WorldWideScience

Sample records for sophisticated molecular biology

  1. Marine molecular biology: An emerging field of biological sciences

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Jain, R.; Natalio, F.; Hamer, B.; Thakur, A.N.; Muller, W.E.G.

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies...

  2. Marine molecular biology: an emerging field of biological sciences.

    Science.gov (United States)

    Thakur, Narsinh L; Jain, Roopesh; Natalio, Filipe; Hamer, Bojan; Thakur, Archana N; Müller, Werner E G

    2008-01-01

    An appreciation of the potential applications of molecular biology is of growing importance in many areas of life sciences, including marine biology. During the past two decades, the development of sophisticated molecular technologies and instruments for biomedical research has resulted in significant advances in the biological sciences. However, the value of molecular techniques for addressing problems in marine biology has only recently begun to be cherished. It has been proven that the exploitation of molecular biological techniques will allow difficult research questions about marine organisms and ocean processes to be addressed. Marine molecular biology is a discipline, which strives to define and solve the problems regarding the sustainable exploration of marine life for human health and welfare, through the cooperation between scientists working in marine biology, molecular biology, microbiology and chemistry disciplines. Several success stories of the applications of molecular techniques in the field of marine biology are guiding further research in this area. In this review different molecular techniques are discussed, which have application in marine microbiology, marine invertebrate biology, marine ecology, marine natural products, material sciences, fisheries, conservation and bio-invasion etc. In summary, if marine biologists and molecular biologists continue to work towards strong partnership during the next decade and recognize intellectual and technological advantages and benefits of such partnership, an exciting new frontier of marine molecular biology will emerge in the future.

  3. Human papillomavirus molecular biology.

    Science.gov (United States)

    Harden, Mallory E; Munger, Karl

    Human papillomaviruses are small DNA viruses with a tropism for squamous epithelia. A unique aspect of human papillomavirus molecular biology involves dependence on the differentiation status of the host epithelial cell to complete the viral lifecycle. A small group of these viruses are the etiologic agents of several types of human cancers, including oral and anogenital tract carcinomas. This review focuses on the basic molecular biology of human papillomaviruses. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Sophisticated Players and Sophisticated Agents

    NARCIS (Netherlands)

    Rustichini, A.

    1998-01-01

    A sophisticated player is an individual who takes the action of the opponents, in a strategic situation, as determined by decision of rational opponents, and acts accordingly. A sophisticated agent is rational in the choice of his action, but ignores the fact that he is part of a strategic

  5. Isotopes in molecular biology

    International Nuclear Information System (INIS)

    Goldfarb, P.S.G.

    1988-01-01

    The use of radioisotopes in molecular biology, with particular reference to the structure and functions of DNA, RNA and the cellular synthesis of proteins, is discussed. The use of labelled DNA and RNA in diagnostic techniques is presented. (U.K.)

  6. Topology in Molecular Biology

    CERN Document Server

    Monastyrsky, Michail Ilych

    2007-01-01

    The book presents a class of new results in molecular biology for which topological methods and ideas are important. These include: the large-scale conformation properties of DNA; computational methods (Monte Carlo) allowing the simulation of large-scale properties of DNA; the tangle model of DNA recombination and other applications of Knot theory; dynamics of supercoiled DNA and biocatalitic properties of DNA; the structure of proteins; and other very recent problems in molecular biology. The text also provides a short course of modern topology intended for the broad audience of biologists and physicists. The authors are renowned specialists in their fields and some of the new results presented here are documented for the first time in monographic form.

  7. Chemoradiotherapy and molecular biology

    International Nuclear Information System (INIS)

    Hasegawa, Masatoshi; Mitsuhashi, Norio; Niibe, Hideo

    2000-01-01

    The current status of chemoradiotherapy was reviewed from the standpoint of molecular biology. Chemoradiotherapy was conducted to achieve systemic tumor control, to intensify the response to irradiation, and to reduce adverse reactions. The mechanisms of the efficacy of chemoradiotherapy were: modification of dose-response relationships, inhibition of tumor cell recovery from sublethal damage or potential lethal damage, effects on cell dynamics and the cell cycle, improvement of blood flow or reoxygenation, recruitment, improvement of drug uptake, increased cell damage. Cell death (necrosis and apoptosis) and cancer-related genes were described, as the essential points, because they are involved in the response to chemoradiotherapy. Cisplatin (platinum compound), 5-fluorouracil, etoposide, and taxoid (paclitaxel, docetaxel) were the principal anticancer agents used for chemoradiotherapy, and they enhanced the effects of irradiation. However, even when good responses or synergism between anticancer drug and radiotherapy was observed in in vitro studies, there was little therapeutic advantage clinically. Data from in vitro and in vivo studies should be collected and systemized, and ''molecular biology in chemotherapy'' that can be applied clinically may become established. (K.H.)

  8. Structural Molecular Biology 2017 | SSRL

    Science.gov (United States)

    Highlights Training Workshops & Summer Schools Summer Students Structural Molecular Biology Illuminating experimental driver for structural biology research, serving the needs of a large number of academic and — Our Mission The SSRL Structural Molecular Biology program operates as an integrated resource and has

  9. Molecular biology of potyviruses.

    Science.gov (United States)

    Revers, Frédéric; García, Juan Antonio

    2015-01-01

    Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses. © 2015 Elsevier Inc. All rights reserved.

  10. Data warehousing in molecular biology.

    Science.gov (United States)

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  11. Do Sophisticated Epistemic Beliefs Predict Meaningful Learning? Findings from a Structural Equation Model of Undergraduate Biology Learning

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-01-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely "multiple-source," "uncertainty," "development," and "justification." COLB is further…

  12. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  13. From Molecular Biology to Biomedicine

    International Nuclear Information System (INIS)

    Salas, M.

    2009-01-01

    From Molecular Biology to Biomedicine. The well known molecular biologist Margarita Salas offered an informative conference at the CSN on progress in these areas since the discovery, more than half a century ago, of the structure of the molecule carrying genetic information, DNA, work that is having an enormous impact in areas such as biomedicine and foodstuff production. (Author)

  14. Molecular Biology of Medulloblastoma

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2007-12-01

    Full Text Available Current methods of diagnosis and treatment of medulloblastoma, and the influence of new biological advances in the development of more effective and less toxic therapies are reviewed by researchers at Children’s National Medical Center, The George Washington University, Washington, DC.

  15. The Molecular Biology of Pestiviruses.

    Science.gov (United States)

    Tautz, Norbert; Tews, Birke Andrea; Meyers, Gregor

    2015-01-01

    Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter. © 2015 Elsevier Inc. All rights reserved.

  16. Department of Molecular Biology

    International Nuclear Information System (INIS)

    Kusmierek, J.

    1998-01-01

    Full text. The majority of our studies are centered on (i) mechanisms of mutagenesis and DNA repair (including MFD) in Escherichia coli, M13, and lambda phages; (ii) inhibitory and miscoding properties of modified bases in DNA; (iii) synthesis and properties of pyrimidine nucleosides and nucleotide analogues with potential anti-tumor, anti-virus and anti-parasite activities, including their conformation and substrate/inhibitor properties in some enzyme systems of relevance to chemotherapy; (iv) molecular mechanisms of PUVA (psoralen + UVA) treatment in psoriasis photo-chemotherapy in particular its action on cell membrane; (v) specificity and methods for assays of N-alkyl-purine DNA glycosylase. The spectrum of mutagens tested includes: MMS, DMS, ultraviolet or halogen light and hydroxyl radicals. The enzymes and repair systems investigated include: DNA polymerases and the proofreading activity of DNA pol III, UvrABC-endonuclease, mismatch repair system, and methyl DNA glycosylases. Much attention is focussed on the role of UmuDC proteins in mutagenesis (dependent and independent on DNA replication) and DNA repair, and on the effect of the Tn10 transposon on the survival and mutation frequency of halogen light irradiated bacteria. A new class of nucleosides containing C(2)-hydroxymethyl-ribose (hamamelose) was synthesized, and it was found that uracil and 5-fluorouracil derivatives show a significant antitumor activity. It was found that 2CDA (2-deoxy-2-chloro-adenosine) an anti-lymphoid drug does not induce mutations, when incorporated into DNA, but significantly inhibits DNA replication. In studies with oxidized M13 DNA it was found that Fapy- (formamidopyrimidine)-residues in DNA selectively inhibits DNA synthesis, and the effect depends on the neighboring sequences and the DNA polymerase tested. Highly unstable derivatives of lecithin-psoralen adducts were characterized and their role in PUVA photochemotherapy is being studied. (author)

  17. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  18. Molecular biology of Plasmodiophora brassicae

    DEFF Research Database (Denmark)

    Siemens, Johannes; Bulman, Simon; Rehn, Frank

    2009-01-01

    of several genes have been revealed, and the expression of those genes has been linked to development of clubroot to some extent. In addition, the sequence data have reinforced the inclusion of the plasmodiophorids within the Cercozoa. The recent successes in molecular biology have produced new approaches...

  19. Do sophisticated epistemic beliefs predict meaningful learning? Findings from a structural equation model of undergraduate biology learning

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-10-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely 'multiple-source,' 'uncertainty,' 'development,' and 'justification.' COLB is further divided into 'constructivist' and 'reproductive' conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students' epistemic beliefs of 'uncertainty' and 'justification' in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and 'uncertainty' was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that 'uncertainty' predicted surface strategies through the mediation of 'reproductive' conceptions; and the relationship between 'justification' and deep strategies was mediated by 'constructivist' COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students' learning.

  20. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  1. Measurement Frontiers in Molecular Biology

    Science.gov (United States)

    Laderman, Stephen

    2009-03-01

    Developments of molecular measurements and manipulations have long enabled forefront research in evolution, genetics, biological development and its dysfunction, and the impact of external factors on the behavior of cells. Measurement remains at the heart of exciting and challenging basic and applied problems in molecular and cell biology. Methods to precisely determine the identity and abundance of particular molecules amongst a complex mixture of similar and dissimilar types require the successful design and integration of multiple steps involving biochemical manipulations, separations, physical probing, and data processing. Accordingly, today's most powerful methods for characterizing life at the molecular level depend on coordinated advances in applied physics, biochemistry, chemistry, computer science, and engineering. This is well illustrated by recent approaches to the measurement of DNA, RNA, proteins, and intact cells. Such successes underlie well founded visions of how molecular biology can further assist in answering compelling scientific questions and in enabling the development of remarkable advances in human health. These visions, in turn, are motivating the interdisciplinary creation of even more comprehensive measurements. As a further and closely related consequence, they are motivating innovations in the conceptual and practical approaches to organizing and visualizing large, complex sets of interrelated experimental results and distilling from those data compelling, informative conclusions.

  2. Information theory in molecular biology

    OpenAIRE

    Adami, Christoph

    2004-01-01

    This article introduces the physics of information in the context of molecular biology and genomics. Entropy and information, the two central concepts of Shannon's theory of information and communication, are often confused with each other but play transparent roles when applied to statistical ensembles (i.e., identically prepared sets) of symbolic sequences. Such an approach can distinguish between entropy and information in genes, predict the secondary structure of ribozymes, and detect the...

  3. Molecular biology of gastric cancer.

    Science.gov (United States)

    Cervantes, A; Rodríguez Braun, E; Pérez Fidalgo, A; Chirivella González, I

    2007-04-01

    Despite its decreasing incidence overall, gastric cancer is still a challenging disease. Therapy is based mainly upon surgical resection when the tumour remains localised in the stomach. Conventional chemotherapy may play a role in treating micrometastatic disease and is effective as palliative therapy for recurrent or advanced disease. However, the knowledge of molecular pathways implicated in gastric cancer pathogenesis is still in its infancy and the contribution of molecular biology to the development of new targeted therapies in gastric cancer is far behind other more common cancers such as breast, colon or lung. This review will focus first on the difference of two well defined types of gastric cancer: intestinal and diffuse. A discussion of the cell of origin of gastric cancer with some intriguing data implicating bone marrow derived cells will follow, and a comprehensive review of different genetic alterations detected in gastric cancer, underlining those that may have clinical, therapeutic or prognostic implications.

  4. Monod and the spirit of molecular biology

    OpenAIRE

    Morange , Michel

    2015-01-01

    International audience; The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly,...

  5. The molecular biology of ilarviruses.

    Science.gov (United States)

    Pallas, Vicente; Aparicio, Frederic; Herranz, Mari C; Sanchez-Navarro, Jesus A; Scott, Simon W

    2013-01-01

    Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. [Molecular biology, darwinism and nomogenesis].

    Science.gov (United States)

    Vol'kenshteĭn, M V

    1987-01-01

    The theory of nomogenesis put forward by L. S. Berg in 1922 is discussed. It is shown that side by side with some erroneous anti-darwinian ideas the theory contains a series of important suggestions which anticipate the further development of the synthetic theory of evolution. Berg has foreseen the development of molecular biology. Thus he was the fore-teller of our branch of science. The theory of nomogenesis emphasized the limitations of natural selection which determine the directionality of evolution. Berg treated the speciation as a kind of phase transition. Even the most conscientious critics of Berg have misrepresented the real sense of his works. It is totally groundless to treat nomogenesis as an idealistic of Lamarkian theory. Berg was superior to his critics. However the enthusiasm about nomogenesis in our time shows the inability to separate "the grains from weeds".

  7. Molecular radiation biology: Future aspects

    International Nuclear Information System (INIS)

    Hagen, U.

    1990-01-01

    Future aspects of molecular radiation biology may be envisaged by looking for unsolved problems and ways to analyse them. Considering the endpoints of cellular radiation effects as cell inactivation, chromosome aberrations, mutation and transformation, the type of DNA damage in the irradiated cell and the mechanisms of DNA repair as excision repair, recombination repair and mutagenic repair are essential topics. At present, great efforts are made to identify, to clone and to sequence genes involved in the control of repair of DNA damage and to study their regulation. There are close relationships between DNA repair genes isolated from various organisms, which promises fast progress for the molecular analysis of repair processes in mammalian cells. More knowledge is necessary regarding the function of the gene products, i.e. enzymes and proteins involved in DNA repair. Effort should be made to analyse the enzymatic reactions, leading to an altered nucleotide sequence, encountered as a point mutation. Mislead mismatch repair and modulation of DNA polymerase might be possible mechanisms. (orig.)

  8. History of the molecular biology of cytomegaloviruses.

    Science.gov (United States)

    Stinski, Mark F

    2014-01-01

    The history of the molecular biology of cytomegaloviruses from the purification of the virus and the viral DNA to the cloning and expression of the viral genes is reviewed. A key genetic element of cytomegalovirus (the CMV promoter) contributed to our understanding of eukaryotic cell molecular biology and to the development of lifesaving therapeutic proteins. The study of the molecular biology of cytomegaloviruses also contributed to the development of antivirals to control the viral infection.

  9. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  10. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2006-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. 1...

  11. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George

    2003-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  12. Molecular Biology and Prevention of Endometrial Cancer

    National Research Council Canada - National Science Library

    Maxwell, George L

    2004-01-01

    To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive therapy. Methods: 1...

  13. Epidemiology and Molecular Biology of Head and Neck Cancer.

    Science.gov (United States)

    Jou, Adriana; Hess, Jochen

    2017-01-01

    Head and neck cancer is a common and aggressive malignancy with a high morbidity and mortality profile. Although the large majority of cases resemble head and neck squamous cell carcinoma (HNSCC), the current classification based on anatomic site and tumor stage fails to capture the high level of biologic heterogeneity, and appropriate clinical management remains a major challenge. Hence, a better understanding of the molecular biology of HNSCC is urgently needed to support biomarker development and personalized care for patients. This review focuses on recent findings based on integrative genomics analysis and multi-scale modeling approaches and how they are beginning to provide more sophisticated clues as to the biological and clinical diversity of HNSCC. © 2017 S. Karger GmbH, Freiburg.

  14. Molecular biology of hyperthermophilic Archaea.

    Science.gov (United States)

    van der Oost, J; Ciaramella, M; Moracci, M; Pisani, F M; Rossi, M; de Vos, W M

    1998-01-01

    The sequences of a number of archaeal genomes have recently been completed, and many more are expected shortly. Consequently, the research of Archaea in general and hyperthermophiles in particular has entered a new phase, with many exciting discoveries to be expected. The wealth of sequence information has already led, and will continue to lead to the identification of many enzymes with unique properties, some of which have potential for industrial applications. Subsequent functional genomics will help reveal fundamental matters such as details concerning the genetic, biochemical and physiological adaptation of extremophiles, and hence give insight into their genomic evolution, polypeptide structure-function relations, and metabolic regulation. In order to optimally exploit many unique features that are now emerging, the development of genetic systems for hyperthermophilic Archaea is an absolute requirement. Such systems would allow the application of this class of Archaea as so-called "cell factories": (i) expression of certain archaeal enzymes for which no suitable conventional (mesophilic bacterial or eukaryal) systems are available, (ii) selection for thermostable variants of potentially interesting enzymes from mesophilic origin, and (iii) the development of in vivo production systems by metabolic engineering. An overview is given of recent insight in the molecular biology of hyperthermophilic Archaea, as well as of a number of promising developments that should result in the generation of suitable genetic systems in the near future.

  15. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  16. [Advance in molecular biology of Dendrobium (Orchidaceae)].

    Science.gov (United States)

    Li, Qing; Li, Biao; Guo, Shun-Xing

    2016-08-01

    With the development of molecular biology, the process in molecular biology research of Dendrobium is going fast. Not only did it provide new ways to identify Dendrobium quickly, reveal the genetic diversity and relationship of Dendrobium, but also lay the vital foundation for explaining the mechanism of Dendrobium growth and metabolism. The present paper reviews the recent process in molecular biology research of Dendrobium from three aspects, including molecular identification, genetic diversity and functional genes. And this review will facilitate the development of this research area and Dendrobium. Copyright© by the Chinese Pharmaceutical Association.

  17. Monod and the spirit of molecular biology.

    Science.gov (United States)

    Morange, Michel

    2015-06-01

    The founders of molecular biology shared views on the place of biology within science, as well as on the relations of molecular biology to Darwinism. Jacques Monod was no exception, but the study of his writings is particularly interesting because he expressed his point of view very clearly and pushed the implications of some of his choices further than most of his contemporaries. The spirit of molecular biology is no longer the same as in the 1960s but, interestingly, Monod anticipated some recent evolutions of this discipline. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Molecular biology: Self-sustaining chemistry

    Directory of Open Access Journals (Sweden)

    Wrede Paul

    2007-10-01

    Full Text Available Abstract Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells.

  19. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  20. Yeast genetics and molecular biology

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    This book covers subjects and the following titles: cell biology; RNA processing and translation; organelle biogenesis; cell division cycle; mating physiology; recombination and repair; retro-transposition; and metabolic regulating mechanisms

  1. Molecular biology of the cell

    National Research Council Canada - National Science Library

    Alberts, Bruce; Walter, Peter; Raff, Martin; Roberts, Keith; Lewis, Julian; Johnson, Alexander

    2007-01-01

    .... By extracting fundamental concepts and meaning from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers...

  2. European Conference on Molecular Biology EMBO

    CERN Multimedia

    1967-01-01

    European Conference on Molecular Biology, which eventually led to the setting up of EMBO, was held at CERN in April. Olivier Reverdin is adressing the delegates. Bernard Gregory is on the left and Willy Spuhler in the centre.

  3. Genetics and molecular biology of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    King, M.C. [California Univ., Berkeley, CA (United States); Lippman, M. [Georgetown Univ. Medical Center, Washington, DC (United States)] [comps.

    1992-12-31

    This volume contains the abstracts of oral presentations and poster sessions presented at the Cold Springs Harbor Meeting on Cancer Cells, this meeting entitled Genetics and Molecular Biology of Breast Cancer.

  4. The Molecular Biology Capstone Assessment: A Concept Assessment for Upper-Division Molecular Biology Students

    Science.gov (United States)

    Couch, Brian A.; Wood, William B.; Knight, Jennifer K.

    2015-01-01

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in…

  5. The Molecular Era of Surfactant Biology

    OpenAIRE

    Whitsett, Jeffrey A.

    2014-01-01

    Advances in the physiology, biochemistry, molecular and cell biology of the pulmonary surfactant system transformed the clinical care and outcome of preterm infants with respiratory distress syndrome. The molecular era of surfactant biology provided genetic insights into the pathogenesis of pulmonary disorders, previously termed “idiopathic” that affect newborn infants, children and adults. Knowledge related to the structure and function of the surfactant proteins and their roles in alveolar ...

  6. Methods for plant molecular biology

    National Research Council Canada - National Science Library

    Weissbach, Arthur; Weissbach, Herbert

    1988-01-01

    .... Current techniques to carry out plant cell culture and protoplast formation are described as are methods for gene and organelle transfer. The detection of DNA and RNA viruses by molecular probes or ELISA assays and the cloning and transcription of viral RNA complete the volume.

  7. Molecular biology of pancreatic cancer.

    Science.gov (United States)

    Zavoral, Miroslav; Minarikova, Petra; Zavada, Filip; Salek, Cyril; Minarik, Marek

    2011-06-28

    In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz-Jeghers and Lynch syndromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.

  8. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  9. Frontiers of NMR in Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-25

    NMR spectroscopy is expanding the horizons of structural biology by determining the structures and describing the dynamics of blobular proteins in aqueous solution, as well as other classes of proteins including membrane proteins and the polypeptides that form the aggregates diagnostic of prion and amyloid diseases. Significant results are also emerging on DNA and RNA oligomers and their complexes with proteins. This meeting focused attention on key structural questions emanating from molecular biology and how NMR spectroscopy can be used to answer them.

  10. Molecular biology of microbial hydrogenases.

    Science.gov (United States)

    Vignais, P M; Colbeau, A

    2004-07-01

    Hydrogenases (H2ases) are metalloproteins. The great majority of them contain iron-sulfur clusters and two metal atoms at their active center, either a Ni and an Fe atom, the [NiFe]-H2ases, or two Fe atoms, the [FeFe]-H2ases. Enzymes of these two classes catalyze the reversible oxidation of hydrogen gas (H2 2 H+ + 2 e-) and play a central role in microbial energy metabolism; in addition to their role in fermentation and H2 respiration, H2ases may interact with membrane-bound electron transport systems in order to maintain redox poise, particularly in some photosynthetic microorganisms such as cyanobacteria. Recent work has revealed that some H2ases, by acting as H2-sensors, participate in the regulation of gene expression and that H2-evolving H2ases, thought to be involved in purely fermentative processes, play a role in membrane-linked energy conservation through the generation of a protonmotive force. The Hmd hydrogenases of some methanogenic archaea constitute a third class of H2ases, characterized by the absence of Fe-S cluster and the presence of an iron-containing cofactor with catalytic properties different from those of [NiFe]- and [FeFe]-H2ases. In this review, we emphasise recent advances that have greatly increased our knowledge of microbial H2ases, their diversity, the structure of their active site, how the metallocenters are synthesized and assembled, how they function, how the synthesis of these enzymes is controlled by external signals, and their potential use in biological H2 production.

  11. In Praise of the Sophists.

    Science.gov (United States)

    Gibson, Walker

    1993-01-01

    Discusses the thinking of the Greek Sophist philosophers, particularly Gorgias and Protagoras, and their importance and relevance for contemporary English instructors. Considers the problem of language as signs of reality in the context of Sophist philosophy. (HB)

  12. Systems theoretic analysis of the central dogma of molecular biology: some recent results.

    Science.gov (United States)

    Gao, Rui; Yu, Juanyi; Zhang, Mingjun; Tarn, Tzyh-Jong; Li, Jr-Shin

    2010-03-01

    This paper extends our early study on a mathematical formulation of the central dogma of molecular biology, and focuses discussions on recent insights obtained by employing advanced systems theoretic analysis. The goal of this paper is to mathematically represent and interpret the genetic information flow at the molecular level, and explore the fundamental principle of molecular biology at the system level. Specifically, group theory was employed to interpret concepts and properties of gene mutation, and predict backbone torsion angle along the peptide chain. Finite state machine theory was extensively applied to interpret key concepts and analyze the processes related to DNA hybridization. Using the proposed model, we have transferred the character-based model in molecular biology to a sophisticated mathematical model for calculation and interpretation.

  13. The Central Dogma of Molecular Biology

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. The Central Dogma of Molecular Biology - A Retrospective after Fifty Years. Michel Morange. General Article Volume 14 Issue 3 March 2009 pp 236-247. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Barrett's esophagus: cancer and molecular biology

    NARCIS (Netherlands)

    Gibson, Michael K.; Dhaliwal, Arashinder S.; Clemons, Nicholas J.; Phillips, Wayne A.; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E. Daniel; Räsänen, Jari; Krasna, Mark J.; Parikh, Kaushal; Krishnadath, Kausilia K.; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J.; Farrant, J. Mark; Tosh, David; Das, Kiron M.; Bajpai, Manisha

    2013-01-01

    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the

  15. Systematic Representation of Molecular Biology Knowledge.

    Science.gov (United States)

    Fisher, Kathleen M.

    A small set of relationships has been identified which appears to be sufficient for describing all molecular and cellular reactions and structures discussed in an introductory biology course. A precise definition has been developed for each relationship. These 20 relationships are of four types: (1) analytical; (2) spatial; (3) temporal; and (4)…

  16. Molecular and biological interactions in colorectal cancer

    NARCIS (Netherlands)

    Heer, Pieter de

    2007-01-01

    The current thesis discusses the use of molecular and biological tumor markers to predict clinical outcome. By studying several key processes in the develepment of cancer as regulation of cell motility (non-receptor protein tyrosin adesion kinases, FAK, Src and paxillin, Apoptosis (caspase-3

  17. Molecular biology applications to infectious diseases diagnostic

    International Nuclear Information System (INIS)

    2001-01-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus

  18. Molecular profiles to biology and pathways: a systems biology approach.

    Science.gov (United States)

    Van Laere, Steven; Dirix, Luc; Vermeulen, Peter

    2016-06-16

    Interpreting molecular profiles in a biological context requires specialized analysis strategies. Initially, lists of relevant genes were screened to identify enriched concepts associated with pathways or specific molecular processes. However, the shortcoming of interpreting gene lists by using predefined sets of genes has resulted in the development of novel methods that heavily rely on network-based concepts. These algorithms have the advantage that they allow a more holistic view of the signaling properties of the condition under study as well as that they are suitable for integrating different data types like gene expression, gene mutation, and even histological parameters.

  19. Molecular biology III - Oncogenes and tumor suppressor genes

    International Nuclear Information System (INIS)

    Giaccia, Amato J.

    1996-01-01

    Purpose: The purpose of this course is to introduce to radiation oncologists the basic concepts of tumorigenesis, building on the information that will be presented in the first and second part of this series of lectures. Objective: Our objective is to increase the current understanding of radiation oncologists with the process of tumorigenesis, especially focusing on genes that are altered in many tumor types that are potential candidates for novel molecular strategies. As strategies to treat cancer of cancer are becoming more sophisticated, it will be important for both the practitioner and academician to develop a basic understanding of the function of cancer 'genes'. This will be the third in a series of refresher courses that are meant to address recent advances in Cancer Biology in a way that both clinicians without previous knowledge of molecular biology or experienced researchers will find interesting. The lecture will begin with a basic overview of tumorigenesis; methods of detecting chromosome/DNA alterations, approaches used to isolate oncogenes and tumor suppressor genes, and their role in cell killing by apoptosis. Special attention will be given to oncogenes and tumor suppressor genes that are modulated by ionizing radiation and the tumor microenvironment. We will relate the biology of oncogenes and tumor suppressor genes to basic aspects of radiation biology that would be important in clinical practice. Finally, we will review recent studies on the prognostic significance of p53 mutations and apoptosis in tumor specimens. The main point of this lecture is to relate both researcher and clinician what are the therapeutic ramifications of oncogene and tumor suppressor gene mutations found in human neoptasia

  20. Molecular knots in biology and chemistry

    International Nuclear Information System (INIS)

    Lim, Nicole C H; Jackson, Sophie E

    2015-01-01

    Knots and entanglements are ubiquitous. Beyond their aesthetic appeal, these fascinating topological entities can be either useful or cumbersome. In recent decades, the importance and prevalence of molecular knots have been increasingly recognised by scientists from different disciplines. In this review, we provide an overview on the various molecular knots found in naturally occurring biological systems (DNA, RNA and proteins), and those created by synthetic chemists. We discuss the current knowledge in these fields, including recent developments in experimental and, in some cases, computational studies which are beginning to shed light into the complex interplay between the structure, formation and properties of these topologically intricate molecules. (paper)

  1. Gregory Bateson's relevance to current molecular biology

    DEFF Research Database (Denmark)

    Bruni, Luis Emilio

    2008-01-01

    in a developmental pathway. Being a central figure in the development of cybernetic theory he collaborated with a range of researchers from the life sciences who were innovating their own disciplines by introducing cybernetic concepts in their particular fields and disciplines. In the light of this, it should...... not come as a surprise today to realize how the general ideas that he was postulating for the study of communication systems in biology fit so well with the astonishing findings of current molecular biology, for example in the field of cellular signal transduction networks. I guess this is the case due...

  2. Bioenergetics molecular biology, biochemistry, and pathology

    CERN Document Server

    Ozawa, Takayuki

    1990-01-01

    The emergence of the Biochemical Sciences is underlined by the FAOB symposium in Seoul and highlighted by this Satellite meeting on the "New Bioenergetics. " Classical mitochondrial electron transfer and energy coupling is now complemented by the emerging molecular biology of the respiratory chain which is studied hand in hand with the recognition of mitochondrial disease as a major and emerging study in the basic and clinical medical sciences. Thus, this symposium has achieved an important balance of the fundamental and applied aspects of bioenergetics in the modern setting of molecular biology and mitochondrial disease. At the same time, the symposium takes note not only of the emerging excellence of Biochemical Studies in the Orient and indeed in Korea itself, but also retrospectively enjoys the history of electron transport and energy conservation as represented by the triumvirate ofYagi, King and Slater. Many thanks are due Drs. Kim and Ozawa for their elegant organization of this meeting and its juxtapo...

  3. Molecular infection biology : interactions between microorganisms and cells

    National Research Council Canada - National Science Library

    Hacker, Jörg (Jörg Hinrich); Heesemann, Jurgen

    2002-01-01

    ... and epidemiology of infectious diseases. Investigators, specialists, clinicians, and graduate students in biology, pharmacy, and medicine will find Molecular Infection Biology an invaluable addition to their professional libraries...

  4. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  5. [The molecular biology of epithelial ovarian cancer].

    Science.gov (United States)

    Leary, Alexandra; Pautier, Patricia; Tazi, Youssef; Morice, Philippe; Duvillard, Pierre; Gouy, Sébastien; Uzan, Catherine; Gauthier, Hélène; Balleyguier, Corinne; Lhommé, Catherine

    2012-12-01

    Epithelial ovarian cancer frequently presents at an advanced stage where the cornerstone of management remains surgery and platinum-based chemotherapy. Unfortunately, despite sometimes dramatic initial responses, advanced ovarian cancer almost invariably relapses. Little progress has been made in the identification of effective targeted-therapies for ovarian cancer. The majority of clinical trials investigating novel agents have been negative and the only approved targeted-therapy is bevacizumab, for which reliable predictive biomarkers still elude us. Ovarian cancer is treated as a uniform disease. Yet, biological studies have highlighted the heterogeneity of this malignancy with marked differences in histology, oncogenesis, prognosis, chemo-responsiveness, and molecular profile. Recent high throughput molecular analyses have identified a huge number of genomic/phenotypic alterations. Broadly speaking, high grade serous carcinomas (type II) display significant genomic instability and numerous amplifications and losses; low grade (type I) tumors are genomically stable but display frequent mutations. Importantly, many of these genomic alterations relate to known oncogenes for which targeted-therapies are available or in development. There is today a real potential for personalized medicine in ovarian cancer. We will review the current literature regarding the molecular characterization of epithelial ovarian cancer and discuss the biological rationale for a number of targeted strategies. In order to translate these biological advances into meaningful clinical improvements for our patients, it is imperative to incorporate translational research in ovarian cancer trials, a number of strategies will be proposed such as the acquisition of quality tumor samples, including sequential pre- and post-treatment biopsies, the potential of liquid biopsies, and novel trial designs more adapted to the molecular era of ovarian cancer research.

  6. Nutritional education from Molecular and Cellular Biology

    Directory of Open Access Journals (Sweden)

    Zaida Ramona Betancourt Betancourt

    2014-12-01

    Full Text Available The nutritional education is current topic, constituting a necessity in the contemporary world, given mainly by the contribution that it makes in maintaining the human health under good conditions. Starting from this problem, it is presented this article whose objective is: to show the potential ities that the discipline Cellular and Molecular Biology offers, for the treatment of these contents, since this discipline is worked in the second semester of first year and first semester of in the formation of professors of the Biology - Geography and Bio logy - C hemistry careers which can contribute to the development of knowledge, habits and abilities that allows them to appropriate of responsible behaviours for the achievement of correct nutritional habits.

  7. 2009 Archaea: Ecology, Metabolism & Molecular Biology GRC

    Energy Technology Data Exchange (ETDEWEB)

    Furlow, Julie Maupin- [Univ. of Florida, Gainesville, FL (United States)

    2009-07-26

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses; and industrial applications. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  8. 2011 Archaea: Ecology, Metabolism, & Molecular Biology

    Energy Technology Data Exchange (ETDEWEB)

    Keneth Stedman

    2011-08-05

    Archaea, one of three major evolutionary lineages of life, are a fascinating and diverse group of microbes with deep roots overlapping those of eukaryotes. The focus of the 'Archaea: Ecology Metabolism & Molecular Biology' GRC conference expands on a number of emerging topics highlighting new paradigms in archaeal metabolism, genome function and systems biology; information processing; evolution and the tree of life; the ecology and diversity of archaea and their viruses. The strength of this conference lies in its ability to couple a field with a rich history in high quality research with new scientific findings in an atmosphere of stimulating exchange. This conference remains an excellent opportunity for younger scientists to interact with world experts in this field.

  9. Barrett's esophagus: cancer and molecular biology.

    Science.gov (United States)

    Gibson, Michael K; Dhaliwal, Arashinder S; Clemons, Nicholas J; Phillips, Wayne A; Dvorak, Katerina; Tong, Daniel; Law, Simon; Pirchi, E Daniel; Räsänen, Jari; Krasna, Mark J; Parikh, Kaushal; Krishnadath, Kausilia K; Chen, Yu; Griffiths, Leonard; Colleypriest, Benjamin J; Farrant, J Mark; Tosh, David; Das, Kiron M; Bajpai, Manisha

    2013-10-01

    The following paper on the molecular biology of Barrett's esophagus (BE) includes commentaries on signaling pathways central to the development of BE including Hh, NF-κB, and IL-6/STAT3; surgical approaches for esophagectomy and classification of lesions by appropriate therapy; the debate over the merits of minimally invasive esophagectomy versus open surgery; outcomes for patients with pharyngolaryngoesophagectomy; the applications of neoadjuvant chemotherapy and chemoradiotherapy; animal models examining the surgical models of BE and esophageal adenocarcinoma; the roles of various morphogens and Cdx2 in BE; and the use of in vitro BE models for chemoprevention studies. © 2013 New York Academy of Sciences.

  10. Genetics and molecular biology of hypotension

    Science.gov (United States)

    Robertson, D.

    1994-01-01

    Major strides in the molecular biology of essential hypertension are currently underway. This has tended to obscure the fact that a number of inherited disorders associated with low blood pressure exist and that these diseases may have milder and underrecognized phenotypes that contribute importantly to blood pressure variation in the general population. This review highlights some of the gene products that, if abnormal, could cause hypotension in some individuals. Diseases due to abnormalities in the catecholamine enzymes are discussed in detail. It is likely that genetic abnormalities with hypotensive phenotypes will be as interesting and diverse as those that give rise to hypertensive disorders.

  11. Molecular biological aspects of acquired bullous diseases

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1998-01-01

    Bullous diseases of the oral mucosa and skin were originally classified on the basis of clinical and histological criteria. The discovery of autoantibodies in some of these patients and the introduction of molecular biology have resulted in a new understanding of the pathological mechanisms of many...... of the bullous lesions. In this article, updated topics of the immune-mediated bullous lesions which involve oral mucosa and skin are reviewed. Pemphigus antigens, which are desmosomal-associated proteins and belong to the cadherin superfamily of cell adhesion proteins, have been isolated, and their genes have...

  12. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1997-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. McKenna and Dritschilo. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  13. Molecular biology - Part II: Beneficial liaisons: Radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1996-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology of molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part 'series' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  14. Molecular biology approaches in bioadhesion research

    Directory of Open Access Journals (Sweden)

    Marcelo Rodrigues

    2014-07-01

    Full Text Available The use of molecular biology tools in the field of bioadhesion is still in its infancy. For new research groups who are considering taking a molecular approach, the techniques presented here are essential to unravelling the sequence of a gene, its expression and its biological function. Here we provide an outline for addressing adhesion-related genes in diverse organisms. We show how to gradually narrow down the number of candidate transcripts that are involved in adhesion by (1 generating a transcriptome and a differentially expressed cDNA list enriched for adhesion-related transcripts, (2 setting up a BLAST search facility, (3 perform an in situ hybridization screen, and (4 functional analyses of selected genes by using RNA interference knock-down. Furthermore, latest developments in genome-editing are presented as new tools to study gene function. By using this iterative multi-technologies approach, the identification, isolation, expression and function of adhesion-related genes can be studied in most organisms. These tools will improve our understanding of the diversity of molecules used for adhesion in different organisms and these findings will help to develop innovative bio-inspired adhesives.

  15. Cumulative Dominance and Probabilistic Sophistication

    NARCIS (Netherlands)

    Wakker, P.P.; Sarin, R.H.

    2000-01-01

    Machina & Schmeidler (Econometrica, 60, 1992) gave preference conditions for probabilistic sophistication, i.e. decision making where uncertainty can be expressed in terms of (subjective) probabilities without commitment to expected utility maximization. This note shows that simpler and more general

  16. Haemoprotozoa: Making biological sense of molecular phylogenies

    Directory of Open Access Journals (Sweden)

    Peter O'Donoghue

    2017-12-01

    Full Text Available A range of protistan parasites occur in the blood of vertebrates and are transmitted by haematophagous invertebrate vectors. Some 48 genera are recognized in bood primarily on the basis of parasite morphology and host specificity; including extracellular kinetoplastids (trypanosomatids and intracellular apicomplexa (haemogregarines, haemococcidia, haemosporidia and piroplasms. Gene sequences are available for a growing number of species and molecular phylogenies often link parasite and host or vector evolution. This review endeavours to reconcile molecular clades with biological characters. Four major trypanosomatid clades have been associated with site of development in the vector: salivarian or stercorarian for Trypanosoma, and supra- or peri-pylorian for Leishmania. Four haemogregarine clades have been associated with acarine vectors (Hepatozoon A and B, Karyolysus, Hemolivia and another two with leeches (Dactylosoma, Haemogregarina sensu stricto. Two haemococcidian clades (Lankesterella, Schellackia using leeches and mosquitoes (as paratenic hosts! were paraphyletic with monoxenous enteric coccidia. Two major haemosporidian clades have been associated with mosquito vectors (Plasmodium from mammals, Plasmodium from birds and lizards, two with midges (Hepatocystis from bats, Parahaemoproteus from birds and two with louse-flies and black-flies (Haemoproteus and Leucocytozoon from birds. Three major piroplasm clades were recognized: one associated with transovarian transmission in ticks (Babesia sensu stricto; one with pre-erythrocytic schizogony in vertebrates (Theileria/Cytauxzoon; and one with neither (Babesia sensu lato. Broad comparative studies with allied groups suggest that trypanosomatids and haemogregarines evolved first in aquatic and then terrestrial environments, as evidenced by extant lineages in invertebrates and their radiation in vertebrates. In contrast, haemosporidia and haemococcidia are thought to have evolved first in

  17. Molecular biology of the lung cancer

    International Nuclear Information System (INIS)

    Panov, S.Z.

    2005-01-01

    Background. Lung cancer is one of the most common malignant diseases and leading cause of cancer death worldwide. The advances in molecular biology and genetics, including the modern microarray technology and rapid sequencing techniques, have enabled a remarkable progress into elucidating the lung cancer ethiopathogenesis. Numerous studies suggest that more than 20 different genetic and epigenetic alterations are accumulating during the pathogenesis of clinically evident pulmonary cancers as a clonal, multistep process. Thus far, the most investigated alterations are the inactivational mutations and losses of tumour suppressor genes and the overexpression of growth-promoting oncogenes. More recently, the acquired epigenetic inactivation of tumour suppressor genes by promoter hypermethylation has been recognized. The early clonal genetic abnormalities that occur in preneoplastic bronchial epithelium damaged by smoking or other carcinogenes are being identified. The molecular distinctions between small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), as well as between tumors with different clinical outcomes have been described. These investigations lead to the h allmarks of lung cancer . Conclusions. It is realistic to expect that the molecular and cell culture-based investigations will lead to discoveries of new clinical applications with the potential to provide new avenues for early diagnosis, risk assessment, prevention, and most important, new more effective treatment approaches for the lung cancer patients. (author)

  18. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  19. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    Science.gov (United States)

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  20. The molecular biology capstone assessment: a concept assessment for upper-division molecular biology students.

    Science.gov (United States)

    Couch, Brian A; Wood, William B; Knight, Jennifer K

    2015-03-02

    Measuring students' conceptual understandings has become increasingly important to biology faculty members involved in evaluating and improving departmental programs. We developed the Molecular Biology Capstone Assessment (MBCA) to gauge comprehension of fundamental concepts in molecular and cell biology and the ability to apply these concepts in novel scenarios. Targeted at graduating students, the MBCA consists of 18 multiple-true/false (T/F) questions. Each question consists of a narrative stem followed by four T/F statements, which allows a more detailed assessment of student understanding than the traditional multiple-choice format. Questions were iteratively developed with extensive faculty and student feedback, including validation through faculty reviews and response validation through student interviews. The final assessment was taken online by 504 students in upper-division courses at seven institutions. Data from this administration indicate that the MBCA has acceptable levels of internal reliability (α=0.80) and test-retest stability (r=0.93). Students achieved a wide range of scores with a 67% overall average. Performance results suggest that students have an incomplete understanding of many molecular biology concepts and continue to hold incorrect conceptions previously documented among introductory-level students. By pinpointing areas of conceptual difficulty, the MBCA can provide faculty members with guidance for improving undergraduate biology programs. © 2015 B. A. Couch et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. The progress of molecular biology in radiation research

    International Nuclear Information System (INIS)

    Wei Kang

    1989-01-01

    The recent progress in application of molecular biology techniques in the study of radiation biology is reviewed. The three sections are as follows: (1) the study of DNA damage on molecular level, (2) the molecular mechanism of radiation cell genetics, including chromosome abberation and cell mutation, (3) the study on DNA repair gene with DNA mediated gene transfer techniques

  2. A National Comparison of Biochemistry and Molecular Biology Capstone Experiences

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the "American Society for Biochemistry and Molecular Biology" (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end,…

  3. 2010 Plant Molecular Biology Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Michael Sussman

    2010-07-23

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2010 conference will continue in that tradition. Emerging concerns about food security have inspired a program with three main themes: (1) genomics, natural variation and breeding to understand adaptation and crop improvement, (2) hormonal cross talk, and (3) plant/microbe interactions. There are also sessions on epigenetics and proteomics/metabolomics. Thus this conference will bring together a range of disciplines, will foster the exchange of ideas and enable participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner. In particular, this conference plays a key role in enabling students and postdocs (the next generation of research leaders) to mingle with pioneers in multiple areas of plant science.

  4. Molecular biology in marine science: Scientific questions, technological approaches, and practical implications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report describes molecular techniques that could be invaluable in addressing process-oriented problems in the ocean sciences that have perplexed oceanographers for decades, such as understanding the basis for biogeochemical processes, recruitment processes, upper-ocean dynamics, biological impacts of global warming, and ecological impacts of human activities. The coupling of highly sophisticated methods, such as satellite remote sensing, which permits synoptic monitoring of chemical, physical, and biological parameters over large areas, with the power of modern molecular tools for ``ground truthing`` at small scales could allow scientists to address questions about marine organisms and the ocean in which they live that could not be answered previously. Clearly, the marine sciences are on the threshold of an exciting new frontier of scientific discovery and economic opportunity.

  5. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  6. Molecular Biology and Prevention of Endometrial Cancer. Addendum

    National Research Council Canada - National Science Library

    Maxwell, George L

    2008-01-01

    Objective: To increase our understanding of the molecular aberrations associated with endometrial carcinogenesis and the biologic mechanisms underlying the protective effect of oral contraceptive (OC) therapy. Methods: 1...

  7. Biochemistry and Molecular Biology of Flaviviruses.

    Science.gov (United States)

    Barrows, Nicholas J; Campos, Rafael K; Liao, Kuo-Chieh; Prasanth, K Reddisiva; Soto-Acosta, Ruben; Yeh, Shih-Chia; Schott-Lerner, Geraldine; Pompon, Julien; Sessions, October M; Bradrick, Shelton S; Garcia-Blanco, Mariano A

    2018-04-25

    Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.

  8. Commentary: Biochemistry and Molecular Biology Educators Launch National Network

    Science.gov (United States)

    Bailey, Cheryl; Bell, Ellis; Johnson, Margaret; Mattos, Carla; Sears, Duane; White, Harold B.

    2010-01-01

    The American Society of Biochemistry and Molecular Biology (ASBMB) has launched an National Science Foundation (NSF)-funded 5 year project to support biochemistry and molecular biology educators learning what and how students learn. As a part of this initiative, hundreds of life scientists will plan and develop a rich central resource for…

  9. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  10. Cognitive Load and Strategic Sophistication

    OpenAIRE

    Allred, Sarah; Duffy, Sean; Smith, John

    2013-01-01

    We study the relationship between the cognitive load manipulation and strategic sophistication. The cognitive load manipulation is designed to reduce the subject's cognitive resources that are available for deliberation on a choice. In our experiment, subjects are placed under a large cognitive load (given a difficult number to remember) or a low cognitive load (given a number which is not difficult to remember). Subsequently, the subjects play a one-shot game then they are asked to recall...

