WorldWideScience

Sample records for sophomore biology majors

  1. Teaching information literacy skills to sophomore-level biology majors.

    Science.gov (United States)

    Thompson, Leigh; Blankinship, Lisa Ann

    2015-05-01

    Many undergraduate students lack a sound understanding of information literacy. The skills that comprise information literacy are particularly important when combined with scientific writing for biology majors as they are the foundation skills necessary to complete upper-division biology course assignments, better train students for research projects, and prepare students for graduate and professional education. To help undergraduate biology students develop and practice information literacy and scientific writing skills, a series of three one-hour hands-on library sessions, discussions, and homework assignments were developed for Biological Literature, a one-credit, one-hour-per-week, required sophomore-level course. The embedded course librarian developed a learning exercise that reviewed how to conduct database and web searches, the difference between primary and secondary sources, source credibility, and how to access articles through the university's databases. Students used the skills gained in the library training sessions for later writing assignments including a formal lab report and annotated bibliography. By focusing on improving information literacy skills as well as providing practice in scientific writing, Biological Literature students are better able to meet the rigors of upper-division biology courses and communicate research findings in a more professional manner.

  2. The Relationships Between Epistemic Beliefs in Biology and Approaches to Learning Biology Among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-12-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and large, it was found that the students reflected "mixed" motives in biology learning, while those who had more sophisticated epistemic beliefs tended to employ deep strategies. In addition, the results of paired t tests revealed that the female students were more likely to possess beliefs about biological knowledge residing in external authorities, to believe in a right answer, and to utilize rote learning as a learning strategy. Moreover, compared to juniors and seniors, freshmen and sophomores tended to hold less mature views on all factors of epistemic beliefs regarding biology. Another comparison indicated that theoretical biology students (e.g. students majoring in the Department of Biology) tended to have more mature beliefs in learning biology and more advanced strategies for biology learning than those students studying applied biology (e.g. in the Department of Biotechnology). Stepwise regression analysis, in general, indicated that students who valued the role of experiments and justify epistemic assumptions and knowledge claims based on evidence were more oriented towards having mixed motives and utilizing deep strategies to learn biology. In contrast, students who believed in the certainty of biological knowledge were more likely to adopt rote learning strategies and to aim to qualify in biology.

  3. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  4. Engineering students at typically invisible transition points: A focus on admissions and the sophomore year

    Science.gov (United States)

    Holloway, Elizabeth M.

    similarity than differences, although the differences indicated that engineering sophomores were less engaged in their learning and less engaged with faculty and advisors. Sophomore engineering women were much more likely than men to be involved in engineering peer mentoring or leadership programs. Multiple regression analysis indicated that the most significant predictor of student satisfaction was satisfaction with peers on campus. The most significant predictor of intention to persist and intention to graduate was surety of major choice. However, there were differences in the most significant predictors when looking at men and women separately. Predictors of success outcomes for engineering sophomores point to the interconnectedness of experiences with faculty, advisors, and peers with individual student traits, characteristics, and preferences, with individual aspects acting as mediating and moderating factors. The overarching results of this research project offer frameworks through which change in the engineering education process can lead to greater participation by women in the engineering field, and increased retention rates for all engineering students.

  5. Assessment of Student Learning Associated with Tree Thinking in an Undergraduate Introductory Organismal Biology Course

    Science.gov (United States)

    Smith, James J.; Cheruvelil, Kendra Spence; Auvenshine, Stacie

    2013-01-01

    Phylogenetic trees provide visual representations of ancestor-descendant relationships, a core concept of evolutionary theory. We introduced "tree thinking" into our introductory organismal biology course (freshman/sophomore majors) to help teach organismal diversity within an evolutionary framework. Our instructional strategy consisted…

  6. Exploring Three-Phase Systems and Synchronous Motors: A Low-Voltage and Low-Cost Experiment at the Sophomore Level

    Science.gov (United States)

    Schubert, T. F., Jr.; Jacobitz, F. G.; Kim, E. M.

    2011-01-01

    In order to meet changing curricular and societal needs, a three-phase system and synchronous motor laboratory experience for sophomore-level students in a wide variety of engineering majors was designed, implemented, and assessed. The experiment is unusual in its early placement in the curriculum, and in that it focuses primarily on basic…

  7. Do Biology Majors Really Differ from Non-STEM Majors?

    Science.gov (United States)

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students-including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences-if any exist-between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non-STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non-STEM majors are not unilaterally science averse; non-STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non-STEM majors are less likely than biology majors to see science as personally relevant; and non-STEM majors populations are likely to be more diverse-with respect to incoming knowledge, perceptions, backgrounds, and skills-than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. © 2017 S. Cotner et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Do Biology Majors Really Differ from Non–STEM Majors?

    Science.gov (United States)

    Cotner, Sehoya; Thompson, Seth; Wright, Robin

    2017-01-01

    Recent calls to action urge sweeping reform in science education, advocating for improved learning for all students—including those majoring in fields beyond the sciences. However, little work has been done to characterize the differences—if any exist—between students planning a career in science and those studying other disciplines. We describe an attempt to clarify, in broad terms, how non–STEM (science, technology, engineering, and mathematics) majors differ from life sciences majors, and how they are similar. Using survey responses and institutional data, we find that non–STEM majors are not unilaterally science averse; non–STEM majors are more likely than biology majors to hold misconceptions about the nature of science, yet they are not completely ignorant of how science works; non–STEM majors are less likely than biology majors to see science as personally relevant; and non–STEM majors populations are likely to be more diverse—with respect to incoming knowledge, perceptions, backgrounds, and skills—than a biology majors population. We encourage science educators to consider these characteristics when designing curricula for future scientists or simply for a well-informed citizenry. PMID:28798210

  9. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems—teleological, essentialist, and anthropocentric thinking—that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. PMID:25713093

  10. Analyzing the Cooking Behavior of Sophomore Female Students : In relation to the ability for preparation of cooking

    OpenAIRE

    Imakawa, Shinji

    2012-01-01

    The aim of this study was to clarify the Dandori-ryoku (the ability for preparation in cooking) by analyzing the practical cooking behavior of sophomore female students. Ten sophomore female students were participated in the experiment to cook three kinds of food (cooking rice, making miso soup and fried vegetables). The behavior of the participants during cooking were videotaped and analyzed in detail later especially in relation to Dandori-ryoku. Such behaviors as “starting from cooking ric...

  11. Relations between intuitive biological thinking and biological misconceptions in biology majors and nonmajors.

    Science.gov (United States)

    Coley, John D; Tanner, Kimberly

    2015-03-02

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed misconceptions, among biology students across biological domains. In parallel, cognitive and developmental psychologists have described intuitive conceptual systems--teleological, essentialist, and anthropocentric thinking--that humans use to reason about biology. We hypothesize that seemingly unrelated biological misconceptions may have common origins in these intuitive ways of knowing, termed cognitive construals. We presented 137 undergraduate biology majors and nonmajors with six biological misconceptions. They indicated their agreement with each statement, and explained their rationale for their response. Results indicate frequent agreement with misconceptions, and frequent use of construal-based reasoning among both biology majors and nonmajors in their written explanations. Moreover, results also show associations between specific construals and the misconceptions hypothesized to arise from those construals. Strikingly, such associations were stronger among biology majors than nonmajors. These results demonstrate important linkages between intuitive ways of thinking and misconceptions in discipline-based reasoning, and raise questions about the origins, persistence, and generality of relations between intuitive reasoning and biological misconceptions. © 2015 J. D. Coley and K. Tanner. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. A Vicarious Learning Activity for University Sophomores in a Multiculturalism Course

    Science.gov (United States)

    Chennault, Ronald E.

    2005-01-01

    How can one teach a course about multiculturalism to a broad spectrum of university sophomores in a way that is research-based, pedagogically sound, and appealing--all in ten weeks? In this article, the author states that a course he teaches, "Multiculturalism in Education," examines cultural differences as they relate to social inequalities in…

  13. Supporting the Transition of Sophomores, Transfers, and Seniors: Opportunities for Residence Life Professionals

    Science.gov (United States)

    Kranzow, Jeannine; Foote, Stephanie M.; Hinkle, Sara E.

    2015-01-01

    College students transitioning to their sophomore year, those transferring to a new institution, and seniors transitioning out of higher education face various challenges and struggles. The literature on the transitions associated with these student populations indicates that they need sustained support in a few key areas that include student and…

  14. Weight Changes, Exercise, and Dietary Patterns during Freshman and Sophomore Years of College.

    Science.gov (United States)

    Racette, Susan B.; Deusinger, Susan S.; Strube, Michael J.; Highstein, Gabrielle R.; Deusinger, Robert H.

    2005-01-01

    Weight gain and behavioral patterns during college may contribute to overweight and obesity in adulthood. The aims of this study were to assess weight, exercise, and dietary patterns of 764 college students (53% women, 47% men) during freshman and sophomore years. Students had their weight and height measured and completed questionnaires about…

  15. Freshman Biology Majors' Misconceptions about Diffusion and Osmosis.

    Science.gov (United States)

    Odom, A. Louis; Barrow, Lloyd H.

    The data for this study were obtained from a sample of 117 biology majors enrolled in an introductory biology course. The Diffusion and Osmosis Diagnostic Test, composed of 12 two-tier items, was administered to the students. Among the major findings are: (1) there was no significant difference in scores of male and female students; (2) math…

  16. Predictors of Participation of Sophomore Medical Students in a Health-Promoting Intervention: An Observational Study.

    Directory of Open Access Journals (Sweden)

    Thomas Kötter

    Full Text Available Medical students and doctors have to be particularly stress-resilient, as both medical education and practice are considered very stressful. Specific stressors can lead to increased risks of developing, for example, depression, anxiety and burnout. Relaxation techniques have proven to be effective for the prevention of these outcomes in student populations. However, only a very few medical students practice relaxation techniques regularly early on in their studies. Furthermore, it is unclear which students make use of stress-management offers and hence whether vulnerable students are generally reachable. Therefore, the aim of our study was to explore predictors of participating in a voluntary stress management course for sophomore medical students. One cohort of freshmen at a German medical school was surveyed at the end of the freshman year [t1] and at the end of the sophomore year [t2]. In addition to sociodemographic information, we captured perceived study stress, self-rated general health and mental health and dimensions of study-related behaviour and experience as potential predictors of participation at t1. During the sophomore year, we offered the participants a progressive muscle relaxation (PMR beginners' course. At t2, we registered participation status. We used binary logistic regression analyses in order to assess correlations between potential predictors and participation. About one third of the whole class took part in the course. The main reason for non-participation was "no time". Being female and higher levels of anxiety were the strongest predictors of course participation. Career ambition (the higher, the less likely to participate and emotional distancing (the higher, the more likely to participate were further significant predictors. Future interventions should be attractive to both male and female medical students. Ideally, for every hour of stress management teaching, the curriculum should be cut by at least the same

  17. Free Fall Misconceptions: Results of a Graph Based Pre-Test of Sophomore Civil Engineering Students

    Science.gov (United States)

    Montecinos, Alicia M.

    2014-01-01

    A partially unusual behaviour was found among 14 sophomore students of civil engineering who took a pre test for a free fall laboratory session, in the context of a general mechanics course. An analysis contemplating mathematics models and physics models consistency was made. In all cases, the students presented evidence favoring a correct free…

  18. Developing "Green" Business Plans: Using Entrepreneurship to Teach Science to Business Administration Majors and Business to Biology Majors

    Science.gov (United States)

    Letovsky, Robert; Banschbach, Valerie S.

    2011-01-01

    Biology majors team with business administration majors to develop proposals for "green" enterprise for a business plan competition. The course begins with a series of student presentations so that science students learn about the fundamentals of business, and business students learn about environmental biology. Then mixed biology-business student…

  19. Early Millennials: The Sophomore Class of 2002 a Decade Later. Statistical Analysis Report. NCES 2017-437

    Science.gov (United States)

    Chen, Xianglei; Lauff, Erich; Arbeit, Caren A.; Henke, Robin; Skomsvold, Paul; Hufford, Justine

    2017-01-01

    This Statistical Analysis Report tracks a cohort of 2002 high school sophomores over 10 years, examining the extent to which cohort members had reached such life course milestones as finishing school, starting a job, leaving home, getting married, and having children. The analyses in this report are based on data from the Education Longitudinal…

  20. Development of a Microbiology Course for Diverse Majors; Longitudinal Survey of the Use of Various Active, Problem-Based Learning Assignments

    Directory of Open Access Journals (Sweden)

    Diana R. Cundell

    2009-12-01

    Full Text Available Educators are increasingly being encouraged to use more active- and problem-based-learning techniques and assignments in the classroom to improve critical and analytical thinking skills. Active learning-based courses have been purported to be more time consuming than traditional lecture methods and for many instructors have therefore proven difficult to include in many one-semester science courses. To address this problem, a series of assignments was developed for use in a basic microbiology course involving sophomore-, junior-, and senior-level students from five different biology majors (environmental science, biology, biochemistry, premedicine, and physician assistant. Writing assignments included global, historical, and social themes for which a standardized grading format was established. Students also participated in a class debate in which the merits of the living microbial kingdoms were discussed, with only one kingdom being saved from an imaginary global catastrophe. Traditional lectures were facilitated by the use of a dedicated note packet developed by the instructor and specific for course content. Laboratories involved group analysis of mini-case history studies involving pathogenic microbes. Students’ perceptions of the subject were assessed using an exit questionnaire sent to 100 of the 174 students who had taken the course during the 5-year time period. The majority of the 64 students who responded were sophomores (78%, in keeping with the target audience, and their perception of the course’s challenge level was significantly higher (p < 0.03, 8.7 than their junior and senior counterparts (7.9. Students rated the most useful learning tools as case history studies (9.4 and the class debate (9.1, with the introduction of a dedicated microbiology links web page to the University website representing the sole component resulting in a statistically significant increase in students’ perceptions of the importance of the course (p

  1. Clinical peer mentoring: partnering BSN seniors and sophomores on a dedicated education unit.

    Science.gov (United States)

    Harmer, Bonnie McKay; Huffman, Jaime; Johnson, Barbara

    2011-01-01

    The authors describe a clinical peer mentoring (CPM) program that partnered 16 pairs of senior (mentors) and sophomore (novices) BSN students to provide patient care on a dedicated education unit at a VA Medical Center. Situated learning theory and Tanner's Clinical Judgment Model provided frameworks for CPM implementation. Survey findings suggested novices and mentors perceived improvements in self-confidence, prioritization, time management, clinical judgment, and evidence-based practice use. Many mentors spontaneously expressed an interest in becoming a preceptor or nurse educator. Copyright © 2011 Wolters Kluwer Health | Lippincott Williams & Wilkins

  2. Sq4r Method and Reading Comprehension Development Among the Sophomore Business Studnets

    OpenAIRE

    Panjaitan, Nelson; Palandeng, Rachel

    2011-01-01

    This paper is an experimental study that involves the SophomoreEnglish students' of Business Department of Adventist University of IndonesiaBandung was the subject of the research.The purposes of this study is to find whether there is a significant improvementby using SQ4R method on the Business students, and to describe the advantages andthe weakness of the SQ4R method based on research result.The people who have used the SQ4R method said that SQ4R is one of the simpleways in reading compreh...

  3. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  4. The Relationship between Listening Strategies Used by Egyptian EFL College Sophomores and Their Listening Comprehension and Self-Efficacy

    Science.gov (United States)

    Kassem, Hassan M.

    2015-01-01

    The present study explored listening strategy use among a group of Egyptian EFL college sophomores (N = 84). More specifically, it aimed to identify 1) the strategies used more often by participants, 2) the relationship between listening strategy use, and listening comprehension and self-efficacy, and 3) differences in listening comprehension and…

  5. Evolution and Personal Religious Belief: Christian University Biology-Related Majors' Search for Reconciliation

    Science.gov (United States)

    Winslow, Mark W.; Staver, John R.; Scharmann, Lawrence C.

    2011-01-01

    The goal of this study was to explore Christian biology-related majors' perceptions of conflicts between evolution and their religious beliefs. This naturalistic study utilized a case study design of 15 undergraduate biology-related majors at or recent biology-related graduates from a mid-western Christian university. The broad sources of data…

  6. Conservation biology in Asia: the major policy challenges.

    Science.gov (United States)

    McNeely, Jeffrey A; Kapoor-Vijay, Promila; Zhi, Lu; Olsvig-Whittaker, Linda; Sheikh, Kashif M; Smith, Andrew T

    2009-08-01

    With about half the world's human population and booming economies, Asia faces numerous challenges to its biodiversity. The Asia Section of the Society for Conservation Biology has identified some key policy issues in which significant progress can be made. These include developing new sources of funding for forest conservation; identifying potential impacts of energy alternatives on the conservation of biodiversity; curbing the trade in endangered species of plants and animals; a special focus on the conservation of mountain biodiversity; enhancing relevant research; ensuring that conservation biology contributes to major international conventions and funding mechanisms; using conservation biology to build a better understanding of zoonotic diseases; more effectively addressing human-animal conflicts; enhancing community-based conservation; and using conservation biology to help address the pervasive water-deficit problems in much of Asia. These challenges can be met through improved regional cooperation among the relevant stakeholders.

  7. Locus of Control and Career Interest of Sophomore Accountancy Students: Basis for Employment Path

    Directory of Open Access Journals (Sweden)

    Jovielyn Mañibo

    2014-02-01

    Full Text Available This academic undertaking sought to determine the relationship between the locus of control and career interest of the respondents towards their future employment. The objectives of the study were to determine the respondents’ locus of control and career interest; to find if there is a significant relationship between the respondents’ locus of control and career interest and to develop an action plan that will gauge the students’ employment success as to their chosen field. In measuring and finding the relationship between the variables of the study, the researchers employed the quantitative method in the analysis of data using the questionnaires for locus of control (LOC and Career Cluster Interest Survey (CCIS as dominant tools. The participants chosen from this study were 74sophomore Accountancy students for Second Semester, School Year 2012 – 2013. Based from the results, most of the respondents (74 sophomore accountancy students have an external locus of control with career interest on education and training, human services, and finance. The computed rvalues indicates slight positive correlation, however, careers on government services, manufacturing , public administration, health science, human services showed significant correlation to internal (positive and external (negative locus of control. .Likewise, the Counseling and Testing Center of the university should conduct cognitive training targeting reasoning and speed of processing that can improve sense of personal control over one’s life and facilitate career orientation during the student- applicants’ admission as regards to their National Career Assessment Examination (NCAE results. With the findings of the study, a program design was created to gauge students employment path.

  8. A Grounded Theory Investigation Into Sophomore Students' Recall of Depression During Their Freshman Year in College: A Pilot Study.

    Science.gov (United States)

    Brandy, Julie M; Kessler, Theresa A; Grabarek, Christina H

    2018-04-17

    Using a grounded theory approach, the current descriptive qualitative design was conducted with sophomore students to understand the meaning participants gave their freshman experiences with depression. Twelve participants were recruited using scripted class announcements across campus. After informed consent, interviews began with the question: What was the experience of your freshman year in college? All interviews were completed with the primary investigator and transcribed verbatim. Interviews were analyzed using constant comparative methodology. Data collection continued until saturation was achieved. Four major categories emerged, including the category of symptoms and emotions. This category included the subcategories expressions of stress, changes in eating habits, sleep issues, and procrastination. Descriptive examples of each were found throughout the interview data. With greater understanding of living with depression as a college freshman, health care and college student affairs professionals will have additional evidence to guide their practices. [Journal of Psychosocial Nursing and Mental Health Services, xx(x),xx-xx.]. Copyright 2018, SLACK Incorporated.

  9. Effect of Process-Oriented Guided-Inquiry Learning on Non-majors Biology Students' Understanding of Biological Classification

    Science.gov (United States)

    Wozniak, Breann M.

    The purpose of this study was to examine the effect of process-oriented guided-inquiry learning (POGIL) on non-majors college biology students' understanding of biological classification. This study addressed an area of science instruction, POGIL in the non-majors college biology laboratory, which has yet to be qualitatively and quantitatively researched. A concurrent triangulation mixed methods approach was used. Students' understanding of biological classification was measured in two areas: scores on pre and posttests (consisting of 11 multiple choice questions), and conceptions of classification as elicited in pre and post interviews and instructor reflections. Participants were Minnesota State University, Mankato students enrolled in BIOL 100 Summer Session. One section was taught with the traditional curriculum (n = 6) and the other section in the POGIL curriculum (n = 10) developed by the researcher. Three students from each section were selected to take part in pre and post interviews. There were no significant differences within each teaching method (p familiar animal categories and aquatic habitats, unfamiliar organisms, combining and subdividing initial groupings, and the hierarchical nature of classification. The POGIL students were the only group to surpass these challenges after the teaching intervention. This study shows that POGIL is an effective technique at eliciting students' misconceptions, and addressing these misconceptions, leading to an increase in student understanding of biological classification.

  10. The Biological Big Bang model for the major transitions in evolution.

    Science.gov (United States)

    Koonin, Eugene V

    2007-08-20

    Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model of evolution incorporates the previously developed

  11. Attributions of Academic Performance among Third Year and Fourth Year Biology Major Students

    Directory of Open Access Journals (Sweden)

    Nick John B. Solar

    2015-08-01

    Full Text Available This is a descriptive study aimed to determine the attributions of academic performance of third year and fourth year biology major students in the College of Education, West Visayas State University, School Year 2013-2014. The academic performance were categorized or measured in terms of test, projects, workbooks, and laboratory experiments, class participation, and attendance. The Attributions in academic performance were evaluated using the closed-form questionnairechecklist,categorized intoin termsof ability, effort, luck, or task difficulty. Mean frequency, mean percentage, Mann-Whitney U-test, two-sampled test set at 0.05 level of significance were used to determine if there were significant difference in the attribution when the students were taken according to their year level. The result of the study revealed that the Third Year biology majors attributed their academic performance to effort which is shown to have the highest percentage attribution in overall rank. There was no significant difference in the attributions of academic performance for third year and fourth year biology major students in termsof test, whilethe result forprojects, workbooks, and laboratory experiment and class participation and attendance categories,was found out to havea significant difference in the attributionfor the third and fourth years biology Major students’ academic performances.

  12. The Biological Big Bang model for the major transitions in evolution

    Directory of Open Access Journals (Sweden)

    Koonin Eugene V

    2007-08-01

    Full Text Available Abstract Background Major transitions in biological evolution show the same pattern of sudden emergence of diverse forms at a new level of complexity. The relationships between major groups within an emergent new class of biological entities are hard to decipher and do not seem to fit the tree pattern that, following Darwin's original proposal, remains the dominant description of biological evolution. The cases in point include the origin of complex RNA molecules and protein folds; major groups of viruses; archaea and bacteria, and the principal lineages within each of these prokaryotic domains; eukaryotic supergroups; and animal phyla. In each of these pivotal nexuses in life's history, the principal "types" seem to appear rapidly and fully equipped with the signature features of the respective new level of biological organization. No intermediate "grades" or intermediate forms between different types are detectable. Usually, this pattern is attributed to cladogenesis compressed in time, combined with the inevitable erosion of the phylogenetic signal. Hypothesis I propose that most or all major evolutionary transitions that show the "explosive" pattern of emergence of new types of biological entities correspond to a boundary between two qualitatively distinct evolutionary phases. The first, inflationary phase is characterized by extremely rapid evolution driven by various processes of genetic information exchange, such as horizontal gene transfer, recombination, fusion, fission, and spread of mobile elements. These processes give rise to a vast diversity of forms from which the main classes of entities at the new level of complexity emerge independently, through a sampling process. In the second phase, evolution dramatically slows down, the respective process of genetic information exchange tapers off, and multiple lineages of the new type of entities emerge, each of them evolving in a tree-like fashion from that point on. This biphasic model

  13. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  14. Undergraduate Training in the Epidemiology of Prostate Cancer with Focus on Genetics of Disease Progression and Quality of Life

    Science.gov (United States)

    2015-10-01

    candidates, Kaia Amoah, a Freshman Biology major, and Brittany Williams, a Sophomore Pharmacy major, were selected. Both offers of acceptance were...confirmed by the students; however, after further consideration, Brittany Williams decided to decline the internship spot due to distance from home. By...and job tasks must be executed in a humane and civil manner. 7. To foster an open, fair, and caring environment . Each member of the Hampton Family is

  15. A Case Study: Syllabus, Methodology and Assessment with Oral EL Classes for Non-English Majors

    Institute of Scientific and Technical Information of China (English)

    FengLianyi

    2004-01-01

    In response to the school curriculum reform,approximately 1200 out of the 3000 sophomores of non-English major in our university selected oral English as the optional course for the autumn semester study of 2003. The high demand for the spoken English classes is a challenge to the English teachers concerned. However how to conduct oral English lessons effectively in a considerably big-sized class of 35 plus with varied language aptitudes and personality traits calls forth a good topic for research studies.

  16. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    Science.gov (United States)

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  17. Development of the Instructional Model of Reading English Strategies for Enhancing Sophomore Students' Learning Achievements in the Institute of Physical Education in the Northeastern Region of Thailand

    Science.gov (United States)

    Whankhom, Prawit; Phusawisot, Pilanut; Sayankena, Patcharanon

    2016-01-01

    The aim of this research is to develop and verify the effectiveness of an instructional model of reading English strategies for students of Mahasarakham Institute of Physical Education in the Northeastern region through survey. Classroom action research techniques with the two groups of sample sizes of 34 sophomore physical students as a control…

  18. Conceptions of Memorizing and Understanding in Learning, and Self-Efficacy Held by University Biology Majors

    Science.gov (United States)

    Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung

    2015-01-01

    This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and…

  19. Personalized Education Approaches for Chemical Engineering and Relevant Majors

    Directory of Open Access Journals (Sweden)

    Zhao Feng-qing

    2016-01-01

    Full Text Available Personalized education has drawn increasing attention in universities these years. With the purpose of improving the studentss’ comprehensive ability and developing teaching strategies to ensure students’ education is tailored to their needs, we proposed Three-Stage Approach (TSA to enhance personalized education for chemical engineering and relevant majors: professional tutorial system--equipping with professional guidance teachers for freshman students to guide their learning activities and provide professional guidance; open experimental project--setting up open experimental projects for sophomore and junior students to choose freely; individualized education module--setting up 10 different individualized education modules for senior students to select. After years of practice, the personalized education model is improved day by day and proved effective and fruitful.

  20. Using social media as a strategy to address 'sophomore slump' in second year nursing students: A qualitative study.

    Science.gov (United States)

    Tower, Marion; Blacklock, Eddie; Watson, Bernadette; Heffernan, Catherine; Tronoff, Glenyss

    2015-11-01

    An important contributing factor to the shortfall in the nursing workforce is the high attrition rate of students from nursing programmes. Recently, researchers have begun to examine the 'sophomore slump' phenomenon, related to students' sense of low self-efficacy associated with learning in their second year of study, that may be related to attrition. Academic success is heavily influenced by self-efficacy, or a student's belief in their ability to be successful. Strategies that enhance self-efficacy include peer learning, which increases students' engagement and reinforces self-regulated learning. Social networking sites such as Facebook provide students the opportunity to take part in peer learning and may promote students' self-efficacy. The aim of the study was to develop a Facebook forum that utilised peer learning, to build self-efficacy related to learning, of students commencing into the second year of a three year nursing programme. Students commencing into year two of a Bachelor of Nursing programme were invited to join a Facebook forum to support their study. One hundred and ninety-eight students accepted the invitation. Data was collected over a twelve-week period. Text from the Facebook forum was downloaded and analysed thematically. Analysis suggests that Facebook forums may be a useful peer learning strategy to build students' self-efficacy related to study in the second year of nursing study. Students shared mastery experiences, provided modelling experiences, and used verbal persuasion to reframe problems which suggested that it helped build students' self-efficacy, and alleviated some of the physiological response associated with stress. The findings suggest that social media platforms are important tools by which students can engage in peer learning to build self-efficacy around their nursing studies. This may in part help address the 'sophomore slump' phenomenon, enhance students' learning experiences more widely, and impact on students

  1. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  2. The effects of problem-based learning on the self-efficacy and attitudes of beginning biology majors

    Science.gov (United States)

    Rajab, Adel Mohammad

    The problem of low persistence of science majors has resulted in calls for changes in undergraduate instruction toward environments that foster positive self-efficacy among beginning science majors. Low science self-efficacy and poor attitudes toward science may contribute to high attrition rates of science majors. Classroom environments that foster positive self-efficacy development include pedagogies that promote authentic learning contexts and involve collaborative learning teams. Problem-based learning (PBL) is an instructional model that attempts to create both conditions and may provide every source of information needed for the development of self-efficacy (i.e., mastery experiences, vicarious experiences, verbal persuasion, and physiological states) as postulated by Albert Bandura. The degree to which these sources of self-efficacy are delivered to individuals within a PBL group may depend on how the group members interact and how students perceive the PBL process itself. This study examined the development of biology self-efficacy and attitudes among biology majors in a PBL setting and in a traditional lecture-based setting. Specifically, this project investigated changes in students' biology self-efficacy beliefs, mediating aspects of PBL in self-efficacy development, the relationship between PBL processes and group collective efficacy, the predictive nature of entering self-efficacy levels on attitudes toward PBL and mid-term grades, and changes in student attitudes toward biology. The study design was quasi-experimental and included quantitative pre- and post-surveys, qualitative interviews, and classroom observations. Findings revealed that students enrolled in a PBL class exhibited greater gains in biology self-efficacy and were likely to report more favorable attitudes toward biology compared to students enrolled in a traditional class. The aspects of PBL that most accounted for these findings were students' ownership of the learning process, their

  3. Major new sources of biological ice nuclei

    Science.gov (United States)

    Moffett, B. F.; Hill, T.; Henderson-Begg, S. K.

    2009-12-01

    Almost all research on biological ice nucleation has focussed on a limited number of bacteria. Here we characterise several major new sources of biogenic ice nuclei. These include mosses, hornworts, liverworts and cyanobacteria. Ice nucleation in the eukaryotic bryophytes appears to be ubiquitous. The temperature at which these organisms nucleate is that at which the difference in vapour pressure over ice and water is at or close to its maximum. At these temperatures (-8 to -18 degrees C) ice will grow at the expense of supercooled water. These organisms are dependent for their water on occult precipitation - fog, dew and cloudwater which by its nature is not collected in conventional rain gauges. Therefore we suggest that these organism produce ice nuclei as a water harvesting mechanism. Since the same mechanism would also drive the Bergeron-Findeisen process, and as moss is known to become airborne, these nuclei may have a role in the initiation of precipitation. The properties of these ice nuclei are very different from the well characterised bacterial nuclei. We will also present DNA sequence data showing that, although related, the proteins responsible are only very distantly related to the classical bacterial ice nuclei.

  4. Medicinal Chemistry/Pharmacology in Sophomore Organic Chemistry.

    Science.gov (United States)

    Harrison, Aline M.

    1989-01-01

    Discussed is a series of lectures designed to illustrate the use of general organic chemical principles in molecular biology, introduce current research in interdisciplinary areas to the beginner, increase interest in organic chemistry, and bridge the gap between traditional organic chemistry, biology, and the consumer. An outline is presented.…

  5. Major cost savings associated with biologic dose reduction in patients with inflammatory arthritis.

    LENUS (Irish Health Repository)

    Murphy, C L

    2015-01-01

    The purpose of this study was to explore whether patients with Inflammatory Arthritis (IA) (Rheumatoid Arthritis (RA), Psoriatic Arthritis (PsA) or Ankylosing Spondylitis (AS)) would remain in remission following a reduction in biologic dosing frequency and to calculate the cost savings associated with dose reduction. This prospective non-blinded non-randomised study commenced in 2010. Patients with Inflammatory Arthritis being treated with a biologic agent were screened for disease activity. A cohort of those in remission according to standardized disease activity indices (DAS28 < 2.6, BASDAI < 4) was offered a reduction in dosing frequency of two commonly used biologic therapies (etanercept 50 mg once per fortnight instead of weekly, adalimumab 40 mg once per month instead of fortnightly). Patients were assessed for disease activity at 3, 6, 12, 18 and 24 months following reduction in dosing frequency. Cost saving was calculated. 79 patients with inflammatory arthritis in remission were recruited. 57% had rheumatoid arthritis (n = 45), 13% psoriatic arthritis (n = 10) and 30% ankylosing spondylitis (n = 24). 57% (n = 45) were taking etanercept and 43% (n = 34) adalimumab. The percentage of patients in remission at 24 months was 56% (n = 44). This resulted in an actual saving to the state of approximately 600,000 euro over two years. This study demonstrates the reduction in biologic dosing frequency is feasible in Inflammatory Arthritis. There was a considerable cost saving at two years. The potential for major cost savings in biologic usage should be pursued further.

  6. The Relationships between Epistemic Beliefs in Biology and Approaches to Learning Biology among Biology-Major University Students in Taiwan

    Science.gov (United States)

    Lin, Yi-Chun; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-01-01

    The aim of this study was to investigate the relationships between students' epistemic beliefs in biology and their approaches to learning biology. To this end, two instruments, the epistemic beliefs in biology and the approaches to learning biology surveys, were developed and administered to 520 university biology students, respectively. By and…

  7. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics.

    Science.gov (United States)

    Wachsmuth, Lucas P; Runyon, Christopher R; Drake, John M; Dolan, Erin L

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of Mathematics Inventory (ASMI). We collected data from 359 science and math majors at two research universities and conducted a series of statistical tests that indicated that four AMSI items comprised a reasonable measure of students' emotional satisfaction with math. We then compared life science and non-life science majors and found that major had a small to moderate relationship with students' responses. Gender also had a small relationship with students' responses, while students' race, ethnicity, and year in school had no observable relationship. Using latent profile analysis, we identified three groups-students who were emotionally satisfied with math, emotionally dissatisfied with math, and neutral. These results and the emotional satisfaction with math scale should be useful for identifying differences in other undergraduate populations, determining the malleability of undergraduates' emotional satisfaction with math, and testing effects of interventions aimed at improving life science majors' attitudes toward math. © 2017 L.P. Wachsmuth et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. [Clinical and biological predictors of ketamine response in treatment-resistant major depression: Review].

    Science.gov (United States)

    Romeo, B; Choucha, W; Fossati, P; Rotge, J-Y

    2017-08-01

    The aim of this review was to determine the clinical and biological predictors of the ketamine response. A systematic research on PubMed and PsycINFO database was performed without limits on year of publication. The main predictive factors of ketamine response, which were found in different studies, were (i) a family history of alcohol dependence, (ii) unipolar depressive disorder, and (iii) neurocognitive impairments, especially a slower processing speed. Many other predictive factors were identified, but not replicated, such as personal history of alcohol dependence, no antecedent of suicide attempt, anxiety symptoms. Some biological factors were also found such as markers of neural plasticity (slow wave activity, brain-derived neurotrophic factor Val66Met polymorphism, expression of Shank 3 protein), other neurologic factors (anterior cingulate activity, concentration of glutamine/glutamate), inflammatory factors (IL-6 concentration) or metabolic factors (concentration of B12 vitamin, D- and L-serine, alterations in the mitochondrial β-oxidation of fatty acids). This review had several limits: (i) patients had exclusively resistant major depressive episodes which represent a sub-type of depression and not all depression, (ii) response criteria were more frequently assessed than remission criteria, it was therefore difficult to conclude that these predictors were similar, and finally (iii) many studies used a very small number of patients. In conclusion, this review found that some predictors of ketamine response, like basal activity of anterior cingulate or vitamin B12 concentration, were identical to other therapeutics used in major depressive episode. These factors could be more specific to the major depressive episode and not to the ketamine response. Others, like family history of alcohol dependence, body mass index, or D- and L-serine were different from the other therapeutics. Neurocognitive impairments like slower speed processing or alterations in

  9. The experiences of African-American students majoring in engineering: Cognitive, non-cognitive and situational aspects

    Science.gov (United States)

    Hill, Gloria Pinckney

    1997-12-01

    To understand the causes for the disproportionately high rate of attrition among ethnic minority students, it is important to consider not only how they differ from the majority population, but what differences exist in personal qualities and academic preparation within groups at particular types of institutions, and within particular majors. The purpose of this study is to examine the experiences of African-American students enrolled in engineering at a predominately white, selective research university to determine which cognitive, non-cognitive and situational variables impact their progress towards graduation. The goal was to see how African-American students who meet or exceed the minimum criteria for admission perceive their experience on campus, and what strategies they use to manage their day-to-day existence. The study was conducted using personal interviews guided by an open-ended questionnaire. The qualitative methodology allowed students to assess the college experience through their own cultural lens, and to identify the cognitive, non-cognitive, and situational variables important to them. Responses were sorted by class and gender, tabulated and grouped into categories. Interpretation was primarily descriptive. Consistencies, inconsistencies, patterns and relationships to concepts in the literature and to the research questions were discussed. Findings indicate that well prepared students become less confident about their commitment to engineering and their ability to succeed academically after they begin matriculating rather than before, and that redefinition of what it means to be academically successful is an effective coping mechanism to sustain the effort required to master courses. The study suggests that the current focus on the impact of the freshman year transition on student retention should be expanded to include the sophomore year. This is particularly true for institutions where engineering students spend the first year in a core

  10. Gene expression-based biological test for major depressive disorder: an advanced study

    Directory of Open Access Journals (Sweden)

    Watanabe S

    2017-02-01

    Full Text Available Shin-ya Watanabe,1 Shusuke Numata,1 Jun-ichi Iga,2 Makoto Kinoshita,1 Hidehiro Umehara,1 Kazuo Ishii,3 Tetsuro Ohmori1 1Department of Psychiatry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 2Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Ehime, 3Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan Purpose: Recently, we could distinguished patients with major depressive disorder (MDD from nonpsychiatric controls with high accuracy using a panel of five gene expression markers (ARHGAP24, HDAC5, PDGFC, PRNP, and SLC6A4 in leukocyte. In the present study, we examined whether this biological test is able to discriminate patients with MDD from those without MDD, including those with schizophrenia and bipolar disorder.Patients and methods: We measured messenger ribonucleic acid expression levels of the aforementioned five genes in peripheral leukocytes in 17 patients with schizophrenia and 36 patients with bipolar disorder using quantitative real-time polymerase chain reaction (PCR, and we combined these expression data with our previous expression data of 25 patients with MDD and 25 controls. Subsequently, a linear discriminant function was developed for use in discriminating between patients with MDD and without MDD.Results: This expression panel was able to segregate patients with MDD from those without MDD with a sensitivity and specificity of 64% and 67.9%, respectively.Conclusion: Further research to identify MDD-specific markers is needed to improve the performance of this biological test. Keywords: depressive disorder, biomarker, gene expression, schizophrenia, bipolar disorder

  11. Manipulatives-Based Laboratory for Majors Biology – a Hands-On Approach to Understanding Respiration and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Sarah M. Boomer

    2011-09-01

    Full Text Available The first course in our year-long introductory series for Biology majors encompasses four learning units: biological molecules and cells, metabolism, genetics, and evolution. Of these, the metabolism unit, which includes respiration and photosynthesis, has shown the lowest student exam scores, least interest, and lowest laboratory ratings. Consequently, we hypothesized that modeling metabolic processes in the laboratory would improve student content learning during this course unit. Specifically, we developed manipulatives-based laboratory exercises that combined paper cutouts, movable blocks, and large diagrams of the cell. In particular, our novel use of connecting LEGO blocks allowed students to move model electrons and phosphates between molecules and within defined spaces of the cell. We assessed student learning using both formal (content indicators and attitude surveys and informal (the identification of misconceptions or discussions with students approaches. On the metabolism unit content exam, student performance improved by 46% over pretest scores and by the end of the course, the majority of students rated metabolism as their most-improved (43% and favorite (33% subject as compared with other unit topics. The majority of students rated manipulatives-based labs as very helpful, as compared to non-manipulatives-based labs. In this report, we will demonstrate that students made learning gains across all content areas, but most notably in the unit that covered respiration and photosynthesis.

  12. Short communication: Characteristics of student success in an undergraduate physiology and anatomy course.

    Science.gov (United States)

    Gwazdauskas, F C; McGilliard, M L; Corl, B A

    2014-10-01

    Several factors affect the success of students in college classes. The objective of this research was to determine what factors affect success of undergraduate students in an anatomy and physiology class. Data were collected from 602 students enrolled in the Agriculture and Life Sciences (ALS) 2304 Animal Physiology and Anatomy course from 2005 through 2012. The data set included 476 females (79.1%) and 126 males (20.9%). Time to complete exams was recorded for each student. For statistical analyses, students' majors were animal and poultry sciences (APSC), agricultural sciences, biochemistry, biological sciences, dairy science, and "other," which combined all other majors. All analyses were completed using the GLIMMIX procedure of SAS (SAS Institute Inc., Cary, NC). Gender, major, matriculation year, major by year interaction, gender by year interaction, and time to complete the exam affected final course grade. The significant gender effect was manifested in the final grade percentage of 75.9 ± 0.4 for female students compared with 72.3 ± 0.6 for male students. Junior males had final course grades comparable with those of females, but sophomore and senior males had lower final course grades than other combinations. Biology majors had a final grade of 82.4 ± 0.6 and this grade was greater than all other majors. Students classified as "other" had a final score of 74.4 ± 0.8, which was greater than agricultural science majors (69.5 ± 0.9). The APSC grade (72.6 ± 0.5) was higher than the agricultural science majors. Junior students had significantly greater final grades (76.1 ± 0.5) than sophomores (73.3 ± 0.6) and seniors (72.9 ± 0.9). All biology students had greater final grades than all other majors, but biochemistry juniors had greater final course grades than APSC, agricultural science, and dairy science juniors. "Other" seniors had greater final course grades than agricultural science seniors. The regression for time to complete the exam was

  13. Using clickers in nonmajors- and majors-level biology courses: student opinion, learning, and long-term retention of course material.

    Science.gov (United States)

    Crossgrove, Kirsten; Curran, Kristen L

    2008-01-01

    Student response systems (clickers) are viewed positively by students and instructors in numerous studies. Evidence that clickers enhance student learning is more variable. After becoming comfortable with the technology during fall 2005-spring 2006, we compared student opinion and student achievement in two different courses taught with clickers in fall 2006. One course was an introductory biology class for nonmajors, and the other course was a 200 level genetics class for biology majors. Students in both courses had positive opinions of the clickers, although we observed some interesting differences between the two groups of students. Student performance was significantly higher on exam questions covering material taught with clickers, although the differences were more dramatic for the nonmajors biology course than the genetics course. We also compared retention of information 4 mo after the course ended, and we saw increased retention of material taught with clickers for the nonmajors course, but not for the genetics course. We discuss the implications of our results in light of differences in how the two courses were taught and differences between science majors and nonmajors.

  14. Web-Based Learning Enhancements: Video Lectures through Voice-Over PowerPoint in a Majors-Level Biology Course

    Science.gov (United States)

    Lents, Nathan H.; Cifuentes, Oscar E.

    2009-01-01

    This study is an experimental introduction of web-based lecture delivery into a majors-level introductory biology course. Web-based delivery, achieved through the use of prerecorded Voice-Over PowerPoint video lectures, was introduced on a limited basis to an experimental section while a control group, with the same instructor, received standard…

  15. Courses in Modern Physics for Non-science Majors, Future Science Teachers, and Biology Students

    Science.gov (United States)

    Zollman, Dean

    2001-03-01

    For the past 15 years Kansas State University has offered a course in modern physics for students who are not majoring in physics. This course carries a prerequisite of one physics course so that the students have a basic introduction in classical topics. The majors of students range from liberal arts to engineering. Future secondary science teachers whose first area of teaching is not physics can use the course as part of their study of science. The course has evolved from a lecture format to one which is highly interactive and uses a combination of hands-on activities, tutorials and visualizations, particularly the Visual Quantum Mechanics materials. Another course encourages biology students to continue their physics learning beyond the introductory course. Modern Miracle Medical Machines introduces the basic physics which underlie diagnosis techniques such as MRI and PET and laser surgical techniques. Additional information is available at http://www.phys.ksu.edu/perg/

  16. Biotechnology by Design: An Introductory Level, Project-Based, Synthetic Biology Laboratory Program for Undergraduate Students.

    Science.gov (United States)

    Beach, Dale L; Alvarez, Consuelo J

    2015-12-01

    Synthetic biology offers an ideal opportunity to promote undergraduate laboratory courses with research-style projects, immersing students in an inquiry-based program that enhances the experience of the scientific process. We designed a semester-long, project-based laboratory curriculum using synthetic biology principles to develop a novel sensory device. Students develop subject matter knowledge of molecular genetics and practical skills relevant to molecular biology, recombinant DNA techniques, and information literacy. During the spring semesters of 2014 and 2015, the Synthetic Biology Laboratory Project was delivered to sophomore genetics courses. Using a cloning strategy based on standardized BioBrick genetic "parts," students construct a "reporter plasmid" expressing a reporter gene (GFP) controlled by a hybrid promoter regulated by the lac-repressor protein (lacI). In combination with a "sensor plasmid," the production of the reporter phenotype is inhibited in the presence of a target environmental agent, arabinose. When arabinose is absent, constitutive GFP expression makes cells glow green. But the presence of arabinose activates a second promoter (pBAD) to produce a lac-repressor protein that will inhibit GFP production. Student learning was assessed relative to five learning objectives, using a student survey administered at the beginning (pre-survey) and end (post-survey) of the course, and an additional 15 open-ended questions from five graded Progress Report assignments collected throughout the course. Students demonstrated significant learning gains (p Biology Laboratory Project enhanced their understanding of molecular genetics. The laboratory project is highly adaptable for both introductory and advanced courses.

  17. Acting Like a Mathematician: A Project to Encourage Inquiry Early in the Math Major

    Science.gov (United States)

    Camenga, Kristin A.

    2017-01-01

    Inquiry is promoted as a way to engage students so that they learn more deeply; inquiry is also an end in itself, introducing students to the research process and the behaviors of a mathematician. This article reflects on an individual exploratory project used in a sophomore-level number theory course, examining how it supported student inquiry…

  18. Research in Undergraduate Instruction: A Biotech Lab Project for Recombinant DNA Protein Expression in Bacteria

    Science.gov (United States)

    Brockman, Mark; Ordman, Alfred B.; Campbell, A. Malcolm

    1996-06-01

    In the sophomore-level Molecular Biology and Biotechnology course at Beloit College, students learn basic methods in molecular biology in the context of pursuing a semester-long original research project. We are exploring how DNA sequence affects expression levels of proteins. A DNA fragment encoding all or part of the guanylate monokinase (gmk) sequence is cloned into pSP73 and expressed in E. coli. A monoclonal antibody is made to gmk. The expression level of gmk is determined by SDS gel elctrophoresis, a Western blot, and an ELISA assay. Over four years, an increase in enrollment in the course from 9 to 34 students, the 85% of majors pursuing advanced degrees, and course evaluations all support the conclusion that involving students in research during undergraduate courses encourages them to pursue careers in science.

