing of coal cakes sorbents is their high water content. As a result of coal washing, the main share of water introduced into the cake falls on hard-hydrate and colloidal components. This makes impossible application of traditional processes of manufacturing from a cake of coal sorbents. Using the electric arc intensifies the processes of thermal activation of coal cakes associated with thermal shock, destruction and vapor-gas reactions occurring at the surfaces of the particles at an exposure temperature of up to 3000 °C, which increases the title product outlet (sorbent) and thereby reduces manufacturing costs and improves environmental performance. The investigation of the thermal activation zone is carried out in the plasma reactor chamber by thermal imaging method followed by mapping-and 3D-modeling of temperature fields. the most important physical and chemical properties of the sorbents from coal cake activated by plasma was studied. The obtained results showed the possibility of coal cake thermal activation by electric arc plasma to change its material composition, the appearance of porosity and associated sorption capacity applied for wastewater treatment.

  10. New processing route for ZrSiO{sub 4} by powder injection moulding using an eco-friendly binder system

    Energy Technology Data Exchange (ETDEWEB)

    Abajo, C.; Jimenez-Morales, A.; Torralba, J. M.

    2015-10-01

    New processing route has been developed for zircon based on powder injection moulding (PIM). Raw zircon powders, obtained from mineral sands, have been processed using a new water soluble binder system composed of PEG and CAB. Water solvent debinding stage has been studied in depth. On one hand, influence of some debinding parameters (temperature, debinding rate, additives and the use of climate chamber) has been tested. On the other hand, new binder systems were tested and compared with previous studied ones. The full PIM process has been carried out. Mixing, injection molding, solvent and thermal debinding and finally sintering, have been performed with the optimal binder system composition. Homogeneity along the process has been assessed by thermo-gravimetric analysis and by density measurements. After sintering, dimensional variation, density and fracture surface obtained after flexural strength test, have been analyzed. A competitive flexural strength has been achieved for injected zircon samples. (Author)

  11. Evaluation of 137Cs sorbents for fixation in concrete

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1976-01-01

    As part of the long-term waste management program at the Savannah River Laboratory, several 137 Cs sorbents were evaluated for incorporation into concrete. The sorbents studied were: Linde AW-300, AW-500, 13-X, and SK-40; Norton Zeolon 200, 500, and 900; clinoptilolite; and vermiculite. The parameters studied were sorption kinetics, leachability, and compressive strength of the concrete. The best sorbents identified were Linde AW-500 and Norton Zeolon 900. In all tests, these two sorbents performed almost identically; sorption kinetics were acceptable; both strengthened the concrete, and both gave relatively leach-resistant concrete. Vermiculite that had been heated to collapse its lattice around 137 Cs gave the most leach-resistant concrete. However, it sorbed cesium slowly, and the resulting concrete was very weak. When silica gel was added to concrete to react with free calcium, the addition had no effect on cesium leachability

  12. Dual layer hollow fiber sorbents: Concept, fabrication and characterization

    KAUST Repository

    Bhandari, Dhaval; Olanrewaju, Kayode O.; Bessho, Naoki; Breedveld, Victor; Koros, William J.

    2013-01-01

    and to ensure consistent sorption capacity over repeated cycles, a dense, thin polymer barrier layer on the fiber sorbents is needed to allow only thermal interactions between the sorbate loaded layer and the thermal regeneration fluid. This paper considers

  13. Sorption-enhanced steam reforming of ethanol: thermodynamic comparison of CO{sub 2} sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.J.; Santos, J.C.; Cunha, A.F.; Rodrigues, A.E. [University of Porto, Faculty of Engineering, Department of Chemical Engineering, Associated Laboratory LSRE/LCM, Laboratory of Separation and Reaction Engineering, Porto (Portugal); Diaz Alvarado, F.; Gracia, F. [Universidad de Chile, Facultad de Ingenieria, Departamento de Ingenieria Quimica y Biotecnologia, Laboratorio de Catalisis, Santiago (Chile)

    2012-05-15

    A thermodynamic analysis is performed with a Gibbs free energy minimization method to compare the conventional steam reforming of ethanol (SRE) process and sorption-enhanced SRE (SE-SRE) with three different sorbents, namely, CaO, Li{sub 2}ZrO{sub 3}, and hydrotalcite-like compounds (HTlc). As a result, the use of a CO{sub 2} adsorbent can enhance the hydrogen yield and provide a lower CO content in the product gas at the same time. The best performance of SE-SRE is found to be at 500 C with an HTlc sorbent. Nearly 6 moles hydrogen per mole ethanol can be produced, when the CO content in the vent stream is less than 10 ppm, so that the hydrogen produced via SE-SRE with HTlc sorbents can be directly used for fuel cells. Higher pressures do not favor the overall SE-SRE process due to lower yielding of hydrogen, although CO{sub 2} adsorption is enhanced. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Water purification from radionuclides with using fibroid sorbents

    International Nuclear Information System (INIS)

    Khaydarov, R. A.; Gapurova, O.U.; Khaydarov, R.R.

    2005-01-01

    Full text: Purification waste water and drinking water from radionuclides, heavy metal ions, organic contamination is one of the important problems today. For solving this problem we have created three types of fibroid sorbents on the base of Polyester: cationic and anionic exchange and carbonic. Main properties of these sorbents are described in this article. For example characteristics of the sorbents for removing radionuclides Co-60,57, Zn-65, Sr-89,90, Cs-134,137, etc., radionuclides containing organic molecules M-P-32, M-I-131, M-Mo-99+Tc-99m, M-C-14, etc., heavy metal ions Zn, Ni, Cu, Sb, Pb, Cd, Cr, U, etc., organic molecules (pesticides, phenols, dioxin, benzene, toluene, etc.) were investigated. Influence of pH on percent removal, influence of K, Na and another ions concentrations in the liquid on the percent removal, decreasing of the saturation capacity from number of regeneration and another characteristics are described. Static exchange capacity of the cationic sorbents is 1-2 mg-equ/g and anionic - 0.5-1 mg-equ/g. Capacity of the carbonic sorbents for benzene is 100 mg/g. Time of chemical balance setting is 1-2 s. The sorbents are effective in removing the low concentrations of contamination from the water (lower than 100-200 mg/l) and the air (lower than 100 mg/m 3 ). The use of sorbents in drinking water filters and mini-systems is described. The industrial water purification system consists of coagulating unit, sorbent unit and disinfectant unit. The systems are used in atomic power stations, electroplating plants, matches plants, leather and skin treating plants, car-washing stations, etc

  15. Effectiveness of liquid radioactive waste purification by inorganic granulated sorbents

    International Nuclear Information System (INIS)

    Komarevskij, V.M.; Stepanets, O.V.; Sharygin, L.M.; Matveev, S.A.

    1995-01-01

    Study results on purification of simulative and real liquid radioactive wastes from fission products radionuclides and by inorganic corrosion-nature sorbents 'Thermoxide' are presented. Properties by sorption of cesium, strontium and cobalt are studied; results of experiments on purification of weakly-salted water solutions (waste waters, ships drainage tanks, showers and laundries) of the Beloyarsk NPP are presented. Sorbents source characteristics are determined. 4 refs., 2 figs., 3 tabs

  16. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.

    Science.gov (United States)

    Liu, B S; Wan, Z Y; Wang, F; Zhan, Y P; Tian, M; Cheung, A S C

    2014-02-28

    Using a sol-gel method, SmMeOx/MCM-41 or SBA-15 (Me=Fe, Co and Zn) and corresponding unsupported sorbents were prepared. The desulfurization performance of these sorbents was evaluated over a fixed-bed reactor and the effects of reaction temperature, feed and sorbent composition on desulfurization performance were studied. Samarium-based sorbents used to remove H2S from hot coal gas were reported for the first time. The results of successive sulfidation/regeneration cycles revealed that SmFeO3/SBA-15 sorbent was suitable for desulfurization of hot coal gas in the chemical industry. The formation of elemental sulfur during both sulfidation and regeneration processes depended strongly on the catalytic action of Sm2O2S species, which was confirmed for the first time via high sensitive time of flight mass spectrometer (TOF-MS) using 6%vol(18)O2/Ar regeneration gas and can reduce markedly procedural complexity. The sorbents were characterized using N2-adsorption, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), temperature-programmed reduction of H2 (H2-TPR), thermogravimetry (TG) and time-of-flight mass spectrometry (TOF-MS) techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1987-01-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite of clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 references, 6 figures, 3 tables

  18. Engineered sorbent barriers for low-level waste disposal.

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs.

  19. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Freeman, H.D.; Mitchell, S.J.; Buelt, J.L.

    1986-12-01

    The Engineered Sorbent Barriers Program at Pacific Northwest Laboratory is investigating sorbent materials to prevent the migration of soluble radio nuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Laboratory studies identifield promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent and was adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt%), activated charcoal (6 wt%), synthetic zeolite (20 wt%), and local soil (73 wt%) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow-land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 7 refs., 14 figs., 12 tabs

  20. A Comparative Analysis of Taguchi Methodology and Shainin System DoE in the Optimization of Injection Molding Process Parameters

    Science.gov (United States)

    Khavekar, Rajendra; Vasudevan, Hari, Dr.; Modi, Bhavik

    2017-08-01

    Two well-known Design of Experiments (DoE) methodologies, such as Taguchi Methods (TM) and Shainin Systems (SS) are compared and analyzed in this study through their implementation in a plastic injection molding unit. Experiments were performed at a perfume bottle cap manufacturing company (made by acrylic material) using TM and SS to find out the root cause of defects and to optimize the process parameters for minimum rejection. Experiments obtained the rejection rate to be 8.57% from 40% (appx.) during trial runs, which is quiet low, representing successful implementation of these DoE methods. The comparison showed that both methodologies gave same set of variables as critical for defect reduction, but with change in their significance order. Also, Taguchi methods require more number of experiments and consume more time compared to the Shainin System. Shainin system is less complicated and is easy to implement, whereas Taguchi methods is statistically more reliable for optimization of process parameters. Finally, experimentations implied that DoE methods are strong and reliable in implementation, as organizations attempt to improve the quality through optimization.

  1. The feasibility of using solution-processed aqueous La2O3 as effective hole injection layer in organic light-emitting diode

    Science.gov (United States)

    Zhang, Yan; Li, Wanshu; Zhang, Ting; Yang, Bo; Zheng, Qinghong; Xu, Jiwen; Wang, Hua; Wang, Lihui; Zhang, Xiaowen; Wei, Bin

    2018-01-01

    Low-cost and scalable manufacturing boosts organic electronic devices with all solution process. La2O3 powders and corresponding aqueous solutions are facilely synthesized. Atomic force microscopy and scanning electron microscopy measurements show that solution-processed La2O3 behaves superior film morphology. X-ray diffraction and X-ray photoelectron spectroscopy measurements verify crystal phase and typical La signals. In comparison with the most widely-used hole injection layers (HILs) of MoOx and poly(ethylene dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), enhanced luminous efficiency is observed in organic light-emitting diode (OLED) using solution-processed La2O3 HIL. Current-voltage, impedance-voltage and phase angle-voltage transition curves clarify that solution-processed La2O3 behaves nearly comparable hole injection capacity to MoOx and PEDOT:PSS, and favorably tailors carrier balance. Moreover, the hole injection mechanism of solution-processed La2O3 is proven to be predominantly controlled by Fowler-Nordheim tunneling process and the hole injection barrier height between ITO and NPB via La2O3 interlayer is estimated to be 0.098 eV. Our experiments provide a feasible application of La2O3 in organic electronic devices with solution process.

  2. A model for dry sodium bicarbonate duct injection flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Changfa Wu; Soon-Jai Khang; Tim C. Keener; Sang-Kwun Lee [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical Engineering

    2004-03-01

    A mathematical model is developed for simulation of dry sodium bicarbonate (NaHCO{sub 3}) duct injection for the removal of sulfur dioxide (SO{sub 2}) in flue gases across a fabric filter (baghouse). The model employs parallel reaction kinetics and assumes that the sodium bicarbonate injection process can be separated into two stages. The first stage is a transport duct section where NaHCO{sub 3} particles are injected into the sulfur dioxide laden gas stream. The second stage is the fabric filter section where sodium sorbents are collected and behave as a variable depth fixed bed reactor. The process simulation for the efficiency of desulfurization in flue gas is performed and evaluated for a variety of operating conditions. It is found that the removal of SO{sub 2} within the duct section is small and negligible for most practical conditions, with a contribution normally less than 5% of total SO{sub 2} removal. The major removal of SO{sub 2} occurs across the filter cake, which accumulates the sorbent particles on the fabric filter. These particles are periodically disposed as the filter is cleaned. The major factors for the process are temperature, particle size and SO{sub 2} gas concentration for all operating conditions. At low temperatures, the removal of SO{sub 2} increases as temperature increases, but the removal decreases at higher temperatures due to the impact of the thermal decomposition reaction of NaHCO{sub 3} on SO{sub 2} removal. It was found that the temperature for the highest removal of SO{sub 2} is within the range of 127-150{sup o}C and the removal efficiency also depends on particle size.