  11. The molecular biology in wound healing & non-healing wound.

    Science.gov (United States)

    Qing, Chun

    2017-08-01

    The development of molecular biology and other new biotechnologies helps us to recognize the wound healing and non-healing wound of skin in the past 30 years. This review mainly focuses on the molecular biology of many cytokines (including growth factors) and other molecular factors such as extracellular matrix (ECM) on wound healing. The molecular biology in cell movement such as epidermal cells in wound healing was also discussed. Moreover many common chronic wounds such as pressure ulcers, leg ulcers, diabetic foot wounds, venous stasis ulcers, etc. usually deteriorate into non-healing wounds. Therefore the molecular biology such as advanced glycation end products (AGEs) and other molecular factors in diabetes non-healing wounds were also reviewed. Copyright © 2017 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  12. Assessment of Knowledge of Participants on Basic Molecular Biology Techniques after 5-Day Intensive Molecular Biology Training Workshops in Nigeria

    Science.gov (United States)

    Yisau, J. I.; Adagbada, A. O.; Bamidele, T.; Fowora, M.; Brai, B. I. C.; Adebesin, O.; Bamidele, M.; Fesobi, T.; Nwaokorie, F. O.; Ajayi, A.; Smith, S. I.

    2017-01-01

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of…

  13. Assessment of knowledge of participants on basic molecular biology techniques after 5-day intensive molecular biology training workshops in Nigeria.

    Science.gov (United States)

    Yisau, J I; Adagbada, A O; Bamidele, T; Fowora, M; Brai, B I C; Adebesin, O; Bamidele, M; Fesobi, T; Nwaokorie, F O; Ajayi, A; Smith, S I

    2017-07-08

    The deployment of molecular biology techniques for diagnosis and research in Nigeria is faced with a number of challenges, including the cost of equipment and reagents coupled with the dearth of personnel skilled in the procedures and handling of equipment. Short molecular biology training workshops were conducted at the Nigerian Institute of Medical Research (NIMR), to improve the knowledge and skills of laboratory personnel and academics in health, research, and educational facilities. Five-day molecular biology workshops were conducted annually between 2011 and 2014, with participants drawn from health, research facilities, and the academia. The courses consisted of theoretical and practical sessions. The impact of the workshops on knowledge and skill acquisition was evaluated by pre- and post-tests which consisted of 25 multiple choice and other questions. Sixty-five participants took part in the workshops. The mean knowledge of molecular biology as evaluated by the pre- and post-test assessments were 8.4 (95% CI 7.6-9.1) and 13.0 (95 CI 11.9-14.1), respectively. The mean post-test score was significantly greater than the mean pre-test score (p biology workshop significantly increased the knowledge and skills of participants in molecular biology techniques. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):313-317, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  14. CSMB | Center For Structural Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Structural Molecular Biologyat ORNL is dedicated to developing instrumentation and methods for determining the 3-dimensional structures of proteins,...

  15. Molecular biology of prostate cancer progression

    International Nuclear Information System (INIS)

    Thompson, Timothy C.; Sehgal, I.; Timme, T.L.; Rn, C.; Yang, G.; Park, S.H.

    1996-01-01

    'control' gene in human prostate cancer was supported by studies using molecular biological and immunohistochemical techniques (Eastham et al, Clin Cancer Res 1:1111-1118, 1995 and Yang et al, Clin Cancer Res 2:399-401, 1996). Another possible ''control'' gene related to prostate cancer metastases may be the gene which encodes TGF-β1. We have previously shown that overexpression of TGF-β1 is associated with mouse and human prostate cancer and occurs predominantly in metastatic disease (Eastham et al, Lab Invest 73:628-635, 1995). To investigate a possible role of TGF-β1 in metastatic progression, we compared growth and extracellular matrix responses to TGF-β1 in six metastatic and six primary tumor cell lines derived from our metastatic mouse prostate cancer model system. The results indicated that tumor cell lines derived from focal pulmonary metastases secrete greater quantities of total TGF-β's and have lost most or all TGF-β1 growth inhibition, but respond to TGF-β1 through induction of type IV collagenase, matrix metalloproteinase-9. Cell lines derived from primary site tumors retain TGF-β1 growth inhibition, but lack TGF-β1-induced collagenase activity. Our results indicate that the elimination and/or subversion of TGF-β1 responsive pathways should be considered a mechanistic framework for metastatic events (Sehgal et al., Cancer Res 56:3359-3365, 1996). Both p53 and TGF-β1 can regulate the expression of downstream genetic targets, therefore, we are currently pursuing a strategy using differential display-polymerase chain reaction to elucidate additional changes in gene expression resulting from loss and/or subversion of function for these two putative ''control'' genes in prostate cancer metastasis. Hopefully, identification of these target genes will lead to greater understanding of the mechanisms of prostate cancer metastasis and possibly provide novel therapeutic targets

  16. Structural Biology and Molecular Applications Research

    Science.gov (United States)

    Part of NCI's Division of Cancer Biology's research portfolio, research and development in this area focuses on enabling technologies, models, and methodologies to support basic and applied cancer research.

  17. Egyptian Journal of Biochemistry and Molecular Biology - Vol 32, No ...

    African Journals Online (AJOL)

    The Egyptian Journal of Biochemistry and Molecular Biology. ... Therapeutic Impacts of Almond Oil and Olive Oil on Cholesterol Dynamics and ... Multidrug Resistance Proteins in Pancreatic Carcinoma · EMAIL FULL TEXT EMAIL FULL TEXT

  18. Applications of neutron scattering in molecular biological research

    International Nuclear Information System (INIS)

    Nierhaus, K.H.

    1984-01-01

    The study of the molecular structure of biological materials by neutron scattering is described. As example the results of the study of the components of a ribosome of Escherichia coli are presented. (HSI) [de

  19. Editorial: Molecular Organization of Membranes: Where Biology Meets Biophysics

    Czech Academy of Sciences Publication Activity Database

    Cebecauer, Marek; Holowka, D.

    2017-01-01

    Roč. 5, č. 113 (2017), s. 1-3 ISSN 2296-634X Institutional support: RVO:61388955 Keywords : nanodomains * membrane properties * cell membrane Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology

  20. Physical mechanisms of biological molecular motors

    Energy Technology Data Exchange (ETDEWEB)

    Miller, John H. Jr. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)], E-mail: jhmiller@uh.edu; Vajrala, Vijayanand; Infante, Hans L. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Claycomb, James R. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States); Department of Mathematics and Physics, Houston Baptist University, 7502 Fondren Road, Houston, TX 77074-3298 (United States); Palanisami, Akilan; Fang Jie; Mercier, George T. [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Ste. 617 SR1 Houston, TX 77204-5005 (United States)

    2009-03-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors.

  1. Physical mechanisms of biological molecular motors

    International Nuclear Information System (INIS)

    Miller, John H. Jr.; Vajrala, Vijayanand; Infante, Hans L.; Claycomb, James R.; Palanisami, Akilan; Fang Jie; Mercier, George T.

    2009-01-01

    Biological motors generally fall into two categories: (1) those that convert chemical into mechanical energy via hydrolysis of a nucleoside triphosphate, usually adenosine triphosphate, regarded as life's chemical currency of energy and (2) membrane bound motors driven directly by an ion gradient and/or membrane potential. Here we argue that electrostatic interactions play a vital role for both types of motors and, therefore, the tools of physics can greatly contribute to understanding biological motors

  2. The extracellular matrix of plants: Molecular, cellular and developmental biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  3. The molecular biology of Bluetongue virus replication.

    Science.gov (United States)

    Patel, Avnish; Roy, Polly

    2014-03-01

    The members of Orbivirus genus within the Reoviridae family are arthropod-borne viruses which are responsible for high morbidity and mortality in ruminants. Bluetongue virus (BTV) which causes disease in livestock (sheep, goat, cattle) has been in the forefront of molecular studies for the last three decades and now represents the best understood orbivirus at a molecular and structural level. The complex nature of the virion structure has been well characterised at high resolution along with the definition of the virus encoded enzymes required for RNA replication; the ordered assembly of the capsid shell as well as the protein and genome sequestration required for it; and the role of host proteins in virus entry and virus release. More recent developments of Reverse Genetics and Cell-Free Assembly systems have allowed integration of the accumulated structural and molecular knowledge to be tested at meticulous level, yielding higher insight into basic molecular virology, from which the rational design of safe efficacious vaccines has been possible. This article is centred on the molecular dissection of BTV with a view to understanding the role of each protein in the virus replication cycle. These areas are important in themselves for BTV replication but they also indicate the pathways that related viruses, which includes viruses that are pathogenic to man and animals, might also use providing an informed starting point for intervention or prevention. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Molecular biology of human muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, P.W.; Epstein, H.F. (Baylor Coll. of Medicine, Houston, TX (United States))

    1991-01-01

    The molecular revolution that is transforming the entire biomedical field has had far-reaching impact in its application to inherited human muscle disease. The gene for Duchenne muscular dystrophy was one of the first cloned without knowledge of the defective protein product. This success was based upon the availability of key chromosomal aberrations that provided molecular landmarks for the disease locus. Subsequent discoveries regarding the mode of expression for this gene, the structure and localization of its protein product dystrophin, and molecular diagnosis of affected and carrier individuals constitute a paradigm for investigation of human genetics. Finding the gene for myotonic muscular dystrophy is requiring the brute force approach of cloning several million bases of DNA, identifying expressed sequences, and characterizing candidate genes. The gene that causes hypertrophic cardiomyopathy has been found serendipitously to be one of the genetic markers on chromosome 14, the {beta} myosin heavy chain.

  5. The molecular theory of radiation biology

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1981-01-01

    In this book we have tried to gather, in a logical sequence, the thoughts and reasoning which have led us from the raw and primitive beginning to the broader, more generally applicable, model. In doing this, it has been necessary to cover a wide range of topics in both cellular biology and radiation physics, and we apologize now to the reader who finds that we have gone into too much detail in one area and made too rough an approximation in the other. We have written what we feel is essential for the physicist to follow the influence exerted on the model by the biology, and for the biologist to follow the mathematical definition of the biological effect. (orig./VJ)

  6. Proceedings of the symposium on molecular biology and radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Marko, A M [Atomic Energy Control Board, Ottawa, ON (Canada). Advisory Committee on Radiological Protection; Myers, D K; Atchison, R J [Atomic Energy Control Board, Ottawa, ON (Canada). Advisory Committee on Radiological Protection. Secretariat; Gentner, N E [Atomic Energy of Canada Ltd., Chalk River, ON (Canada)

    1996-02-01

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually.

  7. Proceedings of the symposium on molecular biology and radiation protection

    International Nuclear Information System (INIS)

    Marko, A.M.

    1996-02-01

    The symposium on molecular biology and radiation protection was organized in sessions with the following titles: Radiation protection and the human genome; Molecular changes in DNA induced by radiation; Incidence of genetic changes - pre-existing, spontaneous and radiation-induced; Research directions and ethical implications. The ten papers in the symposium have been abstracted individually

  8. Generative Mechanistic Explanation Building in Undergraduate Molecular and Cellular Biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-01-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among…

  9. Using a Computer Animation to Teach High School Molecular Biology

    Science.gov (United States)

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  10. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  11. Fundamental Approaches in Molecular Biology for Communication Sciences and Disorders

    Science.gov (United States)

    Bartlett, Rebecca S.; Jette, Marie E.; King, Suzanne N.; Schaser, Allison; Thibeault, Susan L.

    2012-01-01

    Purpose: This contemporary tutorial will introduce general principles of molecular biology, common deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein assays and their relevance in the field of communication sciences and disorders. Method: Over the past 2 decades, knowledge of the molecular pathophysiology of human disease has…

  12. Simple Calculation Programs for Biology Methods in Molecular ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Simple Calculation Programs for Biology Methods in Molecular Biology. GMAP: A program for mapping potential restriction sites. RE sites in ambiguous and non-ambiguous DNA sequence; Minimum number of silent mutations required for introducing a RE sites; Set ...

  13. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  14. The cellular and molecular biology of medulloblastoma

    NARCIS (Netherlands)

    Peringa, A; Fung, KM; Muragaki, Y; Trojanowski, JQ

    1995-01-01

    Medulloblastomas are prototypical of primitive neuroectodermal tumors which are some of the most frequent malignant brain tumors of childhood. The cell biology of medulloblastomas is still poorly understood, but recent studies of the expression of trophic factors and their receptors in

  15. Sophisticating a naive Liapunov function

    International Nuclear Information System (INIS)

    Smith, D.; Lewins, J.D.

    1985-01-01

    The art of the direct method of Liapunov to determine system stability is to construct a suitable Liapunov or V function where V is to be positive definite (PD), to shrink to a center, which may be conveniently chosen as the origin, and where V is the negative definite (ND). One aid to the art is to solve an approximation to the system equations in order to provide a candidate V function. It can happen, however, that the V function is not strictly ND but vanishes at a finite number of isolated points. Naively, one anticipates that stability has been demonstrated since the trajectory of the system at such points is only momentarily tangential and immediately enters a region of inward directed trajectories. To demonstrate stability rigorously requires the construction of a sophisticated Liapunov function from what can be called the naive original choice. In this paper, the authors demonstrate the method of perturbing the naive function in the context of the well-known second-order oscillator and then apply the method to a more complicated problem based on a prompt jump model for a nuclear fission reactor

  16. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    NARCIS (Netherlands)

    Knoers, N.V.A.M.; Monnens, L.A.H.

    2006-01-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide

  17. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  18. [Molecular biology for sarcoma: useful or necessary?].

    Science.gov (United States)

    Neuville, Agnès; Coindre, Jean-Michel; Chibon, Frédéric

    2015-01-01

    Sarcomas are a heterogeneous group of tumors. Their diagnosis is based on morphology and immunohistochemical profile, with categories of tumors according to the type of tissue that they resemble. Nevertheless, for several tumors, cellular origin is unknown. Molecular analysis performed in recent years allowed, combining histophenotype and genomics, better classifying such sarcomas, individualizing new entities and grouping some tumors. Simple and recurrent genetic alterations, such as translocation, mutation, amplification, can be identified in one of two sarcomas and appear as new diagnostic markers. Their identification in specialized laboratories in molecular pathology of sarcomas is often useful and sometimes necessary for a good diagnosis, leading to a heavy and multidisciplinary multi-step treatment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    Science.gov (United States)

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  20. Agent-Based Modeling in Molecular Systems Biology.

    Science.gov (United States)

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-06-08

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  1. Pension fund sophistication and investment policy

    NARCIS (Netherlands)

    de Dreu, J.|info:eu-repo/dai/nl/364537906; Bikker, J.A.|info:eu-repo/dai/nl/06912261X

    This paper assesses the sophistication of pension funds’ investment policies using data on 748 Dutch pension funds during the 1999–2006 period. We develop three indicators of sophistication: gross rounding of investment choices, investments in alternative sophisticated asset classes and ‘home bias’.

  2. Teaching molecular genetics: Chapter 1--Background principles and methods of molecular biology.

    Science.gov (United States)

    Knoers, Nine V A M; Monnens, Leo A H

    2006-02-01

    In this first chapter of the series "Teaching molecular genetics," an introduction to molecular genetics is presented. We describe the structure of DNA and genes and explain in detail the central dogma of molecular biology, that is, the flow of genetic information from DNA via RNA to polypeptide (protein). In addition, several basic and frequently used general molecular tools, such as restriction enzymes, Southern blotting, DNA amplification and sequencing are discussed, in order to lay the foundations for the forthcoming chapters.

  3. The molecular biology of WHO grade I astrocytomas.

    Science.gov (United States)

    Marko, Nicholas F; Weil, Robert J

    2012-12-01

    World Health Organization (WHO) grade I astrocytomas include pilocytic astrocytoma (PA) and subependymal giant cell astrocytoma (SEGA). As technologies in pharmacologic neo-adjuvant therapy continue to progress and as molecular characteristics are progressively recognized as potential markers of both clinically significant tumor subtypes and response to therapy, interest in the biology of these tumors has surged. An updated review of the current knowledge of the molecular biology of these tumors is needed. We conducted a Medline search to identify published literature discussing the molecular biology of grade I astrocytomas. We then summarized this literature and discuss it in a logical framework through which the complex biology of these tumors can be clearly understood. A comprehensive review of the molecular biology of WHO grade I astrocytomas is presented. The past several years have seen rapid progress in the level of understanding of PA in particular, but the molecular literature regarding both PA and SEGA remains nebulous, ambiguous, and occasionally contradictory. In this review we provide a comprehensive discussion of the current understanding of the chromosomal, genomic, and epigenomic features of both PA and SEGA and provide a logical framework in which these data can be more readily understood.

  4. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  5. Ordinary differential equations with applications in molecular biology.

    Science.gov (United States)

    Ilea, M; Turnea, M; Rotariu, M

    2012-01-01

    Differential equations are of basic importance in molecular biology mathematics because many biological laws and relations appear mathematically in the form of a differential equation. In this article we presented some applications of mathematical models represented by ordinary differential equations in molecular biology. The vast majority of quantitative models in cell and molecular biology are formulated in terms of ordinary differential equations for the time evolution of concentrations of molecular species. Assuming that the diffusion in the cell is high enough to make the spatial distribution of molecules homogenous, these equations describe systems with many participating molecules of each kind. We propose an original mathematical model with small parameter for biological phospholipid pathway. All the equations system includes small parameter epsilon. The smallness of epsilon is relative to the size of the solution domain. If we reduce the size of the solution region the same small epsilon will result in a different condition number. It is clear that the solution for a smaller region is less difficult. We introduce the mathematical technique known as boundary function method for singular perturbation system. In this system, the small parameter is an asymptotic variable, different from the independent variable. In general, the solutions of such equations exhibit multiscale phenomena. Singularly perturbed problems form a special class of problems containing a small parameter which may tend to zero. Many molecular biology processes can be quantitatively characterized by ordinary differential equations. Mathematical cell biology is a very active and fast growing interdisciplinary area in which mathematical concepts, techniques, and models are applied to a variety of problems in developmental medicine and bioengineering. Among the different modeling approaches, ordinary differential equations (ODE) are particularly important and have led to significant advances

  6. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  7. Biological (molecular and cellular) markers of toxicity

    International Nuclear Information System (INIS)

    Shugart, L.R.; D'Surney, S.J.; Gettys-Hull, C.; Greeley, M.S. Jr.

    1991-01-01

    Several molecular and cellular markers of genotoxicity were adapted for measurement in the Medaka (Oryzias latipes), and were used to describe the effects of treatment of the organism with diethylnitrosamine (DEN). NO 6 -ethyl guanine adducts were detected, and a slight statistically significant, increase in DNA strand breaks was observed. These results are consistent with the hypothesis that prolonged exposure to high levels of DEN induced alkyltransferase activity which enzymatically removes any O 6 -ethyl guanine adducts but does not result in strand breaks or hypomethylation of the DNA such as might be expected from excision repair of chemically modified DNA. Following a five week continuous DEN exposure with 100 percent renewal of DEN-water every third day, the F values (DNA double strandedness) increased considerably and to similar extent in fish exposed to 25, 50, and 100 ppM DEN. This has been observed also in medaka exposed to BaP

  8. Molecular and biological hallmarks of ageing.

    Science.gov (United States)

    Aunan, J R; Watson, M M; Hagland, H R; Søreide, K

    2016-01-01

    Ageing is the inevitable time-dependent decline in physiological organ function that eventually leads to death. Age is a major risk factor for many of the most common medical conditions, such as cardiovascular disease, cancer, diabetes and Alzheimer's disease. This study reviews currently known hallmarks of ageing and their clinical implications. A literature search of PubMed/MEDLINE was conducted covering the last decade. Average life expectancy has increased dramatically over the past century and is estimated to increase even further. Maximum longevity, however, appears unchanged, suggesting a universal limitation to the human organism. Understanding the underlying molecular processes of ageing and health decline may suggest interventions that, if used at an early age, can prevent, delay, alleviate or even reverse age-related diseases. Hallmarks of ageing can be grouped into three main categories. The primary hallmarks cause damage to cellular functions: genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis. These are followed by antagonistic responses to such damage: deregulated nutrient sensing, altered mitochondrial function and cellular senescence. Finally, integrative hallmarks are possible culprits of the clinical phenotype (stem cell exhaustion and altered intercellular communication), which ultimately contribute to the clinical effects of ageing as seen in physiological loss of reserve, organ decline and reduced function. The sum of these molecular hallmarks produces the clinical picture of the elderly surgical patient: frailty, sarcopenia, anaemia, poor nutrition and a blunted immune response system. Improved understanding of the ageing processes may give rise to new biomarkers of risk or prognosis, novel treatment targets and translational approaches across disciplines that may improve outcomes. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  9. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    Science.gov (United States)

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  10. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  11. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  12. Molecular biology - Part I: Techniques, terminology, and concepts

    International Nuclear Information System (INIS)

    Brown, J. Martin

    1996-01-01

    Purpose/Objective: One of the barriers to understanding modern molecular biology is the lack of a clear understanding of the relevant terminology, techniques, and concepts. This refresher course is intended to address these deficiencies starting from a basic level. The lecture will cover many of the common uses of recombinant DNA, including gene cloning and manipulation. The goal is to enable the nonspecialist to increase his or her understanding of molecular biology in order to more fully enjoy reading current publications and/or listening seminars. Radiation biologists trying to understand a little more molecular biology should also benefit. The following concepts will be among those explained and illustrated: restriction endonucleases, gel electrophoresis, gene cloning, use of vectors such as plasmids, bacteriophage, cosmids and viruses, cDNA and genomic libraries, Southern, Northern, and Western blotting, fluorescent in situ hybridization, polymerase chain reaction (PCR), gel retardation, and reporter gene assays

  13. Cold Spring Harbor symposia on quantitative biology: Volume 51, Molecular biology of /ital Homo sapiens/

    International Nuclear Information System (INIS)

    1986-01-01

    This volume is the second part of a collection of papers submitted by the participants to the 1986 Cold Spring Harbor Symposium on Quantitative Biology entitled Molecular Biology of /ital Homo sapiens/. The 49 papers included in this volume are grouped by subject into receptors, human cancer genes, and gene therapy. (DT)

  14. pGLO Mutagenesis: A Laboratory Procedure in Molecular Biology for Biology Students

    Science.gov (United States)

    Bassiri, Eby A.

    2011-01-01

    A five-session laboratory project was designed to familiarize or increase the laboratory proficiency of biology students and others with techniques and instruments commonly used in molecular biology research laboratories and industries. In this project, the EZ-Tn5 transposon is used to generate and screen a large number of cells transformed with…

  15. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  16. Connecting Biology to Electronics: Molecular Communication via Redox Modality.

    Science.gov (United States)

    Liu, Yi; Li, Jinyang; Tschirhart, Tanya; Terrell, Jessica L; Kim, Eunkyoung; Tsao, Chen-Yu; Kelly, Deanna L; Bentley, William E; Payne, Gregory F

    2017-12-01

    Biology and electronics are both expert at for accessing, analyzing, and responding to information. Biology uses ions, small molecules, and macromolecules to receive, analyze, store, and transmit information, whereas electronic devices receive input in the form of electromagnetic radiation, process the information using electrons, and then transmit output as electromagnetic waves. Generating the capabilities to connect biology-electronic modalities offers exciting opportunities to shape the future of biosensors, point-of-care medicine, and wearable/implantable devices. Redox reactions offer unique opportunities for bio-device communication that spans the molecular modalities of biology and electrical modality of devices. Here, an approach to search for redox information through an interactive electrochemical probing that is analogous to sonar is adopted. The capabilities of this approach to access global chemical information as well as information of specific redox-active chemical entities are illustrated using recent examples. An example of the use of synthetic biology to recognize external molecular information, process this information through intracellular signal transduction pathways, and generate output responses that can be detected by electrical modalities is also provided. Finally, exciting results in the use of redox reactions to actuate biology are provided to illustrate that synthetic biology offers the potential to guide biological response through electrical cues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Implications of molecular heterogeneity for the cooperativity of biological macromolecules.

    Science.gov (United States)

    Solomatin, Sergey V; Greenfeld, Max; Herschlag, Daniel

    2011-06-01

    Cooperativity, a universal property of biological macromolecules, is typically characterized by a Hill slope, which can provide fundamental information about binding sites and interactions. We demonstrate, through simulations and single-molecule FRET (smFRET) experiments, that molecular heterogeneity lowers bulk cooperativity from the intrinsic value for the individual molecules. As heterogeneity is common in smFRET experiments, appreciation of its influence on fundamental measures of cooperativity is critical for deriving accurate molecular models.

  18. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  19. Beneficial liaisons: radiobiology meets cellular and molecular biology

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Coleman, C. Norman

    1995-01-01

    Purpose: The purpose of this course is to familiarize radiation oncologists with the concepts and terminology and molecular and cellular biology that are especially relevant to radiation oncology. The ability of radiation oncologists to remain current with the new discoveries of modern biology is essential to the development of improved therapeutic strategies and, importantly, to the proper balance between investment in technology and biology. Objective: This year, this Refresher Course is part of a three-part ''series'' including Drs. Martin Brown and Amato Giaccia. The objective is to provide continuing education for the academic and practicing radiation oncologist, physicist and biologist in the modern biologic concepts of cancer and its treatment. An effort will be made to relate these general concepts to the clinic by providing a broad view as to potential new biological treatments which might enhance the efficacy of radiation therapy. The specific focus of this Course will vary from year to year. Some of the classic radiation biology models which form the basis of clinical practice and laboratory research will be examined and 'newer' models will be presented which take into account the emerging knowledge of cellular and molecular biology. A few techniques in molecular and cellular biology will be described to the extent necessary to understand their basic concepts and their applicability. Aspects of radiation biology which will be covered include cell cycle, radiation-induced changes in the cellular phenotype, and considerations of the effect of the tumor microenvironment. It is not the expectation that the attendees will become experts in the particular subjects presented. Rather, it is the intent to increase their curiosity as to the new knowledge that is emerging and to demonstrate that these seemingly complicated areas can be understood and appreciated with a modicum of the effort

  20. Frontiers in nuclear medicine symposium: Nuclear medicine & molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document contains the abstracts from the American College of Nuclear Physicians 1993 Fall Meeting entitled, `Frontiers in Nuclear Medicine Symposium: Nuclear Medicine and Molecular Biology`. This meeting was sponsored by the US DOE, Office of Health and Environmental Research, Office of Energy Research. The program chairman was Richard C. Reba, M.D.

  1. Synthesis, biological evaluation and molecular docking studies of ...

    African Journals Online (AJOL)

    Synthesis, biological evaluation and molecular docking studies of Mannich bases derived from 1, 3, 4-oxadiazole- 2-thiones as potential urease inhibitors. ... Mannich bases (5-17) were subjected to in silico screening as urease inhibitors, using crystal structure of urease (Protein Data Bank ID: 5FSE) as a model enzyme.

  2. A discussion of molecular biology methods for protein engineering

    CSIR Research Space (South Africa)

    Zawaira, A

    2011-09-01

    Full Text Available A number of molecular biology techniques are available to generate variants from a particular start gene for eventual protein expression. The authors discuss the basic principles of these methods in a repertoire that may be used to achieve...

  3. How phenotypic plasticity made its way into molecular biology

    Indian Academy of Sciences (India)

    2009-08-03

    Aug 3, 2009 ... Phenotypic plasticity has been fashionable in recent years. It has never been absent from the studies of evolutionary biologists, although the availability of stable animal models has limited its role. Although opposed by the reductionist and deterministic approach of molecular biology, phenotypic plasticity ...

  4. molecular biology approach to the search for novel hiv proteases ...

    African Journals Online (AJOL)

    ... which could be tested in the animal models of HIV infection before subjection to clinical trials. Optimistically, the magic HIV therapeutics may be hidden in such insects and may require the application of molecular biology techniques to unravel. KEY WORDS: Antiretroviral drugs, malaria, proteases, restriction enzymes, ...

  5. Cellular and Molecular Biological Approaches to Interpreting Ancient Biomarkers

    Science.gov (United States)

    Newman, Dianne K.; Neubauer, Cajetan; Ricci, Jessica N.; Wu, Chia-Hung; Pearson, Ann

    2016-06-01

    Our ability to read the molecular fossil record has advanced significantly in the past decade. Improvements in biomarker sampling and quantification methods, expansion of molecular sequence databases, and the application of genetic and cellular biological tools to problems in biomarker research have enabled much of this progress. By way of example, we review how attempts to understand the biological function of 2-methylhopanoids in modern bacteria have changed our interpretation of what their molecular fossils tell us about the early history of life. They were once thought to be biomarkers of cyanobacteria and hence the evolution of oxygenic photosynthesis, but we now believe that 2-methylhopanoid biosynthetic capacity originated in the Alphaproteobacteria, that 2-methylhopanoids are regulated in response to stress, and that hopanoid 2-methylation enhances membrane rigidity. We present a new interpretation of 2-methylhopanes that bridges the gap between studies of the functions of 2-methylhopanoids and their patterns of occurrence in the rock record.

  6. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  7. Generative mechanistic explanation building in undergraduate molecular and cellular biology

    Science.gov (United States)

    Southard, Katelyn M.; Espindola, Melissa R.; Zaepfel, Samantha D.; Bolger, Molly S.

    2017-09-01

    When conducting scientific research, experts in molecular and cellular biology (MCB) use specific reasoning strategies to construct mechanistic explanations for the underlying causal features of molecular phenomena. We explored how undergraduate students applied this scientific practice in MCB. Drawing from studies of explanation building among scientists, we created and applied a theoretical framework to explore the strategies students use to construct explanations for 'novel' biological phenomena. Specifically, we explored how students navigated the multi-level nature of complex biological systems using generative mechanistic reasoning. Interviews were conducted with introductory and upper-division biology students at a large public university in the United States. Results of qualitative coding revealed key features of students' explanation building. Students used modular thinking to consider the functional subdivisions of the system, which they 'filled in' to varying degrees with mechanistic elements. They also hypothesised the involvement of mechanistic entities and instantiated abstract schema to adapt their explanations to unfamiliar biological contexts. Finally, we explored the flexible thinking that students used to hypothesise the impact of mutations on multi-leveled biological systems. Results revealed a number of ways that students drew mechanistic connections between molecules, functional modules (sets of molecules with an emergent function), cells, tissues, organisms and populations.

  8. [Molecular Biology for Surgical Treatment of Lung Cancer].

    Science.gov (United States)

    Suda, Kenichi; Mitsudomi, Tetsuya

    2017-01-01

    Progress in lung cancer research achieved during the last 10 years was summarized. These include identification of novel driver mutations and application of targeted therapies, resistance mechanisms to targeted therapies, and immunotherapy with immune checkpoint inhibitors. Molecular biology also affects the field of surgical treatment. Several molecular markers have been reported to predict benign/ malignant or stable/growing tumors, although far from clinical application. In perioperative period, there is a possibility of atrial natriuretic peptide to prevent cancer metastasis. As adjuvant settings, although biomarker-based cytotoxic therapies failed to show clinical efficacy, several trials are ongoing employing molecular targeted agents (EGFR-TKI or ALK-TKI) or immune checkpoint inhibitors. In clinical practice, mutational information is sometimes used to distinguish 2nd primary tumors from pulmonary metastases of previous cancers. Surgery also has important role for oligo-progressive disease during molecular targeted therapies.

  9. Time scale of diffusion in molecular and cellular biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2014-01-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function. (topical review)

  10. Time scale of diffusion in molecular and cellular biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  11. International Conference on Intelligent Systems for Molecular Biology (ISMB)

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Debra; Hibbs, Matthew; Kall, Lukas; Komandurglayavilli, Ravikumar; Mahony, Shaun; Marinescu, Voichita; Mayrose, Itay; Minin, Vladimir; Neeman, Yossef; Nimrod, Guy; Novotny, Marian; Opiyo, Stephen; Portugaly, Elon; Sadka, Tali; Sakabe, Noboru; Sarkar, Indra; Schaub, Marc; Shafer, Paul; Shmygelska, Olena; Singer, Gregory; Song, Yun; Soumyaroop, Bhattacharya; Stadler, Michael; Strope, Pooja; Su, Rong; Tabach, Yuval; Tae, Hongseok; Taylor, Todd; Terribilini, Michael; Thomas, Asha; Tran, Nam; Tseng, Tsai-Tien; Vashist, Akshay; Vijaya, Parthiban; Wang, Kai; Wang, Ting; Wei, Lai; Woo, Yong; Wu, Chunlei; Yamanishi, Yoshihiro; Yan, Changhui; Yang, Jack; Yang, Mary; Ye, Ping; Zhang, Miao

    2009-12-29

    The Intelligent Systems for Molecular Biology (ISMB) conference has provided a general forum for disseminating the latest developments in bioinformatics on an annual basis for the past 13 years. ISMB is a multidisciplinary conference that brings together scientists from computer science, molecular biology, mathematics and statistics. The goal of the ISMB meeting is to bring together biologists and computational scientists in a focus on actual biological problems, i.e., not simply theoretical calculations. The combined focus on "intelligent systems" and actual biological data makes ISMB a unique and highly important meeting, and 13 years of experience in holding the conference has resulted in a consistently well organized, well attended, and highly respected annual conference. The ISMB 2005 meeting was held June 25-29, 2005 at the Renaissance Center in Detroit, Michigan. The meeting attracted over 1,730 attendees. The science presented was exceptional, and in the course of the five-day meeting, 56 scientific papers, 710 posters, 47 Oral Abstracts, 76 Software demonstrations, and 14 tutorials were presented. The attendees represented a broad spectrum of backgrounds with 7% from commercial companies, over 28% qualifying for student registration, and 41 countries were represented at the conference, emphasizing its important international aspect. The ISMB conference is especially important because the cultures of computer science and biology are so disparate. ISMB, as a full-scale technical conference with refereed proceedings that have been indexed by both MEDLINE and Current Contents since 1996, bridges this cultural gap.

  12. PathSys: integrating molecular interaction graphs for systems biology

    Directory of Open Access Journals (Sweden)

    Raval Alpan

    2006-02-01

    Full Text Available Abstract Background The goal of information integration in systems biology is to combine information from a number of databases and data sets, which are obtained from both high and low throughput experiments, under one data management scheme such that the cumulative information provides greater biological insight than is possible with individual information sources considered separately. Results Here we present PathSys, a graph-based system for creating a combined database of networks of interaction for generating integrated view of biological mechanisms. We used PathSys to integrate over 14 curated and publicly contributed data sources for the budding yeast (S. cerevisiae and Gene Ontology. A number of exploratory questions were formulated as a combination of relational and graph-based queries to the integrated database. Thus, PathSys is a general-purpose, scalable, graph-data warehouse of biological information, complete with a graph manipulation and a query language, a storage mechanism and a generic data-importing mechanism through schema-mapping. Conclusion Results from several test studies demonstrate the effectiveness of the approach in retrieving biologically interesting relations between genes and proteins, the networks connecting them, and of the utility of PathSys as a scalable graph-based warehouse for interaction-network integration and a hypothesis generator system. The PathSys's client software, named BiologicalNetworks, developed for navigation and analyses of molecular networks, is available as a Java Web Start application at http://brak.sdsc.edu/pub/BiologicalNetworks.

  13. The contribution of neutron scattering to molecular biology

    International Nuclear Information System (INIS)

    Stuhrmann, H.B.

    1983-01-01

    About half of the atoms of living cells are hydrogens, and nearly all biological applications of neutron scattering rely on the well-known difference in the scattering lengths of the proton and the deuteron. This introduces us to a wide variety of biological problems, which are related with hydrogen in water, proteins, nucleic acids and lipids. Neutron scattering gives an answer to both structural and dynamical aspects of the system in question. With deuterium labelled samples unambiguous information about molecular structure and motion becomes accessible. The architecture of viruses, cell membranes and gene expressing molecules has become a lot clearer with neutron scattering. (author)

  14. The early years of molecular biology: personal recollections.

    Science.gov (United States)

    Holliday, Robin

    2003-05-01

    The early years of molecular biology were characterized by a strong interaction between theory and experiment. This included the elucidation of the structure of DNA itself; genetic fine structure, recombination and repair; DNA replication; template-directed protein synthesis; the universality of the triplet genetic code, and the co-linearity of the DNA sequence of structural genes and the sequence of amino acids in proteins. The principle of co-linearity was later modified when split genes were discovered. It is suggested that accurate splicing of gene transcripts might also be template directed. In 1958 Crick proposed a 'central dogma' of molecular biology stating that information could not be transmitted from proteins to DNA. Nevertheless, proteins can chemically modify DNA, and this is now known to have strong effects on gene expression.

  15. Grete Kellenberger-Gujer: Molecular biology research pioneer.

    Science.gov (United States)

    Citi, Sandra; Berg, Douglas E

    2016-01-01

    Grete Kellenberger-Gujer was a Swiss molecular biologist who pioneered fundamental studies of bacteriophage in the mid-20(th) century at the University of Geneva. Her life and career stories are reviewed here, focusing on her fundamental contributions to our early understanding of phage biology via her insightful analyses of phenomena such as the lysogenic state of a temperate phage (λ), genetic recombination, radiation's in vivo consequences, and DNA restriction-modification; on her creative personality and interactions with peers; and how her academic advancement was affected by gender, societal conditions and cultural attitudes of the time. Her story is important scientifically, putting into perspective features of the scientific community from just before the molecular biology era started through its early years, and also sociologically, in illustrating the numerous "glass ceilings" that, especially then, often hampered the advancement of creative women.

  16. Molecular biological factors in the diagnosis of cervical intraepithelial neoplasias

    Directory of Open Access Journals (Sweden)

    Yu. N. Ponomareva

    2010-01-01

    Full Text Available The authors have made a complex analysis of the molecular biological factors associated with cervical intraepithelial neoplasia. They have revealed that infection by oncogenic human papillomavirus types is associated with suppressed apoptosis and enhanced cellular proliferative activity, which can be effectively used in the diagnosis and prediction of cervical neoplasias to optimize management tac- tics and to improve the results of treatment.

  17. Current dichotomy between traditional molecular biological and omic research in cancer biology and pharmacology.

    Science.gov (United States)

    Reinhold, William C

    2015-12-10

    There is currently a split within the cancer research community between traditional molecular biological hypothesis-driven and the more recent "omic" forms or research. While the molecular biological approach employs the tried and true single alteration-single response formulations of experimentation, the omic employs broad-based assay or sample collection approaches that generate large volumes of data. How to integrate the benefits of these two approaches in an efficient and productive fashion remains an outstanding issue. Ideally, one would merge the understandability, exactness, simplicity, and testability of the molecular biological approach, with the larger amounts of data, simultaneous consideration of multiple alterations, consideration of genes both of known interest along with the novel, cross-sample comparisons among cell lines and patient samples, and consideration of directed questions while simultaneously gaining exposure to the novel provided by the omic approach. While at the current time integration of the two disciplines remains problematic, attempts to do so are ongoing, and will be necessary for the understanding of the large cell line screens including the Developmental Therapeutics Program's NCI-60, the Broad Institute's Cancer Cell Line Encyclopedia, and the Wellcome Trust Sanger Institute's Cancer Genome Project, as well as the the Cancer Genome Atlas clinical samples project. Going forward there is significant benefit to be had from the integration of the molecular biological and the omic forms or research, with the desired goal being improved translational understanding and application.

  18. A national comparison of biochemistry and molecular biology capstone experiences.

    Science.gov (United States)

    Aguanno, Ann; Mertz, Pamela; Martin, Debra; Bell, Ellis

    2015-01-01

    Recognizing the increasingly integrative nature of the molecular life sciences, the American Society for Biochemistry and Molecular Biology (ASBMB) recommends that Biochemistry and Molecular Biology (BMB) programs develop curricula based on concepts, content, topics, and expected student outcomes, rather than courses. To that end, ASBMB conducted a series of regional workshops to build a BMB Concept Inventory containing validated assessment tools, based on foundational and discipline-specific knowledge and essential skills, for the community to use. A culminating activity, which integrates the educational experience, is often part of undergraduate molecular life science programs. These "capstone" experiences are commonly defined as an attempt to measure student ability to synthesize and integrate acquired knowledge. However, the format, implementation, and approach to outcome assessment of these experiences are quite varied across the nation. Here we report the results of a nation-wide survey on BMB capstone experiences and discuss this in the context of published reports about capstones and the findings of the workshops driving the development of the BMB Concept Inventory. Both the survey results and the published reports reveal that, although capstone practices do vary, certain formats for the experience are used more frequently and similarities in learning objectives were identified. The use of rubrics to measure student learning is also regularly reported, but details about these assessment instruments are sparse in the literature and were not a focus of our survey. Finally, we outline commonalities in the current practice of capstones and suggest the next steps needed to elucidate best practices. © 2015 The International Union of Biochemistry and Molecular Biology.

  19. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1998-01-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  20. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1997-01-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology

  1. A comprehensive study into the molecular methodology and molecular biology of methanogenic Archaea

    DEFF Research Database (Denmark)

    Lange, M.; Ahring, Birgitte Kiær

    2001-01-01

    Methanogens belong to the kingdom of Euryarchaeota in the domain of Archaea. The Archaea differ from Bacteria in many aspects important to molecular work. Among these are cell wall composition, their sensitivity to antibiotics, their translation and transcription machinery, and their very strict ...... procedures. Efficient genetic manipulation systems, including shuttle and integration vector systems, have appeared for mesophilic, but not for thermophilic species within the last few years and will have a major impact on future investigations of methanogenic molecular biology....

  2. Molecular thermodynamics for cell biology as taught with boxes.

    Science.gov (United States)

    Mayorga, Luis S; López, María José; Becker, Wayne M

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of "information" and Maxwell's demons operating under nonequilibrium conditions.

  3. Molecular Thermodynamics for Cell Biology as Taught with Boxes

    Science.gov (United States)

    Mayorga, Luis S.; López, María José; Becker, Wayne M.

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be taught to rationalize why these very ordered systems proliferate actively all over our planet in seeming contradiction to the second law of thermodynamics. We propose a model consisting of boxes with different shapes that contain small balls that are in constant motion due to a stream of air blowing from below. This is a simple macroscopic system that can be easily visualized by students and that can be understood as mimicking the behavior of a set of molecules exchanging energy. With such boxes, the basic concepts of entropy, enthalpy, and free energy can be taught while reinforcing a molecular understanding of the concepts and stressing the stochastic nature of the thermodynamic laws. In addition, time-related concepts, such as reaction rates and activation energy, can be readily visualized. Moreover, the boxes provide an intuitive way to introduce the role in cellular organization of “information” and Maxwell's demons operating under nonequilibrium conditions. PMID:22383615

  4. Molecular biology in studies of oceanic primary production

    International Nuclear Information System (INIS)

    LaRoche, J.; Falkowski, P.G.; Geider, R.

    1992-01-01

    Remote sensing and the use of moored in situ instrumentation has greatly improved our ability to measure phytoplankton chlorophyll and photosynthesis on global scales with high temporal resolution. However, the interpretation of these measurements and their significance with respect to the biogeochemical cycling of carbon relies on their relationship with physiological and biochemical processes in phytoplankton. For example, the use of satellite images of surface chlorophyll to estimate primary production is often based on the functional relationship between photosynthesis and irradiance. A variety of environmental factors such as light, temperature, nutrient availability affect the photosynthesis/irradiance (P vs I) relationship in phytoplankton. We present three examples showing how molecular biology can be used to provide basic insight into the factors controlling primary productivity at three different levels of complexity: 1. Studies of light intensity regulation in unicellular alga show how molecular biology can help understand the processing of environmental cues leading to the regulation of photosynthetic gene expression. 2. Probing of the photosynthetic apparatus using molecular techniques can be used to test existing mechanistic models derived from the interpretation of physiological and biophysical measurements. 3. Exploratory work on the expression of specific proteins during nutrient-limited growth of phytoplankton may lead to the identification and production of molecular probes for field studies

  5. A comparative cellular and molecular biology of longevity database.

    Science.gov (United States)

    Stuart, Jeffrey A; Liang, Ping; Luo, Xuemei; Page, Melissa M; Gallagher, Emily J; Christoff, Casey A; Robb, Ellen L

    2013-10-01

    Discovering key cellular and molecular traits that promote longevity is a major goal of aging and longevity research. One experimental strategy is to determine which traits have been selected during the evolution of longevity in naturally long-lived animal species. This comparative approach has been applied to lifespan research for nearly four decades, yielding hundreds of datasets describing aspects of cell and molecular biology hypothesized to relate to animal longevity. Here, we introduce a Comparative Cellular and Molecular Biology of Longevity Database, available at ( http://genomics.brocku.ca/ccmbl/ ), as a compendium of comparative cell and molecular data presented in the context of longevity. This open access database will facilitate the meta-analysis of amalgamated datasets using standardized maximum lifespan (MLSP) data (from AnAge). The first edition contains over 800 data records describing experimental measurements of cellular stress resistance, reactive oxygen species metabolism, membrane composition, protein homeostasis, and genome homeostasis as they relate to vertebrate species MLSP. The purpose of this review is to introduce the database and briefly demonstrate its use in the meta-analysis of combined datasets.

  6. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  7. Diagnosis and management of differentiated thyroid cancer using molecular biology.