  19. Major Links.

    Science.gov (United States)

    Henderson, Tona

    1995-01-01

    Provides electronic mail addresses for resources and discussion groups related to the following academic majors: art, biology, business, chemistry, computer science, economics, health sciences, history, literature, math, music, philosophy, political science, psychology, sociology, and theater. (AEF)

  20. Student anxiety in introductory biology classrooms: Perceptions about active learning and persistence in the major

    Science.gov (United States)

    2017-01-01

    Many researchers have called for implementation of active learning practices in undergraduate science classrooms as one method to increase retention and persistence in STEM, yet there has been little research on the potential increases in student anxiety that may accompany these practices. This is of concern because excessive anxiety can decrease student performance. Levels and sources of student anxiety in three introductory biology lecture classes were investigated via an online survey and student interviews. The survey (n = 327) data revealed that 16% of students had moderately high classroom anxiety, which differed among the three classes. All five active learning classroom practices that were investigated caused student anxiety, with students voluntarily answering a question or being called on to answer a question causing higher anxiety than working in groups, completing worksheets, or answering clicker questions. Interviews revealed that student anxiety seemed to align with communication apprehension, social anxiety, and test anxiety. Additionally, students with higher general anxiety were more likely to self-report lower course grade and the intention to leave the major. These data suggest that a subset of students in introductory biology experience anxiety in response to active learning, and its potential impacts should be investigated. PMID:28771564

  1. Emission of nitrous acid from soil and biological soil crusts as a major source of atmospheric HONO on Cyprus

    Science.gov (United States)

    Meusel, Hannah; Tamm, Alexandra; Wu, Dianming; Kuhn, Uwe; Leifke, Anna-Lena; Weber, Bettina; Su, Hang; Lelieveld, Jos; Hoffmann, Thorsten; Pöschl, Ulrich; Cheng, Yafang

    2017-04-01

    Elucidation of the sources and atmospheric chemistry of nitrous acid (HONO) is highly relevant, as HONO is an important precursor of OH radicals. Up to 30% of the OH budget are formed by photolysis of HONO, whereas major fractions of HONO measured in the field derive from yet unidentified sources. Heterogeneous conversion of nitrogen dioxide (NO2) to HONO on a variety of surfaces (soot, humic acid aerosol) is assumed to be a major HONO source (Stemmler et al., 2007, Ammann et al., 1998). In rural regions, however, NO2 concentrations were found to be too low to explain observed HONO concentrations, as e.g., in the case of a recent field study on the Mediterranean island of Cyprus (Meusel et al., 2016). In this study a good correlation between missing sources of HONO and nitrogen oxide (NO) was found indicating a common origin of both reactive nitrogen compounds. Simultaneous emission of HONO and NO from soil was reported earlier (Oswald et al., 2013), and enhanced emission rates were found when soil was covered by biological soil crusts in arid and semi-arid ecosystems (Weber et al., 2015). In the present study we measured HONO and NO emissions of 43 soil and soil crust samples from Cyprus during full wetting and drying cycles under controlled laboratory conditions by means of a dynamic chamber system. The observed range of HONO and NO emissions was in agreement with earlier studies, but unlike the study of Weber et al. (2015), we found highest emission from bare soil, followed by soil covered by light and dark cyanobacteria-dominated biological soil crusts. Emission rates correlated well with the nitrite and nitrate contents of soil and biological soil crust samples, and higher nutrient contents of bare soil samples, as compared to the previous biological soil crust study, explain the higher bare soil emissions. Integrating the emission rates of bare soil and the different types of biological soil crusts, based on their local relative abundance, the calculated

  2. Ants: Major Functional Elements in Fruit Agro-Ecosystems and Biological Control Agents

    Directory of Open Access Journals (Sweden)

    Lamine Diamé

    2017-12-01

    Full Text Available Ants are a very diverse taxonomic group. They display remarkable social organization that has enabled them to be ubiquitous throughout the world. They make up approximately 10% of the world’s animal biomass. Ants provide ecosystem services in agrosystems by playing a major role in plant pollination, soil bioturbation, bioindication, and the regulation of crop-damaging insects. Over recent decades, there have been numerous studies in ant ecology and the focus on tree cropping systems has given added importance to ant ecology knowledge. The only missing point in this knowledge is the reasons underlying difference between the positive and negative effects of ants in tree cropping systems. This review article provides an overview of knowledge of the roles played by ants in orchards as functional elements, and on the potential of Oecophylla weaver ants as biological control agents. It also shows the potential and relevance of using ants as an agro-ecological diagnosis tool in orchards. Lastly, it demonstrates the potential elements which may determine the divergent negative and positive of their effects on cropping systems.

  3. Biological restoration of major transportation facilities domestic demonstration and application project (DDAP): technology development at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey, James L., Jr. (.,; .); Melton, Brad; Finley, Patrick; Brockman, John; Peyton, Chad E.; Tucker, Mark David; Einfeld, Wayne; Griffith, Richard O.; Brown, Gary Stephen; Lucero, Daniel A.; Betty, Rita G.; McKenna, Sean Andrew; Knowlton, Robert G.; Ho, Pauline

    2006-06-01

    The Bio-Restoration of Major Transportation Facilities Domestic Demonstration and Application Program (DDAP) is a designed to accelerate the restoration of transportation nodes following an attack with a biological warfare agent. This report documents the technology development work done at SNL for this DDAP, which include development of the BROOM tool, an investigation of surface sample collection efficiency, and a flow cytometry study of chlorine dioxide effects on Bacillus anthracis spore viability.

  4. Predicting Student Success in a Major's Introductory Biology Course via Logistic Regression Analysis of Scientific Reasoning Ability and Mathematics Scores

    Science.gov (United States)

    Thompson, E. David; Bowling, Bethany V.; Markle, Ross E.

    2018-02-01

    Studies over the last 30 years have considered various factors related to student success in introductory biology courses. While much of the available literature suggests that the best predictors of success in a college course are prior college grade point average (GPA) and class attendance, faculty often require a valuable predictor of success in those courses wherein the majority of students are in the first semester and have no previous record of college GPA or attendance. In this study, we evaluated the efficacy of the ACT Mathematics subject exam and Lawson's Classroom Test of Scientific Reasoning in predicting success in a major's introductory biology course. A logistic regression was utilized to determine the effectiveness of a combination of scientific reasoning (SR) scores and ACT math (ACT-M) scores to predict student success. In summary, we found that the model—with both SR and ACT-M as significant predictors—could be an effective predictor of student success and thus could potentially be useful in practical decision making for the course, such as directing students to support services at an early point in the semester.

  5. Modern Biology

    OpenAIRE

    ALEKSIC, Branko

    2014-01-01

    The purpose of this course is to learn the philosophy, principles, and techniques of modern biology. The course is particularly designed for those who have not learned biology previously or whose major is other than biology, and who may think that they do not need to know any biology at all. The topics are covered in a rather general, overview manner, but certain level of diligence in grasping concepts and memorizing the terminology is expected.

  6. Science Café Course: An Innovative Means of Improving Communication Skills of Undergraduate Biology Majors

    Directory of Open Access Journals (Sweden)

    Anna Goldina

    2013-12-01

    Full Text Available To help bridge the increasing gap between scientists and the public, we developed an innovative two-semester course, called Science Café. In this course undergraduate biology majors learn to develop communication skills to be better able to explain science concepts and current developments in science to non-scientists. Students develop and host outreach events on various topics relevant to the community, thereby increasing interactions between budding scientists and the public. Such a Science Cafe course emphasizes development of science communication skills early, at the undergraduate level and empowers students to use their science knowledge in every day interactions with the public to increase science literacy, get involved in the local community and engage the public in a dialogue on various pressing science issues. We believe that undergraduate science majors can be great ambassadors for science and are often overlooked since many aspire to go on to medical/veterinary/pharmacy schools. However, science communication skills are especially important for these types of students because when they become healthcare professionals, they will interact with the public as part of their everyday jobs and can thus be great representatives for the field.

  7. Using Model Organisms in an Undergraduate Laboratory to Link Genotype, Phenotype, and the Environment

    Science.gov (United States)

    Jacobs-McDaniels, Nicole L.; Maine, Eleanor M.; Albertson, R. Craig; Wiles, Jason R.

    2013-01-01

    We developed laboratory exercises using zebrafish ("Danio rerio") and nematodes ("Caenorhabditis elegans") for a sophomore-level Integrative Biology Laboratory course. Students examined live wildtype zebrafish at different stages of development and noted shifts occurring in response to "fgf8a" deficiency. Students were introduced to development in…

  8. Biological characterization of venom peptides from the neotropical social waps Polistes major major (Dominican Republic)

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Fučík, Vladimír; Borovičková, Lenka; Čeřovský, Václav

    2007-01-01

    Roč. 151, S1 (2007), s. 87-89 ISSN 1213-8118. [Pharmacological Days. Czech and Slovak Pharmacological Meeting /57./. Olomouc, 12.09.2007-14.09.2007] Institutional research plan: CEZ:AV0Z40550506 Keywords : venom peptides * Polistes major major Subject RIV: CE - Biochemistry

  9. General Biology Syllabus.

    Science.gov (United States)

    Hunter, Scott; Watthews, Thomas

    This syllabus has been developed as an alternative to Regents biology and is intended for the average student who could benefit from an introductory biology course. It is divided into seven major units dealing with, respectively: (1) similarities among living things; (2) human biology (focusing on nutrition, transport, respiration, excretion, and…

  10. STEPS at CSUN: Increasing Retention of Engineering and Physical Science Majors

    Science.gov (United States)

    Pedone, V. A.; Cadavid, A. C.; Horn, W.

    2012-12-01

    STEPS at CSUN seeks to increase the retention rate of first-time freshman in engineering, math, and physical science (STEM) majors from ~55% to 65%. About 40% of STEM first-time freshmen start in College Algebra because they do not take or do not pass the Mathematics Placement Test (MPT). This lengthens time to graduation, which contributes to dissatisfaction with major. STEPS at CSUN has made substantial changes to the administration of the MPT. Initial data show increases in the number of students who take the test and who place out of College Algebra, as well as increases in overall scores. STEPS at CSUN also funded the development of supplemental labs for Trigonometry and Calculus I and II, in partnership with similar labs created by the Math Department for College Algebra and Precalculus. These labs are open to all students, but are mandatory for at-risk students who have low scores on the MPT, low grades in the prerequisite course, or who failed the class the first time. Initial results are promising. Comparison of the grades of 46 Fall 2010 "at-risk" students without lab to those of 36 Fall 2011 students who enrolled in the supplementary lab show D-F grades decreased by 10% and A-B grades increased by 27%. A final retention strategy is aimed at students in the early stages of their majors. At CSUN the greatest loss of STEM majors occurs between sophomore-level and junior-level coursework because course difficulty increases and aspirations to potential careers weaken. The Summer Interdisciplinary Team Experience (SITE) is an intensive 3-week-long summer program that engages small teams of students from diverse STEM majors in faculty-mentored, team-based problem solving. This experience simulates professional work and creates strong bonds between students and between students and faculty mentors. The first two cohorts of students who have participated in SITE indicate that this experience has positively impacted their motivation to complete their STEM degree.

  11. Using Zebrafish to Implement a Course-Based Undergraduate Research Experience to Study Teratogenesis in Two Biology Laboratory Courses

    Science.gov (United States)

    Chism, Grady W.; Vaughan, Martin A.; Muralidharan, Pooja; Marrs, Jim A.

    2016-01-01

    Abstract A course-based undergraduate research experience (CURE) spanning three semesters was introduced into freshman and sophomore biology classes, with the hypothesis that participation in a CURE affects skills in research, communication, and collaboration, which may help students persist in science. Student research projects were centered on the hypothesis that nicotine and caffeine exposure during early development affects gastrulation and heart development in zebrafish. First, freshmen generated original data showing distinct effects of embryonic nicotine and caffeine exposure on zebrafish heart development and function. Next, Cell Biology laboratory students continued the CURE studies and identified novel teratogenic effects of nicotine and caffeine during gastrulation. Finally, new freshmen continued the CURE research, examining additional toxicant effects on development. Students designed new protocols, made measurements, presented results, and generated high-quality preliminary data that were studied in successive semesters. By implementing this project, the CURE extended faculty research and provided a scalable model to address national goals to involve more undergraduates in authentic scientific research. In addition, student survey results support the hypothesis that CUREs provide significant gains in student ability to (1) design experiments, (2) analyze data, and (3) make scientific presentations, translating into high student satisfaction and enhanced learning. PMID:26829498

  12. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  13. Proton MR Spectroscopy—Detectable Major Neurotransmitters of the Brain: Biology and Possible Clinical Applications

    Science.gov (United States)

    Agarwal, N.; Renshaw, P.F.

    2015-01-01

    SUMMARY Neurotransmitters are chemical substances that, by definition, allow communication between neurons and permit most neuronal-glial interactions in the CNS. Approximately 80% of all neurons use glutamate, and almost all interneurons use GABA. A third neurotransmitter, NAAG, modulates glutamatergic neurotransmission. Concentration changes in these molecules due to defective synthetic machinery, receptor expression, or errors in their degradation and metabolism are accepted causes of several neurologic disorders. Knowledge of changes in neurotransmitter concentrations in the brain can add useful information in making a diagnosis, helping to pick the right drug of treatment, and monitoring patient response to drugs in a more objective manner. Recent advances in 1H-MR spectroscopy hold promise in providing a more reliable in vivo detection of these neurotransmitters. In this article, we summarize the essential biology of 3 major neurotransmitters: glutamate, GABA, and NAAG. Finally we illustrate possible applications of 1H-MR spectroscopy in neuroscience research. PMID:22207303

  14. The perspectives of nonscience-major students on success in community college biology

    Science.gov (United States)

    Kim-Rajab, Oriana Sharon

    With more than 36% of nonscience-major community college students unable to successfully complete their general life science courses, graduation and transfer rates to four-year universities are negatively affected. Many students also miss important opportunities to gain some level of science proficiency. In an effort to address the problem of poor science achievement, this research project determined which factors were most significantly related to student success in a community college biology course. It also aimed to understand the student perspectives on which modifications to the course would best help them in the pursuit of success. Drawing heavily on the educational psychology schools of thought on motivation and self-efficacy of science learning, this study surveyed and interviewed students on their perceptions of which factors were related to success in biology and the changes they believed were needed in the course structure to improve success. The data revealed that the primary factors related to student success are the students' study skills and their perceived levels of self-efficacy. The findings also uncovered the critical nature of the professor's role in influencing the success of the students. After assessing the needs of the community college population, meaningful and appropriate curriculum and pedagogical reforms could be created to improve student learning outcomes. This study offered recommendations for reforms that can be used by science practitioners to provide a more nurturing and inspiring environment for all students. These suggestions revolved around the role of the instructor in influencing the self-efficacy and study skills of students. Providing more opportunities for students to interact in class, testing more frequently, establishing peer assistance programs, managing better the course material, and making themselves more available to students were at the forefront of the list. Examples of the potential benefits of increasing

  15. Biomedical Research Experiences for Biology Majors at a Small College

    Science.gov (United States)

    Stover, Shawn K.; Mabry, Michelle L.

    2010-01-01

    A program-level assessment of the biology curriculum at a small liberal arts college validates a previous study demonstrating success in achieving learning outcomes related to content knowledge and communication skills. Furthermore, research opportunities have been provided to complement pedagogical strategies and give students a more complete…

  16. Biological basis of detoxication

    National Research Council Canada - National Science Library

    Caldwell, John; Jakoby, William B

    1983-01-01

    This volume considers that premise that most of the major patterns of biological conversion of foreign compounds are known and may have predictive value in assessing the biological course for novel compounds...

  17. Gene-environment interaction in Major Depression: focus on experience-dependent biological systems

    Directory of Open Access Journals (Sweden)

    Nicola eLopizzo

    2015-05-01

    Full Text Available Major Depressive Disorder (MDD is a multifactorial and polygenic disorder, where multiple and partially overlapping sets of susceptibility genes interact each other and with the environment, predisposing individuals to the development of the illness. Thus, MDD results from a complex interplay of vulnerability genes and environmental factors that act cumulatively throughout individual's lifetime. Among these environmental factors, stressful life experiences, especially those occurring early in life, have been suggested to exert a crucial impact on brain development, leading to permanent functional changes that may contribute to life long risk for mental health outcomes. In this review we will discuss how genetic variants (polymorphisms, SNPs within genes operating in neurobiological systems that mediate stress response and synaptic plasticity, can impact, by themselves, the vulnerability risk for MDD; we will also consider how this MDD risk can be further modulated when gene X environment interaction is taken into account. Finally, we will discuss the role of epigenetic mechanisms, and in particular of DNA methylation and miRNAs expression changes, in mediating the effect of the stress on the vulnerability risk to develop MDD. Taken together, in this review we aim to underlie the role of genetic and epigenetic processes involved in stress and neuroplasticity related biological systems on development of MDD after exposure to early life stress, thereby building the basis for future research and clinical interventions.

  18. Correlation between MCAT biology content specifications and topic scope and sequence of general education college biology textbooks.

    Science.gov (United States)

    Rissing, Steven W

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for "nonmajors," GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of "their" majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools' GE curricula.

  19. Correlation between MCAT Biology Content Specifications and Topic Scope and Sequence of General Education College Biology Textbooks

    Science.gov (United States)

    Rissing, Steven W.

    2013-01-01

    Most American colleges and universities offer gateway biology courses to meet the needs of three undergraduate audiences: biology and related science majors, many of whom will become biomedical researchers; premedical students meeting medical school requirements and preparing for the Medical College Admissions Test (MCAT); and students completing general education (GE) graduation requirements. Biology textbooks for these three audiences present a topic scope and sequence that correlates with the topic scope and importance ratings of the biology content specifications for the MCAT regardless of the intended audience. Texts for “nonmajors,” GE courses appear derived directly from their publisher's majors text. Topic scope and sequence of GE texts reflect those of “their” majors text and, indirectly, the MCAT. MCAT term density of GE texts equals or exceeds that of their corresponding majors text. Most American universities require a GE curriculum to promote a core level of academic understanding among their graduates. This includes civic scientific literacy, recognized as an essential competence for the development of public policies in an increasingly scientific and technological world. Deriving GE biology and related science texts from majors texts designed to meet very different learning objectives may defeat the scientific literacy goals of most schools’ GE curricula. PMID:24006392

  20. Bioreactors in Everyday Life: Ethanol and the Maize Craze

    Science.gov (United States)

    Bowman, Silas

    2010-01-01

    This project served as a capstone event for the United States Military Academy sophomore Calculus II course. This multi-disciplinary problem-solving exercise motivated the link between math and biology and many other fields of study. The seven-lesson block of instruction was developed to show students how mathematics play a role in every…

  1. IAEA biological reference materials

    International Nuclear Information System (INIS)

    Parr, R.M.; Schelenz, R.; Ballestra, S.

    1988-01-01

    The Analytical Quality Control Services programme of the IAEA encompasses a wide variety of intercomparisons and reference materials. This paper reviews only those aspects of the subject having to do with biological reference materials. The 1988 programme foresees 13 new intercomparison exercises, one for major, minor and trace elements, five for radionuclides, and seven for stable isotopes. Twenty-two natural matrix biological reference materials are available: twelve for major, minor and trace elements, six for radionuclides, and four for chlorinated hydrocarbons. Seven new intercomparisons and reference materials are in preparation or under active consideration. Guidelines on the correct use of reference materials are being prepared for publication in 1989 in consultation with other major international producers and users of biological reference materials. The IAEA database on available reference materials is being updated and expanded in scope, and a new publication is planned for 1989. (orig.)

  2. Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities.

    Science.gov (United States)

    Wangchuk, Phurpa; Keller, Paul A; Pyne, Stephen G; Taweechotipatr, Malai; Tonsomboon, Aunchalee; Rattanajak, Roonglawan; Kamchonwongpaisan, Sumalee

    2011-09-01

    As many as 229 medicinal plants have been currently used in the Bhutanese Traditional Medicine (BTM) as a chief ingredient of polyherbal formulations and these plants have been individually indicated for treating various types of infections including malaria, tumor, and microbial. We have focused our study only on seven species of these plants. We aim to evaluate the antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities of the seven medicinal plants of Bhutan selected using an ethno-directed bio-rational approach. This study creates a scientific basis for their use in the BTM and gives foundation for further phytochemical and biological evaluations which can result in the discovery of new drug lead compounds. A three stage process was conducted which consisted of: (1) an assessment of a pharmacopoeia and a formulary book of the BTM for their mode of plant uses; (2) selecting 25 anti-infective medicinal plants based on the five established criteria, collecting them, and screening for their major classes of phytochemicals using appropriate test protocols; and (3) finally analyzing the crude extracts of the seven medicinal plants, using the standard test protocols, for their antiplasmodial, antimicrobial, anti-Trypanosoma brucei rhodesiense and cytotoxicity activities as directed by the ethnopharmacological uses of each plant. Out of 25 medicinal plants screened for their major classes of phytochemicals, the majority contained tannins, alkaloids and flavonoids. Out of the seven plant species investigated for their biological activities, all seven of them exhibited mild antimicrobial properties, five plants gave significant in vitro antiplasmodial activities, two plants gave moderate anti-Trypanosoma brucei rhodesiense activity, and one plant showed mild cytotoxicity. Meconopsis simplicifolia showed the highest antiplasmodial activity with IC(50) values of 0.40 μg/ml against TM4/8.2 strain (a wild type chloroquine and

  3. Support for major hypotheses in invasion biology is uneven and declining

    Czech Academy of Sciences Publication Activity Database

    Jeschke, J.M.; Aparicio, L.G.; Haider, S.; Heger, T.; Lortie, C. J.; Pyšek, Petr; Strayer, D.L.

    2012-01-01

    Roč. 2012, č. 14 (2012), s. 1-20 ISSN 1619-0033 R&D Projects: GA ČR(CZ) GAP504/11/1028 Institutional support: RVO:67985939 Keywords : biological invasions * hypotheses * testing Subject RIV: EF - Botanics

  4. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many......In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...

  5. Ten questions about systems biology

    DEFF Research Database (Denmark)

    Joyner, Michael J; Pedersen, Bente K

    2011-01-01

    In this paper we raise 'ten questions' broadly related to 'omics', the term systems biology, and why the new biology has failed to deliver major therapeutic advances for many common diseases, especially diabetes and cardiovascular disease. We argue that a fundamentally narrow and reductionist...... to understand how whole animals adapt to the real world. We argue that a lack of fluency in these concepts is a major stumbling block for what has been narrowly defined as 'systems biology' by some of its leading advocates. We also point out that it is a failure of regulation at multiple levels that causes many...

  6. The relationship of parental influence on student career choice of biology and non-biology majors enrolled in a freshman biology course

    Science.gov (United States)

    Sowell, Mitzie Leigh

    Recent declines in science literacy and inadequate numbers of individuals entering science careers has heightened the importance of determining why students major in science or do not major in science and then choose a science-related career. Therefore, the purpose of this study was to examine the relationship between parental influences and student career choices of both males and females majoring and not majoring in science. This study specifically examined the constructs of parental occupation, parental involvement, and parental education levels. Aspects indicated by the participants as being influencers were also examined. In addition, differences between males and females were examined. A total of 282 students participated in the study; 122 were science majors and 160 were non-science majors. The data was collected through the use of a student information survey and the Modified Fennema-Sherman Attitude Scale. The findings suggest that students indicated the desire to help others, peers, salary, and skills as influencing their career choice. In regard to the various parental influences, mother's occupation was the only construct found as a statistically significant influencer on a student's decision to major in science. The results of this study can help educators, administrators, and policy makers understand what influences students to pursue science-related careers and possibly increase the number of students entering science-related careers. The results of the study specifically provide information that may prove useful to administrators and educators in the health science fields, particularly nursing fields. The findings provide insight into why students may choose to become nurses.

  7. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology.

    Science.gov (United States)

    Andrews, Sarah E; Runyon, Christopher; Aikens, Melissa L

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory, students' personal values toward using math in a biological context will influence their achievement and behavioral outcomes, but a validated instrument is needed to determine this empirically. We developed the Math-Biology Values Instrument (MBVI), an 11-item college-level self--report instrument grounded in expectancy-value theory, to measure life science students' interest in using math to understand biology, the perceived usefulness of math to their life science career, and the cost of using math in biology courses. We used a process that integrates multiple forms of validity evidence to show that scores from the MBVI can be used as a valid measure of a student's value of math in the context of biology. The MBVI can be used by instructors and researchers to help identify instructional strategies that influence math-biology values and understand how math-biology values are related to students' achievement and decisions to pursue more advanced quantitative-based courses. © 2017 S. E. Andrews et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Positioning genomics in biology education: content mapping of undergraduate biology textbooks.

    Science.gov (United States)

    Wernick, Naomi L B; Ndung'u, Eric; Haughton, Dominique; Ledley, Fred D

    2014-12-01

    Biological thought increasingly recognizes the centrality of the genome in constituting and regulating processes ranging from cellular systems to ecology and evolution. In this paper, we ask whether genomics is similarly positioned as a core concept in the instructional sequence for undergraduate biology. Using quantitative methods, we analyzed the order in which core biological concepts were introduced in textbooks for first-year general and human biology. Statistical analysis was performed using self-organizing map algorithms and conventional methods to identify clusters of terms and their relative position in the books. General biology textbooks for both majors and nonmajors introduced genome-related content after text related to cell biology and biological chemistry, but before content describing higher-order biological processes. However, human biology textbooks most often introduced genomic content near the end of the books. These results suggest that genomics is not yet positioned as a core concept in commonly used textbooks for first-year biology and raises questions about whether such textbooks, or courses based on the outline of these textbooks, provide an appropriate foundation for understanding contemporary biological science.

  9. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    Science.gov (United States)

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond.

  10. The Relationship between Biology Classes and Biological Reasoning and Common Heath Misconceptions

    Science.gov (United States)

    Keselman, Alla; Hundal, Savreen; Chentsova-Dutton, Yulia; Bibi, Raquel; Edelman, Jay A.

    2015-01-01

    This study investigates the relationship among (1) college major, (2) knowledge used in reasoning about common health beliefs, and (3) judgment about the accuracy of those beliefs. Seventy-four college students, advanced biology and non-science majors, indicated their agreement or disagreement with commonly believed, but often inaccurate,…

  11. Marine biology

    International Nuclear Information System (INIS)

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index

  12. Data warehousing in molecular biology.

    Science.gov (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  13. Nitric Oxide-Related Biological Pathways in Patients with Major Depression.

    Directory of Open Access Journals (Sweden)

    Andreas Baranyi

    Full Text Available Major depression is a well-known risk factor for cardiovascular diseases and increased mortality following myocardial infarction. However, biomarkers of depression and increased cardiovascular risk are still missing. The aim of this prospective study was to evaluate, whether nitric-oxide (NO related factors for endothelial dysfunction, such as global arginine bioavailability, arginase activity, L-arginine/ADMA ratio and the arginine metabolites asymmetric dimethylarginine (ADMA and symmetric dimethylarginine (SDMA might be biomarkers for depression-induced cardiovascular risk.In 71 in-patients with major depression and 48 healthy controls the Global Arginine Bioavailability Ratio (GABR, arginase activity (arginine/ornithine ratio, the L-arginine/ADMA ratio, ADMA, and SDMA were determined by high-pressure liquid chromatography. Psychiatric and laboratory assessments were obtained at baseline at the time of in-patient admittance and at the time of hospital discharge.The ADMA concentrations in patients with major depression were significantly elevated and the SDMA concentrations were significantly decreased in comparison with the healthy controls. Even after a first improvement of depression, ADMA and SDMA levels remained nearly unchanged. In addition, after a first improvement of depression at the time of hospital discharge, a significant decrease in arginase activity, an increased L-arginine/ADMA ratio and a trend for increased global arginine bioavailability were observed.Our study results are evidence that in patients with major depression ADMA and SDMA might be biomarkers to indicate an increased cardiovascular threat due to depression-triggered NO reduction. GABR, the L-arginine/ADMA ratio and arginase activity might be indicators of therapy success and increased NO production after remission.

  14. The patient perspective in research on major depression

    NARCIS (Netherlands)

    Cuijpers, P.

    2011-01-01

    Although thousands of studies have examined the genetics, epidemiology, etiology, biology, treatment and prevention of major depressive disorder, we still lack very basic knowledge about what patients with depressive disorders need. Despite the thousands of studies that have been conducted on major

  15. Novelty or knowledge? A study of using a student response system in non-major biology courses at a community college

    Science.gov (United States)

    Thames, Tasha Herrington

    The advancement in technology integration is laying the groundwork of a paradigm shift in the higher education system (Noonoo, 2011). The National Dropout Prevention Center (n.d.) claims that technology offers some of the best opportunities for presenting instruction to engage students in meaningful education, addressing multiple intelligences, and adjusting to students' various learning styles. The purpose of this study was to investigate if implementing clicker technology would have a statistically significant difference on student retention and student achievement, while controlling for learning styles, for students in non-major biology courses who were and were not subjected to the technology. This study also sought to identify if students perceived the use of clickers as beneficial to their learning. A quantitative quasi-experimental research design was utilized to determine the significance of differences in pre/posttest achievement scores between students who participated during the fall semester in 2014. Overall, 118 students (n = 118) voluntarily enrolled in the researcher's fall non-major Biology course at a southern community college. A total of 71 students were assigned to the experimental group who participated in instruction incorporating the ConcepTest Process with clicker technology along with traditional lecture. The remaining 51 students were assigned to the control group who participated in a traditional lecture format with peer instruction embedded. Statistical analysis revealed the experimental clicker courses did have higher posttest scores than the non-clicker control courses, but this was not significant (p >.05). Results also implied that clickers did not statistically help retain students to complete the course. Lastly, the results indicated that there were no significant statistical difference in student's clicker perception scores between the different learning style preferences.

  16. The Math-Biology Values Instrument: Development of a Tool to Measure Life Science Majors' Task Values of Using Math in the Context of Biology

    Science.gov (United States)

    Andrews, Sarah E.; Runyon, Christopher; Aikens, Melissa L.

    2017-01-01

    In response to calls to improve the quantitative training of undergraduate biology students, there have been increased efforts to better integrate math into biology curricula. One challenge of such efforts is negative student attitudes toward math, which are thought to be particularly prevalent among biology students. According to theory,…

  17. Mathematics and Computer Science: Exploring a Symbiotic Relationship

    Science.gov (United States)

    Bravaco, Ralph; Simonson, Shai

    2004-01-01

    This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

  18. Stories of staying and leaving: A mixed methods analysis of biology undergraduate choice, persistence, and departure

    Science.gov (United States)

    Lang, Sarah Adrienne

    Using a sequential, explanatory mixed methods design, this dissertation study compared students who persist in the biology major (persisters) with students who leave the biology major (switchers) in terms of how their pre-college experiences, college biology experiences, and biology performance figured into their choice of biology and their persistence in or departure from the biology major. This study combined (1) quantitative comparisons of biology persisters and switchers via a questionnaire developed for the study and survival analysis of a larger population of biology freshmen with (2) qualitative comparison of biology switchers and persisters via semi-structured life story interviews and homogenous focus groups. 319 students (207 persisters and 112 switchers) participated in the questionnaire and 36 students (20 persisters and 16 switchers) participated in life story and focus group interviews. All participants were undergraduates who entered The University of Texas at Austin as biology freshmen in the fall semesters of 2000 through 2004. Findings of this study suggest: (1) Regardless of eventual major, biology students enter college with generally the same suite of experiences, sources of personal encouragement, and reasons for choosing the biology major; (2) Despite the fact that they have also had poor experiences in the major, biology persisters do not actively decide to stay in the biology major; they simply do not leave; (3) Based upon survival analysis, biology students are most at-risk of leaving the biology major during the first two years of college and if they are African-American or Latino, women, or seeking a Bachelor of Arts degree (rather than a Bachelor of Science); (4) Biology switchers do not leave biology due to preference for other disciplines; they leave due to difficulties or dissatisfaction with aspects of the biology major, including their courses, faculty, and peers; (5) Biology performance has a differential effect on persistence in

  19. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    Science.gov (United States)

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  20. A Study of Chinese Undergraduates' MI Distribution in EFL Class

    Science.gov (United States)

    Liu, Ning

    2008-01-01

    This paper initiates an investigation of the college students' MI (multiple intelligences) distribution in English class. The participants are a group of Chinese sophomores from different majors: city planning, tourism, software engineering, financial administration and arts of English. With a view to make the investigation more specified in…

  1. Thai EFL Learners' Attitudes and Motivation towards Learning English through Content-Based Instruction

    Science.gov (United States)

    Lai Yuanxing; Aksornjarung, Prachamon

    2018-01-01

    This study examined EFL learners' attitudes and motivation towards learning English through content-based instruction (CBI) at a university in Thailand. Seventy-one (71) university students, the majority sophomores, answered a 6-point Likert scale questionnaire on attitudes and motivation together with six open-ended questions regarding learning…

  2. Paradigms for biologically inspired design

    DEFF Research Database (Denmark)

    Lenau, T. A.; Metzea, A.-L.; Hesselberg, T.

    2018-01-01

    engineering, medical engineering, nanotechnology, photonics,environmental protection and agriculture. However, a major obstacle for the wider use of biologically inspired design isthe knowledge barrier that exist between the application engineers that have insight into how to design suitable productsand......Biologically inspired design is attracting increasing interest since it offers access to a huge biological repository of wellproven design principles that can be used for developing new and innovative products. Biological phenomena can inspireproduct innovation in as diverse areas as mechanical...... the biologists with detailed knowledge and experience in understanding how biological organisms function in theirenvironment. The biologically inspired design process can therefore be approached using different design paradigmsdepending on the dominant opportunities, challenges and knowledge characteristics...

  3. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  4. A multi-level biological approach to evaluate impacts of a major municipal effluent in wild St. Lawrence River yellow perch (Perca flavescens)

    Energy Technology Data Exchange (ETDEWEB)

    Houde, Magali, E-mail: magali.houde@ec.gc.ca [Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7 (Canada); Giraudo, Maeva, E-mail: maeva.giraudo@ec.gc.ca [Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7 (Canada); Douville, Mélanie, E-mail: melanie.douville@ec.gc.ca [Centre Saint-Laurent, Environment Canada, 105 McGill Street, Montreal, QC H2Y 2E7 (Canada); Bougas, Bérénice, E-mail: berenice.bougas.1@ulaval.ca [Institut de biologie intégrative et des systèmes, Université Laval, 1030, avenue de la Médecine, Québec, QC G1V 0A6 (Canada); Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); De Silva, Amila O., E-mail: amila.desilva@ec.gc.ca [Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Spencer, Christine, E-mail: christine.spencer@ec.gc.ca [Canada Centre for Inland Waters, Environment Canada, 867 Lakeshore Road, P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Lair, Stéphane, E-mail: stephane.lair@umontreal.ca [Centre québécois sur la santé des animaux sauvages, Université de Montréal, C.P. 5000, St-Hyacinthe, QC J2S 7C6 (Canada); and others

    2014-11-01

    The development of integrated ecotoxicological approaches is of great interest in the investigation of global concerns such as impacts of municipal wastewater effluents on aquatic ecosystems. The objective of this study was to investigate the effects of a major wastewater municipal effluent on fish using a multi-level biological approach, from gene transcription and enzyme activities to histological changes. Yellow perch (Perca flavescens) were selected based on their wide distribution, their commercial and recreational importance, and the availability of a customized microarray. Yellow perch were sampled upstream of a major municipal wastewater treatment plant (WWTP) and 4 km and 10 km downstream from its point of discharge in the St. Lawrence River (Quebec, Canada). Concentrations of perfluoroalkyl substances (PFASs), polybrominated diphenyl ethers (PBDEs) and metals/trace elements in whole body homogenates were comparable to those from other industrialized regions of the world. Genomic results indicated that the transcription level of 177 genes was significantly different (p < 0.024) between exposed and non-exposed fish. Among these genes, 38 were found to be differentially transcribed at both downstream sites. Impacted genes were associated with biological processes and molecular functions such as immunity, detoxification, lipid metabolism/energy homeostasis (e.g., peroxisome proliferation), and retinol metabolism suggesting impact of WWTP on these systems. Moreover, antioxidant enzyme activities were more elevated in perch collected at the 4 km site. Biomarkers of lipid metabolism, biosynthetic activity, and aerobic capacities were significantly lower (p < 0.05) in fish residing near the outfall of the effluent. Histological examination of the liver indicated no differences between sites. Correlations between PFAS, PBDE, and metal/trace element tissue concentrations and markers of peroxisomal proliferation, oxidative stress, and retinoid metabolism were found

  5. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  6. Grades and Withdrawal Rates in Cell Biology and Genetics Based upon Institution Type for General Biology and Implications for Transfer Articulation Agreements

    Science.gov (United States)

    Regier, Kimberly Fayette

    2016-01-01

    General biology courses (for majors) are often transferred from one institution to another. These courses must prepare students for upper division courses in biology. In Colorado, a Biology Transfer Articulation Agreement that includes general biology has been created across the state. An evaluation was conducted of course grades in two upper…

  7. Biological control and sustainable food production

    NARCIS (Netherlands)

    Bale, J.S.; Lenteren, van J.C.; Bigler, F.

    2008-01-01

    The use of biological control for the management of pest insects pre-dates the modern pesticide era. The first major successes in biological control occurred with exotic pests controlled by natural enemy species collected from the country or area of origin of the pest (classical control).

  8. The Effects of Computer-Assisted Instruction of Simple Circuits on Experimental Process Skills

    Directory of Open Access Journals (Sweden)

    Şeyma ULUKÖK

    2013-01-01

    Full Text Available The experimental and control groups were composed of 30 sophomores majoring in Classroom Teaching for this study investigating the effects of computer-assisted instruction of simple circuits on the development of experimental process skills. The instruction includes experiments and studies about simple circuits and its elements (serial, parallel, and mixed conncetions of resistors covered in Science and Technology Laboratory II course curriculum. In this study where quantitative and qualitative methods were used together, the control list developed by the researchers was used to collect data. Results showed that experimental process skills of sophomores in experimental group were more developed than that of those in control group. Thus, it can be said that computer-assisted instruction has a positive impact on the development of experimental process skills of students.

  9. 2011 Annual Survey of Journalism and Mass Communication Enrollments: Enrollments Decline, Reversing the Increase of a Year Earlier, and Suggesting Slow Growth for Future

    Science.gov (United States)

    Becker, Lee B.; Vlad, Tudor; Kalpen, Konrad

    2012-01-01

    Enrollments in journalism and mass communication programs declined in the autumn of 2011, compared to a year earlier. Enrollments were down slightly at the senior and junior levels and substantially at the freshman level. Enrollment increased at the sophomore level. The majority of administrators say they have made curricular changes in the past…

  10. A Path Analysis Model Pertinent to Undergraduates' Academic Success: Examining Academic Confidence, Psychological Capital and Academic Coping Factors

    Science.gov (United States)

    Kirikkanat, Berke; Soyer, Makbule Kali

    2018-01-01

    The major purpose of this study was to create a path analysis model of academic success in a group of university students, which included the variables of academic confidence and psychological capital with a mediator variable--academic coping. 400 undergraduates from Marmara University and Istanbul Commerce University who were in sophomore, junior…

  11. A Case Study: Applying Critical Thinking Skills to Computer Science and Technology

    Science.gov (United States)

    Shannon, Li-Jen; Bennett, Judith

    2012-01-01

    A majority of incoming college freshmen and sophomores have not applied their critical thinking skills as part of their learning process. This paper investigates how students acquire their critical thinking skills while facing the copyright, fair use, and internet security challenges in this contemporary digital society. The findings show that 90…

  12. The fusion of biology, computer science, and engineering: towards efficient and successful synthetic biology.

    Science.gov (United States)

    Linshiz, Gregory; Goldberg, Alex; Konry, Tania; Hillson, Nathan J

    2012-01-01

    Synthetic biology is a nascent field that emerged in earnest only around the turn of the millennium. It aims to engineer new biological systems and impart new biological functionality, often through genetic modifications. The design and construction of new biological systems is a complex, multistep process, requiring multidisciplinary collaborative efforts from "fusion" scientists who have formal training in computer science or engineering, as well as hands-on biological expertise. The public has high expectations for synthetic biology and eagerly anticipates the development of solutions to the major challenges facing humanity. This article discusses laboratory practices and the conduct of research in synthetic biology. It argues that the fusion science approach, which integrates biology with computer science and engineering best practices, including standardization, process optimization, computer-aided design and laboratory automation, miniaturization, and systematic management, will increase the predictability and reproducibility of experiments and lead to breakthroughs in the construction of new biological systems. The article also discusses several successful fusion projects, including the development of software tools for DNA construction design automation, recursive DNA construction, and the development of integrated microfluidics systems.

  13. BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors.

    Science.gov (United States)

    Brownell, Sara E; Freeman, Scott; Wenderoth, Mary Pat; Crowe, Alison J

    2014-01-01

    Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide-a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education. © 2014 S. E. Brownell et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  14. The Importance of Biological Databases in Biological Discovery.

    Science.gov (United States)

    Baxevanis, Andreas D; Bateman, Alex

    2015-06-19

    Biological databases play a central role in bioinformatics. They offer scientists the opportunity to access a wide variety of biologically relevant data, including the genomic sequences of an increasingly broad range of organisms. This unit provides a brief overview of major sequence databases and portals, such as GenBank, the UCSC Genome Browser, and Ensembl. Model organism databases, including WormBase, The Arabidopsis Information Resource (TAIR), and those made available through the Mouse Genome Informatics (MGI) resource, are also covered. Non-sequence-centric databases, such as Online Mendelian Inheritance in Man (OMIM), the Protein Data Bank (PDB), MetaCyc, and the Kyoto Encyclopedia of Genes and Genomes (KEGG), are also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  15. Reproductive biology of black seabream Acanthopagrus schlegelii, threadfin porgy Evynnis cardinalis and red pargo Pagrus major in the northern South China Sea with consideration of fishery status and management needs.

    Science.gov (United States)

    Law, C S W; Sadovy de Mitcheson, Y

    2017-07-01

    The reproductive biology of three commercially significant seabream species (family: Sparidae) Acanthopagrus schlegelii, Evynnis cardinalis and Pagrus major, taken from Hong Kong and adjacent northern South China Sea (SCS) waters, were investigated for their sexual patterns, spawning seasons, length at maturity and exploitation in relation to their conservation and management status. Histological analysis showed E. cardinalis and P. major to be functionally gonochoristic, the latter having a bisexual juvenile stage and being a rudimentary hermaphrodite. Acanthopagrus schlegelii is a protandric hermaphrodite. Standard length (L S ) at 50% sex change for A. schlegelii is 291 mm. L S at 50% female maturity for E. cardinalis and P. major are 117 and 332 mm, respectively. For all three species, the spawning period falls between November and March. The study highlights geographical differences in reproductive biology among the species and a paucity of fishery or other population-related data. While heavy fishing pressure, life-history characteristics and absence of effective management throughout the geographic ranges of these species make them susceptible to overfishing, they nonetheless appear to be generally more resilient than many other taxa that comprise the multi-species fisheries of the region, possibly due to their relatively rapid sexual maturation and spatial movement patterns. Overall, however, little is known of the biology, fishing history and current fishery status of sparids in general in the northern SCS and the current study is one of the first to examine such aspects of this family in the region and to consider appropriate management options. © 2017 The Fisheries Society of the British Isles.

  16. BioCore Guide: A Tool for Interpreting the Core Concepts of Vision and Change for Biology Majors

    Science.gov (United States)

    Freeman, Scott; Wenderoth, Mary Pat; Crowe, Alison J.

    2014-01-01

    Vision and Change in Undergraduate Biology Education outlined five core concepts intended to guide undergraduate biology education: 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and 5) systems. We have taken these general recommendations and created a Vision and Change BioCore Guide—a set of general principles and specific statements that expand upon the core concepts, creating a framework that biology departments can use to align with the goals of Vision and Change. We used a grassroots approach to generate the BioCore Guide, beginning with faculty ideas as the basis for an iterative process that incorporated feedback from more than 240 biologists and biology educators at a diverse range of academic institutions throughout the United States. The final validation step in this process demonstrated strong national consensus, with more than 90% of respondents agreeing with the importance and scientific accuracy of the statements. It is our hope that the BioCore Guide will serve as an agent of change for biology departments as we move toward transforming undergraduate biology education. PMID:26086653

  17. Investigating Chinese English Majors’ Use of Reading Strategies : A Study on the Relationship between Reading Strategies and Reading Achievements 

    OpenAIRE

    Sun, Ling

    2011-01-01

    For several decades, reading strategies have aroused many researchers’ interest.Readingis a very important language skill for English learners; however, many English majors feel that their reading proficiency is far from satisfying though they have studied English for more than ten years. Therefore, the current situation of using reading strategies among Chinese sophomore English majors is studied in this paper. The research aims to study the relationship between the use of reading strategies...

  18. Improving student performance in an introductory biology majors course: A social action project in the scholarship of teaching

    Science.gov (United States)

    Chambers, Sara Lang Ketchum

    This social action study followed an introductory biology course for a three-year period to determine whether changes in teaching personnel, instructional techniques and reorientation to student-centered learning would impact student performance. The course was redirected from a traditional lecture-laboratory format to one emphasizing active learning inquiry methods. Student retention, achievement, and failure were observed for three years in addition to one year prior, and one year following, the study. The study examined the two semester introductory biology course required of all biology majors and those intending a career in science, medicine or dentistry. During the first semester of the study, the dropout rate decreased from 46% to 21%. Prior to the study, 39% of the students completing the course received a grade of D or F while only 4% received a grade of B or above. During the first semester of the study 14% of the students received a grade of D or F while 46% received a B, B+ or A grade. Similar results were seen in other semesters of the study. A statistical comparison of student retention and performance was carried out using grade data for classes taught by the original faculty, the action study faculty and the post-study faculty. The differences between the original faculty and the action study faculty were statistically significant. Effect size calculations indicated large differences between the action study faculty and the two other faculty groups in terms of student retention, achievement and failure. The results are attributed to both the personnel change and, more significantly, the change in teaching methods and emphasis on student-active learning. Comparison between the pre- and post-study teams showed less dramatic effect sizes than when the action study data were compared with the data from either other team. Nevertheless, the post-study results showed that although the retention rate dropped during the year after the study, the improvement

  19. Lipid polymorphism and the functional roles of lipids in biological membranes

    NARCIS (Netherlands)

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  20. Gender Differences in Self-Efficacy and Sense of Class and School Belonging for Majors in Science, Technology, Engineering, and Mathematics (STEM) Disciplines

    Science.gov (United States)

    Hogue, Barbara A.