  3. Rapid identification and quantification of methamphetamine and amphetamine in hair by gas chromatography/mass spectrometry coupled with micropulverized extraction, aqueous acetylation and microextraction by packed sorbent.

    Science.gov (United States)

    Miyaguchi, Hajime; Iwata, Yuko T; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Kuwayama, Kenji; Inoue, Hiroyuki

    2009-05-01

    We developed a rapid identification and quantification method for the toxicological analysis of methamphetamine and amphetamine in human hair by gas chromatography/mass spectrometry coupled with a novel combination of micropulverized extraction, aqueous acetylation and microextraction by packed sorbent (MEPS) named MiAMi-GC/MS. A washed hair sample (1-5 mg) was micropulverized for 5 min in a 2 mL plastic tube with 250 microL of water. An anion-exchange sorbent was added to adsorb anionic interferences. After removing the residue with a membrane-filter unit, sodium carbonate and acetic anhydride was admixed in turn. Acetylation was completed in approximately 20 min at room temperature. The acetylated analytes in the reaction liquid were concentrated to an octadecylsilica sorbent packed in the needle of a syringe by a CombiPAL autosampler. Elution was carried out with 50 microL of methanol, and the entire eluate injected into a gas chromatograph using a programmable temperature vaporizing (PTV) technique. The time required for sample preparation and GC/MS analysis was approximately 1 h from a washed hair sample, and an evaporation process was not required. Ranges for quantification were 0.20-50 (ng/mg) each for methamphetamine and amphetamine using 1 mg of hair. Accuracy and relative standard deviation (RSD) were evaluated intraday and interday at three concentrations, and the results were within the limit of a guidance issued by U.S. Food and Drug Administration. For identification, full-scan mass spectra of methamphetamine and amphetamine were obtained using 5 mg of fortified hair samples at 0.2 ng/mg. The extraction device of MEPS was durable for at least 300 extractions, whereas the liner of the gas chromatograph should be replaced after 20-30 times use. The carry over was estimated to be about 1-2%. This sample-preparation method coupled with GC/MS is fast and labor-saving in comparison with conventional methods.

  4. Biological – chemical regeneration of desulphurization sorbents based on zinc ferrite

    Directory of Open Access Journals (Sweden)

    Šepelák Vladimír

    2002-03-01

    Full Text Available One of the main sources of air pollution is the combustion of fuels by various thermal and power plants, transport facilities, and metallurgical plants. Main components of industrial gases that pollute air are carbon oxides, nitrogen oxides, sulphur oxides and hydrogen sulphide. Sulphur has received a more attention than any other contaminant, because the sulphur released into the atmosphere in the form of sulphur dioxide or hydrogen sulphide is a precursor of the “acid rain” formation. To meet environmental emission regulations, sulphur and other contaminant species released during the gasification of coal must be removed from the fuel gas stream. The removal of contaminat at high temperatures is referred to as hot-gas cleanup in general and hot-gas desulphurization in particular when sulphur species are the primary contaminants to be remove. In recent years, zinc ferrite is the leading candidate for hot-gas desulphurization, capable of removing sulphur-containing species from coal gas at gasifier exit temperatures. It can also be of being regenerated for a continuous use. The conventional methods of the regeneration of sulphurized sorbents are based on oxidizing pyrolysis of sulphides or on the pressure leaching of sulphides in the water environment at high temperatures. The first results of the experiments using the biological-chemical leaching, as a new way of regeneration of sulphurized sorbent based on zinc ferrite, are presented in this paper. The results show that the biological-chemical leaching leads to the removal of sulphides layers (á-ZnS, â-ZnS from the surface of the sorbent at room temperature. The biological-chemical leaching process results in the increase of the active surface area of the regenerated sorbent.

  5. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-08

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Innovative Elution Processes for Recovering Uranium from Seawater

    International Nuclear Information System (INIS)

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-01-01

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  7. Innovative Elution Processes for Recovering Uranium from Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Chien [Univ. of Idaho, Moscow, ID (United States); Tian, Guoxin [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Janke, Christopher [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  8. Development of a Catalyst/Sorbent for Methane Reforming

    Energy Technology Data Exchange (ETDEWEB)

    B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

    2008-12-31

    This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all

  9. Biochar from Coffee Residues: A New Promising Sorbent

    Science.gov (United States)

    Fotopoulou, Kalliopi; Karapanagioti, Hrissi; Manariotis, Ioannis

    2014-05-01

    Biochar is a carbon-rich material produced by heating biomass in an oxygen-limited environment. Biochar is mainly used as an additive to soils to sequester carbon and improve soil fertility as well as a sorbent for environmental remediation processes. Surface properties such as point of zero charge, surface area and pore volume, surface topography, surface functional groups and acid-base behavior are important factors, which affect sorption efficiency. Understanding the surface alteration of biochars increases our understanding of the pollutant-sorbent interaction. The objective of the present study was to characterize the surface properties of biochar produced, and to investigate the effect of thermal treatment conditions on key characteristics that affect sorptive properties. The espresso coffee residue was obtained after the coffee was brewed through espresso machines in coffee shops. The coffee residue was dried and kept in an oven at 50oC until its pyrolysis at 850oC. Pyrolysis with different coffee mass and containers were tested in order to find optimum biochar characteristics. Detailed characterization techniques were carried out to determine the properties of the produced biochar. The surface area, the pore volume, and the average pore size of the biochars were determined using gas (N2) adsorption-desorption cycles using the Brunauer, Emmett, and Teller (BET) equation. Open surface area and micropore volume were determined using the t-plot method and the Harkins & Jura equation. Total organic carbon was also determined because it is an important factor that affects sorption. The results were compared with the corresponding properties of activated carbons. The biochar produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area from 21 to 65 m2/g. It is obvious that the surface area results from the formation of pores. Actually it was calculated that up to 90% of the porosity is due to the micropores. More specifically the

  10. Tunable polymeric sorbent materials for fractionation of model naphthenates.

    Science.gov (United States)

    Mohamed, Mohamed H; Wilson, Lee D; Headley, John V

    2013-04-04

    The sorption properties are reported for several examples of single-component carboxylic acids representing naphthenic acids (NAs) with β-cyclodextrin (β-CD) based polyurethane sorbents. Seven single-component examples of NAs were chosen with variable z values, carbon number, and chemical structure as follows: 2-hexyldecanoic acid (z = 0 and C = 16; S1), n-caprylic acid (z = 0 and C = 8; S2), trans-4-pentylcyclohexanecarboxylic acid (z = -2 and C = 12; S3), 4-methylcyclohexanecarboxylic acid (z = -2 and C = 8; S4), dicyclohexylacetic acid (z = -4; C = 14; S5), 4-pentylbicyclo[2.2.2]octane-1-carboxylic acid (z = -4; C = 14; S6), and lithocholic acid (z = -6; C = 24; S7). The copolymer sorbents were synthesized at three relative β-CD:diisocyanate mole ratios (i.e., 1:1, 1:2, and 1:3) using 4,4'-dicyclohexylmethane diisocyanate (CDI) and 4,4'-diphenylmethane diisocyanate (MDI). The sorption properties of the copolymer sorbents were characterized using equilibrium sorption isotherms in aqueous solution at pH 9.00 with electrospray ionization mass spectrometry. The equilibrium fraction of the unbound carboxylate anions was monitored in the aqueous phase. The sorption properties of the copolymer sorbents (i.e., Qm) were obtained from the Sips isotherm model. The Qm values generally decrease as the number of accessible β-CD inclusion sites in the copolymer framework decreases. The chemical structure of the adsorbates played an important role in their relative uptake, as evidenced by the adsorbate lipophilic surface area (LSA) and the involvement of hydrophobic effects. The copolymers exhibit molecular selective sorption of the single-component carboxylates in mixtures which suggests their application as sorbents for fractionation of mixtures of NAs. By comparison, granular activated carbon (GAC) and chitosan sorbents did not exhibit any significant molecular selective sorption relative to the copolymer materials; however, evidence of variable sorption capacity was

  11. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk

    International Nuclear Information System (INIS)

    El-Shafey, E.I.

    2010-01-01

    A carbonaceous sorbent was prepared from rice husk via sulfuric acid treatment. Sorption of Zn(II) and Hg(II) from aqueous solution was studied varying time, pH, metal concentration, temperature and sorbent status (wet and dry). Zn(II) sorption was found fast reaching equilibrium within ∼2 h while Hg(II) sorption was slow reaching equilibrium within ∼120 h with better performance for the wet sorbent than for the dry. Kinetics data for both metals were found to follow pseudo-second order model. Sorption rate of both metals was enhanced with temperature rise. Activation energy, E a , for Zn(II) sorption, was ∼13.0 kJ/mol indicating a diffusion-controlled process ion exchange process, however, for Hg(II) sorption, E a was ∼54 kJ/mol indicating a chemically controlled process. Sorption of both metals was low at low pH and increased with pH increase. Sorption was much higher for Hg(II) than for Zn(II) with higher uptake for both metals by rising the temperature. Hg(II) was reduced to Hg(I) on the sorbent surface. This was confirmed from the identification of Hg 2 Cl 2 deposits on the sorbent surface by scanning electron microscopy and X-ray diffraction. However, no redox processes were observed in Zn(II) sorption. Sorption mechanism is discussed.

  12. Characteristic of New Solid-Phase Extraction Sorbent: Activated Carbon Prepared from Rice Husks under Base Treated Condition

    Directory of Open Access Journals (Sweden)

    Afrida Kurnia Putri

    2012-10-01

    Full Text Available A characterization of activated carbon (ACs prepared from rice husks (RHs under base treated condition as a new sorbent for solid-phase extraction (SPE to extract 4-nonylphenol isomers (4-NPs in water samples has been done. The ACs prepared from RHs usually exhibits low specific surface area due to its high ash content, but in case of its application for SPE, there are other factors need to be considered, such as the existence of functional groups inside the sorbent, that can enhance interaction of non-polar sorbent with analyte in the water matrices. In this case, silanol groups from ash content may affect the extraction efficiency for 4-NPs. The ACs made from RHs were chemically impregnated with ZnCl2 and carbonized at 800oC. To investigate the role of silica, three types of ACs were prepared, i.e., untreated ACs (AC–Si, contain silica, base treated ACs (AC–B–Si, remain some silica inside, and ACs made by base treated RHs (AC–B, no silica, the surface area obtained from these treatments were 1352 m2/g, 1666 m2/g, and 1712m2/g respectively.  ACs made by base treatment has the highest surface area (related to BET, which indicat that silica removal process promotes the formation of open pore system on ACs and enhances the surface area of ACs. However, extraction efficiency measured by GC-MS in SPE process showed the reversal trends (i.e., AC–Si= 32.08%, AC–B–Si= 82.63%, AC–B=51.78%, among them the AC–B–Si sorbent reveal the best performance in SPE process. It is indicated that although silica usually exhibits low specific surface area, but control presence of silica as a polar functional group has a positive influence in the interaction between non-polar sorbent and 4-NPs.

  13. Developing low-cost carbon-based sorbents for Hg capture from flue gas

    Energy Technology Data Exchange (ETDEWEB)

    Perry, R.; Lakatos, J.; Snape, C.E.; Sun, C. [University of Nottingham, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre

    2005-07-01

    To help reduce the cost of Hg capture from flue gas a number of low-cost carbons are being investigated, including activated tyre char and PFA carbon, in conjunction with some of the pre-treatments that have been found to be effective for commercial actived carbons. Experimental conditions for screening the sorbents have been selected to determine breakthrough capacities rapidly. The unactivated carbons have low breakthrough capacities under the test conditions employed (around 0.1 mg g{sup -1}) but these improve upon steam activation (around 0.25 mg g{sup -1}) but are still lower than those of non-impregnated commercial activated carbons (around 0.4-0.7 mg g{sup -1}), due to their lower surface areas. Comparable improvements to the commercial carbons have been achieved for impregnation treatments, including sulfur and bromine. However, certain gasification chars do have much higher breakthrough capacities than commercial carbons used for flue gas injection. Manganese oxide impregnation with low concentration is particularly effective for the activated and unactivated carbons giving breakthrough capacities comparable to the commercial carbons. Pointers for further increasing breakthrough and equilibrium capacities for carbon-based sorbents are discussed. 7 refs., 1 fig., 3 tabs.