    Science.gov (United States)

    Witt, Robert L; Ferris, Robert L; Pribitkin, Edmund A; Sherman, Steven I; Steward, David L; Nikiforov, Yuri E

    2013-04-01

    To define molecular biology in clinical practice for diagnosis, surgical management, and prognostication of differentiated thyroid cancer. Ovid Medline 2006-2012 Manuscripts with clinical correlates. Papillary thyroid carcinomas harbor point mutations of the BRAF and RAS genes or RET/PTC rearrangements, all of which activate the mitogen-activated protein kinase pathway. These mutually exclusive mutations are found in 70% of PTC. BRAF mutation is found in 45% of papillary thyroid cancer and is highly specific. Follicular carcinomas are known to harbor RAS mutation or PAX8/PPARγ rearrangement. These mutations are also mutually exclusive and identified in 70% of follicular carcinomas. Molecular classifiers measure the expression of a large number of genes on a microarray chip providing a substantial negative predictive value pending further validation. 1) 20% to 30% of cytologically classified Follicular Neoplasms and Follicular Lesion of Undetermined Significance collectively are malignant on final pathology. Approximately 70% to 80% of thyroid lobectomies performed solely for diagnostic purposes are benign. Molecular alteration testing may reduce the number of unnecessary thyroid procedures, 2) may reduce the number of completion thyroidectomies, and 3) may lead to more individualized operative and postoperative management. Molecular testing for BRAF, RAS, RET/PTC, and PAX8/PPARγ for follicular lesion of undetermined significance and follicular neoplasm improve specificity, whereas molecular classifiers may add negative predictive value to fine needle aspiration diagnosis. Copyright © 2013 The American Laryngological, Rhinological, and Otological Society, Inc.

  8. Doctoral conceptual thresholds in cellular and molecular biology

    Science.gov (United States)

    Feldon, David F.; Rates, Christopher; Sun, Chongning

    2017-12-01

    In the biological sciences, very little is known about the mechanisms by which doctoral students acquire the skills they need to become independent scientists. In the postsecondary biology education literature, identification of specific skills and effective methods for helping students to acquire them are limited to undergraduate education. To establish a foundation from which to investigate the developmental trajectory of biologists' research skills, it is necessary to identify those skills which are integral to doctoral study and distinct from skills acquired earlier in students' educational pathways. In this context, the current study engages the framework of threshold concepts to identify candidate skills that are both obstacles and significant opportunities for developing proficiency in conducting research. Such threshold concepts are typically characterised as transformative, integrative, irreversible, and challenging. The results from interviews and focus groups with current and former doctoral students in cellular and molecular biology suggest two such threshold concepts relevant to their subfield: the first is an ability to effectively engage primary research literature from the biological sciences in a way that is critical without dismissing the value of its contributions. The second is the ability to conceptualise appropriate control conditions necessary to design and interpret the results of experiments in an efficient and effective manner for research in the biological sciences as a discipline. Implications for prioritising and sequencing graduate training experiences are discussed on the basis of the identified thresholds.

  9. [Molecular Biology on the Mechanisms of Autism Spectrum Disorder for Clinical Psychiatrists].

    Science.gov (United States)

    Makinodan, Manabu

    2015-01-01

    While, in general, a certain number of clinical psychiatrists might not be familiar with molecular biology, the mechanisms of mental illnesses have been uncovered by molecular biology for decades. Among mental illnesses, even biological psychiatrists and neuroscientists have paid less attention to the biological treatment of autism spectrum disorder (ASD) than Alzheimer's disease and schizophrenia since ASD has been regarded as a developmental disorder that was seemingly untreatable. However, multifaceted methods of molecular biology have revealed the mechanisms that would lead to the medication of ASD. In this article, how molecular biology dissects the pathobiology of ASD is described in order to announce the possibilities of biological treatment for clinical psychiatrists.

  10. Dissecting the Molecular Mechanisms of Neurodegenerative Diseases through Network Biology

    Directory of Open Access Journals (Sweden)

    Jose A. Santiago

    2017-05-01

    Full Text Available Neurodegenerative diseases are rarely caused by a mutation in a single gene but rather influenced by a combination of genetic, epigenetic and environmental factors. Emerging high-throughput technologies such as RNA sequencing have been instrumental in deciphering the molecular landscape of neurodegenerative diseases, however, the interpretation of such large amounts of data remains a challenge. Network biology has become a powerful platform to integrate multiple omics data to comprehensively explore the molecular networks in the context of health and disease. In this review article, we highlight recent advances in network biology approaches with an emphasis in brain-networks that have provided insights into the molecular mechanisms leading to the most prevalent neurodegenerative diseases including Alzheimer’s (AD, Parkinson’s (PD and Huntington’s diseases (HD. We discuss how integrative approaches using multi-omics data from different tissues have been valuable for identifying biomarkers and therapeutic targets. In addition, we discuss the challenges the field of network medicine faces toward the translation of network-based findings into clinically actionable tools for personalized medicine applications.

  11. Naumovozyma castellii: an alternative model for budding yeast molecular biology.

    Science.gov (United States)

    Karademir Andersson, Ahu; Cohn, Marita

    2017-03-01

    Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  12. Future directions for radiological physics: An interface with molecular biology

    International Nuclear Information System (INIS)

    Braby, L.A.

    1987-01-01

    Recent experiments with low energy x-rays and fast molecular ions have shown that the products of the interaction of several ionizations within a few nanometers dominate radiation effects. However, the authors still can only make assumptions about the physical and chemical nature of this initial damage. Enzymatic repair of DNA damage is another key factor, but they have little idea of what governs the success or failure (misrepair) of these processes. Unresolved problems like these dictate the future direction of radiological physics. Molecular biology techniques are being applied to determine molecular alterations which result in observed damage. Interpretation of these experiments will require new data on the physics of energy transfer to macromolecules and the stochastics of energy deposition in time. Future studies will attempt to identify the initial damage, before biological processes have amplified it. This will require a detailed understanding of the role of chromatin structure in governing gene expression, the transport of energy within macromolecules, the transport of ions and radicals in the semiordered environment near DNA strands, and many other physical characteristics within the living cell

  13. Organization of a radioisotope based molecular biology laboratory

    International Nuclear Information System (INIS)

    2006-12-01

    Polymerase chain reaction (PCR) has revolutionized the application of molecular techniques to medicine. Together with other molecular biology techniques it is being increasingly applied to human health for identifying prognostic markers and drug resistant profiles, developing diagnostic tests and genotyping systems and for treatment follow-up of certain diseases in developed countries. Developing Member States have expressed their need to also benefit from the dissemination of molecular advances. The use of radioisotopes, as a step in the detection process or for increased sensitivity and specificity is well established, making it ideally suitable for technology transfer. Many molecular based projects using isotopes for detecting and studying micro organisms, hereditary and neoplastic diseases are received for approval every year. In keeping with the IAEA's programme, several training activities and seminars have been organized to enhance the capabilities of developing Member States to employ in vitro nuclear medicine technologies for managing their important health problems and for undertaking related basic and clinical research. The background material for this publication was collected at training activities and from feedback received from participants at research and coordination meetings. In addition, a consultants' meeting was held in June 2004 to compile the first draft of this report. Previous IAEA TECDOCS, namely IAEA-TECDOC-748 and IAEA-TECDOC-1001, focused on molecular techniques and their application to medicine while the present publication provides information on organization of the laboratory, quality assurance and radio-safety. The technology has specific requirements of the way the laboratory is organized (e.g. for avoiding contamination and false positives in PCR) and of quality assurance in order to provide accurate information to decision makers. In addition while users of the technology accept the scientific rationale of using radio

  14. Biostatistical methods [Methods in molecular biology, v. 184

    National Research Council Canada - National Science Library

    Looney, Steven W

    2002-01-01

    .... In the case of genetic effects in human populations, the authors describe sophisticated statistical methods to control the overall false-positive rate when many statistical tests are used in linking...

  15. Biodiversity: molecular biological domains, symbiosis and kingdom origins

    Science.gov (United States)

    Margulis, L.

    1992-01-01

    The number of extant species of organisms is estimated to be from fewer than 3 to more than 30 x 10(6) (May, 1992). Molecular biology, comparative genetics and ultrastructural analyses provide new insights into evolutionary relationships between these species, including increasingly precise ideas of how species and higher taxa have evolved from common ancestors. Accumulation of random mutations and large macromolecular sequence change in all organisms since the Proterozoic Eon has been importantly supplemented by acquisition of inherited genomes ('symbiogenesis'). Karyotypic alterations (polyploidization and karyotypic fissioning) have been added to these other mechanisms of species origin in plants and animals during the Phanerozoic Eon. The new evolution concepts (coupled with current rapid rates of species extinction and ignorance of the extent of biodiversity) prompted this analysis of the field of systematic biology and its role in the reorganization of extant species into higher taxa. Two superkingdoms (= Domains: Prokaryotae and Eukaryotae) and five kingdoms (Monera = Procaryotae or Bacteria; Protoctista: algae, amoebae, ciliates, foraminifera, oomycetes, slime molds, etc.; Mychota: 'true' fungi; Plantae: one phylum (division) of bryophytes and nine phyla of tracheophytes; and Animalia) are recognized. Two subkingdoms comprise the monera: the great diverse lineages are Archaebacteria and Eubacteria. The criteria for classification using molecular, ultrastructural and genetic data for this scheme are mentioned. For the first time since the nineteenth century, logical, technical definitions for each group are given with their time of appearance as inferred from the fossil record in the primary scientific literature. This classification scheme, which most closely reflects the evolutionary history, molecular biology, genetics and ultrastructure of extant life, requires changes in social organization of biologists, many of whom as botanists and zoologists, still

  16. The molecular biology and diagnostics of Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Birkelund, Svend

    1992-01-01

    The rapid development of biotechnological methods provides the potential of dissecting the molecular structure of microorganisms. In this review the molecular biology of chlamydia is described. The genus Chlamydia contains three species C. trachomatis, C. psittaci, and C. pneumonia which all...... are important human pathogens. Chlamydia is obligate intracellular bacteria with a unique biphasic life cycle. The extracellularly chlamydial elementary bodies (EB) are small, metabolic inactive, infectious particles with a tight outer cell membrane. After internalization into host cells the chlamydial...... of chlamydia have not yet been found. The adhesin(s) is unknown, and no factor of importance for the inhibition of fusion between phagosome and host cell lysosomes has been described. A protein similar to the mip gene product of Legionella pneumofila may be a possible candidate for a pathogenicity factor...

  17. Parallel computing and molecular dynamics of biological membranes

    International Nuclear Information System (INIS)

    La Penna, G.; Letardi, S.; Minicozzi, V.; Morante, S.; Rossi, G.C.; Salina, G.

    1998-01-01

    In this talk I discuss the general question of the portability of molecular dynamics codes for diffusive systems on parallel computers of the APE family. The intrinsic single precision of the today available platforms does not seem to affect the numerical accuracy of the simulations, while the absence of integer addressing from CPU to individual nodes puts strong constraints on possible programming strategies. Liquids can be satisfactorily simulated using the ''systolic'' method. For more complex systems, like the biological ones at which we are ultimately interested in, the ''domain decomposition'' approach is best suited to beat the quadratic growth of the inter-molecular computational time with the number of atoms of the system. The promising perspectives of using this strategy for extensive simulations of lipid bilayers are briefly reviewed. (orig.)

  18. Molecular insights into the biology of Greater Sage-Grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Quinn, Thomas W.

    2011-01-01

    Recent research on Greater Sage-Grouse (Centrocercus urophasianus) genetics has revealed some important findings. First, multiple paternity in broods is more prevalent than previously thought, and leks do not comprise kin groups. Second, the Greater Sage-Grouse is genetically distinct from the congeneric Gunnison sage-grouse (C. minimus). Third, the Lyon-Mono population in the Mono Basin, spanning the border between Nevada and California, has unique genetic characteristics. Fourth, the previous delineation of western (C. u. phaios) and eastern Greater Sage-Grouse (C. u. urophasianus) is not supported genetically. Fifth, two isolated populations in Washington show indications that genetic diversity has been lost due to population declines and isolation. This chapter examines the use of molecular genetics to understand the biology of Greater Sage-Grouse for the conservation and management of this species and put it into the context of avian ecology based on selected molecular studies.

  19. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Science.gov (United States)

    Deschênes, Georges; Fila, Marc

    2011-01-01

    Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures. PMID:21941653

  20. Primary Molecular Disorders and Secondary Biological Adaptations in Bartter Syndrome

    Directory of Open Access Journals (Sweden)

    Georges Deschênes

    2011-01-01

    Full Text Available Bartter syndrome is a hereditary disorder that has been characterized by the association of hypokalemia, alkalosis, and the hypertrophy of the juxtaglomerular complex with secondary hyperaldosteronism and normal blood pressure. By contrast, the genetic causes of Bartter syndrome primarily affect molecular structures directly involved in the sodium reabsorption at the level of the Henle loop. The ensuing urinary sodium wasting and chronic sodium depletion are responsible for the contraction of the extracellular volume, the activation of the renin-aldosterone axis, the secretion of prostaglandins, and the biological adaptations of downstream tubular segments, meaning the distal convoluted tubule and the collecting duct. These secondary biological adaptations lead to hypokalemia and alkalosis, illustrating a close integration of the solutes regulation in the tubular structures.

  1. Research Applications of Proteolytic Enzymes in Molecular Biology

    Directory of Open Access Journals (Sweden)

    József Tőzsér

    2013-11-01

    Full Text Available Proteolytic enzymes (also termed peptidases, proteases and proteinases are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications require their use, including production of Klenow fragments, peptide synthesis, digestion of unwanted proteins during nucleic acid purification, cell culturing and tissue dissociation, preparation of recombinant antibody fragments for research, diagnostics and therapy, exploration of the structure-function relationships by structural studies, removal of affinity tags from fusion proteins in recombinant protein techniques, peptide sequencing and proteolytic digestion of proteins in proteomics. The aim of this paper is to review the molecular biological aspects of proteolytic enzymes and summarize their applications in the life sciences.

  2. New approaches in mathematical biology: Information theory and molecular machines

    International Nuclear Information System (INIS)

    Schneider, T.

    1995-01-01

    My research uses classical information theory to study genetic systems. Information theory was founded by Claude Shannon in the 1940's and has had an enormous impact on communications engineering and computer sciences. Shannon found a way to measure information. This measure can be used to precisely characterize the sequence conservation at nucleic-acid binding sites. The resulting methods, by completely replacing the use of ''consensus sequences'', provide better models for molecular biologists. An excess of conservation led us to do experimental work on bacteriophage T7 promoters and the F plasmid IncD repeats. The wonderful fidelity of telephone communications and compact disk (CD) music can be traced directly to Shannon's channel capacity theorem. When rederived for molecular biology, this theorem explains the surprising precision of many molecular events. Through connections with the Second Law of Thermodyanmics and Maxwell's Demon, this approach also has implications for the development of technology at the molecular level. Discussions of these topics are held on the internet news group bionet.info-theo. (author). (Abstract only)

  3. Molecular pathology and prostate cancer therapeutics: from biology to bedside.

    Science.gov (United States)

    Rodrigues, Daniel Nava; Butler, Lisa M; Estelles, David Lorente; de Bono, Johann S

    2014-01-01

    Prostate cancer (PCa) is the second most commonly diagnosed malignancy in men and has an extremely heterogeneous clinical behaviour. The vast majority of PCas are hormonally driven diseases in which androgen signalling plays a central role. The realization that castration-resistant prostate cancer (CRPC) continues to rely on androgen signalling prompted the development of new, effective androgen blocking agents. As the understanding of the molecular biology of PCas evolves, it is hoped that stratification of prostate tumours into distinct molecular entities, each with its own set of vulnerabilities, will be a feasible goal. Around half of PCas harbour rearrangements involving a member of the ETS transcription factor family. Tumours without this rearrangement include SPOP mutant as well as SPINK1-over-expressing subtypes. As the number of targeted therapy agents increases, it is crucial to determine which patients will benefit from these interventions and molecular pathology will be key in this respect. In addition to directly targeting cells, therapies that modify the tumour microenvironment have also been successful in prolonging the lives of PCa patients. Understanding the molecular aspects of PCa therapeutics will allow pathologists to provide core recommendations for patient management. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  4. Progress in nucleic acid research and molecular biology

    International Nuclear Information System (INIS)

    Cohn, W.E.; Moldave, K.

    1988-01-01

    Complementary Use of Chemical Modification and Site-Directed Mutagenesis to Probe Structure-Activity Relationships in Enzymes. Mechanisms of the Antiviral Action of Inteferons. Modulation of Cellular Genes by Oncogenes. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation, and Reparability. Human Ferritin Gene Expression. Molecular Biology of the Insulin Receptor. Cap-Binding Proteins of Eukaryotic Messenger RNA: Functions in Initiation and Control of Translation. Physical Monitoring of Meiotic and Mitotic Recombination in Yeast. Early Signals Underlying the Induction of the c-fos and c-myc Genes in Quiescent Fibroblasts: Studies with Bombesin and Other Growth Factors. Each chapter includes references

  5. Dictionary of microbiology and molecular biology. 2nd ed

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, P.; Sainsbury, D.

    1988-01-01

    A newly revised edition of the standard reference for microbiology and molecular biology. Includes a multitude of new terms and designations which, although widely used in the literature, are seldom defined outside the book or paper in which they first appeared. Also accounts for the changes in the meanings of older terms brought about by advances in knowledge. Definition of all terms reflects their actual usage in current journals and texts, and also given (where appropriate) are former meanings, alternative meanings, and synonyms. Includes terms from such fields as mycology, protozoology, virology, etc.

  6. Molecular genetics of glioblastomas: defining subtypes and understanding the biology.

    Science.gov (United States)

    Renault, Ilana Zalcberg; Golgher, Denise

    2015-02-01

    Despite comprehensive therapy, which includes surgery, radiotherapy, and chemotherapy, the prognosis of glioblastoma multiforme is very poor. Diagnosed individuals present an average of 12 to 18 months of life. This article provides an overview of the molecular genetics of these tumors. Despite the overwhelming amount of data available, so far little has been translated into real benefits for the patient. Because this is such a complex topic, the goal is to point out the main alterations in the biological pathways that lead to tumor formation, and how this can contribute to the development of better therapies and clinical care. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Molecular biological features of male germ cell differentiation

    Science.gov (United States)

    HIROSE, MIKA; TOKUHIRO, KEIZO; TAINAKA, HITOSHI; MIYAGAWA, YASUSHI; TSUJIMURA, AKIRA; OKUYAMA, AKIHIKO; NISHIMUNE, YOSHITAKE

    2007-01-01

    Somatic cell differentiation is required throughout the life of a multicellular organism to maintain homeostasis. In contrast, germ cells have only one specific function; to preserve the species by conveying the parental genes to the next generation. Recent studies of the development and molecular biology of the male germ cell have identified many genes, or isoforms, that are specifically expressed in the male germ cell. In the present review, we consider the unique features of male germ cell differentiation. (Reprod Med Biol 2007; 6: 1–9) PMID:29699260

  8. Building bridges between cellular and molecular structural biology.

    Science.gov (United States)

    Patwardhan, Ardan; Brandt, Robert; Butcher, Sarah J; Collinson, Lucy; Gault, David; Grünewald, Kay; Hecksel, Corey; Huiskonen, Juha T; Iudin, Andrii; Jones, Martin L; Korir, Paul K; Koster, Abraham J; Lagerstedt, Ingvar; Lawson, Catherine L; Mastronarde, David; McCormick, Matthew; Parkinson, Helen; Rosenthal, Peter B; Saalfeld, Stephan; Saibil, Helen R; Sarntivijai, Sirarat; Solanes Valero, Irene; Subramaniam, Sriram; Swedlow, Jason R; Tudose, Ilinca; Winn, Martyn; Kleywegt, Gerard J

    2017-07-06

    The integration of cellular and molecular structural data is key to understanding the function of macromolecular assemblies and complexes in their in vivo context. Here we report on the outcomes of a workshop that discussed how to integrate structural data from a range of public archives. The workshop identified two main priorities: the development of tools and file formats to support segmentation (that is, the decomposition of a three-dimensional volume into regions that can be associated with defined objects), and the development of tools to support the annotation of biological structures.

  9. A guide on instrument of biochemistry and molecular biology

    International Nuclear Information System (INIS)

    1995-10-01

    This book is about instrument on biochemistry and molecular biology, which consists of six chapters. It deals with introduction of advanced bio-instrument, common utilization and maintain, explanation of each instrument like capillary electrophoresis, interactive laser cytometer, personal computer and software, an electron microscope and DNA/RNS synthesis instrument, large equipment and special system like information system and network, analysis system for genome and large spectro graph, outside donation, examples for common utilization and appendix on data like application form for use.

  10. Molecular image-guided radiation treatment planing using biological target volume (BTV)for advanced esophageal cancer

    International Nuclear Information System (INIS)

    Tamamura, Hiroyasu; Sasaki, Makoto; Bou, Sayuri; Satou, Yoshitaka; Minami, Hiroki; Saga, Yusuke; Aoyama, Masashi; Yamamoto, Kazutaka; Kawamura, Mariko

    2016-01-01

    As the biological mechanisms of cancer cell proliferation become clear at molecular level, 'precision therapy' is attracting a great attention, in which the irradiation dose and area are determined in consideration of these molecular mechanism. For this sophisticated radiotherapy, it is essential to evaluate the tumor morphology and proliferation/activation of cancer cells before radiation treatment planning. Generally, cancer cells start to proliferate when their activity levels increase, and subsequently primary tumor or metastatic tumor that can De recognized by CT scan or MRI start to develop. Thus, when proliferation of cancer cells occurs and tumor start to develop, a vast amount of energy is required for proliferation and cancer cells obtain a part of this energy from glucose in the body. Therefore, we can get the information on the status of metabolism and density of cancer cells by PET using F-18-FDG, which is structurally similar to glucose. It is a general belief that, when conducting evaluation using F18-FDG-PET, evaluation of proliferation of cancer cells before tumor formation might be possible at the cell level by evaluating and visualizing glucose metabolism in cancer cells that proliferate in a manner that they cannot be visualized morphologically by using CT scan or MRI. Therefore, when performing sophisticated precision radiotherapy, it is important to implement radiation treatment plan including information obtained from FDG-PET imaging. Many studies have reported usefulness of FDG-PET imaging for esophagus cancer so far, indicating the efficacy of using FDG-PET imaging for radiation treatment plan of esophagus cancer as well. However, few studies have described how to use FDG-PET imaging for radiation treatment plan for esophagus cancer. In this review, therefore, we will outline the usefulness of molecular image-guided radiation treatment plan, in which biological target volume (BTV) and the actual radiation treatment plan using FDG

  11. The value of multivariate model sophistication

    DEFF Research Database (Denmark)

    Rombouts, Jeroen; Stentoft, Lars; Violante, Francesco

    2014-01-01

    We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ in their spec....... In addition to investigating the value of model sophistication in terms of dollar losses directly, we also use the model confidence set approach to statistically infer the set of models that delivers the best pricing performances.......We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ...

  12. Molecular effects of resistance elicitors from biological origin and their potential for crop protection

    Directory of Open Access Journals (Sweden)

    Lea eWiesel

    2014-11-01

    Full Text Available Plants contain a sophisticated innate immune network to prevent pathogenic microbes from gaining access to nutrients and from colonising internal structures. The first layer of inducible response is governed by the plant following the perception of microbe- or modified plant-derived molecules. As the perception of these molecules results in a plant response that can provide efficient resistance towards non-adapted pathogens they can also be described as ‘defence elicitors’. In compatible plant/microbe interactions, adapted microorganisms have means to avoid or disable this resistance response and promote virulence. However, this requires a detailed spatial and temporal response from the invading pathogens. In agricultural practice, treating plants with isolated defence elicitors in the absence of pathogens can promote plant resistance by uncoupling defence activation from the effects of pathogen virulence determinants. The plant responses to plant, bacterial, oomycete or fungal-derived elicitors are not, in all cases, universal and need elucidating prior to the application in agriculture. This review provides an overview of currently known elicitors of biological rather than synthetic origin and places their activity into a molecular context.

  13. Errant life, molecular biology, and biopower: Canguilhem, Jacob, and Foucault.

    Science.gov (United States)

    Talcott, Samuel

    2014-01-01

    This paper considers the theoretical circumstances that urged Michel Foucault to analyse modern societies in terms of biopower. Georges Canguilhem's account of the relations between science and the living forms an essential starting point for Foucault's own later explorations, though the challenges posed by the molecular revolution in biology and François Jacob's history of it allowed Foucault to extend and transform Canguilhem's philosophy of error. Using archival research into his 1955-1956 course on "Science and Error," I show that, for Canguilhem, it is inauthentic to treat a living being as an error, even if living things are capable of making errors in the domain of knowledge. The emergent molecular biology in the 1960s posed a grave challenge, however, since it suggested that individuals could indeed be errors of genetic reproduction. The paper discusses how Canguilhem and Foucault each responded to this by examining, among other texts, their respective reviews of Jacob's The Logic of the Living. For Canguilhem this was an opportunity to reaffirm the creativity of life in the living individual, which is not a thing to be evaluated, but the source of values. For Foucault, drawing on Jacob's work, this was the opportunity to develop a transformed account of valuation by posing biopower as the DNA of society. Despite their disagreements, the paper examines these three authors as different iterations of a historical epistemology attuned to errancy, error, and experimentation.

  14. The isolated Leptospira Spp. Identification by molecular biological techniques

    Directory of Open Access Journals (Sweden)

    Duangjai Suwancharoen

    2017-01-01

    Full Text Available Leptospirosis is a zoonotic disease caused by the bacteria of Leptospira spp. Identification of this bacterium relies on serotyping and genotyping. Data base for animal causative serovars in Thailand is limited. As the unknown serovars are found in the laboratory, they need to be sent overseas for referent identification. To reduce the cost, this research intended to develop a leptospiral identification method which is user–friendly and able to classify efficiently. Ten Leptospira isolations were cultured from urine samples. They were identified by three molecular biological techniques, including Pulsed-Field Gel Electrophoresis (PFGE, Variable Number Tandem Repeat (VNTR and Multilocus Sequence Typing (MLST. These methods were developed and compared to find the most suitable one for leptospiral identification. VNTR was found to be inappropriate since it could not identify the agents and it did not show the PCR product. PFGE and MLST gave the same results of the unknown 1 and 2 which were L.weilii sv Samin st Samin. Unknown 4 showed different results by each technique. Unknown 5 to 10 were likely to be L.meyeri sv Ranarum st ICF and Leptonema illini sv Illini st 3055 by PFGE but MLST could not identify the serovar. However, molecular biological technique for Leptospira identification should be done by several methods in order to confirm the result of each other.

  15. On the shoulders of giants: Molecular Biology in Public Health

    Directory of Open Access Journals (Sweden)

    Carmine Melino

    2005-03-01

    Full Text Available

    We accepted with great pleasure the invitation by professor Walter Ricciardi,our friend and colleague, to write an editorial in order to introduce this special issue dedicated to Molecular Biology in Hygiene. We are delighted for two connected reasons.

    First, Carmine,as a former professor of Hygiene,has passed his concepts of Hygiene on to his family and, despite significant difficulties, keeps working on the problems of preventive medicine in the work environment and in geriatrics. Second, Gerry, raised in an environment of hygienists, has dedicated all his professional efforts to Molecular Biology. As these two distinct experiences have constantly mixed within our family over time, we appreciate the promiscuous intermingling of these two disciplines in this thematic issue.

    The result is a useful common effort aiming at understanding the problems of diseases in the work environment and in the human environment in general.

    These problems have a profound social meaning, for which it is necessary to create an essential collaboration with scientific research.

    This is the only way to benefit human society.

  16. Review and application of group theory to molecular systems biology.

    Science.gov (United States)

    Rietman, Edward A; Karp, Robert L; Tuszynski, Jack A

    2011-06-22

    In this paper we provide a review of selected mathematical ideas that can help us better understand the boundary between living and non-living systems. We focus on group theory and abstract algebra applied to molecular systems biology. Throughout this paper we briefly describe possible open problems. In connection with the genetic code we propose that it may be possible to use perturbation theory to explore the adjacent possibilities in the 64-dimensional space-time manifold of the evolving genome. With regards to algebraic graph theory, there are several minor open problems we discuss. In relation to network dynamics and groupoid formalism we suggest that the network graph might not be the main focus for understanding the phenotype but rather the phase space of the network dynamics. We show a simple case of a C6 network and its phase space network. We envision that the molecular network of a cell is actually a complex network of hypercycles and feedback circuits that could be better represented in a higher-dimensional space. We conjecture that targeting nodes in the molecular network that have key roles in the phase space, as revealed by analysis of the automorphism decomposition, might be a better way to drug discovery and treatment of cancer.

  17. Transmission electron microscopy in molecular structural biology: A historical survey.

    Science.gov (United States)

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The emerging molecular biology toolbox for the study of long noncoding RNA biology.

    Science.gov (United States)

    Fok, Ezio T; Scholefield, Janine; Fanucchi, Stephanie; Mhlanga, Musa M

    2017-10-01

    Long noncoding RNAs (lncRNAs) have been implicated in many biological processes. However, due to the unique nature of lncRNAs and the consequential difficulties associated with their characterization, there is a growing disparity between the rate at which lncRNAs are being discovered and the assignment of biological function to these transcripts. Here we present a molecular biology toolbox equipped to help dissect aspects of lncRNA biology and reveal functionality. We outline an approach that begins with a broad survey of genome-wide, high-throughput datasets to identify potential lncRNA candidates and then narrow the focus on specific methods that are well suited to interrogate the transcripts of interest more closely. This involves the use of imaging-based strategies to validate these candidates and observe the behaviors of these transcripts at single molecule resolution in individual cells. We also describe the use of gene editing tools and interactome capture techniques to interrogate functionality and infer mechanism, respectively. With the emergence of lncRNAs as important molecules in healthy and diseased cellular function, it remains crucial to deepen our understanding of their biology.

  19. Biología molecular y cáncer de tiroides Molecular biology and thyroid cancer

    Directory of Open Access Journals (Sweden)

    Juan Cassola Santana

    2010-12-01

    Full Text Available Se realiza una revisión actualizada sobre aspectos de biología molecular que servirán de base al cirujano actuante para un mejor conocimiento del cáncer tiroideo. El objetivo radica en alertar a los cirujanos sobre las nuevas evaluaciones a las que podrán someterse los tumores de la tiroides, que implicarán cambios en toda la gama de conductas actuales en estos casos. Se señalan aspectos que sin duda cambiarán los conceptos que se manejan hoy día.A updating review is carry out on the features of molecular biology as a basis for acting surgeon to a better knowledge of thyroid cancer. The objective is to alert surgeons on the new assessments for this type of cancer, implicating changes in all the range of current behaviors in these cases. The features that will change the nowadays concepts in this respect.

  20. Molecular imaging of prostate cancer: translating molecular biology approaches into the clinical realm.

    Science.gov (United States)

    Vargas, Hebert Alberto; Grimm, Jan; F Donati, Olivio; Sala, Evis; Hricak, Hedvig

    2015-05-01

    The epidemiology of prostate cancer has dramatically changed since the introduction of prostate-specific antigen (PSA) screening in the 1980's. Most prostate cancers today are detected at early stages of the disease and are considered 'indolent'; however, some patients' prostate cancers demonstrate a more aggressive behaviour which leads to rapid progression and death. Increasing understanding of the biology underlying the heterogeneity that characterises this disease has led to a continuously evolving role of imaging in the management of prostate cancer. Functional and metabolic imaging techniques are gaining importance as the impact on the therapeutic paradigm has shifted from structural tumour detection alone to distinguishing patients with indolent tumours that can be managed conservatively (e.g., by active surveillance) from patients with more aggressive tumours that may require definitive treatment with surgery or radiation. In this review, we discuss advanced imaging techniques that allow direct visualisation of molecular interactions relevant to prostate cancer and their potential for translation to the clinical setting in the near future. The potential use of imaging to follow molecular events during drug therapy as well as the use of imaging agents for therapeutic purposes will also be discussed. • Advanced imaging techniques allow direct visualisation of molecular interactions in prostate cancer. • MRI/PET, optical and Cerenkov imaging facilitate the translation of molecular biology. • Multiple compounds targeting PSMA expression are currently undergoing clinical translation. • Other targets (e.g., PSA, prostate-stem cell antigen, GRPR) are in development.

  1. Artificial intelligence in molecular biology: a review and assessment.

    Science.gov (United States)

    Rawlings, C J; Fox, J P

    1994-06-29

    Over the past ten years, molecular biologists and computer scientists have experimented with various computational methods developed in artificial intelligence (AI). AI research has yielded a number of novel technologies, which are typified by an emphasis on symbolic (non-numerical) programming methods aimed at problems which are not amenable to classical algorithmic solutions. Prominent examples include knowledge-based and expert systems, qualitative simulation and artificial neural networks and other automated learning techniques. These methods have been applied to problems in data analysis, construction of advanced databases and modelling of biological systems. Practical results are now being obtained, notably in the recognition of active genes in genomic sequences, the assembly of physical and genetic maps and protein structure prediction. This paper outlines the principal methods, surveys the findings to date, and identifies the promising trends and current limitations.

  2. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  3. Investigating Viruses during the Transformation of Molecular Biology.

    Science.gov (United States)

    Moss, Bernard

    2017-03-10

    This Reflections article describes my early work on viral enzymes and the discovery of mRNA capping, how my training in medicine and biochemistry merged as I evolved into a virologist, the development of viruses as vaccine vectors, and how scientific and technological developments during the 1970s and beyond set the stage for the interrogation of nearly every step in the reproductive cycle of vaccinia virus (VACV), a large DNA virus with about 200 genes. The reader may view this article as a work in progress, because I remain actively engaged in research at the National Institutes of Health (NIH) notwithstanding 50 memorable years there. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  5. The molecular biology of feline immunodeficiency virus (FIV).

    Science.gov (United States)

    Kenyon, Julia C; Lever, Andrew M L

    2011-11-01

    Feline immunodeficiency virus (FIV) is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been sa significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.

  6. The molecular genetics of the telomere biology disorders.

    Science.gov (United States)

    Bertuch, Alison A

    2016-08-02

    The importance of telomere function for human health is exemplified by a collection of Mendelian disorders referred to as the telomere biology disorders (TBDs), telomeropathies, or syndromes of telomere shortening. Collectively, the TBDs cover a spectrum of conditions from multisystem disease presenting in infancy to isolated disease presentations in adulthood, most notably idiopathic pulmonary fibrosis. Eleven genes have been found mutated in the TBDs to date, each of which is linked to some aspect of telomere maintenance. This review summarizes the molecular defects that result from mutations in these genes, highlighting recent advances, including the addition of PARN to the TBD gene family and the discovery of heterozygous mutations in RTEL1 as a cause of familial pulmonary fibrosis.

  7. [Etiologic diagnosis in meningitis and encephalitis molecular biology techniques].

    Science.gov (United States)

    Conca, Natalia; Santolaya, María Elena; Farfan, Mauricio J; Cofré, Fernanda; Vergara, Alejandra; Salazar, Liliana; Torres, Juan Pablo

    2016-01-01

    The aetiological study of infections of the central nervous system has traditionally been performed using bacterial cultures and, more recently, using polymerase chain reaction (PCR) for herpes simplex virus (HSV). Bacterial cultures may not have good performance, especially in the context of patients who have received antibiotics prior to sampling, and a request for HSV only by PCR reduces the information to only one aetiological agent. The aim of this study is to determine the infectious causes of meningitis and encephalitis, using traditional microbiology and molecular biology to improve the aetiological diagnosis of these diseases. A prospective study was conducted on 19 patients with suspected meningitis, admitted to the Luis Calvo Mackenna Hospital in Santiago, Chile, from March 1, 2011 to March 30, 2012. After obtaining informed consent, the CSF samples underwent cytochemical study, conventional culture, multiplex PCR for the major producing bacterial meningitis (N. meningitidis, S. pneumoniae, H. influenzae), real-time single PCR for HSV-1 and 2, VZV, EBV, CMV, HHV-6 and enterovirus. Clinical and epidemiological data were also collected from the clinical records. Of the 19 patients analysed, 2 were diagnosed by conventional methods and 7 by adding molecular biology (increase to 37%). Three patients had meningitis due to S. pneumoniae, one due to Enterobacter cloacae, 2 patients meningoencephalitis HSV-1, and one VZV meningitis. The addition of PCR to conventional diagnostic methods in CNS infections increases the probability of finding the causal agent. This allows a more adequate, timely and rational management of the disease. Copyright © 2014. Publicado por Elsevier España, S.L.U.

  8. Molecular Thermodynamics for Cell Biology as Taught with Boxes

    Science.gov (United States)

    Mayorga, Luis S.; Lopez, Maria Jose; Becker, Wayne M.

    2012-01-01

    Thermodynamic principles are basic to an understanding of the complex fluxes of energy and information required to keep cells alive. These microscopic machines are nonequilibrium systems at the micron scale that are maintained in pseudo-steady-state conditions by very sophisticated processes. Therefore, several nonstandard concepts need to be…

  9. Molecularly Imprinted Polymers for 5-Fluorouracil Release in Biological Fluids

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2007-04-01

    Full Text Available The aim of this work was to investigate the possibility of employing Molecularly Imprinted Polymers (MIPs as a controlled release device for 5-fluorouracil (5-FU in biological fluids, especially gastrointestinal ones, compared to Non Imprinted Polymers (NIPs. MIPs were synthesized using methacrylic acid (MAA as functional monomer and ethylene glycol dimethacrylate (EGDMA as crosslinking agent. The capacity of the polymer to recognize and to bind the template selectively in both organic and aqueous media was evaluated. An in vitro release study was performed both in gastrointestinal and in plasma simulating fluids. The imprinted polymers bound much more 5-Fu than the corresponding non-imprinted ones and showed a controlled/sustained drug release, with MIPs release rate being indeed much more sustained than that obtained from NIPs. These polymers represent a potential valid system for drug delivery and this study indicates that the selective binding characteristic of molecularly imprinted polymers is promising for the preparation of novel controlled release drug dosage form.

  10. Molecular codes in biological and chemical reaction networks.

    Directory of Open Access Journals (Sweden)

    Dennis Görlich

    Full Text Available Shannon's theory of communication has been very successfully applied for the analysis of biological information. However, the theory neglects semantic and pragmatic aspects and thus cannot directly be applied to distinguish between (bio- chemical systems able to process "meaningful" information from those that do not. Here, we present a formal method to assess a system's semantic capacity by analyzing a reaction network's capability to implement molecular codes. We analyzed models of chemical systems (martian atmosphere chemistry and various combustion chemistries, biochemical systems (gene expression, gene translation, and phosphorylation signaling cascades, an artificial chemistry, and random reaction networks. Our study suggests that different chemical systems possess different semantic capacities. No semantic capacity was found in the model of the martian atmosphere chemistry, the studied combustion chemistries, and highly connected random networks, i.e. with these chemistries molecular codes cannot be implemented. High semantic capacity was found in the studied biochemical systems and in random reaction networks where the number of second order reactions is twice the number of species. We conclude that our approach can be applied to evaluate the information processing capabilities of a chemical system and may thus be a useful tool to understand the origin and evolution of meaningful information, e.g. in the context of the origin of life.

  11. Molecular Biology and Infection of Hepatitis E Virus

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2016-09-01

    Full Text Available Hepatitis E virus (HEV is a viral pathogen transmitted primarily via fecal-oral route. In humans, HEV mainly causes acute hepatitis and is responsible for large outbreaks of hepatitis across the world. The case fatality rate of HEV-induced hepatitis ranges from 0.5 to 3% in young adults and up to 30% in infected pregnant women. HEV strains infecting humans are classified into four genotypes. HEV strains from genotype 3 and 4 are zoonotic, whereas those from genotype 1 and 2 have no known animal reservoirs. Recently, notable progress has been accomplished for better understanding of HEV biology and infection, such as chronic HEV infection, in vitro cell culture system, quasi-enveloped HEV virions, functions of the HEV proteins, mechanism of HEV antagonizing host innate immunity, HEV pathogenesis and vaccine development. However, further investigation on the cross-species HEV infection, host tropism, vaccine efficacy and HEV-specific antiviral strategy is still needed. This review mainly focuses on molecular biology and infection of HEV and offers perspective new insight of this enigmatic virus.

  12. Molecular Sociology: Further Insights from Biological and Environmental Aspects

    Directory of Open Access Journals (Sweden)

    Ahed Jumah Mahmoud Al-Khatib

    2015-11-01

    Full Text Available The present study expanded our previous study in which features of molecular sociology were mentioned. In this study, we added the microbial dimensions in which it is thought that religiosity may be impacted by microbes that manipulate brains to create better conditions for their existence. This hypothesis is called “biomeme hypothesis”. We talked about other environmental impacts on human behaviors through three studies in which exposure to lead caused violent behaviors ending with arresting in prisons. By conclusion, the present study has expanded our horizon about interferences on various levels including biological and environmental impacts with our behaviors. Although we are convinced that behavior is a very diverse and complex phenomenon and cannot be understood within certain frame as either biologically or environmentally, but further new insights are possible to participate in better understanding of human behaviors. Many behaviors have their roots in religion, and we showed how religious rituals may be affected by some microbes that make to form a microenvironment within the host for microbial benefits.

  13. Embryology meets molecular biology: Deciphering the apical ectodermal ridge.

    Science.gov (United States)

    Verheyden, Jamie M; Sun, Xin

    2017-09-15

    More than sixty years ago, while studying feather tracks on the shoulder of the chick embryo, Dr. John Saunders used Nile Blue dye to stain the tissue. There, he noticed a darkly stained line of cells that neatly rims the tip of the growing limb bud. Rather than ignoring this observation, he followed it up by removing this tissue and found that it led to a striking truncation of the limb skeletons. This landmark experiment marks the serendipitous discovery of the apical ectodermal ridge (AER), the quintessential embryonic structure that drives the outgrowth of the limb. Dr. Saunders continued to lead the limb field for the next fifty years, not just through his own work, but also by inspiring the next generation of researchers through his infectious love of science. Together, he and those who followed ushered in the discovery of fibroblast growth factor (FGF) as the AER molecule. The seamless marriage of embryology and molecular biology that led to the decoding of the AER serves as a shining example of how discoveries are made for the rest of the developmental biology field. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Molecular Subgroup of Primary Prostate Cancer Presenting with Metastatic Biology.

    Science.gov (United States)

    Walker, Steven M; Knight, Laura A; McCavigan, Andrena M; Logan, Gemma E; Berge, Viktor; Sherif, Amir; Pandha, Hardev; Warren, Anne Y; Davidson, Catherine; Uprichard, Adam; Blayney, Jaine K; Price, Bethanie; Jellema, Gera L; Steele, Christopher J; Svindland, Aud; McDade, Simon S; Eden, Christopher G; Foster, Chris; Mills, Ian G; Neal, David E; Mason, Malcolm D; Kay, Elaine W; Waugh, David J; Harkin, D Paul; Watson, R William; Clarke, Noel W; Kennedy, Richard D

    2017-10-01

    Approximately 4-25% of patients with early prostate cancer develop disease recurrence following radical prostatectomy. To identify a molecular subgroup of prostate cancers with metastatic potential at presentation resulting in a high risk of recurrence following radical prostatectomy. Unsupervised hierarchical clustering was performed using gene expression data from 70 primary resections, 31 metastatic lymph nodes, and 25 normal prostate samples. Independent assay validation was performed using 322 radical prostatectomy samples from four sites with a mean follow-up of 50.3 months. Molecular subgroups were identified using unsupervised hierarchical clustering. A partial least squares approach was used to generate a gene expression assay. Relationships with outcome (time to biochemical and metastatic recurrence) were analysed using multivariable Cox regression and log-rank analysis. A molecular subgroup of primary prostate cancer with biology similar to metastatic disease was identified. A 70-transcript signature (metastatic assay) was developed and independently validated in the radical prostatectomy samples. Metastatic assay positive patients had increased risk of biochemical recurrence (multivariable hazard ratio [HR] 1.62 [1.13-2.33]; p=0.0092) and metastatic recurrence (multivariable HR=3.20 [1.76-5.80]; p=0.0001). A combined model with Cancer of the Prostate Risk Assessment post surgical (CAPRA-S) identified patients at an increased risk of biochemical and metastatic recurrence superior to either model alone (HR=2.67 [1.90-3.75]; pmolecular subgroup of primary prostate cancers with metastatic potential. The metastatic assay may improve the ability to detect patients at risk of metastatic recurrence following radical prostatectomy. The impact of adjuvant therapies should be assessed in this higher-risk population. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  15. Mathematical biology modules based on modern molecular biology and modern discrete mathematics.

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network.

  16. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to introduce students to mathematical methods beyond the interface of biology with calculus. Based on ongoing research, and designed to use the project-based-learning approach, the modules highlight applications of modern discrete mathematics and algebraic statistics to pressing problems in molecular biology. For the majority of projects, calculus is not a required prerequisite and, due to the modest amount of mathematical background needed for some of the modules, the materials can be used for an early introduction to mathematical modeling. At the same time, most modules are connected with topics in linear and abstract algebra, algebraic geometry, and probability, and they can be used as meaningful applied introductions into the relevant advanced-level mathematics courses. Open-source software is used to facilitate the relevant computations. As a detailed example, we outline a module that focuses on Boolean models of the lac operon network. PMID:20810955

  17. Does underground storage still require sophisticated studies?

    International Nuclear Information System (INIS)

    Marsily, G. de

    1997-01-01

    Most countries agree to the necessity of burying high or medium-level wastes in geological layers situated at a few hundred meters below the ground level. The advantages and disadvantages of different types of rock such as salt, clay, granite and volcanic material are examined. Sophisticated studies are lead to determine the best geological confinement but questions arise about the time for which safety must be ensured. France has chosen 3 possible sites. These sites are geologically described in the article. The final place will be proposed after a testing phase of about 5 years in an underground facility. (A.C.)

  18. STRUCTURAL BIOLOGY AND MOLECULAR MEDICINE RESEARCH PROGRAM (LSBMM)

    International Nuclear Information System (INIS)

    Eisenberg, David S.

    2008-01-01

    The UCLA-DOE Institute of Genomics and Proteomics is an organized research unit of the University of California, sponsored by the Department of Energy through the mechanism of a Cooperative Agreement. Today the Institute consists of 10 Principal Investigators and 7 Associate Members, developing and applying technologies to promote the biological and environmental missions of the Department of Energy, and 5 Core Technology Centers to sustain this work. The focus is on understanding genomes, pathways and molecular machines in organisms of interest to DOE, with special emphasis on developing enabling technologies. Since it was founded in 1947, the UCLA-DOE Institute has adapted its mission to the research needs of DOE and its progenitor agencies as these research needs have changed. The Institute started as the AEC Laboratory of Nuclear Medicine, directed by Stafford Warren, who later became the founding Dean of the UCLA School of Medicine. In this sense, the entire UCLA medical center grew out of the precursor of our Institute. In 1963, the mission of the Institute was expanded into environmental studies by Director Ray Lunt. I became the third director in 1993, and in close consultation with David Galas and John Wooley of DOE, shifted the mission of the Institute towards genomics and proteomics. Since 1993, the Principal Investigators and Core Technology Centers are entirely new, and the Institute has separated from its former division concerned with PET imaging. The UCLA-DOE Institute shares the space of Boyer Hall with the Molecular Biology Institute, and assumes responsibility for the operation of the main core facilities. Fig. 1 gives the organizational chart of the Institute. Some of the benefits to the public of research carried out at the UCLA-DOE Institute include the following: The development of publicly accessible, web-based databases, including the Database of Protein Interactions, and the ProLinks database of genomicly inferred protein function linkages

  19. Molecular biology-based diagnosis and therapy for pancreatic cancer

    International Nuclear Information System (INIS)

    Fujita, Hayato; Ohuchida, Kenoki; Mizumoto, Kazuhiro; Tanaka, Masao

    2011-01-01

    Mainly described are author's investigations of the title subject through clinical and basic diagnosis/therapeutic approach. Based on their consideration of carcinogenesis and pathological features of pancreatic cancer (PC), analysis of expression of cancer-related genes in clinically available samples like pancreatic juice and cells biopsied can result in attaining their purposes. Desmoplasia, a pathological feature of PC, possibly induces resistance to therapy and one of strategies is probably its suppression. Targeting stem cells of the mesenchyma as well as those of PC is also a strategy in future. Authors' studies have revealed that quantitation of hTERT (coding teromerase) mRNA levels in PC cells micro-dissected from cytological specimens is an accurate molecular biological diagnostic method applicable clinically. Other cancer-related genes are also useful for the diagnosis and mucin (MUC) family genes are shown to be typical ones for differentiating the precancerous PC, PC and chronic pancreatisis. Efficacy of standard gemcitabine chemotherapy can be individualized with molecular markers concerned to metabolism of the drug like dCK. Radiotherapy/radio-chemotherapy are not so satisfactory for PC treatment now. Authors have found elevated MMP-2 expression and HGF/c-Met signal activation in irradiated PC cells, which can increase the invasive capability; and stimulation of phosphorylation and activation of c-Met/MARK in co-culture of irradiated PC cells with messenchymal cells from PC, which possibly leads to progression of malignancy of PC through their interaction, of which suppression, therefore, can be a new approach to increase the efficacy of radiotherapy. Authors are making effort to introducing adenovirus therapy in clinic; exempli gratia (e.g.), the virus carrying wild type p53, a cancer-suppressive gene, induces apoptosis of PC cells often having its mutated gene. (T.T.)

  20. The New Toxicology of Sophisticated Materials: Nanotoxicology and Beyond

    Science.gov (United States)

    Maynard, Andrew D.; Warheit, David B.; Philbert, Martin A.

    2011-01-01

    It has long been recognized that the physical form of materials can mediate their toxicity—the health impacts of asbestiform materials, industrial aerosols, and ambient particulate matter are prime examples. Yet over the past 20 years, toxicology research has suggested complex and previously unrecognized associations between material physicochemistry at the nanoscale and biological interactions. With the rapid rise of the field of nanotechnology and the design and production of increasingly complex nanoscale materials, it has become ever more important to understand how the physical form and chemical composition of these materials interact synergistically to determine toxicity. As a result, a new field of research has emerged—nanotoxicology. Research within this field is highlighting the importance of material physicochemical properties in how dose is understood, how materials are characterized in a manner that enables quantitative data interpretation and comparison, and how materials move within, interact with, and are transformed by biological systems. Yet many of the substances that are the focus of current nanotoxicology studies are relatively simple materials that are at the vanguard of a new era of complex materials. Over the next 50 years, there will be a need to understand the toxicology of increasingly sophisticated materials that exhibit novel, dynamic and multifaceted functionality. If the toxicology community is to meet the challenge of ensuring the safe use of this new generation of substances, it will need to move beyond “nano” toxicology and toward a new toxicology of sophisticated materials. Here, we present a brief overview of the current state of the science on the toxicology of nanoscale materials and focus on three emerging toxicology-based challenges presented by sophisticated materials that will become increasingly important over the next 50 years: identifying relevant materials for study, physicochemical characterization, and

  1. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    International Nuclear Information System (INIS)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  2. Molecular biology of Homo sapiens: Abstracts of papers presented at the 51st Cold Spring Harbor symposium on quantitative biology

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.D.; Siniscalco, M.

    1986-01-01

    This volume contains abstracts of papers presented at the 51st Cold Springs Harbor Symposium on Quantitative Biology. The topic for this meeting was the ''Molecular Biology of Homo sapiens.'' Sessions were entitled Human Gene Map, Human Cancer Genes, Genetic Diagnosis, Human Evolution, Drugs Made Off Human Genes, Receptors, and Gene Therapy. (DT)

  3. RT-PCR Protocols - Methods in Molecular Biology

    Directory of Open Access Journals (Sweden)

    Manuela Monti

    2011-03-01

    Full Text Available “The first record I have of it, is when I made a computer file which I usually did whenever I had an idea, that would have been on the Monday when I got back, and I called it Chain Reaction.POL, meaning polymerase. That was the identifier for it and later I called the thing the Polymerase Chain Reaction, which a lot of people thought was a dumb name for it, but it stuck, and it became PCR”. With these words the Nobel prize winner, Kary Mullis, explains how he named the PCR: one of the most important techniques ever invented and currently used in molecular biology. This book “RT-PCR Protocols” covers a wide range of aspects important for the setting of a PCR experiment for both beginners and advanced users. In my opinion the book is very well structured in three different sections. The first one describes the different technologies now available, like competitive RT-PCR, nested RT-PCR or RT-PCR for cloning. An important part regards the usage of PCR in single cell mouse embryos, stressing how important...........

  4. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  5. Molecular depth profiling of organic and biological materials

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, John S. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)]. E-mail: John.Fletcher@manchester.ac.uk; Conlan, Xavier A. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Lockyer, Nicholas P. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom); Vickerman, John C. [Surface Analysis Research Centre, School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M60 1QD (United Kingdom)

    2006-07-30

    Atomic depth profiling using secondary ion mass spectrometry, SIMS, is common in the field micro-electronics; however, the generation of molecular information as a function of sample depth is difficult due to the accumulation of damage both on and beneath the sample surface. The introduction of polyatomic ion beams such as SF{sub 5} and C{sub 60} have raised the possibility of overcoming this problem as they deposit the majority of their energy in the upper surface of the sample resulting in increased sputter yields but with a complimentary reduction in sub-surface damage accumulation. In this paper we report the depth profile analysis of the bio-polymer polycaprolactone, PCL, using the polyatomic ions Au{sub 3}{sup +} and C{sub 60}{sup +} and the monoatomic Au{sup +}. Results are compared to recent analysis of a similar sample using SF{sub 5}{sup +}. C{sub 60}{sup +} depth profiling of cellulose is also demonstrated, an experiment that has been reported as unsuccessful when attempted with SF{sub 5}{sup +} implications for biological analysis are discussed.

  6. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    J. BULLA

    2007-05-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  7. GENETICS AND MOLECULAR BIOLOGY AND PIG MEAT QUALITY IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    BULLA, J.

    2007-01-01

    Full Text Available The main goals in pig breeding have for many years been to improve growth rate, feedconversion and carcass composition. There have been less efforts to improve meat qualityparameters (WHC, pH, tenderness, colour etc. but the main contribution has been areduction of stress susceptibility and PSE meat. Unfortunately, the quantitative geneticapproach has yielded few clues regarding the fundamental genetic changes that accompaniedthe selection of animal for superior carcass attributes. While mapping efforts are makingsignificant major effects on carcass and his quality composition DNA test would be availableto detect some positive or negative alleles. There are clear breed effects on meat quality,which in some cases are fully related to the presence of a single gene with major effect (RYR1,MYF4, H-FABP, LEPR, IGF2. Molecular biology methods provides excellent opportunitiesto improve meat quality in selection schemes within breeds and lines. Selection on majorgenes will not only increase average levels of quality but also decrease variability (ei increaseuniformity. The aim of this paper is to discuss there genetic and non-genetic opportunities.

  8. Single molecular biology: coming of age in DNA replication.

    Science.gov (United States)

    Liu, Xiao-Jing; Lou, Hui-Qiang

    2017-09-20

    DNA replication is an essential process of the living organisms. To achieve precise and reliable replication, DNA polymerases play a central role in DNA synthesis. Previous investigations have shown that the average rates of DNA synthesis on the leading and lagging strands in a replisome must be similar to avoid the formation of significant gaps in the nascent strands. The underlying mechanism has been assumed to be coordination between leading- and lagging-strand polymerases. However, Kowalczykowski's lab members recently performed single molecule techniques in E. coli and showed the real-time behavior of a replisome. The leading- and lagging-strand polymerases function stochastically and independently. Furthermore, when a DNA polymerase is paused, the helicase slows down in a self-regulating fail-safe mechanism, akin to a ''dead-man's switch''. Based on the real-time single-molecular observation, the authors propose that leading- and lagging-strand polymerases synthesize DNA stochastically within a Gaussian distribution. Along with the development and application of single-molecule techniques, we will witness a new age of DNA replication and other biological researches.

  9. The Molecular Biology of Feline Immunodeficiency Virus (FIV

    Directory of Open Access Journals (Sweden)

    Andrew M. L. Lever

    2011-11-01

    Full Text Available Feline immunodeficiency virus (FIV is widespread in feline populations and causes an AIDS-like illness in domestic cats. It is highly prevalent in several endangered feline species. In domestic cats FIV infection is a valuable small animal model for HIV infection. In recent years there has been a significant increase in interest in FIV, in part to exploit this, but also because of the potential it has as a human gene therapy vector. Though much less studied than HIV there are many parallels in the replication of the two viruses, but also important differences and, despite their likely common origin, the viruses have in some cases used alternative strategies to overcome similar problems. Recent advances in understanding the structure and function of FIV RNA and proteins and their interactions has enhanced our knowledge of FIV replication significantly, however, there are still many gaps. This review summarizes our current knowledge of FIV molecular biology and its similarities with, and differences from, other lentiviruses.

  10. Microgravity research in plant biological systems: Realizing the potential of molecular biology

    Science.gov (United States)

    Lewis, Norman G.; Ryan, Clarence A.

    1993-01-01

    The sole all-pervasive feature of the environment that has helped shape, through evolution, all life on Earth is gravity. The near weightlessness of the Space Station Freedom space environment allows gravitational effects to be essentially uncoupled, thus providing an unprecedented opportunity to manipulate, systematically dissect, study, and exploit the role of gravity in the growth and development of all life forms. New and exciting opportunities are now available to utilize molecular biological and biochemical approaches to study the effects of microgravity on living organisms. By careful experimentation, we can determine how gravity perception occurs, how the resulting signals are produced and transduced, and how or if tissue-specific differences in gene expression occur. Microgravity research can provide unique new approaches to further our basic understanding of development and metabolic processes of cells and organisms, and to further the application of this new knowledge for the betterment of humankind.

  11. Abstracts of the 26. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 26. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  12. Abstracts of the 27. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology; Resumos da 27. reuniao anual da Sociedade Brasileira de Bioquimica e Biologia Molecular

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    This meeting was about biochemistry and molecular biology. It was discussed topics related to bio energetic, channels, transports, biotechnology, metabolism, cellular biology, immunology, toxicology, photobiology and pharmacology.

  13. Just Working with the Cellular Machine: A High School Game for Teaching Molecular Biology

    Science.gov (United States)

    Cardoso, Fernanda Serpa; Dumpel, Renata; Gomes da Silva, Luisa B.; Rodrigues, Carlos R.; Santos, Dilvani O.; Cabral, Lucio Mendes; Castro, Helena C.

    2008-01-01

    Molecular biology is a difficult comprehension subject due to its high complexity, thus requiring new teaching approaches. Herein, we developed an interdisciplinary board game involving the human immune system response against a bacterial infection for teaching molecular biology at high school. Initially, we created a database with several…

  14. Digital learning material for experimental design and model building in molecular biology

    NARCIS (Netherlands)

    Aegerter-Wilmsen, T.

    2005-01-01

    Designing experimental approaches is a major cognitive skill in molecular biology research, and building models, including quantitative ones, is a cognitive skill which is rapidly gaining importance. Since molecular biology education at university level is aimed at educating future researchers, we

  15. Molecular eyes: proteins that transform light into biological information

    NARCIS (Netherlands)

    Kennis, J.T.M.; Mathes, T.

    2013-01-01

    Most biological photoreceptors are protein/cofactor complexes that induce a physiological reaction upon absorption of a photon. Therefore, these proteins represent signal converters that translate light into biological information. Researchers use this property to stimulate and study various

  16. Molecular Biology of Pancreatic Cancer: How Useful Is It in Clinical Practice?

    OpenAIRE

    George H Sakorafas; Vasileios Smyrniotis

    2012-01-01

    Context During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. Objective To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Methods Reports about clinical implications of molecular bio...

  17. Abstracts of the 30. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    2001-01-01

    Several aspects concerning biochemistry and molecular biology of either animals, plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  18. Abstracts of the 29. annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    2000-01-01

    Several aspects concerning biochemistry and molecular biology of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay and nuclear magnetic resonance are the most applied techniques

  19. Abstracts of the 28. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1999-01-01

    Biochemistry, genetic and molecular biology aspects of either animals (including man), plants and microorganisms are studied. Topics such as cell membrane structures (including receptors), enzymatic assays, biological pathways, structural chemical analysis, metabolism, biological functions are focused. The use of radiolabelled compounds (radioassay, radioenzymatic assay, radioreceptor assay) and nuclear magnetic resonance are the most applied techniques

  20. Molecular biology of pancreatic cancer: how useful is it in clinical practice?

    Science.gov (United States)

    Sakorafas, George H; Smyrniotis, Vasileios

    2012-07-10

    During the recent two decades dramatic advances of molecular biology allowed an in-depth understanding of pancreatic carcinogenesis. It is currently accepted that pancreatic cancer has a genetic component. The real challenge is now how these impressive advances could be used in clinical practice. To critically present currently available data regarding clinical application of molecular biology in pancreatic cancer. Reports about clinical implications of molecular biology in patients with pancreatic cancer were retrieved from PubMed. These reports were selected on the basis of their clinical relevance, and the data of their publication (preferentially within the last 5 years). Emphasis was placed on reports investigating diagnostic, prognostic, and therapeutic implications. Molecular biology can be used to identify individuals at high-risk for pancreatic cancer development. Intensive surveillance is indicated in these patients to detect pancreatic neoplasia ideally at a preinvasive stage, when curative resection is still possible. Molecular biology can also be used in the diagnosis of pancreatic cancer, with molecular analysis on samples of biologic material, such as serum or plasma, duodenal fluid or preferentially pure pancreatic juice, pancreatic cells or tissue, and stools. Molecular indices have also prognostic significance. Finally, molecular biology may have therapeutic implications by using various therapeutic approaches, such as antiangiogenic factors, purine synthesis inhibitors, matrix metalloproteinase inhibitors, factors modulating tumor-stroma interaction, inactivation of the hedgehog pathway, gene therapy, oncolytic viral therapy, immunotherapy (both passive as well as active) etc. Molecular biology may have important clinical implications in patients with pancreatic cancer and represents one of the most active areas on cancer research. Hopefully clinical applications of molecular biology in pancreatic cancer will expand in the future, improving the

  1. 2012 Gordon Research Conference, Plant molecular biology, July 15-20 2012

    Energy Technology Data Exchange (ETDEWEB)

    Sussman, Michael R. [Univ. of Wisconsin, Madison, WI (United States)

    2013-07-20

    The 2012 Gordon Conference on Plant Molecular Biology will present cutting-edge research on molecular aspects of plant growth and development, with particular emphasis on recent discoveries in molecular mechanisms involved with plant signaling systems. The Conference will feature a wide range of topics in plant molecular biology including hormone receptors and early events in hormone signaling, plant perception of and response to plant pathogen and symbionts, as well as technological and biological aspects of epigenomics particularly as it relates to signaling systems that regulate plant growth and development. Genomic approaches to plant signaling will be emphasized, including genomic profiling technologies for quantifying various biological subsystems, such as the epigenome, transcriptome, phosphorylome, and metabolome. The meeting will include an important session devoted to answering the question, "What are the biological and technological limits of plant breeding/genetics, and how can they be solved"?

  2. The molecular biological characteristics of childhood thyroid carcinoma

    International Nuclear Information System (INIS)

    Cherstvoy, E; Nerovnya, A.; Voskoboinic, L.; Bogdanova, T.; Tronko, N.D.; Tonnachera, M.; Dumont, J.E.; Lamy, F.; Keller, G.; Boehm, J.; Hoefler, H.; Vecchio, G.C.; Viglietto, G.; Chiappetta, G.; Williams, G.H.; Thomas, G.A.; Williams, E.D.

    1996-01-01

    We have used molecular biology to study mutation and expression of key oncogenes in childhood thyroid carcinomas from Belarus and Ukraine. All cases were histologically verified by two or more pathologists including at least one from the CIS and one from the EU. We chose to study six genes which have been shown to be involved in thyroid carcinogenesis in adults: ret. Ha, Ki and N ras genes, p53 and the TSH receptor. Expression of the ret oncogene, which has been shown to be activated by translocation in a proportion of papillary carcinomas has been studied by two independent methods. The first, used by the Cambridge group uses RT-PCR to identify the expression of the tyrosine kinase domain of the gene; as the gene is normally silent in follicular cells, this approach allows demonstration of activation of ret, but does not identify the particular translocation involved. The second approach, used by the Naples group, also uses RT-PCR, but amplifies across the breakpoint of each of the three translocations already identified to provide information on the proportion of tumors which express the individual translocations of this gene. Mutations in the TSH receptor, a key modulator of thyroid follicular growth have been sought by the Brussels group using SSCP and direct sequencing. The Munich group have analyzed the samples for presence of mutation in p53, which is believed to play a role in genetic instability which is a features of carcinomas derived from may different tissues. Mutations in the common sites of the ras oncogenes have been studied by the Cambridge group. Analysis of 26 papillary carcinomas so far studied has shown that mutations in the TSH receptor and in p53 do not play a significant role in the genesis of the tumours studied. The proportion of tumours showing ret expression does not differ significantly from that found in a control non exposed population from the UK. However, the pathological study shows that nearly all the increased number of thyroid

  3. Doctoral Conceptual Thresholds in Cellular and Molecular Biology

    Science.gov (United States)

    Feldon, David F.; Rates, Christopher; Sun, Chongning

    2017-01-01

    In the biological sciences, very little is known about the mechanisms by which doctoral students acquire the skills they need to become independent scientists. In the postsecondary biology education literature, identification of specific skills and effective methods for helping students to acquire them are limited to undergraduate education. To…

  4. Systems biology for molecular life sciences and its impact in biomedicine.

    Science.gov (United States)

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  5. A Comprehensive Experiment for Molecular Biology: Determination of Single Nucleotide Polymorphism in Human REV3 Gene Using PCR-RFLP

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-01-01

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of…

  6. Practices and Exploration on Competition of Molecular Biological Detection Technology among Students in Food Quality and Safety Major

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-01-01

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula…

  7. Introduction to the cellular and molecular biology of cancer

    National Research Council Canada - National Science Library

    Selby, P. (Peter); Knowles, Margaret A

    2005-01-01

    ... A. Prigent 186xii CONTENTS 12 Apoptosis: molecular physiology and significance for cancer therapeutics Dean A. Fennell 210 13 Mechanisms of viral carcinogenesis Paul Farrell 229 14 Cytokines and canc...

  8. Introducing Molecular Biology to Environmental Engineers through Development of a New Course.

    Science.gov (United States)

    Oerther, Daniel B.

    2002-01-01

    Introduces a molecular biology course designed for environmental engineering majors using 16S ribosomal ribonucleic acid-targeted technology that allows students to identify and study microorganisms in bioreactor environments. (Contains 17 references.) (YDS)

  9. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    Science.gov (United States)

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  10. Structural Molecular Biology-A Personal Reflection on the Occasion of John Kendrew's 100th Birthday.

    Science.gov (United States)

    Cramer, Patrick

    2017-08-18

    Here, I discuss the development and future of structural molecular biology, concentrating on the eukaryotic transcription machinery and reflecting on John Kendrew's legacy from a personal perspective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Endothelial microparticles: Sophisticated vesicles modulating vascular function

    Science.gov (United States)

    Curtis, Anne M; Edelberg, Jay; Jonas, Rebecca; Rogers, Wade T; Moore, Jonni S; Syed, Wajihuddin; Mohler, Emile R

    2015-01-01

    Endothelial microparticles (EMPs) belong to a family of extracellular vesicles that are dynamic, mobile, biological effectors capable of mediating vascular physiology and function. The release of EMPs can impart autocrine and paracrine effects on target cells through surface interaction, cellular fusion, and, possibly, the delivery of intra-vesicular cargo. A greater understanding of the formation, composition, and function of EMPs will broaden our understanding of endothelial communication and may expose new pathways amenable for therapeutic manipulation. PMID:23892447

  12. 2012 Gordon Research Conference on Cellular and Molecular Fungal Biology, Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Judith [Univ. of Minnesota, Minneapolis, MN (United States)

    2012-06-22

    The Gordon Research Conference on Cellular and Molecular Fungal Biology was held at Holderness School, Holderness New Hampshire, June 17 - 22, 2012. The 2012 Gordon Conference on Cellular and Molecular Fungal Biology (CMFB) will present the latest, cutting-edge research on the exciting and growing field of molecular and cellular aspects of fungal biology. Topics will range from yeast to filamentous fungi, from model systems to economically important organisms, and from saprophytes and commensals to pathogens of plants and animals. The CMFB conference will feature a wide range of topics including systems biology, cell biology and morphogenesis, organismal interactions, genome organisation and regulation, pathogenesis, energy metabolism, biomass production and population genomics. The Conference was well-attended with 136 participants. Gordon Research Conferences does not permit publication of meeting proceedings.

  13. StrateGene: object-oriented programming in molecular biology.

    Science.gov (United States)

    Carhart, R E; Cash, H D; Moore, J F

    1988-03-01

    This paper describes some of the ways that object-oriented programming methodologies have been used to represent and manipulate biological information in a working application. When running on a Xerox 1100 series computer, StrateGene functions as a genetic engineering workstation for the management of information about cloning experiments. It represents biological molecules, enzymes, fragments, and methods as classes, subclasses, and members in a hierarchy of objects. These objects may have various attributes, which themselves can be defined and classified. The attributes and their values can be passed from the classes of objects down to the subclasses and members. The user can modify the objects and their attributes while using them. New knowledge and changes to the system can be incorporated relatively easily. The operations on the biological objects are associated with the objects themselves. This makes it easier to invoke them correctly and allows generic operations to be customized for the particular object.

  14. Cloning Yeast Actin cDNA Leads to an Investigative Approach for the Molecular Biology Laboratory

    Science.gov (United States)

    Black, Michael W.; Tuan, Alice; Jonasson, Erin

    2008-01-01

    The emergence of molecular tools in multiple disciplines has elevated the importance of undergraduate laboratory courses that train students in molecular biology techniques. Although it would also be desirable to provide students with opportunities to apply these techniques in an investigative manner, this is generally not possible in the…

  15. Tangible Models and Haptic Representations Aid Learning of Molecular Biology Concepts

    Science.gov (United States)

    Johannes, Kristen; Powers, Jacklyn; Couper, Lisa; Silberglitt, Matt; Davenport, Jodi

    2016-01-01

    Can novel 3D models help students develop a deeper understanding of core concepts in molecular biology? We adapted 3D molecular models, developed by scientists, for use in high school science classrooms. The models accurately represent the structural and functional properties of complex DNA and Virus molecules, and provide visual and haptic…

  16. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  17. In vitro studies. Contribution of radioactive marking to molecular biology development

    International Nuclear Information System (INIS)

    Sentenac, A.

    1997-01-01

    The spectacular and rapid development of molecular biology is essentially related to the utilization of marked molecules which leads to quantitative and qualitative information; the use of radioactive tracers allowed for the observation of the biosynthesis of biological polymers, and thus, for example, the formation of DNA, RNA or proteins. A historical review of the great discoveries in this field, is presented

  18. Molecular biology and its applications in orthodontics and oral and maxillofacial surgery

    NARCIS (Netherlands)

    Ren, Yjin

    2005-01-01

    : Molecular biology is an exciting, rapidly expanding field, which has enabled enormously greater understanding of the biology of diseases and malfunctions in many fields. It chiefly concerns itself with understanding the interactions between the various systems of a cell, including the

  19. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    Science.gov (United States)

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  20. Egyptian Journal of Biochemistry and Molecular Biology - Vol 31, No ...

    African Journals Online (AJOL)

    Molecular evaluation of Glypican 3 gene expression in Egyptian patients with Hepatocellular carcinoma · EMAIL FULL TEXT EMAIL FULL TEXT DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT. SA El-Kafrawy, M El-Daly, T Salem, M Abdel-Hamid, MA Hola, IH El-Sayed, 159-172 ...

  1. Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

  2. Cryogenic Collection of Complete Subsurface Samples for Molecular Biological Analysis

    Science.gov (United States)

    2012-05-01

    276.5318.1568 Moser, D. P., J. K. Fredrickson, D. R. Geist, E. V. Arntzen, A. D. Peacock , S.-M. W. Li, T. Spadoni, et al. (2003). Biogeochemical...Influencing Amplification Efficiency and Allele Drop-out in Single Cell PCR: Implications for Preimplantation Genetic Diagnosis. Molecular Human Reproduction

  3. Recent advances in yeast molecular biology: recombinant DNA

    International Nuclear Information System (INIS)

    1982-09-01

    Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis

  4. Using Whole Mount in situ Hybridization to Link Molecular and Organismal Biology

    OpenAIRE

    Jacobs, Nicole L.; Albertson, R. Craig; Wiles, Jason R.

    2011-01-01

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the ...

  5. A Biological Porin Engineered into a Molecular, Nanofluidic Diode

    NARCIS (Netherlands)

    Miedema, Henk; Vrouenraets, Maarten; Wierenga, Jenny; Meijberg, Wim; Robillard, George; Eisenberg, Bob

    2007-01-01

    We changed the nonrectifying biological porin OmpF into a nanofluidic diode. To that end, we engineered a pore that possesses two spatially separated selectivity filters of opposite charge where either cations or anions accumulate. The observed current inhibition under applied reverse bias voltage

  6. Teaching Cell and Molecular Biology for Gender Equity

    Science.gov (United States)

    Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel

    2006-01-01

    Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…

  7. Towards molecular medicine: a case for a biological periodic table.

    Science.gov (United States)

    Gawad, Charles

    2005-01-01

    The recently amplified pace of development in the technologies to study both normal and aberrant cellular physiology has allowed for a transition from the traditional reductionist approaches to global interrogations of human biology. This transformation has created the anticipation that we will soon more effectively treat or contain most types of diseases through a 'systems-based' approach to understanding and correcting the underlying etiology of these processes. However, to accomplish these goals, we must first have a more comprehensive understanding of all the elements involved in human cellular physiology, as well as why and how they interact. With the vast number of biological components that have and are being discovered, creating methods with modern computational techniques to better organize biological elements is the next requisite step in this process. This article aims to articulate the importance of the organization of chemical elements into a periodic table had on the conversion of chemistry into a quantitative, translatable science, as well as how we can apply the lessons learned in that transition to the current transformation taking place in biology.

  8. [Progress in molecular biology of a semi-mangrove, Millettia pinnata].

    Science.gov (United States)

    Huang, Jianzi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2015-04-01

    Millettia pinnata L. is a leguminous tree with great potential in biodiesel applications and also a typical semi-mangrove. In this review, we presented several aspects about the recent research progress in molecular biology of M. pinnata. We descrived several types of molecular markers used to assess the genetic diversity and phylogeny of this species, genome and transcriptome analyses based on high-throughput sequencing platform accomplished for this species, and several gene and genomic sequences of this species isolated for further research. Finally, based on the current research progress, we proposed some orientations for future molecular biology research on M. pinnata.

  9. Sophisticated digestive systems in early arthropods.

    Science.gov (United States)

    Vannier, Jean; Liu, Jianni; Lerosey-Aubril, Rudy; Vinther, Jakob; Daley, Allison C

    2014-05-02

    Understanding the way in which animals diversified and radiated during their early evolutionary history remains one of the most captivating of scientific challenges. Integral to this is the 'Cambrian explosion', which records the rapid emergence of most animal phyla, and for which the triggering and accelerating factors, whether environmental or biological, are still unclear. Here we describe exceptionally well-preserved complex digestive organs in early arthropods from the early Cambrian of China and Greenland with functional similarities to certain modern crustaceans and trace these structures through the early evolutionary lineage of fossil arthropods. These digestive structures are assumed to have allowed for more efficient digestion and metabolism, promoting carnivory and macrophagy in early arthropods via predation or scavenging. This key innovation may have been of critical importance in the radiation and ecological success of Arthropoda, which has been the most diverse and abundant invertebrate phylum since the Cambrian.

  10. Biologia molecular do câncer cervical Molecular biology of cervical cancer

    Directory of Open Access Journals (Sweden)

    Waldemar Augusto Rivoire

    2006-01-01

    . How HPV immortalizes cervical cells is not fully understood. Advances have been made in the application of molecular biology techniques in the understanding of this mechanism. Once established, these techniques will lead to a better assessment of cervical neoplasias and help the development of new therapies, hopefully less invasive and more effective.

  11. The role and future of in-vitro isotopic techniques in molecular biology

    International Nuclear Information System (INIS)

    Dar, L.; Khan, B.K.

    2004-01-01

    In this review we discuss isotopic in-vitro molecular biology techniques, and their advantages and applications. Isotopic methods have helped to shape molecular biology since its early days. Despite the availability of non-isotopic alternatives, isotopic methods continue to be used in molecular biology due to certain advantages, especially related to sensitivity and cost-effectiveness. Numerous techniques involving the use of isotopes help in the characterization of genes, including the detection of single nucleotide polymorphisms (SNPs) or mutations. Other isotopic molecular methods are utilized to study the phenotypic expression of gene sequences and their mutation. Emerging branches of molecular biology like functional genomics and proteomics are extremely important for exploiting the rapidly growing data derived from whole genomic sequencing of human and microbial genomes. Recent molecular biology applications like the high-throughput array techniques are relevant in the context of both structural and functional genomics. In proteomics, stable isotope based technology has found applications in the analysis of protein structure and interactions. (author)

  12. Molecular biology applications to infectious diseases diagnostic; Aplicaciones de la Biologica Molecular al diagnostico de enfermedades infecciosas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This project goes directed to the applications of the techniques of molecular biology in hepatitis virus.A great advance of these techniques it allows its application to the diagnose molecular and it becomes indispensable to have these fundamental tools in the field of the Health Public for the detection precocious, pursuit of the treatment, the one predicts and the evolution of the patient hepatitis bearing virus technical.Use of molecular biology to increase the handling and the control of the patients with hepatitis B and C and to detect an adult numbers of positive cases by means of the training and integration of all the countries participating.Implement the technique of PCR to identify the virus of the hepatitis B and C,implement quantification methods and genotipification for these virus.

  13. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  14. Inflammation to cancer: The molecular biology in the pancreas (Review)

    OpenAIRE

    LING, SUNBIN; FENG, TINGTING; JIA, KAIQI; TIAN, YU; LI, YAN

    2014-01-01

    Inflammatory responses are known to be correlated with cancer initiation and progression, and exploration of the route from inflammation to cancer makes a great contribution in elucidating the mechanisms underlying cancer development. Pancreatic cancer (PC) is a lethal disease with a low radical-resection rate and a poor prognosis. As chronic pancreatitis is considered to be a significant etiological factor for PC development, the current review aims to describe the molecular pathways from in...

  15. Oncomirs: from tumor biology to molecularly targeted anticancer strategies.

    Science.gov (United States)

    Mocellin, Simone; Pasquali, Sandro; Pilati, Pierluigi

    2009-01-01

    Deregulation of microRNA (miRNA) promotes carcinogenesis, as these molecules can act as oncogenes or tumor suppressor genes. Here we provide an overview of miRNA biology, discuss the most recent findings on miRNA and cancer development/progression, and report on how tumor-related miRNAs (oncomirs) are being used to develop novel cancer specific therapeutic approaches.

  16. Research Applications of Proteolytic Enzymes in Molecular Biology

    OpenAIRE

    Mótyán, János András; Tóth, Ferenc; Tőzsér, József

    2013-01-01

    Proteolytic enzymes (also termed peptidases, proteases and proteinases) are capable of hydrolyzing peptide bonds in proteins. They can be found in all living organisms, from viruses to animals and humans. Proteolytic enzymes have great medical and pharmaceutical importance due to their key role in biological processes and in the life-cycle of many pathogens. Proteases are extensively applied enzymes in several sectors of industry and biotechnology, furthermore, numerous research applications ...

  17. Essential concepts and underlying theories from physics, chemistry, and mathematics for "biochemistry and molecular biology" majors.

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry, and Mathematics that all Biochemistry or Molecular Biology majors must understand to complete their major coursework. The allied fields working group created a survey to validate foundational concepts from Physics, Chemistry, and Mathematics identified from participant feedback at various workshops. One-hundred twenty participants responded to the survey and 68% of the respondents answered yes to the question: "We have identified the following as the core concepts and underlying theories from Physics, Chemistry, and Mathematics that Biochemistry majors or Molecular Biology majors need to understand after they complete their major courses: 1) mechanical concepts from Physics, 2) energy and thermodynamic concepts from Physics, 3) critical concepts of structure from chemistry, 4) critical concepts of reactions from Chemistry, and 5) essential Mathematics. In your opinion, is the above list complete?" Respondents also delineated subcategories they felt should be included in these broad categories. From the results of the survey and this analysis the allied fields working group constructed a consensus list of allied fields concepts, which will help inform Biochemistry and Molecular Biology educators when considering the ASBMB recommended curriculum for Biochemistry or Molecular Biology majors and in the development of appropriate assessment tools to gauge student understanding of how these concepts relate to biochemistry and molecular biology. © 2013 by The International Union of Biochemistry and Molecular Biology.

  18. Does Investors' Sophistication Affect Persistence and Pricing of Discretionary Accruals?

    OpenAIRE

    Lanfeng Kao

    2007-01-01

    This paper examines whether the sophistication of market investors influences management's strategy on discretionary accounting choice, and thus changes the persistence of discretionary accruals. The results show that the persistence of discretionary accruals for firms face with naive investors is lower than that for firms face with sophisticated investors. The results also demonstrate that sophisticated investors indeed incorporate the implications of current earnings components into future ...

  19. Combining Radiation Epidemiology With Molecular Biology-Changing From Health Risk Estimates to Therapeutic Intervention.

    Science.gov (United States)

    Abend, Michael; Port, Matthias

    2016-08-01

    The authors herein summarize six presentations dedicated to the key session "molecular radiation epidemiology" of the ConRad meeting 2015. These presentations were chosen in order to highlight the promise when combining conventional radiation epidemiology with molecular biology. Conventional radiation epidemiology uses dose estimates for risk predictions on health. However, combined with molecular biology, dose-dependent bioindicators of effect hold the promise to improve clinical diagnostics and to provide target molecules for potential therapeutic intervention. One out of the six presentations exemplified the use of radiation-induced molecular changes as biomarkers of exposure by measuring stabile chromosomal translocations. The remaining five presentations focused on molecular changes used as bioindicators of the effect. These bioindicators of the effect could be used for diagnostic purposes on colon cancers (genomic instability), thyroid cancer (CLIP2), or head and neck squamous cell cancers. Therapeutic implications of gene expression changes were examined in Chernobyl thyroid cancer victims and Mayak workers.

  20. Two-dimensional engineering of molecular nanoparticles for biological applications

    OpenAIRE

    Tatkiewicz, Witold Ireneusz

    2015-01-01

    El trabajo realizado en esta tesis se ha centrado en dos sistemas de nanopartículas moleculares que tienen un uso potencial en el campo de la nanomedicina: i) vesículas lipídicas – entidades supramoleculares que se proponen como sistemas de liberación de fármacos y ii) cuerpos de inclusión (Inclusion Bodies, IBs) – nanopartículas formadas por agregados proteicos. La primiera parte del trabajo se ha centrado en el estudio comparativo de sistemas vesiculares preparados por i) diferentes metodol...

  1. Molecular biology and immunology of head and neck cancer.

    Science.gov (United States)

    Guo, Theresa; Califano, Joseph A

    2015-07-01

    In recent years, our knowledge and understanding of head and neck squamous cell carcinoma (HNSCC) has expanded dramatically. New high-throughput sequencing technologies have accelerated these discoveries since the first reports of whole-exome sequencing of HNSCC tumors in 2011. In addition, the discovery of human papillomavirus in relationship with oropharyngeal squamous cell carcinoma has shifted our molecular understanding of the disease. New investigation into the role of immune evasion in HNSCC has also led to potential novel therapies based on immune-specific systemic therapies. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Molecular biology of castration-resistant prostate cancer].

    Science.gov (United States)

    Doucet, Ludovic; Terrisse, Safae; Gauthier, Hélène; Pouessel, Damien; Le Maignan, Christine; Teixeira, Luis; Culine, Stéphane

    2015-06-01

    Castration-resistant prostate cancer was subjected to a paradigm switch from hormone resistance to androgen deprivation therapy resistance during the last decade. Indeed, new therapeutics targeting the androgen receptor showed clinical efficacy in patients with progressive disease under castration. Thus, it is a proof that the AR remains a dominant driver of oncogenesis in earlier-called hormone resistant prostate cancer. This review summarizes the molecular mechanisms involved in castration-resistant prostate cancer. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  3. Inflammation to cancer: The molecular biology in the pancreas (Review).

    Science.gov (United States)

    Ling, Sunbin; Feng, Tingting; Jia, Kaiqi; Tian, Yu; Li, Yan

    2014-06-01

    Inflammatory responses are known to be correlated with cancer initiation and progression, and exploration of the route from inflammation to cancer makes a great contribution in elucidating the mechanisms underlying cancer development. Pancreatic cancer (PC) is a lethal disease with a low radical-resection rate and a poor prognosis. As chronic pancreatitis is considered to be a significant etiological factor for PC development, the current review aims to describe the molecular pathways from inflammation to pancreatic carcinogenesis, in support of the strategies for the prevention, diagnosis and treatment of PC.

  4. Modeling human risk: Cell & molecular biology in context

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response.

  5. Modeling human risk: Cell ampersand molecular biology in context

    International Nuclear Information System (INIS)

    1997-06-01

    It is anticipated that early in the next century manned missions into outer space will occur, with a mission to Mars scheduled between 2015 and 2020. However, before such missions can be undertaken, a realistic estimation of the potential risks to the flight crews is required. One of the uncertainties remaining in this risk estimation is that posed by the effects of exposure to the radiation environment of outer space. Although the composition of this environment is fairly well understood, the biological effects arising from exposure to it are not. The reasons for this are three-fold: (1) A small but highly significant component of the radiation spectrum in outer space consists of highly charged, high energy (HZE) particles which are not routinely experienced on earth, and for which there are insufficient data on biological effects; (2) Most studies on the biological effects of radiation to date have been high-dose, high dose-rate, whereas in space, with the exception of solar particle events, radiation exposures will be low-dose, low dose-rate; (3) Although it has been established that the virtual absence of gravity in space has a profound effect on human physiology, it is not clear whether these effects will act synergistically with those of radiation exposure. A select panel will evaluate the utilizing experiments and models to accurately predict the risks associated with exposure to HZE particles. Topics of research include cellular and tissue response, health effects associated with radiation damage, model animal systems, and critical markers of Radiation response

  6. MOLECULAR BIOLOGICAL FACTORS IN THE PREDICTION OF PROSTATE CANCER

    Directory of Open Access Journals (Sweden)

    S. V. Vtorushin

    2017-01-01

    Full Text Available Purpose: to review the available data on molecular-genetic diagnostic and prognostic markers in prostate cancer. Material and methods. The following electronic databases were used for our systematic review: Medline, Cochrane Library and Elibrary. Of 540 studies, 61 were used for our systematic review. Results. There are currently a variety of both prognostic and diagnostic markers used for diagnosis and treatment of prostate cancer. The review presents the classification of markers depending on the method and medium in which they were identified. The molecular mechanisms of participation of the different genes and proteins in the pathogenesis and progression of prostate carcinoma were analyzed and the potential importance of their use in clinical practice was provided. Conclusion. Many of the existing markers can be used for screening and early detection of tumors, and they have been proved to have a prognostic value. However, contradictory findings with regard to certain proteins and genes require further study, their validation with the subsequent implementation into clinical practice.

  7. Biotechnology of microbial xylanases: enzymology, molecular biology, and application.

    Science.gov (United States)

    Subramaniyan, S; Prema, P

    2002-01-01

    Xylanases are hydrolases depolymerizing the plant cell wall component xylan, the second most abundant polysaccharide. The molecular structure and hydrolytic pattern of xylanases have been reported extensively and the mechanism of hydrolysis has also been proposed. There are several models for the gene regulation of which this article could add to the wealth of knowledge. Future work on the application of these enzymes in the paper and pulp, food industry, in environmental science, that is, bio-fueling, effluent treatment, and agro-waste treatment, etc. require a complete understanding of the functional and genetic significance of the xylanases. However, the thrust area has been identified as the paper and pulp industry. The major problem in the field of paper bleaching is the removal of lignin and its derivatives, which are linked to cellulose and xylan. Xylanases are more suitable in the paper and pulp industry than lignin-degrading systems.

  8. Delineation of Chondroid Lipoma: An Immunohistochemical and Molecular Biological Analysis

    Science.gov (United States)

    de Vreeze, Ronald S. A.; van Coevorden, Frits; Boerrigter, Lucie; Nederlof, Petra M.; Haas, Rick L.; Bras, Johannes; Rosenwald, Andreas; Mentzel, Thomas; de Jong, Daphne

    2011-01-01

    Aims. Chondroid lipoma (CL) is a benign tumor that mimics a variety of soft tissue tumors and is characterized by translocation t(11;16). Here, we analyze CL and its histological mimics. Methods. CL (n = 4) was compared to a variety of histological mimics (n = 83) for morphological aspects and immunohistochemical features including cyclinD1(CCND1). Using FISH analysis, CCND1 and FUS were investigated as potential translocation partners. Results. All CLs were strongly positive for CCND1. One of 4 myoepitheliomas, CCND1, was positive. In well-differentiated lipomatous tumors and in chondrosarcomas, CCND1 was frequently expressed, but all myxoid liposarcomas were negative. FISH analysis did not give support for direct involvement of CCND1 and FUS as translocation partners. Conclusions. Chondroid lipoma is extremely rare and has several and more prevalent histological mimics. The differential diagnosis of chondroid lipomas can be unraveled using immunohistochemical and molecular support. PMID:21559269

  9. An overview of HCV molecular biology, replication and immune responses

    Directory of Open Access Journals (Sweden)

    Nawaz Zafar

    2011-04-01

    Full Text Available Abstract Hepatitis C virus (HCV causes acute and chronic hepatitis which can eventually lead to permanent liver damage, hepatocellular carcinoma and death. Currently, there is no vaccine available for prevention of HCV infection due to high degree of strain variation. The current treatment of care, Pegylated interferon α in combination with ribavirin is costly, has significant side effects and fails to cure about half of all infections. In this review, we summarize molecular virology, replication and immune responses against HCV and discussed how HCV escape from adaptive and humoral immune responses. This advance knowledge will be helpful for development of vaccine against HCV and discovery of new medicines both from synthetic chemistry and natural sources.

  10. Nucleocytoplasmic Shuttling of Cytoskeletal Proteins: Molecular Mechanism and Biological Significance

    Directory of Open Access Journals (Sweden)

    Masahiro Kumeta

    2012-01-01

    Full Text Available Various nuclear functional complexes contain cytoskeletal proteins as regulatory subunits; for example, nuclear actin participates in transcriptional complexes, and actin-related proteins are integral to chromatin remodeling complexes. Nuclear complexes such as these are involved in both basal and adaptive nuclear functions. In addition to nuclear import via classical nuclear transport pathways or passive diffusion, some large cytoskeletal proteins spontaneously migrate into the nucleus in a karyopherin-independent manner. The balance of nucleocytoplasmic distribution of such proteins can be altered by several factors, such as import versus export, or capture and release by complexes. The resulting accumulation or depletion of the nuclear populations thereby enhances or attenuates their nuclear functions. We propose that such molecular dynamics constitute a form of cytoskeleton-modulated regulation of nuclear functions which is mediated by the translocation of cytoskeletal components in and out of the nucleus.

  11. Breast cancer lung metastasis: Molecular biology and therapeutic implications.

    Science.gov (United States)

    Jin, Liting; Han, Bingchen; Siegel, Emily; Cui, Yukun; Giuliano, Armando; Cui, Xiaojiang

    2018-03-26

    Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided into different subtypes based on gene expression profiles, and different breast cancer subtypes show preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic strategies for treating breast cancer lung metastasis.

  12. Molecular biological enhancement of coal biodesulfurization. [Rhodococcus rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J.; Bielaga, B.A.

    1990-07-01

    The overall objective of this project is to sue molecular genetics to develop strains of bacteria with enhanced ability to remove sulfur from coal and to obtain data that will allow the performance and economics of a coal biodesulfurization process to be predicted. The work planned for the current quarter (May 1990 to July 1990) includes the following activities: (1) Construct a cloning vector that can be used in Rhodococcus rhodochrous IGTS8 from the small cryptic plasmid found in Rhodococcus rhodochrous ATCC 190607; (2) Develop techniques for the genetic analysis of IGTS8; (3) Continue biochemical experiments, particularly those that may allow the identification of desulfurization-related enzymes; (4) Continue experiments with coal to determine the kinetics of organic sulfur removal.

  13. Molecular and biological diversity of HIV-1 in Brazil

    Directory of Open Access Journals (Sweden)

    José Carlos Couto-Fernandez

    1992-06-01

    Full Text Available To determine the genomic polymorphism and biological properties present in HIV-1 Brazilian isolates, were analyzed five viral isolates obtained from patients residing in Rio de Janeiro (P1 and P5, São Paulo (P3 and Bahia (P2 and P4 states. For each viral isolate in vitro characteristics such as replication rate, syncytium-inducing capacity and cell death were observed in lymphoblastoid (H9, CEM and peripheral blood mononuclear cells as well as monocytoid (U937 cells. In addition, the evaluation of the restriction fragment lenght polymorphism of these isolates was also performed using a panel of endonucleases such as Hind III, Bgl II, Sac I, Pst I, Kpn I and Eco RI. One of the isolates (P1, showed the highest phenotypic and genotypic divergence, when compared to others. The results found suggest a HIV heterogeneity in Brazil similar to that already described in other regions of the world.

  14. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    Science.gov (United States)

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  15. Delivery of Biologics Across the Blood-Brain Barrier with Molecular Trojan Horse Technology.

    Science.gov (United States)

    Pardridge, William M

    2017-12-01

    Biologics are potential new therapeutics for many diseases of the central nervous system. Biologics include recombinant lysosomal enzymes, neurotrophins, decoy receptors, and therapeutic antibodies. These are large molecule drugs that do not cross the blood-brain barrier (BBB). All classes of biologics have been tested, without success, in clinical trials of brain disease over the last 25 years. In none of these past clinical trials was the biologic re-engineered to enable transport across the BBB. If the biologic does not cross the BBB, the drug cannot reach the target site in brain, and success in a clinical trial is not expected. Biologics can be re-engineered for BBB transport with the use of molecular Trojan horse technology. A BBB molecular Trojan horse is a monoclonal antibody (MAb) against an endogenous BBB receptor transporter, such as the insulin receptor or transferrin receptor. The receptor-specific MAb penetrates the brain via transport on the endogenous BBB receptor. The MAb acts as a molecular Trojan horse to deliver across the BBB the biologic pharmaceutical that is genetically fused to the MAb. The lead Trojan horse is a MAb against the human insulin receptor (HIR), and HIRMAb-derived fusion proteins have entered clinical trials for the treatment of brain disease.

  16. Physics and the molecular revolution in plant biology: union needed for managing the future

    Directory of Open Access Journals (Sweden)

    Ulrich Lüttge

    2016-10-01

    Full Text Available The question was asked if there is still a prominent role of biophysics in plant biology in an age when molecular biology appears to be dominating. Mathematical formation of theory is essential in systems biology, and mathematics is more inherent in biophysics than in molecular biology. A survey is made identifying and briefly characterizing fields of plant biology where approaches of biophysics remain essential. In transport at membranes electrophysiology and thermodynamics are biophysical topics. Water is a special molecule. Its transport follows the physical laws of osmosis and gradients of water potential on the background of physics of hydraulic architecture. Photobiology needs understanding of the physics of electro-magnetic radiation of quantitative nature in photosynthesis and of qualitative nature in perception by the photo-sensors cryptochromes, phototropins and phytochrome in environmental responses and development. Biophysical oscillators can play a role in biological timing by the circadian clock. Integration in the self-organization of modules, such as roots, stems and leaves, for the emergence of whole plants as unitary organisms needs storage and transport of information where physical modes of signaling are essential with cross talks between electrical and hydraulic signals and with chemical signals. Examples are gravitropism and root-shoot interactions in water relations. All of these facets of plant biophysics overlie plant molecular biology and exchange with it. It is advocated that a union of approaches of plant molecular biology and biophysics needs to be cultivated. In many cases it is already operative. In bionics biophysics is producing output for practical applications linking biology with technology. Biomimetic engineering intrinsically uses physical approaches. An extreme biophysical perspective is looking out for life in space. Sustained and increased practice of biophysics with teaching and research deserves strong

  17. Automatically Assessing Lexical Sophistication: Indices, Tools, Findings, and Application

    Science.gov (United States)

    Kyle, Kristopher; Crossley, Scott A.

    2015-01-01

    This study explores the construct of lexical sophistication and its applications for measuring second language lexical and speaking proficiency. In doing so, the study introduces the Tool for the Automatic Analysis of LExical Sophistication (TAALES), which calculates text scores for 135 classic and newly developed lexical indices related to word…

  18. The Impact of Financial Sophistication on Adjustable Rate Mortgage Ownership

    Science.gov (United States)

    Smith, Hyrum; Finke, Michael S.; Huston, Sandra J.

    2011-01-01

    The influence of a financial sophistication scale on adjustable-rate mortgage (ARM) borrowing is explored. Descriptive statistics and regression analysis using recent data from the Survey of Consumer Finances reveal that ARM borrowing is driven by both the least and most financially sophisticated households but for different reasons. Less…

  19. The role of sophisticated accounting system in strategy management

    OpenAIRE

    Naranjo Gil, David

    2004-01-01

    Organizations are designing more sophisticated accounting information systems to meet the strategic goals and enhance their performance. This study examines the effect of accounting information system design on the performance of organizations pursuing different strategic priorities. The alignment between sophisticated accounting information systems and organizational strategy is analyzed. The enabling effect of the accounting information system on performance is also examined. Relationships ...

  20. Probabilistic Sophistication, Second Order Stochastic Dominance, and Uncertainty Aversion

    OpenAIRE

    Simone Cerreia-Vioglio; Fabio Maccheroni; Massimo Marinacci; Luigi Montrucchio

    2010-01-01

    We study the interplay of probabilistic sophistication, second order stochastic dominance, and uncertainty aversion, three fundamental notions in choice under uncertainty. In particular, our main result, Theorem 2, characterizes uncertainty averse preferences that satisfy second order stochastic dominance, as well as uncertainty averse preferences that are probabilistically sophisticated.

  1. The First Sophists and the Uses of History.

    Science.gov (United States)

    Jarratt, Susan C.

    1987-01-01

    Reviews the history of intellectual views on the Greek sophists in three phases: (1) their disparagement by Plato and Aristotle as the morally disgraceful "other"; (2) nineteenth century British positivists' reappraisal of these relativists as ethically and scientifically superior; and (3) twentieth century versions of the sophists as…

  2. The Physics of Proteins An Introduction to Biological Physics and Molecular Biophysics

    CERN Document Server

    Frauenfelder, Hans; Chan, Winnie S

    2010-01-01

    Physics and the life sciences have established new connections within the past few decades, resulting in biological physics as an established subfield with strong groups working in many physics departments. These interactions between physics and biology form a two-way street with physics providing new tools and concepts for understanding life, while biological systems can yield new insights into the physics of complex systems. To address the challenges of this interdisciplinary area, The Physics of Proteins: An Introduction to Biological Physics and Molecular Biophysics is divided into three interconnected sections. In Parts I and II, early chapters introduce the terminology and describe the main biological systems that physicists will encounter. Similarities between biomolecules, glasses, and solids are stressed with an emphasis on the fundamental concepts of living systems. The central section (Parts III and IV) delves into the dynamics of complex systems. A main theme is the realization that biological sys...

  3. Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings.

    Science.gov (United States)

    Kandan, A; Radjacommare, R; Ramanathan, A; Raguchander, T; Balasubramanian, P; Samiyappan, R

    2009-01-01

    The pathogenicity of Ganoderma boninense was tested on coconut seedlings under greenhouse conditions and infection confirmed by using immunological and molecular diagnostic tools. Desiccation of older leaves and the emergence of sporophores were observed from pathogen-inoculated seedlings, whereas a control seedling does not show any pathogenic symptoms. Mature sporophores were formed within 10-13 weeks after inoculation. Polyclonal antibodies raised against mycelial proteins of Ganoderma were used for detection of Ganoderma in infected field palm and seedlings through indirect enzyme-linked immunosorbent assay technique. We adopted dot-immunobinding assay for the detection of Ganoderma from greenhouse and field samples. Under nucleic-acid-based diagnosis, G. boninense (167 bp) was detected from artificially inoculated seedlings and infected field palms by polymerase chain reaction. Apart from these, histopathological studies also support the Ganoderma pathogenicity in coconut seedlings. The pathogenicity test and combination of all the three diagnostic methods for Ganoderma could be highly reliable, rapid, sensitive and effective screening of resistance in planting material in the future.

  4. Pituitary gigantism: update on molecular biology and management.

    Science.gov (United States)

    Lodish, Maya B; Trivellin, Giampaolo; Stratakis, Constantine A

    2016-02-01

    To provide an update on the mechanisms leading to pituitary gigantism, as well as to familiarize the practitioner with the implication of these genetic findings on treatment decisions. Prior studies have identified gigantism as a feature of a number of monogenic disorders, including mutations in the aryl hydrocarbon receptor interacting protein gene, multiple endocrine neoplasia types 1 and 4, McCune Albright syndrome, Carney complex, and the paraganglioma, pheochromocytoma, and pituitary adenoma association because of succinate dehydrogenase defects. We recently described a previously uncharacterized form of early-onset pediatric gigantism caused by microduplications on chromosome Xq26.3 and we termed it X-LAG (X-linked acrogigantism). The age of onset of increased growth in X-LAG is significantly younger than other pituitary gigantism cases, and control of growth hormone excess is particularly challenging. Knowledge of the molecular defects that underlie pituitary tumorigenesis is crucial for patient care as they guide early intervention, screening for associated conditions, genetic counseling, surgical approach, and choice of medical management. Recently described microduplications of Xq26.3 account for more than 80% of the cases of early-onset pediatric gigantism. Early recognition of X-LAG may improve outcomes, as successful control of growth hormone excess requires extensive anterior pituitary resection and are difficult to manage with medical therapy alone.

  5. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    Science.gov (United States)

    Dillon, Christopher P; Green, Douglas R

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  6. Origins and molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Reuter, Victor E

    2005-02-01

    Testicular germ cell tumors can be divided into three groups (infantile/prepubertal, adolescent/young adult and spermatocytic seminoma), each with its own constellation of clinical histology, molecular and clinical features. They originate from germ cells at different stages of development. The most common testicular cancers arise in postpubertal men and are characterized genetically by having one or more copies of an isochromosome of the short arm of chromosome 12 [i(12p)] or other forms of 12p amplification and by aneuploidy. The consistent gain of genetic material from chromosome 12 seen in these tumors suggests that it has a crucial role in their development. Intratubular germ cell neoplasia, unclassified type (IGCNU) is the precursor to these invasive tumors. Several factors have been associated with their pathogenesis, including cryptorchidism, elevated estrogens in utero and gonadal dysgenesis. Tumors arising in prepubertal gonads are either teratomas or yolk sac tumors, tend to be diploid and are not associated with i(12p) or with IGCNU. Spermatocytic seminoma (SS) arises in older patients. These benign tumors may be either diploid or aneuploid and have losses of chromosome 9 rather than i(12p). Intratubular SS is commonly encountered but IGCNU is not. The pathogenesis of prepubertal GCT and SS is poorly understood.

  7. Basic molecular biology in radiation-induced carcinogenesis

    International Nuclear Information System (INIS)

    Rytoemaa, T.

    1992-01-01

    The tumour suppressor gene p53 is 'guardian of the genome'. If a DNA molecule (each chromosome has one DNA molecule) is damaged by an external factor, such as ionizing radiation, the protein product of the p53 gene stops the cell's proliferative activity until the damage is repaired. If the repair fails, the p53 gene product normally triggers programmed death of the cell. P53 gene itself is commonly damaged by radiation (or by another DNA-damaging factor). The altered gene product fails to control the integrity of the genome, and it also prevents the guardian action of the protein which is produced by the intact allele (each cell has two p53 genes). Under these circumstances any subsequent damage to DNA, induced e.g. by a chemical, is easily 'fixed'. Potentially critical sites for an additional DNA damage are the proto-oncogens (when damaged these genes are called oncogens), which commonly act as components of the regulatory network in a cell. Permanent malfunction of the signal network may then lead to uncontrolled cell growth, resulting in a malignant clone (=cancer). This simplified molecular model seems to be the common mechanism in many (or most) human cancers. (orig.)

  8. Recommendations for accreditation of laboratories in molecular biology of hematologic malignancies.

    Science.gov (United States)

    Flandrin-Gresta, Pascale; Cornillet, Pascale; Hayette, Sandrine; Gachard, Nathalie; Tondeur, Sylvie; Mauté, Carole; Cayuela, Jean-Michel

    2015-01-01

    Over recent years, the development of molecular biology techniques has improved the hematological diseases diagnostic and follow-up. Consequently, these techniques are largely used in the biological screening of these diseases; therefore the Hemato-oncology molecular diagnostics laboratories must be actively involved in the accreditation process according the ISO 15189 standard. The French group of molecular biologists (GBMHM) provides requirements for the implementation of quality assurance for the medical molecular laboratories. This guideline states the recommendations for the pre-analytical, analytical (methods validation procedures, quality controls, reagents), and post-analytical conditions. In addition, herein we state a strategy for the internal quality control management. These recommendations will be regularly updated.

  9. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    Science.gov (United States)

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Polyhydroyalkanoates: from Basic Research and Molecular Biology to Application

    Directory of Open Access Journals (Sweden)

    Amro Abd alFattah Amara

    2010-09-01

    Full Text Available This review describes the Polyhydroxyalkanoate (PHA, an intracellular biodegradable microbial polymer. PHAs is formed from different types of three hydroxyalkanoic acids monomers, each unit forms an ester bond with the hydroxyl group of the other one and the hydroxyl substituted carbon has R configuration. The C-3 atom in β position is branched with at least one carbon atom in the form of methyl group (C1 to thirteen carbons in the form of tridecyl (C13. This alkyl side chain is not necessarily saturated. PHAs are biosynthesized through regulated pathways by specific enzymes. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reducing equivalents. PHAs are converted again to soluble components by PHAs depolymerases and the degraded materials enter various metabolic pathways. Until now, four classes of enzymes responsible for PHAs polymerization are known. PHAs were well studied regarding their promising applications, physical, chemical and biological properties. PHAs are biodegradable, biocompatible, have good material properties, renewable and can be used in many applications. The most limiting factor in PHAs commercialization is their high cost compared to the petroleum plastics. This review highlights the new knowledge and that established by the pioneers in this field as well as the factors, which affect PHAs commercialization.

  11. Mathematical Biology Modules Based on Modern Molecular Biology and Modern Discrete Mathematics

    Science.gov (United States)

    Robeva, Raina; Davies, Robin; Hodge, Terrell; Enyedi, Alexander

    2010-01-01

    We describe an ongoing collaborative curriculum materials development project between Sweet Briar College and Western Michigan University, with support from the National Science Foundation. We present a collection of modules under development that can be used in existing mathematics and biology courses, and we address a critical national need to…

  12. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Wu Dali; Hou Suiwen; Li Wenjian

    2008-01-01

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  13. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Planetary Biology and Microbial Ecology: Molecular Ecology and the Global Nitrogen cycle

    Science.gov (United States)

    Nealson, Molly Stone (Editor); Nealson, Kenneth H. (Editor)

    1993-01-01

    This report summarizes the results of the Planetary Biology and Molecular Ecology's summer 1991 program, which was held at the Marine Biological Laboratory in Woods Hole, Massachusetts. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The goals of the 1991 program were to examine several aspects of the biogeochemistry of the nitrogen cycle and to teach the application of modern methods of molecular genetics to field studies of organisms. Descriptions of the laboratory projects and protocols and abstracts and references of the lectures are presented.

  15. Conservation Biological Control of Pests in the Molecular Era: New Opportunities to Address Old Constraints

    Science.gov (United States)

    Gurr, Geoff M.; You, Minsheng

    2016-01-01

    Biological control has long been considered a potential alternative to pesticidal strategies for pest management but its impact and level of use globally remain modest and inconsistent. A rapidly expanding range of molecular – particularly DNA-related – techniques is currently revolutionizing many life sciences. This review identifies a series of constraints on the development and uptake of conservation biological control and considers the contemporary and likely future influence of molecular methods on these constraints. Molecular approaches are now often used to complement morphological taxonomic methods for the identification and study of biological control agents including microbes. A succession of molecular techniques has been applied to ‘who eats whom’ questions in food-web ecology. Polymerase chain reaction (PCR) approaches have largely superseded immunological approaches such as enzyme-linked immunosorbent assay (ELISA) and now – in turn – are being overtaken by next generation sequencing (NGS)-based approaches that offer unparalleled power at a rapidly diminishing cost. There is scope also to use molecular techniques to manipulate biological control agents, which will be accelerated with the advent of gene editing tools, the CRISPR/Cas9 system in particular. Gene editing tools also offer unparalleled power to both elucidate and manipulate plant defense mechanisms including those that involve natural enemy attraction to attacked plants. Rapid advances in technology will allow the development of still more novel pest management options for which uptake is likely to be limited chiefly by regulatory hurdles. PMID:26793225

  16. Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models

    Science.gov (United States)

    Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

    2014-01-01

    Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

  17. Effect of buffer at nanoscale molecular recognition interfaces - electrostatic binding of biological polyanions.

    Science.gov (United States)

    Rodrigo, Ana C; Laurini, Erik; Vieira, Vânia M P; Pricl, Sabrina; Smith, David K

    2017-10-19

    We investigate the impact of an over-looked component on molecular recognition in water-buffer. The binding of a cationic dye to biological polyanion heparin is shown by isothermal calorimetry to depend on buffer (Tris-HCl > HEPES > PBS). The heparin binding of self-assembled multivalent (SAMul) cationic micelles is even more buffer dependent. Multivalent electrostatic molecular recognition is buffer dependent as a result of competitive interactions between the cationic binding interface and anions present in the buffer.

  18. Biochemistry and molecular biology of the Caenorhabditis elegans dauer larva

    International Nuclear Information System (INIS)

    Wadsworth, W.G.

    1989-01-01

    Biochemical and molecular techniques have been used to study the formation and recovery of the developmentally arrested, non-feeding dauer stage of the nematode Caenorhabditis elegans. While investigating developmental transitions in energy metabolism, a major metabolite isolated from perchloric acid extracts has been identified as a modified uridine nucleotide. The compound was isolated by gel filtration and ion-exchange chromatography and its structure was determined by 1 H NMR and 13 C NMR spectroscopy. This compound is the most abundant metabolite detected in 31 PMR spectra of perchloric acid extracts from growing larvae. In the absence of phosphoarginine or phosphocreatine, this modified nucleotide may have an important function in the nematode's energy metabolism, and it may also be found in several other invertebrates. During recovery from the dauer stage, metabolic activation is accompanied by a decrease in intracellular pH (pH i ). Although metabolic activation has been associated with an alkaline pH i shift in other organisms, in vivo 31 P NMR analysis of recovering dauer larvae shows a pH i decrease from ∼7.3 to ∼6.3 within 3 hr after the animals encounter food. This shift occurs before feeding begins, and coincides with, or soon follows, the development commitment to recover from the dauer stage, suggesting that control of pH i may be important in the regulation of larval development in nematodes. A library enriched for sequences expressed specifically during the L2d (predauer) stage was made by selecting plaques from a genomic lambda library that hybridized to subtracted L2d cDNA probes. Ultimately, three clones that were shown to hybridize only to L2d RNA were selected

  19. Medulloblastoma: histopathologic and molecular markers of anaplasia and biologic behavior.

    Science.gov (United States)

    Min, Hye Sook; Lee, You Jeong; Park, Kyeongmee; Cho, Byung-Kyu; Park, Sung-Hye

    2006-07-01

    Large cell/anaplastic (LC/A) medulloblastoma (MB) is a recently recognized variant of medulloblastoma known to be associated with an advanced stage and a poor prognosis. Although Eberhart et al. suggested histopathologic grading of medulloblastoma in 2002, no consensus has been reached in terms of determining the criteria of an LC/A variant, and its biological behavior continues to be the subject of debate. We retrospectively analyzed 74 cases (range 0.25-15 years) of MB clinicopathologically using the criteria established by Eberhart et al. The LC/A variant was identified in 16 cases (22% of MB cases), five of which showed a poor outcome. Most LC/A variant cases revealed synaptophysin immunoexpression (75%), but no epidermal growth factor receptor (EGFR) expression. Expression of synaptophysin, NeuN, GFAP, p53, c-erbB2, and EGFR did not differ in LC/A and non-LC/A variants. Seven of the 74 cases of medulloblastoma showed erbB2 amplification by FISH, four of which were LC/A variants. N-myc amplification was observed in only one LC/A variant, but no c-myc amplification was found. In patients younger than 10 years, the LC/A variant showed a significantly poorer outcome than the non-LC/A variant (P = 0.02), while no difference was found in older patients. Multivariate analysis revealed only metastasis on MRI and p53 expression, but not anaplasia as unfavorable prognostic factors. Our study suggests that prognostic implications of anaplasia in medulloblastoma are uncertain, and that the reproducibility of the histopathologic criteria of the LC/A variant should be reassessed before they can be applied in practical use.

  20. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.

    Science.gov (United States)

    Jiang, W G; Sanders, A J; Katoh, M; Ungefroren, H; Gieseler, F; Prince, M; Thompson, S K; Zollo, M; Spano, D; Dhawan, P; Sliva, D; Subbarayan, P R; Sarkar, M; Honoki, K; Fujii, H; Georgakilas, A G; Amedei, A; Niccolai, E; Amin, A; Ashraf, S S; Ye, L; Helferich, W G; Yang, X; Boosani, C S; Guha, G; Ciriolo, M R; Aquilano, K; Chen, S; Azmi, A S; Keith, W N; Bilsland, A; Bhakta, D; Halicka, D; Nowsheen, S; Pantano, F; Santini, D

    2015-12-01

    Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. The emerging molecular biology toolbox for the study of long noncoding RNA biology

    CSIR Research Space (South Africa)

    Fok, Ezio T

    2017-10-01

    Full Text Available cellular function, it remains crucial to deepen our understanding of their biology. First draft submitted: 4 May 2017; Accepted for publication: 4 July 2017; Published online: 6 September 2017 Keywords: CRISPR/Cas9 • epigenetic regulation • functional... efficient in the nucleus and preferably effective at the site of transcription. The use of targeted nucleases such as CRISPR/Cas9 for such purposes is possible, however, their application has to be carefully considered. Mutations to the sequence are usually...

  2. Identification of circulating prostate cancer cells: A challenge to the clinical implementation of molecular biology (Review)

    NARCIS (Netherlands)

    Schamhart, Denis H. J.; Maiazza, Ruth; Kurth, Karl-Heinz

    2005-01-01

    Conventional diagnosis of prostate cancer does not appear to be sensitive enough to differentiate pre-operatively between organ-confined and extracapsular disease. New technologies. arising from the field of molecular biology, have been introduced to improve diagnosis and their implementation into

  3. Infusing Bioinformatics and Research-Like Experience into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Nogaj, Luiza A.

    2014-01-01

    A nine-week laboratory project designed for a sophomore level molecular biology course is described. Small groups of students (3-4 per group) choose a tumor suppressor gene (TSG) or an oncogene for this project. Each group researches the role of their TSG/oncogene from primary literature articles and uses bioinformatics engines to find the gene…

  4. Essential Concepts and Underlying Theories from Physics, Chemistry, and Mathematics for "Biochemistry and Molecular Biology" Majors

    Science.gov (United States)

    Wright, Ann; Provost, Joseph; Roecklein-Canfield, Jennifer A.; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members from around the country. The workshops have focused on developing lists of Core Principles or Foundational Concepts in Biochemistry and Molecular Biology, a list of foundational skills, and foundational concepts from Physics, Chemistry,…

  5. Foundational Concepts and Underlying Theories for Majors in "Biochemistry and Molecular Biology"

    Science.gov (United States)

    Tansey, John T.; Baird, Teaster, Jr.; Cox, Michael M.; Fox, Kristin M.; Knight, Jennifer; Sears, Duane; Bell, Ellis

    2013-01-01

    Over the past two years, through an NSF RCN UBE grant, the ASBMB has held regional workshops for faculty members and science educators from around the country that focused on identifying: 1) core principles of biochemistry and molecular biology, 2) essential concepts and underlying theories from physics, chemistry, and mathematics, and 3)…

  6. Molecular and Biological Analysis of Potato virus M (PVM) Isolates from the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Plchová, Helena; Vaculík, Petr; Čeřovská, Noemi; Moravec, Tomáš; Dědič, P.

    2015-01-01

    Roč. 163, 11-12 (2015), s. 1031-1035 ISSN 0931-1785 R&D Projects: GA MŠk 1M06030 Institutional support: RVO:61389030 Keywords : Czech Republic * phylogeny * Potato virus M Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.945, year: 2015

  7. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.; Nelson, B.D.

    2006-01-01

    Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In

  8. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2013-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of…

  9. Using Biocatalysis to Integrate Organic Chemistry into a Molecular Biology Laboratory Course

    Science.gov (United States)

    Beers, Mande; Archer, Crystal; Feske, Brent D.; Mateer, Scott C.

    2012-01-01

    Current cutting-edge biomedical investigation requires that the researcher have an operational understanding of several diverse disciplines. Biocatalysis is a field of science that operates at the crossroads of organic chemistry, biochemistry, microbiology, and molecular biology, and provides an excellent model for interdisciplinary research. We…

  10. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    Science.gov (United States)

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  11. Semester-Long Inquiry-Based Molecular Biology Laboratory: Transcriptional Regulation in Yeast

    Science.gov (United States)

    Oelkers, Peter M.

    2017-01-01

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in "Saccharomyces cerevisiae." Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a…

  12. Using Active Learning in a Studio Classroom to Teach Molecular Biology

    Science.gov (United States)

    Nogaj, Luiza A.

    2013-01-01

    This article describes the conversion of a lecture-based molecular biology course into an active learning environment in a studio classroom. Specific assignments and activities are provided as examples. The goal of these activities is to involve students in collaborative learning, teach them how to participate in the learning process, and give…

  13. An Off-the-Shelf, Authentic, and Versatile Undergraduate Molecular Biology Practical Course

    Science.gov (United States)

    Whitworth, David E.

    2015-01-01

    We provide a prepackaged molecular biology course, which has a broad context and is scalable to large numbers of students. It is provided complete with technical setup guidance, a reliable assessment regime, and can be readily implemented without any development necessary. Framed as a forensic examination of blue/white cloning plasmids, the course…

  14. Centre for Cellular and Molecular Biology to breed vultures for Parsis

    African Journals Online (AJOL)

    Hyderabad – Parsis worried about the growing pile of bodies in their 'Towers of Silence' can take heart. The Centre for Cellular and Molecular Biology. (CCMB) has decided to take up, on an express basis, the job of breeding vultures, which can later be transported to various parts of the country. Though the problem of ...

  15. PAUL AND SOPHISTIC RHETORIC: A PERSPECTIVE ON HIS ...

    African Journals Online (AJOL)

    use of modern rhetorical theories but analyses the letter in terms of the clas- ..... If a critical reader would have had the traditional anti-sophistic arsenal ..... pressions and that 'rhetoric' is mainly a matter of communicating these thoughts.

  16. Sophistication and Performance of Italian Agri‐food Exports

    Directory of Open Access Journals (Sweden)

    Anna Carbone

    2012-06-01

    Full Text Available Nonprice competition is increasingly important in world food markets. Recently, the expression ‘export sophistication’ has been introduced in the economic literature to refer to a wide set of attributes that increase product value. An index has been proposed to measure sophistication in an indirect way through the per capita GDP of exporting countries (Lall et al., 2006; Haussmann et al., 2007.The paper applies the sophistication measure to the Italian food export sector, moving from an analysis of trends and performance of Italian food exports. An original way to disentangle different components in the temporal variation of the sophistication index is also proposed.Results show that the sophistication index offers original insights on recent trends in world food exports and with respect to Italian core food exports.

  17. The diverse and expanding role of mass spectrometry in structural and molecular biology.

    Science.gov (United States)

    Lössl, Philip; van de Waterbeemd, Michiel; Heck, Albert Jr

    2016-12-15

    The emergence of proteomics has led to major technological advances in mass spectrometry (MS). These advancements not only benefitted MS-based high-throughput proteomics but also increased the impact of mass spectrometry on the field of structural and molecular biology. Here, we review how state-of-the-art MS methods, including native MS, top-down protein sequencing, cross-linking-MS, and hydrogen-deuterium exchange-MS, nowadays enable the characterization of biomolecular structures, functions, and interactions. In particular, we focus on the role of mass spectrometry in integrated structural and molecular biology investigations of biological macromolecular complexes and cellular machineries, highlighting work on CRISPR-Cas systems and eukaryotic transcription complexes. © 2016 The Authors. Published under the terms of the CC BY NC ND 4.0 license.

  18. Practices and exploration on competition of molecular biological detection technology among students in food quality and safety major.

    Science.gov (United States)

    Chang, Yaning; Peng, Yuke; Li, Pengfei; Zhuang, Yingping

    2017-07-08

    With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  19. Importancia de la biología molecular para la Fisioterapia moderna Importance of molecular biology for the modern Physical Therapy

    Directory of Open Access Journals (Sweden)

    Carolina Ramírez Ramírez

    2011-12-01

    Full Text Available Para que el cuerpo de conocimiento de una profesión crezca y se fortalezca debe estar al día con los avances científicos y tecnológicos que surgen continuamente para incluirlos en el repertorio de recursos que usa para la investigación de problemas específicos de su saber. Recientemente el desciframiento del código genético y la secuenciación del genoma humano creó la base para el surgimiento de metodologías y técnicas en el área de la biología molecular, las cuales permitieron profundizar en el conocimiento de la estructura y función de los tejidos humanos y también mejoraron el entendimiento de los mecanismos por los cuales actúan formas de intervención usadas cotidianamente por profesionales en salud. La Fisioterapia utiliza modalidades físicas que interactúan con los tejidos corporales, por ello la biología molecular permite un mejor entendimiento de los efectos que las dichas modalidades generan en el tejido sobre el cual son aplicadas. Por tanto el objetivo de este artículo es reflexionar sobre la necesidad de que el Fisioterapeuta se apropie del conocimiento en ésta área de las ciencias básicas, usarlo como herramienta para la solución de preguntas relevantes de su quehacer clínico y así contribuir de manera efectiva con la generación de nuevo conocimiento que promueva la práctica basada en la evidencia y fomente el crecimiento de la profesión. Salud UIS 2011; 43 (3: 317-320A profession can be improved through the development and application of scientific and technological advances around the issues relating to their expertise. Recently, the deciphering of the genetic code and human genome sequencing creates the basis for the development of methodologies and techniques of molecular biology. These resources have allowed a deeper understanding of the human tissue structure and function, and intervention mechanisms used by health professionals. Physiotherapy uses physical modalities affecting the tissues of the

  20. Obfuscation, Learning, and the Evolution of Investor Sophistication

    OpenAIRE

    Bruce Ian Carlin; Gustavo Manso

    2011-01-01

    Investor sophistication has lagged behind the growing complexity of retail financial markets. To explore this, we develop a dynamic model to study the interaction between obfuscation and investor sophistication in mutual fund markets. Taking into account different learning mechanisms within the investor population, we characterize the optimal timing of obfuscation for financial institutions who offer retail products. We show that educational initiatives that are directed to facilitate learnin...

  1. Impact of sophisticated fog spray models on accident analyses

    International Nuclear Information System (INIS)

    Roblyer, S.P.; Owzarski, P.C.

    1978-01-01

    The N-Reactor confinement system release dose to the public in a postulated accident is reduced by washing the confinement atmosphere with fog sprays. This allows a low pressure release of confinement atmosphere containing fission products through filters and out an elevated stack. The current accident analysis required revision of the CORRAL code and other codes such as CONTEMPT to properly model the N Reactor confinement into a system of multiple fog-sprayed compartments. In revising these codes, more sophisticated models for the fog sprays and iodine plateout were incorporated to remove some of the conservatism of steam condensing rate, fission product washout and iodine plateout than used in previous studies. The CORRAL code, which was used to describe the transport and deposition of airborne fission products in LWR containment systems for the Rasmussen Study, was revised to describe fog spray removal of molecular iodine (I 2 ) and particulates in multiple compartments for sprays having individual characteristics of on-off times, flow rates, fall heights, and drop sizes in changing containment atmospheres. During postulated accidents, the code determined the fission product removal rates internally rather than from input decontamination factors. A discussion is given of how the calculated plateout and washout rates vary with time throughout the analysis. The results of the accident analyses indicated that more credit could be given to fission product washout and plateout. An important finding was that the release of fission products to the atmosphere and adsorption of fission products on the filters were significantly lower than previous studies had indicated

  2. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    International Nuclear Information System (INIS)

    McMahon, S.

    2016-01-01

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  3. WE-DE-202-03: Modeling of Biological Processes - What Happens After Early Molecular Damage?

    Energy Technology Data Exchange (ETDEWEB)

    McMahon, S. [Massachusetts General Hospital and Harvard Medical School (United States)

    2016-06-15

    Radiation therapy for the treatment of cancer has been established as a highly precise and effective way to eradicate a localized region of diseased tissue. To achieve further significant gains in the therapeutic ratio, we need to move towards biologically optimized treatment planning. To achieve this goal, we need to understand how the radiation-type dependent patterns of induced energy depositions within the cell (physics) connect via molecular, cellular and tissue reactions to treatment outcome such as tumor control and undesirable effects on normal tissue. Several computational biology approaches have been developed connecting physics to biology. Monte Carlo simulations are the most accurate method to calculate physical dose distributions at the nanometer scale, however simulations at the DNA scale are slow and repair processes are generally not simulated. Alternative models that rely on the random formation of individual DNA lesions within one or two turns of the DNA have been shown to reproduce the clusters of DNA lesions, including single strand breaks (SSBs), double strand breaks (DSBs) without the need for detailed track structure simulations. Efficient computational simulations of initial DNA damage induction facilitate computational modeling of DNA repair and other molecular and cellular processes. Mechanistic, multiscale models provide a useful conceptual framework to test biological hypotheses and help connect fundamental information about track structure and dosimetry at the sub-cellular level to dose-response effects on larger scales. In this symposium we will learn about the current state of the art of computational approaches estimating radiation damage at the cellular and sub-cellular scale. How can understanding the physics interactions at the DNA level be used to predict biological outcome? We will discuss if and how such calculations are relevant to advance our understanding of radiation damage and its repair, or, if the underlying biological

  4. Design of a Comprehensive Biochemistry and Molecular Biology Experiment: Phase Variation Caused by Recombinational Regulation of Bacterial Gene Expression

    Science.gov (United States)

    Sheng, Xiumei; Xu, Shungao; Lu, Renyun; Isaac, Dadzie; Zhang, Xueyi; Zhang, Haifang; Wang, Huifang; Qiao, Zheng; Huang, Xinxiang

    2014-01-01

    Scientific experiments are indispensable parts of Biochemistry and Molecular Biology. In this study, a comprehensive Biochemistry and Molecular Biology experiment about "Salmonella enterica" serovar Typhi Flagellar phase variation has been designed. It consisted of three parts, namely, inducement of bacterial Flagellar phase variation,…

  5. Molecular structure descriptors in the computer-aided design of biologically active compounds

    International Nuclear Information System (INIS)

    Raevsky, Oleg A

    1999-01-01

    The current state of description of molecular structure in computer-aided molecular design of biologically active compounds by means of descriptors is analysed. The information contents of descriptors increases in the following sequence: element-level descriptors-structural formulae descriptors-electronic structure descriptors-molecular shape descriptors-intermolecular interaction descriptors. Each subsequent class of descriptors normally covers information contained in the previous-level ones. It is emphasised that it is practically impossible to describe all the features of a molecular structure in terms of any single class of descriptors. It is recommended to optimise the number of descriptors used by means of appropriate statistical procedures and characteristics of structure-property models based on these descriptors. The bibliography includes 371 references.

  6. Stochastic narrow escape in molecular and cellular biology analysis and applications

    CERN Document Server

    Holcman, David

    2015-01-01

    This book covers recent developments in the non-standard asymptotics of the mathematical narrow escape problem in stochastic theory, as well as applications of the narrow escape problem in cell biology. The first part of the book concentrates on mathematical methods, including advanced asymptotic methods in partial equations, and is aimed primarily at applied mathematicians and theoretical physicists who are interested in biological applications. The second part of the book is intended for computational biologists, theoretical chemists, biochemists, biophysicists, and physiologists. It includes a summary of output formulas from the mathematical portion of the book and concentrates on their applications in modeling specific problems in theoretical molecular and cellular biology. Critical biological processes, such as synaptic plasticity and transmission, activation of genes by transcription factors, or double-strained DNA break repair, are controlled by diffusion in structures that have both large and small sp...

  7. Script, code, information: how to differentiate analogies in the "prehistory" of molecular biology.

    Science.gov (United States)

    Kogge, Werner

    2012-01-01

    The remarkable fact that twentieth-century molecular biology developed its conceptual system on the basis of sign-like terms has been the object of numerous studies and debates. Throughout these, the assumption is made that this vocabulary's emergence should be seen in the historical context of mathematical communication theory and cybernetics. This paper, in contrast, sets out the need for a more differentiated view: whereas the success of the terms "code" and "information" would probably be unthinkable outside that historical context, general semiotic and especially scriptural concepts arose far earlier in the "prehistory" of molecular biology, and in close association with biological research and phenomena. This distinction, established through a reconstruction of conceptual developments between 1870 and 1950, makes it possible to separate off a critique of the reductive implications of particular information-based concepts from the use of semiotic and scriptural concepts, which is fundamental to molecular biology. Gene-centrism and determinism are not implications of semiotic and scriptural analogies, but arose only when the vocabulary of information was superimposed upon them.

  8. Massively Parallel, Molecular Analysis Platform Developed Using a CMOS Integrated Circuit With Biological Nanopores

    Science.gov (United States)

    Roever, Stefan

    2012-01-01

    A massively parallel, low cost molecular analysis platform will dramatically change the nature of protein, molecular and genomics research, DNA sequencing, and ultimately, molecular diagnostics. An integrated circuit (IC) with 264 sensors was fabricated using standard CMOS semiconductor processing technology. Each of these sensors is individually controlled with precision analog circuitry and is capable of single molecule measurements. Under electronic and software control, the IC was used to demonstrate the feasibility of creating and detecting lipid bilayers and biological nanopores using wild type α-hemolysin. The ability to dynamically create bilayers over each of the sensors will greatly accelerate pore development and pore mutation analysis. In addition, the noise performance of the IC was measured to be 30fA(rms). With this noise performance, single base detection of DNA was demonstrated using α-hemolysin. The data shows that a single molecule, electrical detection platform using biological nanopores can be operationalized and can ultimately scale to millions of sensors. Such a massively parallel platform will revolutionize molecular analysis and will completely change the field of molecular diagnostics in the future.

  9. Adrenocortical carcinoma: the dawn of a new era of genomic and molecular biology analysis.

    Science.gov (United States)

    Armignacco, R; Cantini, G; Canu, L; Poli, G; Ercolino, T; Mannelli, M; Luconi, M

    2018-05-01

    Over the last decade, the development of novel and high penetrance genomic approaches to analyze biological samples has provided very new insights in the comprehension of the molecular biology and genetics of tumors. The use of these techniques, consisting of exome sequencing, transcriptome, miRNome, chromosome alteration, genome, and epigenome analysis, has also been successfully applied to adrenocortical carcinoma (ACC). In fact, the analysis of large cohorts of patients allowed the stratification of ACC with different patterns of molecular alterations, associated with different outcomes, thus providing a novel molecular classification of the malignancy to be associated with the classical pathological analysis. Improving our knowledge about ACC molecular features will result not only in a better diagnostic and prognostic accuracy, but also in the identification of more specific therapeutic targets for the development of more effective pharmacological anti-cancer approaches. In particular, the specific molecular alteration profiles identified in ACC may represent targetable events by the use of already developed or newly designed drugs enabling a better and more efficacious management of the ACC patient in the context of new frontiers of personalized precision medicine.

  10. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    Science.gov (United States)

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  11. The role of the molecular biology laboratory in the management of chronic hepatitis B and C

    Directory of Open Access Journals (Sweden)

    Peter Karayiannis

    2013-03-01

    Full Text Available Molecular biology techniques are routinely used nowadays to diagnose and evaluate antiviral treatment of patients with chronic hepatitis B (HBV and hepatitis C virus (HCV infections. Current tools at our disposal include tests that quantify the amount of circulating virus in the blood, techniques that can analyse genomic sequences to determine viral genotypes or subtypes, or determine amino-acid substitutions that may confer resistance to existing antiviral drugs. What is more, continuously evolving serological tests for the detection of viral antigens or their corresponding antibodies, have made diagnosis of disease as sensitive as possible. The present review will concentrate primarily on molecular diagnostics.

  12. The Molecular Revolution in Cutaneous Biology: Era of Molecular Diagnostics for Inherited Skin Diseases.

    Science.gov (United States)

    McGrath, John A

    2017-05-01

    The discovery of pathogenic mutations in inherited skin diseases represents one of the major landmarks of late 20th century molecular genetics. Mutation data can provide accurate diagnoses, improve genetic counseling, help define disease mechanisms, establish disease models, and provide a basis for translational research and testing of novel therapeutics. The process of detecting disease mutations, however, has not always been straightforward. Traditional approaches using genetic linkage or candidate gene analysis have often been limited, costly, and slow to yield new insights, but the advent of next-generation sequencing (NGS) technologies has altered the landscape of current gene discovery and mutation detection approaches. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  13. Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    International Nuclear Information System (INIS)

    Hendrix, Mary JC; Seftor, Elisabeth A; Kirschmann, Dawn A; Seftor, Richard EB

    2000-01-01

    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

  14. Günter Blobel: Pioneer of molecular cell biology (1936-2018).

    Science.gov (United States)

    2018-04-02

    Günter Blobel was a scientific colossus who dedicated his career to understanding the mechanisms for protein sorting to membrane organelles. His monumental contributions established research paradigms for major arenas of molecular cell biology. For this work, he received many accolades, including the Nobel Prize in Medicine or Physiology in 1999. He was a scientist of extreme passion and a nurturing mentor for generations of researchers, imbuing them with his deep love of cell biology and galvanizing them to continue his scientific legacy. Günter passed away on February 18, 2018, at the age of 81. © 2018 Rockefeller University Press.

  15. Financial Literacy and Financial Sophistication in the Older Population

    Science.gov (United States)

    Lusardi, Annamaria; Mitchell, Olivia S.; Curto, Vilsa

    2017-01-01

    Using a special-purpose module implemented in the Health and Retirement Study, we evaluate financial sophistication in the American population over the age of 50. We combine several financial literacy questions into an overall index to highlight which questions best capture financial sophistication and examine the sensitivity of financial literacy responses to framing effects. Results show that many older respondents are not financially sophisticated: they fail to grasp essential aspects of risk diversification, asset valuation, portfolio choice, and investment fees. Subgroups with notable deficits include women, the least educated, non-Whites, and those over age 75. In view of the fact that retirees increasingly must take on responsibility for their own retirement security, such meager levels of knowledge have potentially serious and negative implications. PMID:28553191

  16. The conceptualization and measurement of cognitive health sophistication.

    Science.gov (United States)

    Bodie, Graham D; Collins, William B; Jensen, Jakob D; Davis, Lashara A; Guntzviller, Lisa M; King, Andy J

    2013-01-01

    This article develops a conceptualization and measure of cognitive health sophistication--the complexity of an individual's conceptual knowledge about health. Study 1 provides initial validity evidence for the measure--the Healthy-Unhealthy Other Instrument--by showing its association with other cognitive health constructs indicative of higher health sophistication. Study 2 presents data from a sample of low-income adults to provide evidence that the measure does not depend heavily on health-related vocabulary or ethnicity. Results from both studies suggest that the Healthy-Unhealthy Other Instrument can be used to capture variability in the sophistication or complexity of an individual's health-related schematic structures on the basis of responses to two simple open-ended questions. Methodological advantages of the Healthy-Unhealthy Other Instrument and suggestions for future research are highlighted in the discussion.

  17. Financial Literacy and Financial Sophistication in the Older Population.

    Science.gov (United States)

    Lusardi, Annamaria; Mitchell, Olivia S; Curto, Vilsa

    2014-10-01

    Using a special-purpose module implemented in the Health and Retirement Study, we evaluate financial sophistication in the American population over the age of 50. We combine several financial literacy questions into an overall index to highlight which questions best capture financial sophistication and examine the sensitivity of financial literacy responses to framing effects. Results show that many older respondents are not financially sophisticated: they fail to grasp essential aspects of risk diversification, asset valuation, portfolio choice, and investment fees. Subgroups with notable deficits include women, the least educated, non-Whites, and those over age 75. In view of the fact that retirees increasingly must take on responsibility for their own retirement security, such meager levels of knowledge have potentially serious and negative implications.

  18. The biochemistry and molecular biology of xenobiotic polymer degradation by microorganisms.

    Science.gov (United States)

    Kawai, Fusako

    2010-01-01

    Research on microbial degradation of xenobiotic polymers has been underway for more than 40 years. It has exploited a new field not only in applied microbiology but also in environmental microbiology, and has greatly contributed to polymer science by initiating the design of biodegradable polymers. Owing to the development of analytical tools and technology, molecular biological and biochemical advances have made it possible to prospect for degrading microorganisms in the environment and to determine the mechanisms involved in biodegradation when xenobiotic polymers are introduced into the environment and are exposed to microbial attack. In this review, the molecular biological and biochemical aspects of the microbial degradation of xenobiotic polymers are summarized, and possible applications of potent microorganisms, enzymes, and genes in environmental biotechnology are suggested.

  19. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  20. A Self-Assisting Protein Folding Model for Teaching Structural Molecular Biology.

    Science.gov (United States)

    Davenport, Jodi; Pique, Michael; Getzoff, Elizabeth; Huntoon, Jon; Gardner, Adam; Olson, Arthur

    2017-04-04

    Structural molecular biology is now becoming part of high school science curriculum thus posing a challenge for teachers who need to convey three-dimensional (3D) structures with conventional text and pictures. In many cases even interactive computer graphics does not go far enough to address these challenges. We have developed a flexible model of the polypeptide backbone using 3D printing technology. With this model we have produced a polypeptide assembly kit to create an idealized model of the Triosephosphate isomerase mutase enzyme (TIM), which forms a structure known as TIM barrel. This kit has been used in a laboratory practical where students perform a step-by-step investigation into the nature of protein folding, starting with the handedness of amino acids to the formation of secondary and tertiary structure. Based on the classroom evidence we collected, we conclude that these models are valuable and inexpensive resource for teaching structural molecular biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. The impact of advances in human molecular biology on radiation genetic risk estimation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1996-01-01

    This paper provides an overview of the conceptual framework, the data base, methods and assumptions used thus far to assess the genetic risks of exposure of human populations to ionising radiation. These are then re-examined in the contemporary context of the rapidly expanding knowledge of the molecular biology of human mendelian diseases. This re-examination reveals that (i) many of the assumptions used thus far in radiation genetic risk estimation may not be fully valid and (ii) the current genetic risk estimates are probably conservative, but provide an adequate margin of safety for radiological protection. The view is expressed that further advances in the field of genetic risk estimation will be largely driven by advances in the molecular biology of human genetic diseases. (author). 37 refs., 5 tabs

  2. Utility of the molecular biology techniques to the analytical control of the microbiological quality of waters

    International Nuclear Information System (INIS)

    Codony, F.; Martin Perez, L.; Morato, J.; Dominguez Gual, M. C.

    2009-01-01

    The molecular biology techniques made accessible to the water industry the ability to detect and quantify, in a few hours, any organism known. given this scenario, it is important to realize the strengths and weaknesses of these techniques to get a better picture of the scope of its implementation and its most that probably usefulness. We must be familiar with these techniques to understand the results and properly evaluate its detection limit. (Author) 4 refs.

  3. Characterization of microbial communities in pest colonized books by molecular biology tools

    OpenAIRE

    Franco Palla

    2011-01-01

    This work presents the identification of bacteria and fungi colonies in insect infesting books, by cultural-independent methodologies based on molecular biology techniques. Microbial genomic DNA extraction, in vitro amplification of specific target sequences by polymerase chain reactions (PCR), sequencing and sequence analysis were performed. These procedures minimized the samples amount, optimized the diagnostic studies on bacteria and fungi colonization and allowed the identification of man...

  4. Molecular biology and riddle of cancer: the ‘Tom & Jerry’ show

    Directory of Open Access Journals (Sweden)

    Md. Al Mamun

    2011-11-01

    Full Text Available From the conventional Bird’s eye, cancer initiation and metastasis are generally intended to be understood beneath the light of classical clonal genetic, epigenetic and cancer stem cell model. But inspite decades of investigation, molecular biology has shown hard success to give Eagle’s eye in unraveling the riddle of cancer. And it seems, tiring Tom runs in vague behind naughty Jerry.

  5. Molecular Biology for the Environment: an EC-US hands-on Course in Environmental Biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Victor de Lorenzo; Juan Luis Ramos; Jerome Kukor; Gerben J. Zylstra

    2004-02-15

    One of the central goals of this activity is to bring together young scientists (at the late Ph.D. or early postdoctoral stages of their careers) in a forum that should result in future collaborations. The course is designed to give scientists hands-on experience in modern, up-to-date biotechnological methods at the interface between molecular biology and environmental biotechnology for the analysis of microorganisms and their activities with regard to the remediation of pollutants in the environment.

  6. Intraductal papillary-mucinous neoplasia of the pancreas: Histopathology and molecular biology

    OpenAIRE

    Verbeke, Caroline S

    2010-01-01

    Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a clinically and morphologically distinctive precursor lesion of pancreatic cancer, characterized by gradual progression through a sequence of neoplastic changes. Based on the nature of the constituting neoplastic epithelium, degree of dysplasia and location within the pancreatic duct system, IPMNs are divided in several types which differ in their biological properties and clinical outcome. Molecular analysis and recent animal...

  7. DAE-BRNS life sciences symposium on molecular biology of stress response and its applications

    International Nuclear Information System (INIS)

    2005-01-01

    The world of living organisms is full of challenges from their surroundings and these organisms learn to adapt themselves to the changes - some transient and some permanent - in these surroundings. The demands on adaptability to stress are very strong for extremophiles that live in harsh conditions such as cold or hot temperatures, salinity and hyperbaric habitats. The stress could be biotic (e.g. infection or parasitism) or abiotic (e.g. temperature, light, salinity, heavy metals etc.) Evolutionarily living organisms have developed different shapes, coloration, habits etc. to survive in their habitats. The molecular mechanisms of these biological adaptations have become clearer only in recent years from the studies on the biological responses of an organism to stresses during its life time. Such responses are characterized by activation of certain genes and synthesis of proteins and metabolites, which facilitate amelioration of the stress. The molecular biology (biochemistry and genetics) of stress response is being constantly unravelled thanks to the availability of highly sensitive and high throughput techniques and a plethora of extremophilic experimental systems such as archaebacteria, radio resistant bacteria and midges, plants surviving in cold etc. An interesting outcome of this voluminous research has been the knowledge that responses to a group of stresses share common mechanisms, at least in part. This reflects the biologically conservationist trend among otherwise diverse organisms and stresses. In this symposium several papers and posters in the area of molecular biology of stress are presented in addition to some very interesting and promising-to-be informative and stimulating plenary lectures and invited talks from highly reputed scientists. The papers relevant to INIS are indexed separately

  8. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    Science.gov (United States)

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  9. Semester-long inquiry-based molecular biology laboratory: Transcriptional regulation in yeast.

    Science.gov (United States)

    Oelkers, Peter M

    2017-03-04

    A single semester molecular biology laboratory has been developed in which students design and execute a project examining transcriptional regulation in Saccharomyces cerevisiae. Three weeks of planning are allocated to developing a hypothesis through literature searches and use of bioinformatics. Common experimental plans address a cell process and how three genes that encode for proteins involved in that process are transcriptionally regulated in response to changing environmental conditions. Planning includes designing oligonucleotides to amplify the putative promoters of the three genes of interest. After the PCR, each product is cloned proximal to β-galactosidase in a yeast reporter plasmid. Techniques used include agarose electrophoresis, extraction of DNA from agarose, plasmid purification from bacteria, restriction digestion, ligation, and bacterial transformation. This promoter/reporter plasmid is then transformed into yeast. Transformed yeast are cultured in conditions prescribed in the experimental design, lysed and β-galactosidase activity is measured. The course provides an independent research experience in a group setting. Notebooks are maintained on-line with regular feedback. Projects culminate with the presentation of a poster worth 60% of the grade. Over the last three years, about 65% of students met expectations for experimental design, data acquisition, and analysis. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(2):145-151, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  10. MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution

    Directory of Open Access Journals (Sweden)

    Xia Xuhua

    2005-03-01

    Full Text Available Abstract Background MATLAB is a high-performance language for technical computing, integrating computation, visualization, and programming in an easy-to-use environment. It has been widely used in many areas, such as mathematics and computation, algorithm development, data acquisition, modeling, simulation, and scientific and engineering graphics. However, few functions are freely available in MATLAB to perform the sequence data analyses specifically required for molecular biology and evolution. Results We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by offering efficient implementations of the most needed functions in molecular biology and evolution. It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it provides an extensible, functional framework for users with more specialized requirements to explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The full functions in the toolbox are accessible through the command-line for seasoned MATLAB users. A graphical user interface, that may be especially useful for non-specialist end users, is also provided. Conclusion MBEToolbox is a useful tool that can aid in the exploration, interpretation and visualization of data in molecular biology and evolution. The software is publicly available at http://web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454.

  11. The Role of Molecular Biology in the Biomonitoring of Human Exposure to Chemicals

    Directory of Open Access Journals (Sweden)

    Balam Muñoz

    2010-11-01

    Full Text Available Exposure to different substances in an occupational environment is of utmost concern to global agencies such as the World Health Organization and the International Labour Organization. Interest in improving work health conditions, particularly of those employees exposed to noxious chemicals, has increased considerably and has stimulated the search for new, more specific and selective tests. Recently, the field of molecular biology has been indicated as an alternative technique for monitoring personnel while evaluating work-related pathologies. Originally, occupational exposure to environmental toxicants was assessed using biochemical techniques to determine the presence of higher concentrations of toxic compounds in blood, urine, or other fluids or tissues; results were used to evaluate potential health risk. However, this approach only estimates the presence of a noxious chemical and its effects, but does not prevent or diminish the risk. Molecular biology methods have become very useful in occupational medicine to provide more accurate and opportune diagnostics. In this review, we discuss the role of the following common techniques: (1 Use of cell cultures; (2 evaluation of gene expression; (3 the “omic” sciences (genomics, transcriptomics, proteomics and metabolomics and (4 bioinformatics. We suggest that molecular biology has many applications in occupational health where the data can be applied to general environmental conditions.

  12. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Molecular biology of renal cancer: bases for genetic directed therapy in advanced disease].

    Science.gov (United States)

    Maroto Rey, José Pablo; Cillán Narvaez, Elena

    2013-06-01

    There has been expansion of therapeutic options in the management of metastatic renal cell carcinoma due to a better knowledge of the molecular biology of kidney cancers. There are different tumors grouped under the term renal cell carcinoma, being clear cell cancer the most frequent and accounting for 80% of kidney tumors. Mutations in the Von Hippel-Lindau gene can be identified in up to 80% of sporadic clear cell cancer, linking a genetically inheritable disease where vascular tumors are frequent, with renal cell cancer. Other histologic types present specific alterations in molecular pathways, like c-MET in papillary type I tumors, and Fumarase Hydratase in papillary type II tumors. Identification of the molecular alteration for a specific tumor may offer an opportunity for treatment selection based on biomarkers, and, in the future, for developing an engineering designed genetic treatment.

  14. Current status of molecular biological techniques for plant breeding in the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Seong-Han; Lee, Si-Myung; Park, Bum-Seok; Yun, In-Sun; Goo, Doe-Hoe; Kim, Seok-Dong [Rural Development Administration, National Institute of Agricultural Science and Technology, Suwon (Korea)

    2002-02-01

    Classical plant breeding has played an important role in developing new varieties in current agriculture. For decades, the technique of cross-pollination has been popular for breeding in cereal and horticultural crops to introduce special traits. However, recently the molecular techniques get widely accepted as an alternative tool in both introducing a useful trait for developing the new cultivars and investigating the characteristics of a trait in plant, like the identification of a gene. Using the advanced molecular technique, several genetically modified (GM) crops (e.g., Roundup Ready Soybean, YieldGard, LibertyLink etc.) became commercially cultivated and appeared in the global market since 1996. The GM crops, commercially available at the moment, could be regarded as successful achievements in history of crop breeding conferring the specific gene into economically valuable crops to make them better. Along with such achievements, on the other hand these new crops have also caused the controversial debate on the safety of GM crops as human consumption and environmental release as well. Nevertheless, molecular techniques are widespread and popular in both investigating the basic science of plant biology and breeding new varieties compared to their conventional counterparts. Thus, the Department of Bioresources at the National Institute of Agricultural Science and Technology (NIAST) has been using the molecular biological techniques as a complimentary tool for the improvement of crop varieties for almost two decades. (author)

  15. Oligometastatic prostate cancer: shaping the definition with molecular imaging and an improved understanding of tumor biology.

    Science.gov (United States)

    Joice, Gregory A; Rowe, Steven P; Pienta, Kenneth J; Gorin, Michael A

    2017-11-01

    The aim of this review is to discuss how novel imaging modalities and molecular markers are shaping the definition of oligometastatic prostate cancer. To effectively classify a patient as having oligometastatic prostate cancer, diagnostic tests must be sensitive enough to detect subtle sites of metastatic disease. Conventional imaging modalities can readily detect widespread polymetastatic disease but do not have the sensitivity necessary to reliably classify patients as oligometastatic. Molecular imaging using both metabolic- and molecularly-targeted radiotracers has demonstrated great promise in aiding in our ability to define the oligometastatic state. Perhaps the most promising data to date have been generated with radiotracers targeting prostate-specific membrane antigen. In addition, early studies are beginning to define biologic markers in the oligometastatic state that may be indicative of disease with minimal metastatic potential. Recent developments in molecular imaging have allowed for improved detection of metastatic prostate cancer allowing for more accurate staging of patients with oligometastatic disease. Future development of biologic markers may assist in defining the oligometastatic state and determining prognosis.

  16. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Quantitative computational models of molecular self-assembly in systems biology.

    Science.gov (United States)

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  18. Molecular biology in a distributed world. A Kantian perspective on scientific practices and the human mind

    Directory of Open Access Journals (Sweden)

    Mariagrazia Portera

    2016-01-01

    Full Text Available In recent years the number of scholarly publications devoted to Kant's theory of biology has rapidly growing, with particular attention being given to Kant's thoughts about the concepts of teleology, function, organism, and their respective roles in scientific practice. Moving from these recent studies, and distancing itself from their mostly evolutionary background, the main aim of the present paper is to suggest an original "cognitive turn" in the interpretation of Kant's theory of biology. More specifically, the Authors will trace a connection between some Kantian theses about the “peculiar” or special nature of the human mind (intellectus ectypus, advanced in the Critique of the Power of Judgement (§ 76, 77, and some specific epistemological issues pertaining to the research practice of contemporary molecular biology.

  19. Finding the Fabulous Few: Why Your Program Needs Sophisticated Research.

    Science.gov (United States)

    Pfizenmaier, Emily

    1981-01-01

    Fund raising, it is argued, needs sophisticated prospect research. Professional prospect researchers play an important role in helping to identify prospective donors and also in helping to stimulate interest in gift giving. A sample of an individual work-up on a donor and a bibliography are provided. (MLW)

  20. Procles the Carthaginian: A North African Sophist in Pausanias’ Periegesis

    Directory of Open Access Journals (Sweden)

    Juan Pablo Sánchez Hernández

    2010-11-01

    Full Text Available Procles, cited by Pausanias (in the imperfect tense about a display in Rome and for an opinion about Pyrrhus of Epirus, probably was not a historian of Hellenistic date, but a contemporary sophist whom Pausanias encountered in person in Rome.

  1. SMEs and new ventures need business model sophistication

    DEFF Research Database (Denmark)

    Kesting, Peter; Günzel-Jensen, Franziska

    2015-01-01

    , and Spreadshirt, this article develops a framework that introduces five business model sophistication strategies: (1) uncover additional functions of your product, (2) identify strategic benefits for third parties, (3) take advantage of economies of scope, (4) utilize cross-selling opportunities, and (5) involve...

  2. Mapping molecular orientational distributions for biological sample in 3D (Conference Presentation)

    Science.gov (United States)

    HE, Wei; Ferrand, Patrick; Richter, Benjamin; Bastmeyer, Martin; Brasselet, Sophie

    2016-04-01

    Measuring molecular orientation properties is very appealing for scientists in molecular and cell biology, as well as biomedical research. Orientational organization at the molecular scale is indeed an important brick to cells and tissues morphology, mechanics, functions and pathologies. Recent work has shown that polarized fluorescence imaging, based on excitation polarization tuning in the sample plane, is able to probe molecular orientational order in biological samples; however this applies only to information in 2D, projected in the sample plane. To surpass this limitation, we extended this approach to excitation polarization tuning in 3D. The principle is based on the decomposition of any arbitrary 3D linear excitation in a polarization along the longitudinal z-axis, and a polarization in the transverse xy-sample plane. We designed an interferometer with one arm generating radial polarization light (thus producing longitudinal polarization under high numerical aperture focusing), the other arm controlling a linear polarization in the transverse plane. The amplitude ratio between the two arms can vary so as to get any linear polarized excitation in 3D at the focus of a high NA objective. This technique has been characterized by polarimetry imaging at the back focal plane of the focusing objective, and modeled theoretically. 3D polarized fluorescence microscopy is demonstrated on actin stress fibers in non-flat cells suspended on synthetic polymer structures forming supporting pillars, for which heterogeneous actin orientational order could be identified. This technique shows a great potential in structural investigations in 3D biological systems, such as cell spheroids and tissues.

  3. Molecular gyroscopes and biological effects of weak extremely low-frequency magnetic fields

    International Nuclear Information System (INIS)

    Binhi, V.N.; Savin, A.V.

    2002-01-01

    Extremely low-frequency magnetic fields are known to affect biological systems. In many cases, biological effects display 'windows' in biologically effective parameters of the magnetic fields: most dramatic is the fact that the relatively intense magnetic fields sometimes do not cause appreciable effect, while smaller fields of the order of 10-100 μT do. Linear resonant physical processes do not explain the frequency windows in this case. Amplitude window phenomena suggest a nonlinear physical mechanism. Such a nonlinear mechanism has been proposed recently to explain those 'windows'. It considers the quantum-interference effects on the protein-bound substrate ions. Magnetic fields cause an interference of ion quantum states and change the probability of ion-protein dissociation. This ion-interference mechanism predicts specific magnetic-field frequency and amplitude windows within which the biological effects occur. It agrees with a lot of experiments. However, according to the mechanism, the lifetime Γ -1 of ion quantum states within a protein cavity should be of unrealistic value, more than 0.01 s for frequency band 10-100 Hz. In this paper, a biophysical mechanism has been proposed, which (i) retains the attractive features of the ion interference mechanism, i.e., predicts physical characteristics that might be experimentally examined and (ii) uses the principles of gyroscopic motion and removes the necessity to postulate large lifetimes. The mechanism considers the dynamics of the density matrix of the molecular groups, which are attached to the walls of protein cavities by two covalent bonds, i.e., molecular gyroscopes. Numerical computations have shown almost free rotations of the molecular gyroscopes. The relaxation time due to van der Waals forces was about 0.01 s for the cavity size of 28 Aa

  4. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. © 2016 K. Southard et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. The Design and Transformation of Biofundamentals: A Nonsurvey Introductory Evolutionary and Molecular Biology Course.

    Science.gov (United States)

    Klymkowsky, Michael W; Rentsch, Jeremy D; Begovic, Emina; Cooper, Melanie M

    2016-01-01

    Many introductory biology courses amount to superficial surveys of disconnected topics. Often, foundational observations and the concepts derived from them and students' ability to use these ideas appropriately are overlooked, leading to unrealistic expectations and unrecognized learning obstacles. The result can be a focus on memorization at the expense of the development of a meaningful framework within which to consider biological phenomena. About a decade ago, we began a reconsideration of what an introductory course should present to students and the skills they need to master. The original Web-based course's design presaged many of the recommendations of the Vision and Change report; in particular, a focus on social evolutionary mechanisms, stochastic (evolutionary and molecular) processes, and core ideas (cellular continuity, evolutionary homology, molecular interactions, coupled chemical reactions, and molecular machines). Inspired by insights from the Chemistry, Life, the Universe & Everything general chemistry project, we transformed the original Web version into a (freely available) book with a more unified narrative flow and a set of formative assessments delivered through the beSocratic system. We outline how student responses to course materials are guiding future course modifications, in particular a more concerted effort at helping students to construct logical, empirically based arguments, explanations, and models. © 2016 M. W. Klymkowsky et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  6. A Systems Biology Approach Reveals Converging Molecular Mechanisms that Link Different POPs to Common Metabolic Diseases.

    Science.gov (United States)

    Ruiz, Patricia; Perlina, Ally; Mumtaz, Moiz; Fowler, Bruce A

    2016-07-01

    A number of epidemiological studies have identified statistical associations between persistent organic pollutants (POPs) and metabolic diseases, but testable hypotheses regarding underlying molecular mechanisms to explain these linkages have not been published. We assessed the underlying mechanisms of POPs that have been associated with metabolic diseases; three well-known POPs [2,3,7,8-tetrachlorodibenzodioxin (TCDD), 2,2´,4,4´,5,5´-hexachlorobiphenyl (PCB 153), and 4,4´-dichlorodiphenyldichloroethylene (p,p´-DDE)] were studied. We used advanced database search tools to delineate testable hypotheses and to guide laboratory-based research studies into underlying mechanisms by which this POP mixture could produce or exacerbate metabolic diseases. For our searches, we used proprietary systems biology software (MetaCore™/MetaDrug™) to conduct advanced search queries for the underlying interactions database, followed by directional network construction to identify common mechanisms for these POPs within two or fewer interaction steps downstream of their primary targets. These common downstream pathways belong to various cytokine and chemokine families with experimentally well-documented causal associations with type 2 diabetes. Our systems biology approach allowed identification of converging pathways leading to activation of common downstream targets. To our knowledge, this is the first study to propose an integrated global set of step-by-step molecular mechanisms for a combination of three common POPs using a systems biology approach, which may link POP exposure to diseases. Experimental evaluation of the proposed pathways may lead to development of predictive biomarkers of the effects of POPs, which could translate into disease prevention and effective clinical treatment strategies. Ruiz P, Perlina A, Mumtaz M, Fowler BA. 2016. A systems biology approach reveals converging molecular mechanisms that link different POPs to common metabolic diseases. Environ

  7. Chapter 24: the coming of molecular biology and its impact on clinical neurology.

    Science.gov (United States)

    Smith, Christopher U M

    2010-01-01

    Although the chemical study of the nervous system dates back well into the 19th century, molecular biology and especially molecular neurobiology only began to be established in the second half of the 20th century. This chapter reviews their impact on clinical neuroscience during the 50 years since Watson and Crick published their seminal paper. After a short review of the part played by F.O. Schmitt in establishing molecular neuroscience the chapter outlines work that led to a detailed understanding of the biochemical structure and function of nerve cell membranes and their embedded channel proteins, receptors, and other molecules. The chapter then turns to the numerous pathologies that result from disorders of these elements: the various channel and gap-junction pathologies. The chapter continues with a discussion of some of the diseases caused by defective DNA, especially the trinucleotide repeat expansion diseases (TREDs) and ends with a short account of the development of molecular approaches to prion diseases, myasthenia gravis, and the neurodegenerative diseases of old age. Francis Bacon said long ago that "knowledge is power." The hope is that increasing molecular knowledge will help cure some of the human suffering seen in the neurological ward and clinic.

  8. The Molecular Biology of Soft-Tissue Sarcomas and Current Trends in Therapy

    Directory of Open Access Journals (Sweden)

    Jorge Quesada

    2012-01-01

    Full Text Available Basic research in sarcoma models has been fundamental in the discovery of scientific milestones leading to a better understanding of the molecular biology of cancer. Yet, clinical research in sarcoma has lagged behind other cancers because of the multiple clinical and pathological entities that characterize sarcomas and their rarity. Sarcomas encompass a very heterogeneous group of tumors with diverse pathological and clinical overlapping characteristics. Molecular testing has been fundamental in the identification and better definition of more specific entities among this vast array of malignancies. A group of sarcomas are distinguished by specific molecular aberrations such as somatic mutations, intergene deletions, gene amplifications, reciprocal translocations, and complex karyotypes. These and other discoveries have led to a better understanding of the growth signals and the molecular pathways involved in the development of these tumors. These findings are leading to treatment strategies currently under intense investigation. Disruption of the growth signals is being targeted with antagonistic antibodies, tyrosine kinase inhibitors, and inhibitors of several downstream molecules in diverse molecular pathways. Preliminary clinical trials, supported by solid basic research and strong preclinical evidence, promises a new era in the clinical management of these broad spectrum of malignant tumors.

  9. Translating clinical research of Molecular Biology into a personalized, multidisciplinary approach of colorectal cancer patients.

    Science.gov (United States)

    Strambu, V; Garofil, D; Pop, F; Radu, P; Bratucu, M; Popa, F

    2014-03-15

    Although multimodal treatment has brought important benefit, there is still great heterogeneity regarding the indication and response to chemotherapy in Stage II and III, and individual variations related to both overall survival and toxicity of new therapies in metastatic disease or tumor relapse. Recent research in molecular biology led to the development of a large scale of genetic biomarkers, but their clinical use is not concordant with the high expectations. The Aim of this review is to identify and discuss the molecular markers with proven clinical applicability as prognostic and/or predictive factors in CRC and also to establish a feasible algorithm of molecular testing, as routine practice, in the personalized, multidisciplinary approach of colorectal cancer patients in our country. Despite the revolution that occurred in the field of molecular marker research, only Serum CEA, Immunohistochemical analysis of mismatch repair proteins and PCR testing for KRAS and BRAF mutations have confirmed their clinical utility in the management of colorectal cancer. Their implementation in the current practice should partially resolve some of the controversies related to this heterogenic pathology, in matters of prognosis in different TNM stages, stage II patient risk stratification, diagnosis of hereditary CRC and likelihood of benefit from anti EGFR therapy in metastatic disease. The proposed algorithms of molecular testing are very useful but still imperfect and require further validation and constant optimization.

  10. Right Versus Left Colon Cancer Biology: Integrating the Consensus Molecular Subtypes.

    Science.gov (United States)

    Lee, Michael S; Menter, David G; Kopetz, Scott

    2017-03-01

    Although clinical management of colon cancer generally has not accounted for the primary tumor site, left-sided and right-sided colon cancers harbor different clinical and biologic characteristics. Right-sided colon cancers are more likely to have genome-wide hypermethylation via the CpG island methylator phenotype (CIMP), hypermutated state via microsatellite instability, and BRAF mutation. There are also differential exposures to potential carcinogenic toxins and microbiota in the right and left colon. Gene expression analyses further shed light on distinct biologic subtypes of colorectal cancers (CRCs), with 4 consensus molecular subtypes (CMSs) identified. Importantly, these subtypes are differentially distributed between right- and left-sided CRCs, with greater proportions of the "microsatellite unstable/immune" CMS1 and the "metabolic" CMS3 subtypes found in right-sided colon cancers. This review summarizes important biologic distinctions between right- and left-sided CRCs that likely impact prognosis and may predict for differential responses to biologic therapy. Given the inferior prognosis of stage III-IV right-sided CRCs and emerging data suggesting that anti-epidermal growth factor receptor antibody therapy is associated with worse survival in right-sided stage IV CRCs compared with left-sided cancers, these biologic differences between right- and left-sided CRCs provide critical context and may provide opportunities to personalize therapy. Copyright © 2017 by the National Comprehensive Cancer Network.

  11. Novel thrombopoietin mimetic peptides bind c-Mpl receptor: Synthesis, biological evaluation and molecular modeling.

    Science.gov (United States)

    Liu, Yaquan; Tian, Fang; Zhi, Dejuan; Wang, Haiqing; Zhao, Chunyan; Li, Hongyu

    2017-02-01

    Thrombopoietin (TPO) acts in promoting the proliferation of hematopoietic stem cells and by initiating specific maturation events in megakaryocytes. Now, TPO-mimetic peptides with amino acid sequences unrelated to TPO are of considerable pharmaceutical interest. In the present paper, four new TPO mimetic peptides that bind and activate c-Mpl receptor have been identified, synthesized and tested by Dual-Luciferase reporter gene assay for biological activities. The molecular modeling research was also approached to understand key molecular mechanisms and structural features responsible for peptide binding with c-Mpl receptor. The results presented that three of four mimetic peptides showed significant activities. In addition, the molecular modeling approaches proved hydrophobic interactions were the driven positive forces for binding behavior between peptides and c-Mpl receptor. TPO peptide residues in P7, P13 and P7' positions were identified by the analysis of hydrogen bonds and energy decompositions as the key ones for benefiting better biological activities. Our data suggested the synthesized peptides have considerable potential for the future development of stable and highly active TPO mimetic peptides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  13. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Directory of Open Access Journals (Sweden)

    Nicolas Piton

    2015-01-01

    Full Text Available KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27% and specificity (64% in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100% and specificity (100% in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer.

  14. KRAS and BRAF Mutation Detection: Is Immunohistochemistry a Possible Alternative to Molecular Biology in Colorectal Cancer?

    Science.gov (United States)

    Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe

    2015-01-01

    KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749

  15. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications.

    Science.gov (United States)

    Ocak, S; Sos, M L; Thomas, R K; Massion, P P

    2009-08-01

    During the last decade, high-throughput technologies including genomic, epigenomic, transcriptomic and proteomic have been applied to further our understanding of the molecular pathogenesis of this heterogeneous disease, and to develop strategies that aim to improve the management of patients with lung cancer. Ultimately, these approaches should lead to sensitive, specific and noninvasive methods for early diagnosis, and facilitate the prediction of response to therapy and outcome, as well as the identification of potential novel therapeutic targets. Genomic studies were the first to move this field forward by providing novel insights into the molecular biology of lung cancer and by generating candidate biomarkers of disease progression. Lung carcinogenesis is driven by genetic and epigenetic alterations that cause aberrant gene function; however, the challenge remains to pinpoint the key regulatory control mechanisms and to distinguish driver from passenger alterations that may have a small but additive effect on cancer development. Epigenetic regulation by DNA methylation and histone modifications modulate chromatin structure and, in turn, either activate or silence gene expression. Proteomic approaches critically complement these molecular studies, as the phenotype of a cancer cell is determined by proteins and cannot be predicted by genomics or transcriptomics alone. The present article focuses on the technological platforms available and some proposed clinical applications. We illustrate herein how the "-omics" have revolutionised our approach to lung cancer biology and hold promise for personalised management of lung cancer.

  16. Intracellular antibody capture: A molecular biology approach to inhibitors of protein-protein interactions.

    Science.gov (United States)

    Zhang, Jing; Rabbitts, Terence H

    2014-11-01

    Many proteins of interest in basic biology, translational research studies and for clinical targeting in diseases reside inside the cell and function by interacting with other macromolecules. Protein complexes control basic processes such as development and cell division but also abnormal cell growth when mutations occur such as found in cancer. Interfering with protein-protein interactions is an important aspiration in both basic and disease biology but small molecule inhibitors have been difficult and expensive to isolate. Recently, we have adapted molecular biology techniques to develop a simple set of protocols for isolation of high affinity antibody fragments (in the form of single VH domains) that function within the reducing environment of higher organism cells and can bind to their target molecules. The method called Intracellular Antibody Capture (IAC) has been used to develop inhibitory anti-RAS and anti-LMO2 single domains that have been used for target validation of these antigens in pre-clinical cancer models and illustrate the efficacy of the IAC approach to generation of drug surrogates. Future use of inhibitory VH antibody fragments as drugs in their own right (we term these macrodrugs to distinguish them from small molecule drugs) requires their delivery to target cells in vivo but they can also be templates for small molecule drug development that emulate the binding sites of the antibody fragments. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  18. Retracted: Molecular Characterization and Biological Activity of Interferon-α in Indian Peafowl (Pavo cristatus).

    Science.gov (United States)

    Zhao, Hongjing; Wang, Yu; Liu, Juanjuan; Shao, Yizhi; Li, Jinglun; Chai, Hongliang; Xing, Mingwei

    2017-08-07

    DNA and Cell Biology (DNA&CB) is officially retracting the paper by Zhao H, Wang Y, Liu J, Shao Y, Li J, Chai H, Xing M, entitled, "Molecular Characterization and Biological activity of Interferon-α in Indian Peafowl (Pavo cristatus)," [Epub ahead of print]; 2017, DOI: 10.1089/dna.2017.3798. The Editor-in-Chief of DNA&CB, Dr. Carol Shoshkes Reiss, was alerted to a discrepancy between the findings in the article by Zhao et al., and those of others, about the absence of expression of ISG15 in chickens. Dr. Reiss requested from the authors a clarification in their observations and inquired about the failure to include relevant citations in the reference section of the paper. Based on the response from the authors, it appeared that they did not have the confidence in the data as they were not able to repeat the experiments, and were also unsure of the molecular probes that were used in the study. Therefore, the Editor has determined that the paper should be officially retracted from DNA and Cell Biology.

  19. THE EVALUATION OF A TOOL FOR DISSEMINATION OF BIOTECHNOLOGY AND MOLECULAR BIOLOGY CONCEPTS IN FORMAL EDUCATION

    Directory of Open Access Journals (Sweden)

    F.M. Escanhoela

    2007-05-01

    Full Text Available Since 2003, the CBME Scientific Dissemination Coordination hasdeveloped a project related to the production and distribution of a scientificdissemination newspaper, called CBME InFORMAÇÃO, directed to high-schoolstudents and teachers. It is a quarterly publication and shows the concepts andadvances of studies in molecular biology and biotechnology. In order to evaluatethe newspaper, a research was accomplished in 2005. It involved 177 studentsfrom six high schools of São Carlos and region. In addition, opinions of fivescience teachers that worked with the newspaper in their classrooms, as well aseight Biology undergraduates were collected. The teachers received somequestionnaires that had to be answered by them and their students after a specifyactivity with the periodical – basically, the activities consisted of three stages:individual reading of the newspaper; formulation of questions by the teacher and,finally, group discussion on the chosen theme. The research confirmed theimportance of the use of the periodical as a tool in the formation of critical readersof facts related to the biotechnology and molecular biology, what should contributewith the citizenship development in the students. Moreover, it provided a possibilityto reorganize the periodical.

  20. Correlativity study on MRI morphologic features, pathology, and molecular biology of breast cancer

    International Nuclear Information System (INIS)

    Chen Rong; Gong Shuigen; Zhang Weiguo; Chen Jinhua; He Shuangwu; Liu Baohua; Li Zengpeng

    2004-01-01

    Objective: To investigate the correlation among MRI morphologic features, pathology, and molecular biology of breast cancer. Methods: MR scanning was performed in 78 patients with breast cancer before operation and MRI morphologic features of breast cancer were analyzed. The mastectomy specimens of the breast neoplasm were stained with immunohistochemistry, and the expression of estrogen receptor (ER), progesterone receptor (PR), C-erbB-2, p53, and the distribution of microvessel density (MVD) was measured. The pathologic results were compared with MRI features. Results: Among the 80 breast cancers, ER positive expression was positively correlated with the spiculate margin of breast cancer (P 0.05). Among the 41 breast cancers with dynamic MR scans, there was positive correlation between the spatial distribution of contrast agent and MVD (P<0.01). Conclusion: There exists some correlation among MRI morphologic features, pathology, and molecular biology factors in breast cancer to certain extent. The biologic behavior and prognosis of the breast cancer can be assessed according to MRI features

  1. Program and abstracts of the 25. Annual meeting of the Brazilian Society on Biochemistry and Molecular Biology

    International Nuclear Information System (INIS)

    1996-01-01

    The meeting was about biochemistry and molecular biology.In this meeting it was also discussed the following subjects: biotechnology, metabolism, enzymes, proteins, immunology, drugs and others related topics

  2. Development Strategies for Tourism Destinations: Tourism Sophistication vs. Resource Investments

    OpenAIRE

    Rainer Andergassen; Guido Candela

    2010-01-01

    This paper investigates the effectiveness of development strategies for tourism destinations. We argue that resource investments unambiguously increase tourism revenues and that increasing the degree of tourism sophistication, that is increasing the variety of tourism related goods and services, increases tourism activity and decreases the perceived quality of the destination's resource endowment, leading to an ambiguous effect on tourism revenues. We disentangle these two effects and charact...

  3. Characterization of microbial communities in pest colonized books by molecular biology tools

    Directory of Open Access Journals (Sweden)

    Franco Palla

    2011-08-01

    Full Text Available This work presents the identification of bacteria and fungi colonies in insect infesting books, by cultural-independent methodologies based on molecular biology techniques. Microbial genomic DNA extraction, in vitro amplification of specific target sequences by polymerase chain reactions (PCR, sequencing and sequence analysis were performed. These procedures minimized the samples amount, optimized the diagnostic studies on bacteria and fungi colonization and allowed the identification of many species also in complex microbial consortia. The molecular techniques for sure accomplish and integrate the microbiological standard methods (in vitro culture and morphological analyses (OM, SEM, CLSM, in order to understand the role of microorganisms in bio-deterioration of cultural assets. This monitoring is also indispensable to shed light on the risk for visitors and/or professionals to contract potential illnesses within indoor environments.

  4. Biología y regulación molecular de la micorriza arbuscular

    Directory of Open Access Journals (Sweden)

    S. Guzmán-González

    2005-01-01

    Full Text Available Las micorrizas arbusculares son asociaciones simbióticas formadas entre un amplio rango de especies de plantas y hongos del orden Glomales. El hongo coloniza el apoplasto y células corticales de la raíz. El desarrollo de esta asociación, altamente compatible, requiere de la diferenciación celular y molecular coordinada de ambos simbiontes, para formar una interface especializada en la cual ocurre la transferencia bidireccional de nutrimentos. Esta revisión resume los resultados obtenidos con el uso de técnicas de biología molecular en el entendimiento del desarrollo de la simbiosis micorrízica arbuscular.

  5. Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R

    CERN Document Server

    Bloomfield, Victor

    2009-01-01

    This book provides an introduction, suitable for advanced undergraduates and beginning graduate students, to two important aspects of molecular biology and biophysics: computer simulation and data analysis. It introduces tools to enable readers to learn and use fundamental methods for constructing quantitative models of biological mechanisms, both deterministic and with some elements of randomness, including complex reaction equilibria and kinetics, population models, and regulation of metabolism and development; to understand how concepts of probability can help in explaining important features of DNA sequences; and to apply a useful set of statistical methods to analysis of experimental data from spectroscopic, genomic, and proteomic sources. These quantitative tools are implemented using the free, open source software program R. R provides an excellent environment for general numerical and statistical computing and graphics, with capabilities similar to Matlab®. Since R is increasingly used in bioinformat...

  6. Biological and molecular characterization of Brazilian isolates of Zucchini yellow mosaic virus

    Directory of Open Access Journals (Sweden)

    David Marques de Almeida Spadotti

    2015-02-01

    Full Text Available Zucchini yellow mosaic virus (ZYMV causes substantial economic losses in cucurbit crops. Although ZYMV has been present in Brazil for more than 20 years, there is little information about the biological and molecular characteristics of the isolates found in the country. This study aimed to characterize the experimental hosts, pathotypes and genetic diversity of a collection of eleven Brazilian ZYMV isolates within the coat protein gene. For biological analysis, plant species from Amaranthaceae, Chenopodiaceae, Cucurbitaceae, Fabaceae, Solanaceae, and Pedaliaceae were mechanically inoculated and pathotypes were identified based on the reaction of a resistant Cucumis melo, accession PI414723. All of the cucurbit species/varieties and Sesamum indicum were systemically infected with all isolates. The nucleotide sequence variability of the coat protein gene ranged from 82 % to 99 % compared to the corresponding sequences of ZYMV isolates from different geographical locations. No recombination event was detected in the coat protein gene of the isolates.

  7. The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses.

    Science.gov (United States)

    Lasecka, Lidia; Baron, Michael D

    2014-06-01

    The nairoviruses are a rapidly emerging group of tick-borne bunyaviruses that includes pathogens of humans (Crimean-Congo hemorrhagic fever virus [CCHFV]) and livestock (Nairobi sheep disease virus [NSDV], also known as Ganjam virus), as well as a large number of viruses for which the normal vertebrate host has not been established. Studies on this group of viruses have been fairly limited, not least because CCHFV is a BSL4 human pathogen, restricting the number of labs able to study the live virus, while NSDV, although highly pathogenic in naive animals, is not seen as a threat in developed countries, making it a low priority. Nevertheless, recent years have seen significant progress in our understanding of the biology of these viruses, particularly that of CCHFV, and this article seeks to draw together our existing knowledge to generate an overall picture of their molecular biology, underlining areas of particular ignorance for future studies.

  8. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    Science.gov (United States)

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  9. [Big Data Revolution or Data Hubris? : On the Data Positivism of Molecular Biology].

    Science.gov (United States)

    Gramelsberger, Gabriele

    2017-12-01

    Genome data, the core of the 2008 proclaimed big data revolution in biology, are automatically generated and analyzed. The transition from the manual laboratory practice of electrophoresis sequencing to automated DNA-sequencing machines and software-based analysis programs was completed between 1982 and 1992. This transition facilitated the first data deluge, which was considerably increased by the second and third generation of DNA-sequencers during the 2000s. However, the strategies for evaluating sequence data were also transformed along with this transition. The paper explores both the computational strategies of automation, as well as the data evaluation culture connected with it, in order to provide a complete picture of the complexity of today's data generation and its intrinsic data positivism. This paper is thereby guided by the question, whether this data positivism is the basis of the big data revolution of molecular biology announced today, or it marks the beginning of its data hubris.

  10. Plant Molecular Biology 2008 Gordon Research Conference - July 13-18, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Richard M. Amasino

    2009-08-28

    The Plant Molecular Biology Conference has traditionally covered a breadth of exciting topics and the 2008 conference will continue in that tradition. There will be sessions on metabolism; new methods to study genomes, proteomes and metabolomes; plant-microbe interactions; plant hormones; epigenetics. A new topic for the conference this year will be bioenergy. Thus this conference will bring together a range of disciplines to foster the exchange ideas and to permit the participants to learn of the latest developments and ideas in diverse areas of plant biology. The conference provides an excellent opportunity for individuals to discuss their research because additional speakers in each session will be selected from submitted abstracts. There will also be a poster session each day for a two-hour period prior to dinner.

  11. A comprehensive experiment for molecular biology: Determination of single nucleotide polymorphism in human REV3 gene using PCR-RFLP.

    Science.gov (United States)

    Zhang, Xu; Shao, Meng; Gao, Lu; Zhao, Yuanyuan; Sun, Zixuan; Zhou, Liping; Yan, Yongmin; Shao, Qixiang; Xu, Wenrong; Qian, Hui

    2017-07-08

    Laboratory exercise is helpful for medical students to understand the basic principles of molecular biology and to learn about the practical applications of molecular biology. We have designed a lab course on molecular biology about the determination of single nucleotide polymorphism (SNP) in human REV3 gene, the product of which is a subunit of DNA polymerase ζ and SNPs in this gene are associated with altered susceptibility to cancer. This newly designed experiment is composed of three parts, including genomic DNA extraction, gene amplification by PCR, and genotyping by RFLP. By combining these activities, the students are not only able to learn a series of biotechniques in molecular biology, but also acquire the ability to link the learned knowledge with practical applications. This comprehensive experiment will help the medical students improve the conceptual understanding of SNP and the technical understanding of SNP detection. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):299-304, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  12. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    Science.gov (United States)

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  13. The Design of a Molecular Assembly Line Based on Biological Molecules

    Science.gov (United States)

    2003-06-01

    parenthesis in figure 1.8 is a bi-stable toggle switch. Introduction: Molecular assembly lines O=P-O- O O HOH H0P-0- O -O- 4 Polymerase HO H--- O HHO ...sample. Therefore, the samples are self-consistent. From here on, the calculated temperature based on FAM emission MNSowmm" RF Biology: Results and...irradiation for one hour. Figure 2.11 shows the fluorescence spectra of FAM emission (4 scans averaged over 200 seconds) in a 300MHz field. The increased

  14. Intraductal papillary-mucinous neoplasia of the pancreas: Histopathology and molecular biology.

    Science.gov (United States)

    Verbeke, Caroline S

    2010-10-27

    Intraductal papillary-mucinous neoplasm (IPMN) of the pancreas is a clinically and morphologically distinctive precursor lesion of pancreatic cancer, characterized by gradual progression through a sequence of neoplastic changes. Based on the nature of the constituting neoplastic epithelium, degree of dysplasia and location within the pancreatic duct system, IPMNs are divided in several types which differ in their biological properties and clinical outcome. Molecular analysis and recent animal studies suggest that IPMNs develop in the context of a field-defect and reveal their possible relationship with other neoplastic precursor lesions of pancreatic cancer.

  15. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments.

    Science.gov (United States)

    Kudoh, Hiroshi

    2016-04-01

    Phenology refers to the study of seasonal schedules of organisms. Molecular phenology is defined here as the study of the seasonal patterns of organisms captured by molecular biology techniques. The history of molecular phenology is reviewed briefly in relation to advances in the quantification technology of gene expression. High-resolution molecular phenology (HMP) data have enabled us to study phenology with an approach of in natura systems biology. I review recent analyses of FLOWERING LOCUS C (FLC), a temperature-responsive repressor of flowering, along the six steps in the typical flow of in natura systems biology. The extensive studies of the regulation of FLC have made this example a successful case in which a comprehensive understanding of gene functions has been progressing. The FLC-mediated long-term memory of past temperatures creates time lags with other seasonal signals, such as photoperiod and short-term temperature. Major signals that control flowering time have a phase lag between them under natural conditions, and hypothetical phase lag calendars are proposed as mechanisms of season detection in plants. Transcriptomic HMP brings a novel strategy to the study of molecular phenology, because it provides a comprehensive representation of plant functions. I discuss future perspectives of molecular phenology from the standpoints of molecular biology, evolutionary biology and ecology. © 2015 The Author. New Phytologist © 2015 New Phytologist Trust.

  16. Integr8: enhanced inter-operability of European molecular biology databases.

    Science.gov (United States)

    Kersey, P J; Morris, L; Hermjakob, H; Apweiler, R

    2003-01-01

    The increasing production of molecular biology data in the post-genomic era, and the proliferation of databases that store it, require the development of an integrative layer in database services to facilitate the synthesis of related information. The solution of this problem is made more difficult by the absence of universal identifiers for biological entities, and the breadth and variety of available data. Integr8 was modelled using UML (Universal Modelling Language). Integr8 is being implemented as an n-tier system using a modern object-oriented programming language (Java). An object-relational mapping tool, OJB, is being used to specify the interface between the upper layers and an underlying relational database. The European Bioinformatics Institute is launching the Integr8 project. Integr8 will be an automatically populated database in which we will maintain stable identifiers for biological entities, describe their relationships with each other (in accordance with the central dogma of biology), and store equivalences between identified entities in the source databases. Only core data will be stored in Integr8, with web links to the source databases providing further information. Integr8 will provide the integrative layer of the next generation of bioinformatics services from the EBI. Web-based interfaces will be developed to offer gene-centric views of the integrated data, presenting (where known) the links between genome, proteome and phenotype.

  17. Characterization of Pathogenic Human MSH2 Missense Mutations Using Yeast as a Model System: A Laboratory Course in Molecular Biology

    Science.gov (United States)

    Gammie, Alison E.; Erdeniz, Naz

    2004-01-01

    This work describes the project for an advanced undergraduate laboratory course in cell and molecular biology. One objective of the course is to teach students a variety of cellular and molecular techniques while conducting original research. A second objective is to provide instruction in science writing and data presentation by requiring…

  18. A logic-based dynamic modeling approach to explicate the evolution of the central dogma of molecular biology.

    Science.gov (United States)

    Jafari, Mohieddin; Ansari-Pour, Naser; Azimzadeh, Sadegh; Mirzaie, Mehdi

    It is nearly half a century past the age of the introduction of the Central Dogma (CD) of molecular biology. This biological axiom has been developed and currently appears to be all the more complex. In this study, we modified CD by adding further species to the CD information flow and mathematically expressed CD within a dynamic framework by using Boolean network based on its present-day and 1965 editions. We show that the enhancement of the Dogma not only now entails a higher level of complexity, but it also shows a higher level of robustness, thus far more consistent with the nature of biological systems. Using this mathematical modeling approach, we put forward a logic-based expression of our conceptual view of molecular biology. Finally, we show that such biological concepts can be converted into dynamic mathematical models using a logic-based approach and thus may be useful as a framework for improving static conceptual models in biology.

  19. Molecular profiling of cancer--the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic.

    Science.gov (United States)

    Stricker, Thomas; Catenacci, Daniel V T; Seiwert, Tanguy Y

    2011-04-01

    Cancers arise as a result of an accumulation of genetic aberrations that are either acquired or inborn. Virtually every cancer has its unique set of molecular changes. Technologies have been developed to study cancers and derive molecular characteristics that increasingly have implications for clinical care. Indeed, the identification of key genetic aberrations (molecular drivers) may ultimately translate into dramatic benefit for patients through the development of highly targeted therapies. With the increasing availability of newer, more powerful, and cheaper technologies such as multiplex mutational screening, next generation sequencing, array-based approaches that can determine gene copy numbers, methylation, expression, and others, as well as more sophisticated interpretation of high-throughput molecular information using bioinformatics tools like signatures and predictive algorithms, cancers will routinely be characterized in the near future. This review examines the background information and technologies that clinicians and physician-scientists will need to interpret in order to develop better, personalized treatment strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Células madre: generalidades, eventos biológicos y moleculares Stem cells: general aspects, biological and molecular events

    Directory of Open Access Journals (Sweden)

    Mónica María Cortés Márquez

    2008-09-01

    Full Text Available Las autorrenovación y la diferenciación son características de las células madre que varían entre los diferentes tipos celulares según el tejido en el que se encuentren y el microambiente que las rodee. En ambos procesos intervienen inhibidores del ciclo celular, genes implicados en rearreglos cromosómicos, proteínas del desarrollo esencial y vías de señalización específicas. La autorrenovación está regulada por diversos mecanismos, entre los cuales se destacan las vías Wnt, Notch y Hedgehog, y los factores BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 y sus páralogos. Los adelantos en el conocimiento de la biología de las células madre y de los mecanismos moleculares que regulan la autorrenovación y la diferenciación han convertido a estas células en una importante promesa para la investigación básica y aplicada. Self-renewal capacity and differentiation are features of stem cells that vary among the different cellular types according to the tissue in which they reside and the surrounding microenvironment. Cellular cycle inhibitors, genes implied in chromosomal rearrangements, essential development proteins and specific signaling pathways intervene in these processes. Self-renewal is regulated by different mechanisms, the most important of which are the Wnt, Notch and Hedgehog pathways, and the factors BMI-1, p16Ink4a, ARF, NANOG, OCT3/4, SOX2, HOXB4 and their paralogs. Advances in the knowledge of stem cells biology and of the molecular mechanisms that influence their selfrenewal and differentiation have made these cells an important promise for both basic and appliedresearch.

  1. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    International Nuclear Information System (INIS)

    Meng, Liang; Meng, Pinjia; Zhang, Qingqing; Wang, Yanji

    2013-01-01

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  2. Fast screening of ketamine in biological samples based on molecularly imprinted photonic hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Liang [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Meng, Pinjia, E-mail: mengpinjia@163.com [Department of Forensic Science, People' s Public Security University of China, Beijing (China); Zhang, Qingqing; Wang, Yanji [Department of Forensic Science, People' s Public Security University of China, Beijing (China)

    2013-04-10

    Graphical abstract: A novel label-free colorimetric chemosensor: with the increase in the concentration of ketamine, the Bragg diffraction peak of MIPHs gradually shifted to the longer wavelength region. Accompanying the peak shift, the color change of MIPHs was also observed obviously: from green to red. Highlights: ► We developed the label-free colorimetric MIPHs for handy and fast screening of ketamine. ► The obvious color change of MIPHs was observed upon ketamine. ► The MIPHs exhibited good sensing abilities in an aqueous environment. ► The sensing mechanisms of the water-compatible MIPHs were investigated. ► The MIPHs were employed to screening ketamine in real biological samples. -- Abstract: A novel label-free colorimetric chemosensor was developed for handy and fast screening of ketamine with high sensitivity and specificity based on molecularly imprinted photonic hydrogels (MIPHs) that combined the colloidal-crystal with molecular imprinting technique. The unique inverse opal arrays with a thin polymer wall in which the imprinted nanocavities of ketamine moleculars distributed allowed high sensitive, quick responsive, specific detection of the target analyte, and good regenerating ability in an aqueous environment. Due to the hierarchical inverse opal structural characteristics, the specific ketamine molecular recognition process can induce obvious swelling of the MIPHs to be directly transferred into visually perceptible optical signal (change in color) which can be detected by the naked eye through Bragg diffractive shifts of ordered macroporous arrays. In order to enhance the recognition ability in aqueous environments, the MIPHs were designed as water-compatible and synthesized in a water–methanol system. The molecular recognition mechanisms were investigated. The proposed MIPHs were successfully employed to screen trace level ketamine in human urine and saliva samples, exhibiting high sensitivity, rapid response, and specificity in the

  3. Biological and molecular characterization of silkworm strains from the Brazilian germplasm bank of Bombyx mori.

    Science.gov (United States)

    Pereira, N C; Munhoz, R E F; Bignotto, T S; Bespalhuk, R; Garay, L B; Saez, C R N; Fassina, V A; Nembri, A; Fernandez, M A

    2013-06-28

    Brazil has only one public genetic pool of Bombyx mori strains, which was established in 2005 at Universidade Estadual de Maringá, Maringá, Paraná State. This genetic bank has been maintained, and the strains have been characterized using genetic and morphological tools. The quantitative and qualitative traits, directly or indirectly related to productivity, were evaluated in 14 silkworm strains. In addition to biological and productivity analyses, DNA markers related to susceptibility to the B. mori nucleopolyhedrovirus (BmNPV) were analyzed. BmNPV is a major cause of production loss and is a serious problem for Paraná sericulture. The silkworm strains from diverse geographic origins were found to have different characteristics, including body weight, larval stage duration, cocoon weight, and other biological traits. In terms of productivity, the raw silk percentages were almost uniform, with an overall average of 16.28%. Overall, the Chinese strain C37 gave the best performance in many of the quantitative traits, and it surpassed the other strains in productivity traits. Therefore, it can be used as one of the strains that compose the elite germplasm for silkworm breeding programs. Additionally, genetic molecular markers were efficient in discriminating between B. mori strains that had been identified based on their geographical origin. We found that all Japanese strains produced a 400-bp molecular marker that has been associated with susceptibility to BmNPV.

  4. Hidden Markov models and other machine learning approaches in computational molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, P. [California Inst. of Tech., Pasadena, CA (United States)

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. Computational tools are increasingly needed to process the massive amounts of data, to organize and classify sequences, to detect weak similarities, to separate coding from non-coding regions, and reconstruct the underlying evolutionary history. The fundamental problem in machine learning is the same as in scientific reasoning in general, as well as statistical modeling: to come up with a good model for the data. In this tutorial four classes of models are reviewed. They are: Hidden Markov models; artificial Neural Networks; Belief Networks; and Stochastic Grammars. When dealing with DNA and protein primary sequences, Hidden Markov models are one of the most flexible and powerful alignments and data base searches. In this tutorial, attention is focused on the theory of Hidden Markov Models, and how to apply them to problems in molecular biology.

  5. The Contributions - and Collapse - of Lamarckian Heredity in Pasteurian Molecular Biology: 1. Lysogeny, 1900-1960.

    Science.gov (United States)

    Loison, Laurent; Gayon, Jean; Burian, Richard M

    2017-02-01

    This article shows how Lamarckism was essential in the birth of the French school of molecular biology. We argue that the concept of inheritance of acquired characters positively shaped debates surrounding bacteriophagy and lysogeny in the Pasteurian tradition during the interwar period. During this period the typical Lamarckian account of heredity treated it as the continuation of protoplasmic physiology in daughter cells. Félix d'Hérelle applied this conception to argue that there was only one species of bacteriophage and Jules Bordet applied it to develop an account of bacteriophagy as a transmissible form of autolysis and to analyze the new phenomenon of lysogeny. In a long-standing controversy with Bordet, Eugène Wollman deployed a more morphological understanding of the inheritance of acquired characters, yielding a particulate, but still Lamarckian, account of lysogeny. We then turn to André Lwoff who, with several colleagues, completed Wollman's research program from 1949 to 1953. We examine how he gradually set aside the Lamarckian background, finally removing inheritance of acquired characters from the resulting account of bacteriophagy and lysogeny. In the conclusion, we emphasize the complex dual role of Lamarckism as it moved from an assumed explanatory framework to a challenge that the nascent molecular biology had to overcome.

  6. Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer.

    Science.gov (United States)

    Hoeben, Bianca A W; Bussink, Johan; Troost, Esther G C; Oyen, Wim J G; Kaanders, Johannes H A M

    2013-10-01

    Integration of molecular imaging PET techniques into therapy selection strategies and radiation treatment planning for head and neck squamous cell carcinoma (HNSCC) can serve several purposes. First, pre-treatment assessments can steer decisions about radiotherapy modifications or combinations with other modalities. Second, biology-based objective functions can be introduced to the radiation treatment planning process by co-registration of molecular imaging with planning computed tomography (CT) scans. Thus, customized heterogeneous dose distributions can be generated with escalated doses to tumor areas where radiotherapy resistance mechanisms are most prevalent. Third, monitoring of temporal and spatial variations in these radiotherapy resistance mechanisms early during the course of treatment can discriminate responders from non-responders. With such information available shortly after the start of treatment, modifications can be implemented or the radiation treatment plan can be adapted tailing the biological response pattern. Currently, these strategies are in various phases of clinical testing, mostly in single-center studies. Further validation in multicenter set-up is needed. Ultimately, this should result in availability for routine clinical practice requiring stable production and accessibility of tracers, reproducibility and standardization of imaging and analysis methods, as well as general availability of knowledge and expertise. Small studies employing adaptive radiotherapy based on functional dynamics and early response mechanisms demonstrate promising results. In this context, we focus this review on the widely used PET tracer (18)F-FDG and PET tracers depicting hypoxia and proliferation; two well-known radiation resistance mechanisms.

  7. Proceedings of the FNCA workshop on plant mutation breeding 2001. Molecular biological techniques

    International Nuclear Information System (INIS)

    Kume, Tamikazu; Watanabe, Kazuo; Tano, Shigemitsu

    2002-02-01

    The FNCA (Forum for Nuclear Cooperation in Asia) Workshop on Plant Mutation Breeding was held on 20-24 August 2001 in Bangkok, Thailand. The Workshop was sponsored by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). The Kasetsart University (KU), the Office of Atomic Energy for Peace (OAEP) and Department of Agriculture (DOA) acted as local host and the organizer with the cooperation of the Ministry of Agriculture, Forestry and Fisheries (MAFF) of Japan, the Japan Atomic Industrial Forum (JAIF) and Japan Atomic Energy Research Institute (JAERI). The Workshop was attended by two participants, a Project Leader and an expert on molecular biological techniques for plant mutation breeding, from each of the participating countries, i.e. China, Indonesia, Malaysia, the Philippines and Vietnam. One participant from the Republic of Korea, nine participants from Japan and thirteen participants from Thailand including three invited speakers attended the Workshop. Eleven papers including three invited papers on the current status of molecular biological techniques for plant mutation breeding were presented. Discussions were focused to further regional cooperation, to review and discuss results of past activities. The Medium-Term Plan of the project on the application of radiation and radioisotopes for agriculture in participating countries of Regional Nuclear Cooperation Activities (RNCA) was formulated and agreed. This proceeding compiles the invited and contributed papers that were submitted from the speakers. (author)

  8. Using whole mount in situ hybridization to link molecular and organismal biology.

    Science.gov (United States)

    Jacobs, Nicole L; Albertson, R Craig; Wiles, Jason R

    2011-03-31

    Whole mount in situ hybridization (WISH) is a common technique in molecular biology laboratories used to study gene expression through the localization of specific mRNA transcripts within whole mount specimen. This technique (adapted from Albertson and Yelick, 2005) was used in an upper level undergraduate Comparative Vertebrate Biology laboratory classroom at Syracuse University. The first two thirds of the Comparative Vertebrate Biology lab course gave students the opportunity to study the embryology and gross anatomy of several organisms representing various chordate taxa primarily via traditional dissections and the use of models. The final portion of the course involved an innovative approach to teaching anatomy through observation of vertebrate development employing molecular techniques in which WISH was performed on zebrafish embryos. A heterozygous fibroblast growth factor 8 a (fgf8a) mutant line, ace, was used. Due to Mendelian inheritance, ace intercrosses produced wild type, heterozygous, and homozygous ace/fgf8a mutants in a 1:2:1 ratio. RNA probes with known expression patterns in the midline and in developing anatomical structures such as the heart, somites, tailbud, myotome, and brain were used. WISH was performed using zebrafish at the 13 somite and prim-6 stages, with students performing the staining reaction in class. The study of zebrafish embryos at different stages of development gave students the ability to observe how these anatomical structures changed over ontogeny. In addition, some ace/fgf8a mutants displayed improper heart looping, and defects in somite and brain development. The students in this lab observed the normal development of various organ systems using both external anatomy as well as gene expression patterns. They also identified and described embryos displaying improper anatomical development and gene expression (i.e., putative mutants). For instructors at institutions that do not already own the necessary equipment or where

  9. Forty Years of Ebolavirus Molecular Biology: Understanding a Novel Disease Agent Through the Development and Application of New Technologies.

    Science.gov (United States)

    Groseth, Allison; Hoenen, Thomas

    2017-01-01

    Molecular biology is a broad discipline that seeks to understand biological phenomena at a molecular level, and achieves this through the study of DNA, RNA, proteins, and/or other macromolecules (e.g., those involved in the modification of these substrates). Consequently, it relies on the availability of a wide variety of methods that deal with the collection, preservation, inactivation, separation, manipulation, imaging, and analysis of these molecules. As such the state of the art in the field of ebolavirus molecular biology research (and that of all other viruses) is largely intertwined with, if not driven by, advancements in the technical methodologies available for these kinds of studies. Here we review of the current state of our knowledge regarding ebolavirus biology and emphasize the associated methods that made these discoveries possible.

  10. Molecular biology in radiation oncology. Radiation oncology perspective of BRCA1 and BRCA2

    International Nuclear Information System (INIS)

    Coleman, C.N.

    1999-01-01

    The breast cancer susceptibility genes, BRCA1 and BRCA2, are used to illustrate the application of molecular biology to clinical radiation oncology. Identified by linkage analysis and cloned, the structure of the genes and the numerous mutations are determined by molecular biology techniques that examine the structure of the DNA and the proteins made by the normal and mutant alleles. Mutations in the non-transcribed portion of the gene will not be found in protein structure assays and may be important in gene function. In addition to potential deleterious mutations, normal polymorphisms of the gene will also be detected, therefore not all differences in gene sequence may represent important mutations, a finding that complicates genetic screening and counseling. The localization of the protein in the nucleus, the expression in relation to cell cycle and the association with RAD51 led to the discovery that the two BRCA genes may be involved in transcriptional regulation and DNA repair. The defect in DNA repair can increase radiosensitivity which might improve local control using breast-conserving treatment in a tumor which is homozygous for the loss of the gene (i.e., BRCA1 and BRCA2 are tumor suppressor genes). This is supported by the early reports of a high rate of local control with breast-conserving therapy. Nonetheless, this radiosensitivity theoretically may also lead to increased susceptibility to carcinogenic effects in surviving cells, a finding that might not be observed for decades. The susceptibility to radiation-induced DNA damage appears also to make the cells more sensitive to chemotherapy. Understanding the role of the normal BRCA genes in DNA repair might help define a novel mechanism for radiation sensitization by interfering with the normal gene function using a variety of molecular or biochemical therapies

  11. The molecular biology of prostate cancer: current understanding and clinical implications.

    Science.gov (United States)

    Gandhi, Jason; Afridi, Adil; Vatsia, Sohrab; Joshi, Gargi; Joshi, Gunjan; Kaplan, Steven A; Smith, Noel L; Khan, Sardar Ali

    2018-04-01

    With continuous progress over the past few decades in understanding diagnosis, treatment, and genetics, much has been learned about the prostate cancer-diagnosed genome. A comprehensive MEDLINE® and Google scholar literature search was conducted using keyword variations relating to the genetics of prostate cancer such as chromosomal alterations, androgen receptor, castration-resistant, inheritance, polymorphisms, oncogenes, metastasis, biomarkers, and immunotherapy. Traditionally, androgen receptors (AR) have been the focus of research. Recently, identification of recurrent chromosomal alterations that lead to either multiplication of regions (gain-of-function) or deletion of regions (loss-of-function) has opened the door to greater genetic accessibility. These chromosomal aberrations lead to variation in copy number and gene expression. Some of these chromosomal alterations are inherited, while others undergo somatic mutations during disease progression. Inherited gene mutations that make one susceptible to prostate cancer have been identified with familial-linked studies. Somatic genes that progress tumorigenesis have also been identified. Research on the molecular biology of prostate cancer has characterized these genes into tumor suppressor genes or oncogenes. Additionally, genome-wide assay studies have identified many high-risk single-nucleotide polymorphisms recurrent throughout the prostate cancer-diagnosed genome. Castration-resistant prostate cancer is the most aggressive form of prostate cancer, and its research has elucidated many types of mutations associated with AR itself, including enhanced expression and amplification, point mutations, and alternative splicing. Understanding the molecular biology of prostate cancer has permitted more accurate identification using advanced biomarkers and therapy for aggressive forms using immunotherapy. An age-related disease, prostate cancer commands profound attention. With increasing life expectancy and the

  12. Boophilus microplus: BIOLOGICAL AND MOLECULAR ASPECTS OF ACARICIDE RESISTANCE AND THEIR IMPACT ON ANIMAL HEALTH.

    Directory of Open Access Journals (Sweden)

    Delia Inés Dominguez-García

    2009-11-01

    Full Text Available The Application of Ixodicidas has been considered for a long time the alternative for control of the cattle tick Boophilus microplus, however, its use is currently limited in reducing tick infestations, due to the appearance of resistant field tick populations. Ixodicide resistance is a growing problem that needs to be attended, because, it is currently affecting the competitiveness of the Mexican Cattle industry in general and in particular the income of cattle producers. The solution to this problem needs to increase the budget dedicated to basic research in order to elucidate the molecular mechanisms of ixodicide resistance leading to the discovery of new molecular targets for ixodicide resistance detection and recombinant vaccine development. The recent use of new genomic tools, as well as reverse genetics approaches, will provide an extraordinary contribution to the improvement of tick control strategies and ixodicide resistance mitigation programs. The aim of the present review is to make a compilation of different topics related with acaricide resistance in the cattle tick Boophilus microplus, starting with some biological and molecular considerations on its new classification, to the analysis of ixodicide resistance, its impact on the Mexican cattle industry and the perspective of the genomic research in order to solve the problems associated to tick control, new diagnostic tools and development of tick vaccines.

  13. Molecular Elucidation of Disease Biomarkers at the Interface of Chemistry and Biology.

    Science.gov (United States)

    Zhang, Liqin; Wan, Shuo; Jiang, Ying; Wang, Yanyue; Fu, Ting; Liu, Qiaoling; Cao, Zhijuan; Qiu, Liping; Tan, Weihong

    2017-02-22

    Disease-related biomarkers are objectively measurable molecular signatures of physiological status that can serve as disease indicators or drug targets in clinical diagnosis and therapy, thus acting as a tool in support of personalized medicine. For example, the prostate-specific antigen (PSA) biomarker is now widely used to screen patients for prostate cancer. However, few such biomarkers are currently available, and the process of biomarker identification and validation is prolonged and complicated by inefficient methods of discovery and few reliable analytical platforms. Therefore, in this Perspective, we look at the advanced chemistry of aptamer molecules and their significant role as molecular probes in biomarker studies. As a special class of functional nucleic acids evolved from an iterative technology termed Systematic Evolution of Ligands by Exponential Enrichment (SELEX), these single-stranded oligonucleotides can recognize their respective targets with selectivity and affinity comparable to those of protein antibodies. Because of their fast turnaround time and exceptional chemical properties, aptamer probes can serve as novel molecular tools for biomarker investigations, particularly in assisting identification of new disease-related biomarkers. More importantly, aptamers are able to recognize biomarkers from complex biological environments such as blood serum and cell surfaces, which can provide direct evidence for further clinical applications. This Perspective highlights several major advancements of aptamer-based biomarker discovery strategies and their potential contribution to the practice of precision medicine.

  14. Strategic sophistication of individuals and teams. Experimental evidence

    Science.gov (United States)

    Sutter, Matthias; Czermak, Simon; Feri, Francesco

    2013-01-01

    Many important decisions require strategic sophistication. We examine experimentally whether teams act more strategically than individuals. We let individuals and teams make choices in simple games, and also elicit first- and second-order beliefs. We find that teams play the Nash equilibrium strategy significantly more often, and their choices are more often a best response to stated first order beliefs. Distributional preferences make equilibrium play less likely. Using a mixture model, the estimated probability to play strategically is 62% for teams, but only 40% for individuals. A model of noisy introspection reveals that teams differ from individuals in higher order beliefs. PMID:24926100

  15. Few remarks on chiral theories with sophisticated topology

    International Nuclear Information System (INIS)

    Golo, V.L.; Perelomov, A.M.

    1978-01-01

    Two classes of the two-dimensional Euclidean chiral field theoreties are singled out: 1) the field phi(x) takes the values in the compact Hermitiam symmetric space 2) the field phi(x) takes the values in an orbit of the adjoint representation of the comcompact Lie group. The theories have sophisticated topological and rich analytical structures. They are considered with the help of topological invariants (topological charges). Explicit formulae for the topological charges are indicated, and the lower bound extimate for the action is given

  16. STOCK EXCHANGE LISTING INDUCES SOPHISTICATION OF CAPITAL BUDGETING

    Directory of Open Access Journals (Sweden)

    Wesley Mendes-da-Silva

    2014-08-01

    Full Text Available This article compares capital budgeting techniques employed in listed and unlisted companies in Brazil. We surveyed the Chief Financial Officers (CFOs of 398 listed companies and 300 large unlisted companies, and based on 91 respondents, the results suggest that the CFOs of listed companies tend to use less simplistic methods more often, for example: NPV and CAPM, and that CFOs of unlisted companies are less likely to estimate the cost of equity, despite being large companies. These findings indicate that stock exchange listing may require greater sophistication of the capital budgeting process.

  17. Sequence-Related Amplified Polymorphism (SRAP Markers: A Potential Resource for Studies in Plant Molecular Biology

    Directory of Open Access Journals (Sweden)

    Daniel W. H. Robarts

    2014-07-01

    Full Text Available In the past few decades, many investigations in the field of plant biology have employed selectively neutral, multilocus, dominant markers such as inter-simple sequence repeat (ISSR, random-amplified polymorphic DNA (RAPD, and amplified fragment length polymorphism (AFLP to address hypotheses at lower taxonomic levels. More recently, sequence-related amplified polymorphism (SRAP markers have been developed, which are used to amplify coding regions of DNA with primers targeting open reading frames. These markers have proven to be robust and highly variable, on par with AFLP, and are attained through a significantly less technically demanding process. SRAP markers have been used primarily for agronomic and horticultural purposes, developing quantitative trait loci in advanced hybrids and assessing genetic diversity of large germplasm collections. Here, we suggest that SRAP markers should be employed for research addressing hypotheses in plant systematics, biogeography, conservation, ecology, and beyond. We provide an overview of the SRAP literature to date, review descriptive statistics of SRAP markers in a subset of 171 publications, and present relevant case studies to demonstrate the applicability of SRAP markers to the diverse field of plant biology. Results of these selected works indicate that SRAP markers have the potential to enhance the current suite of molecular tools in a diversity of fields by providing an easy-to-use. highly variable marker with inherent biological significance.

  18. 2010 CELL AND MOLECULAR FUNGAL BIOLOGY GORDON RESEARCH CONFERENCE, JUNE 13-18, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Michelle Momany

    2010-06-18

    The Cellular and Molecular Fungal Biology Conference provides a forum for presentation of the latest advances in fungal research with an emphasis on filamentous fungi. This open-registration scientific meeting brings together the leading scientists from academia, government and industry to discuss current research results and future directions at Holderness School, an outstanding venue for scientific interaction. A key objective of the conference is to foster interaction among scientists working on model fungi such as Saccharomyces cerevisiae, Schizosaccharomyces pombe, Neurospora crassa and Aspergillus nidulans and scientists working on a variety of filamentous fungi whose laboratory tractability is often inversely proportional to their medical, industrial or ecological importance. Sessions will be devoted to Systems Biology, Fungi and Cellulosic Biomass, Small RNAs, Population Genomics, Symbioses, Pathogenesis, Membrane Trafficking and Polarity, and Cytoskeleton and Motors. A session will also be devoted to hot topics picked from abstracts. The CMFB conference provides a unique opportunity to examine the breadth of fungal biology in a small meeting format that encourages in-depth discussion among the attendees.

  19. Morphological, molecular and biological evidence reveal two cryptic species in Mecinus janthinus Germar (Coleoptera, Curculionidae), a successful biological control agent of Dalmatian toadflax, Linaria dalmatica (Lamiales, Plantaginaceae)

    Science.gov (United States)

    Ivo Tosevski; Roberto Caldara; Jelena Jovic; Gerardo Hernandez-Vera; Cosimo Baviera; Andre Gassmann; Brent C. Emerson

    2011-01-01

    A combined morphological, molecular and biological study shows that the weevil species presently named Mecinus janthinus is actually composed of two different cryptic species: M. janthinus Germar, 1821 and M. janthiniformis Tosevski & Caldara sp.n. These species are morphologically distinguishable from each other by a few very subtle morphological characters. On...

  20. Application of molecular biology of differentiated thyroid cancer for clinical prognostication.

    Science.gov (United States)

    Marotta, Vincenzo; Sciammarella, Concetta; Colao, Annamaria; Faggiano, Antongiulio

    2016-11-01

    Although cancer outcome results from the interplay between genetics and environment, researchers are making a great effort for applying molecular biology in the prognostication of differentiated thyroid cancer (DTC). Nevertheless, role of molecular characterisation in the prognostic setting of DTC is still nebulous. Among the most common and well-characterised genetic alterations related to DTC, including mutations of BRAF and RAS and RET rearrangements, BRAF V600E is the only mutation showing unequivocal association with clinical outcome. Unfortunately, its accuracy is strongly limited by low specificity. Recently, the introduction of next-generation sequencing techniques led to the identification of TERT promoter and TP53 mutations in DTC. These genetic abnormalities may identify a small subgroup of tumours with highly aggressive behaviour, thus improving specificity of molecular prognostication. Although knowledge of prognostic significance of TP53 mutations is still anecdotal, mutations of the TERT promoter have showed clear association with clinical outcome. Nevertheless, this genetic marker needs to be analysed according to a multigenetic model, as its prognostic effect becomes negligible when present in isolation. Given that any genetic alteration has demonstrated, taken alone, enough specificity, the co-occurrence of driving mutations is emerging as an independent genetic signature of aggressiveness, with possible future application in clinical practice. DTC prognostication may be empowered in the near future by non-tissue molecular prognosticators, including circulating BRAF V600E and miRNAs. Although promising, use of these markers needs to be refined by the technical sight, and the actual prognostic value is still yet to be validated. © 2016 Society for Endocrinology.

  1. The Annotation, Mapping, Expression and Network (AMEN suite of tools for molecular systems biology

    Directory of Open Access Journals (Sweden)

    Primig Michael

    2008-02-01

    Full Text Available Abstract Background High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently. Results We developed the Annotation, Mapping, Expression and Network (AMEN software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i uploading and pre-processing data from microarray expression profiling experiments, (ii detecting groups of significantly co-expressed genes, and (iii searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human. Conclusion AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.

  2. Pre-analytic phase in molecular biology: criticism and non-compliance management

    Directory of Open Access Journals (Sweden)

    Catia Sias

    2010-06-01

    Full Text Available Introduction: During workflow in Laboratories the most delicate and important step is pre-analytic sample treatment because it involves more than one operator of the same structure and often different health services. In fact, the biological materials used for the diagnosis should be collected, sent and properly treated before the analytic phase. Correct methods for collecting and handling biological materials, including guidelines to users of laboratory services, improve performance of Laboratory testing activity. In the pre-analytic phase the operators check sample integrity, and prepare the sample for the subsequent analytic phase: in all these steps monitoring and control of “non- compliance” is crucial. Methods: During 2007-2008 we created a “non- compliance” check-list, to monitor errors which occurred in different sectors of the preanalytic phase, particularly in the nucleic acid extraction step. These “non-compliances” are analysed to identify and to remove errors, adopting preventive and corrective proceedings. Since 2008 we have been using DNA/RNA internal controls synthesized in our Laboratory. They can be amplified by the same primers and recognized by different probes. Results: Examination of the “non compliance” check-list for molecular biology investigations shows that the percentage of urine repeat samples decreased from 17% to 2% and the percentage of stool repeat samples from 27% to 2%. Regarding use of internal controls, they allow the assessment of inhibitory factors that can prevent gene amplification. Conclusions: Monitoring “non-compliance” cases and dividing them by typology allow us identifying the most frequent causes of incorrect sample handling, as a non optimal procedure of pre-treatment, thus improving the pre-analytic phase. Therefore by monitoring the preanalytic phase we can prevent the introduction of confounding factors that may negatively influence the accuracy of results and their

  3. Simulations on the Teaching of Molecular Biology: Experience’s Report

    Directory of Open Access Journals (Sweden)

    A.L.S. Silva

    2013-05-01

    Full Text Available INTRODUCTION: The comprehension of techniques used in Molecular Biology neither always is easy.Therefore, the objective of this work was to apply simulations in Molecular Biology for graduating students of a Pharmacy course froma private educational institution, to allow them to practice the apparent difficult protocols. MATERIALS AND METHODS: Three groups of students (50 each were evaluated. Two of them were submitted to different simulatory activities,such as: a visiting the virtual laboratory of Utah University (USA to understand gel electrophoresis and polymerasechain reaction (PCR techniques, b extracting DNA from oral mucosa by means of a homemade protocol, c investigating simulatory paternity tests, d proposing their own microarrays by painting them on paper and then interpreted the results according to the colors, e designing primers (small fragments of DNA to PCR with the free software Primer3 and testing them in silico PCR. The third group of students was only submitted to oral theoretical classes about all these themes. The progress of the understanding was qualitatively evaluated and compared by the analysis of questionnaires. RESULTS AND DISCUSSION: The groups submitted to the virtual classes were responsive during the development of activities and had a better performance in the examinations than the group that had only theoretical classes, showing better comprehension about the themes. Their greatest difficult was the limitation in the English language to interact with the websites (they often asked about an alternative site in Portuguese. CONCLUSION: The didactical sequence involving exercises in websites by using freeware and recreational activities in classroom with graduating students of Pharmacy proved to be an effective tool in the learning of some of the techniques in Molecular Biology, mainly when a lab and some equipment are not available to perform practical activities

  4. A revolução verde e a biologia molecular The green revolution and the molecular biology

    Directory of Open Access Journals (Sweden)

    Fernando Santos Henriques

    2009-12-01

    availability. These and other discoveries in molecular biology provide the new revolution required in agriculture with new tools in order to fulfil the global demand for increased food production, under the pressure of a continuous expansion of crops for energy production.

  5. Biological and molecular properties of yellow venom of the Amazonian coral snake Micrurus surinamensis.

    Science.gov (United States)

    Oliveira, Fabiana da Rocha; Noronha, Maria das Dores Nogueira; Lozano, Jorge Luis Lopez

    2017-01-01

    The coral snake Micrurus surinamensis, which is widely distributed throughout Amazonia, has a neurotoxic venom. It is important to characterize the biological and molecular properties of this venom in order to develop effective antitoxins. Toxins from the venom of M. surinamensis were analyzed by two-dimensional polyacrylamide gel electrophoresis and their neurotoxic effects in vivo were evaluated. Most proteins in the venom had masses < 14kDa, low phospholipase A2 activity, and no proteolytic activity. The toxins inhibited the coagulation cascade. The venom had neurotoxic effects in mice, with a median lethal dose upon intravenous administration of 700 µg/kg. Immunogenic studies revealed abundant cross-reactivity of antielapidic serum with 14kDa toxins and limited cross-reactivity with toxins < 10kDa. These results indicate that antielapidic serum against M. surinamensis venom has weak potency (0.35mg/ml) in mice.

  6. What Skills Should Students of Undergraduate Biochemistry and Molecular Biology Programs Have Upon Graduation?

    Science.gov (United States)

    White, Harold B.; Benore, Marilee A.; Sumter, Takita F.; Caldwell, Benjamin D.; Bell, Ellis

    2014-01-01

    Biochemistry and molecular biology (BMB) students should demonstrate proficiency in the foundational concepts of the discipline and possess the skills needed to practice as professionals. To ascertain the skills that should be required, groups of BMB educators met in several focused workshops to discuss the expectations with the ultimate goal of clearly articulating the skills required. The results of these discussions highlight the critical importance of experimental, mathematical, and interpersonal skills including collaboration, teamwork, safety, and ethics. The groups also found experimental design, data interpretation and analysiand the ability to communicate findings to diverse audience to be essential skills. To aid in the development of appropriate assessments these skills are grouped into three categories, 1) Process of Science, 2) Communication and Comprehension of Science, and 3) Community of Practice Aspects of Science. Finally, the groups worked to align these competencies with the best practices in both teaching and in skills assessment. PMID:24019246

  7. Central Dog-ma Disease Detectives: A Molecular Biology Inquiry Activity for Undergraduates

    Science.gov (United States)

    Quan, T. K.; Yuh, P.; Black, F.

    2010-12-01

    The Minority Access to Research Careers (MARC) and Minority Biomedical Research Support (MBRS) are programs at the University of California at Santa Cruz designed to support minority undergraduate students majoring in the sciences. Each summer MARC/MBRS sponsors a Summer Institute that involves week long "rotations" with different faculty mentors. In 2008, the Center for Adaptive Optics (CfAO) Professional Development Program (PDP) was responsible for overseeing one week of the Summer Institute, and designed it to be a Biomedical Short Course. As part of this short course, we designed a four-hour activity in which students collected their own data and explored relationships between the basic biomolecules DNA, RNA, and protein. The goal was to have the students use experimental data to support their explanation of the "Central Dogma" of molecular biology. Here we describe details of our activity and provide a post-teaching reflection on its success.

  8. Biological insect control using Metarhizium anisopliae: morphological, molecular, and ecological aspects

    Directory of Open Access Journals (Sweden)

    Patricia Vieira Tiago

    2014-04-01

    Full Text Available Microbial control of insects is based on the rational use of pathogens to maintain environmentally balanced pest population levels, and Metarhizium anisopliae has been the most studied and most utilized fungal species for that purpose. The natural genetic variability of entomopathogenic fungi is considered one of the principal advantages of microbial insect control. The inter- and intraspecific variability and the genetic diversity and population structures of Metarhizium and other entomopathogenic fungi have been examined using ITS-RFLP, ISSR, and ISSP molecular markers. The persistence of M. anisopliae in the soil and its possible effects on the structures of resident microbial communities must be considered when selecting isolates for biological insect control.

  9. Fuzzy method of recognition of high molecular substances in evidence-based biology

    Science.gov (United States)

    Olevskyi, V. I.; Smetanin, V. T.; Olevska, Yu. B.

    2017-10-01

    Nowadays modern requirements to achieving reliable results along with high quality of researches put mathematical analysis methods of results at the forefront. Because of this, evidence-based methods of processing experimental data have become increasingly popular in the biological sciences and medicine. Their basis is meta-analysis, a method of quantitative generalization of a large number of randomized trails contributing to a same special problem, which are often contradictory and performed by different authors. It allows identifying the most important trends and quantitative indicators of the data, verification of advanced hypotheses and discovering new effects in the population genotype. The existing methods of recognizing high molecular substances by gel electrophoresis of proteins under denaturing conditions are based on approximate methods for comparing the contrast of electrophoregrams with a standard solution of known substances. We propose a fuzzy method for modeling experimental data to increase the accuracy and validity of the findings of the detection of new proteins.

  10. Signal processing for molecular and cellular biological physics: an emerging field.

    Science.gov (United States)

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  11. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea.

    Science.gov (United States)

    Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A

    2017-10-01

    Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Molecular Biology In Young Women With Breast Cancer: From Tumor Gene Expression To DNA Mutations.

    Science.gov (United States)

    Gómez-Flores-Ramos, Liliana; Castro-Sánchez, Andrea; Peña-Curiel, Omar; Mohar-Betancourt, Alejandro

    2017-01-01

    Young women with breast cancer (YWBC) represent roughly 15% of breast cancer (BC) cases in Latin America and other developing regions. Breast tumors occurring at an early age are more aggressive and have an overall worse prognosis compared to breast tumors in postmenopausal women. The expression of relevant proliferation biomarkers such as endocrine receptors and human epidermal growth factor receptor 2 appears to be unique in YWBC. Moreover, histopathological, molecular, genetic, and genomic studies have shown that YWBC exhibit a higher frequency of aggressive subtypes, differential tumor gene expression, increased genetic susceptibility, and specific genomic signatures, compared to older women with BC. This article reviews the current knowledge on tumor biology and genomic signatures in YWBC.

  13. Low-molecular-weight cyclin E: the missing link between biology and clinical outcome

    International Nuclear Information System (INIS)

    Akli, Said; Keyomarsi, Khandan

    2004-01-01

    Cyclin E, a key mediator of transition during the G 1 /S cellular division phase, is deregulated in a wide variety of human cancers. Our group recently reported that overexpression and generation of low-molecular-weight (LMW) isoforms of cyclin E were associated with poor clinical outcome among breast cancer patients. However, the link between LMW cyclin E biology in mediating a tumorigenic phenotype and clinical outcome is unknown. To address this gap in knowledge, we assessed the role of LMW isoforms in breast cancer cells; we found that these forms of cyclin E induced genomic instability and resistance to p21, p27, and antiestrogens in breast cancer. These findings suggest that high levels of LMW isoforms of cyclin E not only can predict failure to endocrine therapy but also are true prognostic indicators because of their influence on cell proliferation and genetic instability

  14. Gastric tumours in hereditary cancer syndromes: clinical features, molecular biology and strategies for prevention.

    Science.gov (United States)

    Sereno, María; Aguayo, Cristina; Guillén Ponce, Carmen; Gómez-Raposo, César; Zambrana, Francisco; Gómez-López, Miriam; Casado, Enrique

    2011-09-01

    Gastric cancer is the major cause of cancer-related deaths worldwide. The majority of them are classified as sporadic, whereas the remaining 10% exhibit familial clustering. Hereditary diffuse gastric cancer (HDGC) syndrome is the most important condition that leads to hereditary gastric cancer. However, other hereditary cancer syndromes, such as hereditary non-polyposis colorectal cancer, familial adenomatous polyposis, Peutz-Jeghers syndrome, Li-Fraumeni syndrome and hereditary breast and ovarian cancer, entail a higher risk compared to the general population for developing this kind of neoplasia. In this review, we describe briefly the most important aspects related to clinical features, molecular biology and strategies for prevention in hereditary gastric associated to different cancer syndromes.

  15. Artificial microRNAs and their applications in plant molecular biology

    Directory of Open Access Journals (Sweden)

    Pérez-Quintero Álvaro Luis

    2010-11-01

    Full Text Available

    Artificial microRNAs (amiRNAs are modified endogenous microRNA precursors in which the miRNA:miRNA* duplex is replaced with sequences designed to silence any desired gene. amiRNAs are used as part of new genetic transformation techniques in eukaryotes and have proven to be effective and to excel over other RNA-mediated gene silencing methods in both specificity and stability. amiRNAs can be designed to silence single or multiple genes, it is also possible to construct dimeric amiRNA precursors to silence two non-related genes simultaneously. amiRNA expression is quantitative and allows using constitutive, inducible, or tissue-specific promoters. One main application of amiRNAs is gene functional validation and to this end they have been mostly used in model plants; however, their use can be extended to any species or variety. amiRNA-mediated antiviral defense is another important application with great potential for plant molecular biology and crop improvement, but it still needs to be optimized to prevent the escape of viruses from the silencing mechanism. Furthermore, amiRNAs have propelled research in related areas allowing the development of similar tools like artificial trans-acting small interference RNAs (tasiARNs and artificial target mimicry. In this review, some applications and advantages of amiRNAs in plant molecular biology are analyzed. 

  16. Molecular biology, epidemiology, and the demise of the linear no-threshold hypothesis

    International Nuclear Information System (INIS)

    Pollycove, M.

    1998-01-01

    The LNT hypothesis is the basic principle of all radiation protection policy. This theory assumes that all radiation doses, even those close to zero, are harmful in linear proportion to dose and that all doses produce a proportionate number of harmful mutations, i.e., mis- or unrepaired DNA alterations. The LNT theory is used to generate collective dose calculations of the number of deaths produced by minute fractions of background radiation. Current molecular biology reveals an enormous amount of relentless metabolic oxidative free radical damage with mis/unrepaired alterations of DNA. The corresponding mis/unrepaired DNA alterations produced by background radiation are negligible. These DNA alterations are effectively disposed of by the DNA damage-control biosystem of antioxidant prevention, enzymatic repair, and mutation removal. High-dose radiation injures this biosystem with associated risk increments of mortality and cancer mortality. Low-dose radiation stimulates DNA damage-control with associated epidemiologic observations of risk decrements of mortality and cancer mortality, i.e., hormesis. How can this 40-year-old LNT paradigm continue to be the operative principle of radiation protection policy despite the contradictory scientific observations of both molecular biology and epidemiology and the lack of any supportive human data? The increase of public fear through repeated statements of deaths caused by 'deadly' radiation has engendered an enormous increase in expenditures now required to 'protect' the public from all applications of nuclear technology: medical, research, energy, disposal, and cleanup remediation. Government funds are allocated to appointed committees, the research they support, and to multiple environmental and regulatory agencies. The LNT theory and multibillion dollar radiation activities have now become a symbiotic self-sustaining powerful political and economic force. (author)

  17. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    Science.gov (United States)

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The sophisticated control of the tram bogie on track

    Directory of Open Access Journals (Sweden)

    Radovan DOLECEK

    2015-09-01

    Full Text Available The paper deals with the problems of routing control algorithms of new conception of tram vehicle bogie. The main goal of these research activities is wear reduction of rail wheels and tracks, wear reduction of traction energy losses and increasing of running comfort. The testing experimental tram vehicle with special bogie construction powered by traction battery is utilized for these purposes. This vehicle has a rotary bogie with independent rotating wheels driven by permanent magnets synchronous motors and a solid axle. The wheel forces in bogie are measured by large amounts of the various sensors placed on the testing experimental tram vehicle. Nowadays the designed control algorithms are implemented to the vehicle superset control system. The traction requirements and track characteristics have an effect to these control algorithms. This control including sophisticated routing brings other improvements which is verified and corrected according to individual traction and driving characteristics, and opens new possibilities.

  19. Strategies of molecular imprinting-based fluorescence sensors for chemical and biological analysis.

    Science.gov (United States)

    Yang, Qian; Li, Jinhua; Wang, Xiaoyan; Peng, Hailong; Xiong, Hua; Chen, Lingxin

    2018-07-30

    One pressing concern today is to construct sensors that can withstand various disturbances for highly selective and sensitive detecting trace analytes in complicated samples. Molecularly imprinted polymers (MIPs) with tailor-made binding sites are preferred to be recognition elements in sensors for effective targets detection, and fluorescence measurement assists in highly sensitive detection and user-friendly control. Accordingly, molecular imprinting-based fluorescence sensors (MI-FL sensors) have attracted great research interest in many fields such as chemical and biological analysis. Herein, we comprehensively review the recent advances in MI-FL sensors construction and applications, giving insights on sensing principles and signal transduction mechanisms, focusing on general construction strategies for intrinsically fluorescent or nonfluorescent analytes and improvement strategies in sensing performance, particularly in sensitivity. Construction strategies are well overviewed, mainly including the traditional indirect methods of competitive binding against pre-bound fluorescent indicators, employment of fluorescent functional monomers and embedding of fluorescence substances, and novel rational designs of hierarchical architecture (core-shell/hollow and mesoporous structures), post-imprinting modification, and ratiometric fluorescence detection. Furthermore, MI-FL sensor based microdevices are discussed, involving micromotors, test strips and microfluidics, which are more portable for rapid point-of-care detection and in-field diagnosing. Finally, the current challenges and future perspectives of MI-FL sensors are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Unstable genes unstable mind: beyond the central dogma of molecular biology.

    Science.gov (United States)

    Hegde, Mahabaleshwar V; Saraph, Arundhati A

    2011-08-01

    Schizophrenia has a polygenic mode of inheritance and an estimated heritability of over 80%, but success in understanding its genetic underpinnings to date has been modest. Unlike in trinucleotide neurodegenerative disorders, the phenomenon of genetic anticipation observed in schizophrenia or bipolar disorder has not been explained. For the first time, we provide a plausible molecular explanation of genetic anticipation and pathophysiology of schizophrenia, at least in part, with supporting evidence. We postulate that abnormally increased numbers of CAG repeats in many genes being expressed in the brain, coding for glutamine, cumulatively press for higher demand of glutamine in the respective brain cells, resulting in a metabolic crisis and dysregulation of the glutamate-glutamine cycle. This can adversely affect the functioning of both glutamate and GABA receptors, which are known to be involved in psychosis, and may also affect glutathione levels, increasing oxidative stress. The resulting psychosis (gain in function), originating from unstable genes, is described as an effect "beyond the central dogma of molecular biology". The hypothesis explains genetic anticipation, as further expansions in subsequent generations may result in increased severity and earlier occurrence. Many other well described findings provide proof of concept. This is a testable hypothesis, does not deny any known facts and opens up new avenues of research. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Eco-friendly synthesis, physicochemical studies, biological assay and molecular docking of steroidal oxime-ethers

    Science.gov (United States)

    Alam, Mahboob; Lee, Dong-Ung

    2015-01-01

    The aim of this study was to report the synthesis of biologically active compounds; 7-(2′-aminoethoxyimino)-cholest-5-ene (4), a steroidal oxime-ether and its derivatives (5, 6) via a facile microwave assisted solvent free reaction methodology. This new synthetic, eco-friendly, sustainable protocol resulted in a remarkable improvement in the synthetic efficiency (85-93 % yield) and high purity using basic alumina. The synthesized compounds were screened for their antibacterial against six bacterial strains by disc diffusion method and antioxidant potential by DPPH assay. The binding capabilities of a compound 6 exhibiting good antibacterial potential were assessed on the basis of molecular docking studies and four types of three-dimensional molecular field descriptors. Moreover the structure-antimicrobial activity relationships were studied using some physicochemical and quantum-chemical parameters with GAMESS interface as well as WebMO Job Manager by using the basic level of theory. Hence, this synthetic approach is believed to provide a better scope for the synthesis of steroidal oxime-ether analogues and will be a more practical alternative to the presently existing procedures. Moreover, detailed in silico docking studies suggested the plausible mechanism of steroidal oxime-ethers as effective antimicrobial agents. PMID:27330525

  2. Breaching Biological Barriers: Protein Translocation Domains as Tools for Molecular Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Benjamin L. Franc

    2003-10-01

    Full Text Available The lipid bilayer of a cell presents a significant barrier for the delivery of many molecular imaging reagents into cells at target sites in the body. Protein translocation domains (PTDs are peptides that breach this barrier. Conjugation of PTDs to imaging agents can be utilized to facilitate the delivery of these agents through the cell wall, and in some cases, into the cell nucleus, and have potential for in vitro and in vivo applications. PTD imaging conjugates have included small molecules, peptides, proteins, DNA, metal chelates, and magnetic nanoparticles. The full potential of the use of PTDs in novel in vivo molecular probes is currently under investigation. Cells have been labeled in culture using magnetic nanoparticles derivatized with a PTD and monitored in vivo to assess trafficking patterns relative to cells expressing a target antigen. In vivo imaging of PTD-mediated gene transfer to cells of the skin has been demonstrated in living animals. Here we review several natural and synthetic PTDs that have evolved in the quest for easier translocation across biological barriers and the application of these peptide domains to in vivo delivery of imaging agents.

  3. Molecular Signaling Pathways Behind the Biological Effects of Salvia Species Diterpenes in Neuropharmacology and Cardiology.

    Science.gov (United States)

    Akaberi, M; Iranshahi, M; Mehri, S

    2016-06-01

    The genus Salvia, from the Lamiaceae family, has diverse biological properties that are primarily attributable to their diterpene contents. There is no comprehensive review on the molecular signaling pathways of these active components. In this review, we investigated the molecular targets of bioactive Salvia diterpenes responsible for the treatment of nervous and cardiovascular diseases. The effects on different pathways, including apoptosis signaling, oxidative stress phenomena, the accumulation of amyloid beta plaques, and tau phosphorylation, have all been considered to be mechanisms of the anti-Alzheimer properties of Salvia diterpenes. Additionally, effects on the benzodiazepine and kappa opioid receptors and neuroprotective effects are noted as neuropharmacological properties of Salvia diterpenes, including tanshinone IIA, salvinorin A, cryptotanshinone, and miltirone. Tanshinone IIA, as the primary diterpene of Salvia miltiorrhiza, has beneficial activities in heart diseases because of its ability to scavenge free radicals and its effects on transcription factors, such as nuclear transcription factor-kappa B (NF-κB) and the mitogen-activated protein kinases (MAPKs). Additionally, tanshinone IIA has also been proposed to have cardioprotective properties including antiarrhythmic activities and effects on myocardial infarction. With respect to the potential therapeutic effects of Salvia diterpenes, comprehensive clinical trials are warranted to evaluate these valuable molecules as lead compounds. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Tumour biology of obesity-related cancers: understanding the molecular concept for better diagnosis and treatment.

    Science.gov (United States)

    Teoh, Seong Lin; Das, Srijit

    2016-11-01

    Obesity continues to be a major global problem. Various cancers are related to obesity and proper understanding of their aetiology, especially their molecular tumour biology is important for early diagnosis and better treatment. Genes play an important role in the development of obesity. Few genes such as leptin, leptin receptor encoded by the db (diabetes), pro-opiomelanocortin, AgRP and NPY and melanocortin-4 receptors and insulin-induced gene 2 were linked to obesity. MicroRNAs control gene expression via mRNA degradation and protein translation inhibition and influence cell differentiation, cell growth and cell death. Overexpression of miR-143 inhibits tumour growth by suppressing B cell lymphoma 2, extracellular signal-regulated kinase-5 activities and KRAS oncogene. Cancers of the breast, uterus, renal, thyroid and liver are also related to obesity. Any disturbance in the production of sex hormones and insulin, leads to distortion in the balance between cell proliferation, differentiation and apoptosis. The possible mechanism linking obesity to cancer involves alteration in the level of adipokines and sex hormones. These mediators act as biomarkers for cancer progression and act as targets for cancer therapy and prevention. Interestingly, many anti-cancerous drugs are also beneficial in treating obesity and vice versa. We also reviewed the possible link in the mechanism of few drugs which act both on cancer and obesity. The present review may be important for molecular biologists, oncologists and clinicians treating cancers and also pave the way for better therapeutic options.

  5. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology.

    Science.gov (United States)

    Briggs, Amy G; Morgan, Stephanie K; Sanderson, Seth K; Schulting, Molly C; Wieseman, Laramie J

    2016-12-01

    The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids) and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein). Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  6. Adverse biological effects of Milan urban PM looking for suitable molecular markers of exposure

    Directory of Open Access Journals (Sweden)

    Mantecca Paride

    2012-01-01

    Full Text Available The results presented summarise the ones obtained in the coordinated research project Tosca, which extensively analysed the impact of Milan urban PM on human health. The molecular markers of exposure and effects of seasonally and size-fractionated PMs (summer and winter PM10, PM2.5 were investigated in in vitro (human lung cell lines and in vivo (mice systems. The results obtained by the analyses of cytotoxic, pro-inflammatory and genotoxic parameters demonstrate that the biological responses are strongly dependent upon the PM samples seasonal and dimensional variability, that ultimately reflect their chemical composition and source. In fact summer PM10, enriched in crustal elements and endotoxins, was the most cytotoxic and pro-inflammatory fraction, while fine winter PMs induced genotoxic effects and xenobiotic metabolizing enzymes (like CYP1B1 production, likely as a consequence of the higher content in combustion derived particles reach in PAHs and heavy toxic metals. These outcomes outline the need of a detailed knowledge of the PMs physico-chemical composition on a local scale, coupled with the biological hazard directly associated to PM exposure. Apparently this is the only way allowing scientists and police-makers to establish the proper relationships between the respirable PM quantity/quality and the health outcomes described by clinicians and epidemiologists.

  7. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan; Estillore, Armando D.; Morris, Holly S.; Jayarathne, Thilina; Sultana, Camile M.; Lee, Christopher; Lin, Peng; Laskin, Julia; Laskin, Alexander; Dowling, Jackie; Qin, Zhen; Cappa, Christopher; Bertram, Timothy; Tivanski, Alexei V.; Stone, Elizabeth; Prather, Kimberly; Grassian, Vicki H.

    2017-05-01

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoid of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.

  8. A Network Biology Approach to Discover the Molecular Biomarker Associated with Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Liwei Zhuang

    2014-01-01

    Full Text Available In recent years, high throughput technologies such as microarray platform have provided a new avenue for hepatocellular carcinoma (HCC investigation. Traditionally, gene sets enrichment analysis of survival related genes is commonly used to reveal the underlying functional mechanisms. However, this approach usually produces too many candidate genes and cannot discover detailed signaling transduction cascades, which greatly limits their clinical application such as biomarker development. In this study, we have proposed a network biology approach to discover novel biomarkers from multidimensional omics data. This approach effectively combines clinical survival data with topological characteristics of human protein interaction networks and patients expression profiling data. It can produce novel network based biomarkers together with biological understanding of molecular mechanism. We have analyzed eighty HCC expression profiling arrays and identified that extracellular matrix and programmed cell death are the main themes related to HCC progression. Compared with traditional enrichment analysis, this approach can provide concrete and testable hypothesis on functional mechanism. Furthermore, the identified subnetworks can potentially be used as suitable targets for therapeutic intervention in HCC.

  9. Global Foot-and-Mouth Disease Research Update and Gap Analysis: 7 - Pathogenesis and Molecular Biology.

    Science.gov (United States)

    Robinson, L; Knight-Jones, T J D; Charleston, B; Rodriguez, L L; Gay, C G; Sumption, K J; Vosloo, W

    2016-06-01

    We assessed research knowledge gaps in the fields of FMDV (foot-and-mouth disease virus) pathogenesis and molecular biology by performing a literature review (2011-15) and collecting research updates (2014) from 33 institutes from across the world. Findings were used to identify priority areas for future research. There have been important advances in FMDV pathogenesis; FMDV remains in lymph nodes of many recovered animals that otherwise do not appear persistently infected, even in species previously not associated with the carrier state. Whether virus retention helps maintain host immunity and/or virus survival is not known. Studies of FMDV pathogenesis in wildlife have provided insights into disease epidemiology, in endemic and epidemic settings. Many aspects of FMDV infection and virus entry remain unknown; however, at the cellular level, we know that expression level and availability of integrins (that permit viral entry), rate of clearance of infected cells and strength of anti-viral type I IFN (interferon) response are key determinants of tissue tropism. Extending findings to improved understanding of transmission requires a standardized approach and adoption of natural routes of infection during experimental study. There has been recognition of the importance of autophagosomes for FMDV entry into the cytoplasm following cell surface receptor binding, and that distinct internal cellular membranes are exploited for viral replication and immune evasion. New roles for viral proteins in blocking type I IFN production and downstream signalling have been identified facilitating research in anti-viral therapeutics. We know more about how infection affects cell protein expression, and research into molecular determinants of capsid stability has aided the development of stable vaccines. We have an expanding knowledge of viral and host molecular determinates of virulence and infectiousness, and of how phylogenetics may be used to estimate vaccine match and strain

  10. PlasmaDNA: a free, cross-platform plasmid manipulation program for molecular biology laboratories

    Directory of Open Access Journals (Sweden)

    Rainy Jeffrey

    2007-09-01

    Full Text Available Abstract Background Most molecular biology experiments, and the techniques associated with this field of study, involve a great deal of engineering in the form of molecular cloning. Like all forms of engineering, perfect information about the starting material is crucial for successful completion of design and strategies. Results We have generated a program that allows complete in silico simulation of the cloning experiment. Starting with a primary DNA sequence, PlasmaDNA looks for restriction sites, open reading frames, primer annealing sequences, and various common domains. The databases are easily expandable by the user to fit his most common cloning needs. PlasmaDNA can manage and graphically represent multiple sequences at the same time, and keeps in memory the overhangs at the end of the sequences if any. This means that it is possible to virtually digest fragments, to add the digestion products to the project, and to ligate together fragments with compatible ends to generate the new sequences. Polymerase Chain Reaction (PCR fragments can also be virtually generated using the primer database, automatically adding to the fragments any 5' extra sequences present in the primers. Conclusion PlasmaDNA is a program available both on Windows and Apple operating systems, designed to facilitate molecular cloning experiments by building a visual map of the DNA. It then allows the complete planning and simulation of the cloning experiment. It also automatically updates the new sequences generated in the process, which is an important help in practice. The capacity to maintain multiple sequences in the same file can also be used to archive the various steps and strategies involved in the cloning of each construct. The program is freely available for download without charge or restriction.

  11. Molecular biological and immunohistological characterization of canine dermal papilla cells and the evaluation of culture conditions.

    Science.gov (United States)

    Kobayashi, Tetsuro; Fujisawa, Akiko; Amagai, Masayuki; Iwasaki, Toshiroh; Ohyama, Manabu

    2011-10-01

    The dermal papilla (DP) plays pivotal roles in hair follicle morphogenesis and cycling. However, our understanding of the biology of the canine DP is extremely limited. The aim of this study was to elucidate molecular biological and immunohistochemical characteristics of canine DP cells and determine appropriate conditions for in vitro expansion. Histological investigation revealed that the canine DP expressed biomarkers of human and rodent DP, including alkaline phosphatase (ALP) and versican. When microdissected, canine DP, but not fibroblasts, strongly expressed the DP-related genes for alkaline phosphatase, Wnt inhibitory factor 1 and lymphoid enhancer-binding factor 1, confirming successful isolation. The growth rate of isolated canine DP cells was moderate in conventional culture conditions for rodent and human DP; however, AmnioMAX-C100 complete medium allowed more efficient cultivation. Dermal papilla marker gene expression was maintained in early passage cultured DP cells, but gradually lost after the third passage. Approaches to mimic the in vivo DP environment in culture, such as supplementation of keratinocyte-conditioned medium or use of extracellular matrix-coated dishes, moderately ameliorated loss of DP gene expression in canine DP cells. It is possible that constituent factors in AmnioMAX may influence culture. These findings suggested that further refinements of culture conditions may enable DP cell expansion without impairing intrinsic properties and, importantly, demonstrated that AmnioMAX-cultured early passage canine DP cells partly maintained the biological characteristics of in vivo canine DP cells. This study provides crucial information necessary for further optimization of culture conditions of canine DP. © 2011 The Authors. Veterinary Dermatology. © 2011 ESVD and ACVD.

  12. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Directory of Open Access Journals (Sweden)

    Anaid Anna Kasangian

    Full Text Available The prognosis of early breast cancer (EBC depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors.The primary objective is to evaluate the association between tumor dimensions and overall survival (OS / disease free survival (DFS, in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c, and calculated using the following formula: 4/3π x a x b x c.341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2. 44 patients (12.9% relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005, with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22. Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002.In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria

  13. The prognostic role of tumor size in early breast cancer in the era of molecular biology.

    Science.gov (United States)

    Kasangian, Anaid Anna; Gherardi, Giorgio; Biagioli, Elena; Torri, Valter; Moretti, Anna; Bernardin, Elena; Cordovana, Andrea; Farina, Gabriella; Bramati, Annalisa; Piva, Sheila; Dazzani, Maria Chiara; Paternò, Emanuela; La Verde, Nicla Maria

    2017-01-01

    The prognosis of early breast cancer (EBC) depends on patient and tumor characteristics. The association between tumor size, the largest diameter in TNM staging, and prognosis is well recognized. According to TNM, tumors classified as T2, could have very different volumes; e.g. a tumor of 2.1 cm has a volume of 4500 mm3, while a tumor of 4.9 cm has a volume of 60.000 mm3 even belonging to the same class. The aim of the study is to establish if the prognostic role of tumor size, expressed as diameter and volume, has been overshadowed by other factors. The primary objective is to evaluate the association between tumor dimensions and overall survival (OS) / disease free survival (DFS), in our institution from January 1st 2005 to September 30th 2013 in a surgical T1-T2 population. Volume was evaluated with the measurement of three half-diameters of the tumor (a, b and c), and calculated using the following formula: 4/3π x a x b x c. 341 patients with T1-T2 EBC were included. 86.5% were treated with conservative surgery. 85.1% had a Luminal subtype, 9.1% were Triple negative and 7.4% were HER2 positive. Median volume was 942 mm3 (range 0.52-31.651.2). 44 patients (12.9%) relapsed and 23 patients died. With a median follow-up of 6.5 years, the univariate analysis for DFS showed an association between age, tumor size, volume, histological grading and molecular subtype. The multivariate analysis confirmed the statistically significant association only for molecular subtype (p 0.005), with a worse prognosis for Triple negative and HER2 positive subtypes compared with Luminal (HR: 2.65; 95%CI: 1.34-5.22). Likewise for OS, an association was shown by the multivariate analysis solely for molecular subtype (HER2 and Triple negative vs. Luminal. HR: 2.83; 95% CI:1.46-5.49; p 0.002). In our study, the only parameter that strongly influences survival is molecular subtype. These findings encourage clinicians to choose adjuvant treatment not based on dimensional criteria but on

  14. PASBio: predicate-argument structures for event extraction in molecular biology

    Science.gov (United States)

    Wattarujeekrit, Tuangthong; Shah, Parantu K; Collier, Nigel

    2004-01-01

    Background The exploitation of information extraction (IE), a technology aiming to provide instances of structured representations from free-form text, has been rapidly growing within the molecular biology (MB) research community to keep track of the latest results reported in literature. IE systems have traditionally used shallow syntactic patterns for matching facts in sentences but such approaches appear inadequate to achieve high accuracy in MB event extraction due to complex sentence structure. A consensus in the IE community is emerging on the necessity for exploiting deeper knowledge structures such as through the relations between a verb and its arguments shown by predicate-argument structure (PAS). PAS is of interest as structures typically correspond to events of interest and their participating entities. For this to be realized within IE a key knowledge component is the definition of PAS frames. PAS frames for non-technical domains such as newswire are already being constructed in several projects such as PropBank, VerbNet, and FrameNet. Knowledge from PAS should enable more accurate applications in several areas where sentence understanding is required like machine translation and text summarization. In this article, we explore the need to adapt PAS for the MB domain and specify PAS frames to support IE, as well as outlining the major issues that require consideration in their construction. Results We introduce PASBio by extending a model based on PropBank to the MB domain. The hypothesis we explore is that PAS holds the key for understanding relationships describing the roles of genes and gene products in mediating their biological functions. We chose predicates describing gene expression, molecular interactions and signal transduction events with the aim of covering a number of research areas in MB. Analysis was performed on sentences containing a set of verbal predicates from MEDLINE and full text journals. Results confirm the necessity to analyze

  15. Roman sophisticated surface modification methods to manufacture silver counterfeited coins

    Science.gov (United States)

    Ingo, G. M.; Riccucci, C.; Faraldi, F.; Pascucci, M.; Messina, E.; Fierro, G.; Di Carlo, G.

    2017-11-01

    By means of the combined use of X-ray photoelectron spectroscopy (XPS), optical microscopy (OM) and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) the surface and subsurface chemical and metallurgical features of silver counterfeited Roman Republican coins are investigated to decipher some aspects of the manufacturing methods and to evaluate the technological ability of the Roman metallurgists to produce thin silver coatings. The results demonstrate that over 2000 ago important advances in the technology of thin layer deposition on metal substrates were attained by Romans. The ancient metallurgists produced counterfeited coins by combining sophisticated micro-plating methods and tailored surface chemical modification based on the mercury-silvering process. The results reveal that Romans were able systematically to chemically and metallurgically manipulate alloys at a micro scale to produce adherent precious metal layers with a uniform thickness up to few micrometers. The results converge to reveal that the production of forgeries was aimed firstly to save expensive metals as much as possible allowing profitable large-scale production at a lower cost. The driving forces could have been a lack of precious metals, an unexpected need to circulate coins for trade and/or a combinations of social, political and economic factors that requested a change in money supply. Finally, some information on corrosion products have been achieved useful to select materials and methods for the conservation of these important witnesses of technology and economy.

  16. Sophisticated Communication in the Brazilian Torrent Frog Hylodes japi.

    Science.gov (United States)

    de Sá, Fábio P; Zina, Juliana; Haddad, Célio F B

    2016-01-01

    Intraspecific communication in frogs plays an important role in the recognition of conspecifics in general and of potential rivals or mates in particular and therefore with relevant consequences for pre-zygotic reproductive isolation. We investigate intraspecific communication in Hylodes japi, an endemic Brazilian torrent frog with territorial males and an elaborate courtship behavior. We describe its repertoire of acoustic signals as well as one of the most complex repertoires of visual displays known in anurans, including five new visual displays. Previously unknown in frogs, we also describe a bimodal inter-sexual communication system where the female stimulates the male to emit a courtship call. As another novelty for frogs, we show that in addition to choosing which limb to signal with, males choose which of their two vocal sacs will be used for visual signaling. We explain how and why this is accomplished. Control of inflation also provides additional evidence that vocal sac movement and color must be important for visual communication, even while producing sound. Through the current knowledge on visual signaling in Neotropical torrent frogs (i.e. hylodids), we discuss and highlight the behavioral diversity in the family Hylodidae. Our findings indicate that communication in species of Hylodes is undoubtedly more sophisticated than we expected and that visual communication in anurans is more widespread than previously thought. This is especially true in tropical regions, most likely due to the higher number of species and phylogenetic groups and/or to ecological factors, such as higher microhabitat diversity.

  17. Sophisticated Communication in the Brazilian Torrent Frog Hylodes japi.

    Directory of Open Access Journals (Sweden)

    Fábio P de Sá

    Full Text Available Intraspecific communication in frogs plays an important role in the recognition of conspecifics in general and of potential rivals or mates in particular and therefore with relevant consequences for pre-zygotic reproductive isolation. We investigate intraspecific communication in Hylodes japi, an endemic Brazilian torrent frog with territorial males and an elaborate courtship behavior. We describe its repertoire of acoustic signals as well as one of the most complex repertoires of visual displays known in anurans, including five new visual displays. Previously unknown in frogs, we also describe a bimodal inter-sexual communication system where the female stimulates the male to emit a courtship call. As another novelty for frogs, we show that in addition to choosing which limb to signal with, males choose which of their two vocal sacs will be used for visual signaling. We explain how and why this is accomplished. Control of inflation also provides additional evidence that vocal sac movement and color must be important for visual communication, even while producing sound. Through the current knowledge on visual signaling in Neotropical torrent frogs (i.e. hylodids, we discuss and highlight the behavioral diversity in the family Hylodidae. Our findings indicate that communication in species of Hylodes is undoubtedly more sophisticated than we expected and that visual communication in anurans is more widespread than previously thought. This is especially true in tropical regions, most likely due to the higher number of species and phylogenetic groups and/or to ecological factors, such as higher microhabitat diversity.

  18. Molecular Biology at the Cutting Edge: A Review on CRISPR/CAS9 Gene Editing for Undergraduates

    Science.gov (United States)

    Thurtle-Schmidt, Deborah M.; Lo, Te-Wen

    2018-01-01

    Disrupting a gene to determine its effect on an organism's phenotype is an indispensable tool in molecular biology. Such techniques are critical for understanding how a gene product contributes to the development and cellular identity of organisms. The explosion of genomic sequencing technologies combined with recent advances in genome-editing…

  19. Molecular Biology Masterclasses--Developing Practical Skills and Building Links with Higher Education in Years 12/13

    Science.gov (United States)

    Hooley, Paul; Cooper, Phillippa; Skidmore, Nick

    2008-01-01

    A one day practical course in molecular biology skills suitable for year 12/13 students is described. Colleagues from partner schools and colleges were trained by university staff in basic techniques and then collaborated in the design of a course suitable for their own students. Participants carried out a transformation of "E.coli"…

  20. Development of a Semester-Long, Inquiry-Based Laboratory Course in Upper-Level Biochemistry and Molecular Biology

    Science.gov (United States)

    Murthy, Pushpalatha P. N.; Thompson, Martin; Hungwe, Kedmon

    2014-01-01

    A semester-long laboratory course was designed and implemented to familiarize students with modern biochemistry and molecular biology techniques. The designed format involved active student participation, evaluation of data, and critical thinking, and guided students to become independent researchers. The first part of the course focused on…

  1. HIGHLY SELECTIVE SENSORS FOR CHEMICAL AND BIOLOGICAL WARFARE AGENTS, INSECTICIDES AND VOCS BASED ON A MOLECULAR SURFACE IMPRINTING TECHNIQUE

    Science.gov (United States)

    Abstract was given as an oral platform presentation at the Pittsburgh Conference, Orlando FL (March 5-9, 2006). Research described is the development of sensors based on molecular surface imprinting. Applications include the monitoring of chemical and biological agents and inse...

  2. Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.

    Science.gov (United States)

    Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael

    2017-04-15

    Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain

  3. Plant molecular biology and biotechnology research in the post-recombinant DNA era.

    Science.gov (United States)

    Tyagi, Akhilesh K; Khurana, Jitendra P

    2003-01-01

    After the beginning of the recombinant DNA era in the mid-1970s, researchers in India started to make use of the new technology to understand the structure of plant genes and regulation of their expression. The outcome started to appear in print in early the 1980s and genes for histones, tubulin, photosynthetic membrane proteins, phototransduction components, organelles and those regulated differentially by developmental and extrinsic signals were sequenced and characterized. Some genes of biotechnological importance like those encoding an interesting seed protein and the enzyme glyoxalase were also isolated. While work on the characterization of genome structure and organization was started quite early, it remained largely focused on the identification of DNA markers and genetic variability. In this context, the work on mustard, rice and wheat is worth mentioning. In the year 2000, India became a member of the international consortium to sequence entire rice genome. Several laboratories have also given attention to regulated expression of plastid and nuclear genes as well as to isolate target-specific promoters or design promoters with improved potential. Simultaneously, transgenic systems for crops like mustard, rice, wheat, cotton, legumes and several vegetables have been established. More recently, genes of agronomic importance like those for insect resistance, abiotic stress tolerance, nutritional improvement and male sterility, isolated in India or abroad, have been utilized for raising transgenics for crop improvement. Some of these transgenics have already shown their potential in containment facility or limited field trials conducted under the stipulated guidelines. Plant molecular biology and biotechnology are thus clearly poised to make an impact on research in basic biology and agriculture in the near future.

  4. Molecular biological methods (DGGE) as a tool to investigate nitrification inhibition in wastewater treatment.

    Science.gov (United States)

    Kreuzinger, N; Farnleitner, A; Wandl, G; Hornek, R; Mach, R

    2003-01-01

    Incomplete nitrification at an activated sludge plant for biological pre-treatment of rendering plant effluents led to a detailed investigation on the origin and solution of this problem. Preliminary studies revealed that an inhibition of ammonia oxidising microorganisms (AOM) by process waters of the rendering plant was responsible for the situation. We were able to show a correlation between the existence of specific AOM and nitrification capacity expressed as oxygen uptake rate for maximal nitrification (OURNmax). Only Nitrosospira sp. was found in the activated sludge of the rendering plant and another industrial wastewater treatment plant with problems in nitrification, while reference plants without nitrification problems showed Nitrosomonas spp. as the predominant ammonia oxidising bacteria. By accompanying engineering investigations and experiments (cross-feeding experiments, operation of a two-stage laboratory plant) with molecular biological methods (DGGE--Denaturing Gradient Gel Electrophoresis) we were able to elaborate an applicable solution for the rendering plant. Laboratory experiments with a two-stage process layout finally provided complete nitrification overcoming the inhibiting nature of process waters from the rendering plant. DGGE analysis of the second stage activated sludge from the laboratory plant showed a shift in population structure from Nitrosospira sp. towards Nitrosomonas spp. simultaneous to the increase of nitrification capacity. Nitrification capacities comparable to full-scale municipal wastewater treatment plants could be maintained for more than two months. As the design of wastewater treatment plants for nitrification is linked to the growth characteristics of Nitrosomonas spp., established criteria can be applied for the redesign of the full-scale plant.

  5. Tracking the Resolution of Student Misconceptions about the Central Dogma of Molecular Biology

    Directory of Open Access Journals (Sweden)

    Amy G. Briggs

    2016-12-01

    Full Text Available The goal of our study was to track changes in student understanding of the central dogma of molecular biology before and after taking a genetics course. Concept maps require the ability to synthesize new information into existing knowledge frameworks, and so the hypothesis guiding this study was that student performance on concept maps reveals specific central dogma misconceptions gained, lost, and retained by students. Students in a genetics course completed pre- and posttest concept mapping tasks using terms related to the central dogma. Student maps increased in complexity and validity, indicating learning gains in both content and complexity of understanding. Changes in each of the 351 possible connections in the mapping task were tracked for each student. Our students did not retain much about the central dogma from their introductory biology courses, but they did move to more advanced levels of understanding by the end of the genetics course. The information they retained from their introductory courses focused on structural components (e.g., protein is made of amino acids and not on overall mechanistic components (e.g., DNA comes before RNA, the ribosome makes protein. Students made the greatest gains in connections related to transcription, and they resolved the most prior misconceptions about translation. These concept-mapping tasks revealed that students are able to correct prior misconceptions about the central dogma during an intermediate-level genetics course. From these results, educators can design new classroom interventions to target those aspects of this foundational principle with which students have the most trouble.

  6. Endogenous Molecular-Cellular Network Cancer Theory: A Systems Biology Approach.

    Science.gov (United States)

    Wang, Gaowei; Yuan, Ruoshi; Zhu, Xiaomei; Ao, Ping

    2018-01-01

    In light of ever apparent limitation of the current dominant cancer mutation theory, a quantitative hypothesis for cancer genesis and progression, endogenous molecular-cellular network hypothesis has been proposed from the systems biology perspective, now for more than 10 years. It was intended to include both the genetic and epigenetic causes to understand cancer. Its development enters the stage of meaningful interaction with experimental and clinical data and the limitation of the traditional cancer mutation theory becomes more evident. Under this endogenous network hypothesis, we established a core working network of hepatocellular carcinoma (HCC) according to the hypothesis and quantified the working network by a nonlinear dynamical system. We showed that the two stable states of the working network reproduce the main known features of normal liver and HCC at both the modular and molecular levels. Using endogenous network hypothesis and validated working network, we explored genetic mutation pattern in cancer and potential strategies to cure or relieve HCC from a totally new perspective. Patterns of genetic mutations have been traditionally analyzed by posteriori statistical association approaches in light of traditional cancer mutation theory. One may wonder the possibility of a priori determination of any mutation regularity. Here, we found that based on the endogenous network theory the features of genetic mutations in cancers may be predicted without any prior knowledge of mutation propensities. Normal hepatocyte and cancerous hepatocyte stable states, specified by distinct patterns of expressions or activities of proteins in the network, provide means to directly identify a set of most probable genetic mutations and their effects in HCC. As the key proteins and main interactions in the network are conserved through cell types in an organism, similar mutational features may also be found in other cancers. This analysis yielded straightforward and testable

  7. Proceedings of the 3. international symposium on applied microbiology and molecular biology in oil systems: ISMOS 3

    Energy Technology Data Exchange (ETDEWEB)

    Rooijen, Gijs van; Caffrey, Sean M. [Genome Alberta (Canada); Lund Skovhus, Torben [DTI Oil and Gas (Denmark); Whitby, Corinne [University of Essex (United Kingdom)

    2011-07-01

    The 3rd international symposium on applied microbiology and molecular biology in oil systems was held in Calgary, Alberta, Canada, from June 13th to June 15th, 2011. This conference, organized by ISMOS TSC, gathered experts to discuss the application of microbial and molecular biology in the hydrocarbon sector. The conference was attended by key players from the oil and gas industry and provided them with the opportunity to learn about some of the latest technologies in areas such as the application of molecular microbiological methods for oil field systems, biodegradation of hydrocarbons in oil production, biofuels and downstream petroleum microbiology and challenges in biofuels and oil sands developments, and to network with their peers and share their expertise. 17 of the 31 papers presented during this conference have been catalogued separately for inclusion in this database.

  8. Special conference of the American Association for Cancer Research on molecular imaging in cancer: linking biology, function, and clinical applications in vivo.

    Science.gov (United States)

    Luker, Gary D

    2002-04-01

    The AACR Special Conference on Molecular Imaging in Cancer: Linking Biology, Function, and Clinical Applications In Vivo, was held January 23-27, 2002, at the Contemporary Hotel, Walt Disney World, Orlando, FL. Co-Chairs David Piwnica-Worms, Patricia Price and Thomas Meade brought together researchers with diverse expertise in molecular biology, gene therapy, chemistry, engineering, pharmacology, and imaging to accelerate progress in developing and applying technologies for imaging specific cellular and molecular signals in living animals and humans. The format of the conference was the presentation of research that focused on basic and translational biology of cancer and current state-of-the-art techniques for molecular imaging in animal models and humans. This report summarizes the special conference on molecular imaging, highlighting the interfaces of molecular biology with animal models, instrumentation, chemistry, and pharmacology that are essential to convert the dreams and promise of molecular imaging into improved understanding, diagnosis, and management of cancer.

  9. Sialidosis: A Review of Morphology and Molecular Biology of a Rare Pediatric Disorder.

    Science.gov (United States)

    Khan, Aiza; Sergi, Consolato

    2018-04-25

    Sialidosis (MIM 256550) is a rare, autosomal recessive inherited disorder, caused by α- N -acetyl neuraminidase deficiency resulting from a mutation in the neuraminidase gene ( NEU1 ), located on 6p21.33. This genetic alteration leads to abnormal intracellular accumulation as well as urinary excretion of sialyloligosaccharides. A definitive diagnosis is made after the identification of a mutation in the NEU1 gene. So far, 40 mutations of NEU1 have been reported. An association exists between the impact of the individual mutations and the severity of clinical presentation of sialidosis. According to the clinical symptoms, sialidosis has been divided into two subtypes with different ages of onset and severity, including sialidosis type I (normomorphic or mild form) and sialidosis type II (dysmorphic or severe form). Sialidosis II is further subdivided into (i) congenital; (ii) infantile; and (iii) juvenile. Despite being uncommon, sialidosis has enormous clinical relevance due to its debilitating character. A complete understanding of the underlying pathology remains a challenge, which in turn limits the development of effective therapeutic strategies. Furthermore, in the last few years, some atypical cases of sialidosis have been reported as well. We herein attempt to combine and discuss the underlying molecular biology, the clinical features, and the morphological patterns of sialidosis type I and II.

  10. Arylthioindole inhibitors of tubulin polymerization. 3. Biological evaluation, structure-activity relationships and molecular modeling studies.

    Science.gov (United States)

    La Regina, Giuseppe; Edler, Michael C; Brancale, Andrea; Kandil, Sahar; Coluccia, Antonio; Piscitelli, Francesco; Hamel, Ernest; De Martino, Gabriella; Matesanz, Ruth; Díaz, José Fernando; Scovassi, Anna Ivana; Prosperi, Ennio; Lavecchia, Antonio; Novellino, Ettore; Artico, Marino; Silvestri, Romano

    2007-06-14

    The new arylthioindole (ATI) derivatives 10, 14-18, and 21-24, which bear a halogen atom or a small size ether group at position 5 of the indole moiety, were compared with the reference compounds colchicine and combretastatin A-4 for biological activity. Derivatives 10, 11, 16, and 21-24 inhibited MCF-7 cell growth with IC50 values <50 nM. A halogen atom (14-17) at position 5 caused a significant reduction in the free energy of binding of compound to tubulin, with a concomitant reduction in cytotoxicity. In contrast, methyl (21) and methoxy (22) substituents at position 5 caused an increase in cytotoxicity. Compound 16, the most potent antitubulin agent, led to a large increase (56%) in HeLa cells in the G2/M phase at 24 h, and at 48 h, 26% of the cells were hyperploid. Molecular modeling studies showed that, despite the absence of the ester moiety present in the previously examined analogues, most of the compounds bind in the colchicine site in the same orientation as the previously studied ATIs. Binding to beta-tubulin involved formation of a hydrogen bond between the indole and Thr179 and positioning of the trimethoxy phenyl group in a hydrophobic pocket near Cys241.

  11. [Detection and typing by molecular biology of human papillomavirus in genital samples].

    Science.gov (United States)

    Suárez Moya, A; Esquivias Gómez, J I; Vidart Aragón, J A; Picazo de la Garza, J J

    2006-06-01

    Recently, there has been a marked increase in human papillomavirus (HPV) infection, and the etiological relationship between some HPV genotypes and genital cancer has been confirmed. Therefore, we used current molecular biology techniques to evaluate the prevalence of these viruses and their genotype in genital samples. We processed 401 genital samples from 281 women and 120 men, all with a diagnosis compatible with HPV infection. Virus was detected using PCR, and positive samples were typed using an array technique which enabled us to detect the 35 most common types of mucous-associated HPV. Of the 401 patients studied, 185 (46.1%) were positive, and only one type of HPV was detected in 133 cases. We found that 41.6% of the women and 56.7% of the men were positive. A total of 260 HPVs were typed; 154 were high oncogenic risk. They infected 16 men (23.5%) and 88 women (75.2%). The difference was statistically significant (pHVP 16 in 52 cases. We found a 46% prevalence of HPV infection. More than half of these patients were infected by high-risk HPV. The presence of high-risk HPV was significantly higher in women.

  12. MyLabStocks: a web-application to manage molecular biology materials.

    Science.gov (United States)

    Chuffart, Florent; Yvert, Gaël

    2014-05-01

    Laboratory stocks are the hardware of research. They must be stored and managed with mimimum loss of material and information. Plasmids, oligonucleotides and strains are regularly exchanged between collaborators within and between laboratories. Managing and sharing information about every item is crucial for retrieval of reagents, for planning experiments and for reproducing past experimental results. We have developed a web-based application to manage stocks commonly used in a molecular biology laboratory. Its functionalities include user-defined privileges, visualization of plasmid maps directly from their sequence and the capacity to search items from fields of annotation or directly from a query sequence using BLAST. It is designed to handle records of plasmids, oligonucleotides, yeast strains, antibodies, pipettes and notebooks. Based on PHP/MySQL, it can easily be extended to handle other types of stocks and it can be installed on any server architecture. MyLabStocks is freely available from: https://forge.cbp.ens-lyon.fr/redmine/projects/mylabstocks under an open source licence. © 2014 Laboratoire de Biologie Moleculaire de la Cellule CNRS. Yeast published by John Wiley & Sons, Ltd.

  13. Personal microbiome analysis improves student engagement and interest in Immunology, Molecular Biology, and Genomics undergraduate courses

    Science.gov (United States)

    Bridgewater, Laura C.; Jensen, Jamie L.; Breakwell, Donald P.; Nielsen, Brent L.; Johnson, Steven M.

    2018-01-01

    A critical area of emphasis for science educators is the identification of effective means of teaching and engaging undergraduate students. Personal microbiome analysis is a means of identifying the microbial communities found on or in our body. We hypothesized the use of personal microbiome analysis in the classroom could improve science education by making courses more applied and engaging for undergraduate students. We determined to test this prediction in three Brigham Young University undergraduate courses: Immunology, Advanced Molecular Biology Laboratory, and Genomics. These three courses have a two-week microbiome unit and students during the 2016 semester students could submit their own personal microbiome kit or use the demo data, whereas during the 2017 semester students were given access to microbiome data from an anonymous individual. The students were surveyed before, during, and after the human microbiome unit to determine whether analyzing their own personal microbiome data, compared to analyzing demo microbiome data, impacted student engagement and interest. We found that personal microbiome analysis significantly enhanced the engagement and interest of students while completing microbiome assignments, the self-reported time students spent researching the microbiome during the two week microbiome unit, and the attitudes of students regarding the course overall. Thus, we found that integrating personal microbiome analysis in the classroom was a powerful means of improving student engagement and interest in undergraduate science courses. PMID:29641525

  14. Molecular biology of breast tumors and prognosis [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Gustavo Baldassarre

    2016-04-01

    Full Text Available Breast cancer is the most common cancer among women worldwide. Great scientific, economical, and organizational efforts are in place to understand the causes of onset, identify the critical molecular players of progression, and define new lines of intervention providing more benefits and less toxicity. These efforts have certainly not been vain, since overall survival, especially in specific subsets of breast cancer, has greatly improved during the last decades. At present, breast cancer patients’ treatment and care have reached a high standard of quality, and currently one of the most urgent needs resides in the necessity to better distinguish the tumors that need to be more aggressively treated and identify the best therapeutic option tailored to each patient. This objective will be achievable only if the information clarifying the biology of breast cancer can be successfully transferred to the clinic. A common effort by scientists and clinicians toward this integration and toward the use of multidisciplinary approaches will be necessary to reach this important goal.

  15. Synthesis, Molecular Modelling and Biological Evaluation of Novel Heterodimeric, Multiple Ligands Targeting Cholinesterases and Amyloid Beta

    Directory of Open Access Journals (Sweden)

    Michalina Hebda

    2016-03-01

    Full Text Available Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer’s disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention—compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM. Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE (EeAChE IC50 = 0.76 μM, EqBuChE IC50 = 0.618 μM, and it inhibits amyloid beta aggregation (35.8% at 10 μM. Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer’s agents.

  16. Molecular Biological Study of Anti-cancer Effects of Bee Venom Aqua-acupuncture

    Directory of Open Access Journals (Sweden)

    Park Chan-Yol

    2000-07-01

    Full Text Available To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability and apoptosis were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, and activity of caspase-3 protease activity assay. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [3H]thymidine release assay, and flow cytometric analysis of sub G1 fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and Bcl-XL were down-regulated whereas Bax was up-regulated by bee venom treatment.

  17. Biological, serological and molecular typing of potato virus Y (PVY) isolates from Tunisia.

    Science.gov (United States)

    Tayahi, M; Gharsallah, C; Khamassy, N; Fakhfakh, H; Djilani-Khouadja, F

    2016-10-17

    In Tunisia, potato virus Y (PVY) currently presents a significant threat to potato production, reducing tuber yield and quality. Three hundred and eighty-five potato samples (six different cultivars) collected in autumn 2007 from nine regions in Tunisia were tested for PVY infection by DAS-ELISA. The virus was detected in all regions surveyed, with an average incidence of 80.26%. Subsequently, a panel of 82 Tunisian PVY isolates (PVY-TN) was subjected to systematic biological, serological and molecular typing using immunocapture reverse-transcription polymerase chain reaction and a series of PVY OC - and PVY N -specific monoclonal antibodies. Combined analyses revealed ~67% of PVY NTN variants of which 17 were sequenced in the 5'NTR-P1 region to assess the genetic diversity and phylogenetic relationship of PVY-TN against other worldwide PVY isolates. To investigate whether selective constraints could act on viral genomic RNA, synonymous and non-synonymous substitution rates and their ratio were analyzed. Averages of all pairwise comparisons obtained in the 5'NTR-P1 region allowed more synonymous changes, suggesting selective constraint acting in this region. Selective neutrality test was significantly negative, suggesting a rapid expansion of PVY isolates. Pairwise mismatch distribution gave a bimodal pattern and pointed to an eventually early evolution characterizing these sequences. Genetic haplotype network topology provided evidence of the existence of a distinct geographical structure. This is the first report of such genetic analyses conducted on PVY isolates from Tunisia.

  18. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Oxadiazole-Stilbene Hybrids against Phytopathogenic Fungi

    Science.gov (United States)

    Jian, Weilin; He, Daohang; Song, Shaoyun

    2016-08-01

    Natural stilbenes (especially resveratrol) play important roles in plant protection by acting as both constitutive and inducible defenses. However, their exogenous applications on crops as fungicidal agents are challenged by their oxidative degradation and limited availability. In this study, a new class of resveratrol-inspired oxadiazole-stilbene hybrids was synthesized via Wittig-Horner reaction. Bioassay results indicated that some of the compounds exhibited potent fungicidal activity against Botrytis cinerea in vitro. Among these stilbene hybrids, compounds 11 showed promising inhibitory activity with the EC50 value of 144.6 μg/mL, which was superior to that of resveratrol (315.6 μg/mL). Remarkably, the considerably abnormal mycelial morphology was observed in the presence of compound 11. The inhibitory profile was further proposed by homology modeling and molecular docking studies, which showed the possible interaction of resveratrol and oxadiazole-stilbene hybrids with the cytochrome P450-dependent sterol 14α-demethylase from B. cinerea (BcCYP51) for the first time. Taken together, these results would provide new insights into the fungicidal mechanism of stilbenes, as well as an important clue for biology-oriented synthesis of stilbene hybrids with improved bioactivity against plant pathogenic fungi in crop protection.

  19. Source-sink interaction: a century old concept under the light of modern molecular systems biology.

    Science.gov (United States)

    Chang, Tian-Gen; Zhu, Xin-Guang; Raines, Christine

    2017-07-20

    Many approaches to engineer source strength have been proposed to enhance crop yield potential. However, a well-co-ordinated source-sink relationship is required finally to realize the promised increase in crop yield potential in the farmer's field. Source-sink interaction has been intensively studied for decades, and a vast amount of knowledge about the interaction in different crops and under different environments has been accumulated. In this review, we first introduce the basic concepts of source, sink and their interactions, then summarize current understanding of how source and sink can be manipulated through both environmental control and genetic manipulations. We show that the source-sink interaction underlies the diverse responses of crops to the same perturbations and argue that development of a molecular systems model of source-sink interaction is required towards a rational manipulation of the source-sink relationship for increased yield. We finally discuss both bottom-up and top-down routes to develop such a model and emphasize that a community effort is needed for development of this model. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Biologic and clinical significance of molecular profiling in Chronic Lymphocytic Leukemia.

    Science.gov (United States)

    Butler, Tom; Gribben, J G

    2010-05-01

    CLL is extremely heterogeneous in its clinical course, with some patients living decades with no need for treatment whilst others have a rapidly aggressive clinical course. A major focus of research has been to try to identify those biological factors that influence this heterogeneity. The goal of therapy has been to maintain the best quality of life and treat only when patients become symptomatic from their disease. For the majority of patients this means following a "watch and wait" approach to determine the rate of progression of the disease and assess for development of symptoms. Any alteration to this approach will require identification of criteria that define patients sufficiently "high-risk" that they gain benefit by introduction of early therapy. The use of molecular profiling to suggest particular therapies is currently appropriate only in defining the treatment of the minority of patients with 17p deletions or p53 mutations and in all other circumstances remains a clinical trial question. Copyright 2010 Elsevier Ltd. All rights reserved.