    Research into women's underrepresentation in science, technology, engineering, and mathematics (STEM) disciplines has become a topic of interest due to the increasing need for employees with technical expertise and a shortage of individuals to fill STEM jobs. The discrepancy in women's representation between STEM and other fields cannot adequately be explained by factors such as women's need to balance work and family (medicine and law are both extremely demanding careers), women's fear of competition (admissions into medical and law schools are highly competitive), or women's inability to excel in science (e.g., entry into medicine requires excellent achievement in the basic sciences). The purpose of this study is to gain a deeper understanding of the role and/or impact a sense of belonging has inside and outside of STEM classrooms. Research questions focused on the role and/or impact of belonging contributes to students' self-efficacy beliefs as a STEM major. Bandura's self-efficacy theory serves as the theoretical framework. Data sources include close-ended surveys of 200 sophomore- and junior-level college students majoring in a STEM discipline. A quantitative exploratory approach allowed participants' responses to be analyzed using both correlation and multiple regression analyses to understand whether a student's sense of belonging is associated with his or her self-efficacy beliefs. Findings suggested that positive support systems impact students' self-efficacy and play a role in fostering students' motivation and decision to major in STEM disciplines. This study contributes to positive social change by providing empirical evidence faculty and administrators may use to promote university-based STEM support programs reflecting the impact belonging has on students' self-efficacy and potentially increasing the number of students majoring in STEM disciplines.

  1. Learning how scientists work: experiential research projects to promote cell biology learning and scientific process skills.

    Science.gov (United States)

    DebBurman, Shubhik K

    2002-01-01

    Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.

  2. A Study of College Students' Perceptions on the Use of New and Emerging Technologies on Student Retention in a Higher Education Setting

    Science.gov (United States)

    An, Jin S.

    2013-01-01

    Student retention is a major concern of many higher education administrators and educators in the United States. The American College Testing Program (ACT) studies conducted between 1983 and 2010 indicated that one out of three students who started college did not return as sophomores and one out of two college students were unable to graduate.…

  3. Water pollution biology

    Energy Technology Data Exchange (ETDEWEB)

    Mason, C.F. [University of Essex, Colchester (United Kingdom). Dept. of Biology

    1996-12-31

    Chapter 4 of this book describes the effects of major types of pollutants on aquatic life. These are: organic pollution, eutrophication, acidification, toxic chemicals, oil, and radioactivity. The review includes an description of some of the methods of assessing the biological impacts of pollution. 50 refs., 8 figs., 3 tabs.

  4. Conceptual Barriers to Progress Within Evolutionary Biology.

    Science.gov (United States)

    Laland, Kevin N; Odling-Smee, John; Feldman, Marcus W; Kendal, Jeremy

    2009-08-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, "niche construction". This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory.

  5. Assessment of Factors that Influence the Recruitment of Majors from Introductory Geology Classes

    Science.gov (United States)

    Hoisch, T. D.; Bowie, J. I.

    2009-12-01

    In order to guide the formulation of strategies for recruiting undergraduates taking introductory geology courses into the geology program at Northern Arizona University, we surveyed 783 students in introductory geology classes and 23 geology majors in their junior and senior years. Our introductory courses (GLG100, Introduction to Geology; GLG101, Physical Geology; and GLG112, Geologic Disasters) typically enroll ~600 students each semester. The majority of students in these classes are non-majors who take them in order to satisfy a university general education requirement (called “Liberal Studies requirements” at NAU). A large proportion of these students are freshmen (51%) and sophomores (30%), and many have not yet decided on a major or are uncertain about the major they have chosen. Our analysis shows that ~7% of students in the introductory classes are possible candidates for recruitment. Although a small percentage, it represents a large number of individuals, in fact more than could be accommodated were they all to decide to major in geology. Influential factors that weigh in favor of majoring in geology include good employability, good salary potential, and opportunities for working outdoors, field work, observing nature, travel, and environmentally friendly employment. In addition, students view a career as a geologist as potentially the most fulfilling of the different science occupations (biologist, chemist, geologist, environmental scientist, physicist) and among the more environmentally friendly. However, students perceive geology to be the least difficult of the sciences, and geology occupations to be low-paying and low in prestige relative to the other sciences. These negative perceptions could be countered by providing data to introductory students showing the starting salaries of geologists in comparison to other science occupations, and by communicating the rigorous nature of the more advanced classes in the geology degree program. A

  6. Review of Biological Network Data and Its Applications

    Directory of Open Access Journals (Sweden)

    Donghyeon Yu

    2013-12-01

    Full Text Available Studying biological networks, such as protein-protein interactions, is key to understanding complex biological activities. Various types of large-scale biological datasets have been collected and analyzed with high-throughput technologies, including DNA microarray, next-generation sequencing, and the two-hybrid screening system, for this purpose. In this review, we focus on network-based approaches that help in understanding biological systems and identifying biological functions. Accordingly, this paper covers two major topics in network biology: reconstruction of gene regulatory networks and network-based applications, including protein function prediction, disease gene prioritization, and network-based genome-wide association study.

  7. Seeing Cells: Teaching the Visual/Verbal Rhetoric of Biology

    Science.gov (United States)

    Dinolfo, John; Heifferon, Barbara; Temesvari, Lesly A.

    2007-01-01

    This pilot study obtained baseline information on verbal and visual rhetorics to teach microscopy techniques to college biology majors. We presented cell images to students in cell biology and biology writing classes and then asked them to identify textual, verbal, and visual cues that support microscopy learning. Survey responses suggest that…

  8. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny

    2018-01-01

    HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic

  9. Dissipative structures and biological rhythms

    Science.gov (United States)

    Goldbeter, Albert

    2017-10-01

    Sustained oscillations abound in biological systems. They occur at all levels of biological organization over a wide range of periods, from a fraction of a second to years, and with a variety of underlying mechanisms. They control major physiological functions, and their dysfunction is associated with a variety of physiological disorders. The goal of this review is (i) to give an overview of the main rhythms observed at the cellular and supracellular levels, (ii) to briefly describe how the study of biological rhythms unfolded in the course of time, in parallel with studies on chemical oscillations, (iii) to present the major roles of biological rhythms in the control of physiological functions, and (iv) the pathologies associated with the alteration, disappearance, or spurious occurrence of biological rhythms. Two tables present the main examples of cellular and supracellular rhythms ordered according to their period, and their role in physiology and pathophysiology. Among the rhythms discussed are neural and cardiac rhythms, metabolic oscillations such as those occurring in glycolysis in yeast, intracellular Ca++ oscillations, cyclic AMP oscillations in Dictyostelium amoebae, the segmentation clock that controls somitogenesis, pulsatile hormone secretion, circadian rhythms which occur in all eukaryotes and some bacteria with a period close to 24 h, the oscillatory dynamics of the enzymatic network driving the cell cycle, and oscillations in transcription factors such as NF-ΚB and tumor suppressors such as p53. Ilya Prigogine's concept of dissipative structures applies to temporal oscillations and allows us to unify within a common framework the various rhythms observed at different levels of biological organization, regardless of their period and underlying mechanism.

  10. The Structure and Function of Biological Networks

    Science.gov (United States)

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  11. Aberrant Free Radical Biology Is a Unifying Theme in the Etiology and Pathogenesis of Major Human Diseases

    Directory of Open Access Journals (Sweden)

    Frederick E. Domann

    2013-04-01

    Full Text Available The seemingly disparate areas of oxygen toxicity, radiation exposure, and aging are now recognized to share a common feature—the aberrant production and/or removal of biologically derived free radicals and other reactive oxygen and nitrogen species (ROS/RNS. Advances in our understanding of the effects of free radicals in biology and medicine have been, and continue to be, actively translated into clinically tractable diagnostic and therapeutic applications. This issue is dedicated to recent advances, both basic discoveries and clinical applications, in the field of free radicals in biology and medicine. As more is understood about the proximal biological targets of aberrantly produced or removed reactive species, their sensors, and effectors of compensatory response, a great deal more will be learned about the commonalities in mechanisms underlying seemingly disparate disease states. Together with this deeper understanding, opportunities will arise to devise rational therapeutic interventions to decrease the incidence and severity of these diseases and positively impact the human healthspan.

  12. A first attempt to bring computational biology into advanced high school biology classrooms.

    Science.gov (United States)

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  13. Is chronic insomnia a precursor to major depression? Epidemiological and biological findings.

    Science.gov (United States)

    Baglioni, Chiara; Riemann, Dieter

    2012-10-01

    Insomnia has been found to be a clinical predictor of subsequent depression. Nevertheless the biological processes underlying this causal relationship are yet not fully understood. Both conditions share a common imbalance of the arousal system. Patients with insomnia present fragmented REM sleep, which probably interferes with basal processes of emotion regulation. The interaction between the arousal and the affective system with the persistence of the disorder could slowly alter also the cognitive system and lead to depression. Although preliminary results seem to support this hypothesis, data are still too few to make valid conclusions.

  14. The CLEM Model: Path Analysis of the Mediating Effects of Attitudes and Motivational Beliefs on the Relationship between Perceived Learning Environment and Course Performance in an Undergraduate Non-Major Biology Course

    Science.gov (United States)

    Partin, Matthew L.; Haney, Jodi J.

    2012-01-01

    In this study, the following questions were addressed in an undergraduate non-major biology course using a large lecture format: Is there a relationship between students' perceptions of their learning environment and course performance, and what roles do motivation and attitudes play in mediating that relationship? The purpose of this study was to…

  15. Reproductive biology of common octopus Octopus vulgaris (Cuvier ...

    African Journals Online (AJOL)

    Abstract. Although common octopus catches are increasing globally, lack of information on the species reproductive biology has been a major concern in its management particularly in Kenya. The present study aimed at investigating the reproductive biology of Octopus vulgaris from Shimoni and Vanga in the Kenyan South ...

  16. Experiences of Judeo-Christian Students in Undergraduate Biology

    Science.gov (United States)

    Barnes, M. Elizabeth; Truong, Jasmine M.; Brownell, Sara E.

    2017-01-01

    A major research thrust in science, technology, engineering, and mathematics (STEM) education is focused on how to retain students as STEM majors. The accumulation of seemingly insignificant negative experiences in STEM classes can, over time, lead STEM students to have a low sense of belonging in their disciplines, and this can lead to lower retention. In this paper, we explore how Judeo-Christian students in biology have experiences related to their religious identities that could impact their retention in biology. In 28 interviews with Judeo-Christian students taking undergraduate biology classes, students reported a religious identity that can conflict with the secular culture and content of biology. Some students felt that, because they are religious, they fall within a minority in their classes and would not be seen as credible within the biology community. Students reported adverse experiences when instructors had negative dispositions toward religion and when instructors were rigid in their instructional practices when teaching evolution. These data suggest that this may be a population susceptible to experiences of cultural conflict between their religious identities and their STEM identities, which could have implications for retention. We argue that more research should explore how Judeo-Christian students’ experiences in biology classes influence their sense of belonging and retention. PMID:28232586

  17. The Manila Declaration concerning the ethical utilization of Asian biological resources

    NARCIS (Netherlands)

    NN,

    1992-01-01

    — the maintenance of biological and cultural diversity is of global concern — developing countries are major centres of biological and cultural diversity — there is increased interest in biological material with medicinal and other economic values — indigenous peoples frequently possess knowledge

  18. Using student motivation to design groups in a non-majors biology course for team-based collaborative learning: Impacts on knowledge, views, attitudes, and perceptions

    Science.gov (United States)

    Walters, Kristi L.

    The importance of student motivation and its connection to other learning variables (i.e., attitudes, knowledge, persistence, attendance) is well established. Collaborative work at the undergraduate level has been recognized as a valuable tool in large courses. However, motivation and collaborative group work have rarely been combined. This project utilized student motivation to learn biology to place non-major biology undergraduates in collaborative learning groups at East Carolina University, a mid-sized southeastern American university, to determine the effects of this construct on student learning. A pre-test measuring motivation to learn biology, attitudes toward biology, perceptions of biology and biologists, views of science, and content knowledge was administered. A similar post-test followed as part of the final exam. Two sections of the same introductory biology course (n = 312) were used and students were divided into homogeneous and heterogeneous groups (based on their motivation score). The heterogeneous groups (n = 32) consisted of a mixture of different motivation levels, while the homogeneous groups (n = 32) were organized into teams with similar motivation scores using tiers of high-, middle-, and low-level participants. Data analysis determined mixed perceptions of biology and biologists. These include the perceptions biology was less intriguing, less relevant, less practical, less ethical, and less understandable. Biologists were perceived as being neat and slightly intelligent, but not very altruistic, humane, ethical, logical, honest, or moral. Content knowledge scores more than doubled from pre- to post-test. Half of the items measuring views of science were not statistically significantly different from pre- to post-test. Many of the factors for attitudes toward biology became more agreeable from pre- to post-test. Correlations between motivation scores, participation levels, attendance rates, and final course grades were examined at both the

  19. Identifying biological concepts from a protein-related corpus with a probabilistic topic model

    Directory of Open Access Journals (Sweden)

    Lu Xinghua

    2006-02-01

    Full Text Available Abstract Background Biomedical literature, e.g., MEDLINE, contains a wealth of knowledge regarding functions of proteins. Major recurring biological concepts within such text corpora represent the domains of this body of knowledge. The goal of this research is to identify the major biological topics/concepts from a corpus of protein-related MEDLINE© titles and abstracts by applying a probabilistic topic model. Results The latent Dirichlet allocation (LDA model was applied to the corpus. Based on the Bayesian model selection, 300 major topics were extracted from the corpus. The majority of identified topics/concepts was found to be semantically coherent and most represented biological objects or concepts. The identified topics/concepts were further mapped to the controlled vocabulary of the Gene Ontology (GO terms based on mutual information. Conclusion The major and recurring biological concepts within a collection of MEDLINE documents can be extracted by the LDA model. The identified topics/concepts provide parsimonious and semantically-enriched representation of the texts in a semantic space with reduced dimensionality and can be used to index text.

  20. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  1. Applications of Microfluidics in Quantitative Biology.

    Science.gov (United States)

    Bai, Yang; Gao, Meng; Wen, Lingling; He, Caiyun; Chen, Yuan; Liu, Chenli; Fu, Xiongfei; Huang, Shuqiang

    2018-05-01

    Quantitative biology is dedicated to taking advantage of quantitative reasoning and advanced engineering technologies to make biology more predictable. Microfluidics, as an emerging technique, provides new approaches to precisely control fluidic conditions on small scales and collect data in high-throughput and quantitative manners. In this review, the authors present the relevant applications of microfluidics to quantitative biology based on two major categories (channel-based microfluidics and droplet-based microfluidics), and their typical features. We also envision some other microfluidic techniques that may not be employed in quantitative biology right now, but have great potential in the near future. © 2017 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. Biotechnology Journal Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  2. Systems biology and medicine

    Indian Academy of Sciences (India)

    work could potentially provide us with ways to identify drug ... appropriately balance cause, effect, and context of a given clinical ... would not provide answers/solutions to multitude of tasks that were ... a major challenge of contemporary biology is to embark on an ... nificantly govern the life and responsiveness of cells.

  3. A short history of anti-rheumatic therapy - VII. Biological agents

    Directory of Open Access Journals (Sweden)

    B. Gatto

    2011-11-01

    Full Text Available The introduction of biological agents has been a major turning-point in the treatment of rheumatic diseases, particularly in rheumatoid arthritis. This review describes the principle milestones that have led, through the knowledge of the structure and functions of nucleic acids, to the development of production techniques of the three major families of biological agents: proteins, monoclonal antibodies and fusion proteins. A brief history has also been traced of the cytokines most involved in the pathogenesis of inflammatory rheumatic diseases (IL-1 and TNF and the steps which have led to the use of the main biological drugs in rheumatology: anakinra, infliximab, adalimumab, etanercept and rituximab.

  4. Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    G Grobler

    2013-08-01

    Full Text Available The treatment guideline draws on several international guidelines: (iPractice Guidelines of the American Psychiatric Association (APAfor the Treatment of Patients with Major Depressive Disorder, SecondEdition;[1](ii Clinical Guidelines for the Treatment of DepressiveDisorders by the Canadian Psychiatric Association and the CanadianNetwork for Mood and Anxiety Treatments (CANMAT;[2](iiiNational Institute for Clinical Excellence (NICE guidelines;[3](iv RoyalAustralian and New Zealand College of Psychiatrists Clinical PracticeGuidelines Team for Depression (RANZCAP;[4](v Texas MedicationAlgorithm Project (TMAP Guidelines;[5](vi World Federation ofSocieties of Biological Psychiatry (WFSBP Treatment Guideline forUnipolar Depressive Disorder;[6]and (vii British Association forPsychopharmacology Guidelines.[7

  5. The impact of a Classroom Performance System on learning gains in a biology course for science majors

    Science.gov (United States)

    Marin, Nilo Eric

    This study was conducted to determine if the use of the technology known as Classroom Performance System (CPS), specifically referred to as "Clickers", improves the learning gains of students enrolled in a biology course for science majors. CPS is one of a group of developing technologies adapted for providing feedback in the classroom using a learner-centered approach. It supports and facilitates discussion among students and between them and teachers, and provides for participation by passive students. Advocates, influenced by constructivist theories, claim increased academic achievement. In science teaching, the results have been mixed, but there is some evidence of improvements in conceptual understanding. The study employed a pretest-posttest, non-equivalent groups experimental design. The sample consisted of 226 participants in six sections of a college biology course at a large community college in South Florida with two instructors trained in the use of clickers. Each instructor randomly selected their sections into CPS (treatment) and non-CPS (control) groups. All participants filled out a survey that included demographic data at the beginning of the semester. The treatment group used clicker questions throughout, with discussions as necessary, whereas the control groups answered the same questions as quizzes, similarly engaging in discussion where necessary. The learning gains were assessed on a pre/post-test basis. The average learning gains, defined as the actual gain divided by the possible gain, were slightly better in the treatment group than in the control group, but the difference was statistically non-significant. An Analysis of Covariance (ANCOVA) statistic with pretest scores as the covariate was conducted to test for significant differences between the treatment and control groups on the posttest. A second ANCOVA was used to determine the significance of differences between the treatment and control groups on the posttest scores, after

  6. DATABASES DEVELOPED IN INDIA FOR BIOLOGICAL SCIENCES

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    2017-09-01

    Full Text Available The complexity of biological systems requires use of a variety of experimental methods with ever increasing sophistication to probe various cellular processes at molecular and atomic resolution. The availability of technologies for determining nucleic acid sequences of genes and atomic resolution structures of biomolecules prompted development of major biological databases like GenBank and PDB almost four decades ago. India was one of the few countries to realize early, the utility of such databases for progress in modern biology/biotechnology. Department of Biotechnology (DBT, India established Biotechnology Information System (BTIS network in late eighties. Starting with the genome sequencing revolution at the turn of the century, application of high-throughput sequencing technologies in biology and medicine for analysis of genomes, transcriptomes, epigenomes and microbiomes have generated massive volumes of sequence data. BTIS network has not only provided state of the art computational infrastructure to research institutes and universities for utilizing various biological databases developed abroad in their research, it has also actively promoted research and development (R&D projects in Bioinformatics to develop a variety of biological databases in diverse areas. It is encouraging to note that, a large number of biological databases or data driven software tools developed in India, have been published in leading peer reviewed international journals like Nucleic Acids Research, Bioinformatics, Database, BMC, PLoS and NPG series publication. Some of these databases are not only unique, they are also highly accessed as reflected in number of citations. Apart from databases developed by individual research groups, BTIS has initiated consortium projects to develop major India centric databases on Mycobacterium tuberculosis, Rice and Mango, which can potentially have practical applications in health and agriculture. Many of these biological

  7. A Bioethics Course for Biology and Science Education Students.

    Science.gov (United States)

    Bryant, John; la Velle, Linda Baggott

    2003-01-01

    Points out the importance of awareness among biologists and biology teachers of the ethical and social implications of their work. Describes the bioethics module established at the University of Exeter mainly targeting students majoring in biology and science education. (Contains 18 references.) (Author/YDS)

  8. Epidemiology and Molecular Biology of Head and Neck Cancer.

    Science.gov (United States)

    Jou, Adriana; Hess, Jochen

    2017-01-01

    Head and neck cancer is a common and aggressive malignancy with a high morbidity and mortality profile. Although the large majority of cases resemble head and neck squamous cell carcinoma (HNSCC), the current classification based on anatomic site and tumor stage fails to capture the high level of biologic heterogeneity, and appropriate clinical management remains a major challenge. Hence, a better understanding of the molecular biology of HNSCC is urgently needed to support biomarker development and personalized care for patients. This review focuses on recent findings based on integrative genomics analysis and multi-scale modeling approaches and how they are beginning to provide more sophisticated clues as to the biological and clinical diversity of HNSCC. © 2017 S. Karger GmbH, Freiburg.

  9. Cardiovascular toxicities of biological therapies

    DEFF Research Database (Denmark)

    Ryberg, Marianne

    2013-01-01

    The development of biological therapy is based on growing knowledge regarding the molecular changes required in cells for the development and progression of cancer to occur. Molecular targeted therapy is designed to inhibit the major molecular pathways identified as essential for a specific...

  10. Biological background of dermal substitutes

    NARCIS (Netherlands)

    van der Veen, V. C.; van der Wal, M.B.; van Leeuwen, M.C.; Ulrich, M.; Middelkoop, E.

    2010-01-01

    Dermal substitutes are of major importance in treating full thickness skin defects, both in acute and chronic wounds. In this review we will outline specific requirements of three classes of dermal substitutes:-natural biological materials, with a more or less intact extracellular matrix

  11. Use of biologics in severe food allergies.

    Science.gov (United States)

    Fiocchi, Alessandro; Pecora, Valentina; Valluzzi, Rocco L; Fierro, Vincenzo; Mennini, Maurizio

    2017-06-01

    Severe cases of food allergy account for the majority of the burden in terms of risks, quality of life, and resource expenditure. The traditional approach to these forms has been strict avoidance. More recently, Oral ImmunoTherapy (OIT) has gained a role in their management. However, in severe food allergies OIT is often infeasible. Case reports, observational, and prospective studies have recently proposed different approaches to severe food allergy. The majority of them include the use of biologics. Omalizumab has been the most studied drug for severe food allergies, and its role as adjuvant treatment to OIT is well established. Interest has been raised on other biologics, as dupilumab, reslizumab, and mepolizumab. Toll-like receptor agonists, and gene therapy using adeno-associated virus coding for Omalizumab are promising alternatives. The recent studies are deeply influencing the clinical practice. We review the modifications of the clinical approach to severe food allergies so far available. We indicate the possible evolutions of treatment with biologics in severe food allergies.

  12. Personal recollections of radiation biology research at Hanford

    International Nuclear Information System (INIS)

    Thompson, R.C.

    1995-01-01

    This paper traces the evolution of the Hanford biology programme over a period of nearly five decades. The programme began in the 1940s with a focus on understanding the potential health effects of radionuclides such as 131 I associated with fallout from the atomic bomb. These studies were extended in the 1950s to experiments on the toxicity and metabolism of plutonium and fission products such as 90 Sr and 137 Cs. In the 1960s, a major long term project was initiated on the inhalation toxicology and carcinogenic effects of plutonium oxide and plutonium nitrate in dogs and rodents. The project remained a major effort within the overall Hanford biology programme throughout the 1970s and 1980s, during which time a broad range of new projects on energy-related pollutants, radon health effects, and basic radiation biology were initiated. Despite the many evolutionary changes that have occurred in the Hanford biology programme, the fundamental mission of understanding the effects of radiation on human health has endured for nearly five decades. (author)

  13. Managing biological diversity

    Science.gov (United States)

    Samson, Fred B.; Knopf, Fritz L.

    1993-01-01

    Biological diversity is the variety of life and accompanying ecological processes (Off. Technol. Assess. 1987, Wilcove and Samson 1987, Keystone 1991). Conservation of biological diversity is a major environmental issue (Wilson 1988, Counc. Environ. Quality 1991). The health and future of the earth's ecological systems (Lubchenco et al. 1991), global climate change (Botkin 1990), and an ever-increasing rate in loss of species, communities, and ecological systems (Myers 1990) are among issues drawing biological diversity to the mainstream of conservation worldwide (Int. Union Conserv. Nat. and Nat. Resour. [IUCN] et al. 1991). The legal mandate for conserving biological diversity is now in place (Carlson 1988, Doremus 1991). More than 19 federal laws govern the use of biological resources in the United States (Rein 1991). The proposed National Biological Diversity Conservation and Environmental Research Act (H.R. 585 and S.58) notes the need for a national biological diversity policy, would create a national center for biological diversity research, and recommends a federal interagency strategy for ecosystem conservation. There are, however, hard choices ahead for the conservation of biological diversity, and biologists are grappling with how to set priorities in research and management (Roberts 1988). We sense disillusion among field biologists and managers relative to how to operationally approach the seemingly overwhelming charge of conserving biological diversity. Biologists also need to respond to critics like Hunt (1991) who suggest a tree farm has more biological diversity than an equal area of old-growth forest. At present, science has played only a minor role in the conservation of biological diversity (Weston 1992) with no unified approach available to evaluate strategies and programs that address the quality and quantity of biological diversity (Murphy 1990, Erwin 1992). Although actions to conserve biological diversity need to be clearly defined by

  14. Transplant Biology at a Crossroads

    OpenAIRE

    Sedwick, Caitlin

    2008-01-01

    Despite major advances in transplantation biology, allowing transplants not just of critical organs like heart and kidney but also of limbs and faces, researchers are still struggling to minimize the risks from achieving the level of immunosuppression needed to make the body accept foreign tissues.

  15. Tunable promoters in systems biology

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Jensen, Peter Ruhdal

    2005-01-01

    The construction of synthetic promoter libraries has represented a major breakthrough in systems biology, enabling the subtle tuning of enzyme activities. A number of tools are now available that allow the modulation of gene expression and the detection of changes in expression patterns. But, how...

  16. MicroRNA and Cancer: Tiny Molecules with Major Implications

    OpenAIRE

    VandenBoom II, Timothy G; Li, Yiwei; Philip, Philip A; Sarkar, Fazlul H

    2008-01-01

    Cancer is currently a major public health problem and, as such, emerging research is making significant progress in identifying major players in its biology. One recent topic of interest involves microRNAs (miRNAs) which are small, non-coding RNA molecules that inhibit gene expression post-transcriptionally. They accomplish this by binding to the 3? untranslated region (3?UTR) of target messengerRNA (mRNA), resulting in either their degradation or inhibition of translation, depending on the d...

  17. Promoting Student Inquiry Using "Zea Mays" (Corn) Cultivars for Hypothesis-Driven Experimentation in a Majors Introductory Biology Course

    Science.gov (United States)

    Blair, Amy C.; Peters, Brenda J.; Bendixen, Conrad W.

    2014-01-01

    The AAAS Vision and Change report (2011) recommends incorporating student research experiences into the biology curriculum at the undergraduate level. This article describes, in detail, how "Zea mays" (corn) cultivars were used as a model for a hypothesis-driven short-term research project in an introductory biology course at a small…

  18. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.

    OpenAIRE

    Stoll, Gautier; Viara, Eric; Barillot, Emmanuel; Calzone, Laurence

    2012-01-01

    Abstract Mathematical modeling is used as a Systems Biology tool to answer biological questions, and more precisely, to validate a network that describes biological observations and predict the effect of perturbations. This article presents an algorithm for modeling biological networks in a discrete framework with continuous time. Background There exist two major types of mathematical modeling approaches: (1) quantitative modeling, representing various chemical species concentrations by real...

  19. The effect of cooperative learning on the attitudes toward science and the achievement of students in a non-science majors' general biology laboratory course at an urban community college

    Science.gov (United States)

    Chung-Schickler, Genevieve C.

    The purpose of this study was to evaluate the effect of cooperative learning strategies on students' attitudes toward science and achievement in BSC 1005L, a non-science majors' general biology laboratory course at an urban community college. Data were gathered on the participants' attitudes toward science and cognitive biology level pre and post treatment in BSC 1005L. Elements of the Learning Together model developed by Johnson and Johnson and the Student Team-Achievement Divisions model created by Slavin were incorporated into the experimental sections of BSC 1005L. Four sections of BSC 1005L participated in this study. Participants were enrolled in the 1998 spring (January) term. Students met weekly in a two hour laboratory session. The treatment was administered to the experimental group over a ten week period. A quasi-experimental pretest-posttest control group design was used. Students in the cooperative learning group (nsb1 = 27) were administered the Test of Science-Related Attitudes (TOSRA) and the cognitive biology test at the same time as the control group (nsb2 = 19) (at the beginning and end of the term). Statistical analyses confirmed that both groups were equivalent regarding ethnicity, gender, college grade point average and number of absences. Independent sample t-tests performed on pretest mean scores indicated no significant differences in the TOSRA scale two or biology knowledge between the cooperative learning group and the control group. The scores of TOSRA scales: one, three, four, five, six, and seven were significantly lower in the cooperative learning group. Independent sample t-tests of the mean score differences did not show any significant differences in posttest attitudes toward science or biology knowledge between the two groups. Paired t-tests did not indicate any significant differences on the TOSRA or biology knowledge within the cooperative learning group. Paired t-tests did show significant differences within the control group

  20. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  1. Biological applications of ultraviolet free-electron lasers

    International Nuclear Information System (INIS)

    Sutherland, J.C.

    1997-10-01

    This review examines the possibilities for biological research using the three ultraviolet free-electron lasers that are nearing operational status in the US. The projected operating characteristics of major interest in biological research of the free-electron lasers at Brookhaven National Laboratory, the Thomas Jefferson National Accelerator Facility, and Duke University are presented. Experimental applications in the areas of far- and vacuum ultraviolet photophysics and photochemistry, structural biology, environmental photobiology, and medical research are discussed and the prospects for advances in these areas, based upon the characteristics of the new ultraviolet free-electron lasers, are evaluated

  2. Biological Remediation of Petroleum Contaminants

    Science.gov (United States)

    Kuhad, Ramesh Chander; Gupta, Rishi

    Large volumes of hazardous wastes are generated in the form of oily sludges and contaminated soils during crude oil transportation and processing. Although many physical, chemical and biological treatment technologies are available for petroleum contaminants petroleum contaminants in soil, biological methods have been considered the most cost-effective. Practical biological remediation methods typically involve direct use of the microbes naturally occurring in the contaminated environment and/or cultured indigenous or modified microorganisms. Environmental and nutritional factors, including the properties of the soil, the chemical structure of the hydrocarbon(s), oxygen, water, nutrient availability, pH, temperature, and contaminant bioavailability, can significantly affect the rate and the extent of hydrocarbon biodegradation hydrocarbon biodegradation by microorganisms in contaminated soils. This chapter concisely discusses the major aspects of bioremediation of petroleum contaminants.

  3. Transformation of ammonia i biological airfilters

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter; Sørensen, Karen; Andersen, Mathias

    2007-01-01

    Ammonia is a major compound in ventilation air from animal houses. In biological filters it is with varying efficiency transformed by physical, biological, and chemical processes and ends up as ammonium, nitrate, and nitrite dissolved in water and as dinitrogen, nitrous oxide and nitric oxide...... emitted to the air. To identify the key regulators of these transformations we have combined data from studies of microbiology and performance in 10 experimental and full scale filters of varying design, loading, and management. Inhibition by nitrite controlled ammonium oxidation and pH, while biological...... removal without too much energy consumption, waste water production, green house gas emission, or suppression of the filters odor removal efficiency....

  4. Space Biology in the 21st century

    Science.gov (United States)

    Halstead, Thora W.; Krauss, Robert W.

    1990-01-01

    Space Biology is poised to make significant contributions to science in the next century. A carefully crafted, but largely ground-based, program in the United States has evolved major questions that require answers through experiments in space. Science, scientists, and the new long-term spacecrafts designed by NASA will be available for the first time to mount a serious Space Biology effort. The scientific challenge is of such importance that success will provide countless benefits to biologically dependent areas such as medicine, food, and commerce in the decades ahead. The international community is rapidly expanding its role in this field. The United States should generate the resources that will allow progress in Space Biology to match the recognized progress made in aeronautics and the other space sciences.

  5. Luftwaffe Tactical Operations at Stalingrad - 19 November 1942-02 February 1943

    Science.gov (United States)

    1987-04-01

    Academy he also authored an article for the sophomore military studies coursebook entitled, "Strategic Deception for Operation Overlord." Major Lower and...Stalingrad the Sixth Army lay mortally wounded. Physically and morally beaten by more than 4 months of vicious fighting, von Paulus and his staff were...recover their equilibrium after successive physical and psychological shocks. This is exactly what the wide open spaces of southern Russia provided, time

  6. INNOVATIONS IN EQUIPMENT AND TECHNIQUES FOR THE BIOLOGY TEACHING LABORATORY.

    Science.gov (United States)

    BARTHELEMY, RICHARD E.; AND OTHERS

    LABORATORY TECHNIQUES AND EQUIPMENT APPROPRIATE FOR TEACHING BIOLOGICAL SCIENCE CURRICULUM STUDY BIOLOGY ARE EMPHASIZED. MAJOR CATEGORIES INCLUDE (1) LABORATORY FACILITIES, (2) EQUIPMENT AND TECHNIQUES FOR CULTURE OF MICRO-ORGANISMS, (3) LABORATORY ANIMALS AND THEIR HOUSING, (4) TECHNIQUES FOR STUDYING PLANT GROWTH, (5) TECHNIQUES FOR STUDYING…

  7. Joining Forces: The Chemical Biology-Medicinal Chemistry Continuum.

    Science.gov (United States)

    Plowright, Alleyn T; Ottmann, Christian; Arkin, Michelle; Auberson, Yves P; Timmerman, Henk; Waldmann, Herbert

    2017-09-21

    The scientific advances being made across all disciplines are creating ever-increasing opportunities to enhance our knowledge of biological systems and how they relate to human disease. One of the central driving forces in discovering new medicines is medicinal chemistry, where the design and synthesis of novel compounds has led to multiple drugs. Chemical biology, sitting at the interface of many disciplines, has now emerged as a major contributor to the understanding of biological systems and is becoming an integral part of drug discovery. Bringing chemistry and biology much closer and blurring the boundaries between disciplines is creating new opportunities to probe and understand biology; both disciplines play key roles and need to join forces and work together effectively to synergize their impact. The power of chemical biology will then reach its full potential and drive innovation, leading to the discovery of transformative medicines to treat patients. Advances in cancer biology and drug discovery highlight this potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Optimizing biological therapy in Crohn's disease.

    Science.gov (United States)

    Gecse, Krisztina Barbara; Végh, Zsuzsanna; Lakatos, Péter László

    2016-01-01

    Anti-TNF therapy has revolutionized the treatment of inflammatory bowel diseases, including both Crohn's disease and ulcerative colitis. However, a significant proportion of patients does not respond to anti-TNF agents or lose response over time. Recently, therapeutic drug monitoring has gained a major role in identifying the mechanism and management of loss of response. The aim of this review article is to summarize the predictors of efficacy and outcomes, the different mechanisms of anti-TNF/biological failure in Crohn's disease and identify strategies to optimize biological treatment.

  9. Effect of ozonation on the biological treatability of a textile mill effluent.

    Science.gov (United States)

    Karahan, O; Dulkadiroglu, H; Kabdasli, I; Sozen, S; Babuna, F Germirli; Orhon, D

    2002-12-01

    Ozonation applied prior to biological processes, has proved to be a very effective chemical treatment step mostly for colour removal when soluble dyes are used in textile finishing operations. Its impact on biological treatability however has not been fully evaluated yet. This study evaluates the effect of ozonation on the quality of wastewater from a textile mill involving bleaching and reactive dyeing of cotton and synthetic knit fabric. The effect of ozonation on COD fractionation and kinetic coefficients defining major biological processes is emphasised. The results indicate that the extent of ozone applied greatly affects the remaining organic carbon composition in the wastewater. The relative magnitude of different COD fractions varies as a function of the ozone dose. Ozonation does not however exert a measurable impact on the rate of major biological processes.

  10. Exploring Biology: A "Vision and Change" Disciplinary First-Year Seminar Improves Academic Performance in Introductory Biology

    Science.gov (United States)

    Wienhold, Caroline J.; Branchaw, Janet

    2018-01-01

    The transition to college is challenging for most students, especially those who aspire to major in the science, technology, engineering, or mathematics disciplines, in which introductory courses can be large and instruction less than optimal. This paper describes a novel, disciplinary first-year seminar (FYS) course, Exploring Biology, designed…

  11. Participation in a Year-Long CURE Embedded into Major Core Genetics and Cellular and Molecular Biology Laboratory Courses Results in Gains in Foundational Biological Concepts and Experimental Design Skills by Novice Undergraduate Researchers†

    Science.gov (United States)

    Peteroy-Kelly, Marcy A.; Marcello, Matthew R.; Crispo, Erika; Buraei, Zafir; Strahs, Daniel; Isaacson, Marisa; Jaworski, Leslie; Lopatto, David; Zuzga, David

    2017-01-01

    This two-year study describes the assessment of student learning gains arising from participation in a year-long curriculum consisting of a classroom undergraduate research experience (CURE) embedded into second-year, major core Genetics and Cellular and Molecular Biology (CMB) laboratory courses. For the first course in our CURE, students used micro-array or RNAseq analyses to identify genes important for environmental stress responses by Saccharomyces cerevisiae. The students were tasked with creating overexpressing mutants of their genes and designing their own original experiments to investigate the functions of those genes using the overexpression and null mutants in the second CURE course. In order to evaluate student learning gains, we employed three validated concept inventories in a pretest/posttest format and compared gains on the posttest versus the pretest with student laboratory final grades. Our results demonstrated that there was a significant correlation between students earning lower grades in the Genetics laboratory for both years of this study and gains on the Genetics Concept Assessment (GCA). We also demonstrated a correlation between students earning lower grades in the Genetics laboratory and gains on the Introductory Molecular and Cell Biology Assessment (IMCA) for year 1 of the study. Students furthermore demonstrated significant gains in identifying the variable properties of experimental subjects when assessed using the Rubric for Experimental (RED) design tool. Results from the administration of the CURE survey support these findings. Our results suggest that a year-long CURE enables lower performing students to experience greater gains in their foundational skills for success in the STEM disciplines. PMID:28904646

  12. Biological control of livestock pests: Pathogens

    Science.gov (United States)

    Interest in biological methods for livestock and poultry pest management is largely motivated by the development of resistance to most of the available synthetic pesticides by the major pests. There also has been a marked increase in organic systems, and those that promote animal welfare by reducing...

  13. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    Science.gov (United States)

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  14. Biomaterials for mediation of chemical and biological warfare agents.

    Science.gov (United States)

    Russell, Alan J; Berberich, Jason A; Drevon, Geraldine F; Koepsel, Richard R

    2003-01-01

    Recent events have emphasized the threat from chemical and biological warfare agents. Within the efforts to counter this threat, the biocatalytic destruction and sensing of chemical and biological weapons has become an important area of focus. The specificity and high catalytic rates of biological catalysts make them appropriate for decommissioning nerve agent stockpiles, counteracting nerve agent attacks, and remediation of organophosphate spills. A number of materials have been prepared containing enzymes for the destruction of and protection against organophosphate nerve agents and biological warfare agents. This review discusses the major chemical and biological warfare agents, decontamination methods, and biomaterials that have potential for the preparation of decontamination wipes, gas filters, column packings, protective wear, and self-decontaminating paints and coatings.

  15. Systematic Representation of Biology Knowledge.

    Science.gov (United States)

    Faletti, Joseph

    A major goal of science education is to turn novices (students) into experts (scientists or science literates) with a minimum amount of pain, effort, and time. However, transfer of biology knowledge from instructor to student usually results in a loss of the rich interconnections that an expert has. The papers in this set describe efforts to…

  16. Engineering biological systems toward a sustainable bioeconomy.

    Science.gov (United States)

    Lopes, Mateus Schreiner Garcez

    2015-06-01

    The nature of our major global risks calls for sustainable innovations to decouple economic growth from greenhouse gases emission. The development of sustainable technologies has been negatively impacted by several factors including sugar production costs, production scale, economic crises, hydraulic fracking development and the market inability to capture externality costs. However, advances in engineering of biological systems allow bridging the gap between exponential growth of knowledge about biology and the creation of sustainable value chains for a broad range of economic sectors. Additionally, industrial symbiosis of different biobased technologies can increase competitiveness and sustainability, leading to the development of eco-industrial parks. Reliable policies for carbon pricing and revenue reinvestments in disruptive technologies and in the deployment of eco-industrial parks could boost the welfare while addressing our major global risks toward the transition from a fossil to a biobased economy.

  17. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  18. The large universal Pantoea plasmid LPP-1 plays a major role in biological and ecological diversification

    Directory of Open Access Journals (Sweden)

    De Maayer Pieter

    2012-11-01

    Full Text Available Abstract Background Pantoea spp. are frequently isolated from a wide range of ecological niches and have various biological roles, as plant epi- or endophytes, biocontrol agents, plant-growth promoters or as pathogens of both plant and animal hosts. This suggests that members of this genus have undergone extensive genotypic diversification. One means by which this occurs among bacteria is through the acquisition and maintenance of plasmids. Here, we have analyzed and compared the sequences of a large plasmid common to all sequenced Pantoea spp. Results and discussion The Large PantoeaPlasmids (LPP-1 of twenty strains encompassing seven different Pantoea species, including pathogens and endo-/epiphytes of a wide range of plant hosts as well as insect-associated strains, were compared. The LPP-1 plasmid sequences range in size from ~281 to 794 kb and carry between 238 and 750 protein coding sequences (CDS. A core set of 46 proteins, encompassing 2.2% of the total pan-plasmid (2,095 CDS, conserved among all LPP-1 plasmid sequences, includes those required for thiamine and pigment biosynthesis. Phylogenetic analysis reveals that these plasmids have arisen from an ancestral plasmid, which has undergone extensive diversification. Analysis of the proteins encoded on LPP-1 also showed that these plasmids contribute to a wide range of Pantoea phenotypes, including the transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. Conclusions LPP-1 is universal to all Pantoea spp. whose genomes have been sequenced to date and is derived from an ancestral plasmid. LPP-1 encodes a large array of proteins that have played a major role in the adaptation of the different Pantoea spp. to their various ecological niches and their specialization as pathogens, biocontrol agents or benign saprophytes found in many diverse

  19. Predicting success for college students enrolled in an online, lab-based, biology course for non-majors

    Science.gov (United States)

    Foster, Regina

    Online education has exploded in popularity. While there is ample research on predictors of traditional college student success, little research has been done on effective methods of predicting student success in online education. In this study, a number of demographic variables including GPA, ACT, gender, age and others were examined to determine what, if any, role they play in successfully predicting student success in an online, lab-based biology for non-majors course. Within course variables such as participation in specific categories of assignment and frequency of online visits were also examined. Groups of students including Native American/Non-Native American and Digital Immigrants and Digital Natives and others were also examined to determine if overall course success differed significantly. Good predictors of online success were found to be GPA, ACT, previous course experience and frequency of online visits with the course materials. Additionally, students who completed more of the online assignments within the course were more successful. Native American and Non-Native American students were found to differ in overall course success significantly as well. Findings indicate student academic background, previous college experience and time spent with course materials are the most important factors in course success. Recommendations include encouraging enrollment advisors to advise students about the importance of maintaining high academic levels, previous course experience and spending time with course materials may impact students' choices for online courses. A need for additional research in several areas is indicated, including Native American and Non-Native American differences. A more detailed examination of students' previous coursework would also be valuable. A study involving more courses, a larger number of students and surveys from faculty who teach online courses would help improve the generalizability of the conclusions.

  20. Towards physical principles of biological evolution

    Science.gov (United States)

    Katsnelson, Mikhail I.; Wolf, Yuri I.; Koonin, Eugene V.

    2018-03-01

    Biological systems reach organizational complexity that far exceeds the complexity of any known inanimate objects. Biological entities undoubtedly obey the laws of quantum physics and statistical mechanics. However, is modern physics sufficient to adequately describe, model and explain the evolution of biological complexity? Detailed parallels have been drawn between statistical thermodynamics and the population-genetic theory of biological evolution. Based on these parallels, we outline new perspectives on biological innovation and major transitions in evolution, and introduce a biological equivalent of thermodynamic potential that reflects the innovation propensity of an evolving population. Deep analogies have been suggested to also exist between the properties of biological entities and processes, and those of frustrated states in physics, such as glasses. Such systems are characterized by frustration whereby local state with minimal free energy conflict with the global minimum, resulting in ‘emergent phenomena’. We extend such analogies by examining frustration-type phenomena, such as conflicts between different levels of selection, in biological evolution. These frustration effects appear to drive the evolution of biological complexity. We further address evolution in multidimensional fitness landscapes from the point of view of percolation theory and suggest that percolation at level above the critical threshold dictates the tree-like evolution of complex organisms. Taken together, these multiple connections between fundamental processes in physics and biology imply that construction of a meaningful physical theory of biological evolution might not be a futile effort. However, it is unrealistic to expect that such a theory can be created in one scoop; if it ever comes to being, this can only happen through integration of multiple physical models of evolutionary processes. Furthermore, the existing framework of theoretical physics is unlikely to suffice

  1. Darwin, dogs and DNA: Freshman writing about biology

    Science.gov (United States)

    Grant, Michael C.; Piirto, John

    1994-12-01

    We describe a successful interdepartmental program at a major research-oriented university that melds freshman writing with freshman biology to the significant benefit of both disciplines. Extensive, repeated feedback on individual student writing projects from two instructors, one a humanities professor, one a biology professor, appears to work synergistically so that learning by the students is significantly enhanced. Particulars derived from five years of experience with intensive, student-centered strategy are included.

  2. Environmental restoration and biological contamination: ecological and legal aspects

    Directory of Open Access Journals (Sweden)

    Ademir Reis

    2005-05-01

    Full Text Available Environmental restoration is a pressing current need. However, protected areas have been exposed to biological contamination risks because the traditional techniques of restoration frequently use exotic species. This causes some concern, since biological contamination is the second major cause of species extinction in the world. It is important to use only native species in restoration projects in order to promote an effective environmental restoration without the risk of contamination. This paper discusses some issues concerning environmental restoration, biological contamination and the need for clearer laws.

  3. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  4. Organic Chemistry Trivia: A Way to Interest Nonchemistry Majors

    Science.gov (United States)

    Farmer, Steven C.

    2011-01-01

    The use of in-class stories is an excellent way to keep a class interested in subject matter. Many organic chemistry classes are populated by nonchemistry majors, such as pre-med, pre-pharm, and biology students. Trivia questions are presented that are designed to show how organic chemistry is an important subject to students regardless of their…

  5. Request for Travel Funds for Systems Radiation Biology Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [NYU School of Medicine

    2014-03-22

    The 3rd International Systems Radiation Biology Workshop brought together the major European, US and Japanese research programs on radiation risk as well as selected experts representing systems biological approaches to discuss how the new methodologies could be best exploited for low dose research. A significant part of the workshop was devoted to discussions organised as breakout group sessions. To facilitate discussions number of participants was limited to 60 persons. To achieve the goals of this symposium in this international conference, support from DOE is vital. Hence, this proposal requested support in the amount of $15,000 to cover the travel expenses of international experts and radiation biology scientists from the United States. This supporting mechanism was clearly identified to the selected US participants as a conference support award from the DOE (See attached PDF). The workshop was an outstanding opportunity to strengthen interactions between leading experts in the emerging areas of radiation sciences, and will also provide opportunities for younger scientists to meet with experts and discuss their results. This workshop was designed to endorse active engagement in international collaboration. A major objective of this conference was to effectively communicate research results, in order to ensure that current thinking reflects sound science of radiation biology. Further, this international event addressed the use and success of scientific initiatives in radiation biology for policymakers, standard-setters, and the general public.