  14. Tributyl phosphate removal from reprocessing off-gas streams using a selected sorbent

    International Nuclear Information System (INIS)

    Parker, G.B.

    1980-01-01

    Laboratory experiments used small laboratory-scale columns packed with selected sorbent materials to remove tributyl phosphate (TBP) and iodine at conditions approaching those in actual reprocessing off-gas streams. The sorbent materials for TBP removal were placed upstream of iodine sorbent materials to protect the iodine sorbent from the deleterious effects of TBP. Methyl iodide in an airstream containing 30% TBP in normal paraffin hydrocarbons (NPH) and water vapor was metered to two packed columns of sorbents simultaneously (in parallel). One column contained a segment of 8-in. x 14-in. mesh alumina sorbent for TBP removal, the other did not. The measure of the effectiveness of TBP sorbent materials for TBP removal was determined by comparing the iodine retention of the iodine sorbent materials in the two parallel columns. Results from an 18 wt % Ag substituted mordenite iodine sorbent indicated that the iodine retention capacity of the sorbent was reduced 60% by the TBP and that the column containing iodine sorbent material protected by the alumina TBP sorbent retained 30 times more iodine than the column without TBP sorbent. TBP concentration was up to 500 mg/m 3 . Similar experiments using a 7 wt % Ag impregnated silica gel indicated that the TBP vapor had little effect on the iodine retention of the silica gel material. The stoichiometric maximum amount of iodine was retained by the silica gel material. Further experiments were conducted assessing the effects of NO 2 on iodine retention of this 7 wt % Ag sorbent. After the two columns were loaded with iodine in the presence of TBP (in NPH), one column was subjected to 2 vol % NO 2 in air. From visual comparison of the two columns, it appeared that the NO 2 regenerated the silica gel iodine sorbent and that iodine was washed off the silica gel iodine sorbent leaving the sorbent in the original state

  15. Importance Role of Low-Cost Sorbent Produced from rice husk in Separation of zirconium from yttrium

    International Nuclear Information System (INIS)

    Kandil, S.A.

    2013-01-01

    The agricultural waste, rice husk, was used as a precursor for the production of low-cost sorbent. Rice husk, a by-product of the rice milling industry, accounts for about 20 % of the whole rice. The argro-residue sorbent extracted from rice husk was employed in separation of zirconium from yttrium. The separation of Zr from the binary systems (Zr-Y) was achieved in batch and column modes. In a batch mode, the adsorption behavior was studied in deferent media, namely, hydrochloric acid, 0.1 M citrate buffer and 0.1 M acetate buffer. In addition, other factors affecting the sorption process of each metal e.g. ph-value of the medium and metal ion concentration were also studied. The breakthrough experiments were carried in the form of mini-column with different bed depths of sorbent at flow rates of 20 ml/min and 40 ml/min. These studies were performed to elucidate the valuable of use of locally, available, agro-residue for separation of Zr from Y target as a promising sorbent for purification of 88 Zr, 89 Zr from Y.

  16. Utilization of two invasive free-floating aquatic plants (Pistia stratiotes and Eichhornia crassipes) as sorbents for oil removal.

    Science.gov (United States)

    Yang, Xunan; Chen, Shanshan; Zhang, Renduo

    2014-01-01

    Free-floating aquatic plants Pistia stratiotes and Eichhornia crassipes are well-known invasive species in the tropics and subtropics. The aim of this study was to utilize the plants as cost-effective and environmentally friendly oil sorbents. Multilevel wrinkle structure of P. stratiotes leaf (PL), rough surface of E. crassipes leaf (EL), and box structure of E. crassipes stalk (ES) were observed using the scanning electron microscope. The natural hydrophobic structures and capillary rise tests supported the idea to use P. stratiotes and E. crassipes as oil sorbents. Experiments indicated that the oil sorption by the plants was a fast process. The maximum sorption capacities for different oils reached 5.1-7.6, 3.1-4.8, and 10.6-11.7 g of oil per gram of sorbent for PL, EL, and ES, respectively. In the range of 5-35 °C, the sorption capacities of the plants were not significantly different. These results suggest that the plants can be used as efficient oil sorbents.

  17. Post combustion carbon capture - solid sorbents and membranes

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, R.M. [IEA Clean Coal Centre, London (United Kingdom)

    2009-04-15

    This report follows on from that on solvent scrubbing for post-combustion carbon capture from coal-fired power plants by considering the use of solid sorbents and membranes instead of solvents. First, mesoporous and microporous adsorbents are discussed: carbon-based adsorbents, zeolites, hydrotalcites and porous crystals. Attempts have been made to improve the performance of the porous adsorbent by functionalising them with nitrogen groups and specifically, amine groups to react with CO{sub 2} and thus enhance the physical adsorption properties. Dry, regenerable solid sorbents have attracted a good deal of research. Most of the work has been on the carbonation/calcination cycle of natural limestone but there have also been studies of other calcium-based sorbents and alkali metal-based sorbents. Membranes have also been studied as potential post-combustion capture devices. Finally, techno-economic studies predicting the economic performance of solid sorbents and membranes are discussed. The report is available from IEA Clean Coal Centre as report no. CCC/144. See Coal Abstracts entry April 2009 00406. 340 refs., 21 figs., 8 tabs.

  18. Oil spill sorbents: Testing protocol and certification listing program

    International Nuclear Information System (INIS)

    Cooper, D.; Gausemel, I.

    1993-01-01

    Environment Canada's Emergencies Engineering Division is spearheading a program in conjunction with the Canadian General Standards Board that would see the development of a certification and listing program in addition to a national standard for the testing of sorbent materials. Funding for this program is provided by Environment Canada (EC), Canadian Coast Guard (CCG), Marine Spill Response Corporation (MSRC), US Coast Guard (USCG), and US Minerals Management Service (MMS). The test methods are based upon those defined by the American Society for Testing and Materials and previous test methods developed by Environment Canada for our series of reports entitled Selection Criteria and Laboratory Evaluation of Oil Spill Sorbents. This series, which was started in 1975, encompasses a number of commercially available oil spill sorbents tested with different petroleum products and hydrocarbon solvents. The testing program will categorize the sorbents according to their operating characteristics. The main categories are oil spills on water, oil spills on land, and industrial use. The characteristics to be evaluated with the new test protocols include initial and maximum sorption capacities, water pickup, buoyancy, reuse potential, retention profile, disintegration (material integrity), and ease of application and retrieval. In the near future are plans to incorporate changes to the test that would involve increasing the list of test liquids to encompass spills in an industrial setting, in addition to testing sorbent booms and addressing the disposal problem

  19. Engineered sorbent barriers for low-level waste disposal

    International Nuclear Information System (INIS)

    Mitchell, S.J.; Freeman, H.D.; Buelt, J.L.

    1986-01-01

    Pacific Northwest Laboratory is developing sorbent materials to prevent the migration of radionuclides from low-level waste sites. These materials would allow water to pass, preventing the bathtub effect at humid sites. Screening studies identified promising sorbent materials for three key radionuclides: for cesium, greensand; for cobalt, activated charcoal; and for strontium, synthetic zeolite or clinoptilolite. Mixtures of these sorbent materials were tested in 0.6-m-diameter columns using radioactive leachates. To simulate expected worst-case conditions, the leachate solution contained the radionuclides, competing cations, and a chelating agent, adjusted to a pH of 5. A sorbent barrier comprised of greensand (1 wt %), activated charcoal (6 wt %), synthetic zeolite (20 wt %), and soil (73 wt %) achieved the decontamination factors necessary to meet the regulatory performance requirements established for this study. Sorbent barriers can be applied to shallow land burial, as backfill around the waste or engineered structures, or as backup to other liner systems. 2 refs., 6 figs., 3 tabs

  20. Ecologically pure sorbents for power system of Myanmar

    Science.gov (United States)

    Nikitina, I. S.; Moryganova, Y. A.; Maung, Ko Ko; Arefeva, E. A.

    2017-11-01

    Currently, one of the most important problems of the thermal power plant, and many industrial enterprises in different countries is a wastewater treatment for oil products. When choosing the good sorbents is necessary to consider not only the properties and efficiency of the recommended materials, but also the cost, the possibility of environmentally friendly disposal of used sorbents and the possibility of using secondary resources. The purpose of this paper is to study the possibility of using agricultural waste in Myanmar as the sorbents in wastewater treatment containing oil products. The results of experiments have confirmed that rice hulls, and coconut fiber can be effectively used as the sorbents in wastewater treatment containing oil products at concentrations up to 10 mg/l. According to comparative analysis with the conventional sorbent-activated birch carbon (BAC-A) in the Russian power industry has shown that coconut fiber has very good sorption capacity and it is available to use as the raw materials for industries, which does not require to regenerate after using it and can be directly recycled in the factory.

  1. EVALUATION OF INTERNALLY STAGED COAL BURNERS AND SORBENT JET AERODYNAMICS FOR COMBINED SO2/NOX CONTROL IN UTILITY BOILERS; VOLUME 2. TESTING IN A 100 MILLION BTU/HR EXPERIMENTAL FURNACE

    Science.gov (United States)

    The report givesresults of100 million Btu/hr (29 MWt) experimental furnace to explore methods for achieving effective S02 removal in a coalfired utility boiler using calcium-based sorbents, through appropriate selection of injection location and injector design/operating paramete...

  2. EVALUATION OF CARBON DIOXIDE CAPTURE FROM EXISTING COAL FIRED PLANTS BY HYBRID SORPTION USING SOLID SORBENTS

    Energy Technology Data Exchange (ETDEWEB)

    Benson, Steven; Browers, Bruce; Srinivasachar, Srivats; Laudal, Daniel

    2014-12-31

    Under contract DE-FE0007603, the University of North Dakota conducted the project Evaluation of Carbon Dioxide Capture from Existing Coal Fired Plants by Hybrid Sorption Using Solid Sorbents. As an important element of this effort, a Technical and Economic Feasibility Study was conducted by Barr Engineering Co. (Barr) in association with the University of North Dakota. The assessment developed a process flow diagram, major equipment list, heat balances for the SCPC power plant, capital cost estimate, operating cost estimate, levelized cost of electricity, cost of CO2 capture ($/ton) and three sensitivity cases for the CACHYS™ process.

  3. Granisetron Injection

    Science.gov (United States)

    Granisetron immediate-release injection is used to prevent nausea and vomiting caused by cancer chemotherapy and to ... nausea and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with ...

  4. Edaravone Injection

    Science.gov (United States)

    Edaravone injection is used to treat amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease; a condition in which ... die, causing the muscles to shrink and weaken). Edaravone injection is in a class of medications called ...

  5. Meropenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria that cause infection.Antibiotics such as meropenem injection will not work for colds, flu, or other viral infections. Taking ...

  6. Chloramphenicol Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work for colds, flu, or other viral infections. Taking ...

  7. Colistimethate Injection

    Science.gov (United States)

    ... injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work for colds, flu, or other viral infections. Using ...

  8. Defibrotide Injection

    Science.gov (United States)

    Defibrotide injection is used to treat adults and children with hepatic veno-occlusive disease (VOD; blocked blood ... the body and then returned to the body). Defibrotide injection is in a class of medications called ...

  9. Nalbuphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using nalbuphine injection, you may experience withdrawal symptoms including restlessness; teary eyes; runny nose; yawning; ...

  10. Literature survey: methods for the removal of iodine species from off-gases and liquid waste streams of nuclear power and nuclear fuel reprocessing plants, with emphasis on solid sorbents

    International Nuclear Information System (INIS)

    Holladay, D.W.

    1979-01-01

    Emphasis was focused on the operating parameters that most strongly affected the optimization of the processes used to treat actual process or feed streams which simulated actual compositions occurring at nuclear facilities. These parameters included gas superficial velocity, temperature, types of organic and inorganic contaminants, relative humidity, iodine feed-gas concentration, iodine species, column design (for both acid-scrub and solid sorbent-based processes), sorbent particle size, run time, intense radiation (solid sorbents only), and scrub-acid concentration. The most promising acid-scrub process for removal of iodine species from off-gases appears to be Iodox. The most promising solid sorbent for removal of iodine species from off-gases is the West German Ag-KTB--AgNO 3 -impregnated amorphous silicic acid. The tandem silver mordenite--lead mordenite sorbent system is also quite attractive. Only a limited number of processes have thus far been studied for removal of iodine species from low-level liquid waste streams. The most extensive successful operating experience has been obtained with anion exchange resins utilized at nuclear power reactors. Bench-scale engineering tests have indicated that the best process for removal of all types of iodine species from liquid waste streams may be treatment on a packed bed containing a mixture of sorbents with affinity for both elemental and anionic species of iodine. 154 references, 7 figures, 21 tables

  11. Effect of tumbling time, injection rate and k-carrageenan addition on processing, textural and color characteristics of pork Biceps femoris muscle

    Directory of Open Access Journals (Sweden)

    Livia PATRAŞCU

    2013-08-01

    Full Text Available The effect of tumbling time (0-9 hours, injection rate (20-50% and k carrageenan addition (0.25 - 0.5% on quality characteristics of cooked pork Biceps femoris muscle have been studied. Properties of injected and tumbled meat samples were determined by measuring processing characteristics (tumbling yield, cooking yield and expressible moisture, color (L*, a*, b*, Hue angle and Chroma and texture (firmness, toughness, adhesiveness, work of adhesion and fracturability. Increasing tumbling time up to 9 h led to better hydration properties and increased the cooking yield for all samples, both with 0.25% and 0.5% of k-carrageenan addition. It also decreased the firmness and toughness of the evaluated samples. Biceps femoris samples containing a higher level of k-carrageenan were tenderer than those containing less polysaccharide. Neither injection rate nor tumbling time affected the color components of the analyzed samples.

  12. EFFECTS OF THE LITHIUM – CONTAINING SORBENT ON TERMS OF BEHAVIORAL REACTIONS UNDER CHRONIC ALCOHOL INTOXICATION MODEL

    Directory of Open Access Journals (Sweden)

    A. A. Kotlyarova

    2016-01-01

    Full Text Available Lithium preparations are widely used for stabilize mood in case of bipolar affective disorder. Currently neuroprotective and neuroregenerative effects of lithium are of interest as in case of acute brain injury, also in chronic neurodegenerative diseases such as dementia, alcoholism, Alzheimer disease, etc. [1–5]. In clinical practice use of lithium preparations is limited due to difficult adjustment of drug dosage, necessity of monitoring its concentration in blood, side effects development as a result of accumulation of lithium in a body. For the purpose of improvement of pharmacologic properties lithium is combined with other agents (for example modifying sorbent thus it can produce longer-term and more harmless (less side reactions effect in the long view. Lithium immobilization on sorption basis will allow to use sorbent as detoxicant and carrying agent of drugs to body. The purpose of the work is studying the effect of the lithium – containing sorbent on terms of behavioral reactions under chronic alcohol intoxication model.Materials and methods. During the work we used nonlinear mice – males, which weight 25–30 g (180 animals. Chronic alcohol intoxication was precipitated via 40% proof spirit injections (oral supplementation in quantity of 3 g/kg during 2 weeks, additionally mice drunk 5% proof spirit from drinking bowl. Each experimental group consisted of 10 animals. Study drugs were inserted inside while ethanol injecting. Control animals were inserted 0,9% salin solution. Emotional state of animals was assessed through forced swim test, short – term memory assessment was performed through conditioned passive avoidance reflex. Effect of chronic alcohol intoxication on the parameters of conditioned reflex activity was measured every 7 days.Results. It was found that the investigated lithium-containing sorbent increases: the number of mice are trained passive avoidance reflex, remembering percent of electric shock

  13. Determination of Parabens by Injection-Port Derivatization Coupled With Gas-Chromatography-Mass Spectrometry and Matrix Solid Phase Dispersion

    Science.gov (United States)

    Djatmika, Rosalina; Ding, Wang-Hsien; Sulistyarti, Hermin

    2018-01-01

    A rapid determination of four parabens preservatives (methyl paraben, ethyl paraben, propyl paraben, and butyl paraben) in marketed seafood is presented. Analytes were extracted and purified using matrix solid-phase dispersion (MSPD) method, followed by Injection port acylation gas chromatography-mass spectrometry (GC-MS) with acetic anhydride reagent. In this method, acylation of parabens was performed by acetic anhydride at GC injection-port generating reduction of the time-consuming sample-processing steps, and the amount of toxic reagents and solvents. The parameters affecting this method such as injection port temperature, purge-off time and acylation (acetic anhydride) volume were studied. In addition, the MSPD influence factors (including the amount of dispersant and clean-up co-sorbent, as well as the volume of elution solvent) were also investigated. After MSPD method and Injection port acylation applied, good linearity of analytes was achieved. The limits of quantitation (LOQs) were 0.2 to 1.0 ng/g (dry weight). Compared with offline derivatization commonly performed, injection port acylation employs a rapid, simple, low-cost and environmental-friendly derivatization process. The optimized method has been successfully applied for the analysis of parabens in four kind of marketed seafood. Preliminary results showed that the total concentrations of four selected parabens ranged from 16.7 to 44.7 ng/g (dry weight).

  14. Itaconic acid based potential sorbent for uranium recovery

    International Nuclear Information System (INIS)

    Kalyan, Y.; Naidu, G.R.K.; Das, Sadananda; Pandey, A.K.; Reddy, A.V.R.

    2010-01-01

    Cross-linked hydrogels and adsorptive membranes containing Itaconic acid, Acrylamide, Penta erythritol tetra acrylate and α, α-dimethyl- α-phenyl aceto phenone were prepared by UV-initiated bulk polymerization. These hydrogels and adsorptive membranes were characterized for pH uptake, sorption and desorption kinetics and selectivity towards uranium. The sorption ability of the sorbents towards uranyl ion was thoroughly examined. The developed itaconic acid based sorbents were evaluated for the recovery of uranium from lean sources like sea water. (author)

  15. Study of process parameters on two phase flow agitated by top blowing lance injection into a bath

    Energy Technology Data Exchange (ETDEWEB)

    Xia Jiliang; Ahokainen, T.; Holappa, L.

    1998-12-31

    Numerical investigation has been carried out for two phase flow in a bath agitated by top blowing lance injection. Eulerian two phase flow model is used. Lance immersion depth, injection gas flow rate, nozzle diameter, and bubble size have been systematically changed to examine their influence on the flow characteristics in the bath. It is found that there appear three typical flow patterns: one-vortex, two-vortex, and three-vortex type, with changing the injection gas flow rate or/and the nozzle diameter at moderate lance immersion depth. Predicted velocities are in a good agreement with Iguchi et al.`s experimental data and the main findings are also consistent with the measurements and observations of Chatterjee and Hsiao and Lehner. (orig.) 24 refs. Computational Fluid Dynamics Technology Programme

  16. Bench-scale studies on capture of mercury on mineral non-carbon based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion; Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Wendt, Jost O.L. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical Engineering; Zhang, Junying; Zheng, Chuguang [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    A new high-temperature, mineral non-carbon based dispersed sorbent derived from paper recycling products has been shown to capture mercury at high temperatures in excess of 600 C. The sorbent is consisted of kaolinite/calcite/lime mixtures. Experiments have been conducted on chemi-sorption of elemental mercury in air on a packed bed. The sorption occurs at temperatures between 600 and 1,100 C and requires activation of the minerals contained within the sorbents. Mercury capture is dominated by temperature and capture on sorbents over long time scales. The capture shows a maximum effectiveness at 1,000 C and increases monotonically with temperature. The presence of oxygen is also the required. Freshly activated sorbent is the most effective, and deactivation of sorbents occurs at high temperatures with long pre-exposure times. This activation is suspected to involve a solid-solid reaction between intimately mixed calcium oxide and silica that are both contained within the sorbent. Deactivation occurs at temperatures higher than 1,000 C, and this is due to melting of the substrate and pore closure. The situation in packed beds is complicated because the bed also shrinks, thus allowing channeling and by-passing, and consequent ambiguities in determining sorbent saturation. Sorbent A had significantly greater capacity for mercury sorption than did Sorbent B, for all temperatures and exposure time examined. The effect of SiO{sub 2} on poor Sorbent B is much larger than sorbent A.

  17. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    Science.gov (United States)

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. CT-guided injection of botulinic toxin for percutaneous therapy of piriformis muscle syndrome with preliminary MRI results about denervative process

    Energy Technology Data Exchange (ETDEWEB)

    Fanucci, E.; Masala, S.; Sodani, G.; Varrucciu, V.; Romagnoli, A.; Squillaci, E.; Simonetti, G. [Dept. of Radiology, Univ. of Rome (Italy)

    2001-12-01

    Piriformis muscle syndrome (PMS) is a cause of sciatica, leg or buttock pain and disability. The pain is usually increased by muscular contraction, palpation or prolonged sitting. The aim of our paper was to evaluate the feasibility of CT-guided percutaneous botulinic toxin (BTX) injection for the purpose of PMS treatment. Thirty patients suffering from PMS, suspected with clinical and electrophysiological criteria, after imaging examinations excluding other causes of sciatic pain, resulted positive at the lidocaine test and were treated by intramuscular injection of BTX type A under CT guidance. The follow-up (12 months) was performed with clinical examination in all cases and with MR 3 months after the procedure in 9 patients to evaluate the denervative process entity of the treated muscle. In 26 cases relief of symptoms was obtained after 5-7 days. In 4 patients an insufficient relief of pain justified a second percutaneous treatment which was clinically successful. No complications or side effects were recorded after BTX injection. The MR examination showed a signal intensity change of the treated muscle in 7 patients due to the denervative process of PM, whereas in the remaining 2 cases only an atrophy of the treated muscle was detected. Larger series are necessary to confirm these MRI preliminary results. The CT-guided BTX injection in the PMS is an emergent and feasible technique that obtains an excellent local therapeutic effect without risk of imprecise inoculation. (orig.)

  19. NOx removal characteristics of corona radical shower with ammonia and methylamine radical injections

    Energy Technology Data Exchange (ETDEWEB)

    Urashima, K.; Ara, M.; Chang, J.S. [McMaster Univ., Hamilton, ON (Canada). Dept. of Engineering Physics; Uchida, Y. [Aichi Inst. of Technology, (Japan). Dept. of Engineering

    2010-07-01

    Air pollutants such as nitrogen oxides (NOx) and sulfur oxides (SOx) are the major cause of acid rain. There are different types of NOx and SOx conversion techniques such as wet scrubber, selective catalytic reactor, sorbent injection, and low NOx burner. Non-thermal plasma techniques have also been utilized in commercial plants, but the energy efficiency of the non-thermal plasma reactors have not yet been optimized. The direct plasma treatments of flue gases including, the electron beam, barrier discharge and pulsed corona reactors, may lose input energy to activate unwanted components of flue gases such as carbon dioxide (CO{sub 2}) and nitrogen (N{sub 2}). The corona discharge ammonia radical shower system has demonstrated significant NOx removal with higher energy efficiency for large bench scale and pilot plant tests for combustion exhausts. An experiment has also demonstrated that methane can replace ammonia as an injection gas with less NOx removal efficiency. This paper presented an experimental investigation that compared methylamine radical injection with traditional ammonia and methane radical injections. The paper discussed the bench scale test facilities and corona radical shower plasma reactor. It was concluded that the processes to form ammonium nitrate could be observed from trace white solid particles deposited on the reactor wall as observed by scanning electron microscopy pictures. 10 refs., 5 figs., 2 appendices.

  20. Investigation of process parameters influence on flash formation in injection moulding of polymer micro features through design of experiments

    DEFF Research Database (Denmark)

    Eladl, Abdelkhalik; Tosello, Guido; Mostafa, Rania

    Micro injection moulding is one of the key technologies for micro manufacture due to its mass-production capability and relatively low component cost. Flash defects are among the most critical issues in the replication of micro features and constitute a manufacturing constrain in applying injecti...

  1. Prevention of PCDD/F formation by chemical inhibitor injection into the flue gases in the incineration processes

    Energy Technology Data Exchange (ETDEWEB)

    Ruuskanen, J.; Halonen, I.; Ruokojaervi, P.; Tuppurainen, K.; Tarhanen, J. [Kuopio Univ. (Finland). Lab. of Environmental Chemistry

    1997-10-01

    Three series of inhibition tests were performed at the laboratory and the pilot scale plants during the years 1995-1996. In the laboratory tests chemical inhibitors were added to fly ash before the thermal treatment. Inhibitors were not found to have any effects on destruction of PCDD/Fs at the torment temperature of 160 and 300 deg C compared to the situation without inhibitors. The thermal treatment at 300 deg C alone reduced and dechlorinated PCDD/Fs effectively. In the pilot scale tests both gaseous and liquid inhibitors were injected to the flue gases at 700 deg C, and gaseous inhibitors also at 400 deg C. The total PCDD/F reductions were between 0-95 % depending on the inhibitor, injection temperature and the amount of inhibitors. In the gaseous inhibitor tests the PCDD/F reductions especially high in the particle phase, being even 98 % in dimethylamine injection. In the liquid inhibitor tests the PCDD/F reductions were also high in the gas phase being even 96 % in sodium ammonium hydrogen phosphate injection. (orig.)