  6. Severe and acute complications of biologics in psoriasis.

    Science.gov (United States)

    Oussedik, Elias; Patel, Nupur U; Cash, Devin R; Gupta, Angela S; Feldman, Steven R

    2017-12-01

    Biologic therapies have revolutionized the approach to immune-mediated diseases such as psoriasis. Due to their favorable safety profiles and excellent efficacy, biologic agents are considered the gold standard for moderate-to-severe psoriasis. The aim of this paper is to saliently review the severe and acute complications of the Food and Drug Administration (FDA) approved biologic agents for psoriasis. Reviewed agents include tumor necrosis factor alpha inhibitors (etanercept, infliximab, and adalimumab), interleukin 12/23 inhibitors (ustekinumab), and interleukin 17 (IL-17) inhibitors (secukinumab and ixekizumab). While malignancies, serious infections, and major adverse cardiovascular events have been reported, their association with biologic therapy are not hypothesized as causal. However, IL-17 inhibitors appear to cause exacerbations and new cases of inflammatory bowel disease. While more long-term studies are warranted in understanding the biologic's long-term side effect profile, short-term studies have confirmed that the biologics are some of the safest treatment options for psoriasis. Nevertheless, certain populations yield higher risk to acute complications with the biologics than others - physicians must use their judgement and vigilance when monitoring and treating patients undergoing therapy with biological agents.

  7. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  8. Biology of lung cancer: genetic mutation, epithelial-mesenchymal transition, and cancer stem cells.

    Science.gov (United States)

    Aoi, Takashi

    2016-09-01

    At present, most cases of unresectable cancer cannot be cured. Genetic mutations, EMT, and cancer stem cells are three major issues linked to poor prognosis in such cases, all connected by inter- and intra-tumor heterogeneity. Issues on inter-/intra-tumor heterogeneity of genetic mutation could be resolved with recent and future technologies of deep sequencers, whereas, regarding such issues as the "same genome, different epigenome/phenotype", we expect to solve many of these problems in the future through further research in stem cell biology. We herein review and discuss the three major issues in the biology of cancers, especially from the standpoint of stem cell biology.

  9. The Molecular Biology of Pestiviruses.

    Science.gov (United States)

    Tautz, Norbert; Tews, Birke Andrea; Meyers, Gregor

    2015-01-01

    Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.

  10. A mandatory course in scientific writing for undergraduate medical students.

    Science.gov (United States)

    Roland, C G; Cox, B G

    1976-02-01

    All students at Mayo Medical School take a course in scientific writing during their sophomore and junior years. Early in the sophomore year they receive a self-instructional text designed to help them avoid 15 common writing faults. Comparison of pretest and posttest results for two classes, with a total of 89 students, indicates significant improvement (p less than .001). Later in his sophomore year, each student writes a minithesis; and during his junior year he reports on work done in a clinical or laboratory research project, preparing it as a paper submissible to a scientific journal. Professional editors work as preceptors with the students, critiquing their manuscripts, which are revised until they receive satisfactory ratings.

  11. Survey of Mathematics and Science Requirements for Production-Oriented Agronomy Majors.

    Science.gov (United States)

    Aide, Michael; Terry, Danny

    1996-01-01

    Analyzes course requirements to determine the amount of required mathematics and science for production-oriented agronomy majors. Reports that mathematics requirements center around college algebra and statistics; science requirements generally include chemistry, biology, plant physiology, and genetics; and land-grant institutions have a…

  12. Biological activities and applications of dioscorins, the major tuber storage proteins of yam.

    Science.gov (United States)

    Lu, Yeh-Lin; Chia, Cho-Yun; Liu, Yen-Wenn; Hou, Wen-Chi

    2012-01-01

    Yam tubers, a common tuber crop and an important traditional Chinese medicine in Taiwan, have many bioactive substances, including phenolic compounds, mucilage polysaccharides, steroidal saponins and proteins. Among the total soluble proteins, 80% of them are dioscorins. In the past two decades, many studies showed that dioscorins exhibited biological activities both in vitro and in vivo, including the enzymatic, antioxidant, antihypertensive, immunomodulatory, lectin activities and the protecting role on airway epithelial cells against allergens in vitro. Some of these activities are survived after chemical, heating process or enzymatic digestion. Despite of lacking the intact structural information and the detail action mechanisms in the cells, yam dioscorins are potential resources for developing as functional foods and interesting targets for food protein researchers.

  13. Biological Activities and Applications of Dioscorins, the Major Tuber Storage Proteins of Yam

    Directory of Open Access Journals (Sweden)

    Yeh-Lin Lu

    2012-01-01

    Full Text Available Yam tubers, a common tuber crop and an important traditional Chinese medicine in Taiwan, have many bioactive substances, including phenolic compounds, mucilage polysaccharides, steroidal saponins and proteins. Among the total soluble proteins, 80% of them are dioscorins. In the past two decades, many studies showed that dioscorins exhibited biological activities both in vitro and in vivo, including the enzymatic, antioxidant, antihypertensive, immunomodulatory, lectin activities and the protecting role on airway epithelial cells against allergens in vitro. Some of these activities are survived after chemical, heating process or enzymatic digestion. Despite of lacking the intact structural information and the detail action mechanisms in the cells, yam dioscorins are potential resources for developing as functional foods and interesting targets for food protein researchers.

  14. Women's decision to major in STEM fields

    Science.gov (United States)

    Conklin, Stephanie

    This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer

  15. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  16. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  17. Radiochemistry - Applications in the study of radical mechanisms of biological interest

    International Nuclear Information System (INIS)

    Foos, Jacques

    1982-01-01

    In biology, oxygen reducing processes give rise to the formation of intermediate radicals. One of the major breakthroughs of radiation chemistry of aqueous solutions is the identification of these compounds. The author describes the techniques used to study the reaction of these radicals (of radiolytic origin) with biological molecules [fr

  18. CASPIAN BIOLOGICAL RESOURCES

    Directory of Open Access Journals (Sweden)

    M. K. Guseynov

    2015-01-01

    Full Text Available Aim. We present the data on the biological resources of the Caspian Sea, based on the analysis of numerous scientific sources published between years of 1965 and 2011. Due to changes in various biotic and abiotic factors we find it important to discuss the state of the major groups of aquatic biocenosis including algae, crayfish, shrimp, pontogammarus, fish and Caspian seal. Methods. Long-term data has been analyzed on the biology and ecology of the main commercial fish stocks and their projected catches for qualitative and quantitative composition, abundance and biomass of aquatic organisms that make up the food base for fish. Results and discussion. It has been found that the widespread commercial invertebrates in the Caspian Sea are still poorly studied; their stocks are not identified and not used commercially. There is a great concern about the current state of the main commercial fish stocks of the Caspian Sea. A critical challenge is to preserve the pool of biological resources and the restoration of commercial stocks of Caspian fish. For more information about the state of the marine ecosystem in modern conditions, expedition on Caspian Sea should be carried out to study the hydrochemical regime and fish stocks, assessment of sturgeon stocks, as well as the need to conduct sonar survey for sprat stocks. Conclusions. The main condition for preserving the ecosystem of the Caspian Sea and its unique biological resources is to develop and apply environmentally-friendly methods of oil, issuing concerted common fisheries rules in various regions of theCaspian Sea, strengthening of control for sturgeon by all Caspian littoral states. The basic principle of the protection of biological resources is their rational use, based on the preservation of optimal conditions of their natural or artificial reproduction. 

  19. Biological oscillations: Fluorescence monitoring by confocal microscopy

    Science.gov (United States)

    Chattoraj, Shyamtanu; Bhattacharyya, Kankan

    2016-09-01

    Fluctuations play a vital role in biological systems. Single molecule spectroscopy has recently revealed many new kinds of fluctuations in biological molecules. In this account, we focus on structural fluctuations of an antigen-antibody complex, conformational dynamics of a DNA quadruplex, effects of taxol on dynamics of microtubules, intermittent red-ox oscillations at different organelles in a live cell (mitochondria, lipid droplets, endoplasmic reticulum and cell membrane) and stochastic resonance in gene silencing. We show that there are major differences in these dynamics between a cancer cell and the corresponding non-cancer cell.

  20. Programming Morphogenesis through Systems and Synthetic Biology.

    Science.gov (United States)

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Human evolution, life history theory, and the end of biological reproduction.

    Science.gov (United States)

    Last, Cadell

    2014-01-01

    Throughout primate history there have been three major life history transitions towards increasingly delayed sexual maturation and biological reproduction, as well as towards extended life expectancy. Monkeys reproduce later and live longer than do prosimians, apes reproduce later and live longer than do monkeys, and humans reproduce later and live longer than do apes. These life history transitions are connected to increased encephalization. During the last life history transition from apes to humans, increased encephalization co-evolved with increased dependence on cultural knowledge for energy acquisition. This led to a dramatic pressure for more energy investment in growth over current biological reproduction. Since the industrial revolution socioeconomic development has led to even more energy being devoted to growth over current biological reproduction. I propose that this is the beginning of an ongoing fourth major primate life history transition towards completely delayed biological reproduction and an extension of the evolved human life expectancy. I argue that the only fundamental difference between this primate life history transition and previous life history transitions is that this transition is being driven solely by cultural evolution, which may suggest some deeper evolutionary transition away from biological evolution is already in the process of occurring.

  2. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Science.gov (United States)

    Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. PMID:25185231

  3. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  4. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  5. DISC1 pathway in brain development: exploring therapeutic targets for major psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Atsushi eKamiya

    2012-03-01

    Full Text Available Genetic risk factors for major psychiatric disorders play key roles in neurodevelopment. Thus, exploring the molecular pathways of risk genes is important not only for understanding the molecular mechanisms underlying brain development, but also to decipher how genetic disturbances affect brain maturation and functioning relevant to major mental illnesses. During the last decade, there has been significant progress in determining the mechanisms whereby risk genes impact brain development. Nonetheless, given that the majority of psychiatric disorders have etiological complexities encompassing multiple risk genes and environmental factors, the biological mechanisms of these diseases remain poorly understood. How can we move forward in our research for discovery of the biological markers and novel therapeutic targets for major mental disorders? Here we review recent progress in the neurobiology of Disrupted in schizophrenia 1 (DISC1, a major risk gene for major mental disorders, with a particular focus on its roles in cerebral cortex development. Convergent findings implicate DISC1 as part of a large, multi-step pathway implicated in various cellular processes and signal transduction. We discuss links between the DISC1 pathway and environmental factors, such as immune/inflammatory responses, which may suggest novel therapeutic targets. Existing treatments for major mental disorders are hampered by a limited number of pharmacological targets. Consequently, elucidation of the DISC1 pathway, and its association with neuropsychiatric disorders, may offer hope for novel treatment interventions.

  6. Introductory Biology Textbooks Under-Represent Scientific Process

    Directory of Open Access Journals (Sweden)

    Dara B. Duncan

    2011-08-01

    Full Text Available Attrition of undergraduates from Biology majors is a long-standing problem. Introductory courses that fail to engage students or spark their curiosity by emphasizing the open-ended and creative nature of biological investigation and discovery could contribute to student detachment from the field. Our hypothesis was that introductory biology books devote relatively few figures to illustration of the design and interpretation of experiments or field studies, thereby de-emphasizing the scientific process.To investigate this possibility, we examined figures in six Introductory Biology textbooks published in 2008. On average, multistep scientific investigations were presented in fewer than 5% of the hundreds of figures in each book. Devoting such a small percentage of figures to the processes by which discoveries are made discourages an emphasis on scientific thinking. We suggest that by increasing significantly the illustration of scientific investigations, textbooks could support undergraduates’ early interest in biology, stimulate the development of design and analytical skills, and inspire some students to participate in investigations of their own.

  7. Learning Science by Engaging Religion: A Novel Two-Course Approach for Biology Majors

    Science.gov (United States)

    Eisen, Arri; Huang, Junjian

    2014-01-01

    Many issues in science create individual and societal tensions with important implications outside the classroom. We describe one model that directly addresses such tensions by integrating science and religion in two parallel, integrated courses for science majors. Evaluation of the goals of the project--(1) providing students with strategies to…

  8. The Pathologist Pipeline

    Directory of Open Access Journals (Sweden)

    Wesley Y. Naritoku MD, PhD

    2016-05-01

    Full Text Available A shortage of physicians in the United States has been long projected. Because of predictions of retirement among the aging pathology workforce, there is an anticipated shortage of pathologist as well. To address the pathology workforce shortage among pathologists, the Association of Pathology Chairs assembled a subcommittee of the Association of Pathology Chairs Advocacy Committee to explore ways to identify the strengths, weaknesses, opportunities, and threats to the pathology workforce. One opportunity to encourage strong candidates to pursue pathology as a career is to explore possibility to revisit advanced credit for the post-sophomore fellowship. A survey that was designed to understand the post-sophomore fellowship training better was distributed on the listserv of the Program Directors Section of the Association of Pathology Chairs. A review of the literature on post-sophomore fellowship programs is presented in light of the findings from this survey. Many post-sophomore fellowship programs are run similar to a first-year resident experience, although programs show great diversity in curriculum, including some programs that focus on research. Post-sophomore fellowships attract medical students to the area of pathology and tend to end up in academic and research positions. A second survey of program directors served as an opinion poll of challenging issues that affect residency training. From the second opinion poll, most program directors feel that residents can use additional training to improve the outcome of our future pathologists.

  9. Matrices and linear transformations

    CERN Document Server

    Cullen, Charles G

    1990-01-01

    ""Comprehensive . . . an excellent introduction to the subject."" - Electronic Engineer's Design Magazine.This introductory textbook, aimed at sophomore- and junior-level undergraduates in mathematics, engineering, and the physical sciences, offers a smooth, in-depth treatment of linear algebra and matrix theory. The major objects of study are matrices over an arbitrary field. Contents include Matrices and Linear Systems; Vector Spaces; Determinants; Linear Transformations; Similarity: Part I and Part II; Polynomials and Polynomial Matrices; Matrix Analysis; and Numerical Methods. The first

  10. Bugs and gas: Agreements banning chemical and biological weapons

    Science.gov (United States)

    Mikulak, Robert P.

    2017-11-01

    The use of chemical or biological weapons, whether by a State or terrorists, continues to be a serious security concern. Both types of weapons are prohibited by multilateral treaties that have very broad membership, but both the Biological Weapons Convention and the Chemical Weapons Convention are facing major challenges. In particular, the continued use of chemical weapons in the Syrian civil war by government forces risks eroding the norm against the use of such weapons. This paper briefly explore the recent history of efforts to constrain chemical and biological weapons and outlines challenges for the future.

  11. Linking mitochondrial bioenergetics to insulin resistance via redox biology

    Science.gov (United States)

    Fisher-Wellman, Kelsey H.; Neufer, P. Darrell

    2012-01-01

    Chronic overnutrition and physical inactivity are major risk factors for insulin resistance and type 2 diabetes. Recent research indicates that overnutrition generates an increase in hydrogen peroxide (H2O2) emission from mitochondria, serving as a release valve to relieve the reducing pressure created by fuel overload, as well as a primary signal to ultimately decrease insulin sensitivity. H2O2 is a major input to cellular redox circuits that link to cysteine residues throughout the entire proteome to regulate cell function. Here we review the principles of mitochondrial bioenergetics and redox systems biology and offer new insight as to how H2O2 emission may be linked via redox biology to the etiology of insulin resistance. PMID:22305519

  12. The Current Status of the Philosophy of Biology

    Science.gov (United States)

    Takacs, Peter; Ruse, Michael

    2013-01-01

    The philosophy of biology today is one of the most exciting areas of philosophy. It looks critically across the life sciences, teasing out conceptual issues and difficulties bringing to bear the tools of philosophical analysis to achieve clarification and understanding. This essay surveys work in all of the major directions of research: evolutionary theory and the units/levels of selection; evolutionary developmental biology; reductionism; ecology; the species problem; teleology; evolutionary epistemology; evolutionary ethics; and progress. There is a comprehensive bibliography.

  13. Reproductive Biology of the White-spotted Rabbitfish, Siganus ...

    African Journals Online (AJOL)

    somatic index, fecundity, sex ratio. Abstract—The ... canaliculatus spawned twice a year, with major activity during November-February and minor activity ..... at 18 cm SL in Singapore (Soh, 1976, cited by ... Al-Habsi S (2009b) Biology, stock.

  14. The aims of systems biology: between molecules and organisms.

    Science.gov (United States)

    Noble, D

    2011-05-01

    The systems approach to biology has a long history. Its recent rapid resurgence at the turn of the century reflects the problems encountered in interpreting the sequencing of the genome and the failure of that immense achievement to provide rapid and direct solutions to major multi-factorial diseases. This paper argues that systems biology is necessarily multilevel and that there is no privileged level of causality in biological systems. It is an approach rather than a separate discipline. Functionality arises from biological networks that interact with the genome, the environment and the phenotype. This view of biology is very different from the gene-centred views of neo-Darwinism and molecular biology. In neuroscience, the systems approach leads naturally to 2 important conclusions: first, that the idea of 'programs' in the brain is confusing, and second, that the self is better interpreted as a process than as an object. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Biologics in dermatology: An integrated review

    Directory of Open Access Journals (Sweden)

    Virendra N Sehgal

    2014-01-01

    Full Text Available The advent of biologics in dermatologic treatment armentarium has added refreshing dimensions, for it is a major breakthrough. Several agents are now available for use. It is therefore imperative to succinctly comprehend their pharmacokinetics for their apt use. A concerted endeavor has been made to delve on this subject. The major groups of biologics have been covered and include: Drugs acting against TNF-α, Alefacept, Ustekinumab, Rituximab, IVIG and Omalizumab. The relevant pharmacokinetic characteristics have been detailed. Their respective label (approved and off-label (unapproved indications have been defined, highlighting their dosage protocol, availability and mode of administration. The evidence level of each indication has also been discussed to apprise the clinician of their current and prospective uses. Individual anti-TNF drugs are not identical in their actions and often one is superior to the other in a particular disease. Hence, the section on anti-TNF agents mentions the literature on each drug separately, and not as a group. The limitations for their use have also been clearly brought out.

  16. Biology and Systematics of Echinococcus.

    Science.gov (United States)

    Thompson, R C A

    2017-01-01

    The biology of Echinococcus, the causative agent of echinococcosis (hydatid disease) is reviewed with emphasis on the developmental biology of the adult and metacestode stages of the parasite. Major advances include determining the origin, structure and functional activities of the laminated layer and its relationship with the germinal layer; and the isolation, in vitro establishment and characterization of the multipotential germinal cells. Future challenges are to identify the mechanisms that provide Echinococcus with its unique developmental plasticity and the nature of activities at the parasite-host interface, particularly in the definitive host. The revised taxonomy of Echinococcus is presented and the solid nomenclature it provides will be essential in understanding the epidemiology of echinococcosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Quantitative stem cell biology: the threat and the glory.

    Science.gov (United States)

    Pollard, Steven M

    2016-11-15

    Major technological innovations over the past decade have transformed our ability to extract quantitative data from biological systems at an unprecedented scale and resolution. These quantitative methods and associated large datasets should lead to an exciting new phase of discovery across many areas of biology. However, there is a clear threat: will we drown in these rivers of data? On 18th July 2016, stem cell biologists gathered in Cambridge for the 5th annual Cambridge Stem Cell Symposium to discuss 'Quantitative stem cell biology: from molecules to models'. This Meeting Review provides a summary of the data presented by each speaker, with a focus on quantitative techniques and the new biological insights that are emerging. © 2016. Published by The Company of Biologists Ltd.

  18. Development of an Instrument for Measuring Self-Efficacy in Cell Biology

    Science.gov (United States)

    Reeve, Suzanne; Kitchen, Elizabeth; Sudweeks, Richard R.; Bell, John D.; Bradshaw, William S.

    2011-01-01

    This article describes the development of a ten-item scale to assess biology majors' self-efficacy towards the critical thinking and data analysis skills taught in an upper-division cell biology course. The original seven-item scale was expanded to include three additional items based on the results of item analysis. Evidence of reliability and…

  19. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  20. Bragg Curve, Biological Bragg Curve and Biological Issues in Space Radiation Protection with Shielding

    Science.gov (United States)

    Honglu, Wu; Cucinotta, F.A.; Durante, M.; Lin, Z.; Rusek, A.

    2006-01-01

    The space environment consists of a varying field of radiation particles including high-energy ions, with spacecraft shielding material providing the major protection to astronauts from harmful exposure. Unlike low-LET gamma or X-rays, the presence of shielding does not always reduce the radiation risks for energetic charged particle exposure. Since the dose delivered by the charged particle increases sharply as the particle approaches the end of its range, a position known as the Bragg peak, the Bragg curve does not necessarily represent the biological damage along the particle traversal since biological effects are influenced by the track structure of both primary and secondary particles. Therefore, the biological Bragg curve is dependent on the energy and the type of the primary particle, and may vary for different biological endpoints. To achieve a Bragg curve distribution, we exposed cells to energetic heavy ions with the beam geometry parallel to a monolayer of fibroblasts. Qualitative analyses of gamma-H2AX fluorescence, a known marker of DSBs, indicated increased clustering of DNA damage before the Bragg peak, enhanced homogenous distribution at the peak, and provided visual evidence of high linear energy transfer (LET) particle traversal of cells beyond the Bragg peak. A quantitative biological response curve generated for micronuclei (MN) induction across the Bragg curve did not reveal an increased yield of MN at the location of the Bragg peak. However, the ratio of mono-to bi-nucleated cells, which indicates inhibition in cell progression, increased at the Bragg peak location. These results, along with other biological concerns, show that space radiation protection with shielding can be a complicated issue.

  1. State of laboratory manual instruction in California community college introductory (non-majors) biology laboratory instruction

    Science.gov (United States)

    Priest, Michelle

    College students must complete a life science course prior to graduation for a bachelor's degree. Generally, the course has lecture and laboratory components. It is in the laboratory where there are exceptional opportunities for exploration, challenge and application of the material learned. Optimally, this would utilize the best of inquiry based approaches. Most community colleges are using a home-grown or self written laboratory manual for the direction of work in the laboratory period. Little was known about the motivation, development and adaptation of use. It was also not known about the future of the laboratory manuals in light of the recent learning reform in California Community Colleges, Student Learning Outcomes. Extensive interviews were conducted with laboratory manual authors to determine the motivation, process of development, who was involved and learning framework used in the creation of the manuals. It was further asked of manual authors their ideas about the future of the manual, the development of staff and faculty and finally, the role Student Learning Outcomes would play in the manual. Science faculty currently teaching the non-majors biology laboratories for at least two semesters were surveyed on-line about actual practice of the manual, assessment, manual flexibility, faculty training and incorporation of Student Learning Outcomes. Finally, an evaluation of the laboratory manual was done using an established Laboratory Task Analysis Instrument. Laboratory manuals were evaluated on a variety of categories to determine the level of inquiry instruction done by students in the laboratory section. The results were that the development of homegrown laboratory manuals was done by community colleges in the Los Angeles and Orange Counties in an effort to minimize the cost of the manual to the students, to utilize all the exercises in a particular lab and to effectively utilize the materials already owned by the department. Further, schools wanted to

  2. The impact of an introductory college-level biology class on biology self-efficacy and attitude towards science

    Science.gov (United States)

    Thomas, Megan Elizabeth

    Self-efficacy theory was first introduced in a seminal article by Albert Bandura in 1977 entitled "Self-efficacy: Toward a unifying theory of behavioral change". Since its original introduction, self-efficacy has been a major focus of academic performance, anxiety, career development, and teacher retention research. Self-efficacy can be defined as the belief an individual possesses about their ability to perform a given task. Bandura proposed that self-efficacy should be measured at the highest level of specificity due to the fact that different people are efficacious in different areas. Interested in students' efficacy toward biology, Ebert-May, Baldwin, & Allred (1997) created and validated a survey to measure students' biology self-efficacy. Their survey was modeled after the guidelines for science literacy, and loaded to three sub-factors; methods of biology, generalization to other science courses, and application of the concepts. As self-efficacy theory has been related to effort expenditure and persistence (Bandura, 1977; 1997), one might think it would have some effect on students' attitudes toward the topic at hand. The current research investigated what changes in biology self-efficacy occurred after an introductory biology course with an inquiry based laboratory learning environment. In addition, changes in students' attitudes towards science were explored and how self-efficacy might affect them.

  3. Biological inquiry: a new course and assessment plan in response to the call to transform undergraduate biology.

    Science.gov (United States)

    Goldey, Ellen S; Abercrombie, Clarence L; Ivy, Tracie M; Kusher, Dave I; Moeller, John F; Rayner, Doug A; Smith, Charles F; Spivey, Natalie W

    2012-01-01

    We transformed our first-year curriculum in biology with a new course, Biological Inquiry, in which >50% of all incoming, first-year students enroll. The course replaced a traditional, content-driven course that relied on outdated approaches to teaching and learning. We diversified pedagogical practices by adopting guided inquiry in class and in labs, which are devoted to building authentic research skills through open-ended experiments. Students develop core biological knowledge, from the ecosystem to molecular level, and core skills through regular practice in hypothesis testing, reading primary literature, analyzing data, interpreting results, writing in disciplinary style, and working in teams. Assignments and exams require higher-order cognitive processes, and students build new knowledge and skills through investigation of real-world problems (e.g., malaria), which engages students' interest. Evidence from direct and indirect assessment has guided continuous course revision and has revealed that compared with the course it replaced, Biological Inquiry produces significant learning gains in all targeted areas. It also retains 94% of students (both BA and BS track) compared with 79% in the majors-only course it replaced. The project has had broad impact across the entire college and reflects the input of numerous constituencies and close collaboration among biology professors and students.

  4. Biology of Healthy Aging and Longevity.

    Science.gov (United States)

    Carmona, Juan José; Michan, Shaday

    2016-01-01

    As human life expectancy is prolonged, age-related diseases are thriving. Aging is a complex multifactorial process of molecular and cellular decline that affects tissue function over time, rendering organisms frail and susceptible to disease and death. Over the last decades, a growing body of scientific literature across different biological models, ranging from yeast, worms, flies, and mice to primates, humans and other long-lived animals, has contributed greatly towards identifying conserved biological mechanisms that ward off structural and functional deterioration within living systems. Collectively, these data offer powerful insights into healthy aging and longevity. For example, molecular integrity of the genome, telomere length, epigenetic landscape stability, and protein homeostasis are all features linked to "youthful" states. These molecular hallmarks underlie cellular functions associated with aging like mitochondrial fitness, nutrient sensing, efficient intercellular communication, stem cell renewal, and regenerative capacity in tissues. At present, calorie restriction remains the most robust strategy for extending health and lifespan in most biological models tested. Thus, pathways that mediate the beneficial effects of calorie restriction by integrating metabolic signals to aging processes have received major attention, such as insulin/insulin growth factor-1, sirtuins, mammalian target of rapamycin, and 5' adenosine monophosphate-activated protein kinase. Consequently, small-molecule targets of these pathways have emerged in the impetuous search for calorie restriction mimetics, of which resveratrol, metformin, and rapamycin are the most extensively studied. A comprehensive understanding of the molecular and cellular mechanisms that underlie age-related deterioration and repair, and how these pathways interconnect, remains a major challenge for uncovering interventions to slow human aging while extending molecular and physiological youthfulness

  5. Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills

    Science.gov (United States)

    2005-01-01

    The IMMEX (Interactive Multi-Media Exercises) Web-based problem set platform enables the online delivery of complex, multimedia simulations, the rapid collection of student performance data, and has already been used in several genetic simulations. The next step is the use of these data to understand and improve student learning in a formative manner. This article describes the development of probabilistic models of undergraduate student problem solving in molecular genetics that detailed the spectrum of strategies students used when problem solving, and how the strategic approaches evolved with experience. The actions of 776 university sophomore biology majors from three molecular biology lecture courses were recorded and analyzed. Each of six simulations were first grouped by artificial neural network clustering to provide individual performance measures, and then sequences of these performances were probabilistically modeled by hidden Markov modeling to provide measures of progress. The models showed that students with different initial problem-solving abilities choose different strategies. Initial and final strategies varied across different sections of the same course and were not strongly correlated with other achievement measures. In contrast to previous studies, we observed no significant gender differences. We suggest that instructor interventions based on early student performances with these simulations may assist students to recognize effective and efficient problem-solving strategies and enhance learning. PMID:15746978

  6. Intergenerational Transmission of Internalizing Problems: Effects of Parental and Grandparental Major Depressive Disorder on Child Behavior

    Science.gov (United States)

    Pettit, Jeremy W.; Olino, Thomas M.; Roberts, Robert E.; Seeley, John R.; Lewinsohn, Peter M.

    2008-01-01

    Effects of lifetime histories of grandparental (G1) and parental (G2) major depressive disorder (MDD) on children's (G3) internalizing problems were investigated among 267 G3 children (ages 2-18 years) who received Child Behavior Checklist (CBCL) ratings and had diagnostic data available on 267 biological G2 parents and 527 biological G1…

  7. Student Response to Tuition Increase by Academic Majors: Empirical Grounds for a Cost-Related Tuition Policy

    Science.gov (United States)

    Shin, Jung Cheol; Milton, Sande

    2008-01-01

    This study explored the responses of students in different academic majors to tuition increase, with a particular focus on the relationship between tuition increase, and future earnings and college expenditures. We analyzed effects of tuition increase on enrollment in six academic majors--Engineering, Physics, Biology, Mathematics, Business, and…

  8. American College Biology and Zoology Course Requirements: A de facto Standardized Curriculum.

    Science.gov (United States)

    Heppner, Frank; And Others

    Without a formal mechanism to produce consensus, American colleges generally have come to agree on what constitutes an appropriate set of course requirements for Biology and Zoology majors. This report describes a survey of American four-year colleges and universities offering biology and/or zoology degrees. Questionnaires were sent to 741 biology…

  9. Campus Eco Tours: An Integrative & Interactive Field Project for Undergraduate Biology Students

    Science.gov (United States)

    Boes, Katie E.

    2013-01-01

    Outdoor areas within or near college campuses offer an opportunity for biology students to observe the natural world and apply concepts from class. Here, I describe an engaging and integrative project where undergraduate non-major biology students work in teams to develop and present professional "eco tours." This project takes place over multiple…

  10. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  11. Gender gaps in achievement and participation in multiple introductory biology classrooms.

    Science.gov (United States)

    Eddy, Sarah L; Brownell, Sara E; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large introductory biology classes for majors, we examine two measures of gender disparity in biology: academic achievement and participation in whole-class discussions. We found that females consistently underperform on exams compared with males with similar overall college grade point averages. In addition, although females on average represent 60% of the students in these courses, their voices make up less than 40% of those heard responding to instructor-posed questions to the class, one of the most common ways of engaging students in large lectures. Based on these data, we propose that, despite numerical dominance of females, gender disparities remain an issue in introductory biology classrooms. For student retention and achievement in biology to be truly merit based, we need to develop strategies to equalize the opportunities for students of different genders to practice the skills they need to excel. © 2014 S. L. Eddy et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  12. Nonlinear Oscillations in Biology and Chemistry

    CERN Document Server

    1986-01-01

    This volume contains the proceedings of a meeting entitled 'Nonlinear Oscillations in Biology and Chemistry', which was held at the University of Utah May 9-11,1985. The papers fall into four major categories: (i) those that deal with biological problems, particularly problems arising in cell biology, (ii) those that deal with chemical systems, (iii) those that treat problems which arise in neurophysiology, and (iv), those whose primary emphasis is on more general models and the mathematical techniques involved in their analysis. Except for the paper by Auchmuty, all are based on talks given at the meeting. The diversity of papers gives some indication of the scope of the meeting, but the printed word conveys neither the degree of interaction between the participants nor the intellectual sparks generated by that interaction. The meeting was made possible by the financial support of the Department of Mathe­ matics of the University of Utah. I am indebted to Ms. Toni Bunker of the Department of Mathematics for...

  13. The biology and chemistry of the zoanthamine alkaloids.

    Science.gov (United States)

    Behenna, Douglas C; Stockdill, Jennifer L; Stoltz, Brian M

    2008-01-01

    Marine natural products have long played an important role in natural products chemistry and drug discovery. Mirroring the rich variety and complicated interactions of the marine environment, the substances isolated from sea creatures tend to be incredibly diverse in both molecular structure and biological activity. The natural products isolated from the polyps of marine zoanthids are no exception. The zoanthamine alkaloids, the first of which were isolated over 20 years ago, are of particular interest to the synthetic community because they feature a novel structural framework and exhibit a broad range of biological activities. In this Review, we summarize the major contributions to understanding the zoanthamine natural products with regard to their isolation and structure determination, as well as studies on their biological activity and total synthesis.

  14. Computational biology and bioinformatics in Nigeria.

    Science.gov (United States)

    Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-04-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  15. Computational biology and bioinformatics in Nigeria.

    Directory of Open Access Journals (Sweden)

    Segun A Fatumo

    2014-04-01

    Full Text Available Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  16. Bacteriophage-based synthetic biology for the study of infectious diseases

    Science.gov (United States)

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  17. Predictors, moderators, and mediators (correlates) of treatment outcome in major depressive disorder.

    Science.gov (United States)

    Papakostas, George I; Fava, Maurizio

    2008-01-01

    Major Depressive Disorder (MDD) is a prevalent illness that is frequently associated with significant disability, morbidity and mortality Despite the development and availability of numerous treatment options for MDD, studies have shown that antidepressant monotherapy yields only modest rates of response and remission. Clearly, there is an urgent need to develop more effective treatment strategies for patients with MDD. One possible approach towards the development of novel pharmacotherapeutic strategies for MDD involves identifying subpopulations of depressed patients who are more likely to experience the benefits of a given (existing) treatment versus placebo, or versus a second treatment. Attempts have been made to identify such "subpopulations", specifically by testing whether a given biological or clinical marker also serves as a moderator, mediator (correlate), or predictor of clinical improvement following the treatment of MDD with standard, first-line antidepressants. In the following article, we will attempt to summarize the literature focusing on several major areas ("leads") where preliminary evidence exists regarding clinical and biologic moderators, mediators, and predictors of symptom improvement in MDD. Such clinical leads will include the presence of hopelessness, anxious symptoms, or medical comorbidity. Biologic leads will include gene polymorphisms, brain metabolism, quantitative electroencephalography, loudness dependence of auditory evoked potentials, and functional brain asymmetry.

  18. Biological and technological effects of some mulberry varieties and ...

    African Journals Online (AJOL)

    egyptian hak

    The major sources of aluminum include air, food and water (Michel 1990), and ... Vitamin C is essential for the formation of collagen and intracellular material, ..... Packer L (1993) Vitamin E: biological activity and health benefits: Overview. p.

  19. Marine viruses--major players in the global ecosystem.

    Science.gov (United States)

    Suttle, Curtis A

    2007-10-01

    Viruses are by far the most abundant 'lifeforms' in the oceans and are the reservoir of most of the genetic diversity in the sea. The estimated 10(30) viruses in the ocean, if stretched end to end, would span farther than the nearest 60 galaxies. Every second, approximately 10(23) viral infections occur in the ocean. These infections are a major source of mortality, and cause disease in a range of organisms, from shrimp to whales. As a result, viruses influence the composition of marine communities and are a major force behind biogeochemical cycles. Each infection has the potential to introduce new genetic information into an organism or progeny virus, thereby driving the evolution of both host and viral assemblages. Probing this vast reservoir of genetic and biological diversity continues to yield exciting discoveries.

  20. Integrating interactive computational modeling in biology curricula.

    Directory of Open Access Journals (Sweden)

    Tomáš Helikar

    2015-03-01

    Full Text Available While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  1. Integrating interactive computational modeling in biology curricula.

    Science.gov (United States)

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  2. A descriptive study of biological and psychosocial factors associated ...

    African Journals Online (AJOL)

    2017-08-31

    Aug 31, 2017 ... Obesity has long been a major health concern among adults, but its increasing prevalence rates ... The association between the BMIs of the biological parents and their ... with different kinds of food, consumption of fatty foods.

  3. Separation of metronidazole, its major metabolites and their conjugates using dynamically modified silica

    DEFF Research Database (Denmark)

    Thomsen, U. G.; Cornett, Claus; Tjornelund, J.

    1995-01-01

    -performance liquid chromatographic (HPLC) system for the simultaneous determination of metronidazole, its major metabolites and their glucuronic acid conjugates in biological fluids. The separation is performed using bare silica dynamically modified with N-cetyl-N,N,N-trimethylammonium bromide contained...

  4. NBS SRM 1569 Brewer's Yeast: Is it an adequate standard reference material for testing a chromium determination in biological materials tion in biological materials

    International Nuclear Information System (INIS)

    Goeij, J.J.M. de; Volkers, K.J.; Tjioe, P.S.; Kroon, J.J.

    1978-01-01

    Some analytical experiences with NBS SRM 1569 Brewer's Yeast are presented. Against this background the adequacy of this standard reference material for the determination of chromium in biological materials is discussed. Authors have three main objections. Due to its high content of insoluble chromium-containing particles, SRM 1569 is not typical for biological materials, possibly not even for Brewer's Yeast. The chromium level of SRM 1569 is not typical for the chromium levels normally encountered in pure biological materials. The major fraction (69 +- 3 percent) of the chromium is present in a form which is insoluble under the conditions used in Author's analysis. (T.I.)

  5. [Biological characteristics of calliphoridae and its application in forensic medicine].

    Science.gov (United States)

    Zhao, Boa; Wen, Charn; Qi, Li-Li; Wang, He; Wang, Ji

    2013-12-01

    Diptera Calliphoridae is the first major kind of flies that appears on the decomposed corpses. In forensic entomology, according to the living characteristics of Calliphoridae flies, we could accurately estimate postmortem interval (PMI) in a murder or unidentified case and could provide useful clues to solve the case. This paper introduces the characteristics of the biology and morphology of Diptera Calliphoridae, and reviews the combined application of forensic entomology, molecular biology, mathematical morphology and toxicology.

  6. The Biological Effects of Bilirubin Photoisomers

    Science.gov (United States)

    Jasprova, Jana; Dal Ben, Matteo; Vianello, Eleonora; Goncharova, Iryna; Urbanova, Marie; Vyroubalova, Karolina; Gazzin, Silvia; Tiribelli, Claudio; Sticha, Martin; Cerna, Marcela; Vitek, Libor

    2016-01-01

    Although phototherapy was introduced as early as 1950’s, the potential biological effects of bilirubin photoisomers (PI) generated during phototherapy remain unclear. The aim of our study was to isolate bilirubin PI in their pure forms and to assess their biological effects in vitro. The three major bilirubin PI (ZE- and EZ-bilirubin and Z-lumirubin) were prepared by photo-irradiation of unconjugated bilirubin. The individual photoproducts were chromatographically separated (TLC, HPLC), and their identities verified by mass spectrometry. The role of Z-lumirubin (the principle bilirubin PI) on the dissociation of bilirubin from albumin was tested by several methods: peroxidase, fluorescence quenching, and circular dichroism. The biological effects of major bilirubin PI (cell viability, expression of selected genes, cell cycle progression) were tested on the SH-SY5Y human neuroblastoma cell line. Lumirubin was found to have a binding site on human serum albumin, in the subdomain IB (or at a close distance to it); and thus, different from that of bilirubin. Its binding constant to albumin was much lower when compared with bilirubin, and lumirubin did not affect the level of unbound bilirubin (Bf). Compared to unconjugated bilirubin, bilirubin PI did not have any effect on either SH-SY5Y cell viability, the expression of genes involved in bilirubin metabolism or cell cycle progression, nor in modulation of the cell cycle phase. The principle bilirubin PI do not interfere with bilirubin albumin binding, and do not exert any toxic effect on human neuroblastoma cells. PMID:26829016

  7. Analysis of undergraduate students' conceptual models of a complex biological system across a diverse body of learners

    Science.gov (United States)

    Dirnbeck, Matthew R.

    Biological systems pose a challenge both for learners and teachers because they are complex systems mediated by feedback loops; networks of cause-effect relationships; and non-linear, hierarchical, and emergent properties. Teachers and scientists routinely use models to communicate ideas about complex systems. Model-based pedagogies engage students in model construction as a means of practicing higher-order reasoning skills. One such modeling paradigm describes systems in terms of their structures, behaviors, and functions (SBF). The SBF framework is a simple modeling language that has been used to teach about complex biological systems. Here, we used student-generated SBF models to assess students' causal reasoning in the context of a novel biological problem on an exam. We compared students' performance on the modeling problem, their performance on a set of knowledge/comprehension questions, and their performance on a set of scientific reasoning questions. We found that students who performed well on knowledge and understanding questions also constructed more networked, higher quality models. Previous studies have shown that learners' mental maps increase in complexity with increased expertise. We wanted to investigate if biology students with varying levels of training in biology showed a similar pattern when constructing system models. In a pilot study, we administered the same modeling problem to two additional groups of students: 1) an animal physiology course for students pursuing a major in biology (n=37) and 2) an exercise physiology course for non-majors (n=27). We found that there was no significant difference in model organization across the three student populations, but there was a significant difference in the ability to represent function between the three populations. Between the three groups the non-majors had the lowest function scores, the introductory majors had the middle function scores, and the upper division majors had the highest function

  8. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  9. Parametric inference for biological sequence analysis.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    One of the major successes in computational biology has been the unification, by using the graphical model formalism, of a multitude of algorithms for annotating and comparing biological sequences. Graphical models that have been applied to these problems include hidden Markov models for annotation, tree models for phylogenetics, and pair hidden Markov models for alignment. A single algorithm, the sum-product algorithm, solves many of the inference problems that are associated with different statistical models. This article introduces the polytope propagation algorithm for computing the Newton polytope of an observation from a graphical model. This algorithm is a geometric version of the sum-product algorithm and is used to analyze the parametric behavior of maximum a posteriori inference calculations for graphical models.

  10. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  11. A Sophomore Course in Codesign

    DEFF Research Database (Denmark)

    Madsen, Jan; Steensgaard-Madsen, Jørgen; Christensen, Lars Munk

    2002-01-01

    We teach a hardware and software codesign course to second-year students who have expressed an interest in either electronics or informatics (computer science). The course emphasizes concepts and methods that are useful to both hardware and software developers and in particular to developers...

  12. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  13. Biologic effects of electromagnetic radiation and microwave

    International Nuclear Information System (INIS)

    Deng Hua

    2002-01-01

    Electromagnetic radiation and microwave exist mankind's environment widely. People realize they disserve authors' health when authors make use of them. Electromagnetic radiation is one of the major physic factors which injure people's health. A review of the biologic mechanism about electromagnetic radiation and microwave, their harmful effects to human body, problems in authors' research and the prospect

  14. Effcacy of different biological control agents against major postharvest pathogens of grapes under room temperature storage conditions

    Directory of Open Access Journals (Sweden)

    Ramu SENTHIL

    2011-05-01

    Full Text Available Normal 0 14 false false false IT ZH-TW X-NONE MicrosoftInternetExplorer4 Grapes were treated post harvest with a variety of biological agents to determine their effcacy in reducing yield loss. The agents Pseudomonas, Bacillus, Trichoderma and yeast isolates were individually screened against a number of postharvest pathogens including Aspergillus carbonarius, Penicillum expansum, and Fusarium moniliforme. B. subtilis strains EPC-8 and EPCO-16 showed high mycelial growth suppression of A. carbonarius and P. expansum  in vitro. The fungal antagonist Trichoderma viride strain (Tv Tvm was the most effective, inhibiting mycelial growth by 88.8 per cent. The biological control agents were tested in pre, post and combined inoculation studies against postharvest pathogens of grapes.  In the pre inoculation, B. subtilis (EPC-8 reduced the disease incidence of A. carbonarius causing rot, T. harzianum (Th Co was effective against P. expansum, and T. viride (Tv Tvm was effective against F. moniliforme. The same trend of effectiveness was also found in the post-inoculation and combined inoculation tests.

  15. Impacts of Insufficient Instructional Materials on Teaching Biology: Higher Education Systems in Focus

    Science.gov (United States)

    Edessa, Sutuma

    2017-01-01

    The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was…

  16. Dr. Ivan J. Birrer: Service at the Command and General Staff College, Fort Leavenworth, Kansas, 20 January 1948 to 30 June 1978

    Science.gov (United States)

    1978-04-21

    sience , and il..ed i r! the recessar., courses for a major in that area. But in my sophomore year I began to take courses in psychology, and by the...resident of Ball State University. There were four man and one woman , and the men had all been Navy officers. Once again, it was a very pleasant two and a...was also a very sensitive matter. The woman who does this as a volunteer has to do it entirely by persuasion and manipulation, since she has no

  17. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  18. Game theory and its applications in the social and biological sciences

    CERN Document Server

    Colman, Andrew M; Humphreys, Peter; Negrine, Ralph

    2013-01-01

    Andrew Coleman provides an accessible introduction to the fundamentals of mathematical gaming and other major applications in social psychology, decision theory, economics, politics, evolutionary biology, philosophy, operational research and sociology.

  19. Node fingerprinting: an efficient heuristic for aligning biological networks.

    Science.gov (United States)

    Radu, Alex; Charleston, Michael

    2014-10-01

    With the continuing increase in availability of biological data and improvements to biological models, biological network analysis has become a promising area of research. An emerging technique for the analysis of biological networks is through network alignment. Network alignment has been used to calculate genetic distance, similarities between regulatory structures, and the effect of external forces on gene expression, and to depict conditional activity of expression modules in cancer. Network alignment is algorithmically complex, and therefore we must rely on heuristics, ideally as efficient and accurate as possible. The majority of current techniques for network alignment rely on precomputed information, such as with protein sequence alignment, or on tunable network alignment parameters, which may introduce an increased computational overhead. Our presented algorithm, which we call Node Fingerprinting (NF), is appropriate for performing global pairwise network alignment without precomputation or tuning, can be fully parallelized, and is able to quickly compute an accurate alignment between two biological networks. It has performed as well as or better than existing algorithms on biological and simulated data, and with fewer computational resources. The algorithmic validation performed demonstrates the low computational resource requirements of NF.

  20. Do Biology Students Really Hate Math? Empirical Insights into Undergraduate Life Science Majors' Emotions about Mathematics

    Science.gov (United States)

    Wachsmuth, Lucas P.; Runyon, Christopher R.; Drake, John M.; Dolan, Erin L.