  2. Environmental survey - tar sands in situ processing research program (Vernal, Uintah County, Utah). [Reverse-forward combustion; steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q.

    1980-03-01

    Research will be done on the reverse-forward combustion and steam injection for the in-situ recovery of oil from tar sands. This environmental survey will serve as a guideline for the consideration of environmental consequences of such research. It covers the construction phase, operational phase, description of the environment, potential impacts and mitigations, coordination, and alternatives. (DLC)

  3. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behavior

    NARCIS (Netherlands)

    Ocelik, V; Nijman, S.; van Ingen, R; Oliveira, U; De Hosson, J Th M

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6Al4V alloys were studied exptl. and theor. by FEM calcns. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminum oxide layer on the Al melt surface

  4. Laser melt injection of hard ceramic particles into Al and Ti alloys - processing, microstructure and mechanical behaviour

    NARCIS (Netherlands)

    Ocelik, V.; Nijman, S.; van Ingen, R.; Oliveira, U.; de Hosson, J.T.M.; Brebbia, CA; DeHosson, JTM; Nishida, SI

    2003-01-01

    The conditions for a successful Laser Melt Injection (LMI) of SiC and WC particles into the melt pool of Al8Si and Ti6A14V alloys were studied experimentally and theoretically by FEM calculations. The laser employed is a high power Nd:YAG. The formation of a relatively thick aluminium oxide layer on

  5. Experimental evaluation of desuperheating and oil cooling process through liquid injection in two-staged ammonia refrigeration systems with screw compressors

    International Nuclear Information System (INIS)

    Zlatanović, Ivan; Rudonja, Nedžad

    2012-01-01

    This paper examines the problem of achieving desuperheating through liquid injection in two-staged refrigeration systems based on screw compressors. The oil cooling process by refrigerant injection is also included. The basic thermodynamic principles of desuperheating and compressor cooling as well as short comparison with traditional method with a thermosyphon system have also been presented. Finally, the collected data referring to a big refrigeration plant are analyzed in the paper. Specific ammonia system concept applied in this refrigeration plant has demonstrated its advantages and disadvantages. - Highlights: ► An experiment was setup during a frozen food factory refrigeration system reconstruction and adaptation. ► Desuperheating and low-stage compressors oil cooling process were investigated. ► Efficiency of compression process and high-stage compressors functioning were examined. ► Evaporation temperature reduction has great influence on the need for injected liquid refrigerant. ► Several cases in which desuperheating and oil cooling process application are justified were determined.

  6. Enchancing the use of coal by gas reburning and sorben injection

    International Nuclear Information System (INIS)

    Keen, R.T.; Hong, C.C.; Opatrny, J.C.; Sommer, T.M.; Folsom, B.A.; Payne, R.; Ritz, H.J.; Pratapas, J.M.; May, T.J.; Krueger, M.S.

    1993-01-01

    The Gas Reburning-Sorbent Injection (GR-SI) Process was demonstrated on a 71 MWe net tangentially fired boiler at Hennepin, Illinois, and is being demonstrated on a 33 MWe net cyclone-fired boiler at Springfield, Illinois as a Clean Coal Technology Round I demonstration project. The Hennepin demonstration was completed after more than 2,000 hours of successful operation. In long-term demonstration testing at a Ca/S molar ratio of 1.75 an 19 percent gas heat input, 53 percent SO 2 reduction and 67 percent NO x reduction were achieved without any adverse impacts on boiler performance or electrostatic precipitator performance with flue gas humidification. These achievements exceeded the project goals of 50 and 60 percent, respectively. The CO 2 reduction due to the use of 18 percent natural gas was 8 percent

  7. Cadmium adsorption by coal combustion ashes-based sorbents-Relationship between sorbent properties and adsorption capacity

    Energy Technology Data Exchange (ETDEWEB)

    Balsamo, Marco; Di Natale, Francesco; Erto, Alessandro; Lancia, Amedeo [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli Federico II, Piazzale Vincenzo Tecchio 80, 80125 Napoli (Italy); Montagnaro, Fabio, E-mail: fabio.montagnaro@unina.it [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy); Santoro, Luciano [Dipartimento di Chimica, Universita degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant' Angelo, 80126 Napoli (Italy)

    2011-03-15

    A very interesting possibility of coal combustion ashes reutilization is their use as adsorbent materials, that can also take advantage from proper beneficiation techniques. In this work, adsorption of cadmium from aqueous solutions was taken into consideration, with the emphasis on the intertwining among waste properties, beneficiation treatments, properties of the beneficiated materials and adsorption capacity. The characterization of three solid materials used as cadmium sorbents (as-received ash, ash sieved through a 25 {mu}m-size sieve and demineralized ash) was carried out by chemical analysis, infrared spectroscopy, laser granulometry and mercury porosimetry. Cadmium adsorption thermodynamic and kinetic tests were conducted at room temperature, and test solutions were analyzed by atomic absorption spectrophotometry. Maximum specific adsorption capacities resulted in the range 0.5-4.3 mg g{sup -1}. Different existing models were critically considered to find out an interpretation of the controlling mechanism for adsorption kinetics. In particular, it was observed that for lower surface coverage the adsorption rate is governed by a linear driving force while, once surface coverage becomes significant, mechanisms such as the intraparticle micropore diffusion may come into play. Moreover, it was shown that both external fluid-to-particle mass transfer and macropore diffusion hardly affect the adsorption process, which was instead regulated by intraparticle micropore diffusion: characteristic times for this process ranged from 4.1 to 6.1 d, and were fully consistent with the experimentally observed equilibrium times. Results were discussed in terms of the relationship among properties of beneficiated materials and cadmium adsorption capacity. Results shed light on interesting correlations among solid properties, cadmium capture rate and maximum cadmium uptake.

  8. Sorption of europium (3) by polymer sorbents with grafted heterocyclic nitrogen-containing groupings

    International Nuclear Information System (INIS)

    Bel'tyukova, S.V.; Kravchenko, T.B.; Balamtsarashvili, G.M.; Roska, A.S.

    1990-01-01

    On polymer sorbents (copolymer of styrene-divinylbenzene) with grafted heterocyclic nitrogen-containing functional groupings of tetrazole, triazole and imidazole (sorbents 1,2,3, respectively). It is stated that europium sorption takes place from neutral solutions in presence of organic solvents. Luminescent properties of europium on sorbent are used to develope methods of its determination in high purity lanthanide and yttrium oxides. Europium determination limits consist 7.5·10 -5 μg/ml on 1 and 3 sorbents and 1.5·10 -4 μg/ml on sorbent 2, S p value is 0.089 and 0.075, respectivaly

  9. Novel composite sorbent AAm/MA hydrogels containing starch and ...

    Indian Academy of Sciences (India)

    A novel polymer/clay composite sorbent based on acrylamide/maleic acid, starch and clay such as kaolin was synthesized with free radical solution polymerization by using ammonium persulfate/,,','-tetramethylethylenediamine as redox initiating pair in the presence of poly(ethylene glycol)diacrylate as a crosslinker.

  10. New Composite Sorbents for Caesium and Strontium Ions Sorption

    Directory of Open Access Journals (Sweden)

    Mykola Kartel

    2017-06-01

    Full Text Available Composite lignocellulose-inorganic sorbents derived from plant residues of agriculture and food industry, modified with ferrocyanides of d-metals and hydrated antimony pentoxide were prepared. Caesium and strontium ions removal from water was tested by radiotracer method. Sorption of heavy metal ions, methylene blue, gelatin, vitamin B12 was also studied.

  11. Comments on "Ceria-Zirconia High-Temperature Desulfurization Sorbents".

    Czech Academy of Sciences Publication Activity Database

    Hartman, Miloslav; Trnka, Otakar

    2006-01-01

    Roč. 45, č. 4 (2006), s. 1548-1549 ISSN 0888-5885 Institutional research plan: CEZ:AV0Z40720504 Keywords : hydrogen sulfide * desulfurization * cerium sorbent Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2006

  12. Natural sorbents for decontamination of objects of urban territories

    International Nuclear Information System (INIS)

    Movchan, N.; Fedorenko, Yu.; Zlobenko, B.; Spigoun, A.

    1996-01-01

    This paper gives an information about the use of film coverings, based on natural sorbents, in decontamination of buildings, contaminated after the Chernobyl accident. This method has incontrovertible advantages in the beginning period after the accident and can be used for cleaning considerable areas of urban territories

  13. Core-in-shell sorbent for hot coal gas desulfurization

    Science.gov (United States)

    Wheelock, Thomas D.; Akiti, Jr., Tetteh T.

    2004-02-10

    A core-in-shell sorbent is described herein. The core is reactive to the compounds of interest, and is preferably calcium-based, such as limestone for hot gas desulfurization. The shell is a porous protective layer, preferably inert, which allows the reactive core to remove the desired compounds while maintaining the desired physical characteristics to withstand the conditions of use.

  14. Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process

    Directory of Open Access Journals (Sweden)

    Huihua Feng

    2016-06-01

    Full Text Available For a compression ignition (CI free piston engine linear generator (FPLG, injection timing is one of the most important parameters that affect its performance, especially for the one-stroke starting operation mode. In this paper, two injection control strategies are proposed using piston position and velocity signals. It was found experimentally that the injection timing’s influence on the compression ratio, the peak in-cylinder gas pressure and the indicated work (IW is different from that of traditional reciprocating CI engines. The maximum IW of the ignition starting cylinder, say left cylinder (LC and the right cylinder (RC are 132.7 J and 138.1 J, respectively. The thermal-dynamic model for simulating the working processes of the FPLG are built and verified by experimental results. The numerical simulation results show that the running instability and imbalance between LC and RC are the obvious characters when adopting the injection strategy of the velocity feedback. These could be solved by setting different triggering velocity thresholds for the two cylinders. The IW output from the FPLG under this strategy is higher than that of adopting the position feedback strategy, and the maximum IW of the RC could reach 162.3 J. Under this strategy, the prototype is able to achieve better starting conditions and could operate continuously for dozens of cycles.

  15. Sb(III)-Imprinted Organic-Inorganic Hybrid Sorbent Prepared by Hydrothermal-Assisted Surface Imprinting Technique for Selective Adsorption of Sb(III)

    Science.gov (United States)

    Zhang, Dan; Zhao, Yue; Xu, Hong-Bo

    2018-03-01

    Sb(III)-imprinted organic-inorganic hybrid sorbent was prepared by hydrothermal-assisted surface imprinting technique and was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy coupled to an energy dispersive spectrometer and N2 adsorption/desorption isotherms. Hydrothermal-assisted process can improve the selectivity of the Sb(III)-imprinted hybrid sorbent for Sb(III) due to stable control of temperature and pressure. The Sb(III)-imprinted hybrid sorbent IIS indicated higher selectivity for Sb(III), had high static adsorption capacity of 37.3 mg g-1 for Sb(III), displayed stable adsorption capacity in pH range from 4 to 8, reached an rapid adsorption equilibrium within 30 min. According to the correlation coefficient ( r 2 > 0.99), the experimental data fitted better the pseudo-second-order kinetic model and Langmuir equilibrium isotherm.

  16. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  17. Hydromorphone Injection

    Science.gov (United States)

    ... anyone else to use your medication. Store hydromorphone injection in a safe place so that no one else can use it accidentally or on purpose. Keep track of how much medication is left so ... with hydromorphone injection may increase the risk that you will develop ...

  18. Ketorolac Injection

    Science.gov (United States)

    ... an older adult, you should know that ketorolac injection is not as safe as other medications that can be used to treat your condition. Your doctor may choose to prescribe a different medication ... to ketorolac injection.Your doctor or pharmacist will give you the ...

  19. Paclitaxel Injection

    Science.gov (United States)

    (pak'' li tax' el)Paclitaxel injection must be given in a hospital or medical facility under the supervision of a doctor who is experienced in giving chemotherapy medications for cancer.Paclitaxel injection may cause a large decrease in the number of white blood cells (a type of blood cell ...

  20. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J.

    2010-01-01

    This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada) research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC) reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use. PMID:20948952

  1. Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods

    Directory of Open Access Journals (Sweden)

    Edward J. Anthony

    2010-08-01

    Full Text Available This paper presents a review of the research on CO2 capture by lime-based looping cycles undertaken at CanmetENERGY’s (Ottawa, Canada research laboratories. This is a new and very promising technology that may help in mitigation of global warming and climate change caused primarily by the use of fossil fuels. The intensity of the anticipated changes urgently requires solutions such as more cost-effective technologies for CO2 capture. This new technology is based on the use of lime-based sorbents in a dual fluidized bed combustion (FBC reactor which contains a carbonator—a unit for CO2 capture, and a calciner—a unit for CaO regeneration. However, even though natural materials are cheap and abundant and very good candidates as solid CO2 carriers, their performance in a practical system still shows significant limitations. These limitations include rapid loss of activity during the capture cycles, which is a result of sintering, attrition, and consequent elutriation from FBC reactors. Therefore, research on sorbent performance is critical and this paper reviews some of the promising ways to overcome these shortcomings. It is shown that reactivation by steam/water, thermal pre-treatment, and doping simultaneously with sorbent reforming and pelletization are promising potential solutions to reduce the loss of activity of these sorbents over multiple cycles of use.

  2. Solid amine sorbents for CO2 capture by chemical adsorption: A review

    Directory of Open Access Journals (Sweden)

    Elif Erdal Ünveren

    2017-03-01

    Full Text Available Amines are well-known for their reversible reactions with CO2, which make them ideal for CO2 capture from several gas streams, including flue gas. In this respect, selective CO2 absorption by aqueous alkanolamines is the most mature technology but the process is energy intensive and has also corrosion problems. Both disadvantages can be diminished to a certain extent by chemical adsorption of CO2 selectively. The most important element of the chemical adsorption of CO2 involves the design and development of a suitable adsorbent which consist of a porous support onto which an amine is attached or immobilized. Such an adsorbent is often called as solid amine sorbent. This review covers solid amine-based studies which are developed and published in recent years. First, the review examines several different types of porous support materials, namely, three mesoporous silica (MCM-41, SBA-15 and KIT-6 and two polymeric supports (PMMA and PS for CO2 adsorption. Emphasis is given to the synthesis, modifications and characterizations -such as BET and PXRD data-of them. Amination of these supports to obtain a solid amine sorbent through impregnation or grafting is reviewed comparatively. Focus is given to the adsorption mechanisms, material characteristics, and synthesis methods which are discussed in detail. Significant amount of original data are also presented which makes this review unique. Finally, relevant CO2 adsorption (or equilibrium capacity data, and cyclic adsorption/desorption performance and stability of important classes of solid amine sorbents are critically reviewed. These include severa PEI or TEPA impregnated adsorbents and APTES-grafted systems.

  3. Efficacy of the Molded Carbon Sorbent VNIITU-1 Used in Obstetric Practice

    Directory of Open Access Journals (Sweden)

    V. T. Dolgikh

    2015-01-01

    Full Text Available Objective: to develop a technology for obtaining the molded sorbent VNIITU1, to study its physicochemical and biomedical properties, and to evaluate its efficacy in preventing and treating pyoinflammatory complications in obstetrics.Materials and methods. The molded sorbent VNIITU-1 was designed from the carbon porous material based on nanodispersed carbon by mixing with a vehicle, extruding the mixture, drying the extrudate in an inert atmosphere, thermally treating and activating by steam, followed by washing with distilled water and drying (TU 9398043710698342013. The molded sorbent VNIITU-1 is apyrogenic and nontoxic (Toxicity Study Conclusion No. 1998.013.P dated 14.08.2013; Engineering Testing Assessment No. 12.404 ORTI/2013 dated 26.08.2013, it is destined for single administration, sterile, placed in a removable thread capron mesh container, and used to treat and prevent pyoseptic complications in puerperas at risk for infection, such as acute nonspecific postpartum endometritis. A total of 52 puerperas were examined and treated. They had been divided into 2 groups: a study group (n=37 and a comparison group (n=15. In the study group, the hemosorbent VNIITU1 as a porous carbon applicator was postpartum inserted into the uterine cavity, by concurrently performing traditional antibiotic therapy to prevent infectious complications. The comparison group received only traditional antibiotic therapy. The uterine cavity aspirate was examined for IL1β and IL6 levels, its microbial profile, and microbial growth patterns in culture media. The data were processed using a package of applied STATISTICA6.1 programs and standard mathematical tables in Microsoft Excel. Descriptive and variation statistical methods were applied. The data were presented as Me [low quartilehigh quartile (LQHQ]; two pre and posttreatment dependent variables were compared using the Wilcoxon and Mann-Whitney tests.Results. The molded carbon sorbent VNIITU1 was

  4. [Optimization of vacuum belt drying process of Gardeniae Fructus in Reduning injection by Box-Behnken design-response surface methodology].

    Science.gov (United States)

    Huang, Dao-sheng; Shi, Wei; Han, Lei; Sun, Ke; Chen, Guang-bo; Wu Jian-xiong; Xu, Gui-hong; Bi, Yu-an; Wang, Zhen-zhong; Xiao, Wei

    2015-06-01

    To optimize the belt drying process conditions optimization of Gardeniae Fructus extract from Reduning injection by Box-Behnken design-response surface methodology, on the basis of single factor experiment, a three-factor and three-level Box-Behnken experimental design was employed to optimize the drying technology of Gardeniae Fructus extract from Reduning injection. With drying temperature, drying time, feeding speed as independent variables and the content of geniposide as dependent variable, the experimental data were fitted to a second order polynomial equation, establishing the mathematical relationship between the content of geniposide and respective variables. With the experimental data analyzed by Design-Expert 8. 0. 6, the optimal drying parameter was as follows: the drying temperature was 98.5 degrees C , the drying time was 89 min, the feeding speed was 99.8 r x min(-1). Three verification experiments were taked under this technology and the measured average content of geniposide was 564. 108 mg x g(-1), which was close to the model prediction: 563. 307 mg x g(-1). According to the verification test, the Gardeniae Fructus belt drying process is steady and feasible. So single factor experiments combined with response surface method (RSM) could be used to optimize the drying technology of Reduning injection Gardenia extract.

  5. Different healing process of esophageal large mucosal defects by endoscopic mucosal dissection between with and without steroid injection in an animal model.

    Science.gov (United States)

    Nonaka, Kouichi; Miyazawa, Mitsuo; Ban, Shinichi; Aikawa, Masayasu; Akimoto, Naoe; Koyama, Isamu; Kita, Hiroto

    2013-04-25

    Stricture formation is one of the major complications after endoscopic removal of large superficial squamous cell neoplasms of the esophagus, and local steroid injections have been adopted to prevent it. However, fundamental pathological alterations related to them have not been well analyzed so far. The aim of this study was to analyze the time course of the healing process of esophageal large mucosal defects resulting in stricture formation and its modification by local steroid injection, using an animal model. Esophageal circumferential mucosal defects were created by endoscopic mucosal dissection (ESD) for four pigs. One pig was sacrificed five minutes after the ESD, and other two pigs were followed-up on endoscopy and sacrificed at the time of one week and three weeks after the ESD, respectively. The remaining one pig was followed-up on endoscopy with five times of local steroid injection and sacrificed at the time of eight weeks after the ESD. The esophageal tissues of all pigs were subjected to pathological analyses. For the pigs without steroid injection, the esophageal stricture was completed around three weeks after the ESD on both endoscopy and esophagography. Histopathological examination of the esophageal tissues revealed that spindle-shaped α-smooth muscle actin (SMA)-positive myofibroblasts arranged in a parallel fashion and extending horizontally were identified at the ulcer bed one week after the ESD, and increased contributing to formation of the stenotic luminal ridge covered with the regenerated epithelium three weeks after the ESD. The proper muscle layer of the stricture site was thinned with some myocytes which seemingly showed transition to the myofibroblast layer. By contrast, for the pig with steroid injection, esophageal stricture formation was not evident with limited appearance of the spindle-shaped myofibroblasts, instead, appearance of stellate or polygocal SMA-positive stromal cells arranged haphazardly in the persistent granulation

  6. The Calcium-Looping technology for CO_2 capture: On the important roles of energy integration and sorbent behavior

    International Nuclear Information System (INIS)

    Perejón, Antonio; Romeo, Luis M.; Lara, Yolanda; Lisbona, Pilar; Martínez, Ana; Valverde, Jose Manuel

    2016-01-01

    Highlights: • The Calcium Looping (CaL) technology is a potentially low cost and highly efficient postcombustion CO_2 capture technology. • Energy integration and sorbent behavior play a relevant role on the process. • The industrial competitiveness of the process depends critically on the minimization of energy penalties. • It may be used in precombustion capture systems and other industrial processes such as cement production. • Sorbent deactivation must be assessed under realistic conditions involving high CO_2 concentration in the calciner. - Abstract: The Calcium Looping (CaL) technology, based on the multicyclic carbonation/calcination of CaO in gas–solid fluidized bed reactors at high temperature, has emerged in the last years as a potentially low cost technology for CO_2 capture. In this manuscript a critical review is made on the important roles of energy integration and sorbent behavior in the process efficiency. Firstly, the strategies proposed to reduce the energy demand by internal integration are discussed as well as process modifications aimed at optimizing the overall efficiency by means of external integration. The most important benefit of the high temperature CaL cycles is the possibility of using high temperature streams that could reduce significantly the energy penalty associated to CO_2 capture. The application of the CaL technology in precombustion capture systems and energy integration, and the coupling of the CaL technology with other industrial processes are also described. In particular, the CaL technology has a significant potential to be a feasible CO_2 capture system for cement plants. A precise knowledge of the multicyclic CO_2 capture behavior of the sorbent at the CaL conditions to be expected in practice is of great relevance in order to predict a realistic capture efficiency and energy penalty from process simulations. The second part of this manuscript will be devoted to this issue. Particular emphasis is put on the

  7. Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent.

    Science.gov (United States)

    Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S

    2017-01-01

    Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Caracterización de la biomasa inactiva de Aspergillus niger O-5 como sorbente de Pb (II

    Directory of Open Access Journals (Sweden)

    Yusleydi Enamorado Horrutiner

    2011-01-01

    Full Text Available The inactive biomass of fungus Aspergillus niger O-5 obtained in Cuba was characterized as sorbent of Pb2+ by several structural analysis and others techniques. In addition, the biomass was studied for the separation / preconcentration of Pb2+ from aqueous solution. The maximum biosorption capacity was obtained for the contact time of 30 min and pH 5. The kinetic of sorption process occurred according to the model of Ho. The Freundlich or Langmuir models suitably described the experimental adsorption isotherms. The biomass can be used as sorbent for Pb2+ with a maximum capacity of 4.7 - 6.2 mg g-1. The pretreatment with NaOH solution improved its sorption capacity.

  9. The influence of reactivation by hydration of spent SO{sub 2} sorbents on their impact fragmentation in fluidized bed combustors

    Energy Technology Data Exchange (ETDEWEB)

    Montagnaro, F.; Salatino, P.; Santoro, L.; Scala, F. [University of Naples Federico II, Naples (Italy)

    2010-09-01

    The relationship between calcination/sulphation and attrition/fragmentation of calcium-based SO{sub 2} sorbents in fluidized bed (FB) combustors has long been recognized, but only recently did attrition by impact receive due consideration. There is limited available information in the literature on the propensity of exhausted calcium-based sorbents to undergo high-velocity impact fragmentation after they have been reactivated by steam or water hydration. The present study addresses the relationship between hydration-induced reactivation of spent Ca-based sorbents and attrition by impact loading. The sorbent used in this work (a high-calcium Italian limestone) was pre-processed (sulphation at 850{sup o}C in a lab-scale FB, water hydration for 3 h at 25{sup o}C in a thermostatic bath, steam hydration for 3 h at 250 degrees C in a tubular reactor, dehydration at 850{sup o}C in the FB) and subjected to impact tests in a purposely designed impact test rig, operated with particle impact velocities ranging from 4 to 45 m s{sup -1}. The particle size distribution of the debris was worked out to define a fragmentation index and a probability density function of the size of generated fragments. The effect of hydration/reactivation of spent sorbent on propensity to undergo impact fragmentation was assessed, and results are discussed in the light of a mechanistic framework. It was observed that the prevailing particle breakage pattern was splitting/chipping for water-reactivated samples, disintegration for steam-reactivated samples. Characterization of sorbent microstructure by porosimetry and microscopic investigation on the reactivated samples highlighted a clear relationship between the extent of fragmentation and the cumulative specific volume of mesopores.