    2017-01-01

    Undergraduate life science majors are reputed to have negative emotions toward mathematics, yet little empirical evidence supports this. We sought to compare emotions of majors in the life sciences versus other natural sciences and math. We adapted the Attitudes toward the Subject of Chemistry Inventory to create an Attitudes toward the Subject of…

  1. Pancreatic cancer stromal biology and therapy

    Science.gov (United States)

    Xie, Dacheng; Xie, Keping

    2015-01-01

    Pancreatic cancer is one of the most lethal malignancies. Significant progresses have been made in understanding of pancreatic cancer pathogenesis, including appreciation of precursor lesions or premalignant pancreatic intraepithelial neoplasia (PanINs), description of sequential transformation from normal pancreatic tissue to invasive pancreatic cancer and identification of major genetic and epigenetic events and the biological impact of those events on malignant behavior. However, the currently used therapeutic strategies targeting tumor epithelial cells, which are potent in cell culture and animal models, have not been successful in the clinic. Presumably, therapeutic resistance of pancreatic cancer is at least in part due to its drastic desmoplasis, which is a defining hallmark for and circumstantially contributes to pancreatic cancer development and progression. Improved understanding of the dynamic interaction between cancer cells and the stroma is important to better understanding pancreatic cancer biology and to designing effective intervention strategies. This review focuses on the origination, evolution and disruption of stromal molecular and cellular components in pancreatic cancer, and their biological effects on pancreatic cancer pathogenesis. PMID:26114155

  2. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  3. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  4. Scientific reasoning skills development in the introductory biology courses for undergraduates

    Science.gov (United States)

    Schen, Melissa S.

    Scientific reasoning is a skill of critical importance to those students who seek to become professional scientists. Yet, there is little research on the development of such reasoning in science majors. In addition, scientific reasoning is often investigated as two separate entities: hypothetico-deductive reasoning and argumentation, even though these skills may be linked. With regard to argumentation, most investigations look at its use in discussing socioscientific issues, not in analyzing scientific data. As scientists often use the same argumentation skills to develop and support conclusions, this avenue needs to be investigated. This study seeks to address these issues and establish a baseline of both hypothetico-deductive reasoning and argumentation of scientific data of biology majors through their engagement in introductory biology coursework. This descriptive study investigated the development of undergraduates' scientific reasoning skills by assessing them multiple times throughout a two-quarter introductory biology course sequence for majors. Participants were assessed at the beginning of the first quarter, end of the first quarter, and end of the second quarter. A split-half version of the revised Lawson Classroom Test of Scientific Reasoning (LCTSR) and a paper and pencil argumentation instrument developed for this study were utilized to assess student hypothetico-deductive reasoning and argumentation skills, respectively. To identify factors that may influence scientific reasoning development, demographic information regarding age, gender, science coursework completed, and future plans was collected. Evidence for course emphasis on scientific reasoning was found in lecture notes, assignments, and laboratory exercises. This study did not find any trends of improvement in the students' hypothetico-deductive reasoning or argumentation skills either during the first quarter or over both quarters. Specific difficulties in the control of variables and

  5. The mathematics and mechanics of biological growth

    CERN Document Server

    Goriely, Alain

    2017-01-01

    This monograph presents a general mechanical theory for biological growth. It provides both a conceptual and a technical foundation for the understanding and analysis of problems arising in biology and physiology. The theory and methods is illustrated on a wide range of examples and applications. A process of extreme complexity, growth plays a fundamental role in many biological processes and is considered to be the hallmark of life itself. Its description has been one of the fundamental problems of life sciences, but until recently, it has not attracted much attention from mathematicians, physicists, and engineers. The author herein presents the first major technical monograph on the problem of growth since D’Arcy Wentworth Thompson’s 1917 book On Growth and Form. The emphasis of the book is on the proper mathematical formulation of growth kinematics and mechanics. Accordingly, the discussion proceeds in order of complexity and the book is divided into five parts. First, a general introduction on the pro...

  6. An Integrative Systems Biology Approach to Understanding Pulmonary Diseases

    NARCIS (Netherlands)

    Auffray, Charles; Adcock, Ian M.; Chung, Kian Fan; Djukanovic, Ratko; Pison, Christophe; Sterk, Peter J.

    2010-01-01

    Chronic inflammatory pulmonary diseases such as COPD and asthma are highly prevalent and associated with a major health burden worldwide. Despite a wealth of biologic and clinical information on normal and pathologic airway structure and function, the primary causes and mechanisms of disease remain

  7. Occlusal Caries: Biological Approach for Its Diagnosis and Management

    DEFF Research Database (Denmark)

    Christina Carvalho, Joana; Dige, Irene; Machiulskiene, Vita

    2016-01-01

    The management of occlusal caries still remains a major challenge for researchers as well as for general practitioners. The present paper reviews and discusses the most up-to-date knowledge and evidence of the biological principles guiding diagnosis, risk assessment, and management of the caries...

  8. The development of Leishmania turanica in sand flies and competition with L. major

    Czech Academy of Sciences Publication Activity Database

    Chajbullinova, A.; Votýpka, Jan; Sádlová, J.; Kvapilová, K.; Seblova, V.; Kreisinger, J.; Jirků, Milan; Sanjoba, C.; Gantuya, S.; Matsumoto, Y.; Volf, P.

    2012-01-01

    Roč. 5, OCT 2 (2012) ISSN 1756-3305 Institutional support: RVO:60077344 Keywords : Leishmania turanica * L. major * mixed infections * competition * genetic exchange * vector competence * Phlebotomus Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.246, year: 2012 http://www.parasitesandvectors.com/content/5/1/219

  9. Rapid determination of methadone and its major metabolite in biological fluids by gas-liquid chromatography with thermionic detection for maintenance treatment of opiate addicts.

    Science.gov (United States)

    Chikhi-Chorfi, N; Pham-Huy, C; Galons, H; Manuel, N; Lowenstein, W; Warnet, J M; Claude, J R

    1998-11-06

    A rapid gas-liquid chromatographic assay is developed for the quantification of methadone (Mtd) and its major metabolite, 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP), in biological fluids of opiate addicts. After alkaline extraction from samples with lidocaine hydrochloride as internal standard, Mtd and EDDP are separated on SP-2250 column at 220 degrees C and detected with a thermionic detector. The chromatographic time is about 6 min. The relative standard deviations (R.S.D.) of Mtd and EDDP standards are between 1.5 and 5.5%. Most drugs of abuse (morphine, codeine, narcotine, cocaine, benzoylecgonine, cocaethylene, dextropropoxyphene etc) are shown not to interfere with this technique. The method has been applied to study the levels of Mtd and EDDP metabolite in serum, saliva and urine of patients under maintenance treatment for opiate dependence. EDDP levels were found higher than those of Mtd in urine samples from four treated patients, but lower in serum and undetectable in saliva. However, Mtd concentrations were higher in saliva than in serum.

  10. Application of Quantum Dots in Biological Imaging

    Directory of Open Access Journals (Sweden)

    Shan Jin

    2011-01-01

    Full Text Available Quantum dots (QDs are a group of semiconducting nanomaterials with unique optical and electronic properties. They have distinct advantages over traditional fluorescent organic dyes in chemical and biological studies in terms of tunable emission spectra, signal brightness, photostability, and so forth. Currently, the major type of QDs is the heavy metal-containing II-IV, IV-VI, or III-V QDs. Silicon QDs and conjugated polymer dots have also been developed in order to lower the potential toxicity of the fluorescent probes for biological applications. Aqueous solubility is the common problem for all types of QDs when they are employed in the biological researches, such as in vitro and in vivo imaging. To circumvent this problem, ligand exchange and polymer coating are proven to be effective, besides synthesizing QDs in aqueous solutions directly. However, toxicity is another big concern especially for in vivo studies. Ligand protection and core/shell structure can partly solve this problem. With the rapid development of QDs research, new elements and new morphologies have been introduced to this area to fabricate more safe and efficient QDs for biological applications.

  11. Systems Biology of Industrial Microorganisms

    Science.gov (United States)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  12. Biological Studies of Posttraumatic Stress Disorder

    Science.gov (United States)

    Pitman, Roger K.; Rasmusson, Ann M.; Koenen, Karestan C.; Shin, Lisa M.; Orr, Scott P.; Gilbertson, Mark W.; Milad, Mohammed R.; Liberzon, Israel

    2016-01-01

    Preface Posttraumatic stress disorder (PTSD) is the only major mental disorder for which a cause is considered to be known, viz., an event that involves threat to the physical integrity of oneself or others and induces a response of intense fear, helplessness, or horror. Although PTSD is still largely regarded as a psychological phenomenon, over the past three decades the growth of the biological PTSD literature has been explosive, and thousands of references now exist. Ultimately, the impact of an environmental event, such as a psychological trauma, must be understood at organic, cellular, and molecular levels. The present review attempts to present the current state of this understanding, based upon psychophysiological, structural and functional neuroimaging, endocrinological, genetic, and molecular biological studies in humans and in animal models. PMID:23047775

  13. The Current Status of the Philosophy of Biology

    Science.gov (United States)

    Takacs, Peter; Ruse, Michael

    2013-01-01

    The philosophy of biology today is one of the most exciting areas of philosophy. It looks critically across the life sciences, teasing out conceptual issues and difficulties bringing to bear the tools of philosophical analysis to achieve clarification and understanding. This essay surveys work in all of the major directions of research:…

  14. Funding needed for assessments of weed biological control

    Science.gov (United States)

    John L. Maron; Dean E. Pearson; Stephen M. Hovick; Walter P. Carson

    2010-01-01

    Invasive non-native plants are a serious economic and ecological problem worldwide, and major efforts are therefore devoted to reducing weed abundance in agricultural and natural settings. Effective options for reducing invasive abundance and spread are few, although one common approach is biological control - the introduction of specialist herbivores or pathogens from...

  15. Examining the evidence for major histocompatibility complex-dependent mate selection in humans and nonhuman primates

    Czech Academy of Sciences Publication Activity Database

    Winternitz, Jamie Caroline; Abbate, J. L.

    2015-01-01

    Roč. 6, 13 May (2015), s. 73-88 ISSN 1179-7274 Institutional support: RVO:68081766 Keywords : major histocompatibility complex * sexual selection * olfaction * facial attraction * parasite resistance * inbreeding avoidance Subject RIV: EB - Genetics ; Molecular Biology

  16. A Brief Introduction to Chinese Biological Biological

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Chinese Biological Abstracts sponsored by the Library, the Shanghai Institutes for Biological Sciences, the Biological Documentation and Information Network, all of the Chinese Academy of Sciences, commenced publication in 1987 and was initiated to provide access to the Chinese information in the field of biology.

  17. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  18. An introduction to the mathematics of biology with computer algebra models

    CERN Document Server

    Yeargers, Edward K; Herod, James V

    1996-01-01

    Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math­ ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy...

  19. Developmental biology, the stem cell of biological disciplines

    OpenAIRE

    Gilbert, Scott F.

    2017-01-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  20. Undergraduate Neuroscience Majors: A Missed Opportunity for Psychiatry Workforce Development.

    Science.gov (United States)

    Goldenberg, Matthew N; Krystal, John H

    2017-04-01

    This study sought to determine whether and to what extent medical students with an undergraduate college major in neuroscience, relative to other college majors, pursue psychiatry relative to other brain-based specialties (neurology and neurosurgery) and internal medicine. The authors analyzed data from AAMC matriculation and graduation surveys for all students who graduated from US medical schools in 2013 and 2014 (n = 29,714). Students who majored in neuroscience, psychology, and biology were compared to all other students in terms of their specialty choice at both time points. For each major, the authors determined rates of specialty choice of psychiatry, neurology, neurosurgery, and, for comparison, internal medicine. This study employed Chi-square statistic to compare odds of various specialty choices among different majors. Among medical students with an undergraduate neuroscience major (3.5% of all medical students), only 2.3% preferred psychiatry at matriculation, compared to 21.5% who chose neurology, 13.1% neurosurgery, and 11% internal medicine. By graduation, psychiatry specialty choice increased to 5.1% among neuroscience majors while choice of neurology and neurosurgery declined. Psychology majors (OR = 3.16, 95% CI 2.60-4.47) but not neuroscience majors (OR 1.28, 0.92-1.77) were more likely than their peers to choose psychiatry. Psychiatry struggles to attract neuroscience majors to the specialty. This missed opportunity is an obstacle to developing the neuroscience literacy of the workforce and jeopardizes the neuroscientific future of our field. Several potential strategies to address the recruitment challenges exist.

  1. The chemical biology of methanogenesis

    Science.gov (United States)

    Ferry, James G.

    2010-12-01

    Two distinct pathways account for most of the CH 4 produced in the majority of the diverse and vast anaerobic environments of Earth's biosphere by microbes that are classified in the Archaea domain of life: conversion of the methyl group of acetate to CH 4 in the aceticlastic pathway and reduction of CO 2 with electrons derived from H 2, formate or CO in the CO 2 reduction pathway. Minor, albeit ecologically important, amounts of CH 4 are produced by conversion of methylotrophic substrates methanol, methylamines and methyl sulfides. Although all pathways have terminal steps in common, they deviate in the initial steps leading to CH 4 and mechanisms for synthesizing ATP for growth. Hydrogen gas is the major reductant for CO 2-reducing methanogens in the deep subsurface, although H 2 is also utilized by CO 2-reducing microbes from the Bacteria domain that produce acetate for the aceticlastic methanogens. This review presents fundamentals of the two major CH 4-producing pathways with a focus on understanding the potential for biologically-produced CH 4 on Mars.

  2. Occupational accidents involving biological material among public health workers.

    Science.gov (United States)

    Chiodi, Mônica Bonagamba; Marziale, Maria Helena Palucci; Robazzi, Maria Lúcia do Carmo Cruz

    2007-01-01

    This descriptive research aimed to recognize the occurrence of work accidents (WA) involving exposure to biological material among health workers at Public Health Units in Ribeirão Preto-SP, Brazil. A quantitative approach was adopted. In 2004, 155 accidents were notified by means of the Work Accident Communication (WAC). Sixty-two accidents (40%) involved exposure to biological material that could cause infections like Hepatitis and Aids. The highest number of victims (42 accidents) came from the category of nursing aids and technicians. Needles were responsible for 80.6% of accidents and blood was the biological material involved in a majority of occupational exposure cases. This subject needs greater attention, so that prevention measures can be implemented, which consider the peculiarities of the activities carried out by the different professional categories.

  3. The Biology of Cancer Exosomes: Insights and New Perspectives.

    Science.gov (United States)

    Ruivo, Carolina F; Adem, Bárbara; Silva, Miguel; Melo, Sónia A

    2017-12-01

    Exosomes are a subclass of extracellular vesicles involved in intercellular communication that are released by all cell types, including cancer cells. Cancer exosomes carry malignant information in the form of proteins, lipids, and nucleic acids that can reprogram recipient cells. Exosomes have emerged as putative biological mediators in cancer contributing to major steps of disease progression. A leading role exists for cancer exosomes in specific aspects of tumor progression: modulation of immune response, tumor microenvironment reprogramming, and metastasis. This review will address the functions attributed to cancer exosomes in these three aspects of cancer biology, highlighting recent advances and potential limitations. Finally, we explore alternative strategies to develop better models to study cancer exosomes biology. Cancer Res; 77(23); 6480-8. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Introducing Biological Microdosimetry for Ionising Radiation

    International Nuclear Information System (INIS)

    Scott, B.R.; Schoellnberger, H.

    2000-01-01

    Microdosimetry is important for radiation protection, for understanding mechanisms of radiation action, and for radiation risk assessment. This article introduces a generic, Monte Carlo based approach to biological microdosimetry for ionising radiation. Our Monte Carlo analyses are carried out with a widely used Crystal Ball software. The approach to biological microdosimetry presented relates to quantal biological effects data (e.g. cell survival, mutagenesis, neoplastic transformation) for which there is an initial linear segment to the dose-response curve. The macroscopic dose data considered were selected such that is could be presumed that the vast majority of cells at risk have radiation dose delivered to their critical target. For cell killing, neoplastic transformation, and mutagenesis, the critical biological target for radiation is presumed to be DNA. Our approach to biological microdosimetry does not require detailed information about the mass, volume, and shape of the critical biological target. Further, one does not have to know what formal distribution function applies to the microdose distribution. However, formal distributions are required for the biological data used to derive the non-parametric microdose distributions. Here, we use the binomial distribution to characterise the variability in the number of cells affected by a fixed macroscopic dose. Assuming this variability to arise from variability in the microscopic dose to the critical biological target, a non-parametric microdose distribution is generated by the standard Monte Carlo method. The non-parametric distribution is then fitted using a set of formal distributions (beta, exponential, extreme value, gamma, logistic, log-normal, normal, Pareto, triangular, uniform, and Weibull). The best fit is then evaluated based on statistical criteria (chi-square test). To demonstrate the application of biological microdosimetry, the standard Monte Carlo method is used with radiobiological data for

  5. Introducing Biological Microdosimetry for Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.; Schoellnberger, H

    2000-07-01

    Microdosimetry is important for radiation protection, for understanding mechanisms of radiation action, and for radiation risk assessment. This article introduces a generic, Monte Carlo based approach to biological microdosimetry for ionising radiation. Our Monte Carlo analyses are carried out with a widely used Crystal Ball software. The approach to biological microdosimetry presented relates to quantal biological effects data (e.g. cell survival, mutagenesis, neoplastic transformation) for which there is an initial linear segment to the dose-response curve. The macroscopic dose data considered were selected such that is could be presumed that the vast majority of cells at risk have radiation dose delivered to their critical target. For cell killing, neoplastic transformation, and mutagenesis, the critical biological target for radiation is presumed to be DNA. Our approach to biological microdosimetry does not require detailed information about the mass, volume, and shape of the critical biological target. Further, one does not have to know what formal distribution function applies to the microdose distribution. However, formal distributions are required for the biological data used to derive the non-parametric microdose distributions. Here, we use the binomial distribution to characterise the variability in the number of cells affected by a fixed macroscopic dose. Assuming this variability to arise from variability in the microscopic dose to the critical biological target, a non-parametric microdose distribution is generated by the standard Monte Carlo method. The non-parametric distribution is then fitted using a set of formal distributions (beta, exponential, extreme value, gamma, logistic, log-normal, normal, Pareto, triangular, uniform, and Weibull). The best fit is then evaluated based on statistical criteria (chi-square test). To demonstrate the application of biological microdosimetry, the standard Monte Carlo method is used with radiobiological data for

  6. The Impact of Ranking Information on Students’ Behavior and Performance in Peer Review Settings

    DEFF Research Database (Denmark)

    Papadopoulos, Pantelis M.; Lagkas, Thomas D.; Demetriadis, Stavros N.

    2015-01-01

    The paper explores the potential of usage and ranking information in increasing student engagement in a double-blinded peer review setting, where students are allowed to select freely which/how many peer works to review. The study employed 56 volunteering sophomore students majoring in Informatics...... and Telecommunications Engineering. We performed a controlled experiment, grouping students into 3 study conditions: control, usage data, usage and ranking data. Students in the control condition did not receive additional information. Students in the next two conditions were able to see their usage data (logins, peer...

  7. How revealing rankings affects student attitude and rerformance in a peer review learning environment

    DEFF Research Database (Denmark)

    Papadopoulos, Pantelis M.; Lagkas, Thomas D.; Demetriadis, Stavros N.

    2015-01-01

    This paper investigates the possible benefits as well as the overall impact on the behaviour of students within a learning environment, which is based on double-blinding reviewing of freely selected peer works. Fifty-six sophomore students majoring in Informatics and Telecommunications Engi....... The students that participated in the other two conditions were provided with their usage information (logins, peer work viewed/reviewed, etc.), while members of the last group could also have access to ranking information about their positioning in their group, based on their usage data. According to our...

  8. Exploring Pedagogical Content Knowledge of Biology Graduate Teaching Assistants through Their Participation in Lesson Study

    Science.gov (United States)

    Lampley, Sandra A.; Gardner, Grant E.; Barlow, Angela T.

    2018-01-01

    Graduate teaching assistants (GTAs) are responsible for teaching the majority of biology undergraduate laboratory sections, although many feel underprepared to do so. This study explored the impact of biology GTA participation in a professional development model known as lesson study. Using a case study methodology with multiple qualitative data…

  9. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  10. Prostaglandins and their receptors in insect biology

    Directory of Open Access Journals (Sweden)

    David eStanley

    2011-12-01

    Full Text Available We treat the biological significance of prostaglandins (PGs and their known receptors in insect biology. PGs and related eicosanoids are oxygenated derivatives of arachidonic acid (AA and two other C20 polyunsaturated fatty acids. PGs are mostly appreciated in the context of biomedicine, but a growing body of literature indicates the biological significance of these compounds extends throughout the animal kingdom, and possibly beyond. PGs act in several crucial areas of insect biology. In reproduction, a specific PG, PGE2, releases oviposition behavior in most crickets and a few other insect species; PGs also mediate events in egg development in some species, which may represent all insects. PGs play major roles in modulating fluid secretion in Malpighian tubules, rectum and salivary glands, although, again, this has been studied in only a few insect species that may represent the Class. Insect immunity is a very complex defense system. PGs and other eicosanoids mediate a large number of immune reactions to infection and invasion. The actions of most PGs are mediated by specific receptors. Biomedical research has discovered a great deal of knowledge about PG receptors in mammals, including their structures, pharmacology, molecular biology and cellular locations. Studies of PG receptors in insects lag behind the biomedical background, however, recent results hold the promise of accelerated research in this area. A PG receptor has been identified in a class of lepidopteran hemocytes and experimentally linked to the release of prophenoloxidase. We conclude that research into PGs and their receptors in insects will lead to important advances in our understanding of insect biology.

  11. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  12. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  13. Physical basis for biological effect

    International Nuclear Information System (INIS)

    Goodhead, D.T.

    1987-01-01

    Absorbed dose, or particle fluence, alone, are poor predictors of the biological effectiveness of ionizing radiations. Various radiation 'quality' parameters have been proposed to account quantitatively for the differences due to type of radiation. These include LET, quality factor (Q), lineal energy, specific energy and Z 2 /β 2 . However, all of these have major shortcomings, largely because they fail to describe adequately the microscopic stochastic properties of radiation which are primarily responsible for their relative effectiveness. Most biophysical models of radiation action now agree that the biological effectiveness of radiations are to a large extent determined by their very localized spatial properties of energy deposition (perhaps DNA and associated structures) and that the probability of residual permanent cellular damage (after cellular repair) depends on the nature of this initial macromolecular damage. Common features of these models make it clear that major future advances in identifying critical physical parameters of radiations for general practical application, or to describe their fundamental mechanisms of action, require accurate knowledge of the spatial patterns of energy deposition down to distances of the order of nanometres. Therefore, adequate descriptions are required of the nature and spatial distribution of the initial charged particles and of the interaction-by-interaction structure of the ensuing charged particle tracks. Recent development and application of Monte Carlo track structure simulations have already made it possible to commence such analyses of radiobiological data. (author). 56 refs, 7 figs

  14. Biology Division progress report, October 1, 1993--September 30, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  15. Activins in reproductive biology and beyond.

    Science.gov (United States)

    Wijayarathna, R; de Kretser, D M

    2016-04-01

    Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female

  16. Systems Biology-Based Platforms to Accelerate Research of Emerging Infectious Diseases.

    Science.gov (United States)

    Oh, Soo Jin; Choi, Young Ki; Shin, Ok Sarah

    2018-03-01

    Emerging infectious diseases (EIDs) pose a major threat to public health and security. Given the dynamic nature and significant impact of EIDs, the most effective way to prevent and protect against them is to develop vaccines in advance. Systems biology approaches provide an integrative way to understand the complex immune response to pathogens. They can lead to a greater understanding of EID pathogenesis and facilitate the evaluation of newly developed vaccine-induced immunity in a timely manner. In recent years, advances in high throughput technologies have enabled researchers to successfully apply systems biology methods to analyze immune responses to a variety of pathogens and vaccines. Despite recent advances, computational and biological challenges impede wider application of systems biology approaches. This review highlights recent advances in the fields of systems immunology and vaccinology, and presents ways that systems biology-based platforms can be applied to accelerate a deeper understanding of the molecular mechanisms of immunity against EIDs. © Copyright: Yonsei University College of Medicine 2018.

  17. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault

    Science.gov (United States)

    Magalhães, Teresa; Dinis-Oliveira, Ricardo Jorge; Silva, Benedita; Corte-Real, Francisco; Nuno Vieira, Duarte

    2015-01-01

    Biological evidence with forensic interest may be found in several cases of assault, being particularly relevant if sexually related. Sexual assault cases are characterized by low rates of disclosure, reporting, prosecution, and conviction. Biological evidence is sometimes the only way to prove the occurrence of sexual contact and to identify the perpetrator. The major focus of this review is to propose practical approaches and guidelines to help health, forensic, and law enforcement professionals to deal with biological evidence for DNA analysis. Attention should be devoted to avoiding contamination, degradation, and loss of biological evidence, as well as respecting specific measures to properly handle evidence (i.e., selection, collection, packing, sealing, labeling, storage, preservation, transport, and guarantee of the chain custody). Biological evidence must be carefully managed since the relevance of any finding in Forensic Genetics is determined, in the first instance, by the integrity and quantity of the samples submitted for analysis. PMID:26587562

  18. Biological Evidence Management for DNA Analysis in Cases of Sexual Assault

    Directory of Open Access Journals (Sweden)

    Teresa Magalhães

    2015-01-01

    Full Text Available Biological evidence with forensic interest may be found in several cases of assault, being particularly relevant if sexually related. Sexual assault cases are characterized by low rates of disclosure, reporting, prosecution, and conviction. Biological evidence is sometimes the only way to prove the occurrence of sexual contact and to identify the perpetrator. The major focus of this review is to propose practical approaches and guidelines to help health, forensic, and law enforcement professionals to deal with biological evidence for DNA analysis. Attention should be devoted to avoiding contamination, degradation, and loss of biological evidence, as well as respecting specific measures to properly handle evidence (i.e., selection, collection, packing, sealing, labeling, storage, preservation, transport, and guarantee of the chain custody. Biological evidence must be carefully managed since the relevance of any finding in Forensic Genetics is determined, in the first instance, by the integrity and quantity of the samples submitted for analysis.

  19. Enhancing Scientific Communication Through an Undergraduate Biology and Journalism Partnership.

    Science.gov (United States)

    Schwingel, Johanna M

    2018-01-01

    Scientific terminology presents an obstacle to effective communication with nonscientific audiences. To overcome this obstacle, biology majors in a general microbiology elective completed a project involving two different audiences: a scientific audience of their peers and a general, nonscientific audience. First, students presented an overview of a primary research paper and the significance of its findings to a general, nonscientific audience in an elevator-type talk. This was followed by a peer interview with a student in a journalism course, in which the biology students needed to comprehend the article to effectively communicate it to the journalism students, and the journalism students needed to ask questions about an unfamiliar, technical topic. Next, the biology students wrote a summary of their article for a scientific audience. Finally, the students presented a figure from the article to their peers in a scientific, Bio-Minute format. The biology-journalism partnership allowed biology students to develop their ability to communicate scientific information and journalism students their ability to ask appropriate questions and establish a base of knowledge from which to write.

  20. Professional equity as reported by biology teachers

    Science.gov (United States)

    Douglas, Claudia B.; Lakes Matyas, Marsha; Butler Kahle, Jane

    In 1982, the National Association of Biology Teachers surveyed its membership in order to assess the role and status of women in biology education. Items describing roles, salaries, assignments, professional activities, and sexual bias were included in the survey. This paper compares the responses of male and female biology educators, draws conclusions from the data, and suggests implications for the science education profession. Inequality in several professional areas was revealed. More women than men were single and reported no dependent children. Women exceeded men in both the lower and upper ends of the distribution of years of experience. However, the percentage of men exceeded that of women in most salary brackets beyond $20,000 and more men reported paid consulting opportunities. Men tended to teach at larger institutions and, at all academic levels, more men taught advanced classes. More men than women were involved with research activities. However, neither sex felt that the other one received preferential treatment in regard to salary and promotion. The majority of education administrators as well as science and biology faculties were male. However, the recent influx of women into science education positions may produce important changes. It is recommended that a comparative study be conducted in five years.

  1. Why the Central Dogma: on the nature of the great biological exclusion principle.

    Science.gov (United States)

    Koonin, Eugene V

    2015-09-16

    The Central Dogma of molecular biology posits that transfer of information from proteins back to nucleic acids does not occur in biological systems. I argue that the impossibility of reverse translation is indeed a major, physical exclusion principle that emerges due to the transition from the digital information carriers, nucleic acids, to analog information carriers, proteins, which involves irreversible suppression of the digital information.

  2. Patterns of Care for Biologic-Dosing Outliers and Nonoutliers in Biologic-Naive Patients with Rheumatoid Arthritis.

    Science.gov (United States)

    Delate, Thomas; Meyer, Roxanne; Jenkins, Daniel

    2017-08-01

    Although most biologic medications for patients with rheumatoid arthritis (RA) have recommended fixed dosing, actual biologic dosing may vary among real-world patients, since some patients can receive higher (high-dose outliers) or lower (low-dose outliers) doses than what is recommended in medication package inserts. To describe the patterns of care for biologic-dosing outliers and nonoutliers in biologic-naive patients with RA. This was a retrospective, longitudinal cohort study of patients with RA who were not pregnant and were aged ≥ 18 and 110% of the approved dose in the package insert at any time during the study period. Baseline patient profiles, treatment exposures, and outcomes were collected during the 180 days before and up to 2 years after biologic initiation and compared across index biologic outlier groups. Patients were followed for at least 1 year, with a subanalysis of those patients who remained as members for 2 years. This study included 434 RA patients with 1 year of follow-up and 372 RA patients with 2 years of follow-up. Overall, the vast majority of patients were female (≈75%) and had similar baseline characteristics. Approximately 10% of patients were outliers in both follow-up cohorts. ETN patients were least likely to become outliers, and ADA patients were most likely to become outliers. Of all outliers during the 1-year follow-up, patients were more likely to be a high-dose outlier (55%) than a low-dose outlier (45%). Median 1- and 2-year adjusted total biologic costs (based on wholesale acquisition costs) were higher for ADA and ETA nonoutliers than for IFX nonoutliers. Biologic persistence was highest for IFX patients. Charlson Comorbidity Index score, ETN and IFX index biologic, and treatment with a nonbiologic disease-modifying antirheumatic drug (DMARD) before biologic initiation were associated with becoming high- or low-dose outliers (c-statistic = 0.79). Approximately 1 in 10 study patients with RA was identified as a

  3. Increasing persistence in undergraduate science majors: a model for institutional support of underrepresented students.

    Science.gov (United States)

    Toven-Lindsey, Brit; Levis-Fitzgerald, Marc; Barber, Paul H; Hasson, Tama

    2015-01-01

    The 6-yr degree-completion rate of undergraduate science, technology, engineering, and mathematics (STEM) majors at U.S. colleges and universities is less than 40%. Persistence among women and underrepresented minorities (URMs), including African-American, Latino/a, Native American, and Pacific Islander students, is even more troubling, as these students leave STEM majors at significantly higher rates than their non-URM peers. This study utilizes a matched comparison group design to examine the academic achievement and persistence of students enrolled in the Program for Excellence in Education and Research in the Sciences (PEERS), an academic support program at the University of California, Los Angeles, for first- and second-year science majors from underrepresented backgrounds. Results indicate that PEERS students, on average, earned higher grades in most "gatekeeper" chemistry and math courses, had a higher cumulative grade point average, completed more science courses, and persisted in a science major at significantly higher rates than the comparison group. With its holistic approach focused on academics, counseling, creating a supportive community, and exposure to research, the PEERS program serves as an excellent model for universities interested in and committed to improving persistence of underrepresented science majors and closing the achievement gap. © 2015 B. Toven-Lindsey et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Pembangunan Kebun Biologi Wamena*[establishment of Wamena Biological Gardens

    OpenAIRE

    Rahmansyah, M; Latupapua, HJD

    2003-01-01

    The richness of biological resources (biodiversity) in mountainous area of Papua is an asset that has to be preserved.Exploitation of natural resources often cause damage on those biological assets and as genetic resources.Care has to be taken to overcome the situation of biological degradation, and alternate steps had been shaped on ex-situ biological conservation. Wamena Biological Gardens, as an ex-situ biological conservation, has been established to keep the high mountain biological and ...

  5. Development trend of radiation biology research-systems radiation biology

    International Nuclear Information System (INIS)

    Min Rui

    2010-01-01

    Radiation biology research has past 80 years. We have known much more about fundamentals, processes and results of biology effects induced by radiation and various factors that influence biology effects wide and deep, however many old and new scientific problems occurring in the field of radiation biology research remain to be illustrated. To explore and figure these scientific problems need systemic concept, methods and multi dimension view on the base of considerations of complexity of biology system, diversity of biology response, temporal and spatial process of biological effects during occurrence, and complex feed back network of biological regulations. (authors)

  6. Evidence for anecdotes: Examining use of stories in introductory biology courses with a mixed-methods approach

    Science.gov (United States)

    Kreps, Jennifer Susan

    2005-11-01

    Instructional stories can be an effective way to teach science concepts. However, research has not examined the extent to which stories are being used, and how they are received. More research on the use of story in biology classes may lead to more conscious use of story by instructors, which may lead to a better understanding of biological concepts by students. The purpose of this study was to examine how instructors and students use stories in university introductory biology courses, and the degree to which these stories are perceived to be effective. To examine this phenomenon, a nationwide instructor survey, a university-wide student survey, and multiple case studies were used. Two case studies included observation of lectures, interviews with (36) students, and interviews with instructors (4) over two semesters of an organismal biology course. Instructor survey participants (N = 78) were gathered by posting email invitations, and student survey participants (N = 260) were volunteers from introductory biology courses at a middle-sized university. Several types of stories were observed, including personal experience stories, historical anecdotes, and "you" stories. Students reported increased affective learning when stories were told, and remembered mostly humorous stories. In the instructor survey, no significant differences emerged between genders, type of biology taught, or communicator style and instructional story frequency. However, reports of personal experience story frequency did increase significantly (p ethnicity, although non-science majors reported that their instructors used stories significantly more frequently (p perceived learning loss for non-science majors, but not for science majors. The researcher suggests that stories can be an effective tool to teach biology, particularly if the instructor is aware of her audience and uses stories primarily to help students understand how concepts are related to "real life."

  7. Biological effects of transuranium elements in experimental animals

    International Nuclear Information System (INIS)

    Bair, W.J.

    1975-01-01

    Results are reported from life span studies of the biological effects of the transuranium elements ( 238 Pu, 239 Pu, 241 Am, and 242 Cm) on laboratory animals following inhalation, skin absorption, or injection in various chemical forms. The dose levels at which major biological effects have been observed in experimental animals are discussed relative to the maximum permissible lung burden of 0.016 μCi for occupational exposures. Lung cancer has been observed at dose levels equivalent to about 100 times the maximum permissible lung burden. Current experiments directed towards determining whether health effects will occur at lower levels and the mechanisms by which α emitters induce cancer are reviewed. (U.S.)

  8. Enterococcus infection biology: lessons from invertebrate host models.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2014-03-01

    The enterococci are commensals of the gastrointestinal tract of many metazoans, from insects to humans. While they normally do not cause disease in the intestine, they can become pathogenic when they infect sites outside of the gut. Recently, the enterococci have become important nosocomial pathogens, with the majority of human enterococcal infections caused by two species, Enterococcus faecalis and Enterococcus faecium. Studies using invertebrate infection models have revealed insights into the biology of enterococcal infections, as well as general principles underlying host innate immune defense. This review highlights recent findings on Enterococcus infection biology from two invertebrate infection models, the greater wax moth Galleria mellonella and the free-living bacteriovorous nematode Caenorhabditis elegans.

  9. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  10. Chemical and biological nonproliferation program. FY99 annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community.

  11. Biological aspects of chondrosarcoma: Leaps and hurdles.

    Science.gov (United States)

    Mery, Benoîte; Espenel, Sophie; Guy, Jean-Baptiste; Rancoule, Chloé; Vallard, Alexis; Aloy, Marie-Thérèse; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2018-06-01

    Chondrosarcomas are characterized by their chemo- and radioresistance leading to a therapeutic surgical approach which remains the only available treatment with a 10-year survival between 30% and 80% depending on the grade. Non-surgical treatments are under investigation and rely on an accurate biological understanding of drug resistance mechanisms. Novel targeted therapy which represents a new relevant therapeutic approach will open new treatment options by targeting several pathways responsible for processes of proliferation and invasion. Survival pathways such as PI3K, AKT, mTOR and VEGF have been shown to be involved in proliferation of chondrosarcoma cells and antiapoptotic proteins may also play a relevant role. Other proteins such as p53 or COX2 have been identified as potential new targets. This review provides an insight into the biological substantial treatment challenges of CHS and focuses on improving our understanding of CH biology through an overview of major signaling pathways that could represent targets for new therapeutic approaches. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  13. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  14. Prospects for improved detection of chemical, biological, radiological, and nuclear threats

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, Craig R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hart, Brad [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Slezak, Thomas R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-07-31

    Acquisition and use of Chemical, Biological, Radiological, and Nuclear (CBRN) weapons continue to be a major focus of concern form the security apparatus of nation states because of their potential for mass casualties when used by a determined adversary.

  15. Women and major depressive disorder: clinical perspectives on causal pathways.

    Science.gov (United States)

    Accortt, Eynav Elgavish; Freeman, Marlene P; Allen, John J B

    2008-12-01

    Epidemiological data on the prevalence of mood disorders demonstrate that major depressive disorder (MDD) is approximately twice as common in women as in men and that its first onset peaks during the reproductive years. We aimed to review key social, psychological, and biological factors that seem strongly implicated in the etiology of major depression and to focus on sex-specific aspects of depression, such as the role of a woman's reproductive life cycle in depressive symptomatology. A review of the literature, from 1965 to present, was conducted. An integrated etiological model best explains gender and sex differences in depression. Social, psychological, and biological variables must be simultaneously taken into account. These vulnerabilities include (but are not limited to) gender-specific roles in society, life stress such as trauma, a tendency toward ruminative coping strategies, and the effects of sex hormones and genetic factors. To effectively treat MDD in women and to prevent the recurrence of illness in vulnerable women, clinicians must understand the sex-specific aspects of mood disorders over the longitudinal course of women's reproductive lives. A biopsychosocial approach should, therefore, be the main focus of future research and practice, to eventually result in an integrated etiological model of depression in women. Based on the prevalence of MDD in women, timely screening, diagnosis, and intervention should be public health priorities.

  16. Biomaterials-based electronics: polymers and interfaces for biology and medicine.

    Science.gov (United States)

    Muskovich, Meredith; Bettinger, Christopher J

    2012-05-01

    Advanced polymeric biomaterials continue to serve as a cornerstone for new medical technologies and therapies. The vast majority of these materials, both natural and synthetic, interact with biological matter in the absence of direct electronic communication. However, biological systems have evolved to synthesize and utilize naturally-derived materials for the generation and modulation of electrical potentials, voltage gradients, and ion flows. Bioelectric phenomena can be translated into potent signaling cues for intra- and inter-cellular communication. These cues can serve as a gateway to link synthetic devices with biological systems. This progress report will provide an update on advances in the application of electronically active biomaterials for use in organic electronics and bio-interfaces. Specific focus will be granted to covering technologies where natural and synthetic biological materials serve as integral components such as thin film electronics, in vitro cell culture models, and implantable medical devices. Future perspectives and emerging challenges will also be highlighted. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Beyond patchwork precaution in the dual-use governance of synthetic biology.

    Science.gov (United States)

    Kelle, Alexander

    2013-09-01

    The emergence of synthetic biology holds the potential of a major breakthrough in the life sciences by transforming biology into a predictive science. The dual-use characteristics of similar breakthroughs during the twentieth century have led to the application of benignly intended research in e.g. virology, bacteriology and aerobiology in offensive biological weapons programmes. Against this background the article raises the question whether the precautionary governance of synthetic biology can aid in preventing this techno-science witnessing the same fate? In order to address this question, this paper proceeds in four steps: it firstly introduces the emerging techno-science of synthetic biology and presents some of its potential beneficial applications. It secondly analyses contributions to the bioethical discourse on synthetic biology as well as precautionary reasoning and its application to life science research in general and synthetic biology more specifically. The paper then identifies manifestations of a moderate precautionary principle in the emerging synthetic biology dual-use governance discourse. Using a dual-use governance matrix as heuristic device to analyse some of the proposed measures, it concludes that the identified measures can best be described as "patchwork precaution" and that a more systematic approach to construct a web of dual-use precaution for synthetic biology is needed in order to guard more effectively against the field's future misuse for harmful applications.

  18. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  19. Genetics of rheumatoid arthritis conributes to biology and drug discovery

    NARCIS (Netherlands)

    Okada, Yukinori; Wu, Di; Trynka, Gosia; Raj, Towfique; Terao, Chikashi; Ikari, Katsunori; Kochi, Yuta; Ohmura, Koichiro; Suzuki, A.; Yoshida, S.; Graham, R.R.; Manoharan, A.; Ortmann, W.; Bhangale, T.; Denny, J.C.; Carroll, R.J.; Eyler, A.E.; Greenberg, J.D.; Kremer, J.M.; Pappas, D.A.; Jiang, L.; Yin, L.; Ye, L.; Su, D.F.; Yang, J.; Xie, G.; Keystone, E.; Westra, H.J.; Esko, T.; Metspalu, A.; Zhou, X.; Gupta, N.; Mirel, D.; Stahl, Eli A.; Diogo, D.; Cui, J.; Liao, K.; Guo, M.H.; Myouzen, K.; Kawaguchi, T.; Coenen, M.J.; van Riel, P.L.; van de Laar, Mart A.F.J.; Guchelaar, H.J.; Huizinga, T.W.; Dieudé, P.; Mariette, X.; Louis Bridges Jr, S.; Zhernakova, A.; Toes, R.E.; Tak, P.P.; Miceli-Richard, C.; Bang, S.Y.; Lee, H.S.; Martin, J.; Gonzales-Gay, M.A.; Rodriguez-Rodriguez, L.; Rantapää-Dhlqvist, S.; Arlestig, L.; Choi, H.K.; Kamatani, Y.; Galan, P.; Lathrop, M.; Eyre, S.; Bowes, J.; Barton, A.; de Vries, N.; Moreland, L.W.; Criswell, L.A.; Karlson, E.W.; Taniguchi, A.; Yamada, R; Kubo, M.; Bae, S.C.; Worthington, J.; Padyukov, L.; Klareskog, L.; Gregersen, Peter K.; Raychaudhuri, S.; Stranger, B.E.; de Jager, P.L.; Franke, L.; Visscher, P.M.; Brown, M.A.; Yamanaka, H.; Mimori, T.; Takahashi, A.; Xu, H.; Behrens, T.W.; Siminovitch, K.A.; Momohara, S.; Matsuda, F.; Yamamoto, K.; Plenge, Robert M.

    2013-01-01

    A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological data sets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here we performed

  20. Why the Central Dogma: on the nature of the great biological exclusion principle

    OpenAIRE

    Koonin, Eugene V.

    2015-01-01

    Abstract The Central Dogma of molecular biology posits that transfer of information from proteins back to nucleic acids does not occur in biological systems. I argue that the impossibility of reverse translation is indeed a major, physical exclusion principle that emerges due to the transition from the digital information carriers, nucleic acids, to analog information carriers, proteins, which involves irreversible suppression of the digital information. Reviewers This article was reviewed by...

  1. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  2. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  3. Risk of serious infection in biological treatment of patients with rheumatoid arthritis

    DEFF Research Database (Denmark)

    Singh, Jasvinder A; Cameron, Chris; Noorbaloochi, Shahrzad

    2015-01-01

    ). We did a systematic review and meta-analysis of serious infections in patients treated with biological drugs compared with those treated with traditional DMARDs. METHODS: We did a systematic literature search with Medline, Embase, Cochrane Central Register of Controlled Trials, and Clinical......Trials.gov from their inception to Feb 11, 2014. Search terms included "biologics", "rheumatoid arthritis" and their synonyms. Trials were eligible for inclusion if they included any of the approved biological drugs and reported serious infections. We assessed the risk of bias with the Cochrane Risk of Bias Tool......BACKGROUND: Serious infections are a major concern for patients considering treatments for rheumatoid arthritis. Evidence is inconsistent as to whether biological drugs are associated with an increased risk of serious infection compared with traditional disease-modifying antirheumatic drugs (DMARDs...

  4. Chemical and biological nonproliferation program. FY99 annual report; ANNUAL

    International Nuclear Information System (INIS)

    NONE

    2000-01-01

    This document is the first of what will become an annual report documenting the progress made by the Chemical and Biological Nonproliferation Program (CBNP). It is intended to be a summary of the program's activities that will be of interest to both policy and technical audiences. This report and the annual CBNP Summer Review Meeting are important vehicles for communication with the broader chemical and biological defense and nonproliferation communities. The Chemical and Biological Nonproliferation Program Strategic Plan is also available and provides additional detail on the program's context and goals. The body of the report consists of an overview of the program's philosophy, goals and recent progress in the major program areas. In addition, an appendix is provided with more detailed project summaries that will be of interest to the technical community

  5. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice

    Czech Academy of Sciences Publication Activity Database

    Bádalová, J.; Svobodová, M.; Havelková, Helena; Vladimirov, Vladimir; Vojtíšková, Jarmila; Engová, J.; Pilčík, Tomáš; Volf, P.; Demant, P.; Lipoldová, Marie

    2002-01-01

    Roč. 2002, č. 3 (2002), s. 187-195 ISSN 1466-4879 Institutional research plan: CEZ:AV0Z5052915 Keywords : IgE * quantitative trait * Leishmania major, Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.060, year: 2002

  6. Integrated pathway clusters with coherent biological themes for target prioritisation.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is an essential, yet challenging task in biomedical research. One way of achieving this goal is to identify specific biological themes that are enriched within the gene set of interest to obtain insights into the biological phenomena under study. Biological pathway data have been particularly useful in identifying functional associations of genes and/or gene sets. However, biological pathway information as compiled in varied repositories often differs in scope and content, preventing a more effective and comprehensive characterisation of gene sets. Here we describe a new approach to constructing biologically coherent gene sets from pathway data in major public repositories and employing them for functional analysis of large gene sets. We first revealed significant overlaps in gene content between different pathways and then defined a clustering method based on the shared gene content and the similarity of gene overlap patterns. We established the biological relevance of the constructed pathway clusters using independent quantitative measures and we finally demonstrated the effectiveness of the constructed pathway clusters in comparative functional enrichment analysis of gene sets associated with diverse human diseases gathered from the literature. The pathway clusters and gene mappings have been integrated into the TargetMine data warehouse and are likely to provide a concise, manageable and biologically relevant means of functional analysis of gene sets and to facilitate candidate gene prioritisation.

  7. Dynamic Biological Functioning Important for Simulating and Stabilizing Ocean Biogeochemistry

    Science.gov (United States)

    Buchanan, P. J.; Matear, R. J.; Chase, Z.; Phipps, S. J.; Bindoff, N. L.

    2018-04-01

    The biogeochemistry of the ocean exerts a strong influence on the climate by modulating atmospheric greenhouse gases. In turn, ocean biogeochemistry depends on numerous physical and biological processes that change over space and time. Accurately simulating these processes is fundamental for accurately simulating the ocean's role within the climate. However, our simulation of these processes is often simplistic, despite a growing understanding of underlying biological dynamics. Here we explore how new parameterizations of biological processes affect simulated biogeochemical properties in a global ocean model. We combine 6 different physical realizations with 6 different biogeochemical parameterizations (36 unique ocean states). The biogeochemical parameterizations, all previously published, aim to more accurately represent the response of ocean biology to changing physical conditions. We make three major findings. First, oxygen, carbon, alkalinity, and phosphate fields are more sensitive to changes in the ocean's physical state. Only nitrate is more sensitive to changes in biological processes, and we suggest that assessment protocols for ocean biogeochemical models formally include the marine nitrogen cycle to assess their performance. Second, we show that dynamic variations in the production, remineralization, and stoichiometry of organic matter in response to changing environmental conditions benefit the simulation of ocean biogeochemistry. Third, dynamic biological functioning reduces the sensitivity of biogeochemical properties to physical change. Carbon and nitrogen inventories were 50% and 20% less sensitive to physical changes, respectively, in simulations that incorporated dynamic biological functioning. These results highlight the importance of a dynamic biology for ocean properties and climate.

  8. Allostatic load and biological anthropology.

    Science.gov (United States)

    Edes, Ashley N; Crews, Douglas E

    2017-01-01

    Multiple stressors affect developing and adult organisms, thereby partly structuring their phenotypes. Determining how stressors influence health, well-being, and longevity in human and nonhuman primate populations are major foci within biological anthropology. Although much effort has been devoted to examining responses to multiple environmental and sociocultural stressors, no holistic metric to measure stress-related physiological dysfunction has been widely applied within biological anthropology. Researchers from disciplines outside anthropology are using allostatic load indices (ALIs) to estimate such dysregulation and examine life-long outcomes of stressor exposures, including morbidity and mortality. Following allostasis theory, allostatic load represents accumulated physiological and somatic damage secondary to stressors and senescent processes experienced over the lifespan. ALIs estimate this wear-and-tear using a composite of biomarkers representing neuroendocrine, cardiovascular, metabolic, and immune systems. Across samples, ALIs are associated significantly with multiple individual characteristics (e.g., age, sex, education, DNA variation) of interest within biological anthropology. They also predict future outcomes, including aspects of life history variation (e.g., survival, lifespan), mental and physical health, morbidity and mortality, and likely health disparities between groups, by stressor exposures, ethnicity, occupations, and degree of departure from local indigenous life ways and integration into external and commodified ones. ALIs also may be applied to similar stress-related research areas among nonhuman primates. Given the reports from multiple research endeavors, here we propose ALIs may be useful for assessing stressors, stress responses, and stress-related dysfunction, current and long-term cognitive function, health and well-being, and risk of early mortality across many research programs within biological anthropology. © 2017 American

  9. Biological age as a health index for mortality and major age-related disease incidence in Koreans: National Health Insurance Service – Health screening 11-year follow-up study

    Directory of Open Access Journals (Sweden)

    Kang YG

    2018-03-01

    Full Text Available Young Gon Kang,1 Eunkyung Suh,2 Jae-woo Lee,3 Dong Wook Kim,4 Kyung Hee Cho,5 Chul-Young Bae1 1Department of R&D, MediAge Research Center, Seongnam, Republic of South Korea; 2Department of Family Medicine, College of Medicine, CHA University, Chaum, Seoul, Republic of South Korea; 3Department of Family Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of South Korea; 4Department of Policy Research Affairs, National Health Insurance Service Ilsan Hospital, Goyang, Republic of South Korea; 5Department of Family Medicine, National Health Insurance Service Ilsan Hospital, Goyang, Republic of South KoreaPurpose: A comprehensive health index is needed to measure an individual’s overall health and aging status and predict the risk of death and age-related disease incidence, and evaluate the effect of a health management program. The purpose of this study is to demonstrate the validity of estimated biological age (BA in relation to all-cause mortality and age-related disease incidence based on National Sample Cohort database.Patients and methods: This study was based on National Sample Cohort database of the National Health Insurance Service – Eligibility database and the National Health Insurance Service – Medical and Health Examination database of the year 2002 through 2013. BA model was developed based on the National Health Insurance Service – National Sample Cohort (NHIS – NSC database and Cox proportional hazard analysis was done for mortality and major age-related disease incidence.Results: For every 1 year increase of the calculated BA and chronological age difference, the hazard ratio for mortality significantly increased by 1.6% (1.5% in men and 2.0% in women and also for hypertension, diabetes mellitus, heart disease, stroke, and cancer incidence by 2.5%, 4.2%, 1.3%, 1.6%, and 0.4%, respectively (p<0.001.Conclusion: Estimated BA by the developed BA model based on NHIS – NSC database is expected to be

  10. A health promotion practicum targeting the college-age population.

    Science.gov (United States)

    Diebold, C M; Chappell, H W; Robinson, M K

    2000-01-01

    Senior and sophomore baccalaureate nursing students at the University of Kentucky developed a health promotion exposition that targeted college students. This experience gave senior students the opportunity to practice leadership and management skills, such as planning, organizing, collaborating, delegating, evaluating, and time management and conflict resolution. Sophomore students developed teaching abilities, practiced assessment and communication techniques, and increased their knowledge of health-promoting behaviors. Both groups experienced team building and demonstrated accountability. Students reported a positive learning experience that met various course objectives in an innovative way.

  11. Günter Blobel: Pioneer of molecular cell biology (1936-2018).

    Science.gov (United States)

    2018-04-02

    Günter Blobel was a scientific colossus who dedicated his career to understanding the mechanisms for protein sorting to membrane organelles. His monumental contributions established research paradigms for major arenas of molecular cell biology. For this work, he received many accolades, including the Nobel Prize in Medicine or Physiology in 1999. He was a scientist of extreme passion and a nurturing mentor for generations of researchers, imbuing them with his deep love of cell biology and galvanizing them to continue his scientific legacy. Günter passed away on February 18, 2018, at the age of 81. © 2018 Rockefeller University Press.

  12. Learning (from) the errors of a systems biology model.

    Science.gov (United States)

    Engelhardt, Benjamin; Frőhlich, Holger; Kschischo, Maik

    2016-02-11

    Mathematical modelling is a labour intensive process involving several iterations of testing on real data and manual model modifications. In biology, the domain knowledge guiding model development is in many cases itself incomplete and uncertain. A major problem in this context is that biological systems are open. Missed or unknown external influences as well as erroneous interactions in the model could thus lead to severely misleading results. Here we introduce the dynamic elastic-net, a data driven mathematical method which automatically detects such model errors in ordinary differential equation (ODE) models. We demonstrate for real and simulated data, how the dynamic elastic-net approach can be used to automatically (i) reconstruct the error signal, (ii) identify the target variables of model error, and (iii) reconstruct the true system state even for incomplete or preliminary models. Our work provides a systematic computational method facilitating modelling of open biological systems under uncertain knowledge.

  13. Bright Light Treatment in Elderly Patients With Nonseasonal Major Depressive Disorder A Randomized Placebo-Controlled Trial

    NARCIS (Netherlands)

    Lieverse, R.; van Someren, E.J.W.; Nielen, M.M.A.; Uitdehaag, B.M.; Smit, J.H.; Hoogendijk, W.J.G.

    2011-01-01

    Context: Major depressive disorder (MDD) in elderly individuals is prevalent and debilitating. It is accompanied by circadian rhythm disturbances associated with impaired functioning of the suprachiasmatic nucleus, the biological clock of the brain. Circadian rhythm disturbances are common in the

  14. Inflammatory breast cancer biology: the tumour microenvironment is key.

    Science.gov (United States)

    Lim, Bora; Woodward, Wendy A; Wang, Xiaoping; Reuben, James M; Ueno, Naoto T

    2018-04-27

    Inflammatory breast cancer (IBC) is a rare and aggressive disease that accounts for ~2-4% of all breast cancers. However, despite its low incidence rate, IBC is responsible for 7-10% of breast cancer-related mortality in Western countries. Thus, the discovery of robust biological targets and the development of more effective therapeutics in IBC are crucial. Despite major international efforts to understand IBC biology, genomic studies have not led to the discovery of distinct biological mechanisms in IBC that can be translated into novel therapeutic strategies. In this Review, we discuss these molecular profiling efforts and highlight other important aspects of IBC biology. We present the intrinsic characteristics of IBC, including stemness, metastatic potential and hormone receptor positivity; the extrinsic features of the IBC tumour microenvironment (TME), including various constituent cell types; and lastly, the communication between these intrinsic and extrinsic components. We summarize the latest perspectives on the key biological features of IBC, with particular emphasis on the TME as an important contributor to the aggressive nature of IBC. On the basis of the current understanding of IBC, we hope to develop the next generation of translational studies, which will lead to much-needed survival improvements in patients with this deadly disease.

  15. The varied clinical presentations of major depressive disorder.

    Science.gov (United States)

    Rush, A John

    2007-01-01

    DSM-IV major depressive disorder (MDD) is a clinical syndrome notable for heterogeneity of its clinical presentation, genetics, neurobiology, clinical course, and treatment responsiveness. In an attempt to make sense of this heterogeneity, clinicians and researchers have proposed a number of MDD "subtypes" based on differences in characteristic symptoms (e.g., atypical, melancholic, psychotic), onset (e.g., early vs. late, post-partum, seasonal), course of illness (e.g., single vs. recurrent, chronic, double), and severity. This article provides a brief review of the status of several of the most common subtypes in terms of their clinical features, biological correlates, course of illness, and treatment implications.

  16. The Biology and Chemistry of Brewing: An Interdisciplinary Course

    Science.gov (United States)

    Hooker, Paul D.; Deutschman, William A.; Avery, Brian J.

    2014-01-01

    For the past nine years, we have been offering an interdisciplinary course for science majors: The Biology and Chemistry of Brewing. This course is primarily laboratory- and inquiry-based; from a total of 24 h of student/instructor contact time, approximately 6 h are devoted to lecture, and the other 18 h are divided between laboratory exercises,…

  17. 7th Annual Systems Biology Symposium: Systems Biology and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Galitski, Timothy P.

    2008-04-01

    Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology has been hosted by the Institute for Systems Biology in Seattle, Washington, since 2002. The annual two-day event gathers the most influential researchers transforming biology into an integrative discipline investingating complex systems. Engineering and application of new technology is a central element of systems biology. Genome-scale, or very small-scale, biological questions drive the enigneering of new technologies, which enable new modes of experimentation and computational analysis, leading to new biological insights and questions. Concepts and analytical methods in engineering are now finding direct applications in biology. Therefore, the 2008 Symposium, funded in partnership with the Department of Energy, featured global leaders in "Systems Biology and Engineering."

  18. An Overview on Synergy between Mathematics and Biology

    International Nuclear Information System (INIS)

    He, Matthew

    2013-01-01

    Recent progress in the determination of genomic sequences has yielded many millions of gene sequences. But what do these sequences tell us and what are the generalities and rules that are governed by them? It seems that we understand very little about genetic contexts required to ''read'' them. There is more to life than the genomic blueprint of each organism. Life functions within the natural laws that we know and the ones we do not know. Mathematics can be used to understand life from the molecular to the biosphere level. This paper provides a brief overview of major historical events of molecular biology and genetics, current interface of emerging field of bioinformatics, and future challenges and perspectives between mathematics and biology

  19. The Promises of Biology and the Biology of Promises

    DEFF Research Database (Denmark)

    Lee, Jieun

    2015-01-01

    commitments with differently imagined futures. I argue that promises are constitutive of the stem cell biology, rather than being derivative of it. Since the biological concept of stem cells is predicated on the future that they promise, the biological life of stem cells is inextricably intertwined...... patients’ bodies in anticipation of materializing the promises of stem cell biology, they are produced as a new form of biovaluable. The promises of biology move beyond the closed circuit of scientific knowledge production, and proliferate in the speculative marketplaces of promises. Part II looks at how...... of technologized biology and biological time can appear promising with the backdrop of the imagined intransigence of social, political, and economic order in the Korean society....

  20. Integration of Proteomics, Bioinformatics, and Systems Biology in Traumatic Brain Injury Biomarker Discovery

    Science.gov (United States)

    Guingab-Cagmat, J.D.; Cagmat, E.B.; Hayes, R.L.; Anagli, J.

    2013-01-01

    Traumatic brain injury (TBI) is a major medical crisis without any FDA-approved pharmacological therapies that have been demonstrated to improve functional outcomes. It has been argued that discovery of disease-relevant biomarkers might help to guide successful clinical trials for TBI. Major advances in mass spectrometry (MS) have revolutionized the field of proteomic biomarker discovery and facilitated the identification of several candidate markers that are being further evaluated for their efficacy as TBI biomarkers. However, several hurdles have to be overcome even during the discovery phase which is only the first step in the long process of biomarker development. The high-throughput nature of MS-based proteomic experiments generates a massive amount of mass spectral data presenting great challenges in downstream interpretation. Currently, different bioinformatics platforms are available for functional analysis and data mining of MS-generated proteomic data. These tools provide a way to convert data sets to biologically interpretable results and functional outcomes. A strategy that has promise in advancing biomarker development involves the triad of proteomics, bioinformatics, and systems biology. In this review, a brief overview of how bioinformatics and systems biology tools analyze, transform, and interpret complex MS datasets into biologically relevant results is discussed. In addition, challenges and limitations of proteomics, bioinformatics, and systems biology in TBI biomarker discovery are presented. A brief survey of researches that utilized these three overlapping disciplines in TBI biomarker discovery is also presented. Finally, examples of TBI biomarkers and their applications are discussed. PMID:23750150

  1. Trickle-down evolution: an approach to getting major evolutionary adaptive changes into textbooks and curricula.

    Science.gov (United States)

    Padian, Kevin

    2008-08-01

    Although contemporary high school and college textbooks of biology generally cover the principles and data of microevolution (genetic and populational change) and speciation rather well, coverage of what is known of the major changes in evolution (macroevolution), and how the evidence is understood is generally poor to nonexistent. It is critical to improve this because acceptance of evolution by the American public rests on the understanding of how we know what we know about the emergence of major new taxonomic groups, and about their adaptations, behaviors, and ecologies in geologic time. An efficient approach to this problem is to improve the illustrations in college textbooks to show the consilience of different lines of fossil, morphological, and molecular evidence mapped on phylogenies. Such "evograms" will markedly improve traditional illustrations of phylogenies, "menageries," and "companatomies." If "evograms" are installed at the college level, the basic principles and evidence of macroevolution will be more likely taught in K-12, thus providing an essential missing piece in biological education.

  2. Diffraction Techniques in Structural Biology

    Science.gov (United States)

    Egli, Martin

    2016-01-01

    A detailed understanding of chemical and biological function and the mechanisms underlying the molecular activities ultimately requires atomic-resolution structural data. Diffraction-based techniques such as single-crystal X-ray crystallography, electron microscopy, and neutron diffraction are well established and they have paved the road to the stunning successes of modern-day structural biology. The major advances achieved in the last 20 years in all aspects of structural research, including sample preparation, crystallization, the construction of synchrotron and spallation sources, phasing approaches, and high-speed computing and visualization, now provide specialists and nonspecialists alike with a steady flow of molecular images of unprecedented detail. The present unit combines a general overview of diffraction methods with a detailed description of the process of a single-crystal X-ray structure determination experiment, from chemical synthesis or expression to phasing and refinement, analysis, and quality control. For novices it may serve as a stepping-stone to more in-depth treatises of the individual topics. Readers relying on structural information for interpreting functional data may find it a useful consumer guide. PMID:27248784

  3. Kinetic Behaviour of Nanoparticles Across the Biological Physiology

    Energy Technology Data Exchange (ETDEWEB)

    Emond, Claude, E-mail: claude.emond@biosmc.com [BioSimulation Consulting Inc., 220E. Delaware Avenue 1182, Newark, DE, 19711 (United States)

    2011-07-06

    Nanotoxicokinetics is a subsection of the toxicology field that involves the study of kinetic displacement of nanoparticles (NPs) in an organism. Four different steps, namely absorption, distribution, metabolism and elimination (ADME), are involved in nanotoxicokinetics. However, only ADE will be covert in this mini review. Because of their size, NPs react differently than particulate matter larger than the nanometre unit in diameter. In the organism, a closer interaction between NPs and biological matrices, called nanotoxicodynamics, might increase the health effects. (Animals are usually in studies to evaluate the global interaction of NPs and biological matrices and to control and reduce the bias.) Understanding the different steps of kinetics is very important to increase the confidence of the amount of NP delivery in the target organ and to assess the level of risk. The objective of this work was to review the behaviour of the NPs interacting with the biological kinetic steps of the ADME and their limitations and constraints. Specifically, it was reviewed the impact of each of the four steps of nanotoxicokinetics, from exposure to elimination in the organism. Recent publications have provided some information on this issue, allowing for a better understanding on how the NPs behave across physiology; however, information is still lacking. We also systematically reviewed the ADME process, and supported our review with examples from the literature. We reviewed the two major factors that influence the absorption of NPs: enumerated biotransformation and elimination limitations. One of the focuses of this study was the interaction between NPs and biological matrices because the morphology and chemical properties may drive the potential for exposure. This paper present different examples of interactions find from literature. To study these interactions, we used a classical pharmacokinetic approach employed in the pharmaceutical industry and compared it to a dynamic

  4. Building biological foundries for next-generation synthetic biology.

    Science.gov (United States)

    Chao, Ran; Yuan, YongBo; Zhao, HuiMin

    2015-07-01

    Synthetic biology is an interdisciplinary field that takes top-down approaches to understand and engineer biological systems through design-build-test cycles. A number of advances in this relatively young field have greatly accelerated such engineering cycles. Specifically, various innovative tools were developed for in silico biosystems design, DNA de novo synthesis and assembly, construct verification, as well as metabolite analysis, which have laid a solid foundation for building biological foundries for rapid prototyping of improved or novel biosystems. This review summarizes the state-of-the-art technologies for synthetic biology and discusses the challenges to establish such biological foundries.

  5. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  6. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  7. Marine natural flavonoids: chemistry and biological activities.

    Science.gov (United States)

    Martins, Beatriz T; Correia da Silva, Marta; Pinto, Madalena; Cidade, Honorina; Kijjoa, Anake

    2018-05-04

    As more than 70% of the world's surface is covered by oceans, marine organisms offer a rich and unlimited resource of structurally diverse bioactive compounds. These organisms have developed unique properties and bioactive compounds that are, in majority of them, unparalleled by their terrestrial counterparts due to the different surrounding ecological systems. Marine flavonoids have been extensively studied in the last decades due to a growing interest concerning their promising biological/pharmacological activities. The most common classes of marine flavonoids are flavones and flavonols, which are mostly isolated from marine plants. Although most of flavonoids are hydroxylated and methoxylated, some marine flavonoids possess an unusual substitution pattern, not commonly found in terrestrial organisms, namely the presence of sulphate, chlorine, and amino groups. This review presents, for the first time in a systematic way, the structure, natural occurrence, and biological activities of marine flavonoids.

  8. Biology and control of Varroa destructor.

    Science.gov (United States)

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed. Copyright 2009 Elsevier Inc. All rights reserved.

  9. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  10. Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection

    Czech Academy of Sciences Publication Activity Database

    Kurey, Irina; Kobets, Tetyana; Havelková, Helena; Slapničková, Martina; Quan, L.; Trtková, Kateřina; Grekov, Igor; Svobodová, M.; Stassen, A. P. M.; Hutson, A.; Demant, P.; Lipoldová, Marie

    2009-01-01

    Roč. 61, č. 9 (2009), s. 619-633 ISSN 0093-7711 R&D Projects: GA ČR GA310/06/1745; GA MŠk(CZ) LC06009 Grant - others:EC(XE) 05-1000004-7761 Institutional research plan: CEZ:AV0Z50520514 Keywords : Leishmania major * Parasite elimination * QTL mapping Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.988, year: 2009

  11. Bioenergetics molecular biology, biochemistry, and pathology

    CERN Document Server

    Ozawa, Takayuki

    1990-01-01

    The emergence of the Biochemical Sciences is underlined by the FAOB symposium in Seoul and highlighted by this Satellite meeting on the "New Bioenergetics. " Classical mitochondrial electron transfer and energy coupling is now complemented by the emerging molecular biology of the respiratory chain which is studied hand in hand with the recognition of mitochondrial disease as a major and emerging study in the basic and clinical medical sciences. Thus, this symposium has achieved an important balance of the fundamental and applied aspects of bioenergetics in the modern setting of molecular biology and mitochondrial disease. At the same time, the symposium takes note not only of the emerging excellence of Biochemical Studies in the Orient and indeed in Korea itself, but also retrospectively enjoys the history of electron transport and energy conservation as represented by the triumvirate ofYagi, King and Slater. Many thanks are due Drs. Kim and Ozawa for their elegant organization of this meeting and its juxtapo...

  12. Biological Complexities in Radiation Carcinogenesis and Cancer Radiotherapy: Impact of New Biological Paradigms

    Directory of Open Access Journals (Sweden)

    Hossein Mozdarani

    2012-01-01

    Full Text Available Although radiation carcinogenesis has been shown both experimentally and epidemiologically, the use of ionizing radiation is also one of the major modalities in cancer treatment. Various known cellular and molecular events are involved in carcinogenesis. Apart from the known phenomena, there could be implications for carcinogenesis and cancer prevention due to other biological processes such as the bystander effect, the abscopal effect, intrinsic radiosensitivity and radioadaptation. Bystander effects have consequences for mutation initiated cancer paradigms of radiation carcinogenesis, which provide the mechanistic justification for low-dose risk estimates. The abscopal effect is potentially important for tumor control and is mediated through cytokines and/or the immune system (mainly cell-mediated immunity. It results from loss of growth and stimulatory and/or immunosuppressive factors from the tumor. Intrinsic radiosensitivity is a feature of some cancer prone chromosomal breakage syndromes such as ataxia telangectiasia. Radiosensitivity is manifested as higher chromosomal aberrations and DNA repair impairment is now known as a good biomarker for breast cancer screening and prediction of prognosis. However, it is not yet known whether this effect is good or bad for those receiving radiation or radiomimetic agents for treatment. Radiation hormesis is another major concern for carcinogenesis. This process which protects cells from higher doses of radiation or radio mimic chemicals, may lead to the escape of cells from mitotic death or apoptosis and put cells with a lower amount of damage into the process of cancer induction. Therefore, any of these biological phenomena could have impact on another process giving rise to genome instability of cells which are not in the field of radiation but still receiving a lower amount of radiation. For prevention of radiation induced carcinogenesis or risk assessment as well as for successful radiation

  13. Crenothrix are major methane consumers in stratified lakes.

    Science.gov (United States)

    Oswald, Kirsten; Graf, Jon S; Littmann, Sten; Tienken, Daniela; Brand, Andreas; Wehrli, Bernhard; Albertsen, Mads; Daims, Holger; Wagner, Michael; Kuypers, Marcel Mm; Schubert, Carsten J; Milucka, Jana

    2017-09-01

    Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth's natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an 'unusual' methane monooxygenase (MMO), which was only distantly related to 'classical' MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N 2 O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.

  14. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.

    Science.gov (United States)

    Tian, Ye; Zhang, Bai; Hoffman, Eric P; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M; Wang, Yue

    2014-07-24

    Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological

  15. Entry to medical schools with 'A' level in mathematics rather than biology.

    Science.gov (United States)

    Spurgin, C B

    1975-09-01

    The majority of British medical schools now accept for their shortest courses students who have mathematics at A level in place of the former requirement of biology A level. Only a small fraction of the entry, less than one-fifth, enters this way, in spite of statements by most medical schools that they make no distinction between those with mathematics and those with biology when making conditional offers of places. There is no evidence that those without biology are at a disadvantage in the courses. If the prospects of entry without A level biology were better publicized medical schools would have a wider field of possibly abler entrants, and pupils entering sixth forms could defer for a year a choice between a medical (or dental) career and one involving physical science, engineering, or other mathematics-based university education.

  16. Plasma fibronectin in patients undergoing major surgery

    International Nuclear Information System (INIS)

    Sallam, M.H.M.

    2003-01-01

    Plasma fibronectin in patients undergoing major surgery had been determined before and after operation. The study was done on 15 patients and 15 normal healthy individuals. The study revealed that patients subjected to major operation, their fibronectin level was normal before operation followed by reduction one day post-operation. After one week, fibronectin level raised again nearly to the pre-operations levels. The probable mechanisms of fibronectin in healing processes were discussed. Fibronectin (FN) is a family of structurally and immunologically related high molecular weight glycoproteins that are present in many cell surfaces, in extracellular fluids, in connective tissues and in most membranes. Interaction with certain discrete extracellular substances, such as a glucosaminoglycans (e.g. heparin), fibrin and collagen and with cell surface structure seem to account for many of its biological activities, among which are regulation of adhesion, spreading and locomotion (Mosesson and amrani, 1980). The concentration of Fn in human plasma decreases after extensive destruction such as that occurs in major surgery, burns or other trauma. This decrease has been generally though to be due to increased consumption of soluble plasma Fn in opsonization of particulate and soluble debris from circulation by the reticuloendothelial (RE) system. Fn rapidly appears in injury areas, in experimentally induced blisters, wounded and epithelium tissues (Petersen et al., 1985). Fn accumulates at times of increased vascular permeability and it is produced by cell of blood vessels in response to injury

  17. Young infants have biological expectations about animals

    OpenAIRE

    Setoh, Peipei; Wu, Di; Baillargeon, Renée; Gelman, Rochel

    2013-01-01

    We provide an experimental demonstration that young infants possess abstract biological expectations about animals. Our findings represent a major breakthrough in the study of the foundations of human knowledge. In four experiments, 8-mo-old infants expected novel objects they categorized as animals to have filled insides. Thus, infants detected a violation when objects that were self-propelled and agentive were revealed to be hollow, or when an object that was self-propelled and furry rattle...

  18. Freshwater ecosystems and aquatic insects: a paradox in biological invasions.

    Science.gov (United States)

    Fenoglio, Stefano; Bonada, Núria; Guareschi, Simone; López-Rodríguez, Manuel J; Millán, Andrés; Tierno de Figueroa, J Manuel

    2016-04-01

    Biological invasions have increased significantly in response to global change and constitute one of the major causes of biodiversity loss. Insects make up a large fraction of invasive species, in general, and freshwaters are among the most invaded ecosystems on our planet. However, even though aquatic insects dominate most inland waters, have unparalleled taxonomic diversity and occupy nearly all trophic niches, there are almost no invasive insects in freshwaters. We present some hypotheses regarding why aquatic insects are not common among aquatic invasive organisms, suggesting that it may be the result of a suite of biological, ecological and anthropogenic factors. Such specific knowledge introduces a paradox in the current scientific discussion on invasive species; therefore, a more in-depth understanding could be an invaluable aid to disentangling how and why biological invasions occur. © 2016 The Author(s).

  19. The terrorist threat nuclear, radiological, biological, chemical - a medical approach

    International Nuclear Information System (INIS)

    Revel, M.C. de; Gourmelon, M.C.S.; Vidal, P.C.; Renaudeau, P.C.S.

    2005-01-01

    Since September 11, 2001, the fear of a large scale nuclear, biological and/or chemical terrorism is taken again into consideration at the highest level of national policies of risk prevention. The advent of international terrorism implies a cooperation between the military defense and the civil defense. The nuclear, radiological, biological and chemical (NRBC) experts of the health service of army and of civil defense will have to work together in case of major terror attack. This book presents this cooperation between civil and military experts in the NRBC domain: risk analysis, national defense plans, crisis management, syndromes and treatments. The different aspects linked with the use of nuclear, biological and chemical weapons are analyzed by the best experts from French medical and research institutes. All topics of each NRBC domain are approached: historical, basic, diagnostic, therapeutic and preventive. (J.S.)

  20. Lycopene metabolism and its biological significance12345

    Science.gov (United States)

    2012-01-01

    The beneficial effects of a high intake of tomatoes and tomato products on the risk of certain chronic diseases have been presented in many epidemiologic studies, with the suggestion that lycopene (a major carotenoid in tomatoes) is a micronutrient with important health benefits. Within the past few years, we have gained greater knowledge of the metabolism of lycopene and the biological effects of lycopene derivatives. In particular, the characterization and study of β-carotene 9′,10′-oxygenase has shown that this enzyme can catalyze the excentric cleavage of both provitamin and non–provitamin A carotenoids to form apo-10′-carotenoids, including apo-10′-lycopenoids from lycopene. This raised an important question of whether the effect of lycopene on various cellular functions and signaling pathways is a result of the direct actions of intact lycopene or its derivatives. Several reports, including our own, support the notion that the biological activities of lycopene can be mediated by apo-10′-lycopenoids. More research is clearly needed to identify and characterize additional lycopene metabolites and their biological activities, which will potentially provide invaluable insights into the mechanisms underlying the effects of lycopene in humans. PMID:23053559

  1. Oral biology in middle age: a history of the University at Buffalo Oral Biology PhD Program.

    Science.gov (United States)

    Scannapieco, F A

    2014-05-01

    In 1960, the first Department of Oral Biology in the United States dedicated to the conduct of research, graduate biomedical research education, and the provision of basic oral science education for the DDS curriculum was established at the University at Buffalo. In 1963, the Department organized the first PhD Program in Oral Biology in the United States. This PhD program has produced a large cadre of oral health researchers, many of whom have gone on to make major contributions to dental research and education. This article provides a brief history of the program, the context within which the program was organized and developed, and a description of some of the many faculty, students, and fellows associated with the program. Additionally, to celebrate the 50th anniversary of this program, a symposium, entitled "The Oral Microbiome, Immunity and Chronic Disease", was held on June 12-14, 2013, in Buffalo, New York. The proceedings are published online in Advances in Dental Research (2014, Vol. 26).

  2. Taking the conservation biology perspective to secondary school classrooms.

    Science.gov (United States)

    Wyner, Yael; Desalle, Rob

    2010-06-01

    The influence of conservation biology can be enhanced greatly if it reaches beyond undergraduate biology to students at the middle and high school levels. If a conservation perspective were taught in secondary schools, students who are not interested in biology could be influenced to pursue careers or live lifestyles that would reduce the negative impact of humans on the world. We use what we call the ecology-disrupted approach to transform the topics of conservation biology research into environmental-issue and ecology topics, the major themes of secondary school courses in environmental science. In this model, students learn about the importance and complexity of normal ecological processes by studying what goes wrong when people disrupt them (environmental issues). Many studies published in Conservation Biology are related in some way to the ecological principles being taught in secondary schools. Describing research in conservation biology in the language of ecology curricula in secondary schools can help bring these science stories to the classroom and give them a context in which they can be understood by students. Without this context in the curriculum, a science story can devolve into just another environmental issue that has no immediate effect on the daily lives of students. Nevertheless, if the research is placed in the context of larger ecological processes that are being taught, students can gain a better understanding of ecology and a better understanding of their effect on the world.

  3. Active Learning Outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology.

    Science.gov (United States)

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A; Siwicki, Kathleen K

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students' engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge problems. During the eight semesters assessed in this study, URM students and those with less preparation attended SGMs with equal or greater frequency than their counterparts. Most agreed that SGMs enhanced their comprehension of biology and ability to articulate solutions. The historical grade gap between URM and non-URM students narrowed slightly in Biology 2, but not in other biology and science, technology, engineering, and mathematics courses. Nonetheless, URM students taking introductory biology after program implementation have graduated with biology majors or minors at the same rates as non-URM students, and have enrolled in postcollege degree programs at equal or greater rates. These results suggest that improved performance as measured by science grade point average may not be necessary to improve the persistence of students from underrepresented groups as life sciences majors. © 2016 P. Kudish et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Academic Preparation in Biology and Advocacy for Teaching Evolution: Biology versus Non-Biology Teachers

    Science.gov (United States)

    Nehm, Ross H.; Kim, Sun Young; Sheppard, Keith

    2009-01-01

    Despite considerable focus on evolution knowledge-belief relationships, little research has targeted populations with strong content backgrounds, such as undergraduate degrees in biology. This study (1) measured precertified biology and non-biology teachers' (n = 167) knowledge of evolution and the nature of science; (2) quantified teacher…

  5. Effects of a Major Tree Invader on Urban Woodland Arthropods

    Science.gov (United States)

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665

  6. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    Directory of Open Access Journals (Sweden)

    Sascha Buchholz

    Full Text Available Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia, which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera; 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.

  7. Effects of a Major Tree Invader on Urban Woodland Arthropods.

    Science.gov (United States)

    Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens

    2015-01-01

    Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.

  8. EFFECTS OF 5E LEARNING CYCLE ON STUDENTS ACHIEVEMENT IN BIOLOGY AND CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Patrick Osawaru Ajaja,

    2012-01-01

    Full Text Available The major purpose of this study was to determine the effects of learning cycle as an instructional strategy on biology andchemistry students achievement. To guide this study, six research hypotheses were stated and tested at 0.05 level ofsignificance. The design of this study was 2x2x3x6 Pre-test Post-test non-equivalent control group quasi experimental design.These included two instructional groups (experimental and control groups, sex (male and female, repeated testing (Pre,Post and follow-up tests, and six weeks of experience. The samples of the study included six senior secondary schools, 112science students, and 12 biology and chemistry teachers. The instruments used for this study were: teacher’s questionnaireon knowledge and use of learning cycle (KULC; and Biology and Chemistry Achievement Test (BCAT. The data collected wereanalyzed with simple percentage, Analysis of Covariance (ANCOVA and student t-test statistics. The major findings of thestudy included that only 30.43% and 26.31% of biology and chemistry teachers have the knowledge that learning cycle is aninstructional method; all the biology and chemistry teachers sampled have never used learning cycle as an instructionalmethod; learning cycle had a significant effect on students achievement in biology and chemistry; students taught withlearning cycle significantly achieved better in biology/chemistry Post-test than those taught with lecture method; the posttestscores of students in the learning cycle group increased over the period of experience; non-significant difference in Posttestscores between males and females taught with learning cycle; non-significant interaction effect between method andsex on achievement; and a significant higher retention of biology and chemistry knowledge by students taught with learningcycle than those taught with lecture method. It was concluded that the method seems an appropriate instructional modelthat could be used to solve the problems of

  9. Communicating Synthetic Biology: from the lab via the media to the broader public.

    Science.gov (United States)

    Kronberger, Nicole; Holtz, Peter; Kerbe, Wolfgang; Strasser, Ewald; Wagner, Wolfgang

    2009-12-01

    We present insights from a study on communicating Synthetic Biology conducted in 2008. Scientists were invited to write press releases on their work; the resulting texts were passed on to four journalists from major Austrian newspapers and magazines. The journalists in turn wrote articles that were used as stimulus material for eight group discussions with select members of the Austrian public. The results show that, from the lab via the media to the general public, communication is characterized by two important tendencies: first, communication becomes increasingly focused on concrete applications of Synthetic Biology; and second, biotechnology represents an important benchmark against which Synthetic Biology is being evaluated.

  10. Leveraging Online Learning Resources to Teach Core Research Skills to Undergraduates at a Diverse Research University.

    Science.gov (United States)

    McFARLIN, Brian K; Breslin, Whitney L; Carpenter, Katie C; Strohacker, Kelley; Weintraub, Randi J

    2010-01-01

    Today's students have unique learning needs and lack knowledge of core research skills. In this program report, we describe an online approach that we developed to teach core research skills to freshman and sophomore undergraduates. Specifically, we used two undergraduate kinesiology (KIN) courses designed to target students throughout campus (KIN1304: Public Health Issues in Physical Activity and Obesity) and specifically kinesiology majors (KIN1252: Foundations of Kinesiology). Our program was developed and validated at the 2 nd largest ethnically diverse research university in the United States, thus we believe that it would be effective in a variety of student populations.

  11. Mathematical biology

    CERN Document Server

    Murray, James D

    1993-01-01

    The book is a textbook (with many exercises) giving an in-depth account of the practical use of mathematical modelling in the biomedical sciences. The mathematical level required is generally not high and the emphasis is on what is required to solve the real biological problem. The subject matter is drawn, e.g. from population biology, reaction kinetics, biological oscillators and switches, Belousov-Zhabotinskii reaction, reaction-diffusion theory, biological wave phenomena, central pattern generators, neural models, spread of epidemics, mechanochemical theory of biological pattern formation and importance in evolution. Most of the models are based on real biological problems and the predictions and explanations offered as a direct result of mathematical analysis of the models are important aspects of the book. The aim is to provide a thorough training in practical mathematical biology and to show how exciting and novel mathematical challenges arise from a genuine interdisciplinary involvement with the biosci...

  12. Red swamp crayfish: biology, ecology and invasion - an overview

    Directory of Open Access Journals (Sweden)

    Tainã Gonçalves Loureiro

    Full Text Available ABSTRACTAlien species have been transported and traded by humans for many centuries. However, with the era of globalization, biological invasions have reached notable magnitudes. Currently, introduction of alien species is one of the major threats to biodiversity and ecosystem functioning. The North American crayfish Procambarus clarkii is one of the most widely introduced freshwater species in the world, especially due to its high economic importance. It is responsible for great modifications in invaded environments causing irreparable ecological and economic damages. Its impressive ability to successfully colonize a wide range of environments is a consequence of its behavioural and biological characteristics that can adapt to features of the invaded location, conferring to this species a notable ecological plasticity. This review summarizes the available information regarding P. clarkii's biology and invasive dynamics around the world in order to contribute to the understanding of the threats posed by its establishment, as well as to support management and impact mitigation efforts.

  13. Biology, ecology and evolution of the family Gigasporaceae, arbuscular mycorrhizal fungi (Glomeromycota)

    NARCIS (Netherlands)

    Souza, Francisco Adriano de

    2005-01-01

    Research described in this thesis focused on biological, ecological and evolutionary aspects of Arbuscular Mycorrhizal Fungi (AMF), and in particular of the family Gigasporaceae (Gigaspora and Scutellospora, genera). This study had two major objectives. The first objective was to obtain better

  14. A major QTL affects temperature sensitive adult lethality and inbreeding depression in life span in Drosophila melanogaster

    NARCIS (Netherlands)

    Vermeulen, Cornelius J.; Bijlsma, R.; Loeschcke, Volker

    2008-01-01

    Background: The study of inbreeding depression has major relevance for many disciplines, including conservation genetics and evolutionary biology. Still, the molecular genetic basis of this phenomenon remains poorly characterised, as knowledge on the mechanistic causes of inbreeding depression and

  15. Cardiovascular safety of biologic therapies for the treatment of RA.

    Science.gov (United States)

    Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E

    2011-11-15

    Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.

  16. Oxidative Stress and Adipocyte Biology: Focus on the Role of AGEs

    Directory of Open Access Journals (Sweden)

    Florence Boyer

    2015-01-01

    Full Text Available Diabetes is a major health problem that is usually associated with obesity, together with hyperglycemia and increased advanced glycation endproducts (AGEs formation. Elevated AGEs elicit severe downstream consequences via their binding to receptors of AGEs (RAGE. This includes oxidative stress and oxidative modifications of biological compounds together with heightened inflammation. For example, albumin (major circulating protein undergoes increased glycoxidation with diabetes and may represent an important biomarker for monitoring diabetic pathophysiology. Despite the central role of adipose tissue in many physiologic/pathologic processes, recognition of the effects of greater AGEs formation in this tissue is quite recent within the obesity/diabetes context. This review provides a brief background of AGEs formation and adipose tissue biology and thereafter discusses the impact of AGEs-adipocyte interactions in pathology progression. Novel data are included showing how AGEs (especially glycated albumin may be involved in hyperglycemia-induced oxidative damage in adipocytes and its potential links to diabetes progression.

  17. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Major advances in fundamental dairy cattle nutrition.

    Science.gov (United States)

    Drackley, J K; Donkin, S S; Reynolds, C K

    2006-04-01

    Fundamental nutrition seeks to describe the complex biochemical reactions involved in assimilation and processing of nutrients by various tissues and organs, and to quantify nutrient movement (flux) through those processes. Over the last 25 yr, considerable progress has been made in increasing our understanding of metabolism in dairy cattle. Major advances have been made at all levels of biological organization, including the whole animal, organ systems, tissues, cells, and molecules. At the whole-animal level, progress has been made in delineating metabolism during late pregnancy and the transition to lactation, as well as in whole-body use of energy-yielding substrates and amino acids for growth in young calves. An explosion of research using multicatheterization techniques has led to better quantitative descriptions of nutrient use by tissues of the portal-drained viscera (digestive tract, pancreas, and associated adipose tissues) and liver. Isolated tissue preparations have provided important information on the interrelationships among glucose, fatty acid, and amino acid metabolism in liver, adipose tissue, and mammary gland, as well as the regulation of these pathways during different physiological states. Finally, the last 25 yr has witnessed the birth of "molecular biology" approaches to understanding fundamental nutrition. Although measurements of mRNA abundance for proteins of interest already have provided new insights into regulation of metabolism, the next 25 yr will likely see remarkable advances as these techniques continue to be applied to problems of dairy cattle biology. Integration of the "omics" technologies (functional genomics, proteomics, and metabolomics) with measurements of tissue metabolism obtained by other methods is a particularly exciting prospect for the future. The result should be improved animal health and well being, more efficient dairy production, and better models to predict nutritional requirements and provide rations to meet

  19. Synthetic biology: a challenge to mechanical explanations in biology?

    Science.gov (United States)

    Morange, Michel

    2012-01-01

    In their plans to modify organisms, synthetic biologists have contrasted engineering and tinkering. By drawing this contrast between their endeavors and what has happened during the evolution of organisms by natural selection, they underline the novelty of their projects and justify their ambitions. Synthetic biologists are at odds with a long tradition that has considered organisms as "perfect machines." This tradition had already been questioned by Stephen Jay Gould in the 1970s and received a major blow with the comparison made by François Jacob between organisms and the results of "bricolage" (tinkering). These contrasts between engineering and tinkering, synthetic biology and evolution, have no raison d'être. Machines built by humans are increasingly inspired by observations made on organisms. This is not a simple reversal of the previous trend-the mechanical conception of organisms-in which the characteristics of the latter were explained by comparison with human-built machines. Relations between organisms and machines have always been complex and ambiguous.

  20. The patient perspective in research on major depression

    Directory of Open Access Journals (Sweden)

    Cuijpers Pim

    2011-05-01

    Full Text Available Abstract Although thousands of studies have examined the genetics, epidemiology, etiology, biology, treatment and prevention of major depressive disorder, we still lack very basic knowledge about what patients with depressive disorders need. Despite the thousands of studies that have been conducted on major depression and the hundreds of randomized trials that have examined the effects of treatments, many patients still do not know how to cope with the daily problems caused by depressive disorders. In this Commentary the need for more research on the perspectives of patients is described. This research should guide treatment studies as well as basic research much more than it currently does. This perpective is especially important to understand and solve the undertreatment of depression, one of the major problems in this area. Up to 50% of depressed patients do not seek treatment, resulting in huge avoidable disease burden and economic costs. In order to solve this problem we need a better understanding of the problems patients encounter in daily life, and what factors contribute to the reasons for seeking treatment or not. Research from the patients' perspective is also necessary to meet the currently unmet information needs of patients, including information about the nature and causes of depression, stigma, medication, treatment and coping with the daily problems of having depression.

  1. Biological Agents

    Science.gov (United States)

    ... E-Tools Safety and Health Topics / Biological Agents Biological Agents This page requires that javascript be enabled ... 202) 693-2300 if additional assistance is required. Biological Agents Menu Overview In Focus: Ebola Frederick A. ...

  2. [Biologics and mycobacterial diseases].

    Science.gov (United States)

    Tsuyuguchi, Kazunari; Matsumoto, Tomoshige

    2013-03-01

    Various biologics such as TNF-alpha inhibitor or IL-6 inhibitor are now widely used for treatment of rheumatoid arthritis. Many reports suggested that one of the major issues is high risk of developing tuberculosis (TB) associated with using these agents, which is especially important in Japan where tuberculosis still remains endemic. Another concern is the risk of development of nontuberculous mycobacterial (NTM) diseases and we have only scanty information about it. The purpose of this symposium is to elucidate the role of biologics in the development of mycobacterial diseases and to establish the strategy to control them. First, Dr. Tohma showed the epidemiologic data of TB risks associated with using biologics calculated from the clinical database on National Database of Rheumatic Diseases by iR-net in Japan. He estimated TB risks in rheumatoid arthritis (RA) patients to be about four times higher compared with general populations and to become even higher by using biologics. He also pointed out a low rate of implementation of QuantiFERON test (QFT) as screening test for TB infection. Next, Dr. Tokuda discussed the issue of NTM disease associated with using biologics. He suggested the airway disease in RA patients might play some role in the development of NTM disease, which may conversely lead to overdiagnosis of NTM disease in RA patients. He suggested that NTM disease should not be uniformly considered a contraindication to treatment with biologics, considering from the results of recent multicenter study showing relatively favorable outcome of NTM patients receiving biologics. Patients with latent tuberculosis infection (LTBI) should receive LTBI treatment before starting biologics. Dr. Kato, a chairperson of the Prevention Committee of the Japanese Society for Tuberculosis, proposed a new LTBI guideline including active implementation of LTBI treatment, introducing interferon gamma release assay, and appropriate selection of persons at high risk for

  3. Biological nitrogen fixation is not a major contributor to the nitrogen demand of a commercially growth South African sugarcane cultivar

    NARCIS (Netherlands)

    Hoefsloot, G.; Termorshuizen, A.J.; Watt, D.A.; Cramer, M.D.

    2005-01-01

    It has previously been reported that endophytic diazotrophic bacteria contribute significantly to the nitrogen budgets of some graminaceous species. In this study the contribution of biological nitrogen fixation to the N-budget of a South African sugarcane cultivar was evaluated using 15N natural

  4. Genomic science provides new insights into the biology of forest trees

    Science.gov (United States)

    Andrew Groover

    2015-01-01

    Forest biology is undergoing a fundamental change fostered by the application of genomic science to longstanding questions surrounding the evolution, adaptive traits, development, and environmental interactions of tree species. Genomic science has made major technical leaps in recent years, most notably with the advent of 'next generation sequencing' but...

  5. Nuclear, biological and chemical contamination survivability of Army material

    International Nuclear Information System (INIS)

    Feeney, J.J.

    1987-01-01

    Army Regulation (AR) 70-71, Nuclear, Biological and Chemical (NBC) Contamination Survivability of Army Material, published during 1984, establishes Army policy and procedures for the development and acquisition of material to ensure its survivablility and sustainability on the NBC-contaminated battlefield. This regulation defines NBC contamination as a term that includes both the individual and collective effects of residual radiological, biological, and chemical contamination. AR 70-71 applies to all mission-essential equipment within the Army. NBC contamination survivability is the capability of a system and its crew to withstand an NBC-contaminated environment, including decontamination, without losing the ability to accomplish the assigned mission. Characteristics of NBC contamination survivability are decontaminability, hardness, and compatability. These characteristics are engineering design criteria which are intended for use only in a developmental setting. To comply with AR 70-71, each mission-essential item must address all three criteria. The Department of Defense (DOD) has published a draft instruction addressing acquisition of NBC contamination survivable systems. This instruction will apply throughout DOD to those programs, systems and subsystems designated by the Secretary of Defense as major systems acquisition programs and to those non-major systems that have potential impact on critical functions

  6. Creating Successful Campus Partnerships for Teaching Communication in Biology Courses and Labs.

    Science.gov (United States)

    Hall, Susanne E; Birch, Christina

    2018-01-01

    Creating and teaching successful writing and communication assignments for biology undergraduate students can be challenging for faculty trying to balance the teaching of technical content. The growing body of published research and scholarship on effective teaching of writing and communication in biology can help inform such work, but there are also local resources available to support writing within biology courses that may be unfamiliar to science faculty and instructors. In this article, we discuss common on-campus resources biology faculty can make use of when incorporating writing and communication into their teaching. We present the missions, histories, and potential collaboration outcomes of three major on-campus writing resources: writing across the curriculum and writing in the disciplines initiatives (WAC/WID), writing programs, and writing centers. We explain some of the common misconceptions about these resources in order to help biology faculty understand their uses and limits, and we offer guiding questions faculty might ask the directors of these resources to start productive conversations. Collaboration with these resources will likely save faculty time and effort on curriculum development and, more importantly, will help biology students develop and improve their critical reading, writing, and communication skills.

  7. Rhizosphere Biological Processes of Legume//Cereal Intercropping Systems: A Review

    Directory of Open Access Journals (Sweden)

    JIANG Yuan-yuan

    2016-09-01

    Full Text Available Intercropping, a sustainable planting pattern, was widely used in the wordwide. It not only has the advantages of yield and nutrient acquisition, but also can ensure food security and reduce the risk of crop failures. The majority of intercropping systems involve legume//cereal combinations because of interspecific facilitation or complementarity. The rhizosphere is the interface between plants and soil where there are interactions among a myriad of microorganisms and affect the uptake of nutrients, water and harmful substances. The rhizosphere biologi-cal processes not only determine the amount of nutrients and the availability of nutrients, but also affect crop productivity and nutrient use efficiency. Hence, this paper summarized the progress made on root morphology, rhizosphere microorganisms, root exudates and ecological ef-fect in the perspective of the rhizosphere biological process,which would provide theoretical basis for improving nutrient availability, remov-ing heavy metals, and plant genetic improvements.

  8. Publication Growth in Biological Sub-Fields: Patterns, Predictability and Sustainability

    Directory of Open Access Journals (Sweden)

    Marco Pautasso

    2012-11-01

    Full Text Available Biologists are producing ever-increasing quantities of papers. The question arises of whether current rates of increase in scientific outputs are sustainable in the long term. I studied this issue using publication data from the Web of Science (1991–2010 for 18 biological sub-fields. In the majority of cases, an exponential regression explains more variation than a linear one in the number of papers published each year as a function of publication year. Exponential growth in publication numbers is clearly not sustainable. About 75% of the variation in publication growth among biological sub-fields over the two studied decades can be predicted by publication data from the first six years. Currently trendy fields such as structural biology, neuroscience and biomaterials cannot be expected to carry on growing at the current pace, because in a few decades they would produce more papers than the whole of biology combined. Synthetic and systems biology are problematic from the point of view of knowledge dissemination, because in these fields more than 80% of existing papers have been published over the last five years. The evidence presented here casts a shadow on how sustainable the recent increase in scientific publications can be in the long term.

  9. Nematodes for the biological control of the woodwasp, Sirex noctilio

    Science.gov (United States)

    Robin A. Bedding

    2007-01-01

    The tylenchid nematode Beddingia (Deladenus) siricidicola (Bedding) is by far the most important control agent of Sirex noctilio F., a major pest of pine plantations. It sterilizes female sirex, is density dependent, can achieve nearly 100 percent parasitism and, as a result of its complicated biology can be readily manipulated for sirex control. Bedding and Iede (2005...

  10. Implementation of Plasma Fractionation in Biological Medicines Production

    OpenAIRE

    Mousavi Hosseini, Kamran; Ghasemzadeh, Mehran

    2016-01-01

    Context The major motivation for the preparation of the plasma derived biological medicine was the treatment of casualties from the Second World War. Due to the high expenses for preparation of plasma derived products, achievement of self-sufficiency in human plasma biotechnological industry is an important goal for developing countries. Evidence Acquisition The complexity of the blood plasma was first revealed by the Nobel Prize laureate, Arne Tiselius and Theodor Svedberg, which resulted in...

  11. The biology of strigolactones

    KAUST Repository

    Ruyter-Spira, Carolien P.

    2013-02-01

    The strigolactones are rhizosphere signaling molecules as well as a new class of plant hormones with a still increasing number of biological functions being uncovered. Here, we review a recent major breakthrough in our understanding of strigolactone biosynthesis, which has revealed the unexpected simplicity of the originally postulated complex pathway. Moreover, the discovery and localization of a strigolactone exporter sheds new light on putative strigolactone fluxes to the rhizosphere as well as within the plant. The combination of these data with information on the expression and regulation of strigolactone biosynthetic and downstream signaling genes provides new insights into how strigolactones control the many different aspects of plant development and how their rhizosphere signaling role may have evolved. © 2012 Elsevier Ltd.

  12. Co-Funding for the Conference on Magnetic Resonance in Biological Systems

    Energy Technology Data Exchange (ETDEWEB)

    Alan McLaughlin, Ph.D., Director, Division of Applied Science & Technology, NIBIB, NIH

    2008-10-01

    The XXIst International Conference on Magnetic Resonance in Biological Systems (ICMRBS 2005), '60th anniversary of the discovery of Nuclear Magnetic Resonance,' was held between 16 and 21 January 2005 in Hyderabad, India. The meeting focused on a broad range of magnetic resonance methods as applied to studies of biological processes related to human health. The biennial ICMRBS has become the major venue for discussion of advances in nuclear and electron magnetic resonance (NMR & EMR/EPR) studies of the structure, dynamics, and chemical properties of important classes of biomolecules. Magnetic resonance has become an established tool in structural biology, and its special importance derives from its ability to provide atomic level information. It is becoming increasingly evident that the dynamic features of biomolecules, their intermolecular interactions, and accessible conformations in solution are data of key importance in understanding molecular recognition and function. NMR, which is already contributing to approximately 25% of the new structures being deposited with the Protein Data Bank, is destined to be a major player in the post genomic structure age with its emphasis on structure and function. In-vivo magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) results shed light on human metabolic processes and on the cellular ramifications of cancer, stroke, cardiovascular disease, and other pathologies. New methodologies in metabonomics may lead to development of new drugs and medical diagnosis. The ICMRBS is the one conference that brings together experts from high-resolution NMR, solid state NMR, EPR, in-vivo MRS and MRI, and developers of instrumentation, techniques, software, and databases. Symposia at this ICMRBS are designed to continue the fruitful cross-fertilization of ideas that has been so successful in driving the spectacular advances in this field. ICMRBS 2005 maintained the traditional format of poster sessions, and

  13. Application of secondary ion mass spectrometry (SIMS) to biological sample analysis

    International Nuclear Information System (INIS)

    Tamura, Hifumi

    1990-01-01

    Some major issues and problems related with the analysis of biological samples are discussed, focusing on demonstrated and possible solutions and the application of secondary ion mass spectrometry (SIMS) to investigation of the composition of biological samples. The effective use of secondary electrons in combination with negative ions is most practical for the analysis of biological samples. Regardless of whether positive or negative ions are used, the electric potential at the surface of a sample stays around a constant value because of the absense of the accumulation of electric charges at the surface, leading to almost complete avoidance of the charging of the biological sample. A soft tissue sample can suffer damage to the tissue or migration of atoms in removing water from the sample. Some processes including fixation and freeze drying are available to prevent this. The application of SIMS to biological analysis is still in the basic research stage and further studies will be required to develop practical methods. Possible areas of its application include medicine, pathology, toxicology, pharmacology, plant physiology and other areas related with marine life and marine contamination. (N.K.)

  14. Advances in the biological effects of terahertz wave radiation.

    Science.gov (United States)

    Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun

    2014-01-01

    The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.

  15. Science and the Nonscience Major: Addressing the Fear Factor in the Chemical Arena Using Forensic Science

    Science.gov (United States)

    Labianca, Dominick A.

    2007-01-01

    This article describes an approach to minimizing the "fear factor" in a chemistry course for the nonscience major, and also addresses relevant applications to other science courses, including biology, geology, and physics. The approach emphasizes forensic science and affords students the opportunity to hone their analytical skills in an…

  16. Economic development and conservation of biological and cultural diversity in Yunnan Province, China

    Science.gov (United States)

    Stendell, R.C.; Johnson, Richard L.; Mosesso, J.P.; Zhang, X.

    2001-01-01

    Chinese and American scientists are co-operating to develop concepts, strategies, agreements, and proposals in support of an economic development and sustainable ecosystems project in Yunnan Province, People's Republic of China. Yunnan's Provincial Government has initiated a major programme to develop and further utilise its biological resources to help improve economic conditions for its citizens. They are co-operating with the US Geological Survey (USGS) on evaluation and management of biological resources so economic development will be compatible with sustainable ecological systems. Scientists from the USGS and co-operating universities will provide expertise on synthesising biological data, conducting a Gap Analysis for the Province, evaluating innovative economic opportunities, and designing an effective education, training, and outreach programme.

  17. Novel Therapeutic and Prophylactic Modalities to Protect U.S. Armed Forces Against Major Biological Threat Agents

    Science.gov (United States)

    2004-10-01

    56 A ppendices .................................................................................. . . 6 1 . INTRODUCTION In this report, we are...doses (Tanaka et al., 1997) and can cause different pathological conditions relevant to anthrax, such as acute respiratory distress syndrome (Matute...the pro-enzymes, however the major gelatinase enzymatic activity corresponds to the 55 kDa proteins in the BACS. Acute toxicity of B. anthracis

  18. Undergraduate Students’ Research and Information Skills Continue to Change in their Second Year

    Directory of Open Access Journals (Sweden)

    Kimberly Miller

    2017-03-01

    Full Text Available Review of: Hulseberg, A., & Twait, M. (2016. Sophomores speaking: An exploratory study of student research practices. College & Undergraduate Libraries, 23(2, 130-150. http://dx.doi.org/10.1080/10691316.2014.981907 Objective – To understand sophomore undergraduate students’ research practices. Design – Mixed methods online survey and participant interviews. Setting – A small liberal arts college in the Midwestern United States of America. Subjects – The sample consisted of 660 second-year students; 139 students responded to the survey (21% response rate. In-depth interviews were conducted with 13 of the 139 survey respondents. Methods – A 13-item survey was emailed to sophomore students during October 2012. To analyze the results, the authors and a library student intern developed a coding scheme to apply to open-ended survey questions. Survey respondents could also volunteer for in-depth interviews. A total of 50 survey respondents volunteered, and 14 were invited for in-depth interviews between December 2012 and January 2013. The interview protocol included open-ended questions about students’ research experiences. Students were also asked to identify and discuss one recent research project. Interviews were audio and video recorded; data from one interview was lost due to technology failure, resulting in data analysis of 13 interviews. Interview transcripts were coded by an anthropology doctoral student, the study authors, and a library student assistant. Main Results – The survey found that students completed fewer research projects and used fewer library resources as sophomores than they did as first-year students. For example, only 4.9% (n=7 of students reported completing zero research assignments in their first year, compared with 34.5% (n=48 in their second year. When asked if there were library resources or skills they wanted to know about sooner in their academic career, students’ top reply was “Nothing” (34.5%, n

  19. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The biological effectiveness of heavy ion radiations in the environment

    International Nuclear Information System (INIS)

    Craven, P.A.

    1996-03-01

    Although heavy ions are rarely encountered in the majority of terrestrial environments, the exposure of humans to this fascinating class of ionizing radiation is becoming more frequent. Long-duration spaceflight, new radiotherapeutic procedures and enhanced levels of radon, and other naturally-occurring alpha particle emitters, have all increased concern and stimulated interest recently within the radiological protection and radiobiological communities. Significant data concerning the long-term effects of low levels of heavy ions on mammalian systems are correspondingly scarce, leading to increased emphasis on modelling all aspects of the radiation-organism interaction. Contemporary radiation protection procedures reflect the need for a more fundamental understanding of the mechanisms responsible for the biological actions of such radiations. Major deficiencies exist in the current recommendations for assessment of relative effectiveness, the enhanced severity of the biological consequences instigated by heavy ions, over conventional sparsely ionizing radiations. In an attempt to remedy some of the inadequate concepts and assumptions presently employed and, simultaneously, to gain insight into the fundamental mechanisms behind the notion of radiation quality, a series of algorithms have been developed and executed as computer code, to evaluate the biological effectiveness of heavy ion radiation ''tracks'' according to a number of criteria. These include consideration of the spatial characteristics of physical energy deposition in idealised cellular structures (finite particle range, radial extension of tracks via δ-ray emission) and the likelihood of induction and mis-repair of severe molecular lesions (double-strand breaks, multiply-damaged sites). (author)

  1. BIOLOGICAL MONITORING PROGRAM FOR EAST FORK POPLAR CREEK

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, S.M.; ASHWOOD, T.L.; BEATY, T.W.; BRANDT, C.C.

    1997-10-24

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y- 12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  2. Biological monitoring program for East Fork Poplar Creek

    Energy Technology Data Exchange (ETDEWEB)

    Adams, S.M.; Ashwood, T.L.; Beaty, T.W.; Brandt, C.C.; Christensen, S.W.; Cicerone, D.S.; Greeley, M.S. Jr.; Hill, W.R.; Kszos, L.S.

    1997-04-18

    In May 1985, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge Y-12 Plant. As a condition of the permit, a Biological Monitoring and Abatement Program (BMAP) was developed to demonstrate that the effluent limitations established for the Y-12 Plant protect the classified uses of the receiving stream (East Fork Poplar Creek; EFPC), in particular, the growth and propagation of aquatic life (Lear et al. 1989). A second objective of the BMAP is to document the ecological effects resulting from the implementation of a water pollution control program designed to eliminate direct discharges of wastewaters to EFPC and to minimize the inadvertent release of pollutants to the environment. Because of the complex nature of the discharges to EFPC and the temporal and spatial variability in the composition of the discharges, a comprehensive, integrated approach to biological monitoring was developed. A new permit was issued to the Y-12 Plant on April 28, 1995 and became effective on July 1, 1995. Biological monitoring continues to be required under the new permit. The BMAP consists of four major tasks that reflect different but complementary approaches to evaluating the effects of the Y-12 Plant discharges on the aquatic integrity of EFPC. These tasks are (1) toxicity monitoring, (2) biological indicator studies, (3) bioaccumulation studies, and (4) ecological surveys of the periphyton, benthic macroinvertebrate, and fish communities.

  3. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.

    Science.gov (United States)

    Wray, Naomi R; Ripke, Stephan; Mattheisen, Manuel; Trzaskowski, Maciej; Byrne, Enda M; Abdellaoui, Abdel; Adams, Mark J; Agerbo, Esben; Air, Tracy M; Andlauer, Till M F; Bacanu, Silviu-Alin; Bækvad-Hansen, Marie; Beekman, Aartjan F T; Bigdeli, Tim B; Binder, Elisabeth B; Blackwood, Douglas R H; Bryois, Julien; Buttenschøn, Henriette N; Bybjerg-Grauholm, Jonas; Cai, Na; Castelao, Enrique; Christensen, Jane Hvarregaard; Clarke, Toni-Kim; Coleman, Jonathan I R; Colodro-Conde, Lucía; Couvy-Duchesne, Baptiste; Craddock, Nick; Crawford, Gregory E; Crowley, Cheynna A; Dashti, Hassan S; Davies, Gail; Deary, Ian J; Degenhardt, Franziska; Derks, Eske M; Direk, Nese; Dolan, Conor V; Dunn, Erin C; Eley, Thalia C; Eriksson, Nicholas; Escott-Price, Valentina; Kiadeh, Farnush Hassan Farhadi; Finucane, Hilary K; Forstner, Andreas J; Frank, Josef; Gaspar, Héléna A; Gill, Michael; Giusti-Rodríguez, Paola; Goes, Fernando S; Gordon, Scott D; Grove, Jakob; Hall, Lynsey S; Hannon, Eilis; Hansen, Christine Søholm; Hansen, Thomas F; Herms, Stefan; Hickie, Ian B; Hoffmann, Per; Homuth, Georg; Horn, Carsten; Hottenga, Jouke-Jan; Hougaard, David M; Hu, Ming; Hyde, Craig L; Ising, Marcus; Jansen, Rick; Jin, Fulai; Jorgenson, Eric; Knowles, James A; Kohane, Isaac S; Kraft, Julia; Kretzschmar, Warren W; Krogh, Jesper; Kutalik, Zoltán; Lane, Jacqueline M; Li, Yihan; Li, Yun; Lind, Penelope A; Liu, Xiaoxiao; Lu, Leina; MacIntyre, Donald J; MacKinnon, Dean F; Maier, Robert M; Maier, Wolfgang; Marchini, Jonathan; Mbarek, Hamdi; McGrath, Patrick; McGuffin, Peter; Medland, Sarah E; Mehta, Divya; Middeldorp, Christel M; Mihailov, Evelin; Milaneschi, Yuri; Milani, Lili; Mill, Jonathan; Mondimore, Francis M; Montgomery, Grant W; Mostafavi, Sara; Mullins, Niamh; Nauck, Matthias; Ng, Bernard; Nivard, Michel G; Nyholt, Dale R; O'Reilly, Paul F; Oskarsson, Hogni; Owen, Michael J; Painter, Jodie N; Pedersen, Carsten Bøcker; Pedersen, Marianne Giørtz; Peterson, Roseann E; Pettersson, Erik; Peyrot, Wouter J; Pistis, Giorgio; Posthuma, Danielle; Purcell, Shaun M; Quiroz, Jorge A; Qvist, Per; Rice, John P; Riley, Brien P; Rivera, Margarita; Saeed Mirza, Saira; Saxena, Richa; Schoevers, Robert; Schulte, Eva C; Shen, Ling; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Sinnamon, Grant B C; Smit, Johannes H; Smith, Daniel J; Stefansson, Hreinn; Steinberg, Stacy; Stockmeier, Craig A; Streit, Fabian; Strohmaier, Jana; Tansey, Katherine E; Teismann, Henning; Teumer, Alexander; Thompson, Wesley; Thomson, Pippa A; Thorgeirsson, Thorgeir E; Tian, Chao; Traylor, Matthew; Treutlein, Jens; Trubetskoy, Vassily; Uitterlinden, André G; Umbricht, Daniel; Van der Auwera, Sandra; van Hemert, Albert M; Viktorin, Alexander; Visscher, Peter M; Wang, Yunpeng; Webb, Bradley T; Weinsheimer, Shantel Marie; Wellmann, Jürgen; Willemsen, Gonneke; Witt, Stephanie H; Wu, Yang; Xi, Hualin S; Yang, Jian; Zhang, Futao; Arolt, Volker; Baune, Bernhard T; Berger, Klaus; Boomsma, Dorret I; Cichon, Sven; Dannlowski, Udo; de Geus, E C J; DePaulo, J Raymond; Domenici, Enrico; Domschke, Katharina; Esko, Tõnu; Grabe, Hans J; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Kendler, Kenneth S; Kloiber, Stefan; Lewis, Glyn; Li, Qingqin S; Lucae, Susanne; Madden, Pamela F A; Magnusson, Patrik K; Martin, Nicholas G; McIntosh, Andrew M; Metspalu, Andres; Mors, Ole; Mortensen, Preben Bo; Müller-Myhsok, Bertram; Nordentoft, Merete; Nöthen, Markus M; O'Donovan, Michael C; Paciga, Sara A; Pedersen, Nancy L; Penninx, Brenda W J H; Perlis, Roy H; Porteous, David J; Potash, James B; Preisig, Martin; Rietschel, Marcella; Schaefer, Catherine; Schulze, Thomas G; Smoller, Jordan W; Stefansson, Kari; Tiemeier, Henning; Uher, Rudolf; Völzke, Henry; Weissman, Myrna M; Werge, Thomas; Winslow, Ashley R; Lewis, Cathryn M; Levinson, Douglas F; Breen, Gerome; Børglum, Anders D; Sullivan, Patrick F

    2018-05-01

    Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

  4. Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse.

    Science.gov (United States)

    Gao, Xin; Oei, Maria S; Ovitt, Catherine E; Sincan, Murat; Melvin, James E

    2018-04-01

    RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.

  5. Influence of Incentives on Performance in a Pre-College Biology MOOC

    Directory of Open Access Journals (Sweden)

    Suhang Jiang

    2014-11-01

    Full Text Available There is concern that online education may widen the achievement gap between students from different socioeconomic classes. The recent discussion of integrating massive open online courses (MOOCs into formal higher education has added fuel to this debate. In this study, factors influencing enrollment and completion in a pre-college preparatory MOOC were explored. University of California at Irvine (UCI students of all preparation levels, defined by math Scholastic Aptitude Test (SAT score, were invited to take a Bio Prep MOOC to help them prepare for introductory biology. Students with math SAT below 550 were offered the explicit incentive of an early change to the biology major upon successful completion of the MOOC and two additional onsite courses. Our results demonstrate that, among course registrants, a higher percentage of UCI students (>60% completed the course than non-UCI registrants from the general population (<9%. Female UCI students had a greater likelihood of enrolling in the MOOC, but were not different from male students in terms of performance. University students entering with low preparation outperformed students entering who already had the credentials to become biology majors. These findings suggest that MOOCs can reach students, even those entering college with less preparation, before they enter university and have the potential to prepare them for challenging science, technology, engineering, and mathematics (STEM courses.

  6. Quantum Biology

    Directory of Open Access Journals (Sweden)

    Alessandro Sergi

    2009-06-01

    Full Text Available A critical assessment of the recent developmentsof molecular biology is presented.The thesis that they do not lead to a conceptualunderstanding of life and biological systems is defended.Maturana and Varela's concept of autopoiesis is briefly sketchedand its logical circularity avoided by postulatingthe existence of underlying living processes,entailing amplification from the microscopic to the macroscopic scale,with increasing complexity in the passage from one scale to the other.Following such a line of thought, the currently accepted model of condensed matter, which is based on electrostatics and short-ranged forces,is criticized. It is suggested that the correct interpretationof quantum dispersion forces (van der Waals, hydrogen bonding, and so onas quantum coherence effects hints at the necessity of includinglong-ranged forces (or mechanisms for them incondensed matter theories of biological processes.Some quantum effects in biology are reviewedand quantum mechanics is acknowledged as conceptually important to biology since withoutit most (if not all of the biological structuresand signalling processes would not even exist. Moreover, it is suggested that long-rangequantum coherent dynamics, including electron polarization,may be invoked to explain signal amplificationprocess in biological systems in general.

  7. International Trends in Biology Education Research from 1997 to 2014: A Content Analysis of Papers in Selected Journals

    Science.gov (United States)

    Gul, Seyda; Sozbilir, Mustafa

    2016-01-01

    This paper provides a descriptive content analysis of biology education research papers published in eight major academic journals indexed in Social Science Citation Index [SSCI] of Thomson Reuters® from 1997 to 2014. Total of 1376 biology education research [BER] papers were examined. The findings indicated that most of the papers were published…

  8. Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex

    DEFF Research Database (Denmark)

    Grey, H M; Buus, S; Colon, S

    1989-01-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that a...... of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire')....... responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable...

  9. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980

    International Nuclear Information System (INIS)

    Pirruccello, M.C.; Tobias, C.A.

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980

  10. Gender Gaps in Achievement and Participation in Multiple Introductory Biology Classrooms

    Science.gov (United States)

    Eddy, Sarah L.; Brownell, Sara E.; Wenderoth, Mary Pat

    2014-01-01

    Although gender gaps have been a major concern in male-dominated science, technology, engineering, and mathematics disciplines such as physics and engineering, the numerical dominance of female students in biology has supported the assumption that gender disparities do not exist at the undergraduate level in life sciences. Using data from 23 large…

  11. The crucial contribution of veterinarians to conservation biology.

    Science.gov (United States)

    Reading, Richard P; Kenny, David E; Fitzgerald, Kevin T

    2013-11-01

    Conservation biology is a relatively new (began in the 1980s), value-based discipline predicated on the belief that biological diversity-from genes to populations to species to communities to ecosystems-is good and extinction is bad. Conservation biology grew from the recognition that the Earth has entered its sixth great extinction event, one that differs from previous great extinctions in that a single species-Homo sapiens-has caused this biodiversity crisis. A diverse, interacting set of variables drive current extinctions. As such, to succeed, conservation efforts usually require broad-based, interdisciplinary approaches. Conservationists increasingly recognize the importance of contributions by veterinary science, among many other disciplines, to collaborative efforts aimed at stemming the loss of biodiversity. We argue that, to improve success rates, many wildlife conservation programs must incorporate veterinarians as part of an interdisciplinary team to assess and address problems. Ideally, veterinarians who participate in conservation would receive specialized training and be willing to work as partners as part of a larger team of experts who effectively integrate their work rather than work independently (i.e., work as interdisciplinary, as opposed to multidisciplinary, teams, respectively). In our opinion, the most successful and productive projects involve interdisciplinary teams involving both biological and nonbiological specialists. Some researchers hold multiple degrees in biology and veterinary medicine or the biological and social sciences. These experts can often offer unique insight. We see at least 3 major areas in which veterinarians can immediately offer great assistance to conservation efforts: (1) participation in wildlife capture and immobilization, (2) leadership or assistance in addressing wildlife health issues, and (3) leadership or assistance in addressing wildlife disease issues, including using wildlife as sentinels to identify new

  12. Selenium and arsenic in biology: their chemical forms and biological functions.

    Science.gov (United States)

    Shibata, Y; Morita, M; Fuwa, K

    1992-01-01

    Based on the recent development of analytical methods, sensitive systems for the analysis and speciation of selenium and arsenic have been established. A palladium addition technique was developed for the accurate determination of selenium in biological samples using graphite furnace atomic absorption analysis. For the speciation of the elements, combined methods of HPLC either with ICP-AES or with ICP-MS were found to work well. These systems were applied to the elucidation of the chemical form of the elements in natural samples. Some chemical properties of the selenium-mercury complex in dolphin liver were elucidated: i.e., it was a cationic, water-soluble, low molecular weight compound containing selenium and mercury in a 1:1 molar ratio, and was shown to be different from a known selenium-mercury complex, bis(methylmercuric)selenide. The major selenium compound excreted in human urine was revealed to be other than any of those previously identified (TMSe, selenate, and selenite). TMSe, a suspected major metabolite in urine, was found, if at all, in low levels. The major water-soluble, and lipid-soluble arsenic compounds in a brown seaweed, U. pinnatifida (WAKAME), were rigorously identified, and the results were compared with other data on marine algae and animals. The major organic arsenic compounds (termed "arseno-sugars") in marine algae commonly contain 5-deoxy-5-dimethylarsinyl-ribofuranoside moiety. There are various kinds of arseno-sugar derivatives containing different side-chains attached to the anomeric position of the sugar, and the distribution of each arsenic species seems to be related to algal species. The arseno-sugar (A-XI) is present in every alga so far examined, is metabolized to lipids, and possibly may play some specific role in the algal cells. On the other hand, the major arsenic compound in fish, crustacea and molluscs has been identified as arsenobetaine, which is an arseno-analog of glycinebetaine, a very common osmo-regulator in

  13. "Do as I say!" : parenting and the biology of child self-regulation

    NARCIS (Netherlands)

    Kok, Rianne

    2013-01-01

    The development of self-regulation is one of the major challenges of a child’s healthy development. In the current thesis, the contribution and interplay of parental and biological factors in the development of self-regulation in preschoolers are studied in a large population-based cohort, the

  14. Toward computational cumulative biology by combining models of biological datasets.

    Science.gov (United States)

    Faisal, Ali; Peltonen, Jaakko; Georgii, Elisabeth; Rung, Johan; Kaski, Samuel

    2014-01-01

    A main challenge of data-driven sciences is how to make maximal use of the progressively expanding databases of experimental datasets in order to keep research cumulative. We introduce the idea of a modeling-based dataset retrieval engine designed for relating a researcher's experimental dataset to earlier work in the field. The search is (i) data-driven to enable new findings, going beyond the state of the art of keyword searches in annotations, (ii) modeling-driven, to include both biological knowledge and insights learned from data, and (iii) scalable, as it is accomplished without building one unified grand model of all data. Assuming each dataset has been modeled beforehand, by the researchers or automatically by database managers, we apply a rapidly computable and optimizable combination model to decompose a new dataset into contributions from earlier relevant models. By using the data-driven decomposition, we identify a network of interrelated datasets from a large annotated human gene expression atlas. While tissue type and disease were major driving forces for determining relevant datasets, the found relationships were richer, and the model-based search was more accurate than the keyword search; moreover, it recovered biologically meaningful relationships that are not straightforwardly visible from annotations-for instance, between cells in different developmental stages such as thymocytes and T-cells. Data-driven links and citations matched to a large extent; the data-driven links even uncovered corrections to the publication data, as two of the most linked datasets were not highly cited and turned out to have wrong publication entries in the database.

  15. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    Science.gov (United States)

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  16. Culture and biology interplay: An introduction.

    Science.gov (United States)

    Causadias, José M; Telzer, Eva H; Lee, Richard M

    2017-01-01

    Culture and biology have evolved together, influence each other, and concurrently shape behavior, affect, cognition, and development. This special section highlights 2 major domains of the interplay between culture and biology. The first domain is neurobiology of cultural experiences-how cultural, ethnic, and racial experiences influence limbic systems and neuroendocrine functioning-and the second domain is cultural neuroscience-the connections between cultural processes and brain functioning. We include 3 studies on neurobiology of cultural experiences that examine the associations between racial discrimination and heart rate variability (Hill et al., 2016), economic and sociocultural stressors and cortisol levels (Mendoza, Dmitrieva, Perreira, & Watamura, 2016), and unfair treatment and allostatic load (Ong, Williams, Nwizu, & Gruenewald, 2016). We also include 2 studies on cultural neuroscience that investigate cultural group differences and similarities in beliefs, practices, and neural basis of emotion regulation (Qu & Telzer, 2016), and reflected and direct self-appraisals (Pfeifer et al., 2016). We discuss pending challenges and future directions for this emerging field. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Informing biological design by integration of systems and synthetic biology.

    Science.gov (United States)

    Smolke, Christina D; Silver, Pamela A

    2011-03-18

    Synthetic biology aims to make the engineering of biology faster and more predictable. In contrast, systems biology focuses on the interaction of myriad components and how these give rise to the dynamic and complex behavior of biological systems. Here, we examine the synergies between these two fields. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  19. [Morphology, biology and life-cycle of Plasmodium parasites].

    Science.gov (United States)

    Hommel, Marcel

    2007-10-01

    Laveran first discovered that an infectious agent was responsible for malaria by using a simple microscope, without the assistance of specific stains. Our knowledge of the Plasmodium life cycle and cellular biology has progressed with each technological advance, from Romanovsky staining and histology to electron microscopy, immunocytochemistry, molecular methods and modern imaging techniques. The use of bird, primate and rodent models also made a major contribution, notably in the development of antimalarial drugs that are still in use today.

  20. The path to next generation biofuels: successes and challenges in the era of synthetic biology

    Science.gov (United States)

    2010-01-01

    Volatility of oil prices along with major concerns about climate change, oil supply security and depleting reserves have sparked renewed interest in the production of fuels from renewable resources. Recent advances in synthetic biology provide new tools for metabolic engineers to direct their strategies and construct optimal biocatalysts for the sustainable production of biofuels. Metabolic engineering and synthetic biology efforts entailing the engineering of native and de novo pathways for conversion of biomass constituents to short-chain alcohols and advanced biofuels are herewith reviewed. In the foreseeable future, formal integration of functional genomics and systems biology with synthetic biology and metabolic engineering will undoubtedly support the discovery, characterization, and engineering of new metabolic routes and more efficient microbial systems for the production of biofuels. PMID:20089184

  1. Radiation oncology - Linking technology and biology in the treatment of cancer

    International Nuclear Information System (INIS)

    Coleman, C. Norman

    2002-01-01

    Technical advances in radiation oncology including CT-simulation, 3D-conformal and intensity-modulated radiation therapy (IMRT) delivery techniques, and brachytherapy have allowed greater treatment precision and dose escalation. The ability to intensify treatment requires the identification of the critical targets within the treatment field, recognizing the unique biology of tumor, stroma and normal tissue. Precision is technology based while accuracy is biologically based. Therefore, the intensity of IMRT will undoubtedly mean an increase in both irradiation dose and the use of biological agents, the latter considered in the broadest sense. Radiation oncology has the potential and the opportunity to provide major contributions to the linkage between molecular and functional imaging, molecular profiling and novel therapeutics for the emerging molecular targets for cancer treatment. This process of 'credentialing' of molecular targets will require multi disciplinary imaging teams, clinicians and basic scientists. Future advances will depend on the appropriate integration of biology into the training of residents, continuing post graduate education, participation in innovative clinical research and commitment to the support of basic research as an essential component of the practice of radiation oncology

  2. Borneo and Indochina are major evolutionary hotspots for Southeast Asian biodiversity.

    Science.gov (United States)

    de Bruyn, Mark; Stelbrink, Björn; Morley, Robert J; Hall, Robert; Carvalho, Gary R; Cannon, Charles H; van den Bergh, Gerrit; Meijaard, Erik; Metcalfe, Ian; Boitani, Luigi; Maiorano, Luigi; Shoup, Robert; von Rintelen, Thomas

    2014-11-01

    Tropical Southeast (SE) Asia harbors extraordinary species richness and in its entirety comprises four of the Earth's 34 biodiversity hotspots. Here, we examine the assembly of the SE Asian biota through time and space. We conduct meta-analyses of geological, climatic, and biological (including 61 phylogenetic) data sets to test which areas have been the sources of long-term biological diversity in SE Asia, particularly in the pre-Miocene, Miocene, and Plio-Pleistocene, and whether the respective biota have been dominated by in situ diversification, immigration and/or emigration, or equilibrium dynamics. We identify Borneo and Indochina, in particular, as major "evolutionary hotspots" for a diverse range of fauna and flora. Although most of the region's biodiversity is a result of both the accumulation of immigrants and in situ diversification, within-area diversification and subsequent emigration have been the predominant signals characterizing Indochina and Borneo's biota since at least the early Miocene. In contrast, colonization events are comparatively rare from younger volcanically active emergent islands such as Java, which show increased levels of immigration events. Few dispersal events were observed across the major biogeographic barrier of Wallace's Line. Accelerated efforts to conserve Borneo's flora and fauna in particular, currently housing the highest levels of SE Asian plant and mammal species richness, are critically required. © The Author(s) 2014. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. [Injury rate and incidence of accidents with biological risk among infirmary students].

    Science.gov (United States)

    Rodríguez Martín, A; Novalbos Ruiz, J P; Costa Alonso, M J; Zafra Mezcua, J A

    2000-09-09

    A study of the incidence and characteristics of biological accidents among infirmary students during their practicals at the hospital. A retrospective study carried out at five centres by means of two questionnaires, one on the duration of the training and the rate of accidents and the other on the characteristics, precautions and ports exposure behaviour. Out of 397 students, 70,5% had accidents at a rate of 64% (CI 95%, 59-68). Of these, 15% were accidents with biological risk, the majority being jabs (39%) and splashes (32,5%). It is worth note that 49,2% occurred while putting away the material and 58% in the absence of any individual protective measures. One out of 8 accidents implied a biological risk. A very high rate of accidents was observed with important deficiencies in security.

  4. Top-down approach to biological therapy of Crohn's disease.

    Science.gov (United States)

    Hirschmann, Simon; Neurath, Markus F

    2017-03-01

    Crohn's disease (CD) is a chronic, immune-mediated condition with a potentially disabling and destructive course. Despite growing data on when to use a therapeutic 'top-down' strategy, clinical management of this complex disorder is still challenging. Currently, the discussion of 'top-down' strategy in CD mostly includes biological therapy alone or in combination. Areas covered: This article is based on a review of existing literature regarding the use of biological therapy in a 'top-down' approach for the treatment of Crohn's disease. The authors reviewed all the major databases including MEDLINE as well as DDW and ECCO abstracts, respectively. Expert opinion: A 'top-down' therapeutic approach in Crohn's disease is strongly supported by existing data in patients with several risk factors for a severe course of disease. Moreover, there is an increasing amount of published data recommending a more individualised therapeutic strategy to identify candidates for 'top-down' treatment, based on enhanced diagnostics using biomarkers. Emerging therapeutic approaches besides existing therapy concepts using biologicals may possibly redefine the 'top-down' therapeutic strategy for Crohn's disease in the future.

  5. Biological sciences teaching undergraduates’ environmental knowledge: a critical analysis

    Directory of Open Access Journals (Sweden)

    Silvana do Nascimento Silva

    2013-12-01

    Full Text Available Nowadays, environmental issues have been addressed in a way that goes beyond the natural impacts, embracing socio-economic, political and cultural aspects. This paper makes a description of the types of environmental conceptions, giving special emphasis to the interactions that permeate it, and develops an empirical work by analyzing the conceptions about the environmental knowledge of students majoring in a teacher preparation course on biological sciences of a university in the State of Bahia, Brazil. In a qualitative research, data were collected by application of a questionnaire with open questions with answers in text and drawings. The results revealed a predominance of naturalistic conceptions, while socio-environmental conceptions of systemic or socio-metabolic characteristics were not found. These findings lead to the need for the integration of these critical approaches about the environmental issue in Sciences and Biology teachers’ training, emphasizing the interactions between work, nature and society. Finally, some suggestions also emerge for future research, among which to analyze the biological sciences university teachers’ environmental conceptions and an action-research with these investigated undergraduates concerning environmental critical approaches.

  6. Novel topological descriptors for analyzing biological networks

    Directory of Open Access Journals (Sweden)

    Varmuza Kurt K

    2010-06-01

    Full Text Available Abstract Background Topological descriptors, other graph measures, and in a broader sense, graph-theoretical methods, have been proven as powerful tools to perform biological network analysis. However, the majority of the developed descriptors and graph-theoretical methods does not have the ability to take vertex- and edge-labels into account, e.g., atom- and bond-types when considering molecular graphs. Indeed, this feature is important to characterize biological networks more meaningfully instead of only considering pure topological information. Results In this paper, we put the emphasis on analyzing a special type of biological networks, namely bio-chemical structures. First, we derive entropic measures to calculate the information content of vertex- and edge-labeled graphs and investigate some useful properties thereof. Second, we apply the mentioned measures combined with other well-known descriptors to supervised machine learning methods for predicting Ames mutagenicity. Moreover, we investigate the influence of our topological descriptors - measures for only unlabeled vs. measures for labeled graphs - on the prediction performance of the underlying graph classification problem. Conclusions Our study demonstrates that the application of entropic measures to molecules representing graphs is useful to characterize such structures meaningfully. For instance, we have found that if one extends the measures for determining the structural information content of unlabeled graphs to labeled graphs, the uniqueness of the resulting indices is higher. Because measures to structurally characterize labeled graphs are clearly underrepresented so far, the further development of such methods might be valuable and fruitful for solving problems within biological network analysis.

  7. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    Science.gov (United States)

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  8. Tannins: current knowledge of food sources, intake, bioavailability and biological effects.

    Science.gov (United States)

    Serrano, José; Puupponen-Pimiä, Riitta; Dauer, Andreas; Aura, Anna-Marja; Saura-Calixto, Fulgencio

    2009-09-01

    Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.

  9. From Extremophiles to Star Trek, The Use of Synthetic Biology in Astrobiology

    Science.gov (United States)

    Rothschild, Lynn J.; Fujishima, Kosuke; Lima, Ivan Paulino; Gentry, Diana; Phan, Samson; Navarette, Jesica; Palmer, Jesse; Burnier, Andre

    2012-01-01

    Synthetic biology – the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes – has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids. In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as bio-mining, human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  10. 2nd Congress on applied synthetic biology in Europe (Málaga, Spain, November 2013).

    Science.gov (United States)

    Vetter, Beatrice V; Pantidos, Nikolaos; Edmundson, Matthew

    2014-05-25

    The second meeting organised by the EFB on the advances of applied synthetic biology in Europe was held in Málaga, Spain in November 2013. The potential for the broad application of synthetic biology was reflected in the five sessions of this meeting: synthetic biology for healthcare applications, tools and technologies for synthetic biology, production of recombinant proteins, synthetic plant biology, and biofuels and other small molecules. Outcomes from the meeting were that synthetic biology offers methods for rapid development of new strains that will result in decreased production costs, sustainable chemical production and new medical applications. Additionally, it also introduced novel ways to produce sustainable energy and biofuels, to find new alternatives for bioremediation and resource recovery, and environmentally friendly foodstuff production. All the above-mentioned advances could enable biotechnology to solve some of the major problems of Society. However, while there are still limitations in terms of lacking tools, standardisation and suitable host organisms, this meeting has laid a foundation providing cutting-edge concepts and techniques to ultimately convert the potential of synthetic biology into practice. Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  11. Impacts of insufficient instructional materials on teaching biology: Higher education systems in focus

    Directory of Open Access Journals (Sweden)

    Sutuma Edessa

    2017-01-01

    Full Text Available Abstract The purpose of this study was to assess and determine impacts of insufficient instructional materials and ineffective lesson delivery methods on teaching in biology higher education. The participants of this study were 60 trainees who graduated in Bachelor of Sciences from eight public universities in majoring biology. Data for the study was collected while these trainees were attending the course of Biology Teaching Methods in the Post Graduate Diploma in Teaching, both in the regular and summer 2015/2016 training programs at Addis Ababa University. The study employs a mixed method design of both qualitative and quantitative data evaluations. Data was collected through classroom observations and interviews with the trainees. The findings indicated that insufficient instructional materials and ineffective teaching methods in higher education had negative impacts; that have affected the skills of performing biological tasks of graduates 71%. In the course of the Post Graduate Diploma in Teaching training, trainees were unsuccessful to conduct essential biological tasks expected from graduates of biology upon the completion of their undergraduate study program. The study was concluded with emphasis on the need to integrate theory and practice through using adequate instructional materials and proper teaching methods in the higher education biology teaching.

  12. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  13. [OMICS AND BIG DATA, MAJOR ADVANCES TOWARDS PERSONALIZED MEDICINE OF THE FUTURE?].

    Science.gov (United States)

    Scheen, A J

    2015-01-01

    The increasing interest for personalized medicine evolves together with two major technological advances. First, the new-generation, rapid and less expensive, DNA sequencing method, combined with remarkable progresses in molecular biology leading to the post-genomic era (transcriptomics, proteomics, metabolomics). Second, the refinement of computing tools (IT), which allows the immediate analysis of a huge amount of data (especially, those resulting from the omics approaches) and, thus, creates a new universe for medical research, that of analyzed by computerized modelling. This article for scientific communication and popularization briefly describes the main advances in these two fields of interest. These technological progresses are combined with those occurring in communication, which makes possible the development of artificial intelligence. These major advances will most probably represent the grounds of the future personalized medicine.

  14. Biological profiling of prospective antidepressant response in major depressive disorder: Associations with (neuro)inflammation, fatty acid metabolism, and amygdala-reactivity.

    Science.gov (United States)

    Mocking, R J T; Nap, T S; Westerink, A M; Assies, J; Vaz, F M; Koeter, M W J; Ruhé, H G; Schene, A H

    2017-05-01

    A better understanding of factors underlying antidepressant non-response may improve the prediction of which patients will respond to what treatment. Major depressive disorder (MDD) is associated with alterations in fatty acid metabolism, (neuro)inflammation and amygdala-reactivity. However, their mutual relations, and the extent to which they are associated with prospective antidepressant-response, remain unknown. To test (I) alterations in (neuro)inflammation and its associations with fatty acid metabolism and amygdala-reactivity in MDD-patients compared to controls, and (II) whether these alterations are associated with prospective paroxetine response. We compared 70 unmedicated MDD-patients with 51 matched healthy controls at baseline, regarding erythrocyte membrane omega-6 arachidonic acid (AA), inflammation [serum (high-sensitivity) C-reactive protein (CRP)], and in a subgroup amygdala-reactivity to emotional faces using functional magnetic resonance imaging (fMRI) (N=42). Subsequently, we treated patients with 12 weeks paroxetine, and repeated baseline measures after 6 and 12 weeks to compare non-responders, early-responders (response at 6 weeks), and late-responders (response at 12 weeks). Compared to controls, MDD-patients showed higher CRP (p=0.016) and AA (p=0.019) after adjustment for confounders at baseline. AA and CRP were mutually correlated (p=0.043). In addition, patients showed a more negative relation between AA and left amygdala-reactivity (p=0.014). Moreover, AA and CRP were associated with antidepressant-response: early responders showed lower AA (p=0.018) and higher CRP-concentrations (p=0.008) than non-responders throughout the study. Higher observed CRP and AA, their mutual association, and relation with amygdala-reactivity, are corroborative with a role for (neuro)inflammation in MDD. In addition, observed associations of these factors with prospective antidepressant-response suggest a potential role as biomarkers. Future studies in

  15. Experiences that influence a student's choice on majoring in physics

    Science.gov (United States)

    Dobbin, Donya Rae

    Currently the production of college graduates with science and engineering degrees is insufficient to fill the increasing number of jobs requiring these skills. This study focuses on physics majors with an in-depth examination of student transitions from high school to college. Many different areas of influence could affect a student's decision to major in physics. The first phase of this study addresses all of the potential areas of influence identified from the literature. The goal was to identify common influences that might be used to increase students' interest in majoring in physics. Subjects (N=35) from the first phase were recruited from physics majors at diverse Michigan colleges and universities. The second phase of this study explored, in more depth, important areas of influence identified in the first phase of the study. Subjects (N=94) from the second phase were recruited from diverse colleges and universities in Indiana, Illinois, and Ohio. The interviews were also conducted via email. Approximately half of the students in the study decided to major in physics while still in high school. Their reasons relate to many of the areas of influence. For example, high school physics teachers were cited as a strong influence in many students' decisions to major in physics. Influential physics teachers were described as being helpful, encouraging and interesting. The teachers also need to be their students' number one cheerleader and not their number one critic. Some areas of influence were found to be different for males vs. females. A high percentage of all physics majors had influential adults with careers in physical or biological science fields. This percentage was even larger for female physics majors. Female students also showed a greater initial interest in astronomy than the male students. Thus, high school and college physics teachers should seek to expose students to science-related careers and adults with these careers. Astronomy is also an

  16. Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology.

    Science.gov (United States)

    Pandey, Ramesh Prasad; Parajuli, Prakash; Koffas, Mattheos A G; Sohng, Jae Kyung

    2016-01-01

    In this review, we address recent advances made in pathway engineering, directed evolution, and systems/synthetic biology approaches employed in the production and modification of flavonoids from microbial cells. The review is divided into two major parts. In the first, various metabolic engineering and system/synthetic biology approaches used for production of flavonoids and derivatives are discussed broadly. All the manipulations/engineering accomplished on the microorganisms since 2000 are described in detail along with the biosynthetic pathway enzymes, their sources, structures of the compounds, and yield of each product. In the second part of the review, post-modifications of flavonoids by four major reactions, namely glycosylations, methylations, hydroxylations and prenylations using recombinant strains are described. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Directory of Open Access Journals (Sweden)

    Kevin S Bonham

    2017-10-01

    Full Text Available While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  18. Women are underrepresented in computational biology: An analysis of the scholarly literature in biology, computer science and computational biology.

    Science.gov (United States)

    Bonham, Kevin S; Stefan, Melanie I

    2017-10-01

    While women are generally underrepresented in STEM fields, there are noticeable differences between fields. For instance, the gender ratio in biology is more balanced than in computer science. We were interested in how this difference is reflected in the interdisciplinary field of computational/quantitative biology. To this end, we examined the proportion of female authors in publications from the PubMed and arXiv databases. There are fewer female authors on research papers in computational biology, as compared to biology in general. This is true across authorship position, year, and journal impact factor. A comparison with arXiv shows that quantitative biology papers have a higher ratio of female authors than computer science papers, placing computational biology in between its two parent fields in terms of gender representation. Both in biology and in computational biology, a female last author increases the probability of other authors on the paper being female, pointing to a potential role of female PIs in influencing the gender balance.

  19. Lipid profile and biological activity of different extracts of Stapelia hirsuta L.

    Directory of Open Access Journals (Sweden)

    M.M. Shabana

    2016-12-01

    Results and conclusion: β-amyrin (1, lupeol (2, α-amyrin (3 and β-sitosterol (4 were isolated from the n-hexane extract. GLC analysis of (USM and (FAME revealed that, squalene, α-amyrin and β-sitosterol are the major hydrocarbon, triterpene and sterol respectively. The percentages of the unsaturated and saturated fatty acids are 40.8% and 48% respectively. Caproic acid (26.6% was the major fatty acid and stearic (1.2% being the minor one. Biological screening of the different extracts and fractions were carried out and significant results were obtained.

  20. Consideration of learning orientations as an application of achievement goals in evaluating life science majors in introductory physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-06-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.

  1. Biological conversion system

    Science.gov (United States)

    Scott, C.D.

    A system for bioconversion of organic material comprises a primary bioreactor column wherein a biological active agent (zymomonas mobilis) converts the organic material (sugar) to a product (alcohol), a rejuvenator column wherein the biological activity of said biological active agent is enhanced, and means for circulating said biological active agent between said primary bioreactor column and said rejuvenator column.

  2. Posttranslational modifications of desmin and their implication in biological processes and pathologies.

    Science.gov (United States)

    Winter, Daniel L; Paulin, Denise; Mericskay, Mathias; Li, Zhenlin

    2014-01-01

    Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.

  3. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus: a review

    Directory of Open Access Journals (Sweden)

    Gun-Woo Oh

    2017-11-01

    Full Text Available Abstract Members of the phylum Echinodermata, commonly known as echinoderms, are exclusively marine invertebrates. Among the Echinodermata, sea cucumber belongs to the family Holothuroidea. The sea cucumber Stichopus (Apostichous japonicus (Selenka is an invertebrate animal inhabiting the coastal sea around Korean, Japan, China, and Russia. Sea cucumber has a significant commercial value, because it contains valuable nutrients such as vitamins and minerals. They possess a number of distinctive biologically and pharmacologically important compounds. In particular, the body wall of sea cucumber is a major edible part. It consists of peptide, collagen, gelatin, polysaccharide, and saponin, which possess several biological activities such as anti-cancer, anti-coagulation, anti-oxidation, and anti-osteoclastogenesis. Furthermore, the regenerative capacity of sea cucumber makes it a medically important organism. This review presents the various biological activities and biomedical potential of sea cucumber S. japonicus.

  4. Biana: a software framework for compiling biological interactions and analyzing networks.

    Science.gov (United States)

    Garcia-Garcia, Javier; Guney, Emre; Aragues, Ramon; Planas-Iglesias, Joan; Oliva, Baldo

    2010-01-27

    The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.

  5. Structural Biology Fact Sheet

    Science.gov (United States)

    ... NIGMS NIGMS Home > Science Education > Structural Biology Structural Biology Tagline (Optional) Middle/Main Content Area PDF Version (688 KB) Other Fact Sheets What is structural biology? Structural biology is the study of how biological ...

  6. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  7. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  8. Integrating phosphoproteomics in systems biology

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2014-07-01

    Full Text Available Phosphorylation of serine, threonine and tyrosine plays significant roles in cellular signal transduction and in modifying multiple protein functions. Phosphoproteins are coordinated and regulated by a network of kinases, phosphatases and phospho-binding proteins, which modify the phosphorylation states, recognize unique phosphopeptides, or target proteins for degradation. Detailed and complete information on the structure and dynamics of these networks is required to better understand fundamental mechanisms of cellular processes and diseases. High-throughput technologies have been developed to investigate phosphoproteomes in model organisms and human diseases. Among them, mass spectrometry (MS-based technologies are the major platforms and have been widely applied, which has led to explosive growth of phosphoproteomic data in recent years. New bioinformatics tools are needed to analyze and make sense of these data. Moreover, most research has focused on individual phosphoproteins and kinases. To gain a more complete knowledge of cellular processes, systems biology approaches, including pathways and networks modeling, have to be applied to integrate all components of the phosphorylation machinery, including kinases, phosphatases, their substrates, and phospho-binding proteins. This review presents the latest developments of bioinformatics methods and attempts to apply systems biology to analyze phosphoproteomics data generated by MS-based technologies. Challenges and future directions in this field will be also discussed.

  9. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    Energy Technology Data Exchange (ETDEWEB)

    Abasolo, Ibane [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Pujal, Judit; Navarro, Pilar [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Rabanal, Rosa M.; Serafin, Anna [Universitat Autonoma de Barcelona, Departament de Medicina i Cirurgia Animals, Barcelona (Spain); Millan, Olga [Institut d' Alta Tecnologia - CRC, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Real, Francisco X. [Institut Municipal d' Investigacio Medica-Hospital del Mar, Parc de Recerca Biomedica de Barcelona, Barcelona (Spain); Universitat Pompeu Fabra, Parc de Recerca Biomedica de Barcelona, Departament de Ciencies Experimentals i de la Salut, Barcelona (Spain); Programa de Patologia Molecular, Centro Nacional de Investigaciones Oncologicas, Madrid (Spain)

    2009-07-15

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  11. FDG PET imaging of Ela1-myc mice reveals major biological differences between pancreatic acinar and ductal tumours

    International Nuclear Information System (INIS)

    Abasolo, Ibane; Pujal, Judit; Navarro, Pilar; Rabanal, Rosa M.; Serafin, Anna; Millan, Olga; Real, Francisco X.

    2009-01-01

    The aim was to evaluate FDG PET imaging in Ela1-myc mice, a pancreatic cancer model resulting in the development of tumours with either acinar or mixed acinar-ductal phenotype. Transversal and longitudinal FDG PET studies were conducted; selected tissue samples were subjected to autoradiography and ex vivo organ counting. Glucose transporter and hexokinase mRNA expression was analysed by quantitative reverse transcription polymerase chain reaction (RT-PCR); Glut2 expression was analysed by immunohistochemistry. Transversal studies showed that mixed acinar-ductal tumours could be identified by FDG PET several weeks before they could be detected by hand palpation. Longitudinal studies revealed that ductal - but not acinar - tumours could be detected by FDG PET. Autoradiographic analysis confirmed that tumour areas with ductal differentiation incorporated more FDG than areas displaying acinar differentiation. Ex vivo radioactivity measurements showed that tumours of solely acinar phenotype incorporated more FDG than pancreata of non-transgenic littermates despite the fact that they did not yield positive PET images. To gain insight into the biological basis of the differential FDG uptake, glucose transporter and hexokinase transcript expression was studied in microdissected tumour areas enriched for acinar or ductal cells and validated using cell-specific markers. Glut2 and hexokinase I and II mRNA levels were up to 20-fold higher in ductal than in acinar tumours. Besides, Glut2 protein overexpression was found in ductal neoplastic cells but not in the surrounding stroma. In Ela1-myc mice, ductal tumours incorporate significantly more FDG than acinar tumours. This difference likely results from differential expression of Glut2 and hexokinases. These findings reveal previously unreported biological differences between acinar and ductal pancreatic tumours. (orig.)

  12. LmSmdB: an integrated database for metabolic and gene regulatory network in Leishmania major and Schistosoma mansoni

    Directory of Open Access Journals (Sweden)

    Priyanka Patel

    2016-03-01

    Full Text Available A database that integrates all the information required for biological processing is essential to be stored in one platform. We have attempted to create one such integrated database that can be a one stop shop for the essential features required to fetch valuable result. LmSmdB (L. major and S. mansoni database is an integrated database that accounts for the biological networks and regulatory pathways computationally determined by integrating the knowledge of the genome sequences of the mentioned organisms. It is the first database of its kind that has together with the network designing showed the simulation pattern of the product. This database intends to create a comprehensive canopy for the regulation of lipid metabolism reaction in the parasite by integrating the transcription factors, regulatory genes and the protein products controlled by the transcription factors and hence operating the metabolism at genetic level. Keywords: L.major, S.mansoni, Regulatory networks, Transcription factors, Database

  13. Overview of the taxonomy and of the major secondary metabolites and their biological activities related to human health of the Laurencia complex (Ceramiales, Rhodophyta from Brazil

    Directory of Open Access Journals (Sweden)

    Mutue T. Fujii

    2011-04-01

    Full Text Available In Brazil, the Laurencia complex is represented by twenty taxa: Laurencia s.s. with twelve species, Palisada with four species (including Chondrophycus furcatus now that the proposal of its transference to Palisada is in process, and Osmundea and Yuzurua with two species each. The majority of the Brazilian species of the Laurencia complex have been phylogenetically analyzed by 54 rbcL sequences, including five other Rhodomelacean species as outgroups. The analysis showed that the Laurencia complex is monophyletic with high posterior probability value. The complex was separated into five clades, corresponding to the genera: Chondrophycus, Laurencia, Osmundea, Palisada, and Yuzurua. A bibliographical survey of the terpenoids produced by Brazilian species showed that only six species of Laurencia and five of Palisada (including C. furcatcus have been submitted to chemical analysis with 48 terpenoids (47 sesquiterpenes and one triterpene isolated. No diterpenes were found. Of the total, 23 sesquiterpenes belong to the bisabolane class and eighteen to the chamigrene type, whose biochemical precursor is bisabolane, two are derived from lauranes and four are triquinols. Despite the considerable number of known terpenes and their ecological and pharmacological importance, few experimental biological studies have been performed. In this review, only bioactivities related to human health were considered.

  14. ‘Can Simple Biological Systems be Built from Standardized Interchangeable Parts?’:Negotiating Biology and Engineering in a Synthetic Biology Competition

    OpenAIRE

    Frow, Emma; Calvert, Jane

    2013-01-01

    Synthetic biology represents a recent attempt to bring engineering principles and practices to working with biology. In practice, the nature of the relationship between engineering and biology in synthetic biology is a subject of ongoing debate. The disciplines of biology and engineering are typically seen to involve differentways of knowing and doing, and to embody different assumptions and objectives. Tensions between these approaches are playing out as the field of synthetic biology is bei...

  15. Reactivity I: A Foundation-Level Course for Both Majors and Nonmajors in Integrated Organic, Inorganic, and Biochemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.; Jones, T. Nicholas; McIntee, Edward J.

    2015-01-01

    A foundation level course is presented that integrates aspects of organic, inorganic and biochemistry in the context of reactivity. The course was designed to serve majors in chemistry and other sciences (biochemistry, biology, nutrition), as well as nursing and pre-health professions students. Themes of the course were designed to highlight a…

  16. A Physicist's Quest in Biology: Max Delbrück and "Complementarity".

    Science.gov (United States)

    Strauss, Bernard S

    2017-06-01

    Max Delbrück was trained as a physicist but made his major contribution in biology and ultimately shared a Nobel Prize in Physiology or Medicine. He was the acknowledged leader of the founders of molecular biology, yet he failed to achieve his key scientific goals. His ultimate scientific aim was to find evidence for physical laws unique to biology: so-called "complementarity." He never did. The specific problem he initially wanted to solve was the nature of biological replication but the discovery of the mechanism of replication was made by others, in large part because of his disdain for the details of biochemistry. His later career was spent investigating the effect of light on the fungus Phycomyces , a topic that turned out to be of limited general interest. He was known both for his informality but also for his legendary displays of devastating criticism. His life and that of some of his closest colleagues was acted out against a background of a world in conflict. This essay describes the man and his career and searches for an explanation of his profound influence. Copyright © 2017 by the Genetics Society of America.

  17. Systems Biology, Systems Medicine, Systems Pharmacology: The What and The Why.

    Science.gov (United States)

    Stéphanou, Angélique; Fanchon, Eric; Innominato, Pasquale F; Ballesta, Annabelle

    2018-05-09

    Systems biology is today such a widespread discipline that it becomes difficult to propose a clear definition of what it really is. For some, it remains restricted to the genomic field. For many, it designates the integrated approach or the corpus of computational methods employed to handle the vast amount of biological or medical data and investigate the complexity of the living. Although defining systems biology might be difficult, on the other hand its purpose is clear: systems biology, with its emerging subfields systems medicine and systems pharmacology, clearly aims at making sense of complex observations/experimental and clinical datasets to improve our understanding of diseases and their treatments without putting aside the context in which they appear and develop. In this short review, we aim to specifically focus on these new subfields with the new theoretical tools and approaches that were developed in the context of cancer. Systems pharmacology and medicine now give hope for major improvements in cancer therapy, making personalized medicine closer to reality. As we will see, the current challenge is to be able to improve the clinical practice according to the paradigm shift of systems sciences.

  18. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  19. Biological implications of the Viking mission to Mars

    International Nuclear Information System (INIS)

    Mazur, P.; Barghoorn, E.S.; Jukes, T.H.; Margulis, L.

    1978-01-01

    A central purpose of Viking was to search for evidence that life exists on Mars or may have existed in the past. The missions carried three biology experiments the prime purpose of which was to seek for existing microbial life. They produced clear evidence of chemical reactivity in soil samples, but it is becoming increasingly clear that the chemical reactions were nonbiological in origin. The unexpected release of oxygen by soil moistened with water vapor in the Gas Exchange experiment together with the negative findings of the organic analysis experiment lead to the conclusion that the surface contains powerful oxidants. This conclusion is consistent with models of the atmosphere. The oxidants appear also to have been responsible for the decarboxylation of the organic nutrients that were introduced in the Label Release experiment. The major results of the GEX and LR experiments have been simulated at least qualitatively on Earth. The third, Pyrolytic Release, experiment obtained evidence for organic synthesis by soil samples. Although the mechanism of the synthesis is obscure, the thermal stability of the reaction makes a biological explanation most unlikely. Furthermore, the response of soil samples in all three experiments to the addition of water is not consistent with a biological interpretation. (Auth.)

  20. Biological implications of the Viking mission to Mars

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, P [Oak Ridge National Lab., TN (USA); Barghoorn, E S [Harvard Univ., Cambridge, MA (USA). Dept. of Biology; Halvorson, H O [Brandeis Univ., Waltham, MA (USA); Jukes, T H [California Univ., Berkeley (USA). Space Sciences Lab.; Kaplan, I R [California Univ., Los Angeles (USA); Margulis, L [Boston Univ., MA (USA)

    1978-06-01

    A central purpose of Viking was to search for evidence that life exists on Mars or may have existed in the past. The missions carried three biology experiments the prime purpose of which was to seek for existing microbial life. They produced clear evidence of chemical reactivity in soil samples, but it is becoming increasingly clear that the chemical reactions were nonbiological in origin. The unexpected release of oxygen by soil moistened with water vapor in the Gas Exchange experiment together with the negative findings of the organic analysis experiment lead to the conclusion that the surface contains powerful oxidants. This conclusion is consistent with models of the atmosphere. The oxidants appear also to have been responsible for the decarboxylation of the organic nutrients that were introduced in the Label Release experiment. The major results of the GEX and LR experiments have been simulated at least qualitatively on Earth. The third, Pyrolytic Release, experiment obtained evidence for organic synthesis by soil samples. Although the mechanism of the synthesis is obscure, the thermal stability of the reaction makes a biological explanation most unlikely. Furthermore, the response of soil samples in all three experiments to the addition of water is not consistent with a biological interpretation.

  1. Identifying Ant-Mirid Spatial Interactions to Improve Biological Control in Cacao-Based Agroforestry System.

    Science.gov (United States)

    Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis

    2018-06-06

    The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.

  2. A major QTL controls susceptibility to spinal curvature in the curveback guppy

    Directory of Open Access Journals (Sweden)

    Dreyer Christine

    2011-01-01

    Full Text Available Abstract Background Understanding the genetic basis of heritable spinal curvature would benefit medicine and aquaculture. Heritable spinal curvature among otherwise healthy children (i.e. Idiopathic Scoliosis and Scheuermann kyphosis accounts for more than 80% of all spinal curvatures and imposes a substantial healthcare cost through bracing, hospitalizations, surgery, and chronic back pain. In aquaculture, the prevalence of heritable spinal curvature can reach as high as 80% of a stock, and thus imposes a substantial cost through production losses. The genetic basis of heritable spinal curvature is unknown and so the objective of this work is to identify quantitative trait loci (QTL affecting heritable spinal curvature in the curveback guppy. Prior work with curveback has demonstrated phenotypic parallels to human idiopathic-type scoliosis, suggesting shared biological pathways for the deformity. Results A major effect QTL that acts in a recessive manner and accounts for curve susceptibility was detected in an initial mapping cross on LG 14. In a second cross, we confirmed this susceptibility locus and fine mapped it to a 5 cM region that explains 82.6% of the total phenotypic variance. Conclusions We identify a major QTL that controls susceptibility to curvature. This locus contains over 100 genes, including MTNR1B, a candidate gene for human idiopathic scoliosis. The identification of genes associated with heritable spinal curvature in the curveback guppy has the potential to elucidate the biological basis of spinal curvature among humans and economically important teleosts.

  3. Biological effects of radiation

    International Nuclear Information System (INIS)

    2013-01-01

    This fourth chapter presents: cell structure and metabolism; radiation interaction with biological tissues; steps of the production of biological effect of radiation; radiosensitivity of tissues; classification of biological effects; reversibility, transmissivity and influence factors; pre-natal biological effects; biological effects in therapy and syndrome of acute irradiation

  4. Biology Division progress report, October 1, 1991--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  5. The genus Eremophila (Scrophulariaceae): an ethnobotanical, biological and phytochemical review.

    Science.gov (United States)

    Singab, Abdel Nasser; Youssef, Fadia S; Ashour, Mohamed L; Wink, Michael

    2013-09-01

    Eremophila (Scrophulariaceae) is an endemic Australian genus with 214 species, which is commonly known as Fuchsia bush, Emu bush or Poverty bush. Plants of this genus played an important role for the Australian Aborigines who used them widely for medicinal and ceremonial purposes. Many studies have been carried out on many species of this genus and have generated immense data about the chemical composition and corresponding biological activity of extracts and isolated secondary metabolites. Thorough phytochemical investigations of different Eremophila species have resulted in the isolation of more than 200 secondary metabolites of different classes with diterpenes as major constituents. Biological studies and traditional clinical practice demonstrated that Eremophila and its bioactive compounds possess various pharmacological properties. Plants were employed especially as a cardiotonic drug and also as potent anti-inflammatory, antimicrobial and antiviral agents. Further investigations are required to explore other Eremophila species, to evaluate the different biological activities of either their extracts or the isolated compounds and the possible underlying modes of action. © 2013 Royal Pharmaceutical Society.

  6. Ethnobotany, chemistry, and biological activities of the genus Tithonia (Asteraceae).

    Science.gov (United States)

    Chagas-Paula, Daniela A; Oliveira, Rejane B; Rocha, Bruno A; Da Costa, Fernando B

    2012-02-01

    The genus Tithonia is an important source of diverse natural products, particularly sesquiterpene lactones, diterpenes, and flavonoids. The collected information in this review attempts to summarize the recent developments in the ethnobotany, biological activities, and secondary metabolite chemistry of this genus. More than 100 structures of natural products from Tithonia are reported in this review. The species that has been most investigated in this genus is T. diversifolia, from which ca. 150 compounds were isolated. Biological studies are described to evaluate the anti-inflammatory, analgesic, antimalarial, antiviral, antidiabetic, antidiarrhoeal, antimicrobial, antispasmodic, vasorelaxant, cancer-chemopreventive, cytotoxic, toxicological, bioinsecticide, and repellent activities. A few of these studies have been carried out with isolated compounds from Tithonia species, but the majority has been conducted with different extracts. The relationship between the biological activity and the toxicity of compounds isolated from the plants of this genus as well as T. diversifolia extracts still remains unclear, and mechanisms of action remain to be determined. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  7. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  8. Major depression

    Science.gov (United States)

    Depression - major; Depression - clinical; Clinical depression; Unipolar depression; Major depressive disorder ... providers do not know the exact causes of depression. It is believed that chemical changes in the ...

  9. Physics and biology

    International Nuclear Information System (INIS)

    Frauenfelder, H.

    1988-01-01

    The author points out that the coupling between physics and biology is becoming closer as time goes on. He tries to show that physical studies on biological systems not only yield insight into biology but also provide results of interest to physics. Biological systems are extremly complex system. Ideally one would like to understand the behavior of such systems in terms of the behavior of its constituent atoms. Since in small organisms this may be 10 20 atoms, it is clear these are not simple many-body systems. He reviews the basic elements of cells and then considers the broader questions of structure, complexity, and function, which must be looked at on levels from the cell to the organism. Despite the vast amount of observational material already in existence, biophysics and biological physics are only at a beginning. We can expect that physics will continue to interact strongly with biology. Actually, the connection also includes chemistry and mathematics. New tools that become available in physics will continue to be applied to biological problems. We can expect that the flow of information will not be one way; biological systems will provide new information on many old and new parts of physics, from reaction theory and transport phenomena to complexity, cooperativity, and nonlinear processes

  10. Integrated Biological Control

    International Nuclear Information System (INIS)

    JOHNSON, A.R.

    2002-01-01

    Biological control is any activity taken to prevent, limit, clean up, or remediate potential environmental, health and safety, or workplace quality impacts from plants, animals, or microorganisms. At Hanford the principal emphasis of biological control is to prevent the transport of radioactive contamination by biological vectors (plants, animals, or microorganisms), and where necessary, control and clean up resulting contamination. Other aspects of biological control at Hanford include industrial weed control (e.g.; tumbleweeds), noxious weed control (invasive, non-native plant species), and pest control (undesirable animals such as rodents and stinging insects; and microorganisms such as molds that adversely affect the quality of the workplace environment). Biological control activities may be either preventive (apriori) or in response to existing contamination spread (aposteriori). Surveillance activities, including ground, vegetation, flying insect, and other surveys, and apriori control actions, such as herbicide spraying and placing biological barriers, are important in preventing radioactive contamination spread. If surveillance discovers that biological vectors have spread radioactive contamination, aposteriori control measures, such as fixing contamination, followed by cleanup and removal of the contamination to an approved disposal location are typical response functions. In some cases remediation following the contamination cleanup and removal is necessary. Biological control activities for industrial weeds, noxious weeds and pests have similar modes of prevention and response

  11. Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders

    Directory of Open Access Journals (Sweden)

    Baohu Ji

    2015-08-01

    Research in context: Due to lack of biological markers, diagnosis and treatment of psychiatric disorders are subjective. There is utmost urgency to identify biomarkers for clinics, research, and drug development. We found that XIST and KDM5C gene expression may be used as a biological marker for diagnosis of major affective disorders in a significantly large subset of female patients from the general population. Our studies show that over-expression of XIST and some X-linked escapee genes may be a common mechanism for development of psychiatric disorders between the patients with rare genetic diseases (XXY or XXX and the general population of female psychiatric patients.

  12. Biological activities of xanthatin from Xanthium strumarium leaves.

    Science.gov (United States)

    Nibret, Endalkachew; Youns, Mahamoud; Krauth-Siegel, R Luise; Wink, Michael

    2011-12-01

    The objective of the present work was to evaluate the biological activities of the major bioactive compound, xanthatin, and other compounds from Xanthium strumarium (Asteraceae) leaves. Inhibition of bloodstream forms of Trypanosoma brucei brucei and leukaemia HL-60 cell proliferation was assessed using resazurin as a vital stain. Xanthatin was found to be the major and most active compound against T. b. brucei with an IC(50) value of 2.63 µg/mL and a selectivity index of 20. The possible mode of action of xanthatin was further evaluated. Xanthatin showed antiinflammatory activity by inhibiting both PGE(2) synthesis (24% inhibition) and 5-lipoxygenase activity (92% inhibition) at concentrations of 100 µg/mL and 97 µg/mL, respectively. Xanthatin exhibited weak irreversible inhibition of parasite specific trypanothione reductase. Unlike xanthatin, diminazene aceturate and ethidium bromide showed strong DNA intercalation with IC(50) values of 26.04 µg/mL and 44.70 µg/mL, respectively. Substantial induction of caspase 3/7 activity in MIA PaCa-2 cells was observed after 6 h of treatment with 100 µg/mL of xanthatin. All these data taken together suggest that xanthatin exerts its biological activity by inducing apoptosis and inhibiting both PGE(2) synthesis and 5-lipoxygenase activity thereby avoiding unwanted inflammation commonly observed in diseases such as trypanosomiasis. Copyright © 2011 John Wiley & Sons, Ltd.

  13. UC Merced Center for Computational Biology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Michael; Watanabe, Masakatsu

    2010-11-30

    Final report for the UC Merced Center for Computational Biology. The Center for Computational Biology (CCB) was established to support multidisciplinary scientific research and academic programs in computational biology at the new University of California campus in Merced. In 2003, the growing gap between biology research and education was documented in a report from the National Academy of Sciences, Bio2010 Transforming Undergraduate Education for Future Research Biologists. We believed that a new type of biological sciences undergraduate and graduate programs that emphasized biological concepts and considered biology as an information science would have a dramatic impact in enabling the transformation of biology. UC Merced as newest UC campus and the first new U.S. research university of the 21st century was ideally suited to adopt an alternate strategy - to create a new Biological Sciences majors and graduate group that incorporated the strong computational and mathematical vision articulated in the Bio2010 report. CCB aimed to leverage this strong commitment at UC Merced to develop a new educational program based on the principle of biology as a quantitative, model-driven science. Also we expected that the center would be enable the dissemination of computational biology course materials to other university and feeder institutions, and foster research projects that exemplify a mathematical and computations-based approach to the life sciences. As this report describes, the CCB has been successful in achieving these goals, and multidisciplinary computational biology is now an integral part of UC Merced undergraduate, graduate and research programs in the life sciences. The CCB began in fall 2004 with the aid of an award from U.S. Department of Energy (DOE), under its Genomes to Life program of support for the development of research and educational infrastructure in the modern biological sciences. This report to DOE describes the research and academic programs

  14. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  15. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  16. Fitting in and feeling good: the relationships among peer alignment, instructor connectedness, and self-efficacy in undergraduate satisfaction with engineering

    Science.gov (United States)

    Micari, Marina; Pazos, Pilar

    2016-07-01

    This study examined the relationships among peer alignment (the feeling that one is similar in important ways to one's engineering peers), instructor connectedness (the sense that one knows and looks up to academic staff/faculty members in the department), self-efficacy for engineering class work (confidence in one's ability to successfully complete engineering class work), and engineering students' satisfaction with the major. A total of 135 sophomore (second-year university students) and junior (third-year students) engineering students were surveyed to measure these three variables. A multiple regression analysis showed that self-efficacy, peer alignment, and instructor connectedness predicted student satisfaction with the major, and that self-efficacy acted as a mediator between both peer alignment and instructor connectedness on the one hand, and satisfaction on the other. The authors offer suggestions for practice based on the results.

  17. Evaluation of a commercial biologically based IMRT treatment planning system

    International Nuclear Information System (INIS)

    Semenenko, Vladimir A.; Reitz, Bodo; Day, Ellen; Qi, X. Sharon; Miften, Moyed; Li, X. Allen

    2008-01-01

    -volume optimization, plans with equivalent target coverage obtained using the biologically based TPS demonstrate improved dose distributions for the majority of normal structures.

  18. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  19. Has Modern Biology Entered the Mouth? The Clinical Impact of Biological Research.

    Science.gov (United States)

    Baum, Bruce J.

    1991-01-01

    Three areas of biological research that are beginning to have an impact on clinical medicine are examined, including molecular biology, cell biology, and biotechnology. It is concluded that oral biologists and educators must work cooperatively to bring rapid biological and biomedical advances into dental training in a meaningful way. (MSE)

  20. Adapting to Biology: Maintaining Container-Closure System Compatibility with the Therapeutic Biologic Revolution.

    Science.gov (United States)

    Degrazio, Dominick

    Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to the dimension of evolving therapeutic biologics. Important concerns associated with this changeover are becoming forefront, as challenges develop of varying complexity uncommon with the synthesis and production of traditional drugs. Therefore, alternative measures must be established that aim to preserve the efficacy and functionality of a biologic that might not be implemented for small molecules. Conserving protein stability is relative to perpetuating a net equilibrium of both intrinsic and extrinsic factors. Key to sustaining this balance is the ability of container-closure systems to maintain their compatibility with the ever-changing dynamics of therapeutic biologics. Failure to recognize and adjust the material properties of packaging components to support compatibility with therapeutic biologics can compromise patient safety, drug productivity, and biological stability. This review will examine the differences between small-molecule drugs and therapeutic biologics, lay a basic foundation for understanding the stability of therapeutic biologics, and demonstrate potential sources of container-closure systems' incompatibilities with therapeutic biologics at a mechanistic level. Many pharmaceutical companies are transitioning their research and development drug product pipeline from traditional small-molecule injectables to recombinantly derived therapeutic biologics. Concerns associated with this transformation are becoming prominent, as therapeutic biologics are uncharacteristic to small-molecule drugs. Maintaining the stability of a therapeutic biologic is a combination of balancing intrinsic factors and external elements within the biologic's microenvironment. An important aspect of this balance is relegated to the overall compatibility of primary, parenteral container-closure systems with therapeutic biologics

  1. A Community College Instructor's Reflective Journey Toward Developing Pedagogical Content Knowledge for Nature of Science in a Non-majors Undergraduate Biology Course

    Science.gov (United States)

    Krajewski, Sarah J.; Schwartz, Renee

    2014-08-01

    Research supports an explicit-reflective approach to teaching about nature of science (NOS), but little is reported on teachers' journeys as they attempt to integrate NOS into everyday lessons. This participatory action research paper reports the challenges and successes encountered by an in-service teacher, Sarah, implementing NOS for the first time throughout four units of a community college biology course (genetics, molecular biology, evolution, and ecology). Through the action research cycles of planning, implementing, and reflecting, Sarah identified areas of challenge and success. This paper reports emergent themes that assisted her in successfully embedding NOS within the science content. Data include weekly lesson plans and pre/post reflective journaling before and after each lesson of this lecture/lab combination class that met twice a week. This course was taught back to back semesters, and this study is based on the results of a year-long process. Developing pedagogical content knowledge (PCK) for NOS involves coming to understand the overlaps and connections between NOS, other science subject matter, pedagogical strategies, and student learning. Sarah found that through action research she was able to grow and assimilate her understanding of NOS within the biology content she was teaching. A shift in orientation toward teaching products of science to teaching science processes was a necessary shift for NOS pedagogical success. This process enabled Sarah's development of PCK for NOS. As a practical example of putting research-based instructional recommendations into practice, this study may be very useful for other teachers who are learning to teach NOS.

  2. Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, R. A.

    1982-04-01

    In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

  3. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  4. Is evolutionary psychology a metatheory for psychology? A discussion of four major issues in psychology from an evolutionary developmental perspective

    NARCIS (Netherlands)

    Ploeger, A.; van der Maas, H.L.J.; Raijmakers, M.E.J.

    2008-01-01

    Evolutionary psychology has been proposed as a metatheoretical framework for psychology. We argue that evolutionary psychology should be expanded if it is to offer new insights regarding the major issues in psychology. Evolutionary developmental biology can provide valuable new insights into issues

  5. A comparison of the application of a biological and phenetic species concept in the Hebeloma crustuliniforme complex within a phylogenetic framework

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Kuyper, T.W.

    2004-01-01

    a major factor. Intercompatibility tests and DNA based phylogenies indicate that most biological species are very closely related and hence provide support for the claim that correspondence between a biological species concept and a phenetic species concept in the H. crustuliniforme complex is not likely...... biological species in that complex. Based on two nuclear sequences, we present a best estimate of the phylogeny of biological species within the complex. Using this phylogeny, on the basis of strict monophyly only two species can be morphologically recognised among 22 biological species. Relaxing......A method is presented to derive an operational phenetic species concept for the Hebeloma crustuliniforme complex in northwestern Europe. The complex was found to consist of at least 22 biological species (intercompatibility groups; ICGs). Almost none of these biological species could be recognised...

  6. Cycloartenol triterpenoid saponins from Cimicifuga simplex (Ranunculaceae) and their biological effects.

    Science.gov (United States)

    Wu, Lun; Chen, Zhi-Li; Su, Yang; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-02-01

    The constituents of Cimicifuga plants have been extensively investigated, and the principal metabolites are 9,19-cyclolanostane triterpenoid glycosides, which are distributed widely in Cimicifuga plants, but not in other members of the Ranunculaceae family, and are considered to be characteristics of the Cimicifuga genus. This type of triterpenoid glycoside possesses several important biological activities. More than 120 cycloartane triterpene glycosides have been isolated from Cimicifuga simplex Wormsk. The aim of this review article is to summarize all the major findings based on the available scientific literatures on C. simplex, with a focus on the identified 9,19-cyclolanostane triterpenoid glycosides. Biological studies of cycloartane triterpene glycosides from Cimicifuga spp. are also discussed. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Standard biological parts knowledgebase.

    Directory of Open Access Journals (Sweden)

    Michal Galdzicki

    2011-02-01

    Full Text Available We have created the Knowledgebase of Standard Biological Parts (SBPkb as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org. The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org. SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL, a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  8. Standard Biological Parts Knowledgebase

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M.; Gennari, John H.

    2011-01-01

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate “promoter” parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible. PMID:21390321

  9. Standard biological parts knowledgebase.

    Science.gov (United States)

    Galdzicki, Michal; Rodriguez, Cesar; Chandran, Deepak; Sauro, Herbert M; Gennari, John H

    2011-02-24

    We have created the Knowledgebase of Standard Biological Parts (SBPkb) as a publically accessible Semantic Web resource for synthetic biology (sbolstandard.org). The SBPkb allows researchers to query and retrieve standard biological parts for research and use in synthetic biology. Its initial version includes all of the information about parts stored in the Registry of Standard Biological Parts (partsregistry.org). SBPkb transforms this information so that it is computable, using our semantic framework for synthetic biology parts. This framework, known as SBOL-semantic, was built as part of the Synthetic Biology Open Language (SBOL), a project of the Synthetic Biology Data Exchange Group. SBOL-semantic represents commonly used synthetic biology entities, and its purpose is to improve the distribution and exchange of descriptions of biological parts. In this paper, we describe the data, our methods for transformation to SBPkb, and finally, we demonstrate the value of our knowledgebase with a set of sample queries. We use RDF technology and SPARQL queries to retrieve candidate "promoter" parts that are known to be both negatively and positively regulated. This method provides new web based data access to perform searches for parts that are not currently possible.

  10. The Human Genome Project: big science transforms biology and medicine

    OpenAIRE

    Hood, Leroy; Rowen, Lee

    2013-01-01

    The Human Genome Project has transformed biology through its integrated big science approach to deciphering a reference human genome sequence along with the complete sequences of key model organisms. The project exemplifies the power, necessity and success of large, integrated, cross-disciplinary efforts - so-called ‘big science’ - directed towards complex major objectives. In this article, we discuss the ways in which this ambitious endeavor led to the development of novel technologies and a...

  11. Toxicological Analysis of Some Drugs of Abuse in Biological Samples

    OpenAIRE

    Anne Marie Ciobanu; Daniela Baconi; Cristian Bălălău; Carolina Negrei; Miriana Stan; Maria Bârcă

    2015-01-01

    Consumption of drugs of abuse is a scourge of modern world. Abuse, drug addiction and their consequences are one of the major current problems of European society because of the significant repercussions in individual, family, social and economic level. In this context, toxicological analysis of the drugs of abuse in biological samples is a useful tool for: diagnosis of drug addiction, checking an auto-response, mandatory screening in some treatment programs, identification of a substance ...

  12. Biological assessment of neonicotinoids imidacloprid and its major metabolites for potentially human health using globular proteins as a model.

    Science.gov (United States)

    Ding, Fei; Peng, Wei

    2015-06-01

    The assessment of biological activities of imidacloprid and its two major metabolites, namely 6-chloronicotinic acid and 2-imidazolidone for nontarget organism, by employing essentially functional biomacromolecules, albumin and hemoglobin as a potentially model with the use of circular dichroism (CD), fluorescence, extrinsic 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence as well as molecular modeling is the theme of this work. By dint of CD spectra and synchronous fluorescence, it was clear that the orderly weak interactions between amino acid residues within globular proteins were disturbed by imidacloprid, and this event led to marginally alterations or self-regulations of protein conformation so as to lodge imidacloprid more tightly. Both steady state and time-resolved fluorescence suggested that the fluorescence of Trp residues in proteins was quenched after the presence of imidacloprid, corresponding to noncovalent protein-imidacloprid complexes formation and, the reaction belongs to moderate association (K=1.888/1.614×10(4)M(-1) for albumin/hemoglobin-imidacloprid, respectively), hydrogen bonds and π stacking performed a vital role in stabilizing the complexes, as derived from thermodynamic analysis and molecular modeling. With the aid of hydrophobic ANS experiments, subdomain IIA and α1β2 interface of albumin and hemoglobin, respectively, were found to be preserved high-affinity for imidacloprid. These results ties in with the subsequently molecular modeling laying imidacloprid in the Sudlow's site I and close to Trp-213 residue on albumin, while settling down B/Trp-37 residue nearby in hemoglobin, and these conclusions further confirmed by site-directed mutagenesis and molecular dynamics simulation. But, at the same time, several crucial noncovalent bonds came from other amino acid residues, e.g. Arg-194 and Arg-198 (albumin) and B/Arg-40, B/Asp-99 and B/Asn-102 (hemoglobin) cannot be ignored completely. Based on the comparative studies of

  13. [Analytical quality in biological monitoring of workers exposed to chemicals: experience of the Prevention and Safety at the Workplace Service in Modena].

    Science.gov (United States)

    Alpaca, R I Paredes; Migliore, A; Di Rico, R; Canali, Claudia; Rota, Cristina; Trenti, T; Cariani, Elisabetta

    2010-01-01

    The quality of laboratory data is one of the main factors in guaranteeing efficacy of biological monitoring. To analyze the quality of laboratory data used for biological monitoring of exposed workers. A survey involving 18 companies employing 945 workers in the area of Modena, Italy, was carried out in 2008. Most of the 9 private laboratories receiving biological samples did not perform directly part or all of the laboratory assessments requested, but this was not indicated in the final report. Major problems were observed in the application of internal quality control, and only one laboratory participated in external quality assessment for blood lead measurements. Our results raise major concerns on the traceability and reliability of laboratory assessments performed for biomonitoring of exposed workers. Systematic evaluation of the quality of analytical data would be highly recommendable.

  14. Biology Myth-Killers

    Science.gov (United States)

    Lampert, Evan

    2014-01-01

    "Biology Myth-Killers" is an activity designed to identify and correct common misconceptions for high school and college introductory biology courses. Students identify common myths, which double as biology misconceptions, and use appropriate sources to share the "truth" about the myths. This learner-centered activity is a fun…

  15. Chemistry and Biology

    Science.gov (United States)

    Wigston, David L.

    1970-01-01

    Discusses the relationship between chemisty and biology in the science curriculum. Points out the differences in perception of the disciplines, which the physical scientists favoring reductionism. Suggests that biology departments offer a special course for chemistry students, just as the chemistry departments have done for biology students.…

  16. Biological desulfurisation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, B.J. [UOP LLC (United States); Benschop, A.; Janssen, A. [Paques Natural Solutions (Netherlands); Kijlstra, S. [Shell Global Solutions (Netherlands)

    2001-03-01

    This article focuses on the biological THIOPAQ process for removing hydrogen sulphide from refinery gases and recovering elemental sulphur. Details are given of the process which absorbs hydrogen sulphide-containing gas in alkaline solution prior to oxidation of the dissolved sulphur to elemental sulphur in a THIOPAQ aerobic biological reactor, with regeneration of the caustic solution. Sulphur handling options including sulphur wash, the drying of the sulphur cake, and sulphur smelting by pressure liquefaction are described. Agricultural applications of the biologically recovered sulphur, and application of the THIOPAQ process to sulphur recovery are discussed.

  17. Bibliometry of Costa Rica biodiversity studies published in the Revista de Biología Tropical/International Journal of Tropical Biology and Conservation (2000-2010): the content and importance of a leading tropical biology journal in its 60th anniversary.

    Science.gov (United States)

    Nielsen-Muñoz, Vanessa; Azofeifa-Mora, Ana Beatriz; Monge-Nájera, Julián

    2012-12-01

    Central America is recognized as a mega diverse "hot-spot" and one of its smaller countries, Costa Rica, as one of the world's leaders in the study and conservation of tropical biodiversity. For this study, inspired by the 60th anniversary of the journal Revista de Biología Tropical, we tabulated all the scientific production on Costa Rican biodiversity published in Revista de Biología Tropical between 2000 and 2010. Most articles are zoological (62%) and 67% of authors had only one publication in the jounal within that period. A 54% of articles were published in English and 46% in Spanish. A 41% of articles were written in collaboration among Costa Rican institutions and 36% in collaboration with foreign institutions. The Collaboration Index was 2.53 signatures per article. Visibility in American sources was 56% in Google Scholar and 42.66% in the Web of Science, but the real visibility and impact are unknown because these sources exclude the majority of tropical journals. Revista de Biología Tropical is the main output channel for Costa Rican biology and despite its small size, Costa Rica occupies the 10th. place in productivity among Latin American countries, with productivity and impact levels that compare favorably with larger countries such as Brazil, Mexico, Argentina and Chile.

  18. The academic majors of students taking American soil science classes: 2004-2005 to 2013-2014 academic years

    Science.gov (United States)

    Brevik, Eric C.; Vaughan, Karen L.; Parikh, Sanjai J.; Dolliver, Holly; Lindbo, David; Steffan, Joshua J.; Weindorf, David; McDaniel, Paul; Mbila, Monday; Edinger-Marshall, Susan

    2017-04-01

    Many papers have been written in recent years discussing the interdisciplinary and transdisciplinary aspects of soil science. Therefore, it would make sense that soil science courses would be taken by students in a wide array of academic majors. To investigate this, we collected data from eight different American universities on the declared academic majors of students enrolled in soil science courses over a 10 year time period (2004-2005 to 2013-2014 academic years). Data was collected for seven different classes taught at the undergraduate level: introduction to soil science, soil fertility, soil management, pedology, soil biology/microbiology, soil chemistry, and soil physics. Overall trends and trends for each class were evaluated. Generally, environmental science and crop science/horticulture/agronomy students were enrolled in soil science courses in the greatest numbers. Environmental science and engineering students showed rapid increases in enrollment over the 10 years of the study, while the number of crop science/ horticulture/ agronomy students declined. In the introduction to soil science classes, environmental science and crop science/ horticulture/ agronomy students were enrolled in the greatest numbers, while declared soil science majors only made up 6.6% of the average enrollment. The highest enrollments in soil fertility were crop science/ horticulture/ agronomy students and other agricultural students (all agricultural majors except crop science, horticulture, agronomy, or soil science). In both the soil management and pedology classes, environmental science and other agricultural students were the largest groups enrolled. Other agricultural students and students from other majors (all majors not otherwise expressly investigated) were the largest enrolled groups in soil biology/microbiology courses, and environmental science and soil science students were the largest enrolled groups in soil chemistry classes. Soil physics was the only class

  19. PLANT ISOFLAVONES: BIOSYNHTESIS, DETECTION AND BIOLOGICAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    V. D. Naumenko

    2013-10-01

    Full Text Available Biological properties, chemical structures and biosynthesis pathways of plant isoflavones, especially soybean isoflavones (daidzein, genistein and glycitein are reviewed. The structures of isoflavones, and their aglicone and glucosides (glycosides forms as well as isoflavone biosynthesis pathways are described. General information about the advanced methods for the detection of isoflavones and their conjugates are considered. The importance of the profiling of isoflavones, flavonoids and their conjugates by means of analytical tools and methods to dissolve some questions in biology and medicine is discussed. The review provides data on the major isoflavone content in some vegetable crops and in the tissues of different soybean varieties. Health benefits and treatment or preventive properties of isoflavones for cancer, cardiovascular, endocrine diseases and metabolic disorders are highlighted. The mechanisms that may explain their positive biological effects are considered. The information on the application of advanced technologies to create new plant forms producing isoflavonoids with a predicted level of isoflavones, which is the most favorable for the treatment is given. The possibilities to use the metabolic engineering for the increasing of accumulation and synthesis of isoflavones at the non-legume crops such as tobacco, Arabidopsis and maize are considered. The examples how the plant tissues, which are not naturally produced of the isoflavones, can obtain potential for the synthesis of biologically active compounds via inducing of the activity of the introduced enzyme isoflavon synthase, are given. Specific biochemical pathways for increasing the synthesis of isoflavone genistein in Arabidopsis thaliana tissues are discussed. It is concluded that plant genetic engineering which is focused on modification of the secondary metabolites contain in plant tissues, enables to create the new crop varieties with improved agronomic properties and

  20. Biological and medical research with accelerated heavy ions at the Bevalac, 1977-1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pirruccello, M.C.; Tobias, C.A. (eds.)

    1980-11-01

    Separate abstracts were prepared for the 46 papers presented in this progress report. This report is a major review of studies with accelerated heavy ions carried out by the Biology and Medicine Division of Lawrence Berkeley Laboratory from 1977 to 1980. (KRM)