  10. Temozolomide Injection

    Science.gov (United States)

    ... balance or coordination fainting dizziness hair loss insomnia memory problems pain, itching, swelling, or redness in the place where the medication was injected changes in vision Some side effects can be serious. If you ...

  11. Buprenorphine Injection

    Science.gov (United States)

    ... injection is in a class of medications called opiate partial agonists. It works to prevent withdrawal symptoms ... help. If the victim has collapsed, had a seizure, has trouble breathing, or can't be awakened, ...

  12. Risperidone Injection

    Science.gov (United States)

    ... release (long-acting) injection is used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  13. Haloperidol Injection

    Science.gov (United States)

    ... haloperidol extended-release injection are used to treat schizophrenia (a mental illness that causes disturbed or unusual ... may help control your symptoms but will not cure your condition. Continue to keep appointments to receive ...

  14. Omalizumab Injection

    Science.gov (United States)

    ... injection is used to decrease the number of asthma attacks (sudden episodes of wheezing, shortness of breath, and ... about how to treat symptoms of a sudden asthma attack. If your asthma symptoms get worse or if ...

  15. Injection Tests

    CERN Document Server

    Kain, V

    2009-01-01

    The success of the start-up of the LHC on 10th of September was in part due to the preparation without beam and injection tests in 2008. The injection tests allowed debugging and improvement in appropriate portions to allow safe, efficient and state-of-the-art commissioning later on. The usefulness of such an approach for a successful start-up becomes obvious when looking at the problems we encountered before and during the injection tests and could solve during this period. The outline of the preparation and highlights of the different injection tests will be presented and the excellent performance of many tools discussed. A list of shortcomings will follow, leading to some planning for the preparation of the run in 2009.

  16. Cefotaxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotaxime injection will not work for colds, flu, or other viral infections. Using ...

  17. Cefuroxime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefuroxime injection will not work for colds, flu, or other viral infections. Using ...

  18. Doripenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work for colds, flu, or other viral infections. Taking ...

  19. Daptomycin Injection

    Science.gov (United States)

    ... in a class of medications called cyclic lipopeptide antibiotics. It works by killing bacteria.Antibiotics such as daptomycin injection will not work for treating colds, flu, or other viral infections. ...

  20. Ceftaroline Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftaroline injection will not work for colds, flu, or other viral infections. Using ...

  1. Aztreonam Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as aztreonam injection will not work for colds, flu, or other viral infections. Taking ...

  2. Cefazolin Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefazolin injection will not work for colds, flu, or other viral infections. Taking ...

  3. Ceftazidime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftazidime injection will not work for colds, flu, or other viral infections. Using ...

  4. Cefotetan Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefotetan injection will not work for colds, flu, or other viral infections. Using ...

  5. Cefoxitin Injection

    Science.gov (United States)

    ... is in a class of medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work for colds, flu, or other viral infections. Taking ...

  6. Tigecycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infection.Antibiotics such as tigecycline injection will not work for colds, flu, or other viral infections. Using ...

  7. Ertapenem Injection

    Science.gov (United States)

    ... is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as ertapenem injection will not work for colds, flu, or other viral infections. Taking ...

  8. Ceftriaxone Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as ceftriaxone injection will not work for colds, flu, or other viral infections.Using ...

  9. Cefepime Injection

    Science.gov (United States)

    ... is in a class of medications called cephalosporin antibiotics. It works by killing bacteria.Antibiotics such as cefepime injection will not work for colds, flu, or other viral infections. Using ...

  10. Telavancin Injection

    Science.gov (United States)

    ... is in a class of medications called lipoglycopeptide antibiotics. It works by killing bacteria that cause infection.Antibiotics such as telavancin injection will not work for colds, flu, or other viral infections. Using ...

  11. Doxycycline Injection

    Science.gov (United States)

    ... is in a class of medications called tetracycline antibiotics. It works by killing bacteria that cause infections.Antibiotics such as doxycycline injection will not work for colds, flu, or other viral infections. Taking ...

  12. Vancomycin Injection

    Science.gov (United States)

    ... is in a class of medications called glycopeptide antibiotics. It works by killing bacteria that cause infections.Antibiotics such as vancomycin injection will not work for colds, flu, or other viral infections. Taking ...

  13. Octreotide Injection

    Science.gov (United States)

    ... carton and protect it from light. Dispose of multi-dose vials of the immediate-release injection 14 ... and immediately place the medication in a safe location – one that is up and away and out ...

  14. Moxifloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using moxifloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  15. Delafloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using delafloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  16. Levofloxacin Injection

    Science.gov (United States)

    ... tendon area, or inability to move or to bear weight on an affected area.Using levofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  17. Ciprofloxacin Injection

    Science.gov (United States)

    ... a tendon area, or inability to move or bear weight on an affected area.Using ciprofloxacin injection ... muscle weakness) and cause severe difficulty breathing or death. Tell your doctor if you have myasthenia gravis. ...

  18. Alirocumab Injection

    Science.gov (United States)

    ... 9 (PCSK9) inhibitor monoclonal antibodies. It works by blocking the production of LDL cholesterol in the body ... hives difficulty breathing or swallowing swelling of the face, throat, tongue, lips, and eyes Alirocumab injection may ...

  19. Evolocumab Injection

    Science.gov (United States)

    ... 9 (PCSK9) inhibitor monoclonal antibody. It works by blocking the production of LDL cholesterol in the body ... hives difficulty breathing or swallowing swelling of the face, throat, tongue, lips, and eyes Evolocumab injection may ...

  20. Acyclovir Injection

    Science.gov (United States)

    ... It is also used to treat first-time genital herpes outbreaks (a herpes virus infection that causes sores ... in the body. Acyclovir injection will not cure genital herpes and may not stop the spread of genital ...

  1. Butorphanol Injection

    Science.gov (United States)

    ... Butorphanol is in a class of medications called opioid agonist-antagonists. It works by changing the way ... suddenly stop using butorphanol injection, you may experience withdrawal symptoms such as nervousness, agitation, shakiness, diarrhea, chills, ...

  2. Investigation of the effect of nanoclay and processing parameters on the tensile strength and hardness of injection molded Acrylonitrile Butadiene Styrene–organoclay nanocomposites

    International Nuclear Information System (INIS)

    Mamaghani Shishavan, Sajjad; Azdast, Taher; Rash Ahmadi, Samrand

    2014-01-01

    Highlights: • Development of polymer/clay nanocomposites. • Compatibility of ABS and montmorillonite nanoclay and composition capability of them. • Effect of nanoclay content and process parameters on the mechanical properties of nanocomposite. • Analyzing the distribution of nanoclay layers using XRD test. • Dependency of tensile strength and hardness to the nanoclay content and processing conditions. - Abstract: Polymer–clay nanocomposites have attracted considerable interest over recent years due to their dramatic improved mechanical properties. In the present study, compatibility of Acrylonitrile Butadiene Styrene (ABS) and organically modified montmorillonite nanoclay (Cloisite 30B) and composition capability of them are investigated. Polymethylmethacrylate (PMMA) in varying amount (0, 2, and 4 wt%) is used as the compatibilizer. In order to produce nanocomposite parts, the material is first compounded using a twin-screw extruder and then injected into a mold. The effect of the nanoclay percentage and processing parameters on the tensile strength and hardness of nanocomposite parts is also explored using Taguchi Design of Experiments method. Nanoclay content (in three levels: 0, 2 and 4 wt%), melt temperature (in three levels: 190, 200 and 210 °C), holding pressure (in three levels: 80, 105 and 130 MPa) and holding pressure time (in three levels: 1, 2.5 and 4 s) are considered as the variable parameters. Moreover, distribution of nanoclay layers is analyzed using Wide Angle X-ray Diffraction (XRD) test. XRD results displayed that with the presence of PMMA, nanoclay in ABS matrix is compounded in more exfoliated and less intercalated dispersion mode. Adding PMMA also leads to a remarkable increase in the fluidity of the melt during injection molding process. Results also illustrated that nanocomposites with medium loading level (i.e. 2%) of nanoclay have the highest tensile strength, while the highest hardness number belongs to nanocomposites with

  3. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection

    Directory of Open Access Journals (Sweden)

    Xuesong Liu

    2015-01-01

    Full Text Available This paper used near-infrared (NIR spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R-3, 4-dihydroxyphenyllactic acid, protocatechuic aldehyde (PA, rosmarinic acid (RA, and salvianolic acid B (SAB concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.

  4. Near-Infrared Spectroscopy as an Analytical Process Technology for the On-Line Quantification of Water Precipitation Processes during Danhong Injection.

    Science.gov (United States)

    Liu, Xuesong; Wu, Chunyan; Geng, Shu; Jin, Ye; Luan, Lianjun; Chen, Yong; Wu, Yongjiang

    2015-01-01

    This paper used near-infrared (NIR) spectroscopy for the on-line quantitative monitoring of water precipitation during Danhong injection. For these NIR measurements, two fiber optic probes designed to transmit NIR radiation through a 2 mm flow cell were used to collect spectra in real-time. Partial least squares regression (PLSR) was developed as the preferred chemometrics quantitative analysis of the critical intermediate qualities: the danshensu (DSS, (R)-3, 4-dihydroxyphenyllactic acid), protocatechuic aldehyde (PA), rosmarinic acid (RA), and salvianolic acid B (SAB) concentrations. Optimized PLSR models were successfully built and used for on-line detecting of the concentrations of DSS, PA, RA, and SAB of water precipitation during Danhong injection. Besides, the information of DSS, PA, RA, and SAB concentrations would be instantly fed back to site technical personnel for control and adjustment timely. The verification experiments determined that the predicted values agreed with the actual homologic value.

  5. Advancement of In-Flight Alumina Powder Spheroidization Process with Water Droplet Injection Using a Small Power DC-RF Hybrid Plasma Flow System

    Science.gov (United States)

    Jang, Juyong; Takana, Hidemasa; Park, Sangkyu; Nishiyama, Hideya

    2012-09-01

    The correlation between plasma thermofluid characteristics and alumina powder spheroidization processes with water droplet injection using a small power DC-RF hybrid plasma flow system was experimentally clarified. Micro-sized water droplets with a low water flow rate were injected into the tail of thermal plasma flow so as not to disturb the plasma flow directly. Injected water droplets were vaporized in the thermal plasma flow and were transported upstream in the plasma flow to the torch by the backflow. After dissociation of water, the production of hydrogen was detected by the optical emission spectroscopy in the downstream RF plasma flow. The emission area of the DC plasma jet expanded and elongated in the vicinity of the RF coils. Additionally, the emission area of RF plasma flow enlarged and was visible as red emission in the downstream RF plasma flow in the vicinity below the RF coils due to hydrogen production. Therefore, the plasma flow mixed with produced hydrogen increased the plasma enthalpy and the highest spheroidization rate of 97% was obtained at a water flow rate of 15 Sm l/min and an atomizing gas flow rate of 8 S l/min using a small power DC-RF hybrid plasma flow system.

  6. Effect of starch types on properties of biodegradable polymer based on thermoplastic starch process by injection molding technique

    Directory of Open Access Journals (Sweden)

    Yossathorn Tanetrungroj

    2015-04-01

    Full Text Available In this study effects of different starch types on the properties of biodegradable polymer based on thermoplastic starch (TPS were investigated. Different types of starch containing different contents of amylose and amylopectin were used, i.e. cassava starch, mungbean starch, and arrowroot starch. The TPS polymers were compounded and shaped using an internal mixer and an injection molding machine, respectively. It was found that the amount of amylose and amylopectin contents on native starch influence the properties of the TPS polymer. A high amylose starch of TPMS led to higher strength, hardness, degree of crystallization than the high amylopectin starch of TPCS. In addition, function group analysis by Fourier transforms infrared spectrophotometer, water absorption, and biodegradation by soil burial test were also examined.

  7. Durable zinc ferrite sorbent pellets for hot coal gas desulfurization

    Science.gov (United States)

    Jha, Mahesh C.; Blandon, Antonio E.; Hepworth, Malcolm T.

    1988-01-01

    Durable, porous sulfur sorbents useful in removing hydrogen sulfide from hot coal gas are prepared by water pelletizing a mixture of fine zinc oxide and fine iron oxide with inorganic and organic binders and small amounts of activators such as sodium carbonate and molybdenite; the pellets are dried and then indurated at a high temperature, e.g., 1800.degree. C., for a time sufficient to produce crush-resistant pellets.

  8. Sorbents for effective removal of radioactive antimony during chemical decontamination

    International Nuclear Information System (INIS)

    Nishad, Padala Abdul; Bhaskarapillai, Anupkumar; Velmurugan, Sankaralingam

    2014-01-01

    Removal of radioactive antimony is a challenging problem. Often, during decontamination, they get mobilized around the system and redeposit in different areas thus offsetting the reduction in the radiation field obtained by removing other activities such as 60 Co. Thus, there is a clear need for better antimony removing materials/strategies for effective reactor decontamination. In this regard, six commercially available sorbents namely, Tulsion A33 (strong base anion (-OH) resin), Amberlite IRC-718 (chelating resin), Radex ® Sb-1000, nano TiO 2 -special grade (Inorganic type IX), Chitosan (biosorbent) and Aeroxide p25 (nano TiO 2 , Inorganic type IX) were evaluated for their antimony sorption properties. Radex ® and TiO 2 based materials were found to be more effective in removing both Sb(V) and Sb(III). Solution pH was seen to significantly influence the antimony sorption and the effect was more prominent in anion resin, when tested under column conditions. Apart from the commercial sorbents, we have synthesised a robust high performing sorbent (TA-Chitosan beads) in the form of stable beads, using nano-TiO 2 and chitosan. The beads were found to retain the antimony sorption properties of the nano-TiO 2 , while adapting a physical format suitable for large scale operations. The sorbent exhibited almost complete sorption of antimony both in low (ppb level) as well as high concentrations of antimony. The suitability of the beads for use in column mode has been established and its radiation stability was probed in detail. The beads were found to be stable to irradiations as ascertained from the TOC values and unchanged sorption properties. The sorption properties of the CHITA beads in typical decontamination formulation containing mixture of complexing agents have been investigated in detail. (author)

  9. The effect of preparation of biogenic sorbent on zinc sorption

    Directory of Open Access Journals (Sweden)

    Jana Jenčárová

    2011-12-01

    Full Text Available The aim of this study is to prepare biogenic sulphides by using bacteria for the removal of zinc cations from their solutions. Theproduction was realized in a bioreactor under anaerobic conditions at 30 °C. Sorbents were prepared by sulphate-reducing bacteria indifferent nutrient medium modifications, under two modes of bacteria cultivation. Created precipitates of iron sulphides were removedfrom the liquid phase of the cultivation medium by filtration, dried and used for the sorption experiments.

  10. Performance of some silver sorbents for control of radioiodine from nuclear fuel operations

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Halko, B.T.; Waters, E.D.; Orme, R.M.

    1989-01-01

    The Process Facility Modification (PFM) proposed for the Hanford PUREX plant includes control of gaseous radioiodine. In support of the Westinghouse Hanford Company (WHC) design effort for the PFM, the Pacific Northwest Laboratory (PNL) has evaluated caustic scrubbing and the use of silver-containing solid sorbents to remove iodine from the dissolver offgas (DOG) stream. The present report describes the behavior of several silver-containing zeolites and silver nitrate-impregnated silicic acid tested under conditions simulating normal and standby operation of the PFM. These studies found that the silver zeolites, Norton silver mordenite (NAgZ), Linde silver mordenite (LAgZ), and partially silver-exchanged Linde silver faujasite (PAgX), can routinely reduce the gaseous iodine concentration in a simulated PFM DOG to -5 μmol I/L, while a commercially produced silver nitrate-impregnated silicic acid (AgNO 3 Si) could not at these test conditions. Tests simulating standby operation of beds loaded up to 0.25 μmol I/g sorbent indicate that standby operation will not result in effluent concentrations above 10 -5 μmol I/L. At higher loadings standby operation initially caused iodine to migrate from NAgZ. There were indications that the iodine tends to stabilize with time, but insufficient information is available to fully characterize these reactions

  11. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Saeed, Asma, E-mail: asmadr@wol.net.pk [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan); Sharif, Mehwish [School of Biological Sciences, University of the Punjab, Lahore 54590 (Pakistan); Iqbal, Muhammad [Environmental Biotechnology Group, Biotechnology and Food Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore 54600 (Pakistan)

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation {>=}0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g{sup -1}. The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  12. Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption

    International Nuclear Information System (INIS)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-01-01

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation ≥0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g -1 . The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions.

  13. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.

    Science.gov (United States)

    Saeed, Asma; Sharif, Mehwish; Iqbal, Muhammad

    2010-07-15

    This study reports the sorption of crystal violet (CV) dye by grapefruit peel (GFP), which has application potential in the remediation of dye-contaminated wastewaters using a solid waste generated by the citrus fruit juice industry. Batch adsorption of CV was conducted to evaluate the effect of initial pH, contact time, temperature, initial dye concentration, GFP adsorbent dose, and removal of the adsorbate CV dye from aqueous solution to understand the mechanism of sorption involved. Sorption equilibrium reached rapidly with 96% CV removal in 60 min. Fit of the sorption experimental data was tested on the pseudo-first and pseudo-second-order kinetics mathematical equations, which was noted to follow the pseudo-second-order kinetics better, with coefficient of correlation > or = 0.992. The equilibrium process was well described by the Langmuir isotherm model, with maximum sorption capacity of 254.16 mg g(-1). The GFP was regenerated using 1 M NaOH, with up to 98.25% recovery of CV and could be reused as a dye sorbent in repeated cycles. GFP was also shown to be highly effective in removing CV from aqueous solution in continuous-flow fixed-bed column reactors. The study shows that GFP has the potential of application as an efficient sorbent for the removal of CV from aqueous solutions. 2010 Elsevier B.V. All rights reserved.

  14. Effects of rapid calcination on properties of calcium-based sorbents

    International Nuclear Information System (INIS)

    Yan, Chang-Feng; Grace, John R.; Lim, C. Jim

    2010-01-01

    The calcination process may influence subsequent fragmentation, sintering and swelling when CaO derived from limestone acts as a CO 2 or SO 2 -sorbent in combustion, gasification and reforming. Sorbent properties are affected by CO 2 partial pressure, total pressure, temperature, heating rate, impurities and sample size. In this study, the effect of calcination heating rate was investigated based on an electrically heated platinum foil. The effects of heating rate (up to 800 C/s), calcination temperature (700-950 C), particle size (90-180 μm) and sweep gas velocity were investigated. Higher initial heating rates led to lower extents of limestone calcination, but the extents of carbonation of the resulting CaO were similar to each other. Calcium utilization declined markedly during carbonation or sulphation of CaO after calcination by rapid heating. Experimental results show that carbonation and calcium utilization were most effective for carbonation temperatures between 503 and 607 C. Increasing the extent of calcination is not the best way to improve overall calcium utilization due to the vast increase in energy consumption. (author)

  15. Use of inorganic sorbents for treatment of liquid radioactive waste and backfill of underground repositories

    International Nuclear Information System (INIS)

    1992-11-01

    This document presents the results of a four year Co-ordinated Research Programme (CRP) on the ''Use of Inorganic Sorbents for Treatment of Liquid Radioactive Waste and Backfill of Underground Repositories'' (1987-1991). Many countries have research programmes aiming at developing processes which would provide efficient and safe concentration of radionuclides in waste streams into solid materials which could then be reliably immobilized into forms suitable for long term storage or disposal. Use of inorganic sorbents for this purpose is very attractive because of their resistance to radiation and chemical attack, strong affinity for one or more radionuclides, their compatibility with likely immobilization matrices and their availability at low cost. According to the fundamental multibarrier concept for disposal of radioactive waste, backfill material is one of the important engineered barriers. Inorganic materials such as clays, naturally occurring zeolites (clinoptilolite, modenite and chabasite) are promising backfill materials. Research in technical uses of inorganic material applications was covered within the framework of the Co-ordinated Research Programme reported in this technical document. Final contributions by participants at the last Research Co-ordination Meeting held in Rez, Czechoslovakia, from 4 to 8 November 1991, are presented here. Refs, figs and tabs

  16. A Longitudinal Study of Decomposition Odour in Soil Using Sorbent Tubes and Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Katelynn A. Perrault

    2014-07-01

    Full Text Available Odour profiling of decomposed remains is important for understanding the mechanisms that cadaver dogs and forensically-relevant insects use to locate decomposed remains. The decomposition odour profile is complex and has been documented in outdoor terrestrial environments. The purpose of this study was to perform longitudinal analysis of the volatile organic compound (VOC profile in soils associated with decomposed remains across all stages of decomposition. Two VOC collection techniques (sorbent tubes and solid phase microextraction were used to collect a wider analyte range and to investigate differences in collection techniques. Pig carcasses were placed in an outdoor research facility in Australia to model the decomposition process and VOCs were collected intermittently over two months. VOCs of interest were identified over the duration of the trial, showing distinct trends in compound evolution and disappearance. The collection techniques were complementary, representing different subsets of VOCs from the overall profile. Sorbent tubes collected more decomposition-specific VOCs and these compounds were more effective at characterising the matrix over an extended period. Using both collection techniques improves the likelihood of identifying the complete VOC profile of decomposition odour. Such information is important for the search and recovery of victim remains in various stages of decomposition.

  17. Enhanced capture of elemental mercury by bamboo-based sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Zengqiang [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Su, Sheng, E-mail: susheng_sklcc@hotmail.com [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zeng, Hancai; Zhou, Changsong; Sun, Lushi; Hu, Song; Qiu, Jianrong [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The KI-modified BC has excellent capacity for elemental mercury removal. Black-Right-Pointing-Pointer The chemisorption plays a dominant role for the modified BC materials. Black-Right-Pointing-Pointer The BC-I has strong anti-poisoning ability with the presence of NO or SO{sub 2}. - Abstract: To develop cost-effective sorbent for gas-phase elemental mercury removal, the bamboo charcoal (BC) produced from renewable bamboo and KI modified BC (BC-I) were used for elemental mercury removal. The effect of NO, SO{sub 2} on gas-phase Hg{sup 0} adsorption by KI modified BC was evaluated on a fixed bed reactor using an online mercury analyzer. BET surface area analysis, temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to determine the pore structure and surface chemistry of the sorbents. The results show that KI impregnation reduced the sorbents' BET surface area and total pore volume compared with that of the original BC. But the BC-I has excellent adsorption capacity for elemental mercury at a relatively higher temperature of 140 Degree-Sign C and 180 Degree-Sign C. The presence of NO or SO{sub 2} could inhibit Hg{sup 0} capture, but BC-I has strong anti-poisoning ability. The specific reaction mechanism has been further analyzed.

  18. Ionic liquids: solvents and sorbents in sample preparation.

    Science.gov (United States)

    Clark, Kevin D; Emaus, Miranda N; Varona, Marcelino; Bowers, Ashley N; Anderson, Jared L

    2018-01-01

    The applications of ionic liquids (ILs) and IL-derived sorbents are rapidly expanding. By careful selection of the cation and anion components, the physicochemical properties of ILs can be altered to meet the requirements of specific applications. Reports of IL solvents possessing high selectivity for specific analytes are numerous and continue to motivate the development of new IL-based sample preparation methods that are faster, more selective, and environmentally benign compared to conventional organic solvents. The advantages of ILs have also been exploited in solid/polymer formats in which ordinarily nonspecific sorbents are functionalized with IL moieties in order to impart selectivity for an analyte or analyte class. Furthermore, new ILs that incorporate a paramagnetic component into the IL structure, known as magnetic ionic liquids (MILs), have emerged as useful solvents for bioanalytical applications. In this rapidly changing field, this Review focuses on the applications of ILs and IL-based sorbents in sample preparation with a special emphasis on liquid phase extraction techniques using ILs and MILs, IL-based solid-phase extraction, ILs in mass spectrometry, and biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cleanup of Savannah River Plant solvent using solid sorbents

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1985-04-01

    The degradation products produced in Purex solvent by exposure to nitric acid and radiation can be divided into two groups: those which are removed by scrubbing with sodium carbonate solutions and those which are not; these latter materials are called secondary degradation products. This study investigated the use of solid sorbents for removal of the secondary degradation products from first-cycle Savannah River Plant solvent that had been previously washed with sodium carbonate solution. Silica gel, activated charcoal, macroreticular resin, attapulgite clay and activated alumina were the sorbents investigated in preliminary testing. Activated alumina was found to be most effective for improving phase separation of the solvent from sodium carbonate solutions and for increasing the interfacial tension. The activated alumina was also the sorbent most useful for removing complexants which retain plutonium at low acidity, but it was less effective in removing anionic surfactants and ruthenium. We found that the capacity of the activated alumina was greatly improved by drying the solvent before treatment

  20. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped