WorldWideScience

Sample records for sonos nonvolatile semiconductor

  1. Charge retention in scaled SONOS nonvolatile semiconductor memory devices—Modeling and characterization

    Science.gov (United States)

    Hu, Yin; White, Marvin H.

    1993-10-01

    A new analytical model is developed to investigate the influence of the charge loss processes in the retention mode of the SONOS NVSM device. The model considers charge loss by the following processes: (1) electron back-tunneling from the nitride traps to the Si conduction band, (2) electron back-tunneling from the nitride traps to the Si/SiO 2 interface traps and (3) hole injection from the Si valence band to the nitride traps. An amphoteric trap charge distribution is used in this model. The new charge retention model predicts that process (1) determines the short term retention, while processes (2) and (3) determine the long term retention. Good agreement has been reached between the results of analytical calculations and the experimental retention data on both surface channel and buried channel SONOS devices.

  2. Modeling of SONOS Memory Cell Erase Cycle

    Science.gov (United States)

    Phillips, Thomas A.; MacLeod, Todd C.; Ho, Fat H.

    2011-01-01

    Utilization of Silicon-Oxide-Nitride-Oxide-Silicon (SONOS) nonvolatile semiconductor memories as a flash memory has many advantages. These electrically erasable programmable read-only memories (EEPROMs) utilize low programming voltages, have a high erase/write cycle lifetime, are radiation hardened, and are compatible with high-density scaled CMOS for low power, portable electronics. In this paper, the SONOS memory cell erase cycle was investigated using a nonquasi-static (NQS) MOSFET model. Comparisons were made between the model predictions and experimental data.

  3. Future Trend of Non-Volatile Semiconductor Memory and Feasibility Study of BiCS Type Stacked Structure

    OpenAIRE

    渡辺, 重佳

    2009-01-01

    Future trend of non-volatile semiconductor memory—FeRAM, MRAM, PRAM, ReRAM—compared with NAND typeflash memory has been described based on its history, application and performance. In the realistic point of view,FeRAM and MRAM are suitable for embedded memory and main memory, and PRAM and ReRAM are promising candidatesfor main memory and mass-storage memory for multimedia. Furthermore, the feasibility study of aggressiveultra-low-cost high-speed universal non-volatile semiconductor memory has...

  4. The floating-gate non-volatile semiconductor memory--from invention to the digital age.

    Science.gov (United States)

    Sze, S M

    2012-10-01

    In the past 45 years (from 1967 to 2012), the non-volatile semiconductor memory (NVSM) has emerged from a floating-gate concept to the prime technology driver of the largest industry in the world-the electronics industry. In this paper, we briefly review the historical development of NVSM and project its future trends to the year 2020. In addition, we consider NVSM's wide-range of applications from the digital cellular phone to tablet computer to digital television. As the device dimension is scaled down to the deca-nanometer regime, we expect that many innovations will be made to meet the scaling challenges, and NVSM-inspired technology will continue to enrich and improve our lives for decades to come.

  5. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-01-01

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10 17  m −2 . We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching

  6. Nonvolatile memory characteristics in metal-oxide-semiconductors containing metal nanoparticles fabricated by using a unique laser irradiation method

    International Nuclear Information System (INIS)

    Yang, JungYup; Yoon, KapSoo; Kim, JuHyung; Choi, WonJun; Do, YoungHo; Kim, ChaeOk; Hong, JinPyo

    2006-01-01

    Metal-oxide-semiconductor (MOS) capacitors with metal nanoparticles (Co NP) were successfully fabricated by utilizing an external laser exposure technique for application of non-volatile memories. Images of high-resolution transmission electron microscopy reveal that the spherically shaped Co NP are clearly embedded in the gate oxide layer. Capacitance-voltage measurements exhibit typical charging and discharging effects with a large flat-band shift. The effects of the tunnel oxide thickness and the different tunnel materials are analyzed using capacitance-voltage and retention characteristics. In addition, the memory characteristics of the NP embedded in a high-permittivity material are investigated because the thickness of conventionally available SiO 2 gates is approaching the quantum tunneling limit as devices are scaled down. Finally, the suitability of NP memory devices for nonvolatile memory applications is also discussed. The present results suggest that our unique laser exposure technique holds promise for the NP formation as floating gate elements in nonvolatile NP memories and that the quality of the tunnel oxide is very important for enhancing the retention properties of nonvolatile memory.

  7. Crested Tunnel Barriers for Fast, Scalable, Nonvolatile Semiconductor Memories (Theme 3)

    National Research Council Canada - National Science Library

    Likharev, Konstantin K; Ma, Tso-Ping

    2006-01-01

    .... If demonstrated in silicon-compatible materials with sufficient endurance under electric stress, this effect may enable high-density, high-speed nonvolatile memories that may potentially replace DRAM...

  8. Supplymentary type semiconductor device and manufacturing method. Soho gata handotai sochi oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Uno, Masaaki

    1990-01-08

    As a supplementary type semiconductor device has a complicated structure, it is extremely difficult to construct it in a three dimensional structure. This invention aims to reduce its occupying area by forming p-channel and n-channel transistors in a solid structure; moreover in an easy method of production. In other words, an opening is made in the element-forming region of a semiconductor substrate, forming a gate-insulation film on each of the p-type and n-type semiconductors which are exposed on the two facing surfaces; on it formed a gate electrode; p-type semiconductor surface is used as a channel domain; a drain region of n-channel transistor on one surface and a source region on another surface; the n-type semiconductor surface corresponding to the gate electrode is used as a channel region; a source region of the n-channel transistor is formed on the same surface and the drain region on the substrate surface. Occupied area is thus made less and the production gets easier. 20 figs.

  9. Semiconductor relay and its manufacture method. Handotai relay oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, M

    1993-06-01

    The invention relates to a semiconductor relay in which a light emitting diode and a photovoltaic element are arranged in the opposite positions and connected with a light connection and aims to present a light transmission path to transmit input signals to the light emitting diode to the side of the photovoltaic element with a negligible light loss effectively. The invention presents a semiconductor relay, in which a light emitting diode loaded on the first lead frame and the light receiving part of the photovoltaic element to drive a MOSFET element loaded on the second lead frame and acting as a switch element are connected through an insulator tube with an opaque outer wall, and the interior of the insulator tube is filled with a transparent insulating filler, so that the invention affords a light transmission path without light leakage from the interior of the opaque insulator tube and with the stability in the form and no light loss. 3 figs.

  10. Solution-Processed Wide-Bandgap Organic Semiconductor Nanostructures Arrays for Nonvolatile Organic Field-Effect Transistor Memory.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei

    2018-01-01

    In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. High-Performance Nonvolatile Organic Field-Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers.

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Yi, Mingdong; Wang, Laiyuan; Wu, Dequn; Xie, Linghai; Huang, Wei

    2017-08-01

    Nonvolatile organic field-effect transistor (OFET) memory devices based on pentacene/ N , N '-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n-type P13 embedded in p-type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well-like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge-trapping property of the poly(4-vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high-performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory.

  12. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  13. High‐Performance Nonvolatile Organic Field‐Effect Transistor Memory Based on Organic Semiconductor Heterostructures of Pentacene/P13/Pentacene as Both Charge Transport and Trapping Layers

    Science.gov (United States)

    Li, Wen; Guo, Fengning; Ling, Haifeng; Zhang, Peng; Wang, Laiyuan; Wu, Dequn

    2017-01-01

    Nonvolatile organic field‐effect transistor (OFET) memory devices based on pentacene/N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (P13)/pentacene trilayer organic heterostructures have been proposed. The discontinuous n‐type P13 embedded in p‐type pentacene layers can not only provide electrons in the semiconductor layer that facilitates electron trapping process; it also works as charge trapping sites, which is attributed to the quantum well‐like pentacene/P13/pentacene organic heterostructures. The synergistic effects of charge trapping in the discontinuous P13 and the charge‐trapping property of the poly(4‐vinylphenol) (PVP) layer remarkably improve the memory performance. In addition, the trilayer organic heterostructures have also been successfully applied to multilevel and flexible nonvolatile memory devices. The results provide a novel design strategy to achieve high‐performance nonvolatile OFET memory devices and allow potential applications for different combinations of various organic semiconductor materials in OFET memory. PMID:28852619

  14. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    International Nuclear Information System (INIS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-01-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption

  15. Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography

    KAUST Repository

    Semple, James

    2017-01-02

    Electronic memory cells are of critical importance in modern-day computing devices, including emerging technology sectors such as large-area printed electronics. One technology that has being receiving significant interest in recent years is resistive switching primarily due to its low dimensionality and nonvolatility. Here, we describe the development of resistive switching memory device arrays based on empty aluminum nanogap electrodes. By employing adhesion lithography, a low-temperature and large-area compatible nanogap fabrication technique, dense arrays of memory devices are demonstrated on both rigid and flexible plastic substrates. As-prepared devices exhibit nonvolatile memory operation with stable endurance, resistance ratios >10⁴ and retention times of several months. An intermittent analysis of the electrode microstructure reveals that controlled resistive switching is due to migration of metal from the electrodes into the nanogap under the application of an external electric field. This alternative form of resistive random access memory is promising for use in emerging sectors such as large-area electronics as well as in electronics for harsh environments, e.g., space, high/low temperature, magnetic influences, radiation, vibration, and pressure.

  16. Semiconductor-Free Nonvolatile Resistive Switching Memory Devices Based on Metal Nanogaps Fabricated on Flexible Substrates via Adhesion Lithography

    KAUST Repository

    Semple, James; Wyatt-Moon, Gwenhivir; Georgiadou, Dimitra G.; McLachlan, Martyn A.; Anthopoulos, Thomas D.

    2017-01-01

    Electronic memory cells are of critical importance in modern-day computing devices, including emerging technology sectors such as large-area printed electronics. One technology that has being receiving significant interest in recent years is resistive switching primarily due to its low dimensionality and nonvolatility. Here, we describe the development of resistive switching memory device arrays based on empty aluminum nanogap electrodes. By employing adhesion lithography, a low-temperature and large-area compatible nanogap fabrication technique, dense arrays of memory devices are demonstrated on both rigid and flexible plastic substrates. As-prepared devices exhibit nonvolatile memory operation with stable endurance, resistance ratios >10⁴ and retention times of several months. An intermittent analysis of the electrode microstructure reveals that controlled resistive switching is due to migration of metal from the electrodes into the nanogap under the application of an external electric field. This alternative form of resistive random access memory is promising for use in emerging sectors such as large-area electronics as well as in electronics for harsh environments, e.g., space, high/low temperature, magnetic influences, radiation, vibration, and pressure.

  17. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, B., E-mail: bojan.jovanovic@lirmm.fr, E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L. [LIRMM—University of Montpellier 2/UMR CNRS 5506, 161 Rue Ada, 34095 Montpellier (France)

    2014-04-07

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  18. Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory

    International Nuclear Information System (INIS)

    Wei, Li; Ling, Xu; Wei-Ming, Zhao; Hong-Lin, Ding; Zhong-Yuan, Ma; Jun, Xu; Kun-Ji, Chen

    2010-01-01

    This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanoparticles were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO 2 layer on p-type Si (100). Capacitance–voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance–time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 10 4 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India); Mukherjee, Rabibrata [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  20. Fabrication and operation methods of a one-time programmable (OTP) nonvolatile memory (NVM) based on a metal-oxide-semiconductor structure

    International Nuclear Information System (INIS)

    Cho, Seongjae; Lee, Junghoon; Jung, Sunghun; Park, Sehwan; Park, Byunggook

    2011-01-01

    In this paper, a novel one-time programmable (OTP) nonvolatile memory (NVM) device and its array based on a metal-insulator-semiconductor (MIS) structure is proposed. The Iindividual memory device has a vertical channel of a silicon diode. Historically, OTP memories were widely used for read-only-memories (ROMs), in which the most basic system architecture model was to store central processing unit (CPU) instructions. By grafting the nanoscale fabrication technology and novel structuring onto the concept of the OTP memory, innovative high-density NVM appliances for mobile storage media may be possible. The program operation is performed by breaking down the thin oxide layer between the pn diode structure and the wordline (WL). The programmed state can be identified by an operation that reads the leakage currents through the broken oxide. Since the proposed OTP NVM is based on neither a transistor structure nor a charge storing mechanism, it is highly reliable and functional for realizing the ultra-large scale integration. The operation physics and the fabrication processes are also explained in detail.

  1. Semiconductor

    International Nuclear Information System (INIS)

    2000-01-01

    This book deals with process and measurement of semiconductor. It contains 20 chapters, which goes as follows; semiconductor industry, introduction of semiconductor manufacturing, yield of semiconductor process, materials, crystal growth and a wafer forming, PN, control pollution, oxidation, photomasking photoresist chemistry, photomasking technologies, diffusion and ion injection, chemical vapor deposition, metallization, wafer test and way of evaluation, semiconductor elements, integrated circuit and semiconductor circuit technology.

  2. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate.

    Science.gov (United States)

    Kim, So-Jung; Jeon, Da-Bin; Park, Jung-Ho; Ryu, Min-Ki; Yang, Jong-Heon; Hwang, Chi-Sun; Kim, Gi-Heon; Yoon, Sung-Min

    2015-03-04

    Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (μsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and μsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.

  3. A memristor-based nonvolatile latch circuit

    International Nuclear Information System (INIS)

    Robinett, Warren; Pickett, Matthew; Borghetti, Julien; Xia Qiangfei; Snider, Gregory S; Medeiros-Ribeiro, Gilberto; Williams, R Stanley

    2010-01-01

    Memristive devices, which exhibit a dynamical conductance state that depends on the excitation history, can be used as nonvolatile memory elements by storing information as different conductance states. We describe the implementation of a nonvolatile synchronous flip-flop circuit that uses a nanoscale memristive device as the nonvolatile memory element. Controlled testing of the circuit demonstrated successful state storage and restoration, with an error rate of 0.1%, during 1000 power loss events. These results indicate that integration of digital logic devices and memristors could open the way for nonvolatile computation with applications in small platforms that rely on intermittent power sources. This demonstrated feasibility of tight integration of memristors with CMOS (complementary metal-oxide-semiconductor) circuitry challenges the traditional memory hierarchy, in which nonvolatile memory is only available as a large, slow, monolithic block at the bottom of the hierarchy. In contrast, the nonvolatile, memristor-based memory cell can be fast, fine-grained and small, and is compatible with conventional CMOS electronics. This threatens to upset the traditional memory hierarchy, and may open up new architectural possibilities beyond it.

  4. Non-volatile memories

    CERN Document Server

    Lacaze, Pierre-Camille

    2014-01-01

    Written for scientists, researchers, and engineers, Non-volatile Memories describes the recent research and implementations in relation to the design of a new generation of non-volatile electronic memories. The objective is to replace existing memories (DRAM, SRAM, EEPROM, Flash, etc.) with a universal memory model likely to reach better performances than the current types of memory: extremely high commutation speeds, high implantation densities and retention time of information of about ten years.

  5. Ferroelectric memories: A possible answer to the hardened nonvolatile question

    International Nuclear Information System (INIS)

    Messenger, G.C.; Coppage, F.N.

    1988-01-01

    Ferroelectric memory cells have been fabricated using a process compatible with semiconductor VLSI (Very Large-Scale Integration) manufacturing techniques which are basically nonvolatile and radiation hard. The memory can be made NDRO (Nondestructive Readout) for strategic systems using several techniques; the most practical is probably a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems

  6. Emerging non-volatile memories

    CERN Document Server

    Hong, Seungbum; Wouters, Dirk

    2014-01-01

    This book is an introduction to the fundamentals of emerging non-volatile memories and provides an overview of future trends in the field. Readers will find coverage of seven important memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), Multiferroic RAM (MFRAM), Phase-Change Memories (PCM), Oxide-based Resistive RAM (RRAM), Probe Storage, and Polymer Memories. Chapters are structured to reflect diffusions and clashes between different topics. Emerging Non-Volatile Memories is an ideal book for graduate students, faculty, and professionals working in the area of non-volatile memory. This book also: Covers key memory technologies, including Ferroelectric Random Access Memory (FeRAM), Ferromagnetic RAM (FMRAM), and Multiferroic RAM (MFRAM), among others. Provides an overview of non-volatile memory fundamentals. Broadens readers' understanding of future trends in non-volatile memories.

  7. Organic non-volatile memories from ferroelectric phase separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago; de Boer, Bert; Blom, Paul

    2009-03-01

    Ferroelectric polarisation is an attractive physical property for non-volatile binary switching. The functionality of the targeted memory should be based on resistive switching. Conductivity and ferroelectricity however cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. In this contribution we present an integrated solution by blending semiconducting and ferroelectric polymers into phase separated networks. The polarisation field of the ferroelectric modulates the injection barrier at the semiconductor--metal contact. This combination allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read-out non-destructively. Based on this general concept a non-volatile, reversible switchable Schottky diode with relatively fast programming time of shorter than 100 microseconds, long information retention time of longer than 10^ days, and high programming cycle endurance with non-destructive read-out is demonstrated.

  8. Phase change materials in non-volatile storage

    OpenAIRE

    Ielmini, Daniele; Lacaita, Andrea L.

    2011-01-01

    After revolutionizing the technology of optical data storage, phase change materials are being adopted in non-volatile semiconductor memories. Their success in electronic storage is mostly due to the unique properties of the amorphous state where carrier transport phenomena and thermally-induced phase change cooperate to enable high-speed, low-voltage operation and stable data retention possible within the same material. This paper reviews the key physical properties that make this phase so s...

  9. Radiation evaluation of commercial ferroelectric nonvolatile memories

    International Nuclear Information System (INIS)

    Benedetto, J.M.; DeLancey, W.M.; Oldham, T.R.; McGarrity, J.M.; Tipton, C.W.; Brassington, M.; Fisch, D.E.

    1991-01-01

    This paper reports on ferroelectric (FE) on complementary metal-oxide semiconductor (CMOS) 4-kbit nonvolatile memories, 8-bit octal latches (with and without FE), and process control test chips that were used to establish a baseline characterization of the radiation response of CMOS/FE integrated devices and to determine whether the additional FE processing caused significant degradation to the baseline CMOS process. Functional failure of all 4-kbit memories and octal latches occurred at total doses of between 2 and 4 krad(Si), most likely due to field- oxide effects in the underlying CMOS. No significant difference was observed between the radiation responses of devices with and without the FE film in this commercial process

  10. Pluto's Nonvolatile Chemical Compounds

    Science.gov (United States)

    Grundy, William M.; Binzel, Richard; Cook, Jason C.; Cruikshank, Dale P.; Dalle Ore, Cristina M.; Earle, Alissa M.; Ennico, Kimberly; Jennings, Donald; Howett, Carly; Kaiser, Ralf-Ingo; Linscott, Ivan; Lunsford, A. W.; Olkin, Catherine B.; Parker, Alex Harrison; Parker, Joel Wm.; Philippe, Sylvain; Protopapa, Silvia; Quirico, Eric; Reuter, D. C.; Schmitt, Bernard; Singer, Kelsi N.; Spencer, John R.; Stansberry, John A.; Stern, S. Alan; Tsang, Constantine; Verbiscer, Anne J.; Weaver, Harold A.; Weigle, G. E.; Young, Leslie

    2016-10-01

    Despite the migration of Pluto's volatile ices (N2, CO, and CH4) around the surface on seasonal timescales, the planet's non-volatile materials are not completely hidden from view. They occur in a variety of provinces formed over a wide range of timescales, including rugged mountains and chasms, the floors of mid-latitude craters, and an equatorial belt of especially dark and reddish material typified by the informally named Cthulhu Regio. NASA's New Horizons probe observed several of these regions at spatial resolutions as fine as 3 km/pixel with its LEISA imaging spectrometer, covering wavelengths from 1.25 to 2.5 microns. Various compounds that are much lighter than the tholin-like macromolecules responsible for the reddish coloration, but that are not volatile at Pluto surface temperatures such as methanol (CH3OH) and ethane (C2H6) have characteristic absorption bands within LEISA's wavelength range. This presentation will describe their geographic distributions and attempt to constrain their origins. Possibilities include an inheritance from Pluto's primordial composition (the likely source of H2O ice seen on Pluto's surface) or ongoing production from volatile precursors through photochemistry in Pluto's atmosphere or through radiolysis on Pluto's surface. New laboratory data inform the analysis.This work was supported by NASA's New Horizons project.

  11. Sono-catalytic degradation of organic compounds

    International Nuclear Information System (INIS)

    Navarro, N.

    2012-01-01

    Unlike aqueous effluents from the PUREX process, aqueous effluents from advanced separation processes developed to separate the minor actinides (Am, Cm) contain organic reagents in large amounts. To minimize the impact of these organic compounds on the next steps of the process, and to respect standard discharges, it is necessary to develop new techniques of degradation of organic compounds. Sono-chemistry appears as a very promising solution to eliminate organic species in aqueous nuclear effluents. Indeed, the propagation of an ultrasonic wave in a liquid medium induces the appearance of cavitation bubbles which will quickly grow and implode, causing local conditions and extreme temperatures and pressures. Each cavitation bubble can then be considered as a microreactor at high temperature and high pressure able to destroy organic molecules without the addition of specific reagents. The first studies on the effect of ultrasonic frequency on sono-luminescence and sono-lysis of formic acid have shown that the degradation of formic acid occurs at the bubble/liquid interface. The most striking difference between low-frequency and high-frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates secondary reactions not observed at 20 kHz. However, despite a much higher sono-chemical activity at high frequency, highly concentrated carboxylic acids in the aqueous effluents from advanced separation processes cannot be destroyed by ultrasound alone. To increase the efficiency of sono-chemical reactions, the addition of supported platinum catalysts has been studied. In these conditions, an increase of the kinetics of destruction of carboxylic acids such as oxalic acid is observed. (author) [fr

  12. Fabrication and characterization of metal-ferroelectric (PbZr0.6Ti0.4O3)-insulator (La2O3)-semiconductor capacitors for nonvolatile memory applications

    Science.gov (United States)

    Juan, Trevor Pi-Chun; Lin, Cheng-Li; Shih, Wen-Chieh; Yang, Chin-Chieh; Lee, Joseph Ya-Min; Shye, Der-Chi; Lu, Jong-Hong

    2009-03-01

    Metal-ferroelectric-insulator-semiconductor thin-film capacitors with Pb(Zr0.6,Ti0.4)O3 (PZT) ferroelectric layer and high-k lanthanum oxide (La2O3) insulator layer were fabricated. The outdiffusion of atoms between La2O3 and silicon was examined by the secondary-ion-mass spectroscopy. The size of memory window as a function of PZT annealing temperature was discussed. The maximum memory window saturated to 0.7 V, which is close to the theoretical memory window ΔW ≈2dfEc≈0.8 V with higher annealing temperatures above 700 °C. The memory window starts to decrease due to charge injection when the sweep voltage is higher than 5 V at 600 °C-annealed samples. The C-V flatband voltage shift (ΔVFB) as a function of charge injection was characterized in this work. An energy band diagram of the Al/PZT//La2O3/p-Si system was proposed to explain the memory window and the flatband voltage shift.

  13. Memristive device based on a depletion-type SONOS field effect transistor

    Science.gov (United States)

    Himmel, N.; Ziegler, M.; Mähne, H.; Thiem, S.; Winterfeld, H.; Kohlstedt, H.

    2017-06-01

    State-of-the-art SONOS (silicon-oxide-nitride-oxide-polysilicon) field effect transistors were operated in a memristive switching mode. The circuit design is a variation of the MemFlash concept and the particular properties of depletion type SONOS-transistors were taken into account. The transistor was externally wired with a resistively shunted pn-diode. Experimental current-voltage curves show analog bipolar switching characteristics within a bias voltage range of ±10 V, exhibiting a pronounced asymmetric hysteresis loop. The experimental data are confirmed by SPICE simulations. The underlying memristive mechanism is purely electronic, which eliminates an initial forming step of the as-fabricated cells. This fact, together with reasonable design flexibility, in particular to adjust the maximum R ON/R OFF ratio, makes these cells attractive for neuromorphic applications. The relative large set and reset voltage around ±10 V might be decreased by using thinner gate-oxides. The all-electric operation principle, in combination with an established silicon manufacturing process of SONOS devices at the Semiconductor Foundry X-FAB, promise reliable operation, low parameter spread and high integration density.

  14. Organic non-volatile memories from ferroelectric phase-separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago M.; de Boer, Bert; Blom, Paul W. M.

    2008-07-01

    New non-volatile memories are being investigated to keep up with the organic-electronics road map. Ferroelectric polarization is an attractive physical property as the mechanism for non-volatile switching, because the two polarizations can be used as two binary levels. However, in ferroelectric capacitors the read-out of the polarization charge is destructive. The functionality of the targeted memory should be based on resistive switching. In inorganic ferroelectrics conductivity and ferroelectricity cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. Here we present an integrated solution by blending semiconducting and ferroelectric polymers into phase-separated networks. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-metal contact. The combination of ferroelectric bistability with (semi)conductivity and rectification allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read out non-destructively. The concept of an electrically tunable injection barrier as presented here is general and can be applied to other electronic devices such as light-emitting diodes with an integrated on/off switch.

  15. Biophysical Evaluation of SonoSteam®:

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.

    and safety evaluations. Our results show that there are no contradictions between data obtained by either approach. However, the biophysical methods draw a much more nuanced picture of the effects and efficiency of the investigated decontamination method, revealing e.g. an exponential dose/response...... relationship between SonoSteam treatment time and changes in collagen I, and a depth dependency in bacterial reduction, which points toward CFU counts overestimating total bacterial reduction. In conclusion the biophysical methods provide a less biased, reproducible and highly detailed system description...

  16. Investigations of Photovoltaic Ferroelectric-Semiconductor Nonvolatile Memory.

    Science.gov (United States)

    1981-03-01

    HEWLETT-PACKARD BOX 3310 100 MARKET ST APT 1 3404 EAST HARMONY RD2U ATTN J. M. KIRSCH, MTS ATTN R. SCHAEFER ATTN L. W. JAMES, MTS FULLERTON, CA 92633...RADIO SYS SPERRY UNICORN 1300 S ROGERS 367 ORCHARD STREET 52-21 65 PL AT’rN J. F. PRATHER, MGR CEN ATTN I. A. PAULL, ES ATTN W. BURSTEIN, ENGR

  17. Bioorganic nanodots for non-volatile memory devices

    International Nuclear Information System (INIS)

    Amdursky, Nadav; Shalev, Gil; Handelman, Amir; Natan, Amir; Rosenwaks, Yossi; Litsyn, Simon; Szwarcman, Daniel; Rosenman, Gil; Roizin, Yakov

    2013-01-01

    In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO 2 surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device

  18. Bioorganic nanodots for non-volatile memory devices

    Energy Technology Data Exchange (ETDEWEB)

    Amdursky, Nadav; Shalev, Gil; Handelman, Amir; Natan, Amir; Rosenwaks, Yossi [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Litsyn, Simon; Szwarcman, Daniel; Rosenman, Gil, E-mail: rgil@post.tau.ac.il [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); StoreDot LTD, 16 Menahem Begin St., Ramat Gan (Israel); Roizin, Yakov [School of Electrical Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); TowerJazz, P.O. Box 619, Migdal HaEmek 23105 (Israel)

    2013-12-01

    In recent years we are witnessing an intensive integration of bio-organic nanomaterials in electronic devices. Here we show that the diphenylalanine bio-molecule can self-assemble into tiny peptide nanodots (PNDs) of ∼2 nm size, and can be embedded into metal-oxide-semiconductor devices as charge storage nanounits in non-volatile memory. For that purpose, we first directly observe the crystallinity of a single PND by electron microscopy. We use these nanocrystalline PNDs units for the formation of a dense monolayer on SiO{sub 2} surface, and study the electron/hole trapping mechanisms and charge retention ability of the monolayer, followed by fabrication of PND-based memory cell device.

  19. Low-power non-volatile spintronic memory: STT-RAM and beyond

    International Nuclear Information System (INIS)

    Wang, K L; Alzate, J G; Khalili Amiri, P

    2013-01-01

    The quest for novel low-dissipation devices is one of the most critical for the future of semiconductor technology and nano-systems. The development of a low-power, universal memory will enable a new paradigm of non-volatile computation. Here we consider STT-RAM as one of the emerging candidates for low-power non-volatile memory. We show different configurations for STT memory and demonstrate strategies to optimize key performance parameters such as switching current and energy. The energy and scaling limits of STT-RAM are discussed, leading us to argue that alternative writing mechanisms may be required to achieve ultralow power dissipation, a necessary condition for direct integration with CMOS at the gate level for non-volatile logic purposes. As an example, we discuss the use of the giant spin Hall effect as a possible alternative to induce magnetization reversal in magnetic tunnel junctions using pure spin currents. Further, we concentrate on magnetoelectric effects, where electric fields are used instead of spin-polarized currents to manipulate the nanomagnets, as another candidate solution to address the challenges of energy efficiency and density. The possibility of an electric-field-controlled magnetoelectric RAM as a promising candidate for ultralow-power non-volatile memory is discussed in the light of experimental data demonstrating voltage-induced switching of the magnetization and reorientation of the magnetic easy axis by electric fields in nanomagnets. (paper)

  20. Nonvolatile Memory Technology for Space Applications

    Science.gov (United States)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  1. Nonvolatile Rad-Hard Holographic Memory

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Han-Ying; Reyes, George; Dragoi, Danut; Hanna, Jay

    2001-01-01

    We are investigating a nonvolatile radiation-hardened (rad-hard) holographic memory technology. Recently, a compact holographic data storage (CHDS) breadboard utilizing an innovative electro-optic scanner has been built and demonstrated for high-speed holographic data storage and retrieval. The successful integration of this holographic memory breadboard has paved the way for follow-on radiation resistance test of the photorefractive (PR) crystal, Fe:LiNbO3. We have also started the investigation of using two-photon PR crystals that are doubly doped with atoms of iron group (Ti, Cr, Mn, Cu) and of rare-earth group (Nd, Tb) for nonvolatile holographic recordings.

  2. Fabrication of Nonvolatile Memory Effects in High-k Dielectric Thin Films Using Electron Irradiation

    International Nuclear Information System (INIS)

    Park, Chanrock; Cho, Daehee; Kim, Jeongeun; Hwang, Jinha

    2010-01-01

    Electron Irradiation can be applied towards nano-floating gate memories which are recognized as one of the next-generation nonvolatile memory semiconductors. NFGMs can overcome the preexisting limitations encountered in Dynamic Random Access Memories and Flash memories with the excellent advantages, i. e. high-density information storage, high response speed, high compactness, etc. The traditional nano-floating gate memories are fabricated through multi-layered nano structures of the dissimilar materials where the charge-trapping portions are sandwiched into the high-k dielectrics. However, this work reports the unique nonvolatile responses in single-layered high-k dielectric thin films if irradiated with highly accelerated electron beams. The implications of the electron irradiation will be discussed towards high-performance nano-floating gate memories

  3. Nonvolatile flip-flop based on pseudo-spin-transistor architecture and its nonvolatile power-gating applications for low-power CMOS logic

    Science.gov (United States)

    Yamamoto, Shuu'ichirou; Shuto, Yusuke; Sugahara, Satoshi

    2013-07-01

    We computationally analyzed performance and power-gating (PG) ability of a new nonvolatile delay flip-flop (NV-DFF) based on pseudo-spin-MOSFET (PS-MOSFET) architecture using spin-transfer-torque magnetic tunnel junctions (STT-MTJs). The high-performance energy-efficient PG operations of the NV-DFF can be achieved owing to its cell structure employing PS-MOSFETs that can electrically separate the STT-MTJs from the ordinary DFF part of the NV-DFF. This separation also makes it possible that the break-even time (BET) of the NV-DFF is designed by the size of the PS-MOSFETs without performance degradation of the normal DFF operations. The effect of the area occupation ratio of the NV-DFFs to a CMOS logic system on the BET was also analyzed. Although the optimized BET was varied depending on the area occupation ratio, energy-efficient fine-grained PG with a BET of several sub-microseconds was revealed to be achieved. We also proposed microprocessors and system-on-chip (SoC) devices using nonvolatile hierarchical-memory systems wherein NV-DFF and nonvolatile static random access memory (NV-SRAM) circuits are used as fundamental building blocks. Contribution to the Topical Issue “International Semiconductor Conference Dresden-Grenoble - ISCDG 2012”, Edited by Gérard Ghibaudo, Francis Balestra and Simon Deleonibus.

  4. Qualidade do sono em pacientes fibromiálgicos

    Directory of Open Access Journals (Sweden)

    Florinda Freire Moro

    2014-03-01

    Full Text Available Objetivo: Analisar a qualidade do sono em paciente fibromiálgicos, identificando seus principais hábitos noturnos e verificando os possíveis fatores que influenciam na qualidade do sono. Métodos: Pesquisa observacional, transversal, de caráter quantitativo, realizada em ambulatório de fisioterapia no período março a abril de 2012. Participaram 24 pacientes fibromiálgicos, independente do sexo e idade. Aplicou-se um questionário baseado no Pittsburgh Sleep Quality Index (PSQI para avaliar a qualidade e hábitos noturnos. As informações foram analisadas através de estatística descritiva. Resultados: Em relação à latência do sono, apenas 1 (4,2% leva para dormir um tempo menor ou igual a 15 min e 19 (79,2% apontaram dificuldade de “não adormecer em até 30 min” por mais de 3 vezes por semana. O componente “sentir dor” e o “acordar no meio da noite” tiveram maiores influências no distúrbio do sono destes pacientes. Quanto à duração do sono, 7 (29,2% dormem menos que 5 horas. Sobre a eficiência do sono, 12 (50,0% possuíam uma eficiência do sono superior a 85%, 10 (41,7% possuíam eficiência do sono entre 75-84% e apenas 2 (8,33% eficiência de 65-74%. Quanto ao uso de medicação para dormir, 12 (50% não usaram durante o mês e 12 (50% usavam entre 3 ou mais vezes durante a semana. Conclusão: Os pacientes com fibromialgia no presente estudo apresentaram um declínio na qualidade e eficiência do sono, sendo influenciados pela latência e duração do sono, presença de dor e despertar noturno. doi: 10.5020/18061230.2014.p72

  5. Qualidade do sono em pacientes fibromiálgicos

    Directory of Open Access Journals (Sweden)

    Florinda Freire Moro

    2014-03-01

    Full Text Available Objetivo: Analisar a qualidade do sono em paciente fibromiálgicos, identificando seus principais hábitos noturnos e verificando os possíveis fatores que influenciam na qualidade do sono. Métodos: Pesquisa observacional, transversal, de caráter quantitativo, realizada em ambulatório de fisioterapia no período março a abril de 2012. Participaram 24 pacientes fibromiálgicos, independente do sexo e idade. Aplicou-se um questionário baseado no Pittsburgh Sleep Quality Index (PSQI para avaliar a qualidade e hábitos noturnos. As informações foram analisadas através de estatística descritiva. Resultados: Em relação à latência do sono, apenas 1 (4,2% leva para dormir um tempo menor ou igual a 15 min e 19 (79,2% apontaram dificuldade de “não adormecer em até 30 min” por mais de 3 vezes por semana. O componente “sentir dor” e o “acordar no meio da noite” tiveram maiores influências no distúrbio do sono destes pacientes. Quanto à duração do sono, 7 (29,2% dormem menos que 5 horas. Sobre a eficiência do sono, 12 (50,0% possuíam uma eficiência do sono superior a 85%, 10 (41,7% possuíam eficiência do sono entre 75-84% e apenas 2 (8,33% eficiência de 65-74%. Quanto ao uso de medicação para dormir, 12 (50% não usaram durante o mês e 12 (50% usavam entre 3 ou mais vezes durante a semana. Conclusão: Os pacientes com fibromialgia no presente estudo apresentaram um declínio na qualidade e eficiência do sono, sendo influenciados pela latência e duração do sono, presença de dor e despertar noturno.

  6. Organic Nonvolatile Memory Devices Based on Ferroelectricity

    NARCIS (Netherlands)

    Naber, Ronald C. G.; Asadi, Kamal; Blom, Paul W. M.; de Leeuw, Dago M.; de Boer, Bert

    2010-01-01

    A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low-cost memory technology. In this Review Article we discuss the latest developments in this area

  7. Organic nonvolatile memory devices based on ferroelectricity

    NARCIS (Netherlands)

    Naber, R.C.G.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de; Boer, B. de

    2010-01-01

    A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low-cost memory technology. In this Review Article we discuss the latest developments in this area

  8. Evaluation of Recent Technologies of Nonvolatile RAM

    Science.gov (United States)

    Nuns, Thierry; Duzellier, Sophie; Bertrand, Jean; Hubert, Guillaume; Pouget, Vincent; Darracq, FrÉdÉric; David, Jean-Pierre; Soonckindt, Sabine

    2008-08-01

    Two types of recent nonvolatile random access memories (NVRAM) were evaluated for radiation effects: total dose and single event upset and latch-up under heavy ions and protons. Complementary irradiation with a laser beam provides information on sensitive areas of the devices.

  9. QUALIDADE DO SONO, CRONOTIPO E DESEMPENHO EM CORREDORES DE RUA

    Directory of Open Access Journals (Sweden)

    Igor Cruz

    Full Text Available RESUMO Introdução: O exercício físico gera resultados positivos para a qualidade do sono e atua no ciclo sono-vigília por meio de seu efeito sincronizador indireto do relógio biológico. Objetivo: Avaliar a qualidade de sono, o cronotipo e o desempenho de corredores amadores de rua da cidade de Limeira. Métodos: Foram avaliados 42 indivíduos de ambos os sexos (28 ± 1,47 anos, que praticavam corrida de rua. O instrumento utilizado para aplicação dos questionários foi a plataforma Google Drive - Google Forms. Foram formuladas questões que englobam o cotidiano de um corredor de rua e também questionários para avaliação do cronotipo, sonolência e qualidade do sono. Resultados: Os resultados demonstraram que o cronotipo mais frequente foi o matutino (47,61%, seguido por intermediário (30,95% e vespertino (21,42%. A frequência de corridas foi 88% no período da manhã, 9% no período da noite e 4% período da tarde. Com relação à qualidade de sono geral foi verificado que 59% dos corredores tinham má qualidade de sono. Ao analisar as variáveis de sono e sonolência em decorrência do horário da última corrida realizada, verificou-se que as pessoas que correram no período da tarde tiveram pior qualidade do sono e os que correram à noite tiveram índices de sonolência. Não se encontrou diferença no desempenho das corridas de 5 km entre matutinos e vespertinos; no entanto, constatou-se fraca associação entre o tempo da última corrida e a pontuação do cronotipo, demonstrando que os matutinos realizavam as provas em menor tempo. Conclusão: Assim, podemos sugerir que o cronotipo e o padrão de sono podem interferir no desempenho e, dessa forma, devem ser levados em conta durante os treinamentos.

  10. High-Speed Non-Volatile Optical Memory: Achievements and Challenges

    Directory of Open Access Journals (Sweden)

    Vadym Zayets

    2017-01-01

    Full Text Available We have proposed, fabricated, and studied a new design of a high-speed optical non-volatile memory. The recoding mechanism of the proposed memory utilizes a magnetization reversal of a nanomagnet by a spin-polarized photocurrent. It was shown experimentally that the operational speed of this memory may be extremely fast above 1 TBit/s. The challenges to realize both a high-speed recording and a high-speed reading are discussed. The memory is compact, integratable, and compatible with present semiconductor technology. If realized, it will advance data processing and computing technology towards a faster operation speed.

  11. Qualidade do sono entre professores e fatores associados

    OpenAIRE

    Denise Andrade Pereira Meier

    2016-01-01

    O sono desempenha função notável na prevenção de doenças, manutenção e recuperação da saúde física e mental. Como processo reparador, sofre influências de fatores determinantes e condicionantes, que o tornam complexo e multifacetado. As condições adversas de trabalho enfrentadas por professores podem prejudicar sua qualidade de vida e, consequentemente, seu padrão de sono. Este estudo objetivou analisar a qualidade do sono e fatores associados em professores da educação básica. Trata-se de um...

  12. Síndrome de apneia-hipopneia obstrutiva do sono

    OpenAIRE

    Carvalho, Vanessa Mafalda Araújo

    2008-01-01

    A Síndrome de Apneia/Hipopneia Obstrutiva do Sono apresenta actualmente uma elevada prevalência entre a população adulta, assim como diversas complicações inerentes a esta que aumentam a morbilidade e mortalidade dos pacientes que padecem desta patologia. Esta síndrome caracteriza-se pelo repetido estreitamento ou colapso das vias aéreas superiores durante o sono. A obstrução é causada pelo colapso do palato mole e/ou da base da língua contra as paredes faríngeas devido à diminuição do tónus ...

  13. Electrostatically telescoping nanotube nonvolatile memory device

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Jiang Qing

    2007-01-01

    We propose a nonvolatile memory based on carbon nanotubes (CNTs) serving as the key building blocks for molecular-scale computers and investigate the dynamic operations of a double-walled CNT memory element by classical molecular dynamics simulations. The localized potential energy wells achieved from both the interwall van der Waals energy and CNT-metal binding energy make the bistability of the CNT positions and the electrostatic attractive forces induced by the voltage differences lead to the reversibility of this CNT memory. The material for the electrodes should be carefully chosen to achieve the nonvolatility of this memory. The kinetic energy of the CNT shuttle experiences several rebounds induced by the collisions of the CNT onto the metal electrodes, and this is critically important to the performance of such an electrostatically telescoping CNT memory because the collision time is sufficiently long to cause a delay of the state transition

  14. Carbon nanomaterials for non-volatile memories

    Science.gov (United States)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  15. Strain-controlled nonvolatile magnetization switching

    Science.gov (United States)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  16. Overview of one transistor type of hybrid organic ferroelectric non-volatile memory

    Institute of Scientific and Technical Information of China (English)

    Young; Tea; Chun; Daping; Chu

    2015-01-01

    Organic ferroelectric memory devices based on field effect transistors that can be configured between two stable states of on and off have been widely researched as the next generation data storage media in recent years.This emerging type of memory devices can lead to a new instrument system as a potential alternative to previous non-volatile memory building blocks in future processing units because of their numerous merits such as cost-effective process,simple structure and freedom in substrate choices.This bi-stable non-volatile memory device of information storage has been investigated using several organic or inorganic semiconductors with organic ferroelectric polymer materials.Recent progresses in this ferroelectric memory field,hybrid system have attracted a lot of attention due to their excellent device performance in comparison with that of all organic systems.In this paper,a general review of this type of ferroelectric non-volatile memory is provided,which include the device structure,organic ferroelectric materials,electrical characteristics and working principles.We also present some snapshots of our previous study on hybrid ferroelectric memories including our recent work based on zinc oxide nanowire channels.

  17. Flexible graphene–PZT ferroelectric nonvolatile memory

    International Nuclear Information System (INIS)

    Lee, Wonho; Ahn, Jong-Hyun; Kahya, Orhan; Toh, Chee Tat; Özyilmaz, Barbaros

    2013-01-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr 0.35 ,Ti 0.65 )O 3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (P r ) of 30 μC cm −2 and a coercive voltage (V c ) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits. (paper)

  18. Flexible graphene-PZT ferroelectric nonvolatile memory.

    Science.gov (United States)

    Lee, Wonho; Kahya, Orhan; Toh, Chee Tat; Ozyilmaz, Barbaros; Ahn, Jong-Hyun

    2013-11-29

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr0.35,Ti0.65)O3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (Pr) of 30 μC cm−2 and a coercive voltage (Vc) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits.

  19. Qualidade do sono e tolerância ao esforço em portadores de apneia obstrutiva do sono

    Directory of Open Access Journals (Sweden)

    Aliny Priscilla do Nascimento

    2014-04-01

    Full Text Available INTRODUÇÃO: O sono é um estado natural e recorrente, no qual acontecem processos neurobiológicos importantes. A má qualidade do sono está diretamente associada com piores indicadores de saúde. A qualidade do sono pode ser medida objetiva e subjetivamente por métodos como a polissonografia, que é o padrão de referência, ou por meio de testes e questionários, como o índice de qualidade de sono de Pittsburgh (IQSP. OBJETIVO: Correlacionar a qualidade do sono com a tolerância ao esforço em pacientes portadores da síndrome da apneia/hipopneia obstrutiva do sono (SAHOS. MÉTODOS: Participaram do estudo 63 indivíduos (57 mulheres e seis homens, média de idade de 51,7 ± 6,6 anos; índice de massa corpórea (IMC média de 28,2 ± 5,0 kg/m2; índice de apneia/hipopneia (IAH médio de 7,3 ± 10,50 eventos/hora, verificado através da polissonografia. Para a avaliação da qualidade do sono, os participantes responderam ao IQSP, e para a avaliação da tolerância ao esforço, realizaram o teste de caminhada de 6 minutos (TC6M. RESULTADOS: Não houve correlação entre o IQSP e o TC6M (Rs = -0,103620, p = 0,419, assim como entre o IAH e o TC6M (Rs = -0, 000984, p = 0,9939. Podemos sugerir que a qualidade do sono e a gravidade da SAHOS não afetam a tolerância ao esforço dos indivíduos com SAHOS. CONCLUSÃO: Estudos com uma amostra maior, levando-se em consideração a estratificação pela gravidade da SAHOS e utilizando métodos mais acurados de avaliação da capacidade funcional, devem ser realizados, a fim de que resultados mais abrangentes possam ser obtidos.

  20. Reducing the influence of STI on SONOS memory through optimizing added boron implantation technology

    International Nuclear Information System (INIS)

    Xu Yue; Yan Feng; Li Zhiguo; Yang Fan; Wang Yonggang; Chang Jianguang

    2010-01-01

    The influence of shallow trench isolation (STI) on a 90 nm polysilicon-oxide-nitride-oxide-silicon structure non-volatile memory has been studied based on experiments. It has been found that the performance of edge memory cells adjacent to STI deteriorates remarkably. The compressive stress and boron segregation induced by STI are thought to be the main causes of this problem. In order to mitigate the STI impact, an added boron implantation in the STI region is developed as a new solution. Four kinds of boron implantation experiments have been implemented to evaluate the impact of STI on edge cells, respectively. The experimental results show that the performance of edge cells can be greatly improved through optimizing added boron implantation technology. (semiconductor devices)

  1. Fatores que interferem na qualidade do sono de pacientes internados

    Directory of Open Access Journals (Sweden)

    Shíntia Viana da Costa

    2013-02-01

    Full Text Available Este estudo objetivou identificar fatores que interferem na qualidade do sono de pacientes internados em hospital universitário do interior de São Paulo. Trata-se de estudo exploratório, de corte transversal, com amostragem não probabilística. Participaram 117 pacientes (59% homens, idade média de 48 anos, desvio padrão 16,9 internados há pelo menos 72 horas, em condições clínicas estáveis. Os instrumentos utilizados foram: questionário de identificação e Fatores Intervenientes na Qualidade do Sono (FIQS. O tratamento dos dados foi feito com estatística descritiva e cada item do FIQS foi submetido a teste e reteste. Os fatores apontados com maior frequência foram: acordar cedo (55,6%, sono interrompido (52,1%, iluminação excessiva (34,2%, recebimento de cuidados pela equipe de enfermagem (33,3% e distúrbios orgânicos como dor e fadiga (26,5%. Sugere-se que os enfermeiros planejem intervenções buscando modificar fatores que propiciam ruídos e iluminação intensos à noite, visando reduzir interrupções e, consequentemente, a privação de sono.

  2. Comparison of Fenton and sono-Fenton bisphenol A degradation

    International Nuclear Information System (INIS)

    Ioan, Iordache; Wilson, Steven; Lundanes, Elsa; Neculai, Aelenei

    2007-01-01

    Degradation of bisphenol A (BPA) was carried out with the Fenton reagent with and without additional sonochemical treatment. The Fenton and the sono-Fenton decomposition of BPA showed that ultrasound irradiation of wastewater improved the wet oxidation process of 25 mg l -1 BPA solutions. The sonochemical degradation of BPA was monitored using UV absorption and large volume injection packed capillary LC measurements

  3. Violência durante o sono Violent behavior during sleep

    Directory of Open Access Journals (Sweden)

    Dalva Poyares

    2005-05-01

    Full Text Available Casos de comportamento violento (CV durante o sono são relatados na literatura. A incidência de comportamento violento durante o sono não é muito conhecida. Um estudo epidemiológico mostra que cerca de 2% da população geral apresentava comportamento violento dormindo e eram predominantemente homens. Neste artigo, os autores descrevem aspectos clínicos e médico-legais envolvidos na investigação do comportamento violento. O comportamento violento se refere a ferimentos auto-infligidos ou infligidos a um terceiro durante o sono. Ocorre, muito freqüentemente, seguindo um despertar parcial no contexto de um transtorno de despertar (parassonias. Os transtornos do sono predominantes diagnosticados são: transtorno de comportamento REM e sonambulismo. O comportamento violento poderia ser precipitado pelo estresse, uso de álcool e drogas, privação do sono ou febre.Cases of violent behavior during sleep have been reported in the literature. However, the incidence of violent behavior during sleep is not known. One epidemiological study showed that approximately 2% of the general population, predominantly males, presented violent behavior while asleep. In the present study, the authors describe clinical and medico-legal aspects involved in violent behavior investigation. Violent behavior refers to self-injury or injury to another during sleep. It happens most frequently following partial awakening in the context of arousal disorders (parasomnias. The most frequently diagnosed sleep disorders are REM behavior disorder and somnambulism. Violent behavior might be precipitated by stress, use of alcohol or drugs, sleep deprivation or fever.

  4. Two-dimensional non-volatile programmable p-n junctions

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Sun, Zhengzong; Yu, Peng; Liu, Zheng; Ajayan, Pulickel M.; Zhang, Zengxing

    2017-09-01

    Semiconductor p-n junctions are the elementary building blocks of most electronic and optoelectronic devices. The need for their miniaturization has fuelled the rapid growth of interest in two-dimensional (2D) materials. However, the performance of a p-n junction considerably degrades as its thickness approaches a few nanometres and traditional technologies, such as doping and implantation, become invalid at the nanoscale. Here we report stable non-volatile programmable p-n junctions fabricated from the vertically stacked all-2D semiconductor/insulator/metal layers (WSe2/hexagonal boron nitride/graphene) in a semifloating gate field-effect transistor configuration. The junction exhibits a good rectifying behaviour with a rectification ratio of 104 and photovoltaic properties with a power conversion efficiency up to 4.1% under a 6.8 nW light. Based on the non-volatile programmable properties controlled by gate voltages, the 2D p-n junctions have been exploited for various electronic and optoelectronic applications, such as memories, photovoltaics, logic rectifiers and logic optoelectronic circuits.

  5. Radiation-hardened nonvolatile MNOS RAM

    International Nuclear Information System (INIS)

    Wrobel, T.F.; Dodson, W.H.; Hash, G.L.; Jones, R.V.; Nasby, R.D.; Olson, R.J.

    1983-01-01

    A radiation hardened nonvolatile MNOS RAM is being developed at Sandia National Laboratories. The memory organization is 128 x 8 bits and utilizes two p-channel MNOS transistors per memory cell. The peripheral circuitry is constructed with CMOS metal gate and is processed with standard Sandia rad-hard processing techniques. The devices have memory retention after a dose-rate exposure of 1E12 rad(Si)/s, are functional after total dose exposure of 1E6 rad(Si), and are dose-rate upset resistant to levels of 7E8 rad(Si)/s

  6. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  7. Ferroelectric polymer gates for non-volatile field effect control of ferromagnetism in (Ga, Mn)As layers

    International Nuclear Information System (INIS)

    Stolichnov, I; Riester, S W E; Mikheev, E; Setter, N; Rushforth, A W; Edmonds, K W; Campion, R P; Foxon, C T; Gallagher, B L; Jungwirth, T; Trodahl, H J

    2011-01-01

    (Ga, Mn)As and other diluted magnetic semiconductors (DMS) attract a great deal of attention for potential spintronic applications because of the possibility of controlling the magnetic properties via electrical gating. Integration of a ferroelectric gate on the DMS channel adds to the system a non-volatile memory functionality and permits nanopatterning via the polarization domain engineering. This topical review is focused on the multiferroic system, where the ferromagnetism in the (Ga, Mn)As DMS channel is controlled by the non-volatile field effect of the spontaneous polarization. Use of ferroelectric polymer gates in such heterostructures offers a viable alternative to the traditional oxide ferroelectrics generally incompatible with DMS. Here we review the proof-of-concept experiments demonstrating the ferroelectric control of ferromagnetism, analyze the performance issues of the ferroelectric gates and discuss prospects for further development of the ferroelectric/DMS heterostructures toward the multiferroic field effect transistor. (topical review)

  8. Semiconductor physics

    CERN Document Server

    Böer, Karl W

    2018-01-01

    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  9. Sono-chemiluminescence from a single cavitation bubble in water

    International Nuclear Information System (INIS)

    Brotchie, Adam; Shchukin, Dmitry; Moehwald, Helmuth; Schneider, Julia; Pflieger, Rachel

    2012-01-01

    In summary, this study has revealed the conditions required for a single bubble to be sono-chemically active. Evidence of radical-induced processes surrounding the bubble was only observed below the SL threshold, where the bubble was not spatially stable, and did not correlate with emission from excited molecular states inside the bubble. Moreover, this work substantiates recent progress that has been made in bridging the gap between single and multi-bubble cavitation. (authors)

  10. SONOS memories with embedded silicon nanocrystals in nitride

    International Nuclear Information System (INIS)

    Liu, Mei-Chun; Chiang, Tsung-Yu; Chao, Tien-Sheng; Kuo, Po-Yi; Lei, Tan-Fu; Chou, Ming-Hong; Wu, Yi-Hong; Cheng, Ching-Hwa; Liu, Sheng-Hsien; Yang, Wen-Luh; You, Hsin-Chiang

    2008-01-01

    We have successfully demonstrated SONOS memories with embedded Si-NCs in silicon nitride. This new structure exhibits excellent characteristics in terms of larger memory windows and longer retention time compared to control devices. Using the same thickness 2.5 nm of the bottom tunneling oxide, we found that N 2 O is better than O 2 oxide. Retention property is improved when the thickness of N 2 O is increased to 3.0 nm

  11. Overview of emerging nonvolatile memory technologies.

    Science.gov (United States)

    Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new

  12. Overview of emerging nonvolatile memory technologies

    Science.gov (United States)

    2014-01-01

    Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new

  13. Identificação de hábitos de sono, compreensão do sono e rotinas de sono em crianças de idade escolar : estudo com crianças e pais

    OpenAIRE

    Guimarães, Ana Cristina

    2013-01-01

    Tese de mestrado, Psicologia (Secção de Psicologia Clínica da Saúde - Núcleo de Psicologia Clínica da Saúde e da Doença), Universidade de Lisboa, Faculdade de Psicologia, 2013 O sono é um fenómeno universal de grande importância para o desenvolvimento infantil. A qualidade do sono é determinada por vários factores, entre eles as rotinas de sono. É assim importante estudar as rotinas de forma a aumentar o conhecimento sobre este determinante. Apesar da criança ter um papel importan...

  14. Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template

    International Nuclear Information System (INIS)

    Miura, Atsushi; Yamashita, Ichiro; Uraoka, Yukiharu; Fuyuki, Takashi; Tsukamoto, Rikako; Yoshii, Shigeo

    2008-01-01

    We demonstrated non-volatile flash memory fabrication by utilizing uniformly sized cobalt oxide (Co 3 O 4 ) bionanodot (Co-BND) architecture assembled by a cage-shaped supramolecular protein template. A fabricated high-density Co-BND array was buried in a metal-oxide-semiconductor field-effect-transistor (MOSFET) structure to use as the charge storage node of a floating nanodot gate memory. We observed a clockwise hysteresis in the drain current-gate voltage characteristics of fabricated BND-embedded MOSFETs. Observed hysteresis obviously indicates a memory operation of Co-BND-embedded MOSFETs due to the charge confinement in the embedded BND and successful functioning of embedded BNDs as the charge storage nodes of the non-volatile flash memory. Fabricated Co-BND-embedded MOSFETs showed good memory properties such as wide memory windows, long charge retention and high tolerance to repeated write/erase operations. A new pathway for device fabrication by utilizing the versatile functionality of biomolecules is presented

  15. Nonvolatile Memory Materials for Neuromorphic Intelligent Machines.

    Science.gov (United States)

    Jeong, Doo Seok; Hwang, Cheol Seong

    2018-04-18

    Recent progress in deep learning extends the capability of artificial intelligence to various practical tasks, making the deep neural network (DNN) an extremely versatile hypothesis. While such DNN is virtually built on contemporary data centers of the von Neumann architecture, physical (in part) DNN of non-von Neumann architecture, also known as neuromorphic computing, can remarkably improve learning and inference efficiency. Particularly, resistance-based nonvolatile random access memory (NVRAM) highlights its handy and efficient application to the multiply-accumulate (MAC) operation in an analog manner. Here, an overview is given of the available types of resistance-based NVRAMs and their technological maturity from the material- and device-points of view. Examples within the strategy are subsequently addressed in comparison with their benchmarks (virtual DNN in deep learning). A spiking neural network (SNN) is another type of neural network that is more biologically plausible than the DNN. The successful incorporation of resistance-based NVRAM in SNN-based neuromorphic computing offers an efficient solution to the MAC operation and spike timing-based learning in nature. This strategy is exemplified from a material perspective. Intelligent machines are categorized according to their architecture and learning type. Also, the functionality and usefulness of NVRAM-based neuromorphic computing are addressed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2011-03-15

    Novel articles and methods to fabricate the same resulting in flexible, large-area, triaxially textured, single-crystal or single-crystal-like, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  17. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  18. Tunable Injection Barrier in Organic Resistive Switches Based on Phase-Separated Ferroelectric-Semiconductor Blends

    NARCIS (Netherlands)

    Asadi, Kamal; de Boer, Tom G.; Blom, Paul W. M.; de Leeuw, Dago M.

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  19. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends

    NARCIS (Netherlands)

    Asadi, K.; Boer, T.G. de; Blom, P.W.M.; Leeuw, D.M. de

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  20. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  1. The origin of traps and the effect of nitrogen plasma in oxide-nitride-oxide structures for non-volatile memories

    International Nuclear Information System (INIS)

    Kim, W. S.; Kwak, D. W.; Oh, J. S.; Lee, D. W.; Cho, H. Y.

    2010-01-01

    Ultrathin oxide-nitride-oxide (ONO) dielectric stacked layers are fundamental structures of silicon-oxide-nitride-oxide-silicon (SONOS) non-volatile memory devices in which information is known to be stored as charges trapped in silicon nitride. Deep-level transient spectroscopy (DLTS) and a capacitance-voltage (CV) analysis were introduced to observe the trap behavior related to the memory effect in memory devices. The DLTS results verified that the nitride-related traps were a dominant factor in the memory effect. The energy of hole traps was 0.307 eV above the balance band. To improve the memory effects of the non-volatile memory devices with ONO structures, we introduced a nitrogen plasma treatment. After the N-plasma treatment, the flat-band voltage shift (ΔV FB ) was increased by about 1.5 times. The program and the erase (P-E) characteristics were also shown to be better than those for the as-ONO structure. In addition, the retention characteristics were improved by over 2.4 times.

  2. Perfil cardiovascular em pacientes com apneia obstrutiva do sono

    Directory of Open Access Journals (Sweden)

    Fátima Dumas Cintra

    2011-04-01

    Full Text Available FUNDAMENTO: Apneia Obstrutiva do Sono (AOS é um fator de risco para várias condições cardiovasculares incluindo aumento na mortalidade cardiovascular. Sendo assim, é essencial o conhecimento das principais repercussões cardiovasculares dos distúrbios respiratórios do sono durante uma avaliação clínica. OBJETIVO: Analisar as características cardiovasculares de pacientes com AOS. MÉTODOS: Pacientes submetidos a polissonografia basal foram consecutivamente selecionados do banco de dados do Instituto do Sono entre março de 2007 e março de 2009. Todos os pacientes foram orientados a comparecer ao ambulatório para coleta de sangue, exame físico, eletrocardiograma de 12 derivações, espirometria, teste cardiopulmonar em esteira ergométrica e ecocardiograma transtorácico. O estudo foi aprovado pelo comitê de ética e pesquisa e registrado no site http://clinicaltrials.gov/ sob o número: NCT00768625. RESULTADOS: Foram analisados 261 pacientes e 108 controles. As principais características dos pacientes com AOS foram: obesidade, hipertensão, baixos níveis plasmáticos de lipoproteínas de alta densidade (HDL e aumento no diâmetro do átrio esquerdo quando comparados com controles (3,75 ± 0,42; 3,61 ± 0,41, p = 0,001, respectivamente. Essas características associadas correspondem a um acréscimo de 16,6 vezes na probabilidade de ocorrência de AOS independentemente do relato de algum sintoma dessa desordem, como sonolência ou ronco. CONCLUSÃO: Na amostra avaliada, o perfil cardiovascular dos pacientes com AOS mais encontrado foi: obesidade, hipertensão arterial, baixos níveis plasmáticos de HDL e átrio esquerdo com diâmetro aumentado.

  3. Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado

    Science.gov (United States)

    Fathoni, A.; Saepudin, E.; Cahyana, A. H.; Rahayu, D. U. C.; Haib, J.

    2017-07-01

    Syzygium aromaticum (clove) are native to Indonesia and have been widely used in food industry due to their flavor. Nonvolatile compounds contribute to flavor, mainly in their taste. Currently, there is very little information available about nonvolatile compounds in clove. Identification of nonvolatile compounds is important to improve clove's value. Compound extraction was conducted by maceration in ethanol. Fractionations of the extract were performed by using gravity column chromatography on silica gel and Sephadex LH-20 as stationary phase. Nonvolatile compounds were identified by Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). LC-MS/MS was operated in negative mode with 0.1 % formic acid in water and acetonitrile as mobile phase. Nonvolatile compounds were identified by fragment analysis and compared to references. Several compounds had been identified and characterized asquinic acid, monogalloylglucose, gallic acid, digalloylglucose, isobiflorin, biflorin, ellagic acid, hydroxygallic acid, luteolin, quercetin, naringenin, kaempferol, isorhamnetin, dimethoxyluteolin, and rhamnetin. These compounds had two main flavor perceptions, i.e. astringent, and bitter.

  4. Effects of tunnel oxide process on SONOS flash memory characteristics

    International Nuclear Information System (INIS)

    Li, Dong Hua; Park, Il Han; Yun, Jang-Gn; Park, Byung-Gook

    2010-01-01

    In this paper, various process conditions of tunnel oxides are applied in SONOS flash memory to investigate their effects on charge transport during the program/erase operations. We focus the key point of analysis on Fermi-level (E F ) variation at the interface of silicon substrate and tunnel oxide. The Si-O chemical bonding information which describes the interface oxidation states at the Si/SiO 2 is obtained by the core-level X-ray photoelectron spectroscopy (XPS). Moreover, relative E F position is determined by measuring the Si 2p energy shift from XPS spectrums. Experimental results from memory characteristic measurement show that MTO tunnel oxide structure exhibits faster erase speed, and larger memory window during P/E cycle compared to FTO and RTO tunnel oxide structures. Finally, we examine long-term charge retention characteristic and find that the memory windows of all the capacitors remain wider than 2 V after 10 5 s.

  5. Semiconductor spintronics

    International Nuclear Information System (INIS)

    Fabian, J.; Abiague, A.M.; Ertler, Ch.; Stano, P.; Zutic, I.

    2007-01-01

    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin of magnetism. While metal spintronics has already found its niche in the computer industry - giant magnetoresistance systems are used as hard disk read heads - semiconductor spintronics is vet demonstrate its full potential. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin transport, spin injection. Silsbee-Johnson spin-charge coupling, and spin-dependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent interaction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In view of the importance of ferromagnetic semiconductor material, a brief discussion of diluted magnetic semiconductors is included. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief

  6. Inkjet-printing of non-volatile organic resistive devices and crossbar array structures

    Science.gov (United States)

    Sax, Stefan; Nau, Sebastian; Popovic, Karl; Bluemel, Alexander; Klug, Andreas; List-Kratochvil, Emil J. W.

    2015-09-01

    Due to the increasing demand for storage capacity in various electronic gadgets like mobile phones or tablets, new types of non-volatile memory devices have gained a lot of attention over the last few years. Especially multilevel conductance switching elements based on organic semiconductors are of great interest due to their relatively simple device architecture and their small feature size. Since organic semiconductors combine the electronic properties of inorganic materials with the mechanical characteristics of polymers, this class of materials is suitable for solution based large area device preparation techniques. Consequently, inkjet based deposition techniques are highly capable of facing preparation related challenges. By gradually replacing the evaporated electrodes with inkjet printed silver, the preparation related influence onto device performance parameters such as the ON/OFF ratio was investigated with IV measurements and high resolution transmission electron microscopy. Due to the electrode surface roughness the solvent load during the printing of the top electrode as well as organic layer inhomogeneity's the utilization in array applications is hampered. As a prototypical example a 1diode-1resistor element and a 2×2 subarray from 5×5 array matrix were fully characterized demonstrating the versatility of inkjet printing for device preparation.

  7. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.; Luo, X.; Turner, S.; Peng, H.; Lin, W.; Ding, J.; David, A.; Wang, B.; Van, Tendeloo, G.; Wang, J.; Wu, Tao

    2013-01-01

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures

  8. Nonvolatile memory design magnetic, resistive, and phase change

    CERN Document Server

    Li, Hai

    2011-01-01

    The manufacture of flash memory, which is the dominant nonvolatile memory technology, is facing severe technical barriers. So much so, that some emerging technologies have been proposed as alternatives to flash memory in the nano-regime. Nonvolatile Memory Design: Magnetic, Resistive, and Phase Changing introduces three promising candidates: phase-change memory, magnetic random access memory, and resistive random access memory. The text illustrates the fundamental storage mechanism of these technologies and examines their differences from flash memory techniques. Based on the latest advances,

  9. EDITORIAL: Non-volatile memory based on nanostructures Non-volatile memory based on nanostructures

    Science.gov (United States)

    Kalinin, Sergei; Yang, J. Joshua; Demming, Anna

    2011-06-01

    Non-volatile memory refers to the crucial ability of computers to store information once the power source has been removed. Traditionally this has been achieved through flash, magnetic computer storage and optical discs, and in the case of very early computers paper tape and punched cards. While computers have advanced considerably from paper and punched card memory devices, there are still limits to current non-volatile memory devices that restrict them to use as secondary storage from which data must be loaded and carefully saved when power is shut off. Denser, faster, low-energy non-volatile memory is highly desired and nanostructures are the critical enabler. This special issue on non-volatile memory based on nanostructures describes some of the new physics and technology that may revolutionise future computers. Phase change random access memory, which exploits the reversible phase change between crystalline and amorphous states, also holds potential for future memory devices. The chalcogenide Ge2Sb2Te5 (GST) is a promising material in this field because it combines a high activation energy for crystallization and a relatively low crystallization temperature, as well as a low melting temperature and low conductivity, which accommodates localized heating. Doping is often used to lower the current required to activate the phase change or 'reset' GST but this often aggravates other problems. Now researchers in Korea report in-depth studies of SiO2-doped GST and identify ways of optimising the material's properties for phase-change random access memory [1]. Resistance switching is an area that has attracted a particularly high level of interest for non-volatile memory technology, and a great deal of research has focused on the potential of TiO2 as a model system in this respect. Researchers at HP labs in the US have made notable progress in this field, and among the work reported in this special issue they describe means to control the switch resistance and show

  10. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  11. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  12. Padrões de sono de estudantes ingressantes na Graduação em Enfermagem

    OpenAIRE

    Furlani, Renata; Ceolim, Maria Filomena

    2005-01-01

    Trata-se de estudo exploratório e descritivo com o objetivo de identificar os padrões de sono de estudantes ingressantes na graduação. Desenvolvido na Universidade Estadual de Campinas SP, os dados foram coletados em dois momentos distintos por meio do Índice de Qualidade de Sono de Pittsburgh. Durante as férias, os estudantes apresentaram melhor qualidade/ duração de sono e adoção de horários mais condizentes com seu cronotipo. Após o início das aulas, maior número apresentou sono de má qual...

  13. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  14. Memory characteristics of an MOS capacitor structure with double-layer semiconductor and metal heterogeneous nanocrystals

    International Nuclear Information System (INIS)

    Ni Henan; Wu Liangcai; Song Zhitang; Hui Chun

    2009-01-01

    An MOS (metal oxide semiconductor) capacitor structure with double-layer heterogeneous nanocrystals consisting of semiconductor and metal embedded in a gate oxide for nonvolatile memory applications has been fabricated and characterized. By combining vacuum electron-beam co-evaporated Si nanocrystals and self-assembled Ni nanocrystals in a SiO 2 matrix, an MOS capacitor with double-layer heterogeneous nanocrystals can have larger charge storage capacity and improved retention characteristics compared to one with single-layer nanocrystals. The upper metal nanocrystals as an additional charge trap layer enable the direct tunneling mechanism to enhance the flat voltage shift and prolong the retention time. (semiconductor devices)

  15. Effect of ultrasonic frequency on the mechanism of formic acid sono-lysis

    International Nuclear Information System (INIS)

    Chave, T.; Nikitenko, S.I.; Navarro, N.M.; Pochon, P.; Bisel, I.

    2011-01-01

    The kinetics and mechanism of formic acid sono-chemical degradation were studied at ultrasonic frequencies of 20, 200, and 607 kHz under argon atmosphere. Total yield of HCOOH sono-chemical degradation increases approximately 6-8-fold when the frequency increased from 20 to 200 or to 607 kHz. At low ultrasonic frequencies, HCOOH degradation has been attributed to oxidation with OH . radicals from water sono-lysis and to the HCOOH decarboxylation occurring at the cavitation bubble-liquid interface. With high-frequency ultrasound, the sono-chemical reaction is also influenced by HCOOH dehydration. Whatever the ultrasonic frequency, the sono-lysis of HCOOH yielded H 2 and CO 2 in the gas phase as well as trace, amounts of oxalic acid and formaldehyde in the liquid phase. However, CO and CH 4 formations were only detected under high frequency ultrasound. The most striking difference between low frequency and high frequency ultrasound is that the sono-lysis of HCOOH at high ultrasonic frequencies initiates Fischer-Tropsch hydrogenation of carbon monoxide. (authors)

  16. Semiconductor sensors

    International Nuclear Information System (INIS)

    Hartmann, Frank

    2011-01-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  17. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  18. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1982-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices in which the device is rapidly heated to a temperature between 450 and 900 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. (author)

  19. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  20. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  1. Qualidade do sono em portadores do vírus da imunodeficiência humana

    Directory of Open Access Journals (Sweden)

    Luciana Tiemi Kuranishi Ferreira

    2012-08-01

    Full Text Available Este estudo teve por objetivo caracterizar a qualidade do sono de pessoas com o vírus da imunodeficiência humana (HIV - AIDS - , com ou sem manifestações clínicas e sob tratamento ambulatorial. Para tal, foi realizada pesquisa descritiva e transversal. Os instrumentos utilizados foram: Questionário de Caracterização Sociodemográfica e Clínica; Índice de Qualidade de Sono de Pittsburgh (PSQI-BR. Participaram da pesquisa 122 pacientes (55,7% de homens e 44,3% de mulheres, com idade média de 42,3 (± 8,9 anos, dos quais 53,3% referiram apresentar sono de boa qualidade e 46,7%, sono de má qualidade. Dormiam, em média, 7,3 (± 1,8 horas, com latência de 23,2 (± 26,2 minutos e eficiência do sono de 87,8% (± 14,4. Observou-se associação significativa entre o sono de boa qualidade e os seguintes fatores: ter companheiro(a; apresentar carga viral indetectável; manter comportamento de risco. Recomenda-se que os profissionais de enfermagem incluam sistematicamente questões sobre o sono ao avaliarem o paciente com HIV/AIDS, detectando alterações precocemente e reunindo subsídios para o planejamento de intervenções.

  2. Real-Time Measurements and Modelling on Dynamic Behaviour of SonoVue Bubbles Based on Light Scattering Technology

    International Nuclear Information System (INIS)

    Juan, Tu; Rongjue, Wei; Guan, J. F.; Matula, T. J.; Crum, L. A.

    2008-01-01

    The dynamic behaviour of SonoVue microbubbles, a new generation ultrasound contrast agent, is investigated in real time with light scattering method. Highly diluted SonoVue microbubbles are injected into a diluted gel made of xanthan gum and water. The responses of individual SonoVue bubbles to driven ultrasound pulses are measured. Both linear and nonlinear bubble oscillations are observed and the results suggest that SonoVue microbubbles can generate strong nonlinear responses. By fitting the experimental data of individual bubble responses with Sarkar's model, the shell coating parameter of the bubbles and dilatational viscosity is estimated to be 7.0 nm·s·Pa

  3. Non-volatile memory based on the ferroelectric photovoltaic effect

    Science.gov (United States)

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  4. Method for refreshing a non-volatile memory

    Science.gov (United States)

    Riekels, James E.; Schlesinger, Samuel

    2008-11-04

    A non-volatile memory and a method of refreshing a memory are described. The method includes allowing an external system to control refreshing operations within the memory. The memory may generate a refresh request signal and transmit the refresh request signal to the external system. When the external system finds an available time to process the refresh request, the external system acknowledges the refresh request and transmits a refresh acknowledge signal to the memory. The memory may also comprise a page register for reading and rewriting a data state back to the memory. The page register may comprise latches in lieu of supplemental non-volatile storage elements, thereby conserving real estate within the memory.

  5. Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique

    International Nuclear Information System (INIS)

    Wang Guangli; Chen Yubin; Shi Yi; Pu Lin; Pan Lijia; Zhang Rong; Zheng Youdou

    2010-01-01

    A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method. (semiconductor devices)

  6. Active non-volatile memory post-processing

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Sudarsun; Milojicic, Dejan S.; Talwar, Vanish

    2017-04-11

    A computing node includes an active Non-Volatile Random Access Memory (NVRAM) component which includes memory and a sub-processor component. The memory is to store data chunks received from a processor core, the data chunks comprising metadata indicating a type of post-processing to be performed on data within the data chunks. The sub-processor component is to perform post-processing of said data chunks based on said metadata.

  7. Advanced oxidation of Reactive Blue 181 solution: a comparison between Fenton and Sono-Fenton process.

    Science.gov (United States)

    Basturk, Emine; Karatas, Mustafa

    2014-09-01

    In this work, the decolorization of C.I. Reactive Blue 181 (RB181), an anthraquinone dye, by Ultrasound and Fe(2+) H2O2 processes was investigated. The effects of operating parameters, such as Fe(2+) dosage, H2O2 dosage, pH value, reaction time and temperature were examined. Process optimisation [pH, ferrous ion (Fe(2+)), hydrogen peroxide (H2O2), and reaction time], kinetic studies and their comparison were carried out for both of the processes. The Sono-Fenton process was performed by indirect sonication in an ultrasonic water bath, which was operated at a fixed 35-kHz frequency. The optimum conditions were determined as [Fe(2+)]=30 mg/L, [H2O2]=50 mg/L and pH=3 for the Fenton process and [Fe(2+)]=10 mg/L, [H2O2]=40 mg/L and pH=3 for the Sono-Fenton process. The colour removals were 88% and 93.5% by the Fenton and Sono-Fenton processes, respectively. The highest decolorization was achieved by the Sono-Fenton process because of the production of some oxidising agents as a result of sonication. The paper also discussed kinetic parameters. The decolorization kinetic of RB181 followed pseudo-second-order reaction (Fenton study) and Behnajady kinetics (Sono-Fenton study). Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Semiconductor annealing

    International Nuclear Information System (INIS)

    Young, J.M.; Scovell, P.D.

    1981-01-01

    A process for annealing crystal damage in ion implanted semiconductor devices is described in which the device is rapidly heated to a temperature between 450 and 600 0 C and allowed to cool. It has been found that such heating of the device to these relatively low temperatures results in rapid annealing. In one application the device may be heated on a graphite element mounted between electrodes in an inert atmosphere in a chamber. The process may be enhanced by the application of optical radiation from a Xenon lamp. (author)

  9. Estudo comparativo de padrões de sono em trabalhadores de enfermagem dos turnos diurno e noturno

    Directory of Open Access Journals (Sweden)

    Milva Maria Figueiredo de Martino

    2002-08-01

    Full Text Available Objetivo. Comparar os padrões de sono de enfermeiros dos turnos diurno e noturno em um hospital de Campinas (SP, Brasil. Métodos. Participaram 59 enfermeiros entre 23 e 59 anos. Para os enfermeiros do dia, analisou-se o sono noturno, e, para os da noite, os sonos diurno e noturno. Os informantes preencheram um diário do sono durante 1 semana, ao acordar. Foram analisados hora de ir deitar, de dormir, e de acordar; latência do sono; horas de sono noturno e diurno; cochilos; qualidade do sono; modo de acordar; e comparação do sono registrado no diário com o sono habitual. Também foram coletadas informações pessoais e profissionais. Resultados. O grupo diurno ia dormir às 23h36min e o grupo noturno, às 23h52min (P <=0,004, Wilcoxon. Os enfermeiros diurnos acordavam mais cedo (7h3min do que os noturnos quando dormiam à noite (8h30min. A latência média do sono foi de 23min26s para os enfermeiros diurnos contra 22min50s para os noturnos; a duração do sono noturno foi de 7h11min e 9h6min, respectivamente. O cochilo esteve presente apenas no grupo diurno (média de 2h3min. O sono diurno dos enfermeiros da noite foi caracterizado pelo fracionamento (dois períodos, tempo de sono de 4h7min e 2h38min. O sono noturno do grupo noturno foi de melhor qualidade. O tempo médio de trabalho em hospital foi de 14,31 anos no grupo diurno contra 7,07 no grupo noturno (P <=0,05, Wilcoxon. Os sujeitos possuíam hábitos saudáveis, principalmente quanto ao consumo de álcool. Verificou-se uso de anti-hipertensivos, diuréticos e analgésicos. Conclusões. Os achados foram semelhantes aos descritos anteriormente. Seria recomendável que os enfermeiros do turno da noite pudessem tirar cochilos para compensar o déficit de sono durante a atividade noturna.

  10. Anomalous Threshold Voltage Variability of Nitride Based Charge Storage Nonvolatile Memory Devices

    Directory of Open Access Journals (Sweden)

    Meng Chuan Lee

    2013-01-01

    Full Text Available Conventional technology scaling is implemented to meet the insatiable demand of high memory density and low cost per bit of charge storage nonvolatile memory (NVM devices. In this study, effect of technology scaling to anomalous threshold voltage ( variability is investigated thoroughly on postcycled and baked nitride based charge storage NVM devices. After long annealing bake of high temperature, cell’s variability of each subsequent bake increases within stable distribution and found exacerbate by technology scaling. Apparent activation energy of this anomalous variability was derived through Arrhenius plots. Apparent activation energy (Eaa of this anomalous variability is 0.67 eV at sub-40 nm devices which is a reduction of approximately 2 times from 110 nm devices. Technology scaling clearly aggravates this anomalous variability, and this poses reliability challenges to applications that demand strict control, for example, reference cells that govern fundamental program, erase, and verify operations of NVM devices. Based on critical evidence, this anomalous variability is attributed to lateral displacement of trapped charges in nitride storage layer. Reliability implications of this study are elucidated. Moreover, potential mitigation methods are proposed to complement technology scaling to prolong the front-runner role of nitride based charge storage NVM in semiconductor flash memory market.

  11. An Investigation of Quantum Dot Super Lattice Use in Nonvolatile Memory and Transistors

    Science.gov (United States)

    Mirdha, P.; Parthasarathy, B.; Kondo, J.; Chan, P.-Y.; Heller, E.; Jain, F. C.

    2018-02-01

    Site-specific self-assembled colloidal quantum dots (QDs) will deposit in two layers only on p-type substrate to form a QD superlattice (QDSL). The QDSL structure has been integrated into the floating gate of a nonvolatile memory component and has demonstrated promising results in multi-bit storage, ease of fabrication, and memory retention. Additionally, multi-valued logic devices and circuits have been created by using QDSL structures which demonstrated ternary and quaternary logic. With increasing use of site-specific self-assembled QDSLs, fundamental understanding of silicon and germanium QDSL charge storage capability, self-assembly on specific surfaces, uniform distribution, and mini-band formation has to be understood for successful implementation in devices. In this work, we investigate the differences in electron charge storage by building metal-oxide semiconductor (MOS) capacitors and using capacitance and voltage measurements to quantify the storage capabilities. The self-assembly process and distribution density of the QDSL is done by obtaining atomic force microscopy (AFM) results on line samples. Additionally, we present a summary of the theoretical density of states in each of the QDSLs.

  12. Quasi-unipolar pentacene films embedded with fullerene for non-volatile organic transistor memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung; Kang, Moon Sung, E-mail: mskang@ssu.ac.kr [Department of Chemical Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)

    2015-02-09

    Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while the electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.

  13. Scaling dependence of memory windows and different carrier charging behaviors in Si nanocrystal nonvolatile memory devices

    Science.gov (United States)

    Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri

    2016-09-01

    Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).

  14. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  15. Síndrome da apneia e hipopneia obstrutiva do sono – SAHOS

    Directory of Open Access Journals (Sweden)

    Hélio Brasileiro

    2009-03-01

    Full Text Available A Síndrome da Apneia e Hipopneia Obstrutiva do Sono (SAHOS é caracterizada por episódios repetitivos de apneia e hipopneia durante o sono. Em artigos recentes, SAHOS severa (quando o número de apneia e hipopneia por hora de sono é maior que 30 é citada como fator de risco para doenças cardiovasculares e morte. Além disso, SAHOS é muito prevalente em pacientes com obesidade, diabetes e hipertensão arterial sistêmica, que também são fatores de risco para doença cardiovascular. A leptina e a grelina, dois hormônios reguladores do apetite, estão aumentadas em pacientes com SAHOS, segundo alguns artigos. Contudo, SAHOS é ainda uma doença subdiagnosticada.

  16. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  17. Sono e adolescência: quantas horas os adolescentes precisam dormir?

    Directory of Open Access Journals (Sweden)

    Érico Felden Pereira

    2015-03-01

    Full Text Available Objetivo Determinar a especificidade e a sensibilidade de uma medida para apontar o melhor ponto de corte para a duração de sono como preditor da sonolência diurna excessiva em adolescentes. Métodos Participaram do estudo 1.359 adolescentes, com idades de 14 a 21 anos, de duas cidades do sul do Brasil, que responderam a questionário de hábitos de sono e sonolência diurna. Utilizou-se a Receiver Operating Characteristic para estimar a capacidade preditiva da duração de sono para a sonolência diurna excessiva. Resultados A média de duração do sono para os adolescentes com sonolência diurna excessiva foi de 7,9 horas e para aqueles sem sonolência diurna excessiva foi de 8,33 horas (p < 0,001. A prevalência de sonolência diurna excessiva foi de 35,7%. Foi observada correlação significativa e negativa entre a duração do sono e as idades analisadas (p < 0,001. A análise de Receiver Operating Characteristic indicou duração mínima de 8,33 horas como proteção para a sonolência diurna excessiva. Conclusão Foi observada alta prevalência de sonolência diurna excessiva e propõe-se como possível duração de sono um mínimo de 8,33 horas nos dias com aula para que os adolescentes evitem esse desfecho.

  18. O plantão noturno em anestesia reduz a latência ao sono

    OpenAIRE

    Mathias, Lígia Andrade da Silva Telles; Coelho, Christina Morotomi Funatsu; Vilela, Elizabeth Pricoli; Vieira, Joaquim Edson; Pagnocca, Marcelo Lacava

    2004-01-01

    JUSTIFICATIVA E OBJETIVOS: Os médicos em geral, os anestesiologistas em particular, têm jornadas de trabalho prolongadas. Os residentes de Anestesiologia podem apresentar fadiga e estresse significativos. O objetivo deste trabalho foi verificar, em residentes de primeiro e segundo anos a latência do sono em períodos após plantão. MÉTODO: Foram avaliados 11 residentes em situações distintas: às 7 horas da manhã, após noite de sono normal (> 7h), sem plantão nos 3 dias anteriores (M1); às 7 hor...

  19. Sono e adolescência: quantas horas os adolescentes precisam dormir?

    OpenAIRE

    Pereira,Érico Felden; Barbosa,Diego Grasel; Andrade,Rubian Diego; Claumann,Gaia Salvador; Pelegrini,Andreia; Louzada,Fernando Mazzilli

    2015-01-01

    Objetivo Determinar a especificidade e a sensibilidade de uma medida para apontar o melhor ponto de corte para a duração de sono como preditor da sonolência diurna excessiva em adolescentes. Métodos Participaram do estudo 1.359 adolescentes, com idades de 14 a 21 anos, de duas cidades do sul do Brasil, que responderam a questionário de hábitos de sono e sonolência diurna. Utilizou-se a Receiver Operating Characteristic para estimar a capacidade preditiva da ...

  20. Semiconductor-based, large-area, flexible, electronic devices on {110} oriented substrates

    Science.gov (United States)

    Goyal, Amit

    2014-08-05

    Novel articles and methods to fabricate the same resulting in flexible, oriented, semiconductor-based, electronic devices on {110} textured substrates are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  1. [100] or [110] aligned, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit

    2015-03-24

    Novel articles and methods to fabricate the same resulting in flexible, large-area, [100] or [110] textured, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  2. {100} or 45.degree.-rotated {100}, semiconductor-based, large-area, flexible, electronic devices

    Science.gov (United States)

    Goyal, Amit [Knoxville, TN

    2012-05-15

    Novel articles and methods to fabricate the same resulting in flexible, {100} or 45.degree.-rotated {100} oriented, semiconductor-based, electronic devices are disclosed. Potential applications of resulting articles are in areas of photovoltaic devices, flat-panel displays, thermophotovoltaic devices, ferroelectric devices, light emitting diode devices, computer hard disc drive devices, magnetoresistance based devices, photoluminescence based devices, non-volatile memory devices, dielectric devices, thermoelectric devices and quantum dot laser devices.

  3. Semiconductor laser shearing interferometer

    International Nuclear Information System (INIS)

    Ming Hai; Li Ming; Chen Nong; Xie Jiaping

    1988-03-01

    The application of semiconductor laser on grating shearing interferometry is studied experimentally in the present paper. The method measuring the coherence of semiconductor laser beam by ion etching double frequency grating is proposed. The experimental result of lens aberration with semiconductor laser shearing interferometer is given. Talbot shearing interferometry of semiconductor laser is also described. (author). 2 refs, 9 figs

  4. Use of non-volatile memories for SSC detector readout

    International Nuclear Information System (INIS)

    Fennelly, A.J.; Woosley, J.K.; Johnson, M.B.

    1990-01-01

    Use of non-volatile memory units at the end of each fiber optic bunch/strand would substantially increase information available from experiments by providing a complete event history, in addition to easing real time processing requirements. This may be an alternative to enhancing technology to optical computing techniques. Available and low-risk projected technologies will be surveyed, with costing addressed. Some discussion will be given to covnersion of optical signals, to electronic information, concepts for providing timing pulses to the memory units, and to the magnetoresistive (MRAM) and ferroelectric (FERAM) random access memory technologies that may be utilized in the prototype system

  5. Design considerations for a radiation hardened nonvolatile memory

    International Nuclear Information System (INIS)

    Murray, J.R.

    1993-01-01

    Sub-optimal design practices can reduce the radiation hardness of a circuit even though it is fabricated in a radiation hardened process. This is especially true for a nonvolatile memory, as compared to a standard digital circuit, where high voltages and unusual bias conditions are required. This paper will discuss the design technique's used in the development of a 64K EEPROM (Electrically Erasable Programmable Read Only Memory) to maximize radiation hardness. The circuit radiation test results will be reviewed in order to provide validation of the techniques

  6. SONO-OXIDATIVE PRE-TREATMENT OF WASTE ACTIVATED SLUDGE BEFORE ANAEROBIC BIODEGRADATION

    Directory of Open Access Journals (Sweden)

    S. Şahinkaya

    Full Text Available Abstract The effects of sonication, potassium ferrate (K2FeO4 oxidation and their simultaneous combination (called "sono-oxidative pre-treatment" on chemical properties and anaerobic digestion of waste activated sludge (WAS were investigated and compared comprehensively. Based on chemical parameters, the optimum operating conditions were found to be 0.3 g K2FeO4/g total solids (TS dosage for 2-h individual K2FeO4 oxidation, 0.50 W/mL ultrasonic power density for 10-min individual sonication and, lastly, the combination of 2.5-min sonication at 0.75 W/mL ultrasonic power density with 2-h chemical oxidation at 0.3 g K2FeO4/g TS dosage for sono-oxidative pre-treatment. The disintegration efficiencies of these methods under the optimized conditions were in the following descending order: 37.8% for sono-oxidative pre-treatment > 26.3% for sonication > 13.1% for K2FeO4 oxidation. The influences of these methods on anaerobic biodegradability were tested with the biochemical methane potential assay. It was seen that the cumulative methane production increased by 9.2% in the K2FeO4 oxidation reactor, 15.8% in the sonicated reactor and 18.6% in the reactor with sono-oxidative pre-treatment, compared to the control (untreated reactor.

  7. Sono assisted electrocoagulation process for the removal of pollutant from pulp and paper industry effluent.

    Science.gov (United States)

    Asaithambi, P; Aziz, Abdul Raman Abdul; Sajjadi, Baharak; Daud, Wan Mohd Ashri Bin Wan

    2017-02-01

    In the present work, the efficiency of the sonication, electrocoagulation, and sono-electrocoagulation process for removal of pollutants from the industrial effluent of the pulp and paper industry was compared. The experimental results showed that the sono-electrocoagulation process yielded higher pollutant removal percentage compared to the sonication and electrocoagulation process alone. The effect of the operating parameters in the sono-electrocoagulation process such as electrolyte concentration (1-5 g/L), current density (1-5 A/dm 2 ), effluent pH (3-11), COD concentration (1500-6000 mg/L), inter-electrode distance (1-3 cm), and electrode combination (Fe and Al) on the color removal, COD removal, and power consumption were studied. The maximum color and COD removal percentages of 100 and 95 %, respectively, were obtained at the current density of 4 A/dm 2 , electrolyte concentration of 4 g/L, effluent pH of 7, COD concentration of 3000 mg/L, electrode combination of Fe/Fe, inter-electrode distance of 1 cm, and reaction time of 4 h, respectively. The color and COD removal percentages were analyzed by using an UV/Vis spectrophotometer and closed reflux method. The results showed that the sono-electrocoagulation process could be used as an efficient and environmental friendly technique for complete pollutant removal.

  8. Trabalho em turnos: estado geral de saúde relacionado ao sono em trabalhadores de enfermagem

    Directory of Open Access Journals (Sweden)

    Sandra Soares Mendes

    2012-12-01

    Full Text Available O objetivo deste estudo foi identificar os sintomas referentes ao estado geral de saúde associado ao trabalho em turnos de enfermagem e relacioná-los com a qualidade do sono. O estudo foi realizado no Hospital da Irmandade da Santa Casa de Poços de Caldas, Minas Gerais. Participaram 136 profissionais de enfermagem, com média de idade de 33,1 anos, divididos nas seguintes categorias: enfermeiro (8,1%; técnico de enfermagem (80,9%; auxiliar de enfermagem dos turnos diurno e noturno (11%. Os sintomas de saúde foram identificados a partir do Inventário de Estado Geral de Saúde, e a qualidade do sono foi avaliada pelo Diário do Sono. Os dados foram estatisticamente significativos pelo Teste Qui-Quadrado (p=0,021 para a presença do sintoma de flatulência ou distensão abdominal no turno noturno. Constatou-se com a análise de regressão linear múltipla que os sujeitos do turno diurno que apresentaram os sintomas de má digestão (às vezes ou sempre e irritabilidade (sempre tiveram pior qualidade de sono noturno.

  9. Failing arsenic mitigation technology in rural Bangladesh: explaining stagnation in niche formation of the Sono filter

    NARCIS (Netherlands)

    Kundu, D.K.; Mol, A.P.J.; Gupta, A.

    2016-01-01

    Arsenic contamination of shallow hand pump tube well drinking water in Bangladesh has created opportunities for radical innovations to emerge. One such innovation is the household Sono filter, designed to remove arsenic from water supplies. Applying a strategic niche management approach, and based

  10. Practical applications of superconducting technology; Chodendo gijutsu to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, M.; Yamamoto, K.; Urata, M. [Toshiba Corp., Tokyo (Japan)

    1995-11-01

    Remarkable progress has been made in superconducting technology recently. This paper describes the details and technical features of every cooling type of practical superconducting magnet (SCM), including the SCM for magnetic resonance imaging (MRI), SCM for semiconductor pulling devices, high-field SCM, SCM for magnetically confined plasma devices, and SCM for particle detectors. Commercial production of pool-boil-cooled SCMs has been realized by reducing helium evaporation and decreasing the frequency of helium pouring. The development of forced-cooled SCMs has made it possible to build large SCMs. Moreover, the development of the 4 K-GM refrigerator has enabled liquid-helium-free SCMs to be introduced. Since this type of SCM can be operated merely by turning on a switch, SCMs are expected to come into more widespread use. 7 refs., 1 fig.

  11. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidiifed slurry

    Institute of Scientific and Technical Information of China (English)

    Yoshiki Tsunekawa; Shinpei Suetsugu; Masahiro Okumiya; Naoki Nishikawa; Yoshikazu Genma

    2014-01-01

    For the wider applications, it is necessary to improve the ductility as wel as the strength and wear-resistance of hypereutectic Al-Si-Cu aloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modiifed wear-resistance of hypereutectic Al-Si-Cu aloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidiifcation, which is caled sono-solidiifcation, was carried out from its molten state to just above the eutectic temperature. The sono-solidiifed Al-17Si-4Cu aloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibriuma-Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidiifed slurry to shape a disk specimen. After the rheo-casting with modiifed sono-solidiifed slurry held for 45 s at 570 ºC, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of softa-Al phase. In contrast, there exist only 5 area% of primary silicon particles and noa-Al phase in rheo-cast specimen with normaly solidiifed slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normaly solidiifed slurry.

  12. Channel equalization techniques for non-volatile memristor memories

    KAUST Repository

    Naous, Rawan

    2016-03-16

    Channel coding and information theoretic approaches have been utilized in conventional non-volatile memories to overcome their inherent design limitations of leakage, coupling and refresh rates. However, the continuous scaling and integration constraints set on the current devices directed the attention towards emerging memory technologies as suitable alternatives. Memristive devices are prominent candidates to replace the conventional electronics due to its non-volatility and small feature size. Nonetheless, memristor-based memories still encounter an accuracy limitation throughout the read operation addressed as the sneak path phenomenon. The readout data is corrupted with added distortion that increases significantly the bit error rate and jeopardizes the reliability of the read operation. A novel technique is applied to alleviate this distorting effect where the communication channel model is proposed for the memory array. Noise cancellation principles are applied with the aid of preset pilots to extract channel information and adjust the readout values accordingly. The proposed technique has the virtue of high speed, energy efficiency, and low complexity design while achieving high reliability and error-free decoding.

  13. Channel equalization techniques for non-volatile memristor memories

    KAUST Repository

    Naous, Rawan; Zidan, Mohammed A.; Salem, Ahmed Sultan; Salama, Khaled N.

    2016-01-01

    Channel coding and information theoretic approaches have been utilized in conventional non-volatile memories to overcome their inherent design limitations of leakage, coupling and refresh rates. However, the continuous scaling and integration constraints set on the current devices directed the attention towards emerging memory technologies as suitable alternatives. Memristive devices are prominent candidates to replace the conventional electronics due to its non-volatility and small feature size. Nonetheless, memristor-based memories still encounter an accuracy limitation throughout the read operation addressed as the sneak path phenomenon. The readout data is corrupted with added distortion that increases significantly the bit error rate and jeopardizes the reliability of the read operation. A novel technique is applied to alleviate this distorting effect where the communication channel model is proposed for the memory array. Noise cancellation principles are applied with the aid of preset pilots to extract channel information and adjust the readout values accordingly. The proposed technique has the virtue of high speed, energy efficiency, and low complexity design while achieving high reliability and error-free decoding.

  14. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    CERN Document Server

    Pereira, LMC; Wahl, U

    Scientific findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last fe...

  15. Semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Marstein Erik Stensrud

    2003-07-01

    This thesis presents a study of two material systems containing semiconductor nanocrystals, namely porous silicon (PSi) films and germanium (Ge) nanocrystals embedded in silicon dioxide (SiO2) films. The PSi films were made by anodic etching of silicon (Si) substrates in an electrolyte containing hydrofluoric acid. The PSi films were doped with erbium (Er) using two different doping methods. electrochemical doping and doping by immersing the PSi films in a solution containing Er. The resulting Er concentration profiles were investigated using scanning electron microscopy (SEN1) combined with energy dispersive X-ray analysis (EDS). The main subject of the work on PSi presented in this thesis was investigating and comparing these two doping methods. Ge nanocrystals were made by implanting Ge ions into Si02 films that were subsequently annealed. However. nanocrystal formation occurred only for certain sets of processing parameters. The dependence of the microstructure of the Ge implanted Si02 films on the processing parameters were therefore investigated. A range of methods were employed for these investigations, including transmission electron microscopy (TEM) combined with EDS, X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). The observed structures, ranging from Ge nanocrystals to voids with diameters of several tens of nanometers and Ge rich Si02 films without any nanocrystals is described. A model explaining the void formation is also presented. For certain sets of processing parameters. An accumulation of Ge at the Si-Si02 interface was observed. The effect of this accumulation on the electrical properties of MOS structures made from Ge implanted SiO2 films was investigated using CV-measurements. (Author)

  16. 1 Gb Radiation Hardened Nonvolatile Memory Development, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this effort is to identify, characterize and develop advanced semiconductor materials and fabrication process techniques, and design and produce a...

  17. A genética dos distúrbios do sono na infância e adolescência

    OpenAIRE

    Nunes,Magda Lahorgue; Bruni,Oliviero

    2008-01-01

    OBJETIVO: O objetivo deste artigo é revisar a literatura sobre a genética dos distúrbios do sono na infância e adolescência. FONTES DOS DADOS: As palavras-chave "sono" e "genética" foram usadas para pesquisar por artigos publicados nos últimos cinco anos no banco de dados MEDLINE. A seguir, seus resumos foram analisados. A pesquisa também incluiu artigos clássicos, com a primeira descrição dos genes. SÍNTESE DOS DADOS: A recorrência familiar de muitos distúrbios do sono é um achado freqüente,...

  18. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  19. Novel room temperature ferromagnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Amita [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2004-06-01

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous

  20. Photo oxidative degradation of azure-B by sono-photo-Fenton and photo-Fenton reagents

    Directory of Open Access Journals (Sweden)

    Prahlad Vaishnave

    2014-12-01

    Full Text Available A model for the decomposition of azure-B by photo-Fenton reagent in the presence of ultrasound in homogeneous aqueous solution has been described. The photochemical decomposition rate of azure-B is markedly increased in the presence of ultrasound. It is a rather inexpensive reagent for wastewater treatment. The effect of different variables like the concentration of ferric ion, concentration of dye, hydrogen peroxide, pH, light intensity etc. on the reaction rate has been observed. The progress of the sono-photochemical degradation was monitored spectrophotometrically. The optimum sono-photochemical degradation conditions were experimentally determined. The results showed that the dye was completely oxidized and degraded into CO2 and H2O. A suitable tentative mechanism for sono-photochemical bleaching of azure-B by sono-photo-Fenton’s reaction has been proposed.

  1. Carbon nanotube network-silicon oxide non-volatile switches.

    Science.gov (United States)

    Liao, Albert D; Araujo, Paulo T; Xu, Runjie; Dresselhaus, Mildred S

    2014-12-08

    The integration of carbon nanotubes with silicon is important for their incorporation into next-generation nano-electronics. Here we demonstrate a non-volatile switch that utilizes carbon nanotube networks to electrically contact a conductive nanocrystal silicon filament in silicon dioxide. We form this device by biasing a nanotube network until it physically breaks in vacuum, creating the conductive silicon filament connected across a small nano-gap. From Raman spectroscopy, we observe coalescence of nanotubes during breakdown, which stabilizes the system to form very small gaps in the network~15 nm. We report that carbon nanotubes themselves are involved in switching the device to a high resistive state. Calculations reveal that this switching event occurs at ~600 °C, the temperature associated with the oxidation of nanotubes. Therefore, we propose that, in switching to a resistive state, the nanotube oxidizes by extracting oxygen from the substrate.

  2. Apple juice composition: sugar, nonvolatile acid, and phenolic profiles.

    Science.gov (United States)

    Lee, H S; Wrolstad, R E

    1988-01-01

    Apples from Michigan, Washington, Argentina, Mexico, and New Zealand were processed into juice; the 8 samples included Golden Delicious, Jonathan, Granny Smith, and McIntosh varieties. Liquid chromatography was used for quantitation of sugars (glucose, fructose, sucrose, and sorbitol), nonvolatile acids (malic, quinic, citric, shikimic, and fumaric), and phenolics (chlorogenic acid and hydroxymethylfurfural [HMF]). Other determinations included pH, 0Brix, and L-malic acid. A number of compositional indices for these authentic juices, e.g., chlorogenic acid content, total malic - L-malic difference, and the HMF:chlorogenic ratio, were at variance with recommended standards. The phenolic profile was shown to be particularly influenced by gelatin fining, with peak areas decreasing by as much as 50%. The L-malic:total malic ratio serves as a better index for presence of synthetic malic acid than does the difference between the 2 determinations. No apparent differences in chemical composition could be attributed to geographic origin.

  3. Organic nonvolatile memory devices with charge trapping multilayer graphene film

    International Nuclear Information System (INIS)

    Ji, Yongsung; Choe, Minhyeok; Cho, Byungjin; Song, Sunghoon; Yoon, Jongwon; Ko, Heung Cho; Lee, Takhee

    2012-01-01

    We fabricated an array-type organic nonvolatile memory device with multilayer graphene (MLG) film embedded in polyimide (PI) layers. The memory devices showed a high ON/OFF ratio (over 10 6 ) and a long retention time (over 10 4 s). The switching of the Al/PI/MLG/PI/Al memory devices was due to the presence of the MLG film inserted into the PI layers. The double-log current–voltage characteristics could be explained by the space-charge-limited current conduction based on a charge-trap model. A conductive atomic force microscopy found that the conduction paths in the low-resistance ON state were distributed in a highly localized area, which was associated with a carbon-rich filamentary switching mechanism. (paper)

  4. Non-volatile polarization switch of magnetic domain wall velocity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.; Stolichnov, I.; Setter, N. [Ceramics Laboratory, EPFL-Swiss Federal Institute of Technology, Lausanne 1015 (Switzerland); Bernand-Mantel, A.; Schott, Marine; Pizzini, S.; Ranno, L. [University of Grenoble Alpes, Institut Néel, F-38042 Grenoble (France); CNRS, Institut Néel, F-38042 Grenoble (France); Auffret, S.; Gaudin, G. [SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble (France)

    2015-12-21

    Controlled propagation speed of individual magnetic domains in metal channels at the room temperature is obtained via the non-volatile field effect associated with the switchable polarization of P(VDF-TrFE) (polyvinylidene fluoride-trifluoroethylene) ferroelectric polymer. Polarization domains directly written using conducting atomic force microscope probe locally accelerate/decelerate the magnetic domains in the 0.6 nm thick Co film. The change of the magnetic domain wall velocity is consistent with the magnetic anisotropy energy modulation through the polarization upward/downward orientation. Excellent retention is observed. The demonstrated local non-destructive and reversible change of magnetic properties via rewritable patterning of ferroelectric domains could be attractive for exploring the ultimate limit of miniaturization in devices based on ferromagnetic/ferroelectric bilayers.

  5. Multistate nonvolatile straintronics controlled by a lateral electric field

    International Nuclear Information System (INIS)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-01-01

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications. (fast track communication)

  6. Multistate nonvolatile straintronics controlled by a lateral electric field.

    Science.gov (United States)

    Iurchuk, V; Doudin, B; Kundys, B

    2014-07-23

    We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications.

  7. Nonvolatile memory effect of tungsten nanocrystals under oxygen plasma treatments

    International Nuclear Information System (INIS)

    Chen, Shih-Cheng; Chang, Ting-Chang; Chen, Wei-Ren; Lo, Yuan-Chun; Wu, Kai-Ting; Sze, S.M.; Chen, Jason; Liao, I.H.; Yeh, Fon-Shan

    2010-01-01

    In this work, an oxygen plasma treatment was used to improve the memory effect of nonvolatile W nanocrystal memory, including memory window, retention and endurance. To investigate the role of the oxygen plasma treatment in charge storage characteristics, the X-ray photon-emission spectra (XPS) were performed to analyze the variation of chemical composition for W nanocrystal embedded oxide both with and without the oxygen plasma treatment. In addition, the transmission electron microscopy (TEM) analyses were also used to identify the microstructure in the thin film and the size and density of W nanocrystals. The device with the oxygen plasma treatment shows a significant improvement of charge storage effect, because the oxygen plasma treatment enhanced the quality of silicon oxide surrounding the W nanocrystals. Therefore, the data retention and endurance characteristics were also improved by the passivation.

  8. Estudo prospectivo sobre os hábitos de sono na criança e no adolescente

    Directory of Open Access Journals (Sweden)

    Vera Rocha

    2017-06-01

    Full Text Available Introdução: O sono desempenha um papel fundamental do ponto de vista biológico, emocional, familiar e social. O impacto do sono sobre a saúde ganhou nos últimos tempos, uma maior atenção e tem-se tornado uma preocupação crescente dos pais. Este estudo tem como objetivos avaliar e caracterizar os hábitos de sono das crianças e dos adolescentes e relacionar o padrão de sono e o rendimento escolar desta população. Métodos: Foi aplicado um inquérito por entrevista direta com as crianças e adolescentes com idades entre os 10 e os 18 anos, em consulta de vigilância de saúde infantil, durante três meses. Resultados: Analisaram-se 113 inquéritos. A idade mediana foi de 13 anos, sendo 62,8% do sexo feminino. A mediana da duração do sono em ambos os sexos foi de 8 horas. Apenas 15 (13,3% cumpriram a recomendação das 10 a 11 horas de sono. 51,2 % das crianças / adolescentes que ficaram retidos, pelo menos uma vez, no mesmo ano letivo, dormiam menos de oito horas / dia (p <0,001. Cerca de 88% com a autoavaliação do desempenho escolar como “mau” apresentavam uma duração do sono inferior a 8 horas, sendo essa proporção de 11,8% (17% do total de inquiridos naqueles com uma autoavaliação “muito bom” (p <0,001. Crianças/ adolescentes com uma duração de menos de oito horas/ dia apresentavam uma probabilidade 5,5 vezes maior de ficarem retidos no mesmo ano escolar em comparação com aqueles com a duração mínima de 8 horas de sono. Foram encontradas diferenças estatisticamente significativas (p <0,001 entre a duração do sono e a dificuldade em adormecer e o adormecer em sala de aula. Discussão/ Conclusões: Os resultados mostram que é importante atuar na prevenção, alertando pais, crianças e adolescentes para a importância de uma boa higiene do sono, promovendo padrões de sono saudável.

  9. Fatores que interferem no sono dos alunos idosos da Universidade da Maturidade (UMA, na cidade de Palmas (TO

    Directory of Open Access Journals (Sweden)

    Núbia Kênia Carneiro Silva

    2015-05-01

    Full Text Available O processo de senescência ocasiona mudanças na quantidade e qualidade do sono; assim, a maioria dos idosos tem queixas relacionadas ao sono, decorrentes de mudanças fisiológicas específicas do processo de envelhecimento, que podem causar distúrbios relacionados ao sono. Objetiva-se verificar quais os fatores que interferem no sono dos idosos alunos da Universidade da Maturidade (UMA, na cidade de Palmas (TO. Trata-se de um estudo descritivo de corte transversal, e de natureza quantitativa. Para o levantamento dos dados, utilizaram-se os instrumentos: Questionário de caracterização socioeconômico, seguido da Escala de Sonolência de Epworth (ESE, e do Índice de Qualidade de Sono de Pittsburgh (PSQI. Os resultados da ESE revelaram que 75% do grupo masculino e 51,85% do feminino apresentaram sonolência diurna excessiva normal com escores <10. As respostas abertas do PSQI, em relação à hora de deitar, mostram que 43,75% dos homens deitavam entre 23 e 24 horas; no grupo das mulheres, 29,63% deitavam entre 21 e 22 horas; quanto ao tempo para dormir, 68,75% dos homens e 62,96% das mulheres demoravam ≤ 15 minutos; em relação à hora de acordar, 75% dos homens e 37,04% das mulheres acordam entre 6 e 7 horas; em relação a quantas horas de sono dormiu por noite, 50% dos homens dormiram entre 7 e 8 horas por noite, e 51,85% das mulheres dormiram ≥ 8 horas por noite. Já no PSQI global, 56,25% dos homens possuem uma boa qualidade do sono, enquanto 66,67% das mulheres apresentaram má qualidade do sono, apesar de terem uma maior eficiência relacionada ao sono. Os resultados mostraram que os homens tiveram uma boa qualidade do sono e as mulheres tiveram uma má qualidade do sono.  

  10. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound.

    Science.gov (United States)

    Lin, Yutong; Lin, Lizhou; Cheng, Mouwen; Jin, Lifang; Du, Lianfang; Han, Tao; Xu, Lin; Yu, Alfred C H; Qin, Peng

    2017-03-01

    SonoVue microbubbles could serve as artificial nuclei for ultrasound-triggered stable and inertial cavitation, resulting in beneficial biological effects for future therapeutic applications. To optimize and control the use of the cavitation of SonoVue bubbles in therapy while ensuring safety, it is important to comprehensively understand the relationship between the acoustic parameters and the cavitation behavior of the SonoVue bubbles. An agarose-gel tissue phantom was fabricated to hold the SonoVue bubble suspension. 1-MHz transmitting transducer calibrated by a hydrophone was used to trigger the cavitation of SonoVue bubbles under different ultrasonic parameters (i.e., peak rarefactional pressure (PRP), pulse repetition frequency (PRF), and pulse duration (PD)). Another 7.5-MHz focused transducer was employed to passively receive acoustic signals from the exposed bubbles. The ultraharmonics and broadband intensities in the acoustic emission spectra were measured to quantify the extent of stable and inertial cavitation of SonoVue bubbles, respectively. We found that the onset of both stable and inertial cavitation exhibited a strong dependence on the PRP and PD and a relatively weak dependence on the PRF. Approximate 0.25MPa PRP with more than 20μs PD was considered to be necessary for ultraharmonics emission of SonoVue bubbles, and obvious broadband signals started to appear when the PRP exceeded 0.40MPa. Moreover, the doses of stable and inertial cavitation varied with the PRP. The stable cavitation dose initially increased with increasing PRP, and then decreased rapidly after 0.5MPa. By contrast, the inertial cavitation dose continuously increased with increasing PRP. Finally, the doses of both stable and inertial cavitation were positively correlated with PRF and PD. These results could provide instructive information for optimizing future therapeutic applications of SonoVue bubbles. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Le soluzioni di logistica urbana sono sostenibili? L'esempio di Cityporto

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Feliu

    2010-07-01

    Full Text Available La logistica urbana è un campo di riflessione volto ad approfondire le soluzioni ottimali per la distribuzione delle merci in ambito urbano e i relativi obiettivi ambientali. Ad oggi, molte azioni sono state intraprese dalle pubbliche autorità senza tenere conto, tuttavia, degli impatti che i nuovi schemi organizzativi possono avere sull’ attuale organizzazione delle imprese. Il contributo incentra la riflessione sul caso studio relativo alla città di Padova, in Italia: il sistema di logistica urbana CityPorto. In particolare, se ne analizzano le caratteristiche dal punto di vista della sostenibilità del sistema proposto, sia in riferimento alla dimensione imprenditoriale che a quella collettiva, mettendo in relazione le peculiarità della logistica urbana e le più estese catene distributive, di scala globale, di cui le prime sono parte integrante.

  12. Qualidade do sono e marcadores endócrinos e bioquímicos

    OpenAIRE

    Carvalho, Ana Sofia Coelho de; Fernandes, Adília; Belen Gallego, Ana; Vaz, Josiana A.; Sierra Vega, Matilde

    2016-01-01

    O sono e o repouso constituem o ritmo biológico base da espécie humana e são fundamentais para uma boa saúde e qualidade de vida, com especial significado em crianças e jovens (DGS, 2015). Dormir bem é fundamental para a recuperação física e psíquica do indivíduo, indispensável para sermos saudáveis e essencial para nos mantermos ativos, concentrados e bem-dispostos. O sono é um equilibrador do humor e das emoções, recupera o corpo e a memória, estimula a criatividade e aumenta e consolida a ...

  13. Appearance of high submerged cavitating jet: The cavitation phenomenon and sono luminescence

    Directory of Open Access Journals (Sweden)

    Hutli Ezddin

    2013-01-01

    Full Text Available In order to study jet structure and behaviour of cloud cavitation within time and space, visualization of highly submerged cavitating water jet has been done using Stanford Optics 4 Quick 05 equipment, through endoscopes and other lenses with Drello3244 and Strobex Flash Chadwick as flashlight stroboscope. This included obligatory synchronization with several types of techniques and lenses. Images of the flow regime have been taken, allowing calculation of the non-dimensional cavitation cloud length under working conditions. Consequently a certain correlation has been proposed. The influencing parameters, such as; injection pressure, downstream pressure and cavitation number were experimentally proved to be very significant. The recordings of sono-luminescence phenomenon proved the collapsing of bubbles everywhere along the jet trajectory. In addition, the effect of temperature on sono-luminescence recordings was also a point of investigation. [Projekat Ministarstva nauke Republike Srbije, br. TR35046

  14. Solid spectroscopy: semiconductors

    International Nuclear Information System (INIS)

    Silva, C.E.T.G. da

    1983-01-01

    Photoemission as technique of study of the semiconductor electronic structure is shortly discussed. Homogeneous and heterogeneous semiconductors, where volume and surface electronic structure, core levels and O and H chemisorption in GaAs, Schottky barrier are treated, respectively. Amorphous semiconductors are also discussed. (L.C.) [pt

  15. Qualidade de sono de trabalhadores obesos de um hospital universitário: acupuntura como terapia complementar

    Directory of Open Access Journals (Sweden)

    Mariana Lourenço Haddad

    2012-02-01

    Full Text Available O objetivo do estudo foi verificar o efeito da acupuntura na qualidade de sono de trabalhadores obesos em um hospital universitário. Os dados foram coletados no período de julho a outubro de 2009, junto a 37 funcionários, submetidos a oito aplicações semanais de acupuntura. O Índice de Qualidade de Sono de Pittsburgh foi utilizado para identificar a qualidade de sono dos sujeitos antes e após a intervenção. Os resultados mostram que antes da intervenção cinco (13,5% pessoas apresentaram boa qualidade de sono e, ao final da intervenção, 14 (37,8% relataram este quadro. A diferença obtida na comparação das médias dos escores obtidos antes e após a acupuntura foi significativa (p=0,0001. Concluiu-se que a acupuntura produziu um efeito positivo sobre a qualidade do sono na amostra estudada, apresentando-se como uma técnica adjuvante no tratamento dos distúrbios do sono e consequentemente na melhoria da qualidade de vida desta população.

  16. Improvement in mechanical properties of hypereutectic Al-Si-Cu alloys through sono-solidified

    Directory of Open Access Journals (Sweden)

    Yoshiki Tsunekawa

    2014-07-01

    Full Text Available For the wider applications, it is necessary to improve the ductility as well as the strength and wear-resistance of hypereutectic Al-Si-Cu alloys, which are typical light-weight wear-resistant materials. An increase in the amounts of primary silicon particles causes the modified wear-resistance of hypereutectic Al-Si-Cu alloys, but leads to the poor strength and ductility. It is known that dual phase steels composed of hetero-structure have succeeded in bringing contradictory mechanical properties of high strength and ductility concurrently. In order to apply the idea of hetero-structure to hypereutectic Al-Si-Cu alloys for the achievement of high strength and ductility along with wear resistance, ultrasonic irradiation of the molten metal during the solidification, which is called sono-solidification, was carried out from its molten state to just above the eutectic temperature. The sono-solidified Al-17Si-4Cu alloy is composed of hetero-structure, which are, hard primary silicon particles, soft non-equilibrium a -Al phase and the eutectic region. Rheo-casting was performed at just above the eutectic temperature with sono-solidified slurry to shape a disk specimen. After the rheo-casting with modified sonosolidified slurry held for 45 s at 570 篊, the quantitative optical microscope observation exhibits that the microstructure is composed of 18area% of hard primary silicon particles and 57area% of soft a -Al phase. In contrast, there exist only 5 area% of primary silicon particles and no a -Al phase in rheo-cast specimen with normally solidified slurry. Hence the tensile tests of T6 treated rheo-cast specimens with modified sono-solidified slurry exhibit improved strength and 5% of elongation, regardless of having more than 3 times higher amounts of primary silicon particles compared to that of rheo-cast specimen with normally solidified slurry.

  17. Privação de sono total na doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Paulo H. F. Bertolucci

    1987-09-01

    Full Text Available Doze pacientes com doença de Parkinson (DP foram submetidos a privação de sono total. A média de idade dos pacientes era 61 anos e a duração da doença era em média de 5,1 anos (1,5 a 12 anos. Quatro deles usavam apenas anticolinérgico, 4 usavam L-Dopa e 4 combinação de drogas de ambos os grupos. Após privação de sono total por uma única noite foi verificada melhora na rigidez, bradicinesia, alterações de postura e marcha e incapacidade funcional com duração de duas semanas, em comparação com os escores quando da inclusão no estudo. Não foi observado efeito sobre o tremor. Em relação aos sintomas depressivos foi verificada melhora com duração de apenas uma semana. Estes resultados sugerem efeito benéfico da privação de sono na DP. Com base em estudos experimentais julgamos que uma explicação possível para estes resultados seja a modificação de receptores dopaminérgicos.

  18. Sono-electroanalysis of copper: enhanced detection and determination in the presence of surfactants.

    Science.gov (United States)

    Hardcastle, Joanna Lorraine; Hignett, Geraldine; Melville, James L; Compton, Richard G

    2002-04-01

    Surfactant adsorption has been shown to have a passivating effect on the electrode surface during anodic stripping voltammetric measurements. In the present work the feasibility of sono-anodic stripping analysis for the determination of copper in aqueous media contaminated with surfactant has been studied at an unmodified bare glassy carbon electrode. We illustrate the deleterious effect of three common surfactants, sodium dodecyl sulfate (SDS), dodecyl pyridinium chloride (DPC) and Triton-X 100 (TX-100) on conventional electroanalysis. The analogous sono-electroanalytical response was investigated for each surfactant at ultrasound intensities above and below the cavitation threshold. The enhancement in the stripping signal observed is attributed to the increased mass transport due to acoustic streaming and above the cavitation threshold the intensity of cavitational events is significantly increased leading to shearing of adsorbed surfactant molecules from the surface. As a result accurate analyses for SDS concentrations up to 100 ppm are possible, with analytical signals visible in solutions of SDS and TX-100 of 1000 ppm. Analysis is reported in high concentration of surfactant with use of sono-solvent double extraction. The power of this technique is clearly illustrated by the ability to obtain accurate measurements of copper concentration from starting solutions containing 1000 ppm SDS or TX-100. This was also exemplified by analysis of the low concentration 0.3 microM Cu(II) solution giving a percentage recovery of 94% in the presence of 1000 ppm SDS or TX-100.

  19. Treating soil-washing fluids polluted with oxyfluorfen by sono-electrolysis with diamond anodes.

    Science.gov (United States)

    Vieira Dos Santos, E; Sáez, C; Cañizares, P; Martínez-Huitle, C A; Rodrigo, M A

    2017-01-01

    This works is focused on the treatment by sono-electrolysis of the liquid effluents produced during the Surfactant-Aided Soil-Washing (SASW) of soils spiked with herbicide oxyfluorfen. Results show that this combined technology is very efficient and attains the complete mineralization of the waste, regardless of the surfactant/soil radio applied in the SASW process (which is the main parameter of the soil remediation process and leads to very different wastes). Both the surfactant and the herbicide are completely degraded, even when single electrolysis is used; and only two intermediates are detected by HPLC in very low concentrations. Conversely, the efficiency of single sonolysis approach, for the oxidation of pollutant, is very low and just small changes in the herbicides and surfactant concentrations are observed during the tests carried out. Sono-electrolysis with diamond electrodes achieved higher degradation rates than those obtained by single sonolysis and/or single electrolysis with diamond anodes. A key role of sulfate is developed, when it is released after the electrochemical degradation of surfactant. The efficient catalytic effect observed which can be explained by the anodic formation of persulfate and the later, a sono-activation is attained to produce highly efficient sulfate radicals. The effect of irradiating US is more importantly observed in the pesticide than in the surfactant, in agreement with the well-known behavior of these radicals which are known to oxidize more efficiently aromatic compounds than aliphatic species. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Avaliação da qualidade de vida e do sono de atletas paralímpicos brasileiros

    Directory of Open Access Journals (Sweden)

    Andrea Maculano Esteves

    2015-02-01

    Full Text Available INTRODUÇÃO: o esporte paralímpico brasileiro vem ganhando destaque no cenário mundial e, com isso, a avaliação de variáveis que possam influenciar positivamente no desempenho desses atletas é de suma importância para o acompanhamento durante o seu período de treinamento. OBJETIVO: avaliar a qualidade de vida e do sono de atletas paralímpicos brasileiros. MÉTODOS: foram estudados 49 atletas paralímpicos das modalidades natação (n=20 e atletismo (n=29. Os atletas responderam a questionários que avaliaram seu padrão e queixas de sono e qualidade de vida. RESULTADOS: a maioria dos atletas (65,30% relatou má qualidade do sono, visto que a latência do sono neste grupo foi significativamente maior do que em atletas com boa qualidade de sono. Cinquenta por cento dos atletas relataram o desejo de fazer mudanças em seu horário de sono e 52% gostariam de aumentar o seu tempo de sono. A sonolência diurna excessiva foi observada em 53,06% dos atletas. Quanto às queixas de distúrbios do sono, foram relatados chute ou espasmos das pernas e ronco. Menores índices de qualidade de vida foram encontrados no meio ambiente em comparação com os domínios físicos, psicológicos ou sociais. CONCLUSÕES: os resultados sugerem que a maioria dos atletas apresentou uma má qualidade do sono e, consequentemente, um alto índice de insatisfação com o sono. Além disso, menores escores de qualidade de vida foram encontrados no domínio ambiental, que está relacionado com a segurança física, proteção e condições em casa.

  1. Core-Shell Zn x Cd1- x Se/Zn y Cd1- y Se Quantum Dots for Nonvolatile Memory and Electroluminescent Device Applications

    Science.gov (United States)

    Al-Amoody, Fuad; Suarez, Ernesto; Rodriguez, Angel; Heller, E.; Huang, Wenli; Jain, F.

    2011-08-01

    This paper presents a floating quantum dot (QD) gate nonvolatile memory device using high-energy-gap Zn y Cd1- y Se-cladded Zn x Cd1- x Se quantum dots ( y > x) with tunneling layers comprising nearly lattice-matched semiconductors (e.g., ZnS/ZnMgS) on Si channels. Also presented is the fabrication of an electroluminescent (EL) device with embedded cladded ZnCdSe quantum dots. These ZnCdSe quantum dots were embedded between indium tin oxide (ITO) on glass and a top Schottky metal electrode deposited on a thin CsF barrier. These QDs, which were nucleated in a photo-assisted microwave plasma (PMP) metalorganic chemical vapor deposition (MOCVD) reactor, were grown between the source and drain regions on a p-type silicon substrate of the nonvolatile memory device. The composition of QD cladding, which relates to the value of y in Zn y Cd1- y Se, was engineered by the intensity of ultraviolet light, which controlled the incorporation of zinc in ZnCdSe. The QD quality is comparable to those deposited by other methods. Characteristics and modeling of the II-VI quantum dots as well as two diverse types of devices are presented in this paper.

  2. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers.

    Science.gov (United States)

    Li, Dong; Chen, Mingyuan; Zong, Qijun; Zhang, Zengxing

    2017-10-11

    The Schottky junction is an important unit in electronics and optoelectronics. However, its properties greatly degrade with device miniaturization. The fast development of circuits has fueled a rapid growth in the study of two-dimensional (2D) crystals, which may lead to breakthroughs in the semiconductor industry. Here we report a floating-gate manipulated nonvolatile ambipolar Schottky junction memory from stacked all-2D layers of graphene-BP/h-BN/graphene (BP, black phosphorus; h-BN, hexagonal boron nitride) in a designed floating-gate field-effect Schottky barrier transistor configuration. By manipulating the voltage pulse applied to the control gate, the device exhibits ambipolar characteristics and can be tuned to act as graphene-p-BP or graphene-n-BP junctions with reverse rectification behavior. Moreover, the junction exhibits good storability properties of more than 10 years and is also programmable. On the basis of these characteristics, we further demonstrate the application of the device to dual-mode nonvolatile Schottky junction memories, memory inverter circuits, and logic rectifiers.

  3. Mecanismos do ciclo sono-vigília Sleep-wake cycle mechanisms

    Directory of Open Access Journals (Sweden)

    Flávio Alóe

    2005-05-01

    Full Text Available Três sub-divisões hipotalâmicas são importantes no ciclo sono-vigília: o hipotálamo anterior (núcleos gabaérgicos e núcleos supraquiasmáticos, o hipotálamo posterior (núcleo túbero-mamilar histaminérgico e o hipotálamo lateral (sistema hipocretinas. O sistema gabaérgico inibitório do núcleo pré-óptico ventro-lateral (VLPO do hipotálamo anterior é responsável pelo início e manutenção do sono NREM. Os neurônios supraquiasmáticos (NSQs do hipotálamo anterior são responsáveis pelo ritmo circadiano do ciclo sono-vigília. Os núcleos aminérgicos, histaminérgicos, as hipocretinas e núcleos colinérgicos do prosencéfalo basal apresentam-se ativos durante a vigília, inibindo o núcleo pré-óptico ventro-lateral, promovendo a vigília. O processo de inibição-estimulação é a base do modelo da interação recíproca entre os grupos de células wake-off-sleep-on e células wake-off-sleep-on reguladores do ciclo sono-vigília. O modelo da interação recíproca também se aplica aos núcleos colinérgicos (células REM-on e aminérgicos (células REM-off do tronco cerebral no controle temporal do sono REM-NREM.Neurochemically distinct systems interact regulating sleep and wakefulness. Wakefulness is promoted by aminergic, acetylcholinergic brainstem and hypothalamic systems. Each of these arousal systems supports wakefulness and coordinated activity is required for alertness and EEG activation. Neurons in the pons and preoptic area control rapid eye movement and non-rapid eye movement sleep. Mutual inhibition between these wake- and sleep-regulating systems generate behavioral states. An up-to-date understanding of these systems should allow clinicians and researchers to better understand the effects of drugs, lesions, and neurologic disease on sleep and wakefulness.

  4. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser; Bhansali, Unnat Sampatraj; Alshareef, Husam N.

    2012-01-01

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage

  5. Quest for high-Curie temperature MnxGe1-x diluted magnetic semiconductors for room-temperature spintronics applications

    Science.gov (United States)

    Nie, Tianxiao; Tang, Jianshi; Wang, Kang L.

    2015-09-01

    In this paper, we report the non-equilibrium growth of various Mn-doped Ge dilute magnetic semiconductor nanostructures using molecular-beam epitaxy, including quantum dots, nanodisks and nanowires. Their detailed structural and magnetic properties are characterized. By comparing the results with those in MnxGe1-x thin films, it is affirmed that the use of nanostructures helps eliminate crystalline defects and meanwhile enhance the carrier-mediate ferromagnetism from substantial quantum confinements. Our systematic studies provide a promising platform to build nonvolatile spinFET and other novel spintronic devices based upon dilute magnetic semiconductor nanostructures.

  6. Role of Non-Volatile Memories in Automotive and IoT Markets

    Science.gov (United States)

    2017-03-01

    Standard Manufacturing Supply Long Term Short to Medium Term Density Up to 16MB Up to 2MB IO Configuration Up to x128 Up to x32 Design for Test...Role of Non-Volatile Memories in Automotive and IoT Markets Vipin Tiwari Director, Business Development and Product Marketing SST – A Wholly Own...microcontrollers (MCU) and certainly one of the most challenging elements to master. This paper addresses the role of non-volatile memories for

  7. Transparent Oxide Semiconductors for Emerging Electronics

    KAUST Repository

    Caraveo-Frescas, Jesus Alfonso

    2013-11-01

    Transparent oxide electronics have emerged as promising materials to shape the future of electronics. While several n-type oxides have been already studied and demonstrated feasibility to be used as active materials in thin film transistors, high performance p-type oxides have remained elusive. This dissertation is devoted to the study of transparent p-type oxide semiconductor tin monoxide and its use in the fabrication of field effect devices. A complete study on the deposition of tin monoxide thin films by direct current reactive magnetron sputtering is performed. Carrier density, carrier mobility and conductivity are studied over a set of deposition conditions where p-type conduction is observed. Density functional theory simulations are performed in order to elucidate the effect of native defects on carrier mobility. The findings on the electrical properties of SnO thin films are then translated to the fabrication of thin films transistors. The low processing temperature of tin monoxide thin films below 200 oC is shown advantageous for the fabrication of fully transparent and flexible thin film transistors. After careful device engineering, including post deposition annealing temperature, gate dielectric material, semiconductor thickness and source and drain electrodes material, thin film transistors with record device performance are demonstrated, achieving a field effect mobility >6.7 cm2V-1s-1. Device performance is further improved to reach a field effect mobility of 10.8 cm2V-1s-1 in SnO nanowire field effect transistors fabricated from the sputtered SnO thin films and patterned by electron beam lithography. Downscaling device dimension to nano scale is shown beneficial for SnO field effect devices not only by achieving a higher hole mobility but enhancing the overall device performance including better threshold voltage, subthreshold swing and lower number of interfacial defects. Use of p-type semiconductors in nonvolatile memory applications is then

  8. Mass transfer of nonvolatile organic compounds from porous media

    Science.gov (United States)

    Khachikian, Crist Simon

    This thesis presents data pertaining to the mass transfer of nonvolatile organic compounds from porous media. Physical properties of porous solids, including surface and pore areas, are studied. Information from these studies, along with dissolution data, are used to develop correlations relating the Sherwood Number to the Peclet Number. The contaminant used in this study is naphthalene; the solids used are Moffett Sand (MS), Borden Sand (BS), Lampblack (LB), and Silica Gel (SG). Surface area results indicate that contamination at 0.1% reduces the area of MS and SG by 48 and 37%, respectively, while contamination at 1.0% reduces the area of MS, BS, and SG by 59, 56, and 40%, respectively. Most of the reduction in area originates in the reduction of pore areas and volumes, where the contaminant precipitates. After long-term storage, surface areas did not recover to their original values due to an "irreversible" fraction of naphthalene. Treatment with heat or solvent or both was necessary to completely remove the contamination. For lampblack, treatment at 100°C decreased areas while treatment at 250°C increased them. Treatment at 250°°C probably opened pores while that at 100°C may have blocked more pores by redistributing the tar-like contaminant characteristic of lampblack. Contaminated MS and SG solids are packed in columns through which water is pumped. The effluent began at a relatively high concentration (˜70% of solubility) for both samples. However, SG column concentrations dropped quickly, never achieving steady state while the MS samples declined more gradually towards steady state. The high pore areas of the SG samples are believed to cause this behavior. The steady state portion of the MS dissolution history is used to develop mass transfer correlations. The correlation in this study differs from previous work in two major ways: (1) the exponent on the Pe is three times larger and (2) the limiting Sh is 106 times smaller. These results suggest that

  9. Relação entre a prevalência de Bruxismo e a Apneia do Sono

    Directory of Open Access Journals (Sweden)

    Andressa Bergmeier

    2016-08-01

    Full Text Available A síndrome da apneia obstrutiva do sono é considerada um transtorno respiratório do sono cuja característica principal são pausas na respiração durante o sono. Estas paradas podem ter relação com várias patologias do sono, como por exemplo o bruxismo, que nada mais é que o contato não-funcional dos dentes. O objetivo do presente trabalho foi verificar a prevalência do bruxismo em pacientes com a apneia do sono e avaliar se há uma relação deste com o grau de apneia. A avaliação foi realizada através de exame polissonográfico, onde foram avaliados 23 pacientes que se submeteram à polissonografia na clinica SNN no mês de agosto. Os dados da pesquisa demonstraram que 52% dos participantes foram diagnosticados com apneia do sono do tipo grave e destes, 75% além de apneia possuíam bruxismo. A apneia moderada foi diagnosticada em 26% dos pacientes, onde 8,30% tiveram episódios de bruxismo.  Já 22% dos pacientes possuíam Apneia leve, e destes 16,70% tiveram episodio de bruxismo. Não houve Correlação significativa entre o grau de apneia e a frequência de bruxismo (rho= 0,403 e p=0,057.  Conclui-se então, que nesta pesquisa o bruxismo não apresentou relação estatisticamente significante com o grau de apneia do sono, mesmo ele ocorrendo com uma maior predominância em pacientes que possuíam apneia do tipo grave.

  10. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  11. Semiconductor apparatus and method of fabrication for a semiconductor apparatus

    NARCIS (Netherlands)

    2010-01-01

    The invention relates to a semiconductor apparatus (1) and a method of fabrication for a semiconductor apparatus (1), wherein the semiconductor apparatus (1) comprises a semiconductor layer (2) and a passivation layer (3), arranged on a surface of the semiconductor layer (2), for passivating the

  12. Electrostatic Switching in Vertically Oriented Nanotubes for Nonvolatile Memory Applications

    Science.gov (United States)

    Kaul, Anupama B.; Khan, Paul; Jennings, Andrew T.; Greer, Julia R.; Megerian, Krikor G.; Allmen, Paul von

    2009-01-01

    We have demonstrated electrostatic switching in vertically oriented nanotubes or nanofibers, where a nanoprobe was used as the actuating electrode inside an SEM. When the nanoprobe was manipulated to be in close proximity to a single tube, switching voltages between 10 V - 40 V were observed, depending on the geometrical parameters. The turn-on transitions appeared to be much sharper than the turn-off transitions which were limited by the tube-to-probe contact resistances. In many cases, stiction forces at these dimensions were dominant, since the tube appeared stuck to the probe even after the voltage returned to 0 V, suggesting that such structures are promising for nonvolatile memory applications. The stiction effects, to some extent, can be adjusted by engineering the switch geometry appropriately. Nanoscale mechanical measurements were also conducted on the tubes using a custom-built anoindentor inside an SEM, from which preliminary material parameters, such as the elastic modulus, were extracted. The mechanical measurements also revealed that the tubes appear to be well adhered to the substrate. The material parameters gathered from the mechanical measurements were then used in developing an electrostatic model of the switch using a commercially available finite-element simulator. The calculated pull-in voltages appeared to be in agreement to the experimentally obtained switching voltages to first order.

  13. Highly Stretchable Non-volatile Nylon Thread Memory

    Science.gov (United States)

    Kang, Ting-Kuo

    2016-04-01

    Integration of electronic elements into textiles, to afford e-textiles, can provide an ideal platform for the development of lightweight, thin, flexible, and stretchable e-textiles. This approach will enable us to meet the demands of the rapidly growing market of wearable-electronics on arbitrary non-conventional substrates. However the actual integration of the e-textiles that undergo mechanical deformations during both assembly and daily wear or satisfy the requirements of the low-end applications, remains a challenge. Resistive memory elements can also be fabricated onto a nylon thread (NT) for e-textile applications. In this study, a simple dip-and-dry process using graphene-PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) ink is proposed for the fabrication of a highly stretchable non-volatile NT memory. The NT memory appears to have typical write-once-read-many-times characteristics. The results show that an ON/OFF ratio of approximately 103 is maintained for a retention time of 106 s. Furthermore, a highly stretchable strain and a long-term digital-storage capability of the ON-OFF-ON states are demonstrated in the NT memory. The actual integration of the knitted NT memories into textiles will enable new design possibilities for low-cost and large-area e-textile memory applications.

  14. Graphene-quantum-dot nonvolatile charge-trap flash memories

    International Nuclear Information System (INIS)

    Sin Joo, Soong; Kim, Jungkil; Seok Kang, Soo; Kim, Sung; Choi, Suk-Ho; Won Hwang, Sung

    2014-01-01

    Nonvolatile flash-memory capacitors containing graphene quantum dots (GQDs) of 6, 12, and 27 nm average sizes (d) between SiO 2 layers for use as charge traps have been prepared by sequential processes: ion-beam sputtering deposition (IBSD) of 10 nm SiO 2 on a p-type wafer, spin-coating of GQDs on the SiO 2 layer, and IBSD of 20 nm SiO 2 on the GQD layer. The presence of almost a single array of GQDs at a distance of ∼13 nm from the SiO 2 /Si wafer interface is confirmed by transmission electron microscopy and photoluminescence. The memory window estimated by capacitance–voltage curves is proportional to d for sweep voltages wider than  ± 3 V, and for d = 27 nm the GQD memories show a maximum memory window of 8 V at a sweep voltage of  ± 10 V. The program and erase speeds are largest at d = 12 and 27 nm, respectively, and the endurance and data-retention properties are the best at d = 27 nm. These memory behaviors can be attributed to combined effects of edge state and quantum confinement. (papers)

  15. A graphene-based non-volatile memory

    Science.gov (United States)

    Loisel, Loïc.; Maurice, Ange; Lebental, Bérengère; Vezzoli, Stefano; Cojocaru, Costel-Sorin; Tay, Beng Kang

    2015-09-01

    We report on the development and characterization of a simple two-terminal non-volatile graphene switch. After an initial electroforming step during which Joule heating leads to the formation of a nano-gap impeding the current flow, the devices can be switched reversibly between two well-separated resistance states. To do so, either voltage sweeps or pulses can be used, with the condition that VSET achieve reversible switching on more than 100 cycles with resistance ratio values of 104. This approach of graphene memory is competitive as compared to other graphene approaches such as redox of graphene oxide, or electro-mechanical switches with suspended graphene. We suggest a switching model based on a planar electro-mechanical switch, whereby electrostatic, elastic and friction forces are competing to switch devices ON and OFF, and the stability in the ON state is achieved by the formation of covalent bonds between the two stretched sides of the graphene, hence bridging the nano-gap. Developing a planar electro-mechanical switch enables to obtain the advantages of electro-mechanical switches while avoiding most of their drawbacks.

  16. Quantitative reconstruction of the nonvolatile sensometabolome of a red wine.

    Science.gov (United States)

    Hufnagel, Jan Carlos; Hofmann, Thomas

    2008-10-08

    The first comprehensive quantitative determination of 82 putative taste-active metabolites and mineral salts, the ranking of these compounds in their sensory impact based on dose-over-threshold (DoT) factors, followed by the confirmation of their sensory relevance by taste reconstruction and omission experiments enabled the decoding of the nonvolatile sensometabolome of a red wine. For the first time, the bitterness of the red wine could be demonstrated to be induced by subthreshold concentrations of phenolic acid ethyl esters and flavan-3-ols. Whereas the velvety astringent onset was imparted by three flavon-3-ol glucosides and dihydroflavon-3-ol rhamnosides, the puckering astringent offset was caused by a polymeric fraction exhibiting molecular masses above >5 kDa and was found to be amplified by the organic acids. The perceived sourness was imparted by l-tartaric acid, d-galacturonic acid, acetic acid, succinic acid, l-malic acid, and l-lactic acid and was slightly suppressed by the chlorides of potassium, magnesium, and ammonium, respectively. In addition, d-fructose and glycerol as well as subthreshold concentrations of glucose, 1,2-propandiol, and myo-inositol were found to be responsible for the sweetness, whereas the mouthfulness and body of the red wine were induced only by glycerol, 1,2-propandiol, and myo-inositol.

  17. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  18. Surface-type nonvolatile electric memory elements based on organic-on-organic CuPc-H2Pc heterojunction

    International Nuclear Information System (INIS)

    Karimov, Khasan S.; Muqeet Rehman, M.; Zameer Abbas, S.; Ahmad, Zubair; Touati, Farid; Mahroof-Tahir, M.

    2015-01-01

    A novel surface-type nonvolatile electric memory elements based on organic semiconductors CuPc and H 2 Pc are fabricated by vacuum deposition of the CuPc and H 2 Pc films on preliminary deposited metallic (Ag and Cu) electrodes. The gap between Ag and Cu electrodes is 30–40 μm. For the current–voltage (I–V) characteristics the memory effect, switching effect, and negative differential resistance regions are observed. The switching mechanism is attributed to the electric-field-induced charge transfer. As a result the device switches from a low to a high-conductivity state and then back to a low conductivity state if the opposite polarity voltage is applied. The ratio of resistance at the high resistance state to that at the low resistance state is equal to 120–150. Under the switching condition, the electric current increases ∼ 80–100 times. A comparison between the forward and reverse I–V characteristics shows the presence of rectifying behavior. (paper)

  19. Comportamentos associados ao sono em estudantes do ensino médio: análises transversal e prospectiva

    Directory of Open Access Journals (Sweden)

    Luana Peter Hoefelmann

    2014-05-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2014v16s1p68 A associação entre comportamentos de saúde e sono tem sido testada em jovens com dados transversais, mas evidências prospectivas são necessárias. O objetivo do estudo foi verificar associações transversais e prospectivas entre variáveis comportamentais e percepções de qualidade e duração de sono. Análise secundária transversal e longitudinal dos dados da pesquisa “Saúde na Boa”, desenvolvido de março a dezembro de 2006, com amostra aleatória de estudantes de ensino médio (14-24 anos de 20 escolas públicas de Recife e Florianópolis. A percepção da qualidade e da duração do sono e as variáveis do estilo de vida foram obtidas por autorrelato. Utilizaram-se regressões logísticas binárias brutas e ajustadas. Nos dados transversais e longitudinais, 45,7% e 45,8% dos jovens relataram má qualidade e 76,7% e 77,5% reportaram duração insuficiente do sono, respectivamente. Na análise transversal, a menor prática de atividade física (OR = 0,74; IC 95%: 0,55; 0,99 e o maior consumo de salgados (OR = 1,67; IC 95%: 1,18; 2,36 estiveram associados à qualidade negativa do sono, enquanto o tempo excessivo de televisão (OR = 0,48; IC 95%: 0,30; 0,75 e de consumo de refrigerantes (OR = 1,84; IC 95%: 1,19; 2,84 associaram-se à duração insuficiente do sono. Na análise prospectiva, nenhum dos comportamentos estudados se manteve associado à qualidade e duração do sono. As prevalências de percepção de qualidade e duração do sono se mantiveram estáveis nos dois momentos analisados. Alguns comportamentos se associaram às percepções de sono em análises transversais, mas estes achados não se confirmaram em análises prospectivas.

  20. Sono-photo-Fenton oxidation of bisphenol-A over a LaFeO3 perovskite catalyst.

    Science.gov (United States)

    Dükkancı, Meral

    2018-01-01

    In this study, oxidation of bisphenol-A (IUPAC name - 2,2-(4,4-dihydroxyphenyl, BPA), which is an endocrine disrupting phenolic compound used in the polycarbonate plastic and epoxy resin industry, was investigated using sono-photo-Fenton process under visible light irradiation in the presence of an iron containing perovskite catalyst, LaFeO 3 . The catalyst prepared by sol-gel method, calcined at 500°C showed a catalytic activity in BPA oxidation using sono-photo-Fenton process with a degradation degree and a chemical oxygen demand (COD) reduction of 21.8% and 11.2%, respectively. Degradation of BPA was studied by using individual and combined advanced oxidation techniques including sonication, heterogeneous Fenton reaction and photo oxidation over this catalyst to understand the effect of each process on degradation of BPA. It was seen, the role of sonication was very important in hybrid sono-photo-Fenton process due to the pyrolysis and sonoluminescence effects caused by ultrasonic irradiation. The prepared LaFeO 3 perovskite catalyst was a good sonocatalyst rather than a photocatalyst. Sonication was not only the effective process to degrade BPA but also it was the cost effective process in terms of energy consumption. The studies show that the energy consumption is lower in the sono-Fenton process than those in the photo-Fenton and sono-photo- Fenton processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Contacts to semiconductors

    International Nuclear Information System (INIS)

    Tove, P.A.

    1975-08-01

    Contacts to semiconductors play an important role in most semiconductor devices. These devices range from microelectronics to power components, from high-sensitivity light or radiation detectors to light-emitting of microwave-generating components. Silicon is the dominating material but compound semiconductors are increasing in importance. The following survey is an attempt to classify contact properties and the physical mechanisms involved, as well as fabrication methods and methods of investigation. The main interest is in metal-semiconductor type contacts where a few basic concepts are dealt with in some detail. (Auth.)

  2. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  3. Nanopatterned ferroelectrics for ultrahigh density rad-hard nonvolatile memories.

    Energy Technology Data Exchange (ETDEWEB)

    Brennecka, Geoffrey L.; Stevens, Jeffrey; Scrymgeour, David; Gin, Aaron V.; Tuttle, Bruce Andrew

    2010-09-01

    Radiation hard nonvolatile random access memory (NVRAM) is a crucial component for DOE and DOD surveillance and defense applications. NVRAMs based upon ferroelectric materials (also known as FERAMs) are proven to work in radiation-rich environments and inherently require less power than many other NVRAM technologies. However, fabrication and integration challenges have led to state-of-the-art FERAMs still being fabricated using a 130nm process while competing phase-change memory (PRAM) has been demonstrated with a 20nm process. Use of block copolymer lithography is a promising approach to patterning at the sub-32nm scale, but is currently limited to self-assembly directly on Si or SiO{sub 2} layers. Successful integration of ferroelectrics with discrete and addressable features of {approx}15-20nm would represent a 100-fold improvement in areal memory density and would enable more highly integrated electronic devices required for systems advances. Towards this end, we have developed a technique that allows us to carry out block copolymer self-assembly directly on a huge variety of different materials and have investigated the fabrication, integration, and characterization of electroceramic materials - primarily focused on solution-derived ferroelectrics - with discrete features of {approx}20nm and below. Significant challenges remain before such techniques will be capable of fabricating fully integrated NVRAM devices, but the tools developed for this effort are already finding broader use. This report introduces the nanopatterned NVRAM device concept as a mechanism for motivating the subsequent studies, but the bulk of the document will focus on the platform and technology development.

  4. Nonvolatile, semivolatile, or volatile: redefining volatile for volatile organic compounds.

    Science.gov (United States)

    Võ, Uyên-Uyén T; Morris, Michael P

    2014-06-01

    Although widely used in air quality regulatory frameworks, the term "volatile organic compound" (VOC) is poorly defined. Numerous standardized tests are currently used in regulations to determine VOC content (and thus volatility), but in many cases the tests do not agree with each other, nor do they always accurately represent actual evaporation rates under ambient conditions. The parameters (time, temperature, reference material, column polarity, etc.) used in the definitions and the associated test methods were created without a significant evaluation of volatilization characteristics in real world settings. Not only do these differences lead to varying VOC content results, but occasionally they conflict with one another. An ambient evaporation study of selected compounds and a few formulated products was conducted and the results were compared to several current VOC test methodologies: SCAQMD Method 313 (M313), ASTM Standard Test Method E 1868-10 (E1868), and US. EPA Reference Method 24 (M24). The ambient evaporation study showed a definite distinction between nonvolatile, semivolatile, and volatile compounds. Some low vapor pressure (LVP) solvents, currently considered exempt as VOCs by some methods, volatilize at ambient conditions nearly as rapidly as the traditional high-volatility solvents they are meant to replace. Conversely, bio-based and heavy hydrocarbons did not readily volatilize, though they often are calculated as VOCs in some traditional test methods. The study suggests that regulatory standards should be reevaluated to more accurately reflect real-world emission from the use of VOC containing products. The definition of VOC in current test methods may lead to regulations that exclude otherwise viable alternatives or allow substitutions of chemicals that may limit the environmental benefits sought in the regulation. A study was conducted to examine volatility of several compounds and a few formulated products under several current VOC test

  5. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  6. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  7. Spin physics in semiconductors

    CERN Document Server

    Dyakonov, Mikhail I

    2008-01-01

    This book describes beautiful optical and transport phenomena related to the electron and nuclear spins in semiconductors with emphasis on a clear presentation of the physics involved. Recent results on quantum wells and quantum dots are reviewed. The book is intended for students and researchers in the fields of semiconductor physics and nanoelectronics.

  8. Horas de sono e índice de massa corporal em pré-escolares do sul do Brasil

    Directory of Open Access Journals (Sweden)

    Maria Laura da Costa Louzada

    2012-12-01

    Full Text Available A prevenção e o tratamento do excesso de peso são particularmente complexos, reforçando a importância de estudos que visem esclarecer sua rede de causas e efeitos. Assim, o objetivo desse estudo foi avaliar a relação entre horas de sono noturnas e medidas antropométricas. Realizou-se uma análise transversal realizada a partir de dados de 348 crianças de 3 e 4 anos da cidade de São Leopoldo/ RS. As horas de sono noturnas foram relatadas pelas mães e as medidas de índice de massa corporal, circunferência da cintura e dobras cutâneas foram medidas de acordo com protocolo padrão. As análises foram ajustadas para consumo energético e horas de televisão assistidas. As crianças com excesso de peso apresentaram, em média, 0,39 horas a menos de sono em relação àquelas com peso adequado (9,77 ± 1,44 versus 10,17 ± 1,34; IC95% 0,03-0,76. Observou-se associação inversa entre horas de sono noturnas e valores de escore z de índice de massa corporal para idade (B = -0,12 IC95% -0,22--0,02. A circunferência da cintura e as dobras cutâneas apresentaram relação inversa com as horas de sono, porém sem diferença estatística. Em pré-escolares do sul do Brasil, menos horas de sono noturnas foram associadas com maiores valores de índice de massa corporal.

  9. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  10. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias

    2013-01-01

    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... nonlinearity in doped semiconductors originates from the near-instantaneous heating of free electrons in the ponderomotive potential created by electric field of the THz pulse, leading to ultrafast increase of electron effective mass by intervalley scattering. Modification of effective mass in turn leads...... to a decrease of plasma frequency in semiconductor and produces a substantial modification of THz-range material dielectric function, described by the Drude model. As a result, the nonlinearity of both absorption coefficient and refractive index of the semiconductor is observed. In particular we demonstrate...

  11. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  12. CCST [Center for Compound Semiconductor Technology] research briefs

    International Nuclear Information System (INIS)

    Zipperian, T.E.; Voelker, E.R.

    1989-12-01

    This paper discusses the following topics: theoretical predictions of valence and conduction band offsets in III-V semiconductors; reflectance modulation of a semiconductor superlattice optical mirror; magnetoquantum oscillations of the phonon-drag thermoelectric power in quantum wells; correlation between photoluminescence line shape and device performance of p-channel strained-layer materials; control of threading dislocations in heteroepitaxial structures; improved growth of CdTe on GaAs by patterning; role of structure threading dislocations in relaxation of highly strained single-quantum-well structures; InAlAs growth optimization using reflection mass spectrometry; nonvolatile charge storage in III-V heterostructures; optically triggered thyristor switches; InAsSb strained-layer superlattice infrared detectors with high detectivities; resonant periodic gain surface-emitting semiconductor lasers; performance advantages of strained-quantum-well lasers in AlGaAs/InGaAs; optical integrated circuit for phased-array radar antenna control; and deposition and novel device fabrication from Tl 2 Ca 2 Ba 2 Cu 3 O y thin films

  13. TEMPO DE TELA, PERCEPÇÃO DA QUALIDADE DE SONO E EPISÓDIOS DE PARASSONIA EM ADOLESCENTES

    Directory of Open Access Journals (Sweden)

    Alison Oliveira da Silva

    Full Text Available RESUMO Introdução: O sono é um importante componente no processo de desenvolvimento biológico e mental das crianças e dos adolescentes, considerado fonte de revitalização das funções orgânicas. Objetivo: Analisar a associação entre o tipo e tempo de exposição à tela, a percepção da qualidade de sono e os episódios de parassonia em adolescentes. Métodos: Estudo transversal que incorpora um levantamento epidemiológico de base escolar com amostra representativa (n = 481 de estudantes (14 a 19 anos do ensino médio da rede pública estadual do município de Caruaru, PE. Para a análise do sono e do estilo de vida, foi utilizada a versão traduzida e adaptada do Global School-Based Student Health Survey (GSHS. Recorreu-se à regressão logística binária para análise da associação entre as variáveis, considerando-se como desfecho a percepção negativa da qualidade de sono. Resultados: A prevalência de percepção negativa da qualidade de sono foi de 58% (IC 95% 53,5-62,3. Entre os comportamentos analisados, verificou-se que dormir oito horas ou menos por dia e assistir mais de duas horas de TV por dia aumentam, respectivamente, 2,69 (IC 95% 1,61-4,71 e 1,71 (IC 95% 1,08-2,73 as chances de relatar percepção negativa de sono. O tempo excessivo de tela, sobretudo diante da TV, esteve associado à maior quantidade de episódios de parassonia. Conclusão: A qualidade do sono está relacionada tanto com a quantidade de horas de sono, quanto com o tempo de exposição à TV. Além disso, uma quantidade maior de episódios de parassonia ocorreu entre os adolescentes que assistem mais de três horas de TV por dia.

  14. Sono-Guided Percutaneous Automated Gun Biopsy in Pediatric Renal Disease

    International Nuclear Information System (INIS)

    Kim, Jong Chul

    1996-01-01

    To evaluate whether sono-guided percutaneous automated gun biopsy is also useful in pediatricpatients with renal diseases. In the prone position of twenty pediatric patients with renal parenchymal diseases, percutaneous biopsy was done through lateral aspect of the lower pole of left kidney with automated biopsy gun under the guidance of ultrasonography. The biopsy needle was either of 18 or 20 gauge. The obtained core of renal tissue was examined with light, immunofluorescent or electron microscope by the renal pathologist. In 18 among 20 patients, adequate renal tissue core sufficient to be pathologically diagnosed was obtained. The histologic findings were as follows : IG A nephropathy (n = 2), lupus nephritis (n =2), minimal change glomerulonephritis (n = 5), membranoproliferative glomerulonephritis (n = 3), mesangialproliferative glomeru-lonephritis (n = 1), diffuse proliferative glomerulonephritis (n = 3), focalglomerulo-sclerosis (n = 1), membranous glomerulopathy (n = 1). No significant complications occurred during or after the biopsy. Sono-guided percutaneous renal biopsy using automated biopsy gun is also useful todiagnose renal parenchymal diseases without significant complications in pediatric patients

  15. A comparative study of ascending urethrogram and sono-urethrogram in the evaluation of stricture urethra

    Directory of Open Access Journals (Sweden)

    Ravikumar B.R.

    2015-04-01

    Full Text Available To compare the efficacy of sono-urethrogram and ascending urethrogram in the evaluation of stricture urethra. Materials and Methods In this prospective study 40 patients with obstructive lower urinary tract symptoms and suspected to be having stricture urethra were subjected to ascending urethrogram and sonourethrogram. The radiologist was blinded to the findings of ascending urethrogram. All the sonourethrograms were done by the same radiologist. The findings of sonourethrogram & ascending urethrogram were compared with the findings of cystoscopy and intra-operative findings. The specificity, sensitivity,positive predictive value and negative predictive value of each modality in the diagnosis of various urethral anomalies were estimated. Results The sonourethrogram identified stricture disease in all the patients who had abnormal ascending urethrogram. In addition, other abnormalities like spongiofibrosis, diverticula and stones which were not picked up in ascending urethrogram were diagnosed by sonourethrogram. The cystoscopic and intra-operative findings with respect to stricture length, diameter and spongiofibrosis correlated well with sono-urethrogram findings. 5 patients who had stricture in the ascending urethrogram were found to be having the normal urethra in sonourethrogram and confirmed by cystoscopy. Conclusion sonourethrogram is an effective alternative to ascending urethrogram in the evaluation of stricture urethra. It is more sensitive in the diagnosis of anterior urethral strictures than posterior urethral strictures. It is superior to ascending urethrogram in the identification of spongiofibrosis, diameter and length of the stricture. The complications were lower in sonourethrogram group compared to ascending urethrogram.

  16. A comparative study of ascending urethrogram and sono-urethrogram in the evaluation of stricture urethra.

    Science.gov (United States)

    Ravikumar, B R; Tejus, Chiranjeevi; Madappa, K M; Prashant, Dharakh; Dhayanand, G S

    2015-01-01

    To compare the efficacy of sono-urethrogram and ascending urethrogram in the evaluation of stricture urethra. In this prospective study 40 patients with obstructive lower urinary tract symptoms and suspected to be having stricture urethra were subjected to ascending urethrogram and sonourethrogram. The radiologist was blinded to the findings of ascending urethrogram. All the sonourethrograms were done by the same radiologist. The findings of sonourethrogram & ascending urethrogram were compared with the findings of cystoscopy and intra-operative findings. The specificity, sensitivity,positive predictive value and negative predictive value of each modality in the diagnosis of various urethral anomalies were estimated. The sonourethrogram identified stricture disease in all the patients who had abnormal ascending urethrogram. In addition, other abnormalities like spongiofibrosis, diverticula and stones which were not picked up in ascending urethrogram were diagnosed by sonourethrogram. The cystoscopic and intra-operative findings with respect to stricture length, diameter and spongiofibrosis correlated well with sono-urethrogram findings. 5 patients who had stricture in the ascending urethrogram were found to be having the normal urethra in sonourethrogram and confirmed by cystoscopy. sonourethrogram is an effective alternative to ascending urethrogram in the evaluation of stricture urethra. It is more sensitive in the diagnosis of anterior urethral strictures than posterior urethral strictures. It is superior to ascending urethrogram in the identification of spongiofibrosis, diameter and length of the stricture. The complications were lower in sonourethrogram group compared to ascending urethrogram.

  17. Sono, fragilidade e cognição: estudo multicêntrico com idosos brasileiros

    Directory of Open Access Journals (Sweden)

    Ariene Angelini dos Santos

    2013-06-01

    Full Text Available O estudo objetivou analisar a influência conjunta das variáveis antecedentes (idade, gênero, renda, fragilidade e distúrbios de sono sobre a cognição de idosos residentes na comunidade. Trata-se de um recorte do projeto multicêntrico Fragilidade em Idosos Brasileiros (FIBRA. Foram avaliados 878 idosos, utilizando-se questionário sociodemográfico; questões sobre distúrbios de sono (Perfil de Saúde de Nottingham; questões sobre cochilo (Minnesota Leisure Activity Questionnaire e o MEEM (rastreio de alterações cognitivas. Na análise dos dados foram utilizados os testes Mann Whitney e Kruskal Wallis e a análise de regressão univariada e multivariada, com nível de significância de 5% (p<0,05. Os resultados mostraram que os idosos com menor escore do MEEM foram os com menor renda familiar, do sexo feminino e com maior idade. Os profissionais de saúde poderão desenvolver ações preventivas em relação à cognição, mantendo assim a autonomia e independência nas atividades cotidianas desses idosos.

  18. Volatile and Nonvolatile Characteristics of Asymmetric Dual-Gate Thyristor RAM with Vertical Structure.

    Science.gov (United States)

    Kim, Hyun-Min; Kwon, Dae Woong; Kim, Sihyun; Lee, Kitae; Lee, Junil; Park, Euyhwan; Lee, Ryoongbin; Kim, Hyungjin; Kim, Sangwan; Park, Byung-Gook

    2018-09-01

    In this paper, the volatile and nonvolatile characteristics of asymmetric dual-gate thyristor random access memory (TRAM) are investigated using the technology of a computer-aided design (TCAD) simulation. Owing to the use of two independent gates having different gate dielectric layers, volatile and nonvolatile memory functions can be realized in a single device. The first gate with a silicon oxide layer controls the one-transistor dynamic random access memory (1T-DRAM) characteristics of the device. From the simulation results, a rapid write speed (107) can be achieved. The second gate, whose dielectric material is composed of oxide/nitride/oxide (O/N/O) layers, is used to implement the nonvolatile property by trapping charges in the nitride layer. In addition, this offers an advantage when processing the 3D-stack memory application, as the device has a vertical channel structure with polycrystalline silicon.

  19. Defects in semiconductors

    International Nuclear Information System (INIS)

    Pimentel, C.A.F.

    1983-01-01

    Some problems openned in the study of defects in semiconductors are presented. In particular, a review is made of the more important problems in Si monocrystals of basic and technological interest: microdefects and the presence of oxigen and carbon. The techniques usually utilized in the semiconductor material characterization are emphatized according its potentialities. Some applications of x-ray techniques in the epitaxial shell characterization in heterostructures, importants in electronic optics, are shown. The increase in the efficiency of these defect analysis methods in semiconductor materials with the use of synchrotron x-ray sources is shown. (L.C.) [pt

  20. Introduction to Semiconductor Devices

    Science.gov (United States)

    Brennan, Kevin F.

    2005-03-01

    This volume offers a solid foundation for understanding the most important devices used in the hottest areas of electronic engineering today, from semiconductor fundamentals to state-of-the-art semiconductor devices in the telecommunications and computing industries. Kevin Brennan describes future approaches to computing hardware and RF power amplifiers, and explains how emerging trends and system demands of computing and telecommunications systems influence the choice, design and operation of semiconductor devices. In addition, he covers MODFETs and MOSFETs, short channel effects, and the challenges faced by continuing miniaturization. His book is both an excellent senior/graduate text and a valuable reference for practicing engineers and researchers.

  1. Spin physics in semiconductors

    CERN Document Server

    2017-01-01

    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  2. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  3. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  4. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  5. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Science.gov (United States)

    Cheung, Heidi H. Y.; Tan, Haobo; Xu, Hanbing; Li, Fei; Wu, Cheng; Yu, Jian Z.; Chan, Chak K.

    2016-07-01

    Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA) and an organic carbon/elemental carbon (OC / EC) analyzer. Low volatility (LV) particles, with a volatility shrink factor (VSF) at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11-15 % of the 80-300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4 transported at low altitudes (below 1500 m) for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the sum of EC and non-volatile OC was conducted. It suggests that non-volatile OC, in addition to EC, was one of the components of the non-volatile residuals measured by the VTDMA in this study.

  6. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie; Liu, Chang-Hai; She, Xiao-Jian; Sun, Qi-Jun; Gao, Xu; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123 (China)

    2014-10-20

    High-performance organic field-effect transistor nonvolatile memories have been achieved using sputtered C nanoparticles as the nano-floating-gate. The sputtered C nano-floating-gate is prepared with low-cost material and simple process, forming uniform and discrete charge trapping sites covered by a smooth and complete polystyrene layer. The devices show large memory window, excellent retention capability, and programming/reading/erasing/reading endurance. The sputtered C nano-floating-gate can effectively trap both holes and electrons, and it is demonstrated to be suitable for not only p-type but also n-type organic field-effect transistor nonvolatile memories.

  7. Organic field-effect transistor nonvolatile memories utilizing sputtered C nanoparticles as nano-floating-gate

    International Nuclear Information System (INIS)

    Liu, Jie; Liu, Chang-Hai; She, Xiao-Jian; Sun, Qi-Jun; Gao, Xu; Wang, Sui-Dong

    2014-01-01

    High-performance organic field-effect transistor nonvolatile memories have been achieved using sputtered C nanoparticles as the nano-floating-gate. The sputtered C nano-floating-gate is prepared with low-cost material and simple process, forming uniform and discrete charge trapping sites covered by a smooth and complete polystyrene layer. The devices show large memory window, excellent retention capability, and programming/reading/erasing/reading endurance. The sputtered C nano-floating-gate can effectively trap both holes and electrons, and it is demonstrated to be suitable for not only p-type but also n-type organic field-effect transistor nonvolatile memories.

  8. Enhanced non-volatile and updatable holography using a polymer composite system.

    Science.gov (United States)

    Wu, Pengfei; Sun, Sam Q; Baig, Sarfaraz; Wang, Michael R

    2012-03-12

    Updatable holography is considered as the ultimate technique for true 3D information recording and display. However, there is no practical solution to preserve the required features of both non-volatility and reversibility which conflict with each other when the reading has the same wavelength as the recording. We demonstrate a non-volatile and updatable holographic approach by exploiting new features of molecular transformations in a polymer recording system. In addition, by using a new composite recording film containing photo-reconfigurable liquid-crystal (LC) polymer, the holographic recording is enhanced due to the collective reorientation of LC molecules around the reconfigured polymer chains.

  9. Sono, trabalho e estudo: duração do sono em estudantes trabalhadores e não trabalhadores Sleep, work, and study: sleep duration in working and non-working students

    Directory of Open Access Journals (Sweden)

    Érico Felden Pereira

    2011-05-01

    Full Text Available Este estudo objetivou investigar a duração do sono e fatores associados em escolares trabalhadores e não trabalhadores. Foram coletadas informações sobre o padrão do ciclo vigília/sono de 863 adolescentes de 10 a 19 anos em escolas de São Paulo, Brasil. Análises ajustadas foram aplicadas para comparação da duração do sono entre trabalhadores e não trabalhadores. O porcentual de adolescentes trabalhadores foi de 18,4% e 52% dos jovens que trabalhavam apresentaram oito ou menos horas de sono. A prevalência de baixa duração do sono foi maior nos trabalhadores dos sexos masculino (p = 0,017 e feminino (p The aim of this study was to investigate the duration of sleep and associated factors in working and non-working students. Data were analyzed on the sleep-wake cycle in 863 teenage students in São Paulo, Brazil. Adjusted analyses were performed to compare sleep duration in working and non-working students. 18.4% of the group worked, and 52% of the working students slept eight hours or less per night. Prevalence of short sleep duration was higher in working students of both sexes (males, p = 0.017; females, p < 0.001. Working students showed short sleep duration in the analysis adjusted for socioeconomic status, but short sleep was more frequent in older adolescents (p = 0.004 and in lower (p = 0.001 and middle (p = 0.011 socioeconomic classes. Although more working students were in night school, in the model adjusted for gender and socioeconomic status, working students in afternoon courses showed higher prevalence of short sleep duration (PR = 2.53; 95%CI: 1.68-4.12.

  10. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  11. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel

    2014-01-01

    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  12. QUALIDADE DE SONO E SUA ASSOCIAÇÃO COM SINTOMAS PSICOLÓGICOS EM ATLETAS ADOLESCENTES

    Directory of Open Access Journals (Sweden)

    Gabriel Cordeiro Gomes

    Full Text Available RESUMO Objetivo: Verificar a prevalência de má qualidade de sono e sua associação com características pessoais e sintomas de depressão, ansiedade e estresse em adolescentes atletas amadores. Métodos: Foram avaliados 309 adolescentes atletas, entre 10 e 19 anos. Para a coleta de dados foram utilizados: questionário estruturado, contendo informações pessoais; Índice de Qualidade do Sono de Pittsburgh (PSQI; e Escala de Ansiedade, Depressão e Stress de 21 itens (EADS-21. Na análise descritiva foram calculados a média e o desvio padrão das variáveis numéricas e as frequências absolutas e relativas das variáveis categóricas. Para a análise inferencial foram realizados teste t de Student e teste do qui-quadrado, além de regressão de Poisson, sendo calculadas as razões de prevalência (RP em um intervalo de confiança de 95% (IC95%. Resultados: A média de idade dos participantes foi de 14,1±2,1, sendo 13,8±2,0 para o grupo de adolescentes com boa qualidade do sono e 15,0±2,1 para o grupo com má qualidade do sono. A má qualidade do sono foi registrada em 28,2% (n=87, a depressão, em 26,9% (n=83 e a ansiedade/estresse, em 40,1% (n=124 da amostra. A má qualidade do sono se associou à faixa etária de 15 a 19 anos (RP 1,24; IC95% 1,14-1,37, a adolescentes com sobrepeso (RP 1,12; IC95% 1,01-1,24 e com sintomas de depressão (RP 1,23; IC95% 1,08-1,40 e de ansiedade/estresse (RP 1,16; IC95% 1,04-1,28. Conclusões: A presença de sobrepeso e sintomas psicológicos, bem como a idade superior a 15 anos, se mostraram fatores de risco para aumentar a chance da má qualidade do sono em adolescentes atletas.

  13. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  14. Market survey of semiconductors

    International Nuclear Information System (INIS)

    Mackintosh, I.M.; Diegel, D.; Brown, A.; Brinker, C.S. den

    1977-06-01

    Examination of technology and product trends over the range of current and future products in integrated circuits and optoelectronic displays. Analysis and forecast of major economic influences that affect the production costs of integrated circuits and optoelectronic displays. Forecast of the applications and markets for integrated circuits up to 1985 in West Europe, the USA and Japan. Historic development of the semiconductor industry and the prevailing tendencies - factors which influence success in the semiconductor industry. (orig.) [de

  15. Surface directed phase separation of semiconductor ferroelectric polymer blends and their use in non-volatile memories

    NARCIS (Netherlands)

    Breemen, A.J.J.M. van; Zaba, T.; Khikhlovskyi, V.; Michels, J.; Janssen, R.; Kemerink, M.; Gelinck, G.

    2015-01-01

    The polymer phase separation of P(VDF-TrFE):F8BT blends is studied in detail. Its morphology is key to the operation and performance of memory diodes. In this study, it is demonstrated that it is possible to direct the semiconducting domains of a phase-separating mixture of P(VDF-TrFE) and F8BT in a

  16. Electronic properties of semiconductor heterostructures

    International Nuclear Information System (INIS)

    Einevoll, G.T.

    1991-02-01

    Ten papers on the electronic properties of semiconductors and semiconductor heterostructures constitute the backbone of this thesis. Four papers address the form and validity of the single-band effective mass approximation for semiconductor heterostructures. In four other papers properties of acceptor states in bulk semiconductors and semiconductor heterostructures are studied using the novel effective bond-orbital model. The last two papers deal with localized excitions. 122 refs

  17. Distúrbios do sono em adultos de uma cidade do Estado de São Paulo

    Directory of Open Access Journals (Sweden)

    Everton Alex Carvalho Zanuto

    2015-03-01

    Full Text Available OBJETIVO: Analisar a ocorrência de distúrbios relacionados ao sono entre adultos de Presidente Prudente, São Paulo, bem como identificar suas associações com variáveis comportamentais, sociodemográficas e de estado nutricional. MÉTODOS: Após a seleção aleatória da amostra, foram realizadas entrevistas face a face com 743 adultos de ambos os sexos, residentes na cidade de Presidente Prudente, São Paulo. Foram aplicados questionários para análise de distúrbios relacionados ao sono, variáveis sociodemográficas (sexo, idade, etnia, escolaridade, comportamentais (atividade física no lazer, etilismo e tabagismo e de estado nutricional. RESULTADOS: Foram observados distúrbios relacionados ao sono em 46,7% da amostra, com intervalo de confiança de 95% (IC95% 43,1 - 50,2. Após a análise multivariada, foi observado que o sexo feminino, com odds ratio (OR = 1,74 (IC95% 1,26 - 2,40, escolaridade (OR = 0,49; IC95% 0,28 - 0,82, sobrepeso (OR = 1,99; IC95% 1,39 - 2,85 e obesidade (OR = 2,90; IC95% 1,94 - 4,35 foram associados à ocorrência de distúrbios relacionados ao sono. CONCLUSÃO: É elevada a ocorrência de distúrbios de sono na amostra analisada, os quais foram mais frequentes em mulheres, pessoas de menor escolaridade e com sobrepeso e obesidade.

  18. Hábitos do sono, estresse e ansiedade de crianças com bruxismo

    OpenAIRE

    Mariana Fernandes Calderan

    2015-01-01

    Ainda não existe consenso sobre os aspectos etiológicos e sinais e sintomas do bruxismo, especialmente em crianças. Poucas são as evidências que demonstraram a relação entre estresse, ansiedade e bruxismo. Além disso, a força de mordida pode ser alterada em pacientes com este tipo de manifestação. O presente estudo teve por objetivos avaliar a relação do bruxismo com: ansiedade, estresse, hábitos do sono, força máxima de mordida, a presença de sinais de DTM, características morfológicas e fun...

  19. estudo comparativo entre sujeitos com boa e má qualidade do sono

    OpenAIRE

    Vicente, Sónia Lisete Pacheco

    2009-01-01

    Dissertação de Mestrado apresentada à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Psicologia, especialização em Psicologia Clínica e da Saúde. Resumo: O Sono é um bem precioso, indispensável a um bom equilíbrio. A vida de cada pessoa é uma série de ritmos que influenciam e regulam a função fisiológica e as respostas comportamentais. Desde muito cedo, é possível transmitir às crianças o prazer de dormir e os bons hábitos. Isto é quase g...

  20. Piezoelectric control of magnetoelectric coupling driven non-volatile memory switching and self cooling effects in FE/FSMA multiferroic heterostructures

    Science.gov (United States)

    Singh, Kirandeep; Kaur, Davinder

    2017-02-01

    The manipulation of magnetic states and materials' spin degree-of-freedom via a control of an electric (E-) field has been recently pursued to develop magnetoelectric (ME) coupling-driven electronic data storage devices with high read/write endurance, fast dynamic response, and low energy dissipation. One major hurdle for this approach is to develop reliable materials which should be compatible with prevailing silicon (Si)-based complementary metal-oxide-semiconductor (CMOS) technology, simultaneously allowing small voltage for the tuning of magnetization switching. In this regard, multiferroic heterostructures where ferromagnetic (FM) and ferroelectric (FE) layers are alternatively grown on conventional Si substrates are promising as the piezoelectric control of magnetization switching is anticipated to be possible by an E-field. In this work, we study the ferromagnetic shape memory alloys based PbZr0.52Ti0.48O3/Ni50Mn35In15 (PZT/Ni-Mn-In) multiferroic heterostructures, and investigate their potential for CMOS compatible non-volatile magnetic data storage applications. We demonstrate the voltage-impulse controlled nonvolatile, reversible, and bistable magnetization switching at room temperature in Si-integrated PZT/Ni-Mn-In thin film multiferroic heterostructures. We also thoroughly unveil the various intriguing features in these materials, such as E-field tuned ME coupling and magnetocaloric effect, shape memory induced ferroelectric modulation, improved fatigue endurance as well as Refrigeration Capacity (RC). This comprehensive study suggests that these novel materials have a great potential for the development of unconventional nanoscale memory and refrigeration devices with self-cooling effect and enhanced refrigeration efficiency, thus providing a new venue for their applications.

  1. Usefulness of sono-guided needle puncture for MR arthrography of the shoulder

    International Nuclear Information System (INIS)

    Choi, Jae Woong; Hong, Suk Ju; Suh, San Il; Yong, Hwan Suk; Kim, Jung Hyuk; Park, Cheol Min; Suh, Won Hyuck; Kim, Myung Gyu

    2000-01-01

    To evaluate the usefulness of sono-guided needle puncture for MR arthrography of the shoulder to locate the path of access and to control the correct placement of the needle into the shoulder. Fifteen patients with suspicion of shoulder pathology were included in this study. Patients were laid in supine positions with the arm extended and slightly abducted, the palm of the hand facing upward. A sonographic unit with a high resolution transducer with 7.5 MHz linear array was used. Axial images in the anterior aspect of the shoulder were obtained to localize the coracoid process and the anteromedical portion of the humerus. Using an aseptic technique, a 21-guage needle was advanced into the shoulder joint under ultrasonographic guidance. When the needle made contract with the articular cartilage of the humeral head, the needle was tiled to position is point in the articular cavity. Solution of 0.1 ml gadopentetate dimeglumine in 25 ml of normal saline was prepared and 12-16 ml was injected into the joint cavity. The intra-articular position of the needle and the compete distension of the shoulder joint were again confirmed by sonography. The needle was accurately placed in 14 out of 15 patients without damage to neighboring structures. It took 10 to 15 minutes to complete the procedure in 14 patients. No side effects attributable to gadopentetate dimeglumine were found. Sono-guided needle puncture for the shoulder MR arthrography can be a substitutable method for fluoroscopic guidance, with easy access, advantages of lacking radiation hazard and eliminating the need for iodized contrast agents.

  2. Clinical utility of a microbubble-enhancing contrast (“SonoVue”) in treatment of uterine fibroids with high intensity focused ultrasound: A retrospective study

    International Nuclear Information System (INIS)

    Peng, Song; Xiong, Yu; Li, Kequan; He, Min; Deng, Yongbin; Chen, Li; Zou, Min; Chen, Wenzhi; Wang, Zhibiao; He, Jia

    2012-01-01

    Purpose: To evaluate the clinical value of the contrast agent SonoVue in the treatment of uterine fibroids with ultrasound-guided high intensity focused ultrasound (HIFU) therapeutic ablation. Materials and Methods: A total of 291 patients with solitary uterine fibroid from three centers were treated with ultrasound-guided HIFU. Among them, 129 patients from Suining Central Hospital of Sichuan were treated without using SonoVue. 162 patients from the First Hospital of Chongqing Medical University and Chongqing Haifu Hospital were treated with using SonoVue before, during and after HIFU procedure to assess the extent of HIFU. Results: The non-perfused volume (indicative of successful ablation) was observed in all treated uterine fibroids immediately after HIFU ablation; median fractional ablation, defined as non-perfused volume divided by the fibroid volume immediately after HIFU treatment, was 86.0% (range, 28.8–100.0%) in the group with using SonoVue, and 83.0% (8.7–100.0%) without SonoVue. The rate of massive gray scale changes was higher with SonoVue than without the agent. The sonication time to achieve massive gray scale changes was shorter with SonoVue than without. The sonication time for ablating 1 cm 3 of fibroid volume was significantly shorter with using SonoVue than without. No major complications were observed in any patients. Conclusions: Based on our results, SonoVue may enhance the outcome of HIFU ablation and can be used to assess the extent of treatment.

  3. Comparison of discrete-storage nonvolatile memories: advantage of hybrid method for fabrication of Au nanocrystal nonvolatile memory

    International Nuclear Information System (INIS)

    Wang Qin; Jia Rui; Guan Weihua; Li Weilong; Liu Qi; Hu Yuan; Long Shibing; Chen Baoqin; Liu Ming; Ye Tianchun; Lu Wensheng; Jiang Long

    2008-01-01

    In this paper, the memory characteristics of two kinds of metal-oxide-semiconductor (MOS) capacitors embedded with Au nanocrytals are investigated: hybrid MOS with nanocrystals (NCs) fabricated by chemical syntheses and rapid thermal annealing (RTA) MOS with NCs fabricated by RTA. For both kinds of devices, the capacitance versus voltage (C-V) curves clearly indicate the charge storage in the NCs. The hybrid MOS, however, shows a larger memory window, as compared with RTA MOS. The retention characteristics of the two MOS devices are also investigated. The capacitance versus time (C-t) measurement shows that the hybrid MOS capacitor embedded with Au nanocrystals has a longer retention time. The mechanism of longer retention time for hybrid MOS capacitor is qualitatively discussed

  4. WORKSHOP REPORT - CONSIDERATIONS FOR DEVELOPING LEACHING TEST METHODS FOR SEMI- AND NON-VOLATILE ORGANIC COMPOUNDS

    Science.gov (United States)

    The report provides a summary of the information exchange at a workshop on the potential for release of semi- or non-volatile organic constituents at contaminated sites where sub-surface treatment has been used to control migration, and from waste that is disposed or re-used. The...

  5. High-performance non-volatile organic ferroelectric memory on banknotes

    KAUST Repository

    Khan, Yasser

    2012-03-21

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Feasibility of nonvolatile buffers in capillary electrophoresis-electrospray ionization-mass spectrometry of proteins

    NARCIS (Netherlands)

    Eriksson, Jonas H.C.; Mol, Roelof; Somsen, Govert W.; Hinrichs, Wouter L.J.; Frijlink, Henderik W.; de Jong, Gerhardus J.

    2004-01-01

    The combination of capillary electrophoresis (CE) and electrospray ionization-mass spectrometry (ESI-MS) via a triaxial interface was studied as a potential means for the characterization of intact proteins. To evaluate the possibility to use a nonvolatile electrolyte for CE, the effect of sodium

  7. Low-temperature process steps for realization of non-volatile memory devices

    NARCIS (Netherlands)

    Brunets, I.; Boogaard, A.; Aarnink, Antonius A.I.; Kovalgin, Alexeij Y.; Wolters, Robertus A.M.; Holleman, J.; Schmitz, Jurriaan

    2007-01-01

    In this work, the low-temperature process steps required for the realization of nano-crystal non-volatile memory cells are discussed. An amorphous silicon film, crystallized using a diode pumped solid state green laser irradiating at 532 nm, is proposed as an active layer. The deposition of the

  8. The retention characteristics of nonvolatile SNOS memory transistors in a radiation environment: Experiment and model

    International Nuclear Information System (INIS)

    McWhorter, P.J.; Miller, S.L.; Dellin, T.A.; Axness, C.L.

    1987-01-01

    Experimental data and a model to accurately and quantitatively predict the data are presented for retention of SNOS memory devices over a wide range of dose rates. A wide range of SNOS stack geometries are examined. The model is designed to aid in screening nonvolatile memories for use in a radiation environment

  9. High-performance non-volatile organic ferroelectric memory on banknotes.

    Science.gov (United States)

    Khan, M A; Bhansali, Unnat S; Alshareef, H N

    2012-04-24

    High-performance non-volatile polymer ferroelectric memory are fabricated on banknotes using poly(vinylidene fluoride trifluoroethylene). The devices show excellent performance with high remnant polarization, low operating voltages, low leakage, high mobility, and long retention times. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phosphorene/ZnO Nano-Heterojunctions for Broadband Photonic Nonvolatile Memory Applications.

    Science.gov (United States)

    Hu, Liang; Yuan, Jun; Ren, Yi; Wang, Yan; Yang, Jia-Qin; Zhou, Ye; Zeng, Yu-Jia; Han, Su-Ting; Ruan, Shuangchen

    2018-06-10

    High-performance photonic nonvolatile memory combining photosensing and data storage with low power consumption ensures the energy efficiency of computer systems. This study first reports in situ derived phosphorene/ZnO hybrid heterojunction nanoparticles and their application in broadband-response photonic nonvolatile memory. The photonic nonvolatile memory consistently exhibits broadband response from ultraviolet (380 nm) to near infrared (785 nm), with controllable shifts of the SET voltage. The broadband resistive switching is attributed to the enhanced photon harvesting, a fast exciton separation, as well as the formation of an oxygen vacancy filament in the nano-heterojunction. In addition, the device exhibits an excellent stability under air exposure compared with reported pristine phosphorene-based nonvolatile memory. The superior antioxidation capacity is believed to originate from the fast transfer of lone-pair electrons of phosphorene. The unique assembly of phosphorene/ZnO nano-heterojunctions paves the way toward multifunctional broadband-response data-storage techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Method of doping a semiconductor

    International Nuclear Information System (INIS)

    Yang, C.Y.; Rapp, R.A.

    1983-01-01

    A method is disclosed for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient

  12. Amorphous Semiconductors: From Photocatalyst to Computer Memory

    Science.gov (United States)

    Sundararajan, Mayur

    encouraging but inconclusive. Then the method was successfully demonstrated on mesoporous TiO2SiO 2 by showing a shift in its optical bandgap. One of the special class of amorphous semiconductors is chalcogenide glasses, which exhibit high ionic conductivity even at room temperature. When metal doped chalcogenide glasses are under an electric field, they become electronically conductive. These properties are exploited in the computer memory storage application of Conductive Bridging Random Access Memory (CBRAM). CBRAM is a non-volatile memory that is a strong contender to replace conventional volatile RAMs such as DRAM, SRAM, etc. This technology has already been commercialized, but the working mechanism is still not clearly understood especially the nature of the conductive bridge filament. In this project, the CBRAM memory cells are fabricated by thermal evaporation method with Agx(GeSe 2)1-x as the solid electrolyte layer, Ag as the active electrode and Au as the inert electrode. By careful use of cyclic voltammetry, the conductive filaments were grown on the surface and the bulk of the solid electrolyte. The comparison between the two filaments revealed major differences leading to contradiction with the existing working mechanism. After compiling all the results, a modified working mechanism is proposed. SAXS is a powerful tool to characterize nanostructure of glasses. The analysis of the SAXS data to get useful information are usually performed by different programs. In this project, Irena and GIFT programs were compared by performing the analysis of the SAXS data of glass and glass ceramics samples. Irena was shown to be not suitable for the analysis of SAXS data that has a significant contribution from interparticle interactions. GIFT was demonstrated to be better suited for such analysis. Additionally, the results obtained by programs for samples with low interparticle interactions were shown to be consistent.

  13. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  14. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    enhanced in quantum confined lower-dimensional systems, where exciton and biexciton effects dominate the spectra even at room temperature. The coherent dynamics of excitons are at modest densities well described by the optical Bloch equations and a number of the dynamical effects known from atomic......Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  15. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  16. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  17. Optimized ONO thickness for multi-level and 2-bit/cell operation for wrapped-select-gate (WSG) SONOS memory

    International Nuclear Information System (INIS)

    Wu, Woei-Cherng; Chao, Tien-Sheng; Yang, Tsung-Yu; Peng, Wu-Chin; Yang, Wen-Luh; Chen, Jian-Hao; Ma, Ming Wen; Lai, Chao-Sung; Lee, Chien-Hsing; Hsieh, Tsung-Min; Liou, Jhyy Cheng; Chen, Tzu Ping; Chen, Chien Hung; Lin, Chih Hung; Chen, Hwi Huang; Ko, Joe

    2008-01-01

    In this paper, highly reliable wrapped-select-gate (WSG) silicon–oxide–nitride–oxide–silicon (SONOS) memory cells with multi-level and 2-bit/cell operation have been successfully demonstrated. The source-side injection mechanism for WSG-SONOS memory with different ONO thickness was thoroughly investigated. The different programming efficiencies of the WSG-SONOS memory under different ONO thicknesses are explained by the lateral electrical field extracted from the simulation results. Furthermore, multi-level storage is easily obtained, and good V TH distribution presented, for the WSG-SONOS memory with optimized ONO thickness. High program/erase speed (10 µs/5 ms) and low programming current (3.5 µA) are used to achieve the multi-level operation with tolerable gate and drain disturbance, negligible second-bit effect, excellent data retention and good endurance performance

  18. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  19. Superconductivity in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr

    2015-07-15

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  20. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B

    1972-01-01

    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  1. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  2. Compound semiconductor device physics

    CERN Document Server

    Tiwari, Sandip

    2013-01-01

    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  3. Introductory semiconductor device physics

    CERN Document Server

    Parker, Greg

    2004-01-01

    ATOMS AND BONDINGThe Periodic TableIonic BondingCovalent BondingMetallic bondingvan der Waals BondingStart a DatabaseENERGY BANDS AND EFFECTIVE MASSSemiconductors, Insulators and MetalsSemiconductorsInsulatorsMetalsThe Concept of Effective MassCARRIER CONCENTRATIONS IN SEMICONDUCTORSDonors and AcceptorsFermi-LevelCarrier Concentration EquationsDonors and Acceptors Both PresentCONDUCTION IN SEMICONDUCTORSCarrier DriftCarrier MobilitySaturated Drift VelocityMobility Variation with TemperatureA Derivation of Ohm's LawDrift Current EquationsSemiconductor Band Diagrams with an Electric Field Presen

  4. Tunable radiation emitting semiconductor device

    NARCIS (Netherlands)

    2009-01-01

    A tunable radiation emitting semiconductor device includes at least one elongated structure at least partially fabricated from one or more semiconductor materials exhibiting a bandgap characteristic including one or more energy transitions whose energies correspond to photon energies of light

  5. Fonoaudiologia X ronco/apneia do sono Speech therapy and snore and sleep apnea

    Directory of Open Access Journals (Sweden)

    Elisângela Barros Soares

    2010-04-01

    Full Text Available TEMA: sendo o sono necessário para termos energia, o ronco e a apneia do sono tornam-se obstáculos que acarretam problemas de saúde, como também problemas sociais, conjugais, escolares, entre outros. OBJETIVO: contribuir para um maior conhecimento do profissional fonoaudiólogo sobre as causas, consequências, diagnóstico e formas de tratamento da apneia obstrutiva do sono (AOS, a fim de favorecer a definição da conduta por este profissional, seja ela, encaminhar para um diagnóstico, tratar (por meio de fonoterapia essa patologia ou indicar o tratamento médico, seja ele, cirúrgico ou conservador. CONCLUSÃO: as possíveis alterações fonoaudiológicas encontradas nestes pacientes são: língua alargada apresentando hipotonia, palato mole com volume aumentado, dificuldade na alimentação devido ao aporte insuficiente de ar e ao bruxismo, possivelmente causado pela tensão e ansiedade decorrentes das noites mal dormidas. Outras alterações podem ser encontradas decorrentes do tratamento cirúrgico empregado em alguns casos, como a disfagia ou até mesmo alterações na fala e na ressonância da fala decorrente de uma uvulopalatoplastia. O enfoque do tratamento fonoaudiológico é a mioterapia dos músculos envolvidos, priorizando a musculatura palatal. Percebe-se que o fonoaudiólogo pode contribuir para amenizar os sintomas encontrados nestas patologias, proporcionando uma qualidade de vida melhor aos seus portadores.BACKGROUND: sleeping is necessary to provide us with energy. However, snoring and sleep apnea become obstacles that cause not only health problems, but also social, marital and educational issues. PURPOSE: contribute with a better understanding of the causes to the speech therapist, as well as the diagnosis and forms of treatment for Obstructive Sleep Apnea (OSA. Facilitate the definition of conduct by the therapist, be it a guide for a diagnosis, a treatment for that disease (through speech therapy or the indication of

  6. Physical principles of semiconductor detectors

    International Nuclear Information System (INIS)

    Micek, S.L.

    1979-01-01

    The general properties of semiconductors with respect to the possibilities of their use as the ionization radiation detectors are discussed. Some chosen types of semiconductor junctions and their characteristics are briefly presented. There are also discussed the physical phenomena connected with the formation of barriers in various types of semiconductor counters. Finally, the basic properties of three main types of semiconductor detectors are given. (author)

  7. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G

    1986-01-01

    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  8. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  9. TEMPO DE TELA, PERCEPÇÃO DA QUALIDADE DE SONO E EPISÓDIOS DE PARASSONIA EM ADOLESCENTES

    OpenAIRE

    Silva, Alison Oliveira da; Oliveira, Luciano Machado Ferreira Tenório de; Santos, Marcos André Moura dos; Tassitano, Rafael Miranda

    2017-01-01

    RESUMO Introdução: O sono é um importante componente no processo de desenvolvimento biológico e mental das crianças e dos adolescentes, considerado fonte de revitalização das funções orgânicas. Objetivo: Analisar a associação entre o tipo e tempo de exposição à tela, a percepção da qualidade de sono e os episódios de parassonia em adolescentes. Métodos: Estudo transversal que incorpora um levantamento epidemiológico de base escolar com amostra representativa (n = 481) de estudantes (14 a 1...

  10. Sonolência excessiva diurna, apnéia do sono tipo central e distrofia miotônica

    Directory of Open Access Journals (Sweden)

    Rubens Reimão

    1985-12-01

    Full Text Available São relatados dois casos de distrofia miotônica acompanhada de sonolência excessiva diurna. A avaliação polissonográfica de noite inteira revelou grande número de apnéias do sono tipo central deflagrando despertares freqüentes. As apnéias dos tipos obstrutivo e misto ocorreram em níveis normais e não se constatou hipoxia. Houve diminuição da eficiência do sono e redução dos estágios 3, 4 e REM. A apnéia central e a sonolência diurna que acarreta representariam manifestações precoces do comprometimento do sistema nervoso central na distrofia miotônica.

  11. Depletion field focusing in semiconductors

    NARCIS (Netherlands)

    Prins, M.W.J.; Gelder, Van A.P.

    1996-01-01

    We calculate the three-dimensional depletion field profile in a semiconductor, for a planar semiconductor material with a spatially varying potential upon the surface, and for a tip-shaped semiconductor with a constant surface potential. The nonuniform electric field gives rise to focusing or

  12. Nonlinear Elasticity of Doped Semiconductors

    Science.gov (United States)

    2017-02-01

    AFRL-RY-WP-TR-2016-0206 NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS Mark Dykman and Kirill Moskovtsev Michigan State University...2016 4. TITLE AND SUBTITLE NONLINEAR ELASTICITY OF DOPED SEMICONDUCTORS 5a. CONTRACT NUMBER FA8650-16-1-7600 5b. GRANT NUMBER 5c. PROGRAM...vibration amplitude. 15. SUBJECT TERMS semiconductors , microresonators, microelectromechanical 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  13. Semi-conductor rectifiers

    International Nuclear Information System (INIS)

    1981-01-01

    A method is described for treating a semiconductor rectifier, comprising: heating the rectifier to a temperature in the range of 100 0 C to 500 0 C, irradiating the rectifier while maintaining its temperature within the said range, and then annealing the rectifier at a temperature of between 280 0 C and 350 0 C for between two and ten hours. (author)

  14. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  15. Sono-elastography for Differentiating Benign and Malignant Cervical Lymph Nodes: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Ghajarzadeh, Mahsa; Mohammadifar, Mehdi; Azarkhish, Kamran; Emami-Razavi, Seyed Hassan

    2014-01-01

    We did this systematic review to determine diagnostic accuracy of sono-elastography in evaluating cervical lymph nodes (LNs). A highly sensitive search for sono-elastography and LNs was performed in MEDLINE, Cochrane Library, ACP Journal Club, EMBASE, Health Technology assessment, and ISI web of knowledge for studies published prior to December 2012. SPSS version 18 (SPSS Inc., Chicago, IL, USA) used for descriptive analysis and meta-disk version 1.4 applied for meta-analysis. Forest plots for pooled estimates and summery of receiver operating characteristic plots for different cut-offs were produced. The literature and manual search yielded 69 articles, of which 10 were eligible to include. A total of 578 individuals with a total number of 936 cervical LNs was evaluated (502 malignant and 434 benign). The summary sensitivity of the scoring and strain ratio (SR) measurements for the differentiation of benign and malignant LNs were 0.76 (95% CI: 0.71–0.8) and 0.83 (95% CI: 0.78–0.87). The summary specificities were 0.8 (95% confidence interval [CI]: 0.75–0.84) and 0.84 (95% CI: 0.79–0.88), respectively. Area under the curve for scoring system was 0.86 (standard error [SE] = 0.03) and 0.95 (SE = 0.02) for SR measurement. Sono-elastograohy has high accuracy in differentiating benign and malignant cervical LNs. PMID:25709787

  16. Sono-elastography for Differentiating Benign and Malignant Cervical Lymph Nodes: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Ghajarzadeh, Mahsa; Mohammadifar, Mehdi; Azarkhish, Kamran; Emami-Razavi, Seyed Hassan

    2014-12-01

    We did this systematic review to determine diagnostic accuracy of sono-elastography in evaluating cervical lymph nodes (LNs). A highly sensitive search for sono-elastography and LNs was performed in MEDLINE, Cochrane Library, ACP Journal Club, EMBASE, Health Technology assessment, and ISI web of knowledge for studies published prior to December 2012. SPSS version 18 (SPSS Inc., Chicago, IL, USA) used for descriptive analysis and meta-disk version 1.4 applied for meta-analysis. Forest plots for pooled estimates and summery of receiver operating characteristic plots for different cut-offs were produced. The literature and manual search yielded 69 articles, of which 10 were eligible to include. A total of 578 individuals with a total number of 936 cervical LNs was evaluated (502 malignant and 434 benign). The summary sensitivity of the scoring and strain ratio (SR) measurements for the differentiation of benign and malignant LNs were 0.76 (95% CI: 0.71-0.8) and 0.83 (95% CI: 0.78-0.87). The summary specificities were 0.8 (95% confidence interval [CI]: 0.75-0.84) and 0.84 (95% CI: 0.79-0.88), respectively. Area under the curve for scoring system was 0.86 (standard error [SE] = 0.03) and 0.95 (SE = 0.02) for SR measurement. Sono-elastograohy has high accuracy in differentiating benign and malignant cervical LNs.

  17. The influence of thickness on memory characteristic based on nonvolatile tuning behavior in poly(N-vinylcarbazole) films

    International Nuclear Information System (INIS)

    Sun, Yanmei; Ai, Chunpeng; Lu, Junguo; Li, Lei; Wen, Dianzhong; Bai, Xuduo

    2016-01-01

    The memory characteristic based on nonvolatile tuning behavior in indium tin oxide/poly(N-vinylcarbazole)/aluminum (ITO/PVK/Al) was investigated, the different memory behaviors were first observed in PVK film as the film thickness changing. By control of PVK film thickness with different spinning speeds, the nonvolatile behavior of ITO/PVK/Al sandwich structure can be tuned in a controlled manner. Obviously different nonvolatile behaviors, such as (i) flash memory behavior and (ii) write-once-read-many times (WORM) memory behavior are from the current–voltage (I–V) characteristics of the PVK films. The results suggest that the film thickness plays a key part in determining the memory type of the PVK. - Highlights: • The different memory behaviors were observed in PVK film. • The nonvolatile behavior of ITO/PVK/Al sandwich structure can be tuned. • The film thickness plays a key part in determining the memory type of the PVK.

  18. Coexistence of nonvolatility and volatility in Pt/Nb-doped SrTiO3/In memristive devices

    International Nuclear Information System (INIS)

    Yang, M; Bao, D H; Li, S W

    2013-01-01

    Memristive devices are triggering innovations in the fields of nonvolatile memory, digital logic, analogue circuits, neuromorphic engineering, and so on. Creating new memristive devices with unique characteristics would be significant for these emergent applications. Here we report the coexistence of nonvolatility and volatility in Pt/Nb-doped SrTiO 3 (NSTO)/In memristive devices. The Pt/NSTO interface contributes a nonvolatile resistive switching behaviour, whereas the NSTO/In interface displays a volatile hysteresis loop. Combining the two interfaces in the Pt/NSTO/In devices leads to the unique coexistence of nonvolatility and volatility. The results imply more opportunities to invent new memristive devices by engineering both interfaces in metal/insulator/metal structures. (paper)

  19. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    Science.gov (United States)

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-volatile Particulate Matter (PM... Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  20. Integration of ammonia-plasma-functionalized graphene nanodiscs as charge trapping centers for nonvolatile memory applications

    KAUST Repository

    Wang, Jer-Chyi

    2016-11-23

    Graphene nanodiscs (GNDs), functionalized using NH3 plasma, as charge trapping sites (CTSs) for non-volatile memory applications have been investigated in this study. The fabrication process relies on the patterning of Au nanoparticles (Au-NPs), whose thicknesses are tuned to adjust the GND density and size upon etching. A GND density as high as 8 × 1011 cm−2 and a diameter of approximately 20 nm are achieved. The functionalization of GNDs by NH3 plasma creates Nsingle bondH+ functional groups that act as CTSs, as observed by Raman and Fourier transform infrared spectroscopy. This inherently enhances the density of CTSs in the GNDs, as a result, the memory window becomes more than 2.4 V and remains stable after 104 operating cycles. The charge loss is less than 10% for a 10-year data retention testing, making this low-temperature process suitable for low-cost non-volatile memory applications on flexible substrates.

  1. Identifying Non-Volatile Data Storage Areas: Unique Notebook Identification Information as Digital Evidence

    Directory of Open Access Journals (Sweden)

    Nikica Budimir

    2007-03-01

    Full Text Available The research reported in this paper introduces new techniques to aid in the identification of recovered notebook computers so they may be returned to the rightful owner. We identify non-volatile data storage areas as a means of facilitating the safe storing of computer identification information. A forensic proof of concept tool has been designed to test the feasibility of several storage locations identified within this work to hold the data needed to uniquely identify a computer. The tool was used to perform the creation and extraction of created information in order to allow the analysis of the non-volatile storage locations as valid storage areas capable of holding and preserving the data created within them.  While the format of the information used to identify the machine itself is important, this research only discusses the insertion, storage and ability to retain such information.

  2. Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes

    Science.gov (United States)

    Meunier, Vincent; Kalinin, Sergei V.; Sumpter, Bobby G.

    2007-02-01

    We propose a novel class of nonvolatile memory elements based on the modification of the transport properties of a conducting carbon nanotube by the presence of an encapsulated molecule. The guest molecule has two stable orientational positions relative to the nanotube that correspond to conducting and nonconducting states. The mechanism, governed by a local gating effect of the molecule on the electronic properties of the nanotube host, is studied using density functional theory. The mechanisms of reversible reading and writing of information are illustrated with a F4TCNQ molecule encapsulated inside a metallic carbon nanotube. Our results suggest that this new type of nonvolatile memory element is robust, fatigue-free, and can operate at room temperature.

  3. [Studies on the degradation of paracetamol in sono-electrochemical oxidation].

    Science.gov (United States)

    Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng

    2012-07-01

    A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed.

  4. Multi-objective optimization of oxidative desulfurization in a sono-photochemical airlift reactor.

    Science.gov (United States)

    Behin, Jamshid; Farhadian, Negin

    2017-09-01

    Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O 3 /H 2 O 2 combination, respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Oxidative degradation of phenols in sono-Fenton-like systems upon high-frequency ultrasound irradiation

    Science.gov (United States)

    Aseev, D. G.; Sizykh, M. R.; Batoeva, A. A.

    2017-12-01

    The kinetics of oxidative degradation of phenol and chlorophenols upon acoustic cavitation in the megahertz range (1.7 MHz) is studied experimentally in model systems, and the involvement of in situ generated reactive oxygen species (ROSs) is demonstrated. The phenols subjected to high frequency ultrasound (HFUS) are ranked in terms of their rate of conversion: 2,4,6-trichlorophenol > 2,4-dichlorophenol 2-chlorophenol > 4-chlorophenol phenol. Oxidative degradation upon HFUS irradiation is most efficient at low concentrations of pollutants, due to the low steady-state concentrations of the in situ generated ROSs. A dramatic increase is observed in the efficiency of oxidation in several sonochemical oxidative systems (HFUS in combination with other chemical oxidative factors). The system with added Fe2+ (a sono-Fenton system) derives its efficiency from hydrogen peroxide generated in situ as a result of the recombination of OH radicals. The S2O8 2-/Fe2+/HFUS system has a synergetic effect on substrate oxidation that is attributed to a radical chain mechanism. In terms of the oxidation rates, degrees of conversion, and specific energy efficiencies of 4-chlorophenol oxidation based on the amount of oxidized substance per unit of expended energy the considered sonochemical oxidative systems form the series HFUS < S2O8 2-/HFUS < S2O8 2-/Fe2+/HFUS.

  6. Preparation of NiFe binary alloy nanocrystals for nonvolatile memory applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,an idea which applies binary alloy nanocrystal floating gate to nonvolatile memory application was introduced.The relationship between binary alloy’s work function and its composition was discussed theoretically.A nanocrystal floating gate structure with NiFe nanocrystals embedded in SiO2 dielectric layers was fabricated by magnetron sputtering.The micro-structure and composition deviation of the prepared NiFe nanocrystals were also investigated by TEM and EDS.

  7. IMPLICAÇÕES DOS DISTÚRBIOS RESPIRATÓRIOS DO SONO EM ALUNOS COM DEFICIÊNCIA INTELECTUAL: REVISÃO SISTEMÁTICA

    Directory of Open Access Journals (Sweden)

    Miriam Adalgisa Bedim Godoy

    2017-06-01

    Full Text Available Nos últimos anos, as pesquisas sobre os distúrbios respiratórios do sono em crianças e adolescentes com desenvolvimento típico têm ampliado. As pesquisas constataram que o sono de má qualidade interfere nas competências físicas e intelectivas do ser humano. Como seria a influência desse distúrbio em educandos com deficiência intelectual? O estudo teve por objetivo verificar e analisar nas publicações científicas a influência dos distúrbios respiratórios do sono em escolares com deficiência intelectual. Trata-se um delineamento sistemático de cunho qualitativo. O levantamento foi realizado no período que compreende os anos de 2000 a 2016. Os artigos estavam indexados bases de dados EBSCOhost, DOAJ, ERIC e SciELO Brasil. Os descritores utilizados foram i distúrbios respiratórios do sono e dificuldade de aprendizagem; ii distúrbios respiratórios do sono e deficiência intelectual; iii distúrbios respiratórios do sono e etiologia da deficiência intelectual; iv distúrbios respiratórios do sono e déficit intelectual. A busca também foi realizada em língua inglesa, a saber: i sleep-disordered breathing and learning disability; ii sleep-disordered breathing and Intellectual disability; iii sleep-disordered breathing and Etiology intellectual disability; iv sleep-disordered breathing and Intellectual deficit. Com base nesses descritores, foram encontradas 43 pesquisas. Entretanto, considerando-se os requisitos elegidos para este estudo, apenas sete artigos compuseram o corpus final de análise. Desses, quatro eram estudos experimentais, dois de revisões de literatura e um do tipo longitudinal. As pesquisas revelaram que a influência dos distúrbios do sono junto às crianças e aos adolescentes com deficiência intelectual é recente e limitada, porém, tais distúrbios respiratórios do sono interferem significativamente na qualidade de vida, bem como nos aspectos de desenvolvimento e aprendizagem dos alunos com defici

  8. Potential of Mass Spectrometry in Developing Clinical Laboratory Biomarkers of Nonvolatiles in Exhaled Breath.

    Science.gov (United States)

    Beck, Olof; Olin, Anna-Carin; Mirgorodskaya, Ekaterina

    2016-01-01

    Exhaled breath contains nonvolatile substances that are part of aerosol particles of submicrometer size. These particles are formed and exhaled as a result of normal breathing and contain material from distal airways of the respiratory system. Exhaled breath can be used to monitor biomarkers of both endogenous and exogenous origin and constitutes an attractive specimen for medical investigations. This review summarizes the present status regarding potential biomarkers of nonvolatile compounds in exhaled breath. The field of exhaled breath condensate is briefly reviewed, together with more recent work on more selective collection procedures for exhaled particles. The relation of these particles to the surfactant in the terminal parts of the respiratory system is described. The literature on potential endogenous low molecular weight compounds as well as protein biomarkers is reviewed. The possibility to measure exposure to therapeutic and abused drugs is demonstrated. Finally, the potential future role and importance of mass spectrometry is discussed. Nonvolatile compounds exit the lung as aerosol particles that can be sampled easily and selectively. The clinical applications of potential biomarkers in exhaled breath comprise diagnosis of disease, monitoring of disease progress, monitoring of drug therapy, and toxicological investigations. © 2015 American Association for Clinical Chemistry.

  9. Stable isotopic carbon composition of apples and their subfractions--juice, seeds, sugars, and nonvolatile acids.

    Science.gov (United States)

    Lee, H S; Wrolstad, R E

    1988-01-01

    The 13C:12C ratios of 8 authentic apple juice samples and their subfractions were determined by mass spectrometry. Apples from Argentina, Mexico, New Zealand, and the United States were processed into juice; pulp was collected from the milled fruit and seeds were collected from the press-cake. Sugars, nonvolatile acids, and phenolics were isolated from the juice by treatment with ion-exchange resins and polyvinylpyrrolidone (PVPP). The mean value for all juice samples was -24.2% which is close to the values reported by other investigators. Juice from apples grown in Argentina, Mexico, and New Zealand did not differ from U.S. samples. The isotopic composition of the subfractions ranged from -22.0 to -31.0%. The values for the pulp were essentially the same as for juice. The sugar fraction was slightly less negative than the juice; the nonvolatile acid and phenolic fractions were more negative. The levels of nonvolatile acids and phenolics in apple juice are low, however, so these compounds contribute little to overall delta 13C values in juice.

  10. Evaluation of reinitialization-free nonvolatile computer systems for energy-harvesting Internet of things applications

    Science.gov (United States)

    Onizawa, Naoya; Tamakoshi, Akira; Hanyu, Takahiro

    2017-08-01

    In this paper, reinitialization-free nonvolatile computer systems are designed and evaluated for energy-harvesting Internet of things (IoT) applications. In energy-harvesting applications, as power supplies generated from renewable power sources cause frequent power failures, data processed need to be backed up when power failures occur. Unless data are safely backed up before power supplies diminish, reinitialization processes are required when power supplies are recovered, which results in low energy efficiencies and slow operations. Using nonvolatile devices in processors and memories can realize a faster backup than a conventional volatile computer system, leading to a higher energy efficiency. To evaluate the energy efficiency upon frequent power failures, typical computer systems including processors and memories are designed using 90 nm CMOS or CMOS/magnetic tunnel junction (MTJ) technologies. Nonvolatile ARM Cortex-M0 processors with 4 kB MRAMs are evaluated using a typical computing benchmark program, Dhrystone, which shows a few order-of-magnitude reductions in energy in comparison with a volatile processor with SRAM.

  11. Nonvolatile resistive switching in Pt/laALO3/srTiO3 heterostructures

    KAUST Repository

    Wu, S.

    2013-12-12

    Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO3/SrTiO3 heterostructures, where the conducting layer near the LaAlO3/SrTiO3 interface serves as the "unconventional"bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO3/SrTiO3 interface and the creation of defect-induced gap states within the ultrathin LaAlO3 layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.

  12. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  13. Nonvolatile Resistive Switching in Pt/LaAlO_{3}/SrTiO_{3} Heterostructures

    Directory of Open Access Journals (Sweden)

    Shuxiang Wu

    2013-12-01

    Full Text Available Resistive switching heterojunctions, which are promising for nonvolatile memory applications, usually share a capacitorlike metal-oxide-metal configuration. Here, we report on the nonvolatile resistive switching in Pt/LaAlO_{3}/SrTiO_{3} heterostructures, where the conducting layer near the LaAlO_{3}/SrTiO_{3} interface serves as the “unconventional” bottom electrode although both oxides are band insulators. Interestingly, the switching between low-resistance and high-resistance states is accompanied by reversible transitions between tunneling and Ohmic characteristics in the current transport perpendicular to the planes of the heterojunctions. We propose that the observed resistive switching is likely caused by the electric-field-induced drift of charged oxygen vacancies across the LaAlO_{3}/SrTiO_{3} interface and the creation of defect-induced gap states within the ultrathin LaAlO_{3} layer. These metal-oxide-oxide heterojunctions with atomically smooth interfaces and defect-controlled transport provide a platform for the development of nonvolatile oxide nanoelectronics that integrate logic and memory devices.

  14. Melhora da dor, do cansaço e da qualidade subjetiva do sono por meio de orientações de higiene do sono em pacientes com fibromialgia Improvement in pain, fatigue, and subjective sleep quality through sleep hygiene tips in patients with fibromyalgia

    OpenAIRE

    Aline Cristina Orlandi; Camila Ventura; Andrea Lopes Gallinaro; Renata Alqualo Costa; Laís Verderame Lage

    2012-01-01

    OBJETIVO: Avaliar a efetividade das orientações para higiene do sono em mulheres portadoras de fibromialgia. MATERIAIS E MÉTODOS: Setenta mulheres completaram o estudo. Na avaliação foram aplicados o Questionário de Impacto da Fibromialgia(FIQ), o Índice de Qualidade do Sono de Pittsburgh (PSQI) e um questionário geral, com dados pessoais e informações de hábitos de vida. Todas as pacientes receberam informações quanto à doença, além de um diário do sono, e apenas o grupo-experimental recebeu...

  15. Estudo do sono e função pulmonar em pacientes obesos mórbidos

    Directory of Open Access Journals (Sweden)

    Isabella de Carvalho Aguiar

    Full Text Available INTRODUÇÃO: A obesidade acarreta uma série de alterações na fisiologia respiratória e no sono. Seu tratamento tem como objetivo a melhora da saúde e da qualidade de vida. OBJETIVO: Avaliar a função pulmonar e o sono em indivíduos obesos mórbidos pré-cirurgia bariátrica. MATERIAIS E MÉTODOS: Participaram deste estudo 38 pacientes, recrutados em dois serviços de cirurgia bariátrica e encaminhados ao Laboratório de Sono da Universidade Nove de Julho, São Paulo, Brasil. Os critérios de inclusão foram: obesos mórbidos, IMC entre 40 kg/m² e 50 kg/m² e IMC entre 35 kg/m² a 39,9 kg/m² se associados a comorbidades. RESULTADOS: A média de idade foi de 42 ± 10, o índice de massa corpórea médio foi de 50,09 ± 7,64. A média da circunferência abdominal foi de 132,48 ±11,07 e 134,31 ± 16,26 e de pescoço foi 42,34 ± 2,08 e 44,48 ± 3,67, respectivamente para mulheres e homens. As pressões máximas inspiratórias foram 57,57 ± 18,93 e 60,6 ± 3,72 e máximas expiratórias 56,63 ± 16,68 e 60 ± 18,52, para mulheres e homens respectivamente. O sono do movimento rápido dos olhos apresentou-se com média de 16,93 ± 13,61 e a saturação mínima da oxi-hemoglobina foi de 79,33 ± 10,26 durante o sono. Em 44,74% dos casos examinados, foram observadas alterações na Escala de Sonolência de Epworth (ESE; e em 76,3% ficou confirmada a presença de síndrome da apneia obstrutiva do sono (SAOS. CONCLUSÃO: Foram observadas alterações nas pressões máximas ventilatórias, na estrutura do sono associadas a considerável dessaturação noturna da oxi-hemoglobina, o que evidencia alta prevalência de SAOS nos pacientes obesos mórbidos.

  16. Radiation-hardened MRAM-based LUT for non-volatile FPGA soft error mitigation with multi-node upset tolerance

    Science.gov (United States)

    Zand, Ramtin; DeMara, Ronald F.

    2017-12-01

    In this paper, we have developed a radiation-hardened non-volatile lookup table (LUT) circuit utilizing spin Hall effect (SHE)-magnetic random access memory (MRAM) devices. The design is motivated by modeling the effect of radiation particles striking hybrid complementary metal oxide semiconductor/spin based circuits, and the resistive behavior of SHE-MRAM devices via established and precise physics equations. The models developed are leveraged in the SPICE circuit simulator to verify the functionality of the proposed design. The proposed hardening technique is based on using feedback transistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results show that our proposed LUT circuit can achieve multiple node upset (MNU) tolerance with more than 38% and 60% power-delay product improvement as well as 26% and 50% reduction in device count compared to the previous energy-efficient radiation-hardened LUT designs. Finally, we have performed a process variation analysis showing that the MNU immunity of our proposed circuit is realized at the cost of increased susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

  17. Large scale integration of flexible non-volatile, re-addressable memories using P(VDF-TrFE) and amorphous oxide transistors

    International Nuclear Information System (INIS)

    Gelinck, Gerwin H; Cobb, Brian; Van Breemen, Albert J J M; Myny, Kris

    2015-01-01

    Ferroelectric polymers and amorphous metal oxide semiconductors have emerged as important materials for re-programmable non-volatile memories and high-performance, flexible thin-film transistors, respectively. However, realizing sophisticated transistor memory arrays has proven to be a challenge, and demonstrating reliable writing to and reading from such a large scale memory has thus far not been demonstrated. Here, we report an integration of ferroelectric, P(VDF-TrFE), transistor memory arrays with thin-film circuitry that can address each individual memory element in that array. n-type indium gallium zinc oxide is used as the active channel material in both the memory and logic thin-film transistors. The maximum process temperature is 200 °C, allowing plastic films to be used as substrate material. The technology was scaled up to 150 mm wafer size, and offers good reproducibility, high device yield and low device variation. This forms the basis for successful demonstration of memory arrays, read and write circuitry, and the integration of these. (paper)

  18. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  19. Basic semiconductor physics

    CERN Document Server

    Hamaguchi, Chihiro

    2017-01-01

    This book presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The...

  20. Semiconductor physics an introduction

    CERN Document Server

    Seeger, Karlheinz

    1999-01-01

    Semiconductor Physics - An Introduction - is suitable for the senior undergraduate or new graduate student majoring in electrical engineering or physics. It will also be useful to solid-state scientists and device engineers involved in semiconductor design and technology. The text provides a lucid account of charge transport, energy transport and optical processes, and a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, the quantum Hall effect and the calculation of the influence of a magnetic field on the carrier distribution function. This 6th edition has been revised and corrected, and new sections have been added to different chapters.

  1. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  2. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert

    1993-01-01

    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  3. Optically coupled semiconductor device

    Energy Technology Data Exchange (ETDEWEB)

    Kumagaya, Naoki

    1988-11-18

    This invention concerns an optically coupled semiconductor device using the light as input signal and a MOS transistor for the output side in order to control on-off of the output side by the input signal which is insulated from the output. Concerning this sort of element, when a MOS transistor and a load resistance are planned to be accumulated on the same chip, a resistor and control of impurity concentration of the channel, etc. become necessary despite that the only formation of a simple P-N junction is enough, for a solar cell, hence cost reduction thereof cannot be done. In order to remove this defect, this invention offers an optically coupled semiconductor device featuring that two solar cells are connected in reverse parallel between the gate sources of the output MOS transistors and an operational light emitting element is individually set facing a respective solar cell. 4 figs.

  4. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Images through semiconductors

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Improved image processing techniques are constantly being developed for television and for scanners using X-rays or other radiation for industrial or medical applications, etc. As Erik Heijne of CERN explains here, particle physics too has its own special requirements for image processing. The increasing use of semiconductor techniques for handling measurements down to the level of a few microns provides another example of the close interplay between scientific research and technological development. (orig.).

  6. Muonium states in semiconductors

    International Nuclear Information System (INIS)

    Patterson, B.D.

    1987-01-01

    There is a brief summary of what is known about the muonium states isotropic, anisotropic and diamagnetic in diamond and zincblende semiconductors. The report deals with muonium spectroscopy, including the formation probabilities, hyperfine parameters and electronic g-factors of the states. The dynamics of the states is treated including a discussion of the transition from isotropic Mu to anisotropic Mu in diamond, temperature-dependent linewidthes in silicon and germanium and effects of daping and radiation damage

  7. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  8. Doping of organic semiconductors

    International Nuclear Information System (INIS)

    Luessem, B.; Riede, M.; Leo, K.

    2013-01-01

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Eugene E.

    2006-06-19

    The following article is an edited transcript based on the Turnbull Lecture given by Eugene E. Haller at the 2005 Materials Research Society Fall Meeting in Boston on November 29, 2005. The David Turnbull Lectureship is awarded to recognize the career of a scientist who has made outstanding contributions to understanding materials phenomena and properties through research, writing, and lecturing, as exemplified by the life work of David Turnbull. Haller was named the 2005 David Turnbull Lecturer for his 'pioneering achievements and leadership in establishing the field of isotopically engineered semiconductors; for outstanding contributions to materials growth, doping and diffusion; and for excellence in lecturing, writing, and fostering international collaborations'. The scientific interest, increased availability, and technological promise of highly enriched isotopes have led to a sharp rise in the number of experimental and theoretical studies with isotopically controlled semiconductor crystals. This article reviews results obtained with isotopically controlled semiconductor bulk and thin-film heterostructures. Isotopic composition affects several properties such as phonon energies, band structure, and lattice constant in subtle, but, for their physical understanding, significant ways. Large isotope-related effects are observed for thermal conductivity in local vibrational modes of impurities and after neutron transmutation doping. Spectacularly sharp photoluminescence lines have been observed in ultrapure, isotopically enriched silicon crystals. Isotope multilayer structures are especially well suited for simultaneous self- and dopant-diffusion studies. The absence of any chemical, mechanical, or electrical driving forces makes possible the study of an ideal random-walk problem. Isotopically controlled semiconductors may find applications in quantum computing, nanoscience, and spintronics.

  10. Physical principles and current status of emerging non-volatile solid state memories

    Science.gov (United States)

    Wang, L.; Yang, C.-H.; Wen, J.

    2015-07-01

    Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for

  11. Sono-electro-magnetic therapy for treating chronic pelvic pain syndrome in men: a randomized, placebo-controlled, double-blind trial.

    Science.gov (United States)

    Kessler, Thomas M; Mordasini, Livio; Weisstanner, Christian; Jüni, Peter; da Costa, Bruno R; Wiest, Roland; Thalmann, George N

    2014-01-01

    To assess the efficacy and safety of sono-electro-magnetic therapy compared to placebo in men with refractory CPPS. In a randomized, placebo-controlled, double-blind single center trial, we assessed the effect of sono-electro-magnetic therapy in men with treatment refractory CPPS. Sixty male patients were randomly assigned to treatment with either sono-electro-magnetic (n = 30) or placebo therapy (n = 30) for 12 weeks. The primary outcome was a change in the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI) from baseline to 12 weeks. The 12-week difference between sono-electro-magnetic and placebo therapy in changes of the NIH-CPSI total score was -3.1 points (95% CI -6.8 to 0.6, p = 0.11). In secondary comparisons of NIH-CPSI sub-scores, we found differences between groups most pronounced for the quality-of-life sub-score (difference at 12 weeks -1.6, 95% CI -2.8 to -0.4, p = 0.015). In stratified analyses, the benefit of sono-electro-magnetic therapy appeared more pronounced among patients who had a symptom duration of 12 months or less (difference in NIH-CPSI total score -8.3, 95% CI -14.5 to 2.6) than in patients with a longer symptom duration (-0.8, 95% CI -4.6 to 3.1; p for interaction = 0.023). Sono-electro-magnetic therapy did not result in a significant improvement of symptoms in the overall cohort of treatment refractory CPPS patients compared to placebo treatment. Subgroup analysis indicates, however, that patients with a symptom-duration of 12 months or less may benefit from sono-electro-magnetic therapy, warranting larger randomized controlled trials in this subpopulation. ClinicalTrials.gov NCT00688506.

  12. Survey of semiconductor physics

    CERN Document Server

    Böer, Karl W

    1992-01-01

    Any book that covers a large variety of subjects and is written by one author lacks by necessity the depth provided by an expert in his or her own field of specialization. This book is no exception. It has been written with the encouragement of my students and colleagues, who felt that an extensive card file I had accumulated over the years of teaching solid state and semiconductor physics would be helpful to more than just a few of us. This file, updated from time to time, contained lecture notes and other entries that were useful in my research and permitted me to give to my students a broader spectrum of information than is available in typical textbooks. When assembling this material into a book, I divided the top­ ics into material dealing with the homogeneous semiconductor, the subject of the previously published Volume 1, and the inhomoge­ neous semiconductor, the subject of this Volume 2. In order to keep the book to a manageable size, sections of tutorial character which can be used as text for a g...

  13. Semiconductor Ion Implanters

    International Nuclear Information System (INIS)

    MacKinnon, Barry A.; Ruffell, John P.

    2011-01-01

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion! Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  14. The Physics of Semiconductors

    Science.gov (United States)

    Brennan, Kevin F.

    1999-02-01

    Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practicing engineers in optoelectronics and related areas.

  15. Apneia obstrutiva do sono em crianças Obstructive sleep apnea in children

    Directory of Open Access Journals (Sweden)

    Simone Chaves Fagondes

    2010-06-01

    Full Text Available Em crianças, SAOS é caracterizada por episódios recorrentes de obstrução parcial ou completa das vias aéreas superiores durante o sono. Caracteriza-se por um continuum que vai desde o ronco primário (uma situação benigna de ronco sem alterações fisiológicas e complicações associadas, passando por resistência aumentada das vias aéreas, hipoventilação obstrutiva e, finalmente, SAOS. A prevalência de ronco é elevada e, dependendo da forma como ele é definido, varia entre 1,5% e 15%. O diagnóstico da SAOS, combinando questionários de relatos dos pais e exames complementares, apresenta uma prevalência de 1-4%. A SAOS é mais frequente nos meninos, nas crianças com sobrepeso, de ascendência africana, com história de atopia e prematuridade. Ronco alto e frequente, apneias observadas pelos familiares e sono agitado são os sintomas mais frequentes. O exame físico deve identificar a situação ponderostatural do paciente, avaliar evidências de obstrução crônica das vias aéreas superiores e ainda verificar a presença de alterações craniofaciais. A polissonografia de noite inteira é o exame padrão tanto para o diagnóstico, como para a definição da pressão necessária em equipamentos de pressão positiva e também para a avaliação do tratamento cirúrgico. A hipóxia intermitente e os múltiplos despertares resultantes dos eventos obstrutivos contribuem para as consequências cardiovasculares, neurocognitivas e comportamentais bem descritos nesses pacientes. A adenoamigdalectomia é o principal tratamento para a SAOS em crianças. O uso da pressão positiva nas vias aéreas (CPAP ou Bilevel é outra opção de uso crescente na população pediátrica.Childhood obstructive sleep apnea syndrome (OSAS is characterized by recurrent episodes of partial or complete upper airway obstruction during sleep. The disease encompasses a continuum from primary snoring (a benign condition without physiological alterations or

  16. Sleep apnea and REM sleep behavior disorder in patients with Chiari malformations Apnéia do sono e distúrbio do comportamento da fase do sono com REM em pacientes com malformações de Chiari

    Directory of Open Access Journals (Sweden)

    Paulo Sérgio A. Henriques-Filho

    2008-06-01

    Full Text Available BACKGROUND: Chiari malformations (CM may result in the appearance of REM sleep behavior disorder (RBD and sleep apnea syndrome (SAS that can be considered markers of brain stem dysfunction. PURPOSE: To evaluate the frequency of RBD and SAS in patients with CM type I and II. METHOD: Were evaluated 103 patients with CM by means of full night polysomnography. Were scoring different sleep stages, frequency of abnormal movements (through video monitoring and abnormal respiratory events. RESULTS: Of the 103 patients, 36 showed CM type I and 67 CM type II. Episodes of RBD were observed in 23 patients. Abnormal apnea-hypopnea index (AHI was observed in 65 patients. CONCLUSION: The high rate of RBD suggests that this parassomnia and the increased frequency of central sleep apnea episodes, may be considered as a marker of progressive brain stem dysfunction.INTRODUÇÃO: Malformações de Chiari (MC podem gerar o aparecimento de distúrbio comportamental da fase do sono com REM (DCR e síndrome da apnéia do sono (SAS, sugerindo a ocorrência de disfunção do tronco cerebral. OBJETIVO: Avaliar a freqüência de DCR e SAS em pacientes com MC I ou II. MÉTODO: Utilizou-se a polissonografia de noite inteira para a avaliação de 103 pacientes. Classificaram-se as diferentes fases do sono e analisou-se a freqüência de movimentos anormais (monitorada por vídeo e de eventos respiratórios anormais. RESULTADOS: Dos 103 pacientes analisados, 36 eram portadores de MC I e 67 de MC II. Episódios de DCR foram observados em 23 pacientes. O índice de apnéia/hipopnéia foi considerado anormal em 65 pacientes. CONCLUSÃO: A alta freqüência de DCR e o aumento da freqüência de episódios de apnéia central do sono podem ser considerados manifestação de disfunção progressiva do tronco cerebral.

  17. Electrodes for Semiconductor Gas Sensors

    Science.gov (United States)

    Lee, Sung Pil

    2017-01-01

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  18. Development of semiconductor electronics

    International Nuclear Information System (INIS)

    Bardeen, John.

    1977-01-01

    In 1931, Wilson applied Block's theory about the energy bands for the motion of electrons in a crystal lattice to semiconductors and showed that conduction can take place in two different ways, by electrons and by holes. Not long afterwards Frenkel showed that these carriers can flow by diffusion in a concentration gradient as well as under the influence of an electric field and wrote down equations for the current flow. The third major contribution, in the late 1930's was the explanation of rectification at a metalsemiconductor contact by Mott and more completely by Schottky. In late 1947 the first transistor of the point contact type was invented by Brattin, Shockley and Bardeen. Then after single crystals of Ge were grown, the junction transistor was developed by the same group. The first silicon transistors appeared in 1954. Then an important step was discovery of the planar transistor by Hoenri in 1960 which led to development of integrated circuits by 1962. Many transistors are produced by batch processing on a slice of silicon. Then in 1965 Mos (Metal-Oxide Semiconductor) transistor and in 1968 LSI (Large Scale Intergration circuits) were developed. Aside from electronic circuits, there are many other applications of semiconductors, including junction power rectifiers, junction luminescence (including lasers), solar batteries, radiation detectors, microwave oscillators and charged-coupled devices for computer memories and devices. One of the latest developments is a microprocessor with thousands of transistors and associated circuitry on a single small chip of silicon. It can be programmed to provide a variety of circuit functions, thus it is not necessary to go through the great expense of LSI's for each desired function, but to use standard microprocessors and program to do the job

  19. Measurements of non-volatile aerosols with a VTDMA and their correlations with carbonaceous aerosols in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    H. H. Y. Cheung

    2016-07-01

    Full Text Available Simultaneous measurements of aerosol volatility and carbonaceous matters were conducted at a suburban site in Guangzhou, China, in February and March 2014 using a volatility tandem differential mobility analyzer (VTDMA and an organic carbon/elemental carbon (OC ∕ EC analyzer. Low volatility (LV particles, with a volatility shrink factor (VSF at 300 °C exceeding 0.9, contributed 5 % of number concentrations of the 40 nm particles and 11–15 % of the 80–300 nm particles. They were composed of non-volatile material externally mixed with volatile material, and therefore did not evaporate significantly at 300 °C. Non-volatile material mixed internally with the volatile material was referred to as medium volatility (MV, 0.4  <  VSF  <  0.9 and high volatility (HV, VSF  <  0.4 particles. The MV and HV particles contributed 57–71 % of number concentration for the particles between 40 and 300 nm in size. The average EC and OC concentrations measured by the OC ∕ EC analyzer were 3.4 ± 3.0 and 9.0 ± 6.0 µg m−3, respectively. Non-volatile OC evaporating at 475 °C or above, together with EC, contributed 67 % of the total carbon mass. In spite of the daily maximum and minimum, the diurnal variations in the volume fractions of the volatile material, HV, MV and LV residuals were less than 15 % for the 80–300 nm particles. Back trajectory analysis also suggests that over 90 % of the air masses influencing the sampling site were well aged as they were transported at low altitudes (below 1500 m for over 40 h before arrival. Further comparison with the diurnal variations in the mass fractions of EC and the non-volatile OC in PM2.5 suggests that the non-volatile residuals may be related to both EC and non-volatile OC in the afternoon, during which the concentration of aged organics increased. A closure analysis of the total mass of LV and MV residuals and the mass of EC or the

  20. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  1. Basic properties of semiconductors

    CERN Document Server

    Landsberg, PT

    2013-01-01

    Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the

  2. Electrowetting on semiconductors

    Science.gov (United States)

    Palma, Cesar; Deegan, Robert

    2015-01-01

    Applying a voltage difference between a conductor and a sessile droplet sitting on a thin dielectric film separating it from the conductor will cause the drop to spread. When the conductor is a good metal, the change of the drop's contact angle due to the voltage is given by the Young-Lippmann (YL) equation. Here, we report experiments with lightly doped, single crystal silicon as the conductive electrode. We derive a modified YL equation that includes effects due to the semiconductor and contact line pinning. We show that light induces a non-reversible wetting transition, and that our model agrees well with our experimental results.

  3. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  4. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  5. Morbilidade psicológica, qualidade do sono, e suporte social nos portadores de diabetes mellitus tipo 2

    OpenAIRE

    Costa, Elisabete Miranda Gomes

    2013-01-01

    Para levar a cabo este estudo foram aplicados além de um Questionário Sócio – Demográfico, (adaptada da versão de Sousa & McIntyre , 2002) para caracterização da amostra; a Escala Hospitalar de Ansiedade Depressão (HADS), (Zigmond & Snaith, 1983;versão portuguesa adaptada por Pais-Ribeiro, Silva, Ferreira, Martins, Meneses & Baltar,2007) para avaliar os índices de ansiedade e depressão; Índice de Qualidade do Sono Pittsburgh (PSQI) (Buysse, Reynolds, Monk, Berman & Kupfer, 1989; versão portug...

  6. Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol

    International Nuclear Information System (INIS)

    Kothapalli, A.; Sadler, G.

    2003-01-01

    The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 deg. C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.htmlref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.htmlpage1

  7. ZnO as dielectric for optically transparent non-volatile memory

    International Nuclear Information System (INIS)

    Salim, N. Tjitra; Aw, K.C.; Gao, W.; Wright, Bryon E.

    2009-01-01

    This paper discusses the application of a DC sputtered ZnO thin film as a dielectric in an optically transparent non-volatile memory. The main motivation for using ZnO as a dielectric is due to its optical transparency and mechanical flexibility. We have established the relationship between the electrical resistivity (ρ) and the activation energy (E a ) of the electron transport in the conduction band of the ZnO film. The ρ of 2 x 10 4 -5 x 10 7 Ω-cm corresponds to E a of 0.36-0.76 eV, respectively. The k-value and optical band-gap for films sputtered with Ar:O 2 ratio of 4:1 are 53 ± 3.6 and 3.23 eV, respectively. In this paper, the basic charge storage element for a non-volatile memory is a triple layer dielectric structure in which a 50 nm thick ZnO film is sandwiched between two layers of methyl silsesquioxane sol-gel dielectric of varying thickness. A pronounced clockwise capacitance-voltage (C-V) hysteresis was observed with a memory window of 6 V. The integration with a solution-processable pentacene, 13,6-N-Sulfinylacetamodipentacene resulted in an optically transparent organic field effect transistor non-volatile memory (OFET-NVM). We have demonstrated that this OFET-NVM can be electrically programmed and erased at low voltage (± 10 V) with a threshold voltage shift of 4.0 V.

  8. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters

    Science.gov (United States)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-02-01

    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.

  9. Zinc Cadmium Selenide Cladded Quantum Dot Based Electroluminescent and Nonvolatile Memory Devices

    Science.gov (United States)

    Al-Amody, Fuad H.

    This dissertation presents electroluminescent (EL) and nonvolatile memory devices fabricated using pseudomorphic ZnCdSe-based cladded quantum dots (QDs). These dots were grown using our own in-school built novel reactor. The EL device was fabricated on a substrate of ITO (indium tin oxide) coated glass with the quantum dots sandwiched between anode and cathode contacts with a small barrier layer on top of the QDs. The importance of these cladded dots is to increase the quantum yield of device. This device is unique as they utilize quantum dots that are pseudomorphic (nearly lattice-matched core and the shell of the dot). In the case of floating quantum dot gate nonvolatile memory, cladded ZnCdSe quantum dots are deposited on single crystalline gate insulator (ZnMgS/ZnMgSe), which is grown using metal-organic chemical vapor deposition (MOCVD). The control gate dielectric layer of the nonvolatile memory is Si3N4 or SiO2 and is grown using plasma enhanced chemical vapor deposition (PECVD). The cladded dots are grown using an improved methodology of photo-assisted microwave plasma metal-organic chemical vapor deposition (PMP-MOCVD) enhanced reactor. The cladding composition of the core and shell of the dots was engineered by the help of ultraviolet light which changed the incorporation of zinc (and hence composition of ZnCdSe). This makes ZnxCd1--xSe-ZnyCd1--y Se QDs to have a low composition of zinc in the core than the cladding (x

  10. Determination of non-volatile radiolytic compounds in ethylene co-vinyl alcohol

    Science.gov (United States)

    Kothapalli, A.; Sadler, G.

    2003-08-01

    The use of ionizing radiation on food contact polymers is increasing due to the critical role of the package in holding or containing the irradiated foods [Food Add. Contam. 18(6) (2001) 475]. Irradiation benefits the food if properly applied and the food is pre-packaged prior to irradiation to protect it from subsequent recontamination. The United States Food and Drug Administration (USFDA) has approved the use of ionizing radiation within the dosage range of 0-60 kGy on limited films since the 1960s [USFDA 21CFR 179.45]. The obstacle in the way of approval of additional polymers is that FDA fears that these materials may undergo changes during irradiation producing toxic radiolytic fragments. Ethylene co-vinyl alcohol (EVOH), which is often used in food applications, is not approved by the FDA for pre-packaged irradiated foods. The present work examines the non-volatile radiolytic compounds, which may be formed due to exposure to gamma irradiation at the dosage levels of 3 and 10 kGy versus a non-radiated control. Irradiated EVOH is subjected to extraction with 95:5 ethanol and water (by volume) as the food simulating solvent (FSS) for a period of 10 days at 40 °C, which models the amount of radiolytic compound a food would extract in 1 year [USFDA Chemistry Requirement for Food Contact Notification]. The FSS is then analyzed for the presence of non-volatile compounds using advanced liquid chromatographic techniques. The chromatograms obtained from different dosages show that non-volatile radiolytic compounds are not formed in EVOH and it would, therefore be in compliance with safety demands of USFDA [Available at: http://www.cfsan.fda.gov/~dms/opa-guid.html#ref and http://www.access.gpo.gov/nara/cfr/cfr-table-search.html#page1].

  11. The relationship between shift work and sleep patterns in nurses Relação entre trabalho por turnos e padrões de sono em enfermeiros

    Directory of Open Access Journals (Sweden)

    Manuel Fernando dos Santos Barbosa

    2013-03-01

    Full Text Available The scope of this study was to evaluate the sleep/wake cycle in shift work nurses, as well as their sleep quality and chronotype. The sleep/wake cycle was evaluated by keeping a sleep diary for a total of 60 nurses with a mean age of 31.76 years. The Horne & Östberg Questionnaire (1976 for the chronotype and the Pittsburgh Sleep Quality Index (PSQI for sleep quality were applied. The results revealed a predominance of indifferent chronotypes (65.0%, followed by moderately evening persons (18.3%, decidedly evening persons (8.3%, moderately morning persons (6.6% and decidedly morning persons (1.8%. The sleep quality perception was analyzed by the visual analogical scale, showing a mean score of 5.85 points for nighttime sleep and 4.70 points for daytime sleep, which represented a statistically significant difference. The sleep/wake schedule was also statistically different when considering weekdays and weekends. The PSQI showed a mean of 7.0 points, characterizing poor sleep quality. The results showed poor sleep quality in shift work nurses, possibly due to the lack of sport and shift work habits.Este estudo teve como objectivo analisar o ciclo vigília-sono em enfermeiros que trabalham por turnos, bem como a qualidade do sono e cronótipo. O ciclo vigília-sono foi avaliado através do diário de sono, num total de 60 enfermeiros, com idade média de 31.76 anos. Para o cronótipo utilizou-se o Questionário de Horne e Östberg, de 1976, e para medir a qualidade de sono calculou-se o Índice Qualidade de Sono de Pittsburg (PSQI. Os resultados do cronótipo mostraram uma predominância para tipo indiferente (65.0%, seguido do tipo Moderamente Vespertinos (18.3%, Definitivamente Vespertino (8.3%, Moderadamente Matutinos (6.6% e Definitivamente Matutinos (1.8%. A percepção da qualidade do sono autorreportada pela Escala Analógica Visual (VAS foi de 5.85 pontos, em média, para o sono nocturno e 4.70 para o sono diurno, diferen

  12. Efeito de uma sessão de treinamento de força sobre a qualidade do sono de adolescentes

    OpenAIRE

    Santiago, Ladyodeyse da Cunha Silva; Lyra, Maria Julia; Cunha Filho, Moacyr; Cruz, Pedro Weldes da Silva; Santos, Marcos André Moura dos; Falcão, Ana Patrícia Siqueira Tavares

    2015-01-01

    INTRODUÇÃO: o sono é uma função biológica fundamental para a conservação da energia e a restauração do metabolismo energético.OBJETIVO: analisar o efeito de uma sessão do treinamento de força realizada em diferentes horários sobre a qualidade do sono de adolescentes e examinar se a relação entre a melhoria da qualidade do sono e o horário da sessão de treino se altera após o ajuste para idade.MÉTODOS: participaram do estudo seis estudantes do sexo masculino moradores internos do IFPE - Campus...

  13. Avaliação de um modelo de predição para apneia do sono em pacientes submetidos a polissonografia

    OpenAIRE

    Musman,Silvio; Passos,Valéria Maria de Azeredo; Silva,Izabella Barreto Romualdo; Barreto,Sandhi Maria

    2011-01-01

    OBJETIVO: Testar um modelo de predição para apneia do sono a partir de variáveis sociodemográficas e clínicas em uma população com suspeita de distúrbio do sono e submetida à polissonografia. MÉTODOS: Foram incluídos no estudo 323 pacientes consecutivos submetidos à polissonografia por suspeita clínica de distúrbio do sono. Utilizou-se um questionário com questões sociodemográficas e a escala de sonolência de Epworth. Foram medidos pressão arterial, peso, altura e SpO2. A regressão linear múl...

  14. Release and nonvolatile operation of carbon nanotube nanorelay by resonant vibration

    Energy Technology Data Exchange (ETDEWEB)

    Kagota, Tatsuya; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji, E-mail: akita@pe.osakafu-u.ac.jp [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Nagataki, Atsuko [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Materials Analysis Research Center, KRI, Inc., Osaka 554-0051 (Japan)

    2013-11-11

    We investigated the release of a stuck carbon nanotube (CNT) cantilever beam in nanorelay applications using a nano-manipulator. Even with strong adhesion induced by electrostatic attraction that is 100 times stronger than the van der Waals interaction, successful release of a nanotube arm from a stuck state was realized by the application of a resonant vibration to the stuck CNT arm. Furthermore, nonvolatile operation of the nanotube nanorelay was demonstrated by the application of the resonant vibration to the stuck CNT arm.

  15. Investigation of non-volatile additives on the process of distillation of hydrocarbon mixtures

    Directory of Open Access Journals (Sweden)

    М.Б. Степанов

    2009-02-01

    Full Text Available  The given results of researches of influence of nonvolatile additives on processes of distillation of individual hydrocarbons and their mixes, including petroleum and mineral oil. With the help of the developed computer system of the continuous control of distillation it is shown, that at the presence of small amounts of the additive decrease of temperature of the beginning of boiling of hydrocarbons is observed, their speeds of banish and exits of light fuel mineral oil grow during initial oil refining

  16. Fabrication of Pb (Zr, Ti) O3 Thin Film for Non-Volatile Memory Device Application

    International Nuclear Information System (INIS)

    Mar Lar Win

    2011-12-01

    Ferroelectric lead zirconate titanate powder was composed of mainly the oxides of titanium, zirconium and lead. PZT powder was firstly prepared by thermal synthesis at different Zr/Ti ratios with various sintering temperatures. PZT thin film was fabricated on SiO2/Si substrate by using thermal evaporation method. Physical and elemental analysis were carried out by using SEM, EDX and XRD The ferroelectric properties and the switching behaviour of the PZT thin films were investigated. The ferroelectric properties and switching properties of the PZT thin film (near morphotropic phase boundary sintered at 800 C) could function as a nonvolatile memory.

  17. Scalable printed electronics: an organic decoder addressing ferroelectric non-volatile memory

    Science.gov (United States)

    Ng, Tse Nga; Schwartz, David E.; Lavery, Leah L.; Whiting, Gregory L.; Russo, Beverly; Krusor, Brent; Veres, Janos; Bröms, Per; Herlogsson, Lars; Alam, Naveed; Hagel, Olle; Nilsson, Jakob; Karlsson, Christer

    2012-01-01

    Scalable circuits of organic logic and memory are realized using all-additive printing processes. A 3-bit organic complementary decoder is fabricated and used to read and write non-volatile, rewritable ferroelectric memory. The decoder-memory array is patterned by inkjet and gravure printing on flexible plastics. Simulation models for the organic transistors are developed, enabling circuit designs tolerant of the variations in printed devices. We explain the key design rules in fabrication of complex printed circuits and elucidate the performance requirements of materials and devices for reliable organic digital logic. PMID:22900143

  18. Overview of radiation effects on emerging non-volatile memory technologies

    Directory of Open Access Journals (Sweden)

    Fetahović Irfan S.

    2017-01-01

    Full Text Available In this paper we give an overview of radiation effects in emergent, non-volatile memory technologies. Investigations into radiation hardness of resistive random access memory, ferroelectric random access memory, magneto-resistive random access memory, and phase change memory are presented in cases where these memory devices were subjected to different types of radiation. The obtained results proved high radiation tolerance of studied devices making them good candidates for application in radiation-intensive environments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 171007

  19. Microwave oven fabricated hybrid memristor devices for non-volatile memory storage

    International Nuclear Information System (INIS)

    Verrelli, E; Gray, R J; O’Neill, M; Kemp, N T; Kelly, S M

    2014-01-01

    Novel hybrid non-volatile memories made using an ultra-fast microwave heating method are reported for the first time. The devices, consisting of aligned ZnO nanorods embedded in poly (methyl methacrylate), require no forming step and exhibit reliable and reproducible bipolar resistive switching at low voltages and with low power usage. We attribute these properties to a combination of the high aspect ratio of the nanorods and the polymeric hybrid structure of the device. The extremely easy, fast and low-cost solution based method of fabrication makes possible the simple and quick production of cheap memory cells. (paper)

  20. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    International Nuclear Information System (INIS)

    Han, Jinhua; Wang, Wei; Ying, Jun; Xie, Wenfa

    2014-01-01

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized

  1. Ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jinhua; Wang, Wei, E-mail: wwei99@jlu.edu.cn; Ying, Jun; Xie, Wenfa [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2014-01-06

    An ambipolar organic thin-film transistor-based nano-floating-gate nonvolatile memory was demonstrated, with discrete distributed gold nanoparticles, tetratetracontane (TTC), pentacene as the floating-gate layer, tunneling layer, and active layer, respectively. The electron traps at the TTC/pentacene interface were significantly suppressed, which resulted in an ambipolar operation in present memory. As both electrons and holes were supplied in the channel and trapped in the floating-gate by programming/erasing operations, respectively, i.e., one type of charge carriers was used to overwrite the other, trapped, one, a large memory window, extending on both sides of the initial threshold voltage, was realized.

  2. Single filament semiconductor laser

    International Nuclear Information System (INIS)

    Botez, D.

    1980-01-01

    A semiconductor laser comprising: a body of semiconductor material including a substrate having a surface and a pair of spaced, substantially parallel dove-tailed shaped grooves in said surface, said body having a pair of end surfaces between which said grooves extend, said end surfaces being reflective to light with at least one of said end surfaces being partially transparent to light a first epitaxial layer over said surface of the substrate and the surfaces of the grooves, said first epitaxial layer having a flat surface portion over the portion of the substrate surface between the grooves, a thin second epitaxial layer over said first epitaxial layer, a third epitaxial layer over said second epitaxial layer, said first and third epitaxial layers being of opposite conductivity types and the second epitaxial layer being the active recombination region of the laser with the light being generated therein in the vicinity of the portion which is over the flat surface portion of the first epitaxial layer, and a pair of contacts on said body with one contact being over said third epitaxial body and the other being on said substrate

  3. II-VI semiconductor compounds

    CERN Document Server

    1993-01-01

    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  4. Electronic structure of semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Herman, F

    1983-02-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered.

  5. Quantum transport in semiconductor nanowires

    NARCIS (Netherlands)

    Van Dam, J.

    2006-01-01

    This thesis describes a series of experiments aimed at understanding the low-temperature electrical transport properties of semiconductor nanowires. The semiconductor nanowires (1-100 nm in diameter) are grown from nanoscale gold particles via a chemical process called vapor-liquid-solid (VLS)

  6. Semiconductor photocatalysis principles and applications

    CERN Document Server

    Kisch, Horst

    2014-01-01

    Focusing on the basic principles of semiconductor photocatalysis, this book also gives a brief introduction to photochemistry, photoelectrochemistry, and homogeneous photocatalysis. In addition, the author - one of the leading authorities in the field - presents important environmental and practical aspects. A valuable, one-stop source for all chemists, material scientists, and physicists working in this area, as well as novice researchers entering semiconductor photocatalysis.

  7. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  8. Semiconductor materials and their properties

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre; Reinders, Angele; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre

    2017-01-01

    Semiconductor materials are the basic materials which are used in photovoltaic (PV) devices. This chapter introduces solid-state physics and semiconductor properties that are relevant to photovoltaics without spending too much time on unnecessary information. Usually atoms in the group of

  9. Optical coherent control in semiconductors

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher

    2001-01-01

    of quantum control including the recent applications to semiconductors and nanostructures. We study the influence of inhomogeneous broadening in semiconductors on CC results. Photoluminescence (PL) and the coherent emission in four-wave mixing (FWM) is recorded after resonant excitation with phase...

  10. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.

    2013-01-01

    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...... breathing of a single-cycle THz pulse in a semiconductor....

  11. Electronic structure of semiconductor interfaces

    International Nuclear Information System (INIS)

    Herman, F.

    1983-01-01

    The study of semiconductor interfaces is one of the most active and exciting areas of current semiconductor research. Because interfaces play a vital role in modern semiconductor technology (integrated circuits, heterojunction lasers, solar cells, infrared detectors, etc.), there is a strong incentive to understand interface properties at a fundamental level and advance existing technology thereby. At the same time, technological advances such as molecular beam epitaxy have paved the way for the fabrication of semiconductor heterojunctions and superlattices of novel design which exhibit unusual electronic, optical, and magnetic properties and offer unique opportunities for fundamental scientific research. A general perspective on this subject is offered treating such topics as the atomic and electronic structure of semiconductor surfaces and interfaces; oxidation and oxide layers; semiconductor heterojunctions and superlattices; rectifying metal-semiconductor contacts; and interface reactions. Recent progress is emphasized and some future directions are indicated. In addition, the role that large-scale scientific computation has played in furthering our theoretical understanding of semiconductor surfaces and interfaces is discussed. Finally, the nature of theoretical models, and the role they play in describing the physical world is considered. (Author) [pt

  12. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  13. ÍNDICE DA QUALIDADE DO SONO DE PITTSBURGH PARA USO NA REABILITAÇÃO CARDIOPULMONAR E METABÓLICA

    Directory of Open Access Journals (Sweden)

    Pablo Antonio Bertasso de Araujo

    2015-12-01

    Full Text Available Introdução A qualidade do sono constitui-se em parâmetro relevante na avaliação da saúde em geral, sendo um fator relevante na determinação do risco das doenças cardiovasculares. Objetivo Validar a versão adaptada do questionário de avaliação do Índice de Qualidade do Sono de Pittsburgh (PSQI para uso em programas de reabilitação cardiopulmonar e metabólica (RCPM. Métodos Estudo descritivo transversal realizado com 101 pacientes de ambos os sexos, com média de idade de 66,05 (± 13,9 anos. Para a análise estatística foi considerado intervalo de confiança de 95% e valor de significância p <0,05; para a análise de consistência interna foi utilizado o coeficiente de alfa de Cronbach e para a análise da relação entre componentes e itens com o escore total do questionário foi utilizado o coeficiente de correlação de Spearman. Resultados Todos os componentes do questionário apresentaram boa consistência interna com valor de 0,72. Os componentes que mais se relacionaram com o escore total foram "duração do sono" e "qualidade subjetiva do sono", sendo que o componente que menos se relacionou foi "alterações do sono". Dentre os itens a variação foi de 0,584 no item "durante a última semana, em geral, como você classificaria a qualidade do seu sono?", até -0,611 no item "durante a última semana, quantas horas você conseguia dormir durante a noite?". Foi possível observar que os itens "tossir ou roncar muito alto" e "frequência para dificuldades do sono por outras razões" não apresentaram correlação com o escore total do questionário. Conclusão A versão adaptada do PSQI mostrou-se válida para ser utilizada na avaliação do sono em programas de RCPM.

  14. A qualidade do sono, o aproveitamento escolar e o stress em adolescentes que permacem em frente ao computador durante a noite

    OpenAIRE

    Gema Galgani de Mesquita Duarte

    2007-01-01

    Resumo: A qualidade do sono, o aproveitamento escolar e o stress em adolescentes que permanecem em frente ao computador durante a noite. 2007. 234p. Professor Doutor Rubens Nelson Amaral de Assis Reimão. Dissertação (Mestrado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento da Saúde da Criança e do Adolescente. INTRODUÇÃO: O sono representa importante papel na vida do homem, influenciando as condições físicas, psicológicas e sociais. Está intimamente ligado ao...

  15. Sono-vigília, aspectos de memória e melatonina em Síndrome de Williams-Beuren: uma revisão de literatura

    Directory of Open Access Journals (Sweden)

    Stella Donadon Santoro

    2014-12-01

    Full Text Available A Síndrome de Williams-Beuren, distúrbio genético (microdeleção na região cromossômica 7q11.23, apresenta como fenótipo aparente habilidade social que contrasta com o mau funcionamento cognitivo global e visuo-espacial, problemas na forma receptiva, estrutural e semântica da comunicação, além de déficits na atenção, hiperatividade e na memória visuoespacial. Outra caracteristica são desordens no ciclo sono-vigília, com sono ineficaz, resistência em ir para a cama, acordares durante a noite e sonolência durante o dia. Uma possibilidade ainda não explorada nesta síndrome seria o padrão anormal na síntese de melatonina, hormônio capaz de modular a qualidade do sono. Considerando que a qualidade do sono é diretamente influenciada pelos níveis de melatonina e que tanto a melatonina quanto o sono são essenciais para o desenvolvimento adequado das funções cognitivas, buscou-se nesta revisão de literatura quais estudos investigaram separadamente e ou correlacionaram estes três aspectos (melatonina, sono-vigília e memória na síndrome de Williams-Beuren. Para busca, foram utilizadas as bases de dados Medline/Pubmed, SciELO e Lilacs, com os seguintes descritores: "Williams Beuren syndrome, síndrome de Williams Beuren, memory, memória, sleep-wake, sono-vigília, melatonin e melatonina", por meio de cruzamento e com o conectivo AND. O levantamento bibliográfico mostrou que não existem na literatura trabalhos que correlacionaram estas três variáveis entre si nem tampouco trabalhos que investigaram a melatonina na síndrome de Williams-Beuren. As investigações sobre sono assim como as investigações sobre memória são criticamente discutidas neste trabalho que ressalta a necessidade de estudos que correlacionem estes parâmetros, bem como outros fatores comportamentais, cognitivos e bioquímicos a eles relacionados.

  16. Thermoluminescence and photoluminescence properties of NaCl:Mn, NaCL:Cu nano-particles produced using co-precipitation and sono-chemistry methods

    Energy Technology Data Exchange (ETDEWEB)

    Mehrabi, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Zahedifar, M. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Saeidi-Sogh, Z. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Ramazani-Moghaddam-Arani, A., E-mail: ramazmo@kashanu.ac.ir [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Sadeghi, E. [Faculty of Physics, University of Kashan, Kashan (Iran, Islamic Republic of); Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of); Harooni, S. [Institute of Nanosince and Nanotechnology, University of Kashan, Kashan (Iran, Islamic Republic of)

    2017-02-21

    The NaCl: Cu and NaCl: Mn nanoparticles (NPs) were produced by co-precipitation and sono-chemistry methods and their thermoluminescence (TL) and photoluminescence (PL) properties were studied. By decreasing the particles size a considerable increase in sensitivity of the samples to high dose gamma radiation was observed. The NPs produced by sono-chemistry method have smaller size, homogeneous structure, more sensitivity to high gamma radiation and less fading than of those produced by co-precipitation method.

  17. A Síndrome da Apneia/Hipopneia Obstrutiva do Sono (SAHOS) e seu tratamento com cirurgia ortognática

    OpenAIRE

    Faria, Cindy

    2013-01-01

    Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Medicina Dentária A Síndrome da Apneia/Hipopneia Obstrutiva do Sono (SAHOS) é uma síndrome com grande prevalência na sociedade actual, constituíndo um grande problema de saúde pública. A SAHOS ocorre pelo repetido estreitamento ou colapso das vias aéreas superiores (VAS) durante o sono provocando como principal síntoma uma hipersonolência diurna exess...

  18. Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors.

    Science.gov (United States)

    Jie, Wenjing; Hao, Jianhua

    2014-06-21

    Fundamental studies and applications of 2-dimensional (2D) graphene may be deepened and broadened via combining graphene sheets with various functional materials, which have been extended from the traditional insulator of SiO2 to a versatile range of dielectrics, semiconductors and metals, as well as organic compounds. Among them, ferroelectric materials have received much attention due to their unique ferroelectric polarization. As a result, many attractive characteristics can be shown in graphene/ferroelectric hybrid systems. On the other hand, graphene can be integrated with conventional semiconductors and some newly-discovered 2D layered materials to form distinct Schottky junctions, yielding fascinating behaviours and exhibiting the potential for various applications in future functional devices. This review article is an attempt to illustrate the most recent progress in the fabrication, operation principle, characterization, and promising applications of graphene-based hybrid structures combined with various functional materials, ranging from ferroelectrics to semiconductors. We focus on mechanically exfoliated and chemical-vapor-deposited graphene sheets integrated in numerous advanced devices. Some typical hybrid structures have been highlighted, aiming at potential applications in non-volatile memories, transparent flexible electrodes, solar cells, photodetectors, and so on.

  19. Privação de sono REM em um modelo experimental da doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Luiz A. F. Andrade

    1987-09-01

    Full Text Available Investigação prévia mostrou que ratos privados de sono (REM SD mostram acentuação de resposta a agonistas dopaminérgicos. As evidências indicam que essa ação parece ser mediada por supersensibilização de receptores dopaminérgicos pós-sinápticos. Com base nisso, foi feita REM SD em ratos com modelo experimental da doença de Parkinson, nos quais foi feita lesão eletrolítica bilateral de ambas as vias nigro-estriatais. Sete dias após a cirurgia os animais eram submetidos a REM SD por 72 horas. Imediatamente após o final deste período era feita observação em campo aberto para a ambulação, "rearing", "grooming" e latência. Em comparação com ratos não-privados foi observado aumento significativo na ambulação e "rearing", resposta que reapareceu após um segundo período de REM SD, realizado 21 dias após a cirurgia. Estes dados, de melhora de dois parâmetros de modelo experimental da doença de Parkinson, sugerem que a privação de sono pode ser útil nesta doença.

  20. Surface Charge Measurement of SonoVue, Definity and Optison: A Comparison of Laser Doppler Electrophoresis and Micro-Electrophoresis.

    Science.gov (United States)

    Ja'afar, Fairuzeta; Leow, Chee Hau; Garbin, Valeria; Sennoga, Charles A; Tang, Meng-Xing; Seddon, John M

    2015-11-01

    Microbubble (MB) contrast-enhanced ultrasonography is a promising tool for targeted molecular imaging. It is important to determine the MB surface charge accurately as it affects the MB interactions with cell membranes. In this article, we report the surface charge measurement of SonoVue, Definity and Optison. We compare the performance of the widely used laser Doppler electrophoresis with an in-house micro-electrophoresis system. By optically tracking MB electrophoretic velocity in a microchannel, we determined the zeta potentials of MB samples. Using micro-electrophoresis, we obtained zeta potential values for SonoVue, Definity and Optison of -28.3, -4.2 and -9.5 mV, with relative standard deviations of 5%, 48% and 8%, respectively. In comparison, laser Doppler electrophoresis gave -8.7, +0.7 and +15.8 mV with relative standard deviations of 330%, 29,000% and 130%, respectively. We found that the reliability of laser Doppler electrophoresis is compromised by MB buoyancy. Micro-electrophoresis determined zeta potential values with a 10-fold improvement in relative standard deviation. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Comparison of needles size in pediatric renal biopsy with sono-guided percutaneous-automated gun technique

    International Nuclear Information System (INIS)

    Kim, Jong Chul; Park, Jin Yong

    1997-01-01

    To compare the efficacy of a 20-gauge and an 18-gauge needle in sono-guided percutaneous automated gun biopsy for establishing the specific diagnosis of renal parenchymal disease in pediatric kidneys. In 60 pediatric patients with renal parenchymal diseases, percutaneous sono-guided gun biopsy was performed by an experienced radiologist. In two groups of 30 patients, regardless of their age, two needle passes were performed, using alternately an 18-gauge or a 20-gauge biopsy needle. The core of renal tissue thus obtained was examined with light, immunofluorescent or electron microscopy by the renal pathologist. The mean number of intact glomeruli of whole tissue core per biopsy, as seen on the light microscopy, and post-bioptic complications were compared between the two different needle size groups. The number (mean±1 standard deviation) of glomeruli obtained per biopsy was 17±8 in the 18-gauge needle group, and 14±5 in the 20-gauge group. Between two groups, there was no major post-bioptic complication requiring specific treatment, nor a statistically significant difference in the frequency of minor complications. Even though more glomeruli were obtained with an 18-gauge needle, the number obtained with a 20-gauge needle also permitted adequate pathologic examination. Both an 18-gauge and a 20-gauge needle may thus be suitable for renal biopsy in pediatric patients

  2. Ion implantation for semiconductors

    International Nuclear Information System (INIS)

    Grey-Morgan, T.

    1995-01-01

    Full text: Over the past two decades, thousands of particle accelerators have been used to implant foreign atoms like boron, phosphorus and arsenic into silicon crystal wafers to produce special embedded layers for manufacturing semiconductor devices. Depending on the device required, the atomic species, the depth of implant and doping levels are the main parameters for the implantation process; the selection and parameter control is totally automated. The depth of the implant, usually less than 1 micron, is determined by the ion energy, which can be varied between 2 and 600 keV. The ion beam is extracted from a Freeman or Bernas type ion source and accelerated to 60 keV before mass analysis. For higher beam energies postacceleration is applied up to 200 keV and even higher energies can be achieved by mass selecting multiplycharged ions, but with a corresponding reduction in beam output. Depending on the device to be manufactured, doping levels can range from 10 10 to 10 15 atoms/cm 2 and are controlled by implanter beam currents in the range up to 30mA; continuous process monitoring ensures uniformity across the wafer of better than 1 % . As semiconductor devices get smaller, additional sophistication is required in the design of the implanter. The silicon wafers charge electrically during implantation and this charge must be dissipated continuously to reduce the electrical stress in the device and avoid destructive electrical breakdown. Electron flood guns produce low energy electrons (below 10 electronvolts) to neutralize positive charge buildup and implanter design must ensure minimum contamination by other isotopic species and ensure low internal sputter rates. The pace of technology in the semiconductor industry is such that implanters are being built now for 256 Megabit circuits but which are only likely to be widely available five years from now. Several specialist companies manufacture implanter systems, each costing around US$5 million, depending on the

  3. Ecocardiografia em pacientes com apneia do sono grave com e sem pressão arterial controlada: Estudo transversal

    Directory of Open Access Journals (Sweden)

    Denis Martinez

    2016-01-01

    Full Text Available Introdução: A apneia obstrutiva do sono (AOS afeta a anatomia e função do coração. Ocorre hipertensão arterial em metade dos casos de AOS, dificultando atribuir a etiologia dessas alterações separadamente à hipertensão arterial ou à apneia do sono. Métodos: Estudo transversal de pacientes com índice de apneia-hipopneia maior que 50 eventos por hora. As variáveis ecocardiográficas comparadas em indivíduos com hipertensão arterial controlada e não controlada foram: 1 fração de ejeção, 2 diâmetro da aorta, 3 diâmetro do átrio esquerdo, 4 diâmetro de ventrículo direito, 5 diâmetros do ventrículo esquerdo diastólico e sistólico, 6 percentagem delta, 7 espessura do septo, 8 espessura da parede posterior. Resultados: Foram incluídos 83 voluntários, 50 com pressão arterial não controlada. Em média, a idade era 47±9,5 anos, o índice de massa corporal 34±5,4 Kg/m2, o índice de apneia-hipopneia 86±18 eventos/hora. Sessenta pacientes apresentaram anormalidade no ecocardiograma. A hipertrofia de ventrículo esquerdo foi o achado mais comum, sem diferença de frequência em controles (39% e em hipertensos (48%, seguida por disfunção diastólica em controles (27% e em hipertensos (32%. Conclusões: Indivíduos com apneia do sono grave e pressão arterial controlada apresentam alterações no ecocardiograma de tipo e frequência semelhantes aos com hipertensão não controlada. Isso sugere que a apneia do sono pode causar dano cardíaco independentemente de hipertensão. Quando não explicáveis por hipertensão arterial, achados como hipertrofia de ventrículo esquerdo podem ser provocados por apneia do sono.   Introduction:  Obstructive sleep apnea (OSA affects the cardiac anatomy and function. Hypertension occurs in half the OSA cases, making it difficult to attribute the cause of these changes separately to arterial hypertension or sleep apnea. Methods: Prospective cross-sectional study of volunteers with apnea

  4. Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li, E-mail: lizhang9@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Li, Ye; Shi, Jun [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Shi, Gaoquan [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Cao, Shaokui, E-mail: Caoshaokui@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2013-11-01

    An electrically bistable device utilizing a nanocomposite of hexadecylamine-functionalized graphene oxide (HDAGO) with poly(3-hexylthiophene) (P3HT) is demonstrated. The device has an ITO/P3HT-HDAGO/Al sandwich structure, in which the composite film of P3HT-HDAGO was prepared by simple solution phase mixing of the exfoliated HDAGO monolayers with P3HT matrix and a spin-coating method. The memory device exhibits typical bistable electrical switching behavior and a nonvolatile rewritable memory effect, with a turn-on voltage of about 1.5 V and an ON/OFF-state current ratio of 10{sup 5}. Under ambient conditions, both the ON and OFF states are stable under a constant voltage stress or a continuous pulse voltage stress at a read voltage of 1 V. The conduction mechanism is deduced from the modeling of the nature of currents in both states, and the electrical switching behavior can be attributed to the electric-field-induced charge transfer between P3HT and HDAGO nanosheets. - Highlights: • Nonvolatile rewritable memory effect in P3HT–graphene composite is demonstrated. • The memory device was fabricated through a simple solution processing technique. • The device shows a remarkable electrical bistable behavior and excellent stability. • Memory mechanism is deduced from the modeling of the currents in both states.

  5. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-07-23

    Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT), the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM) devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.

  6. Migration of residual nonvolatile and inorganic compounds from recycled post-consumer PET and HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Camila; Reyes, Felix G.R., E-mail: reyesfgr@fea.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Escola de Engenharia dos Alimentos. Dept. de Ciencias dos Alimentos; Freire, Maria Teresa de A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Ciencia Animal e Engenharia dos Alimentos. Dept. de Engenharia dos Alimentos; Nerin, Cristina; Bentayeb, Karim; Rodriguez-Lafuente, Angel; Aznar, Margarita [Dept. of Analytical Chemistry, Arago Inst. of Engineering Research, University of Zaragoza (Spain)

    2014-04-15

    Migration of nonvolatile and inorganic residual compounds from post-consumer recycled polyethylene terephthalate (PET) submitted to cleaning processes for subsequent production of materials intended to food contact, as well as from multilayer packaging material containing post-consumer recycled high-density polyethylene (HDPE) was determined. Tests were carried out using food simulant. Nonvolatile organic contaminants from PET, determined by liquid chromatography-mass spectrometry (UPLC-QqQ/MS), showed significant migration reduction as consequence of the more complex cleaning technologies applied. However, contaminants not allowed by Brazilian and European Union regulations were identified even in deep cleaning samples. Results from multilayer HDPE showed a greater number of contaminants when compared to recycled pellets. Inorganic contaminants, determined by inductively coupled plasma mass spectrometry were below the acceptable levels. Additional studies for identification and quantitation of unknown molecules which were not possible to identify in this study by UPLC-QqQ/MS are required to ascertain the safety of using post-consumer recycled packaging material. (author)

  7. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

    Directory of Open Access Journals (Sweden)

    Mohamed T. Ghoneim

    2015-07-01

    Full Text Available Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT, the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.

  8. Properties of nonvolatile and antibacterial bioboard produced from bamboo macromolecules by hot pressing

    Directory of Open Access Journals (Sweden)

    Shengbo Ge

    2018-03-01

    Full Text Available Employing the antibacterial property of industrial bamboo vinegar (IBV and the photocatalytic degradation of TiO2, bamboo macromolecules were pretreated and processed into nonvolatile and antibacterial bio board (NVABB. The NVABB was then analyzed by conducting Fourier-transform infrared spectroscopy, thermogravimetric analysis and differential thermal analysis. Results show that NVABB samples had average density of 0.96 g/cm3, which is appropriate for application. In terms of physical and mechanical properties, the best NVABB sample obtained from IBV, TiO2 and bamboo had an IBV pretreatment time of 10 min, 2% TiO2 and 1% bamboo charcoal. Fourier-transform infrared spectroscopy demonstrated that optimum conditions for hot pressing were a temperature of 170 °C, duration of 15 min and the addition of IBV and TiO2. Thermogravimetric analysis/differential thermal analysis curves suggest that the thermal degradation of NVABB was less than that of bamboo and that hot pressing obviously increased the thermal stability of HDBB samples. Analysis of the antimicrobial effect revealed that IBV pretreatment improves the antibacterial property of NVABB. Keywords: Industrial bamboo vinegar, Nonvolatile and antibacterial bio board, Bamboo macromolecules, Fourier-transform infrared spectroscopy, Thermogravimetric analysis/differential thermal analysis

  9. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    Science.gov (United States)

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  10. Design exploration of emerging nano-scale non-volatile memory

    CERN Document Server

    Yu, Hao

    2014-01-01

    This book presents the latest techniques for characterization, modeling and design for nano-scale non-volatile memory (NVM) devices.  Coverage focuses on fundamental NVM device fabrication and characterization, internal state identification of memristic dynamics with physics modeling, NVM circuit design, and hybrid NVM memory system design-space optimization. The authors discuss design methodologies for nano-scale NVM devices from a circuits/systems perspective, including the general foundations for the fundamental memristic dynamics in NVM devices.  Coverage includes physical modeling, as well as the development of a platform to explore novel hybrid CMOS and NVM circuit and system design.   • Offers readers a systematic and comprehensive treatment of emerging nano-scale non-volatile memory (NVM) devices; • Focuses on the internal state of NVM memristic dynamics, novel NVM readout and memory cell circuit design, and hybrid NVM memory system optimization; • Provides both theoretical analysis and pr...

  11. A review of emerging non-volatile memory (NVM) technologies and applications

    Science.gov (United States)

    Chen, An

    2016-11-01

    This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.

  12. Review on Physically Flexible Nonvolatile Memory for Internet of Everything Electronics

    KAUST Repository

    Ghoneim, Mohamed T.; Hussain, Muhammad Mustafa

    2015-01-01

    Solid-state memory is an essential component of the digital age. With advancements in healthcare technology and the Internet of Things (IoT), the demand for ultra-dense, ultra-low-power memory is increasing. In this review, we present a comprehensive perspective on the most notable approaches to the fabrication of physically flexible memory devices. With the future goal of replacing traditional mechanical hard disks with solid-state storage devices, a fully flexible electronic system will need two basic devices: transistors and nonvolatile memory. Transistors are used for logic operations and gating memory arrays, while nonvolatile memory (NVM) devices are required for storing information in the main memory and cache storage. Since the highest density of transistors and storage structures is manifested in memories, the focus of this review is flexible NVM. Flexible NVM components are discussed in terms of their functionality, performance metrics, and reliability aspects, all of which are critical components for NVM technology to be part of mainstream consumer electronics, IoT, and advanced healthcare devices. Finally, flexible NVMs are benchmarked and future prospects are provided.

  13. Volatiles and Nonvolatiles in Flourensia campestris Griseb. (Asteraceae), How Much Do Capitate Glandular Trichomes Matter?

    Science.gov (United States)

    Piazza, Leonardo A; López, Daniela; Silva, Mariana P; López Rivilli, Marisa J; Tourn, Mónica G; Cantero, Juan J; Scopel, Ana L

    2018-03-01

    The distribution and ultrastructure of capitate glandular trichomes (GTs) in Flourensia species (Asteraceae) have been recently elucidated, but their metabolic activity and potential biological function remain unexplored. Selective nonvolatile metabolites from isolated GTs were strikingly similar to those found on leaf surfaces. The phytotoxic allelochemical sesquiterpene (-)-hamanasic acid A ((-)-HAA) was the major constituent (ca. 40%) in GTs. Although GTs are quaternary ammonium compounds (QACs)-accumulating species, glycine betaine was not found in GTs; it was only present in the leaf mesophyll. Two (-)-HAA accompanying surface secreted products: compounds 4-hydroxyacetophenone (piceol; 1) and 2-hydroxy-5-methoxyacetophenone (2), which were isolated and fully characterized (GC/MS, NMR), were present in the volatiles found in GTs. The essential oils of fresh leaves revealed ca. 33% monoterpenes, 26% hydrocarbon- and 30% oxygenated sesquiterpenes, most of them related to cadinene and bisabolene derivatives. Present results suggest a main role of GTs in determining the volatile and nonvolatile composition of F. campestris leaves. Based on the known activities of the compounds identified, it can be suggested that GTs in F. campestris would play key ecological functions in plant-pathogen and plant-plant interactions. In addition, the strikingly high contribution of compounds derived from cadinene and bisabolene pathways, highlights the potential of this species as a source of high-valued bioproducts. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  14. Negative effect of Au nanoparticles on an IGZO TFT-based nonvolatile memory device

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Myunghoon; Yoo, Gwangwe; Lee, Jongtaek; Jeong, Seokwon; Roh, Yonghan; Park, Jinhong; Kwon, Namyong [Sungkyunkwan University, Suwon (Korea, Republic of); Jung, Wooshik [Stanford University, Stanford, CA (United States)

    2014-02-15

    In this letter, the electrical characteristics of nonvolatile memory devices based on back gate type indium gallium zinc oxide (IGZO) thin-film transistors (TFTs) are investigated in terms of the Au nanoparticles (NPs) employed in the floating gate-stack of the device. The size of the Au NPs is controlled using a by 500 .deg. C annealing process after the Au thin-film deposition. The size and the roughness of the Au NPs were observed by using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. In order to analyze the electrical properties according to Au NP size, we measured the current-voltage (I{sub D}-V{sub G}) characteristics of the nonvolatile memory devices fabricated without Au NPs and with Au NPs of various sizes. The size of the Au NP increased, so did the surface roughness of the gate. This resulted in increased carrier scattering, which subsequently degraded the on-current of the memory device. In addition, inter-diffusion between the Au and the α-IGZO through the non-uniform Al{sub 2}O{sub 3} tunneling layer seemed to further degrade the device performance.

  15. Nonvolatile rewritable memory device based on solution-processable graphene/poly(3-hexylthiophene) nanocomposite

    International Nuclear Information System (INIS)

    Zhang, Li; Li, Ye; Shi, Jun; Shi, Gaoquan; Cao, Shaokui

    2013-01-01

    An electrically bistable device utilizing a nanocomposite of hexadecylamine-functionalized graphene oxide (HDAGO) with poly(3-hexylthiophene) (P3HT) is demonstrated. The device has an ITO/P3HT-HDAGO/Al sandwich structure, in which the composite film of P3HT-HDAGO was prepared by simple solution phase mixing of the exfoliated HDAGO monolayers with P3HT matrix and a spin-coating method. The memory device exhibits typical bistable electrical switching behavior and a nonvolatile rewritable memory effect, with a turn-on voltage of about 1.5 V and an ON/OFF-state current ratio of 10 5 . Under ambient conditions, both the ON and OFF states are stable under a constant voltage stress or a continuous pulse voltage stress at a read voltage of 1 V. The conduction mechanism is deduced from the modeling of the nature of currents in both states, and the electrical switching behavior can be attributed to the electric-field-induced charge transfer between P3HT and HDAGO nanosheets. - Highlights: • Nonvolatile rewritable memory effect in P3HT–graphene composite is demonstrated. • The memory device was fabricated through a simple solution processing technique. • The device shows a remarkable electrical bistable behavior and excellent stability. • Memory mechanism is deduced from the modeling of the currents in both states

  16. Metal-organic molecular device for non-volatile memory storage

    International Nuclear Information System (INIS)

    Radha, B.; Sagade, Abhay A.; Kulkarni, G. U.

    2014-01-01

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organic complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.

  17. Flexible All-Inorganic Perovskite CsPbBr3 Nonvolatile Memory Device.

    Science.gov (United States)

    Liu, Dongjue; Lin, Qiqi; Zang, Zhigang; Wang, Ming; Wangyang, Peihua; Tang, Xiaosheng; Zhou, Miao; Hu, Wei

    2017-02-22

    All-inorganic perovskite CsPbX 3 (X = Cl, Br, or I) is widely used in a variety of photoelectric devices such as solar cells, light-emitting diodes, lasers, and photodetectors. However, studies to understand the flexible CsPbX 3 electrical application are relatively scarce, mainly due to the limitations of the low-temperature fabricating process. In this study, all-inorganic perovskite CsPbBr 3 films were successfully fabricated at 75 °C through a two-step method. The highly crystallized films were first employed as a resistive switching layer in the Al/CsPbBr 3 /PEDOT:PSS/ITO/PET structure for flexible nonvolatile memory application. The resistive switching operations and endurance performance demonstrated the as-prepared flexible resistive random access memory devices possess reproducible and reliable memory characteristics. Electrical reliability and mechanical stability of the nonvolatile device were further tested by the robust current-voltage curves under different bending angles and consecutive flexing cycles. Moreover, a model of the formation and rupture of filaments through the CsPbBr 3 layer was proposed to explain the resistive switching effect. It is believed that this study will offer a new setting to understand and design all-inorganic perovskite materials for future stable flexible electronic devices.

  18. Semiconductor radiation detector

    Science.gov (United States)

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  19. Semiconductor testing method

    International Nuclear Information System (INIS)

    Brown, Stephen.

    1992-01-01

    In a method of avoiding use of nuclear radiation, eg gamma rays, X-rays, electron beams, for testing semiconductor components for resistance to hard radiation, which hard radiation causes data corruption in some memory devices and 'latch-up' in others, similar fault effects can be achieved using a xenon or other 'light' flash gun even though the penetration of light is significantly less than that of gamma rays. The method involves treating a device with gamma radiation, measuring a particular fault current at the onset of a fault event, repeating the test with light to confirm the occurrence of the fault event at the same measured fault current, and using the fault current value as a reference for future tests using light on similar devices. (author)

  20. Radial semiconductor drift chambers

    International Nuclear Information System (INIS)

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  1. Energy distribution in semiconductors

    International Nuclear Information System (INIS)

    Ance, C.

    1979-01-01

    For various semiconductors the dispersive energy Esub(d) defined in the Wemple-Didomenico model is connected with the covalent and ionic energies Esub(h) and C. A continuous curve of ionicity against the ratio of the two energies Esub(A) and Esub(B), connected to Esub(h) and C is reported. Afromowitz's model is applied to the ternary compounds Gasub(1-x)Alsub(x)Sb using optical decomposition. From these results the average energy gap Esub(g) is given by Esub(g) = D 0 M 0 sup((IB))/(epsilon 1 (0)-1) where M 0 sup((IB)) is the interband transition contribution to the optical moment M 0 . (author)

  2. Organic Semiconductor Photovoltaics

    Science.gov (United States)

    Sariciftci, Niyazi Serdar

    2005-03-01

    Recent developments on organic photovoltaic elements are reviewed. Semiconducting conjugated polymers and molecules as well as nanocrystalline inorganic semiconductors are used in composite thin films. The photophysics of such photoactive devices is based on the photoinduced charge transfer from donor type semiconducting molecules onto acceptor type molecules such as Buckminsterfullerene, C60 and/or nanoparticles. Similar to the first steps in natural photosynthesis, this photoinduced electron transfer leads to a number of potentially interesting applications which include sensitization of the photoconductivity and photovoltaic phenomena. Examples of photovoltaic architectures are discussed with their potential in terrestrial solar energy conversion. Several materials are introduced and discussed for their photovoltaic activities. Furthermore, nanomorphology has been investigated with AFM, SEM and TEM. The morphology/property relationship for a given photoactive system is found to be a major effect.

  3. Integration of organic based Schottky junctions for crossbar non-volatile memory applications

    DEFF Research Database (Denmark)

    Katsia, E.; Tallarida, G.; Ferrari, S.

    2008-01-01

    Small size Schottky junctions using two different synthesized organic semiconductors (oligophenylene-vinylenes) were integrated by standard UV lithography into crossbar arrays. The proposed integration scheme can be applied to a wide class of organics without affecting material properties. Current...

  4. Magnetic excitations in ferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Furdyna, J.K.; Liu, X.; Zhou, Y.Y.

    2009-01-01

    Magnetic excitations in a series of GaMnAs ferromagnetic semiconductor films were studied by ferromagnetic resonance (FMR). Using the FMR approach, multi-mode spin wave resonance spectra have been observed, whose analysis provides information on magnetic anisotropy (including surface anisotropy), distribution of magnetization precession within the GaMnAs film, dynamic surface spin pinning (derived from surface anisotropy), and the value of exchange stiffness constant D. These studies illustrate a combination of magnetism and semiconductor physics that is unique to magnetic semiconductors

  5. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  6. Non-volatile MOS RAM cell with capacitor-isolated nodes that are radiation accessible for rendering a non-permanent programmed information in the cell of a non-volatile one

    NARCIS (Netherlands)

    Widdershoven, Franciscus P.; Annema, Anne J.; Storms, Maurits M.N.; Pelgrom, Marcellinus J.M.; Pelgrom, Marcel J M

    2001-01-01

    A non-volatile, random access memory cell comprises first and second inverters each having an output node cross-coupled by cross-coupling means to an input node of the other inverter for forming a MOS RAM cell. The output node of each inverter is selectively connected via the conductor paths of

  7. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1990-01-01

    The state of the art in semiconductor detectors for elementary particle physics and X-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; i) classical semiconductor diode detectors and ii) semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. (orig.)

  8. State of the art in semiconductor detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1989-01-01

    The state of the art in semiconductor detectors for elementary particle physics and x-ray astronomy is briefly reviewed. Semiconductor detectors are divided into two groups; classical semiconductor diode detectors; and semiconductor memory detectors. Principles of signal formation for both groups of detectors are described and their performance is compared. New developments of silicon detectors are reported here. 13 refs., 8 figs

  9. Semiconductor device comprising a pn-heterojunction

    NARCIS (Netherlands)

    2007-01-01

    An electric device is disclosed comprising a pn-heterojunction ( 4 ) formed by a nanowire ( 3 ) of 111 -V semiconductor material and a semiconductor body ( 1 ) comprising a group IV semiconductor material. The nanowire ( 3 ) is positioned in direct contact with the surface ( 2 ) of the semiconductor

  10. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications

    Science.gov (United States)

    Zhang, Liping; Jaroniec, Mietek

    2018-02-01

    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  11. Consenso brasileiro de ronco e apneia do sono: aspectos de interesse aos ortodontistas Brazilian consensus of snoring and sleep apnea: aspects of interest for orthodontists

    Directory of Open Access Journals (Sweden)

    Cauby Maia Chaves Junior

    2011-02-01

    Full Text Available O objetivo deste artigo é explicitar o posicionamento das sociedades médicas que, reunidas, estabeleceram consenso sobre os parâmetros clínico-laboratoriais que envolvem os distúrbios respiratórios do sono, em especial o ronco e a síndrome da apneia obstrutiva do sono (SAOS. Os ortodontistas, que vêm ocupando gradativamente seu espaço em equipes multidisciplinares que atuam na área do sono humano, pouco conhecem sobre essa uniformização coordenada pela Associação Brasileira de Sono. Os trabalhos clínicos e as pesquisas científicas oriundos da Odontologia, e em particular da Ortodontia, também devem observar e seguir esses critérios de diagnóstico e tratamento estabelecidos pela comunidade médica brasileira.The objective of this article is to clarify the positions of the medical societies that have worked together to establish a consensus regarding the clinical and laboratory parameters involved in sleep-disordered breathing, particularly snoring and obstructive sleep apnea syndrome (OSAS. Orthodontists have gradually come to take part in multidisciplinary teams that act in the area of human sleep, but few know about the uniformity coordinated by the Brazilian Association of Sleep. Clinical and scientific studies from the field of dentistry (particularly orthodontics also must observe and follow these diagnosis and treatment criteria established by the Brazilian medical community.

  12. Method of manufacturing a semiconductor device and semiconductor device obtained with such a method

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method of manufacturing a semiconductor device (10) with a semiconductor body (1) which is provided with at least one semiconductor element, wherein on the surface of the semiconductor body (1) a mesa- shaped semiconductor region (2) is formed, a masking layer (3) is

  13. Fonoaudiologia e apneia do sono: uma revisão Speech therapy and sleepy apnae: a review

    Directory of Open Access Journals (Sweden)

    Erilucia Pereira Santa Rosa

    2010-10-01

    Full Text Available TEMA: a Síndrome da Apneia/Hipopneia Obstrutiva do Sono (SAHOS é definida pela Academia Americana do Sono como a presença de episódios recorrentes de obstrução parcial ou total das vias aéreas superiores durante o sono e manifesta-se como uma redução (hipopneia ou cessação completa (apneia do fluxo aéreo, apesar da manutenção dos esforços inspiratórios. A SAHOS motiva o chamado ronco crônico, sonolência e caracteriza-se pela parada do fluxo aéreo respiratório por pelo menos, 10 segundos. O diagnóstico é realizado através do exame polissonográfico, que consiste no registro simultâneo de atividades do organismo durante a noite, indicando a quantidade de apneias e hipopneias ocorridos e a gravidade da SAHOS. Para sucesso no tratamento desta desordem é fundamental o diagnóstico preciso e correto e a atuação de uma equipe multidisciplinar, estando inserido nela o fonoaudiólogo. OBJETIVO: analisar, através da literatura a interrrelação da Fonoaudiologia e a SAHOS. CONCLUSÃO: aom o referente estudo, podemos identificar a complexidade da SAHOS e mostrar a importância da atuação fonoaudiológica na terapêutica desses pacientes, para uma melhor qualidade de vida.BACKGROUND: the Apnea syndrome / Obstructive Sleepy Hypopnea (SOHAS is define by the American Academy of Sleep with recurrent presence of episodes of partial or total obstruction in the superior airways during sleep, in addition to showing a reduction (hypopnea or complete stoppage (apnea of airflow, although there is an ongoing maintenance of inspiratory efforts. SOHAS motivates the so-called sleepy chronic snoring and sleepiness to dress up by the stop of airflow by at least 10 seconds. The diagnosis is carried out through polysomnographic examination, which consists of the simultaneous recording of body activities during the night, indicating the number of occurring apneas and hypopneas and SOHAS severity. For the successful of disorder treatment it is

  14. Selective, electrochemical etching of a semiconductor

    Science.gov (United States)

    Dahal, Rajendra P.; Bhat, Ishwara B.; Chow, Tat-Sing

    2018-03-20

    Methods for facilitating fabricating semiconductor structures are provided which include: providing a multilayer structure including a semiconductor layer, the semiconductor layer including a dopant and having an increased conductivity; selectively increasing, using electrochemical processing, porosity of the semiconductor layer, at least in part, the selectively increasing porosity utilizing the increased conductivity of the semiconductor layer; and removing, at least in part, the semiconductor layer with the selectively increased porosity from the multilayer structure. By way of example, the selectively increasing porosity may include selectively, anodically oxidizing, at least in part, the semiconductor layer of the multilayer structure.

  15. Atomic layer-deposited Al–HfO{sub 2}/SiO{sub 2} bi-layers towards 3D charge trapping non-volatile memory

    Energy Technology Data Exchange (ETDEWEB)

    Congedo, Gabriele, E-mail: gabriele.congedo@mdm.imm.cnr.it; Wiemer, Claudia; Lamperti, Alessio; Cianci, Elena; Molle, Alessandro; Volpe, Flavio G.; Spiga, Sabina, E-mail: sabina.spiga@mdm.imm.cnr

    2013-04-30

    A metal/oxide/high-κ dielectric/oxide/silicon (MOHOS) planar charge trapping memory capacitor including SiO{sub 2} as tunnel oxide, Al–HfO{sub 2} as charge trapping layer, SiO{sub 2} as blocking oxide and TaN metal gate was fabricated and characterized as test vehicle in the view of integration into 3D cells. The thin charge trapping layer and blocking oxide were grown by atomic layer deposition, the technique of choice for the implementation of these stacks into 3D structures. The oxide stack shows a good thermal stability for annealing temperature of 900 °C in N{sub 2}, as required for standard complementary metal–oxide–semiconductor processes. MOHOS capacitors can be efficiently programmed and erased under the applied voltages of ± 20 V to ± 12 V. When compared to a benchmark structure including thin Si{sub 3}N{sub 4} as charge trapping layer, the MOHOS cell shows comparable program characteristics, with the further advantage of the equivalent oxide thickness scalability due to the high dielectric constant (κ) value of 32, and an excellent retention even for strong testing conditions. Our results proved that high-κ based oxide structures grown by atomic layer deposition can be of interest for the integration into three dimensionally stacked charge trapping devices. - Highlights: ► Charge trapping device with Al–HfO{sub 2} storage layer is fabricated and characterized. ► Al–HfO{sub 2} and SiO{sub 2} blocking oxides are deposited by atomic layer deposition. ► The oxide stack shows a good thermal stability after annealing at 900 °C. ► The device can be efficiently programmed/erased and retention is excellent. ► The oxide stack could be used for 3D-stacked Flash non-volatile memories.

  16. Sono-electro-magnetic therapy for treating chronic pelvic pain syndrome in men: a randomized, placebo-controlled, double-blind trial.

    Directory of Open Access Journals (Sweden)

    Thomas M Kessler

    Full Text Available OBJECTIVE: To assess the efficacy and safety of sono-electro-magnetic therapy compared to placebo in men with refractory CPPS. PATIENTS AND METHODS: In a randomized, placebo-controlled, double-blind single center trial, we assessed the effect of sono-electro-magnetic therapy in men with treatment refractory CPPS. Sixty male patients were randomly assigned to treatment with either sono-electro-magnetic (n = 30 or placebo therapy (n = 30 for 12 weeks. The primary outcome was a change in the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI from baseline to 12 weeks. RESULTS: The 12-week difference between sono-electro-magnetic and placebo therapy in changes of the NIH-CPSI total score was -3.1 points (95% CI -6.8 to 0.6, p = 0.11. In secondary comparisons of NIH-CPSI sub-scores, we found differences between groups most pronounced for the quality-of-life sub-score (difference at 12 weeks -1.6, 95% CI -2.8 to -0.4, p = 0.015. In stratified analyses, the benefit of sono-electro-magnetic therapy appeared more pronounced among patients who had a symptom duration of 12 months or less (difference in NIH-CPSI total score -8.3, 95% CI -14.5 to 2.6 than in patients with a longer symptom duration (-0.8, 95% CI -4.6 to 3.1; p for interaction = 0.023. CONCLUSIONS: Sono-electro-magnetic therapy did not result in a significant improvement of symptoms in the overall cohort of treatment refractory CPPS patients compared to placebo treatment. Subgroup analysis indicates, however, that patients with a symptom-duration of 12 months or less may benefit from sono-electro-magnetic therapy, warranting larger randomized controlled trials in this subpopulation. TRIAL REGISTRATION: ClinicalTrials.gov NCT00688506.

  17. Dietary exposure to volatile and non-volatile N-nitrosamines from processed meat products in Denmark

    DEFF Research Database (Denmark)

    Herrmann, Susan Strange; Duedahl-Olesen, Lene; Christensen, Tue

    2015-01-01

    the carcinogenicity for the majority of the non-volatile NA (NVNA) remains to be elucidated. Danish adults (15–75 years) and children (4–6 years) consume 20 g and 16 g of processed meat per day (95th percentile), respectively. The consumption is primarily accounted for by sausages, salami, pork flank (spiced...

  18. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  19. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  20. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank

    2012-01-01

    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  1. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong

    2014-01-01

    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  2. Semiconductor technology program. Progress briefs

    Science.gov (United States)

    Bullis, W. M.

    1980-01-01

    Measurement technology for semiconductor materials, process control, and devices is reviewed. Activities include: optical linewidth and thermal resistance measurements; device modeling; dopant density profiles; resonance ionization spectroscopy; and deep level measurements. Standardized oxide charge terminology is also described.

  3. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Lutz, G.

    2007-01-01

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  4. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  5. Temperature controller of semiconductor laser

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Vít; Číp, Ondřej

    2003-01-01

    Roč. 73, č. 3 (2003), s. 10 - 12 ISSN 0928-5008 Institutional research plan: CEZ:AV0Z2065902 Keywords : temperature controller * semiconductor laser * laser diode Subject RIV: BH - Optics, Masers, Lasers

  6. Wake fields in semiconductor plasmas

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Mahajan, S.M.

    1994-05-01

    It is shown that an intense short laser pulse propagating through a semiconductor plasma will generated longitudinal Langmuir waves in its wake. The measurable wake field can be used as a diagnostic to study nonlinear optical phenomena. For narrow gap semiconductors (for examples InSb) with Kane-type dispersion relation, the system can simulate, at currently available laser powers, the physics underlying wake-field accelerators. (author). 9 refs, 1 fig

  7. Semiconductor research with reactor neutrons

    International Nuclear Information System (INIS)

    Kimura, Itsuro

    1992-01-01

    Reactor neutrons play an important role for characterization of semiconductor materials as same as other advanced materials. On the other hand reactor neutrons bring about not only malignant irradiation effects called radiation damage, but also useful effects such as neutron transmutation doping and defect formation for opto-electronics. Research works on semiconductor materials with the reactor neutrons of the Kyoto University Reactor (KUR) are briefly reviewed. In this review, a stress is laid on the present author's works. (author)

  8. Semiconductor crystal high resolution imager

    Science.gov (United States)

    Levin, Craig S. (Inventor); Matteson, James (Inventor)

    2011-01-01

    A radiation imaging device (10). The radiation image device (10) comprises a subject radiation station (12) producing photon emissions (14), and at least one semiconductor crystal detector (16) arranged in an edge-on orientation with respect to the emitted photons (14) to directly receive the emitted photons (14) and produce a signal. The semiconductor crystal detector (16) comprises at least one anode and at least one cathode that produces the signal in response to the emitted photons (14).

  9. Dissipative chaos in semiconductor superlattices

    Directory of Open Access Journals (Sweden)

    F. Moghadam

    2008-03-01

    Full Text Available In this paper the motion of electron in a miniband of a semiconductor superlattice (SSL under the influence of external electric and magnetic fields is investigated. The electric field is applied in a direction perpendicular to the layers of the semiconductor superlattice, and the magnetic field is applied in different direction Numerical calculations show conditions led to the possibility of chaotic behaviors.

  10. Reducing leakage current in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Matioli, Elison de Nazareth; Palacios, Tomas Apostol

    2018-03-06

    A semiconductor device includes a first region having a first semiconductor material and a second region having a second semiconductor material. The second region is formed over the first region. The semiconductor device also includes a current blocking structure formed in the first region between first and second terminals of the semiconductor device. The current blocking structure is configured to reduce current flow in the first region between the first and second terminals.

  11. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  12. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  13. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  14. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra

    2010-01-01

    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct......Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals...... with semiconductors can alleviate these problems if only semiconductors could exhibit negative real permittivity. Aluminum doped zinc oxide (AZO) is a low loss semiconductor that can show negative real permittivity in the NIR. A comparative assessment of AZO-based plasmonic devices such as superlens and hyperlens...... with their metal-based counterparts shows that AZO-based devices significantly outperform at a wavelength of 1.55 µm. This provides a strong stimulus in turning to semiconductor plasmonics at the telecommunication wavelengths. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)....

  15. Ripening of Semiconductor Nanoplatelets.

    Science.gov (United States)

    Ott, Florian D; Riedinger, Andreas; Ochsenbein, David R; Knüsel, Philippe N; Erwin, Steven C; Mazzotti, Marco; Norris, David J

    2017-11-08

    Ostwald ripening describes how the size distribution of colloidal particles evolves with time due to thermodynamic driving forces. Typically, small particles shrink and provide material to larger particles, which leads to size defocusing. Semiconductor nanoplatelets, thin quasi-two-dimensional (2D) particles with thicknesses of only a few atomic layers but larger lateral dimensions, offer a unique system to investigate this phenomenon. Experiments show that the distribution of nanoplatelet thicknesses does not defocus during ripening, but instead jumps sequentially from m to (m + 1) monolayers, allowing precise thickness control. We investigate how this counterintuitive process occurs in CdSe nanoplatelets. We develop a microscopic model that treats the kinetics and thermodynamics of attachment and detachment of monomers as a function of their concentration. We then simulate the growth process from nucleation through ripening. For a given thickness, we observe Ostwald ripening in the lateral direction, but none perpendicular. Thicker populations arise instead from nuclei that capture material from thinner nanoplatelets as they dissolve laterally. Optical experiments that attempt to track the thickness and lateral extent of nanoplatelets during ripening appear consistent with these conclusions. Understanding such effects can lead to better synthetic control, enabling further exploration of quasi-2D nanomaterials.

  16. A semiconductor laser device

    Energy Technology Data Exchange (ETDEWEB)

    Takaro, K.; Naoki, T.; Satosi, K.; Yasutosi, K.

    1984-03-17

    A device is proposed which makes it possible to obtain single vertical mode emission in the absence of noise. Noise suppression is achieved by a method which determines the relationship between the donor densities in the second and third layers of an n type semiconductor laser, and the total output optical emission of layers with respect to the emission from the entire laser. The device consists of a photoresist film with a window applied to a 100 GaAs n type conductivity substrate using a standard method. Chemical etching through this window in the substrate is used to generate a slot approximately 1 micrometer in size. After the photoresist film is removed, the following layers are deposited from the liquid phase onto the substrate in the sequence indicated: a telurium doped protective layer of n type AlxGa(1-x) As; 2) an undoped active p type AlyGa(1-6) As layer and a tellurium doped upper protective n type conductivity GaAs layer.

  17. Semiconductor integrated circuits

    International Nuclear Information System (INIS)

    Michel, A.E.; Schwenker, R.O.; Ziegler, J.F.

    1979-01-01

    An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)

  18. Impurity gettering in semiconductors

    Science.gov (United States)

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  19. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  20. BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems

    Energy Technology Data Exchange (ETDEWEB)

    Mudge, Trevor [Univ. of Michigan, Ann Arbor, MI (United States)

    2017-12-15

    This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience, and energy efficiency in Exascale systems. Capacity and energy are the key drivers.

  1. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Science.gov (United States)

    Riente, Fabrizio; Ziemys, Grazvydas; Mattersdorfer, Clemens; Boche, Silke; Turvani, Giovanna; Raberg, Wolfgang; Luber, Sebastian; Breitkreutz-v. Gamm, Stephan

    2017-05-01

    Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML) is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  2. Nonvolatile Memories Using Quantum Dot (QD) Floating Gates Assembled on II-VI Tunnel Insulators

    Science.gov (United States)

    Suarez, E.; Gogna, M.; Al-Amoody, F.; Karmakar, S.; Ayers, J.; Heller, E.; Jain, F.

    2010-07-01

    This paper presents preliminary data on quantum dot gate nonvolatile memories using nearly lattice-matched ZnS/Zn0.95Mg0.05S/ZnS tunnel insulators. The GeO x -cladded Ge and SiO x -cladded Si quantum dots (QDs) are self-assembled site-specifically on the II-VI insulator grown epitaxially over the Si channel (formed between the source and drain region). The pseudomorphic II-VI stack serves both as a tunnel insulator and a high- κ dielectric. The effect of Mg incorporation in ZnMgS is also investigated. For the control gate insulator, we have used Si3N4 and SiO2 layers grown by plasma- enhanced chemical vapor deposition.

  3. Physical implication of transition voltage in organic nano-floating-gate nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shun; Gao, Xu, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn; Zhong, Ya-Nan; Zhang, Zhong-Da; Xu, Jian-Long; Wang, Sui-Dong, E-mail: wangsd@suda.edu.cn, E-mail: gaoxu@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123 (China)

    2016-07-11

    High-performance pentacene-based organic field-effect transistor nonvolatile memories, using polystyrene as a tunneling dielectric and Au nanoparticles as a nano-floating-gate, show parallelogram-like transfer characteristics with a featured transition point. The transition voltage at the transition point corresponds to a threshold electric field in the tunneling dielectric, over which stored electrons in the nano-floating-gate will start to leak out. The transition voltage can be modulated depending on the bias configuration and device structure. For p-type active layers, optimized transition voltage should be on the negative side of but close to the reading voltage, which can simultaneously achieve a high ON/OFF ratio and good memory retention.

  4. A Survey of Soft-Error Mitigation Techniques for Non-Volatile Memories

    Directory of Open Access Journals (Sweden)

    Sparsh Mittal

    2017-02-01

    Full Text Available Non-volatile memories (NVMs offer superior density and energy characteristics compared to the conventional memories; however, NVMs suffer from severe reliability issues that can easily eclipse their energy efficiency advantages. In this paper, we survey architectural techniques for improving the soft-error reliability of NVMs, specifically PCM (phase change memory and STT-RAM (spin transfer torque RAM. We focus on soft-errors, such as resistance drift and write disturbance, in PCM and read disturbance and write failures in STT-RAM. By classifying the research works based on key parameters, we highlight their similarities and distinctions. We hope that this survey will underline the crucial importance of addressing NVM reliability for ensuring their system integration and will be useful for researchers, computer architects and processor designers.

  5. Nonvolatile organic write-once-read-many-times memory devices based on hexadecafluoro-copper-phthalocyanine

    Science.gov (United States)

    Wang, Lidan; Su, Zisheng; Wang, Cheng

    2012-05-01

    Nonvolatile organic write-once-read-many-times memory device was demonstrated based on hexadecafluoro-copper-phthalocyanine (F16CuPc) single layer sandwiched between indium tin oxide (ITO) anode and Al cathode. The as fabricated device remains in ON state and it can be tuned to OFF state by applying a reverse bias. The ON/OFF current ratio of the device can reach up to 2.3 × 103. Simultaneously, the device shows long-term storage stability and long retention time in air. The ON/OFF transition is attributed to the formation and destruction of the interfacial dipole layer in the ITO/F16CuPc interface, and such a mechanism is different from previously reported ones.

  6. Discrete Charge Storage Nonvolatile Memory Based on Si Nanocrystals with Nitridation Treatment

    International Nuclear Information System (INIS)

    Xian-Gao, Zhang; Kun-Ji, Chen; Zhong-Hui, Fang; Xin-Ye, Qian; Guang-Yuan, Liu; Xiao-Fan, Jiang; Zhong-Yuan, Ma; Jun, Xu; Xin-Fan, Huang; Jian-Xin, Ji; Fei, He; Kuang-Bao, Song; Jun, Zhang; Hui, Wan; Rong-Hua, Wang

    2010-01-01

    A nonvolatile memory device with nitrided Si nanocrystals embedded in a Boating gate was fabricated. The uniform Si nanocrystals with high density (3 × 10 11 cm −2 ) were deposited on ultra-thin tunnel oxide layer (∼ 3 nm) and followed by a nitridation treatment in ammonia to form a thin silicon nitride layer on the surface of nanocrystals. A memory window of 2.4 V was obtained and it would be larger than 1.3 V after ten years from the extrapolated retention data. The results can be explained by the nitrogen passivation of the surface traps of Si nanocrystals, which slows the charge loss rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. The charge storage characteristics of ZrO2 nanocrystallite-based charge trap nonvolatile memory

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    ZrO 2 nanocrystallite-based charge trap flash memory capacitors incorporating a (ZrO 2 ) 0.6 (SiO 2 ) 0.4 pseudobinary high-k oxide film as the charge trapping layer were prepared and investigated. The precipitation reaction in the charge trapping layer, forming ZrO 2 nanocrystallites during rapid thermal annealing, was investigated by transmission electron microscopy and X-ray diffraction. It was observed that a ZrO 2 nanocrystallite-based memory capacitor after post-annealing at 850 °C for 60 s exhibits a maximum memory window of about 6.8 V, good endurance and a low charge loss of ∼25% over a period of 10 years (determined by extrapolating the charge loss curve measured experimentally), even at 85 °C. Such 850 °C-annealed memory capacitors appear to be candidates for future nonvolatile flash memory device applications

  8. Conjugated donor-acceptor-acceptor (D-A-A) molecule for organic nonvolatile resistor memory.

    Science.gov (United States)

    Dong, Lei; Li, Guangwu; Yu, An-Dih; Bo, Zhishan; Liu, Cheng-Liang; Chen, Wen-Chang

    2014-12-01

    A new donor-acceptor-acceptor (D-A-A) type of conjugated molecule, N-(4-(N',N'-diphenyl)phenylamine)-4-(4'-(2,2-dicyanovinyl)phenyl) naphthalene-1,8-dicarboxylic monoimide (TPA-NI-DCN), consisting of triphenylamine (TPA) donors and naphthalimide (NI)/dicyanovinylene (DCN) acceptors was synthesized and characterized. In conjunction with previously reported D-A based materials, the additional DCN moiety attached as end group in the D-A-A configuration can result in a stable charge transfer (CT) and charge-separated state to maintain the ON state current. The vacuum-deposited TPA-NI-DCN device fabricated as an active memory layer was demonstrated to exhibit write-once-read-many (WORM) switching characteristics of organic nonvolatile memory due to the strong polarity of the TPA-NI-DCN moiety. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Intrinsic Ge nanowire nonvolatile memory based on a simple core–shell structure

    International Nuclear Information System (INIS)

    Chen, Wen-Hua; Liu, Chang-Hai; Li, Qin-Liang; Sun, Qi-Jun; Liu, Jie; Gao, Xu; Sun, Xuhui; Wang, Sui-Dong

    2014-01-01

    Intrinsic Ge nanowires (NWs) with a Ge core covered by a thick Ge oxide shell are utilized to achieve nanoscale field-effect transistor nonvolatile memories, which show a large memory window and a high ON/OFF ratio with good retention. The retainable surface charge trapping is considered to be responsible for the memory effect, and the Ge oxide shell plays a key role as the insulating tunneling dielectric which must be thick enough to prevent stored surface charges from leaking out. Annealing the device in air is demonstrated to be a simple and effective way to attain thick Ge oxide on the Ge NW surface, and the Ge-NW-based memory corresponding to thick Ge oxide exhibits a much better retention capability compared with the case of thin Ge oxide. (paper)

  10. Standard Test Method for Gravimetric Determination of Nonvolatile Residue (NVR) in Environmentally Controlled Areas for Spacecraft

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers the determination of nonvolatile residue (NVR) fallout in environmentally controlled areas used for the assembly, testing, and processing of spacecraft. 1.2 The NVR of interest is that which is deposited on sampling plate surfaces at room temperature: it is left to the user to infer the relationship between the NVR found on the sampling plate surface and that found on any other surfaces. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  11. Standard Test Method for Gravimetric Determination of Nonvolatile Residue From Cleanroom Wipers

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This test method covers the determination of solvent extractable nonvolatile residue (NVR) from wipers used in assembly, cleaning, or testing of spacecraft, but not from those used for analytical surface sampling of hardware. 1.2 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard. 1.3 The NVR of interest is that which can be extracted from cleanroom wipers using a specified solvent that has been selected for its extractive qualities. Alternative solvents may be selected, but since their use may result in different values being generated, they must be identified in the procedure data sheet. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. Low-field Switching Four-state Nonvolatile Memory Based on Multiferroic Tunnel Junctions

    Science.gov (United States)

    Yau, H. M.; Yan, Z. B.; Chan, N. Y.; Au, K.; Wong, C. M.; Leung, C. W.; Zhang, F. Y.; Gao, X. S.; Dai, J. Y.

    2015-08-01

    Multiferroic tunneling junction based four-state non-volatile memories are very promising for future memory industry since this kind of memories hold the advantages of not only the higher density by scaling down memory cell but also the function of magnetically written and electrically reading. In this work, we demonstrate a success of this four-state memory in a material system of NiFe/BaTiO3/La0.7Sr0.3MnO3 with improved memory characteristics such as lower switching field and larger tunneling magnetoresistance (TMR). Ferroelectric switching induced resistive change memory with OFF/ON ratio of 16 and 0.3% TMR effect have been achieved in this multiferroic tunneling structure.

  13. Poly (vinylidene fluoride-trifluoroethylene/barium titanate nanocomposite for ferroelectric nonvolatile memory devices

    Directory of Open Access Journals (Sweden)

    Uvais Valiyaneerilakkal

    2013-04-01

    Full Text Available The effect of barium titanate (BaTiO3 nanoparticles (particle size <100nm on the ferroelectric properties of poly (vinylidenefluoride-trifluoroethylene P(VDF-TrFE copolymer has been studied. Different concentrations of nanoparticles were added to P(VDF-TrFE using probe sonication, and uniform thin films were made. Polarisation - Electric field (P-E hysteresis analysis shows an increase in remnant polarization (Pr and decrease in coercive voltage (Vc. Piezo-response force microscopy analysis shows the switching capability of the polymer composite. The topography and surface roughness was studied using atomic force microscopy. It has been observed that this nanocomposite can be used for the fabrication of non-volatile ferroelectric memory devices.

  14. Measurements of the size dependence of the concentration of nonvolatile material in fog droplets

    Science.gov (United States)

    Ogren, J. A.; Noone, K. J.; Hallberg, A.; Heintzenberg, J.; Schell, D.; Berner, A.; Solly, I.; Kruisz, C.; Reischl, G.; Arends, B. G.; Wobrock, W.

    1992-11-01

    Measurements of the size dependence of the mass concentration of nonvolatile material dissolved and suspended in fog droplets were obtained with three complementary approaches, covering a size range from c. 1 50µm diameter: a counterflow virtual impactor, an eight-stage aerosol impactor, and a two-stage fogwater impactor. Concentrations were observed to decrease with size over the entire range, contrary to expectations of increasing concentrations at larger sizes. It is possible that the larger droplets had solute concentrations that increased with increasing size, but that the increase was too weak for the measurements to resolve. Future studies should consider the hypothesis that the droplets were coated with a surface-active substance that hindered their uptake of water.

  15. Nonvolatile Solid-State Charged-Polymer Gating of Topological Insulators into the Topological Insulating Regime

    Science.gov (United States)

    Ireland, R. M.; Wu, Liang; Salehi, M.; Oh, S.; Armitage, N. P.; Katz, H. E.

    2018-04-01

    We demonstrate the ability to reduce the carrier concentration of thin films of the topological insulator (TI) Bi2 Se3 by utilizing a nonvolatile electrostatic gating via corona charging of electret polymers. Sufficient electric field can be imparted to a polymer-TI bilayer to result in significant electron density depletion, even without the continuous connection of a gate electrode or the chemical modification of the TI. We show that the Fermi level of Bi2 Se3 is shifted toward the Dirac point with this method. Using terahertz spectroscopy, we find that the surface chemical potential is lowered into the bulk band gap (approximately 50 meV above the Dirac point and 170 meV below the conduction-band minimum), and it is stabilized in the intrinsic regime while enhancing electron mobility. The mobility of surface state electrons is enhanced to a value as high as approximately 1600 cm2/V s at 5 K.

  16. A direct metal transfer method for cross-bar type polymer non-volatile memory applications

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee

    2008-01-01

    Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices

  17. A room-temperature non-volatile CNT-based molecular memory cell

    Science.gov (United States)

    Ye, Senbin; Jing, Qingshen; Han, Ray P. S.

    2013-04-01

    Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.

  18. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids

    Directory of Open Access Journals (Sweden)

    Hongbin Lin

    2018-05-01

    Full Text Available Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC. Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln, glutamic acid (Glu, aspartic acid (Asp and asparagines (Asn were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  19. Method for the Collection, Gravimetric and Chemical Analysis of Nonvolatile Residue (NVR) on Surfaces

    Science.gov (United States)

    Gordon, Keith; Rutherford, Gugu; Aranda, Denisse

    2017-01-01

    Nonvolatile residue (NVR), sometimes referred to as molecular contamination is the term used for the total composition of the inorganic and high boiling point organic components in particulates and molecular films deposited on critical surfaces surrounding space structures, with the particulate and NVR contamination originating primarily from pre-launch operations. The "nonvolatile" suggestion from the terminology NVR implies that the collected residue will not experience much loss under ambient conditions. NVR has been shown to have a dramatic impact on the ability to perform optical measurements from platforms based in space. Such contaminants can be detected early by the controlled application of various detection techniques and contamination analyses. Contamination analyses are the techniques used to determine if materials, components, and subsystems can be expected to meet the performance requirements of a system. Of particular concern is the quantity of NVR contaminants that might be deposited on critical payload surfaces from these sources. Subsequent chemical analysis of the contaminant samples by infrared spectroscopy and gas chromatography mass spectrometry identifies the components, gives semi-quantitative estimates of contaminant thickness, indicates possible sources of the NVR, and provides guidance for effective cleanup procedures. In this report, a method for the collection and determination of the mass of NVR was generated by the authors at NASA Langley Research Center. This report describes the method developed and implemented for collecting NVR contaminants, and procedures for gravimetric and chemical analysis of the residue obtained. The result of this NVR analysis collaboration will help pave the way for Langley's ability to certify flight hardware outgassing requirements in support of flight projects such as Stratospheric Aerosol and Gas Experiment III (SAGE III), Clouds and the Earth's Radiant Energy System (CERES), Materials International

  20. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids.

    Science.gov (United States)

    Lin, Hongbin; Yu, Xiaoyu; Fang, Jiaxing; Lu, Yunhao; Liu, Ping; Xing, Yage; Wang, Qin; Che, Zhenming; He, Qiang

    2018-05-29

    Non-volatile organic acids and amino acids are important flavor compounds in Pixian broad-bean paste, which is a traditional Chinese seasoning product. In this study, non-volatile organic acids, formed in the broad-bean paste due to the metabolism of large molecular compounds, are qualitatively and quantitatively determined by high-performance liquid chromatography (HPLC). Amino acids, mainly produced by hydrolysis of soybean proteins, were determined by the amino acid automatic analyzer. Results indicated that seven common organic acids and eighteen common amino acids were found in six Pixian broad-bean paste samples. The content of citric acid was found to be the highest in each sample, between 4.1 mg/g to 6.3 mg/g, and malic acid were between 2.1 mg/g to 3.6 mg/g ranked as the second. Moreover, fumaric acid was first detected in fermented bean pastes albeit with a low content. For amino acids, savory with lower sour taste including glutamine (Gln), glutamic acid (Glu), aspartic acid (Asp) and asparagines (Asn) were the most abundant, noted to be 6.5 mg/g, 4.0 mg/g, 6.4 mg/g, 4.9 mg/g, 6.2 mg/g and 10.2 mg/g, and bitter taste amino acids followed. More importantly, as important flavor materials in Pixian broad-bean paste, these two groups of substances are expected to be used to evaluate and represent the flavor quality of Pixian broad-bean paste. Moreover, the results revealed that citric acid, glutamic acid, methionine and proline were the most important flavor compounds. These findings are agreat contribution for evaluating the quality and further assessment of Pixian broad-bean paste.

  1. Development of novel nonvolatile memory devices using the colossal magnetoresistive oxide praseodymium-calcium-manganese trioxide

    Science.gov (United States)

    Papagianni, Christina

    Pr0.7Ca0.3MnO3 (PCMO) manganese oxide belongs in the family of materials known as transition metal oxides. These compounds have received increased attention due to their perplexing properties such as Colossal Magnetoresistance effect, Charge-Ordered phase, existence of phase-separated states etc. In addition, it was recently discovered that short electrical pulses in amplitude and duration are sufficient to induce reversible and non-volatile resistance changes in manganese perovskite oxide thin films at room temperature, known as the EPIR effect. The existence of the EPIR effect in PCMO thin films at room temperature opens a viable way for the realization of fast, high-density, low power non-volatile memory devices in the near future. The purpose of this study is to investigate, optimize and understand the properties of Pr0.7Ca0.3MnO 3 (PCMO) thin film devices and to identify how these properties affect the EPIR effect. PCMO thin films were deposited on various substrates, such as metals, and conducting and insulating oxides, by pulsed laser and radio frequency sputtering methods. Our objective was to understand and compare the induced resistive states. We attempted to identify the induced resistance changes by considering two resistive models to be equivalent to our devices. Impedance spectroscopy was also utilized in a wide temperature range that was extended down to 70K. Fitted results of the temperature dependence of the resistance states were also included in this study. In the same temperature range, we probed the resistance changes in PCMO thin films and we examined whether the phase transitions affect the EPIR effect. In addition, we included a comparison of devices with electrodes consisting of different size and different materials. We demonstrated a direct relation between the EPIR effect and the phase diagram of bulk PCMO samples. A model that could account for the observed EPIR effect is presented.

  2. Avaliação da relação entre qualidade de sono e uma intervenção com jogos para o desempenho de crianças e adolescentes

    OpenAIRE

    Araújo, Danilo de Freitas

    2012-01-01

    O sono é um processo cerebral ativo que contribui para a realização eficiente das tarefas cotidianas. Mudanças em seu padrão podem influenciar o desempenho de diversos processos cognitivos. Vários estudos recentes têm demonstrado a possibilidade de melhora do desempenho cognitivo, a partir do treinamento cognitivo com o uso de jogos de computador. A questão é se tais intervenções podem ser influenciadas também pela qualidade do sono. Assim, avaliamos o efeito da qualidade do sono sobre ...

  3. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji

    2017-01-01

    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  4. Semiconductor optoelectronic infrared spectroscopy

    International Nuclear Information System (INIS)

    Hollingworth, A.R.

    2001-08-01

    We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their future potential use in infrared emitters. The effects of bandstructure engineering have been studied in the output characteristics of mid-IR III-V laser diodes to show which processes (defects, radiative, Auger and phonon) dominate and whether non-radiative processes can be suppressed. A new three-beam pump probe experiment was used to investigate interband recombination directly in passive materials. Experiments on PbSe and theory for non-parabolic near-mirror bands and non-degenerate statistics were in good agreement. Comparisons with HgCdTe showed a reduction in the Auger coefficient of 1-2 orders of magnitude in the PbSe. Using Landau confinement to model spatial confinement in quantum dots (QDs) 'phonon bottlenecking' was studied. The results obtained from pump probe and cyclotron resonance saturation measurements showed a clear suppression in the cooling of carriers when Landau level separation was not resonant with LO phonon energy. When a bulk laser diode was placed in a magnetic field to produce a quasi quantum wire device the resulting enhanced differential gain and reduced Auger recombination lowered I th by 30%. This result showed many peaks in the light output which occurred when the LO phonon energy was a multiple of the Landau level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore

  5. Simulation of semiconductor devices

    International Nuclear Information System (INIS)

    Oriato, D.

    2001-09-01

    In this thesis a drift diffusion model coupled with self-consistent solutions of Poisson's and Schroedinger's equations, is developed and used to investigate the operation of Gunn diodes and GaN-based LEDs. The model also includes parameters derived from Monte Carlo calculations of the simulated devices. In this way the characteristics of a Monte Carlo approach and of a quantum solver are built into a fast and flexible drift-diffusion model that can be used for testing a large number of heterostructure designs in a time-effective way. The full model and its numerical implementation are described in chapter 2. In chapter 3 the theory of Gunn diodes is presented. A basic model of the dynamics of domain formation and domain transport is described with particular regard to accumulation and dipole domains. Several modes of operation of the Gunn device are described, varying from the resonance mode to the quenched mode. Details about transferred electron devices and negative differential resistance in semiconductor materials are given. In chapter 4 results from the simulation of a simple conventional gunn device confirm the importance of the doping condition at the cathode. Accumulation or dipole domains are achieved respectively with high and low doping densities. The limits of a conventional Gunn diode are explained and solved by introducing the heterostructure Gunn diode. This new design consists of a conventional GaAs transit region coupled with an electron launcher at the cathode, made using an AIGaAs heterostructure step. Simulations show the importance of the insertion of a thin highly-doped layer between the transit region and the electron launcher in order to improve device operation. Chapter 5 is an introduction to Ill-nitrides, in particular GaN and its alloy ln-GaN. We outline the discrepancy in the elastic and piezoelectric parameters found in the literature. Strain, dislocations and piezoelectricity are presented as the main features of a InGaN/GaN system

  6. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  7. Introduction to cathodoluminescence in semiconductors

    International Nuclear Information System (INIS)

    Dussac, M.

    1985-01-01

    The use of cathodoluminescence in a scanning electron microscope leads to acquire a spectrum in a place of the sample surface, or to register the intensity profile of a special emission band along a scanning line, or also to realize a map of the irradiated sample. Composition variations can then, at ambient temperature, be determined, also defects can be shown, together with grain joints and dislocations, radiative and non radiative regions can be distinguished and, at low temperature, elementary processes of luminescence can be studied and impurities identified in semiconductors. Through this analysis method is applicable to every insulating or semiconductor material (that is to say to every material having a gap), in this article only crystalline semi-conductor will be studied [fr

  8. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  9. High mobility emissive organic semiconductor

    Science.gov (United States)

    Liu, Jie; Zhang, Hantang; Dong, Huanli; Meng, Lingqiang; Jiang, Longfeng; Jiang, Lang; Wang, Ying; Yu, Junsheng; Sun, Yanming; Hu, Wenping; Heeger, Alan J.

    2015-01-01

    The integration of high charge carrier mobility and high luminescence in an organic semiconductor is challenging. However, there is need of such materials for organic light-emitting transistors and organic electrically pumped lasers. Here we show a novel organic semiconductor, 2,6-diphenylanthracene (DPA), which exhibits not only high emission with single crystal absolute florescence quantum yield of 41.2% but also high charge carrier mobility with single crystal mobility of 34 cm2 V−1 s−1. Organic light-emitting diodes (OLEDs) based on DPA give pure blue emission with brightness up to 6,627 cd m−2 and turn-on voltage of 2.8 V. 2,6-Diphenylanthracene OLED arrays are successfully driven by DPA field-effect transistor arrays, demonstrating that DPA is a high mobility emissive organic semiconductor with potential in organic optoelectronics. PMID:26620323

  10. Thiophene-Based Organic Semiconductors.

    Science.gov (United States)

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan

    2017-10-24

    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  11. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    Science.gov (United States)

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  12. EPA Method 8321B (SW-846): Solvent-Extractable Nonvolatile Compounds by High Performance Liquid Chromatography-Thermospray-Mass Spectrometry (HPLC-TS-MS) or Ultraviolet (UV) Detection

    Science.gov (United States)

    Method 8321B describes procedures for preparation and analysis of solid, aqueous liquid, drinking water and wipe samples using high performance liquid chromatography and mass spectrometry for extractable non-volatile compounds.

  13. Atomically Smooth Epitaxial Ferroelectric Thin Films for the Development of a Nonvolatile, Ultrahigh Density, Fast, Low Voltage, Radiation-Hard Memory

    National Research Council Canada - National Science Library

    Ahn, Charles H

    2006-01-01

    The goal of this research is to fabricate atomically smooth, single crystalline, complex oxide thin film nanostructures for use in a nonvolatile, ultrahigh density, fast, low voltage, radiation-hard memory...

  14. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  15. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C

    1994-01-01

    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  16. Introduction to semiconductor manufacturing technology

    CERN Document Server

    2012-01-01

    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  17. Wide gap semiconductor microwave devices

    International Nuclear Information System (INIS)

    Buniatyan, V V; Aroutiounian, V M

    2007-01-01

    A review of properties of wide gap semiconductor materials such as diamond, diamond-like carbon films, SiC, GaP, GaN and AlGaN/GaN that are relevant to electronic, optoelectronic and microwave applications is presented. We discuss the latest situation and perspectives based on experimental and theoretical results obtained for wide gap semiconductor devices. Parameters are taken from the literature and from some of our theoretical works. The correspondence between theoretical results and parameters of devices is critically analysed. (review article)

  18. Detection of radioactivity by semiconductors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The class of detectors discussed in this chapter has a responsive component involving a diode, a junction between two types of semiconductor materials. Although diode detectors are not particularly efficient in counting radioactive emissions, they are superior to other commercially available detectors in spectroscopy. Consequently, diode detectors are used extensively for quanlitative purposes and for quantitative purposes when mixtures of radionuclides are present, not the usual situation with biological or medical research. Topics addressed in this chapter are as follows: Band Theory; Semiconductors and Junctions; and Radiation Detectors. 6 refs., 14 figs

  19. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  20. Semiconductor X-ray spectrometers

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1978-02-01

    An outline is given of recent developments in particle and photon induced x-ray fluorescence (XRF) analysis. Following a brief description of the basic mechanism of semiconductor detector operation a comparison is made between semiconductor detectors, scintillators and gas filled proportional devices. Detector fabrication and cryostat design are described in more detail and the effects of various device parameters on system performance, such as energy resolution, count rate capability, efficiency, microphony, etc. are discussed. The main applications of these detectors in x-ray fluorescence analysis, electron microprobe analysis, medical and pollution studies are reviewed

  1. Integrating magnetism into semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, Boris P; Korenev, Vladimir L [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2005-06-30

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  2. Integrating magnetism into semiconductor electronics

    International Nuclear Information System (INIS)

    Zakharchenya, Boris P; Korenev, Vladimir L

    2005-01-01

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  3. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry

    2012-01-01

    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  4. Waveguide based external cavity semiconductor lasers

    NARCIS (Netherlands)

    Oldenbeuving, Ruud; Klein, E.J.; Offerhaus, Herman L.; Lee, Christopher James; Verhaegen, M.; Boller, Klaus J.

    2012-01-01

    We report on progress of the project waveguide based external cavity semiconductor laser (WECSL) arrays. Here we present the latest results on our efforts to mode lock an array of tunable, external cavity semiconductor lasers.

  5. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas

    2009-07-06

    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  6. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  7. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  8. Sono, estado nutricional e hábitos de vida de caminhoneiros = Sleep, nutritional status and life habits of truckers

    Directory of Open Access Journals (Sweden)

    Paris, Patrícia de

    2013-01-01

    Full Text Available Objetivo: Avaliar o período de sono, o estado nutricional e os hábitos de vida dos caminhoneiros do município de Veranópolis/RS. Materiais e Métodos: Estudo retrospectivo, transversal com dados secundários de uma amostra de conveniência de 100 caminhoneiros entre 21 e 60 anos. Estudou-se variáveis sociodemográficas, de hábitos de vida, relato de doença crônica não transmissível (DCNT, uso de medicamentos para dormir ou para tratamento de saúde, questões sobre as práticas alimentares e parâmetros antropométricos. Os dados foram analisados por estatística descritiva e analítica pelo programa SPSS® com nível de significância de 5%. Resultados: A idade média dos caminhoneiros foi 38,5±10,2 anos. A maioria dorme 6,0±1,4 horas/dia, apresenta-se com sobrepeso e obesidade (82% e risco para o desenvolvimento de doenças cardiovasculares (69%. O tempo de sono teve associação com o colesterol total e o diabete mellitus. A média de refeições realizadas por dia foi de 3,4±0,9, prevalecendo o café da manhã, o almoço e o jantar. Caminhoneiros que dormem a semana inteira em casa realizam o café da manhã, o almoço e o jantar em suas residências, enquanto aqueles que dormem de 1 a 5 dias fora de casa realizam o almoço e o jantar em restaurantes. Houve associação significativa da faixa etária (p=0,044, consumo de bebidas alcoólicas (p=0,020 e realização de lanche da tarde (p=0,013 com dormir após o almoço; e dos obesos com a presença de hipertensão (p=0,035. Conclusão: O sobrepeso e a obesidade caracterizaram o estado nutricional dos caminhoneiros. O sono associou-se com as DCNT. A maioria realiza três refeições diárias, não pratica exercícios físicos e não é tabagista, porém, tem o hábito de ingerir bebidas alcoólicas

  9. Feasibility and limitations of anti-fuses based on bistable non-volatile switches for power electronic applications

    Science.gov (United States)

    Erlbacher, T.; Huerner, A.; Bauer, A. J.; Frey, L.

    2012-09-01

    Anti-fuse devices based on non-volatile memory cells and suitable for power electronic applications are demonstrated for the first time using silicon technology. These devices may be applied as stand alone devices or integrated using standard junction-isolation into application-specific and smart-power integrated circuits. The on-resistance of such devices can be permanently switched by nine orders of magnitude by triggering the anti-fuse with a positive voltage pulse. Extrapolation of measurement data and 2D TCAD process and device simulations indicate that 20 A anti-fuses with 10 mΩ can be reliably fabricated in 0.35 μm technology with a footprint of 2.5 mm2. Moreover, this concept offers distinguished added-values compared to existing mechanical relays, e.g. pre-test, temporary and permanent reset functions, gradual turn-on mode, non-volatility, and extendibility to high voltage capability.

  10. Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit.

    Science.gov (United States)

    Zhang, Qihang; Zhang, Yifei; Li, Junying; Soref, Richard; Gu, Tian; Hu, Juejun

    2018-01-01

    In this Letter, we propose a broadband, nonvolatile on-chip switch design in the telecommunication C-band with record low loss and crosstalk. The unprecedented device performance builds on: 1) a new optical phase change material (O-PCM) Ge 2 Sb 2 Se 4 Te 1 (GSST), which exhibits significantly reduced optical attenuation compared to traditional O-PCMs, and 2) a nonperturbative design that enables low-loss device operation beyond the classical figure-of-merit (FOM) limit. We further demonstrate that the 1-by-2 and 2-by-2 switches can serve as basic building blocks to construct nonblocking and nonvolatile on-chip switching fabric supporting arbitrary numbers of input and output ports.

  11. Influence of mineral salts upon activity of Trichoderma harzianum non-volatile metabolites on Armillaria spp. rhizomorphs

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2011-01-01

    Full Text Available Effect of non-volatile metabolites of Trichoderma harzianum together with certain salts containing Mg++, Fe+++, Mn++, Cu++, Al+++, Ca++, K++, Na+, PO4--- and SO3--- on the production and length of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae was studied. In pure medium, T. harzianum exhibited stimulating effect on rhizomorphs of A. borealis (both number and length and A. ostoyae (only initiation. Cu++ salt totaly inhibited the initiation of rhizomorphs of Armillaria borealis, A. gallica and A. ostoyae. Effect of other compounds on the activity of T. harzianum depended on Armillaria species. The majority of chemical compounds tested supressed the activity of non-volatile metabolites of T. harzianum. Evident stimulating effect was observed under influence of sulphate salts consisting Al++ and Fe+++ on the rhizomorph number of A. borealis and A. gallica, respectively.

  12. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference.

    Science.gov (United States)

    Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K

    2016-10-01

    Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.

  13. Nuclear radiation detection by a variband semiconductor

    International Nuclear Information System (INIS)

    Volkov, A.S.

    1981-01-01

    Possibilities of using a variband semiconductor for detecting nuclear radiations are considered. It is shown that the variaband quasielectric field effectively collects charges induced by a nuclear particle only at a small mean free path in the semiconductor (up to 100 μm), the luminescence spectrum of the variband semiconductor when a nuclear particle gets into it, in principle, permits to determine both the energy and mean free path in the semiconductor (even at large mean free paths) [ru

  14. Ultrafast THz Saturable Absorption in Doped Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hoffmann, Matthias C.

    2011-01-01

    We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields.......We demonstrate ultrafast THz saturable absorption in n-doped semiconductors by nonlinear THz time-domain spectroscopy. This effect is caused by the semiconductor conductivity modulation due to electron heating and satellite-valley scattering in strong THz fields....

  15. Laser semiconductor diode integrated with frequency doubler

    International Nuclear Information System (INIS)

    Tighineanu, I.; Dorogan, V.; Suruceanu, G.

    2003-01-01

    The invention relates to the technology of optoelectronic semiconductor devices and may be used in the production of laser semiconductor diodes integrated with optical nonlinear elements. The laser semiconductor diode integrated with frequency doubler includes a semiconductor substrate, a laser structure with waveguide. metal contacts in the waveguide of the laser structure it is formed a nanostructured field so that the nanostructure provides for the fulfillment of the phase synchronism conditions

  16. Diode having trenches in a semiconductor region

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  17. A radiation-tolerant, low-power non-volatile memory based on silicon nanocrystal quantum dots

    OpenAIRE

    Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; De Blauwe, J.; Green, M. L.

    2001-01-01

    Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO_2 is a critical aspect of the performance ...

  18. Electric field mediated non-volatile tuning magnetism in CoPt/PMN-PT heterostructure for magnetoelectric memory devices

    Science.gov (United States)

    Yang, Y. T.; Li, J.; Peng, X. L.; Wang, X. Q.; Wang, D. H.; Cao, Q. Q.; Du, Y. W.

    2016-02-01

    We report a power efficient non-volatile magnetoelectric memory in the CoPt/(011)PMN-PT heterostructure. Two reversible and stable electric field induced coercivity states (i.e., high-HC or low-HC) are obtained due to the strain mediated converse magnetoelectric effect. The reading process of the different coercive field information written by electric fields is demonstrated by using a magnetoresistance read head. This result shows good prospects in the application of novel multiferroic devices.

  19. Apneia obstrutiva do sono em portadores da anemia falciforme Obstructive sleep apnea in sickle cell disease carriers

    Directory of Open Access Journals (Sweden)

    Cristina Salles

    2010-02-01

    Full Text Available A Síndrome da Apneia Obstrutiva do Sono (SAOS é definida como episódios recorrentes de obstrução completa ou parcial das vias aéreas superiores que ocorrem durante o sono. O fluxo aéreo pode estar diminuído ou completamente interrompido, a despeito do esforço inspiratório, resultando em episódios intermitentes de hipoxemia, hipercapnia. A presença de SAOS poderá ser um fator de piora da hipoxemia noturna, da doença de base, concorrendo para ocorrência de síndrome torácica aguda. Com o objetivo de revisar dados sobre a fisiopatologia da SAOS em crianças e adolescentes portadores de anemia falciforme, foi realizada busca eletrônica de artigos no Medline e Lilacs nos últimos dez anos, bem como referências cruzadas dos artigos encontrados. Palavras-chaves: "sleep apnea, sickle cell anemia, sickle cell disease, pathophysiology ". Estudos sugerem que a SAOS pode potencializar o quadro clínico, ou seja, as crises álgicas, déficit de estatura, de peso, cognitivo e de inteligência, dessaturação arterial noturna, e acidente vascular cerebral das crianças portadoras de anemia falciforme. Rev. Bras. Hematol. Hemoter.Obstructive Sleep Apnea Syndrome (OSAS is defined as recurrent episodes of complete or partial obstruction of the upper airway during sleep. The airflow can be reduced or completely stopped despite of inspiratory effort, resulting in intermittent episodes of hypoxemia and hypercapnia. OSAS may be a factor in the worsening of nocturnal hypoxemia, of the underlying disease, leading to acute chest syndrome. The aim of this work was to review data on the pathophysiology of OSAS in children and adolescents with sickle cell anemia. We revisited articles published over the last ten years linked to the Medline and Lilacs databases, as well as cross-referencing using these articles. The following keywords were used: sleep apnea, obstructive sleep apnea, sickle cell anemia, sickle cell disease. Studies suggest that OSAS may

  20. Automation and Integration in Semiconductor Manufacturing

    OpenAIRE

    Liao, Da-Yin

    2010-01-01

    Semiconductor automation originates from the prevention and avoidance of frauds in daily fab operations. As semiconductor technology and business continuously advance and grow, manufacturing systems must aggressively evolve to meet the changing technical and business requirements in this industry. Semiconductor manufacturing has been suffering pains from islands of automation. The problems associated with these systems are limited

  1. Non-volatile resistive switching in the Mott insulator (V1-xCrx)2O3

    Science.gov (United States)

    Querré, M.; Tranchant, J.; Corraze, B.; Cordier, S.; Bouquet, V.; Députier, S.; Guilloux-Viry, M.; Besland, M.-P.; Janod, E.; Cario, L.

    2018-05-01

    The discovery of non-volatile resistive switching in Mott insulators related to an electric-field-induced insulator to metal transition (IMT) has paved the way for their use in a new type of non-volatile memories, the Mott memories. While most of the previous studies were dedicated to uncover the resistive switching mechanism and explore the memory potential of chalcogenide Mott insulators, we present here a comprehensive study of resistive switching in the canonical oxide Mott insulator (V1-xCrx)2O3. Our work demonstrates that this compound undergoes a non-volatile resistive switching under electric field. This resistive switching is induced by a Mott transition at the local scale which creates metallic domains closely related to existing phases of the temperature-pressure phase diagram of (V1-xCrx)2O3. Our work demonstrates also reversible resistive switching in (V1-xCrx)2O3 crystals and thin film devices. Preliminary performances obtained on 880 nm thick layers with 500 nm electrodes show the strong potential of Mott memories based on the Mott insulator (V1-xCrx)2O3.

  2. Semiconductor nanostructures for infrared applications

    NARCIS (Netherlands)

    Zurauskiene, N.; Asmontas, S.; Dargys, A.; Kundrotas, J.; Janssen, G.; Goovaerts, E.; Marcinkevicius, S.; Koenraad, P.M.; Wolter, J.H.; Leon, R.

    2004-01-01

    We present the results of time-resolved photoluminescence (TRPL) and optically detected microwave resonance (ODMR) spectroscopy investigations of semiconductor quantum dots and quantum wells. The ODMR spectra of InAs/GaAs QDs were detected via modulation of the total intensity of the QDs emission

  3. A Brief History of ... Semiconductors

    Science.gov (United States)

    Jenkins, Tudor

    2005-01-01

    The development of studies in semiconductor materials is traced from its beginnings with Michael Faraday in 1833 to the production of the first silicon transistor in 1954, which heralded the age of silicon electronics and microelectronics. Prior to the advent of band theory, work was patchy and driven by needs of technology. However, the arrival…

  4. Semiconductor radiation detectors: device physics

    National Research Council Canada - National Science Library

    Lutz, Gerhard

    1999-01-01

    ..., including nuclear physics, elementary particle physics, optical and x-ray astronomy, medicine, and materials testing - and the number of applications is growing continually. Closely related, and initiated by the application of semiconductors, is the development of low-noise low-power integrated electronics for signal readout. The success of semicond...

  5. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  6. Ultrafast Spectroscopy of Semiconductor Devices

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang; Hvam, Jørn Marcher

    1999-01-01

    In this work we present an experimental technique for investigating ultrafast carrier dynamics in semiconductor optical amplifiers at room temperature. These dynamics, influenced by carrier heating, spectral hole-burning and two-photon absorption, are very important for device applications in inf...

  7. Radiation damage in semiconductor detectors

    International Nuclear Information System (INIS)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced

  8. Nonvolatile field effect transistors based on protons and Si/SiO2Si structures

    International Nuclear Information System (INIS)

    Warren, W.L.; Vanheusden, K.; Fleetwood, D.M.; Schwank, J.R.; Winokur, P.S.; Knoll, M.G.; Devine, R.A.B.

    1997-01-01

    Recently, the authors have demonstrated that annealing Si/SiO 2 /Si structures in a hydrogen containing ambient introduces mobile H + ions into the buried SiO 2 layer. Changes in the H + spatial distribution within the SiO 2 layer were electrically monitored by current-voltage (I-V) measurements. The ability to directly probe reversible protonic motion in Si/SiO 2 /Si structures makes this an exemplar system to explore the physics and chemistry of hydrogen in the technologically relevant Si/SiO 2 structure. In this work, they illustrate that this effect can be used as the basis for a programmable nonvolatile field effect transistor (NVFET) memory that may compete with other Si-based memory devices. The power of this novel device is its simplicity; it is based upon standard Si/SiO 2 /Si technology and forming gas annealing, a common treatment used in integrated circuit processing. They also briefly discuss the effects of radiation on its retention properties

  9. The MONOS memory transistor: application in a radiation-hard nonvolatile RAM

    International Nuclear Information System (INIS)

    Brown, W.D.

    1985-01-01

    The MONOS (metal-oxide-nitride-oxide-silicon) device is a prime candidate for use as the nonvolatile memory element in a radiation-hardened RAM (random-access memory). The endurance, retention and radiation properties of MONOS memory transistors have been studied as a function of post nitride deposition annealing. Following the nitride layer deposition, all devices were subjected to an 800 0 C oxidation step and some were then annealed at 900 0 C in nitrogen. The nitrogen anneal produces an increase in memory window size of approximately 40%. The memory window center of the annealed devices is shifted toward more positive voltages and is more stable with endurance cycling. Endurance cycling to 10 9 cycles produces a 20% increase in memory window size and a 60% increase in decay rate. For a radiation total dose of 10 6 rads (Si), the memory window size is essentially unchanged and the decay rate increases approximately 13%. A combination of 10 9 cycles and 10 6 rads (Si) reduces the decades of retention (in sec) from 6.3 to 4.3 for a +- 23-V 16-μsec write/erase pulse. (author)

  10. Comparison of non-volatile umami components in chicken soup and chicken enzymatic hydrolysate.

    Science.gov (United States)

    Kong, Yan; Yang, Xiao; Ding, Qi; Zhang, Yu-Yu; Sun, Bao-Guo; Chen, Hai-Tao; Sun, Ying

    2017-12-01

    Umami taste is an important part to the taste of chicken. To isolate and identify non-volatile umami compounds, fractions from chicken soup and hydrolysate were prepared and analyzed. Amino acids were analyzed by amino acid analyzer. Organic acids and nucleotides were determined by ultra-performance liquid chromatography. Separation procedures utilizing ultrafiltration, Sephadex G-15 and reversed-phase high-performance liquid chromatography were used to isolate umami taste peptides. Combined with sensory evaluation and LC-Q-TOF-MS, the amino acid sequences of 12 oligopeptides were determined. The amount of taste compounds was higher in chicken enzymatic hydrolysate than that of chicken soup. Eight oligopeptides from chicken enzymatic hydrolysate were identified, including Ala-Asp, Ala-Met, His-Ser, Val-Glu, Ala-Glu, Asp-Ala-Gly, Glu-Asp and Ala-Glu-Ala. Four oligopeptides from chicken soup were identified, including Val-Thr, Ala-His, Ala-Phe and Thr-Glu. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Discharge characteristics of an ablative pulsed plasma thruster with non-volatile liquid propellant

    Science.gov (United States)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki

    2017-07-01

    Pulsed plasma thrusters (PPTs) are a form of electric spacecraft propulsion. They have an extremely simple structure and are highly suitable for nano/micro-spacecraft with weights in the kilogram range. Such small spacecraft have recently experienced increased growth but still lack suitable efficient propulsion systems. PPTs operate in a pulsed mode (one discharge = one shot) and typically use solid polytetrafluoroethylene (PTFE) as a propellant. However, new non-volatile liquids in the perfluoropolyether (PFPE) family have recently been found to be promising alternatives. A recent study presented results on the physical characteristics of PFPE vs. PTFE, showing that PFPE is superior in terms of physical characteristics such as its resistance to carbon deposition. This letter will examine the electrical discharge characteristics of PFPE vs. PTFE. The results demonstrate that PFPE has excellent shot-to-shot repeatability and a lower discharge resistance when compared with PTFE. Taken together with its physical characteristics, PFPE appears to be a strong contender to PTFE as a PPT propellant.

  12. Controlled data storage for non-volatile memory cells embedded in nano magnetic logic

    Directory of Open Access Journals (Sweden)

    Fabrizio Riente

    2017-05-01

    Full Text Available Among the beyond-CMOS technologies, perpendicular Nano Magnetic Logic (pNML is a promising candidate due to its low power consumption, its non-volatility and its monolithic 3D integrability, which makes it possible to integrate memory and logic into the same device by exploiting the interaction of bi-stable nanomagnets with perpendicular magnetic anisotropy. Logic computation and signal synchronization are achieved by focus ion beam irradiation and by pinning domain walls in magnetic notches. However, in realistic circuits, the information storage and their read-out are crucial issues, often ignored in the exploration of beyond-CMOS devices. In this paper we address these issues by experimentally demonstrating a pNML memory element, whose read and write operations can be controlled by two independent pulsed currents. Our results prove the correct behavior of the proposed structure that enables high density memory embedded in the logic plane of 3D-integrated pNML circuits.

  13. Origami-based tunable truss structures for non-volatile mechanical memory operation.

    Science.gov (United States)

    Yasuda, Hiromi; Tachi, Tomohiro; Lee, Mia; Yang, Jinkyu

    2017-10-17

    Origami has recently received significant interest from the scientific community as a method for designing building blocks to construct metamaterials. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. Here, we present volumetric origami cells-specifically triangulated cylindrical origami (TCO)-with tunable stability and stiffness, and demonstrate their feasibility as non-volatile mechanical memory storage devices. We show that a pair of TCO cells can develop a double-well potential to store bit information. What makes this origami-based approach more appealing is the realization of two-bit mechanical memory, in which two pairs of TCO cells are interconnected and one pair acts as a control for the other pair. By assembling TCO-based truss structures, we experimentally verify the tunable nature of the TCO units and demonstrate the operation of purely mechanical one- and two-bit memory storage prototypes.Origami is a popular method to design building blocks for mechanical metamaterials. Here, the authors assemble a volumetric origami-based structure, predict its axial and rotational movements during folding, and demonstrate the operation of mechanical one- and two-bit memory storage.

  14. Investigations concerning the exchange of iodine from non-volatile organic iodine compounds

    International Nuclear Information System (INIS)

    Psarros, N.; Duschner, H.; Molzahn, D.; Schmidt, L.; Heise, S.; Jungclas, H.; Brandt, R.; Patzelt, P.

    1990-10-01

    The iodine produced by nuclear fission is removed during the reprocessing of exhausted nuclear fuel elements by desorption achieving good decontamination factors. Nevertheless the further optimization of the process requires detailed information about the iodine speciation during fuel reprocessing, and about possible reactions. For the study of decomposition reactions of iodo-alcanes, which are built up during the fuel recycling process, we developed a method for the synthesis of labelled iodo-dodecane, which was used as tracer. In order to identify the iodo species in the organic phase of the reprocessing cycle we applied plasma desorption time-of-flight mass spectroscopy. The problem of the volatility of the iodo-compounds in the ultra vacuum of the mass spectrometer was overcome by derivatization of the iodo-alcanes with dithizon, which yielded non-volatile ionic alcyltetrazolium iodides. Beta-spectrometric analysis of the exhaust condensates collected from the organic phase of the WAK reprocessing cycle revealed beside iodine-129 the existence of a low-energetic beta emitter, which has yet to be identified. A literature survey on the topic was also performed. (orig.) With 42 refs., 9 figs [de

  15. Non-volatile main memory management methods based on a file system.

    Science.gov (United States)

    Oikawa, Shuichi

    2014-01-01

    There are upcoming non-volatile (NV) memory technologies that provide byte addressability and high performance. PCM, MRAM, and STT-RAM are such examples. Such NV memory can be used as storage because of its data persistency without power supply while it can be used as main memory because of its high performance that matches up with DRAM. There are a number of researches that investigated its uses for main memory and storage. They were, however, conducted independently. This paper presents the methods that enables the integration of the main memory and file system management for NV memory. Such integration makes NV memory simultaneously utilized as both main memory and storage. The presented methods use a file system as their basis for the NV memory management. We implemented the proposed methods in the Linux kernel, and performed the evaluation on the QEMU system emulator. The evaluation results show that 1) the proposed methods can perform comparably to the existing DRAM memory allocator and significantly better than the page swapping, 2) their performance is affected by the internal data structures of a file system, and 3) the data structures appropriate for traditional hard disk drives do not always work effectively for byte addressable NV memory. We also performed the evaluation of the effects caused by the longer access latency of NV memory by cycle-accurate full-system simulation. The results show that the effect on page allocation cost is limited if the increase of latency is moderate.

  16. Determination of Nonvolatile Amines in Foods by Improved Dansyl Derivatization Reaction.

    Science.gov (United States)

    Handa, Ayami; Kawanabe, Hitomi; Ibe, Akihiro

    2017-01-01

    An analytical method for the determination of nonvolatile amines (putrescine, cadaverine, histamine, tyramine, and spermidine) in foods was developed, using an improved dansyl derivatization technique. The five amines were extracted from food with 1% trichloroacetic acid. Three milliliter of extract was applied to a polymer-based strong cation exchange resin mini-column, which was washed with 5 mL of water, and eluted with 5 mL of 1 mol/L potassium carbonate solution. The eluate was dansylated, then 5 mL of toluene was added with shaking. The toluene layer was evaporated. The residue was taken up in 1 mL of acetonitrile and shaken with 1 mL of 5% proline in 1 mol/L potassium carbonate solution. The upper acetonitrile layer was collected, filtered, and subjected to HPLC. The limits of quantitation for putrescine and cadaverine in the samples were both 0.2 μg/g; those of spermidine, tyramine, and histamine were 0.8, 2.0, and 5.0 μg/g, respectively. The average recoveries of the five amines from nine foods exceeded 80%.

  17. Low temperature synthesis and electrical characterization of germanium doped Ti-based nanocrystals for nonvolatile memory

    International Nuclear Information System (INIS)

    Feng, Li-Wei; Chang, Chun-Yen; Chang, Ting-Chang; Tu, Chun-Hao; Wang, Pai-Syuan; Lin, Chao-Cheng; Chen, Min-Chen; Huang, Hui-Chun; Gan, Der-Shin; Ho, New-Jin; Chen, Shih-Ching; Chen, Shih-Cheng

    2011-01-01

    Chemical and electrical characteristics of Ti-based nanocrystals containing germanium, fabricated by annealing the co-sputtered thin film with titanium silicide and germanium targets, were demonstrated for low temperature applications of nonvolatile memory. Formation and composition characteristics of nanocrystals (NCs) at various annealing temperatures were examined by transmission electron microscopy and X-ray photon-emission spectroscopy, respectively. It was observed that the addition of germanium (Ge) significantly reduces the proposed thermal budget necessary for Ti-based NC formation due to the rise of morphological instability and agglomeration properties during annealing. NC structures formed after annealing at 500 °C, and separated well at 600 °C annealing. However, it was also observed that significant thermal desorption of Ge atoms occurs at 600 °C due to the sublimation of formatted GeO phase and results in a serious decrease of memory window. Therefore, an approach to effectively restrain Ge thermal desorption is proposed by encapsulating the Ti-based trapping layer with a thick silicon oxide layer before 600 °C annealing. The electrical characteristics of data retention in the sample with the 600 °C annealing exhibited better performance than the 500 °C-annealed sample, a result associated with the better separation and better crystallization of the NC structures.

  18. Dependence of the organic nonvolatile memory performance on the location of ultra-thin Ag film

    International Nuclear Information System (INIS)

    Jiao Bo; Wu Zhaoxin; He Qiang; Mao Guilin; Hou Xun; Tian Yuan

    2010-01-01

    We demonstrated organic nonvolatile memory devices based on 4,4',4''-tris[N-(3-methylphenyl)-N-phenylamino] triphenylamine (m-MTDATA) inserted by an ultra-thin Ag film. The memory devices with different locations of ultra-thin Ag film in m-MTDATA were investigated, and it was found that the location of the Ag film could affect the performance of the organic memory, such as ON/OFF ratio, retention time and cycling endurance. When the Ag film was located at the ITO/m-MTDATA interface, the largest ON/OFF ratio (about 10 5 ) could be achieved, but the cycling endurance was poor. When the Ag film was located in the middle region of the m-MTDATA layer, the ON/OFF ratios came down by about 10 3 , but better performance of cycling endurance was exhibited. When the Ag film was located close to the Al electrode, the ON/OFF ratios and the retention time of this device decreased sharply and the bistable phenomenon almost disappeared. Our works show a simple approach to improve the performance of organic memory by adjusting the location of the metal film.

  19. Non-volatile memory devices with redox-active diruthenium molecular compound

    International Nuclear Information System (INIS)

    Pookpanratana, S; Zhu, H; Bittle, E G; Richter, C A; Li, Q; Hacker, C A; Natoli, S N; Ren, T

    2016-01-01

    Reduction-oxidation (redox) active molecules hold potential for memory devices due to their many unique properties. We report the use of a novel diruthenium-based redox molecule incorporated into a non-volatile Flash-based memory device architecture. The memory capacitor device structure consists of a Pd/Al 2 O 3 /molecule/SiO 2 /Si structure. The bulky ruthenium redox molecule is attached to the surface by using a ‘click’ reaction and the monolayer structure is characterized by x-ray photoelectron spectroscopy to verify the Ru attachment and molecular density. The ‘click’ reaction is particularly advantageous for memory applications because of (1) ease of chemical design and synthesis, and (2) provides an additional spatial barrier between the oxide/silicon to the diruthenium molecule. Ultraviolet photoelectron spectroscopy data identified the energy of the electronic levels of the surface before and after surface modification. The molecular memory devices display an unsaturated charge storage window attributed to the intrinsic properties of the redox-active molecule. Our findings demonstrate the strengths and challenges with integrating molecular layers within solid-state devices, which will influence the future design of molecular memory devices. (paper)

  20. Standard Test Method for Gravimetric Determination of Nonvolatile Residue from Cleanroom Gloves

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This test method covers the determination of solvent extractable nonvolatile residue (NVR) from gloves used in cleanrooms where spacecraft are assembled, cleaned, or tested. 1.2 The NVR of interest is that which can be extracted from gloves using a specified solvent that has been selected for its extracting qualities, or because it is representative of solvents used in the particular facility. Alternative solvents may be used, but since their use may result in different values being generated, they must be identified in the procedure data sheet. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Resistance Switching Characteristics in ZnO-Based Nonvolatile Memory Devices

    Directory of Open Access Journals (Sweden)

    Fu-Chien Chiu

    2013-01-01

    Full Text Available Bipolar resistance switching characteristics are demonstrated in Pt/ZnO/Pt nonvolatile memory devices. A negative differential resistance or snapback characteristic can be observed when the memory device switches from a high resistance state to a low resistance state due to the formation of filamentary conducting path. The dependence of pulse width and temperature on set/reset voltages was examined in this work. The exponentially decreasing trend of set/reset voltage with increasing pulse width is observed except when pulse width is larger than 1 s. Hence, to switch the ZnO memory devices, a minimum set/reset voltage is required. The set voltage decreases linearly with the temperature whereas the reset voltage is nearly temperature-independent. In addition, the ac cycling endurance can be over 106 switching cycles, whereas, the dependence of HRS/LRS resistance distribution indicates that a significant memory window closure may take place after about 102  dc switching cycles.

  2. Four-state non-volatile memory in a multiferroic spin filter tunnel junction

    Science.gov (United States)

    Ruan, Jieji; Li, Chen; Yuan, Zhoushen; Wang, Peng; Li, Aidong; Wu, Di

    2016-12-01

    We report a spin filter type multiferroic tunnel junction with a ferromagnetic/ferroelectric bilayer barrier. Memory functions of a spin filter magnetic tunnel junction and a ferroelectric tunnel junction are combined in this single device, producing four non-volatile resistive states that can be read out in a non-destructive manner. This concept is demonstrated in a LaNiO3/Pr0.8Ca0.2MnO3/BaTiO3/La0.7Sr0.3MnO3 all-oxide tunnel junction. The ferromagnetic insulator Pr0.8Ca0.2MnO3 serves as the spin filter and the ferromagnetic metal La0.7Sr0.3MnO3 is the spin analyzer. The ferroelectric polarization reversal in the BaTiO3 barrier switches the tunneling barrier height to produce a tunneling electroresistance. The ferroelectric switching also modulates the spin polarization and the spin filtering efficiency in Pr0.8Ca0.2MnO3.

  3. Thin PZT-Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

    KAUST Repository

    Ghoneim, Mohamed T.

    2015-04-24

    A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)-(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol-gel coating cycles required (i.e., more cost-effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano-scale due to the larger feature size-to-depth aspect ratio (critical for ultra-high density non-volatile memory applications). Utilizing the inverse proportionality between substrate\\'s thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer-less manufacturable process into a flexible form that matches organic electronics\\' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

  4. Graphene-ferroelectric metadevices for nonvolatile memory and reconfigurable logic-gate operations

    Science.gov (United States)

    Kim, Woo Young; Kim, Hyeon-Don; Kim, Teun-Teun; Park, Hyun-Sung; Lee, Kanghee; Choi, Hyun Joo; Lee, Seung Hoon; Son, Jaehyeon; Park, Namkyoo; Min, Bumki

    2016-01-01

    Memory metamaterials are artificial media that sustain transformed electromagnetic properties without persistent external stimuli. Previous memory metamaterials were realized with phase-change materials, such as vanadium dioxide or chalcogenide glasses, which exhibit memory behaviour with respect to electrically/optically induced thermal stimuli. However, they require a thermally isolated environment for longer retention or strong optical pump for phase-change. Here we demonstrate electrically programmable nonvolatile memory metadevices realised by the hybridization of graphene, a ferroelectric and meta-atoms/meta-molecules, and extend the concept further to establish reconfigurable logic-gate metadevices. For a memory metadevice having a single electrical input, amplitude, phase and even the polarization multi-states were clearly distinguishable with a retention time of over 10 years at room temperature. Furthermore, logic-gate functionalities were demonstrated with reconfigurable logic-gate metadevices having two electrical inputs, with each connected to separate ferroelectric layers that act as the multi-level controller for the doping level of the sandwiched graphene layer.

  5. Transient photoconductivity in amorphous semiconductors

    International Nuclear Information System (INIS)

    Mpawenayo, P.

    1997-07-01

    Localized states in amorphous semiconductors are divided in disorder induced shallow trap levels and dangling bonds deep states. Dangling bonds are assumed here to be either neutral or charged and their energy distribution is a single gaussian. Here, it is shown analytically that transient photocurrent in amorphous semiconductors is fully controlled by charge carriers transitions between localized states for one part and tunneling hopping carriers on the other. Localized dangling bonds deep states act as non radiative recombination centres, while hopping tunnelling is assisted by the Coulomb interaction between defects sites. The half-width of defects distribution is the disorder parameter that determines the carrier hopping time between defects sites. The macroscopic time that explains the long decay response times observed will all types of amorphous semiconductors is duly thought to be temperature dependent. Basic equations developed by Longeaud and Kleider are solved for the general case of a semiconductor after photo-generation. It turns out that the transient photoconductivity decay has two components; one with short response times from carriers trap-release transitions between shallow levels and extended states and a hopping component made of inter-dependent exponentials whose time constants span in larger ranges depending on disorder. The photoconductivity hopping component appears as an additional term to be added to photocurrents derived from existing models. The results of the present study explain and complete the power law decay derived in the multiple trapping models developed 20 years ago only in the approximation of the short response time regime. The long response time regime is described by the hopping macroscopic time. The present model is verified for all samples of amorphous semiconductors known so far. Finally, it is proposed to improved the modulated photoconductivity calculation techniques by including the long-lasting hopping dark documents

  6. An ultra-low-power area-efficient non-volatile memory in a 0.18 μm single-poly CMOS process for passive RFID tags

    International Nuclear Information System (INIS)

    Jia Xiaoyun; Feng Peng; Zhang Shengguang; Wu Nanjian; Zhao Baiqin; Liu Su

    2013-01-01

    This paper presents an ultra-low-power area-efficient non-volatile memory (NVM) in a 0.18 μm single-poly standard CMOS process for passive radio frequency identification (RFID) tags. In the memory cell, a novel low-power operation method is proposed to realize bi-directional Fowler—Nordheim tunneling during write operation. Furthermore, the cell is designed with PMOS transistors and coupling capacitors to minimize its area. In order to improve its reliability, the cell consists of double floating gates to store the data, and the 1 kbit NVM was implemented in a 0.18 μm single-poly standard CMOS process. The area of the memory cell and 1 kbit memory array is 96 μm 2 and 0.12 mm 2 , respectively. The measured results indicate that the program/erase voltage ranges from 5 to 6 V The power consumption of the read/write operation is 0.19 μW/0.69 μW at a read/write rate of (268 kb/s)/(3.0 kb/s). (semiconductor integrated circuits)

  7. Charge trapping characteristics of Au nanocrystals embedded in remote plasma atomic layer-deposited Al2O3 film as the tunnel and blocking oxides for nonvolatile memory applications

    International Nuclear Information System (INIS)

    Lee, Jaesang; Kim, Hyungchul; Park, Taeyong; Ko, Youngbin; Ryu, Jaehun; Jeon, Heeyoung; Park, Jingyu; Jeon, Hyeongtag

    2012-01-01

    Remote plasma atomic layer deposited (RPALD) Al 2 O 3 films were investigated to apply as tunnel and blocking layers in the metal-oxide-semiconductor capacitor memory utilizing Au nanocrystals (NCs) for nonvolatile memory applications. The interface stability of an Al 2 O 3 film deposited by RPALD was studied to observe the effects of remote plasma on the interface. The interface formed during RPALD process has high oxidation states such as Si +3 and Si +4 , indicating that RPALD process can grow more stable interface which has a small amount of fixed oxide trap charge. The significant memory characteristics were also observed in this memory device through the electrical measurement. The memory device exhibited a relatively large memory window of 5.6 V under a 10/-10 V program/erase voltage and also showed the relatively fast programming/erasing speed and a competitive retention characteristic after 10 4 s. These results indicate that Al 2 O 3 films deposited via RPALD can be applied as the tunnel and blocking oxides for next-generation flash memory devices.

  8. Sono-photo-degradation of carbamazepine in a thin falling film reactor: Operation costs in pilot plant.

    Science.gov (United States)

    Expósito, A J; Patterson, D A; Monteagudo, J M; Durán, A

    2017-01-01

    The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H 2 O 2 /Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35min). The synergism between the UV process and the sonolytic one was quantified as 55.2%. To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H 2 O 2 /Fe process reaching 60% of mineralization would cost 2.1 and 3.8€/m 3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate. In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36€/m 3 . However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Qualitative doping area characterization of SONOS transistor utilizing scanning capacitance microscopy (SCM) and scanning spread resistance microscopy (SSRM)

    International Nuclear Information System (INIS)

    Heo, Jinhee; Kim, Deoksu; Kim, Chung woo; Chung, Ilsub

    2005-01-01

    Continuous shrinkage in the memory devices demands further understanding about the doping concentration variations at shallow junction and channel region. Scanning capacitance microscopy (SCM) and scanning spread resistance microscopy (SSRM) can provide reliable information about the electrical and physical junction structure simultaneously. In this work, we attempt to visualize the doping concentration variations of split-gate structure silicon-oxide-nitride-oxide-silicon (SONOS) transistor with thin oxide-nitride-oxide (ONO; 4/7/11 nm). From SCM image, we could identify the source and drain region, which have different doping concentrations from that at channel region. In addition, a gate oxide layer and a depletion region were also identified. Similar results were obtained using SSRM. However, SSRM shows a better resolution, in particular, for highly doped region. For this experiment, the cross-sectional sample has been prepared using focused ion beam (FIB) and hand-polishing method. The results show that SCM and SSRM are very useful methods to analyze the doping profile near the junction as well as the channel

  10. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  11. Epidemiologia dos distúrbios respiratórios do sono Epidemiology of sleep-disordered breathing

    Directory of Open Access Journals (Sweden)

    Carlos Alberto de Assis Viegas

    2010-06-01

    Full Text Available Os principais distúrbios respiratórios do sono, ronco e SAOS, são muito prevalentes na população geral, embora se acredite que a maioria dos casos continue não diagnosticada. Devemos estar atentos para os principais fatores de risco que favorecem o aparecimento desses distúrbios, como gênero masculino, obesidade, envelhecimento e características crânio-faciais. Da mesma forma, a presença de hipertensão arterial sistêmica, enfermidades cardiovasculares e metabólicas deve nos alertar para a possibilidade da concomitância de SAOS.The principal types of sleep-disordered breathing-snoring and obstructive sleep apnea syndrome-are highly prevalent in the general population, although it is believed that the majority of cases continue to go undiagnosed. We should be aware of the principal risk factors that favor the onset of these disorders, such as male gender, obesity, aging and craniofacial features. Similarly, systemic arterial hypertension, cardiovascular diseases and metabolic disorders should alert us to the possibility of obstructive sleep apnea syndrome.

  12. Sono- and photoelectrocatalytic processes for the removal of ionic liquids based on the 1-butyl-3-methylimidazolium cation.

    Science.gov (United States)

    Mena, Ismael F; Cotillas, Salvador; Díaz, Elena; Sáez, Cristina; Mohedano, Ángel F; Rodrigo, Manuel A

    2017-12-06

    In this work, sono- and photoelectrolysis of synthetic wastewaters polluted with the ionic liquids 1-Butyl-3-methylimidazolium acetate (BmimAc) and chloride (BmimCl) were investigated with diamond anodes. The results were compared to those attained by enhancing bare electrolysis with irradiation by UV light or with the application of high-frequency ultrasound (US). Despite its complex heterocyclic structure, the Bmim + cation was successfully depleted with the three technologies that were tested and was mainly transformed into four different organic intermediates, an inorganic nitrogen species and carbon dioxide. Regardless of the technology that was evaluated, removal of the heterocyclic ring is much less efficient (and much slower) than oxidation of the counter ion. In turn, the counter ion influences the rate of removal of the ionic liquid cation. Thus, the electrolysis and photoelectrolysis of BmimAc are much less efficient than sonoelectrolysis, but their differences become much less important in the case of BmimCl. In this later case, the most efficient technology is photoelectrolysis. This result is directly related to the generation of free radicals in the solution by irradiation of the electrochemical system with UV light, which contributes significantly to the removal of Bmim + . Copyright © 2017 Elsevier B.V. All rights reserved.

  13. High performance SONOS flash memory with in-situ silicon nanocrystals embedded in silicon nitride charge trapping layer

    Science.gov (United States)

    Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won

    2018-02-01

    In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.

  14. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  15. Nightly use of computer by adolescents: its effect on quality of sleep Uso noturno de computador por adolescentes: seu efeito na qualidade de sono

    Directory of Open Access Journals (Sweden)

    Gema Mesquita

    2007-06-01

    Full Text Available OBJECTIVE: To analyze the influence of nocturnal use of computer and their effect on sleep quality, in a group of adolescents. METHOD: Two middle schools were chosen for the research. The sample consisted of adolescents n=160 (55M; 105F, with ages ranging from 15 to 18 years. Questionnaire about computer use with the objective of obtaining information regarding the time and number of hours of nocturnal computer use, were applied for collection of data. They included the Pittsburgh Sleep Quality Index (PSQI, utilized to quantfy sleep quality; student report cards were used to note student's absences and grades were used. RESULTS: The Multiple Logistic Regression test indicated that nocturnal computer use impairs good sleep (p=0.0062. CONCLUSION: Irregular sleep patterns associated with nightly computer use deteriorate sleep quality.OBJETIVO: Analisar a influência do uso noturno de computador na qualidade de sono, em um grupo de adolescentes. MÉTODO: Foram escolhidas duas instituições educacionais de ensino médio. A amostra tomada foi composta de adolescentes (n=160, ( 55 M; 105 F ; a faixa etária estudada foi de 15 a 18 anos. Para a coleta de dados aplicou-se: Questionário para uso do computador, com a finalidade de coletar informações sobre o horário e a quantidade de horas do uso do computador durante as noites; Índice de Qualidade de Sono de Pittsburgh (IQSP utilizado para quantificar a qualidade do sono; e os boletins dos alunos por meio dos quais foram recolhidas as faltas e as notas dos alunos. RESULTADOS: Pela Regressão Logística Múltipla, observou-se que o uso do computador é um fator que compromete o dormir bem (p=0,0062. CONCLUSÃO: Padrões irregulares de sono associados ao uso noturno de computador estão associados à deterioração da qualidade do sono.

  16. Desenvolvimento dos estados de sono na infância Desarrollo de los estados de sueño en la infancia Development of sleep stages in childhood

    Directory of Open Access Journals (Sweden)

    Lorena Teresinha Consalter Geib

    2007-06-01

    Full Text Available Na perspectiva de descrever alguns aspectos da ontogênese e da organização dos estados de sono no primeiro ano de vida, revisou-se na literatura as alterações fisiológicas e comportamentais controladas pelas mudanças que ocorrem durante o sono nessa etapa desenvolvimental. Além disso, com fundamentação na teoria precursora do sono, expõe-se as etapas da diferenciação, a classificação e a organização temporal dos estados de sono, com vistas ao manejo favorável dos eventos ambientais, que afetam a organização do sono infantil.Con la perspectiva de describir algunos aspectos de la ontogénesis y de la organización de los estados del sueño en el primer año de la vida, fueron revisadas, en la literatura, las alteraciones fisiológicas y comportamentales controladas por los cambios que ocurren durante el sueño en esta etapa del desenvolvimiento. Además de esto, fundamentándose en la teoría precursora del sueño, se exponen las etapas de la diferencia, de la clasificación y de la organización temporal de los estados del sueño, con vistas al manejo favorable de los eventos ambientales, que afectan la organización del sueño infantil.With the perspective of describing some aspects of the ontogenesis and organization of the sleep stages during the first year of life, a literature review was carried out to assess the physiological and behavioral alterations controlled by changes occurring during sleep at this developmental stage. In addition, based on the sleep preceding theory, the stages of differentiation, classification and time organization of sleep stages are presented, aiming at the favorable management of environmental events that affect the organization of infant sleep.

  17. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1992-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported

  18. Semiconductor detectors in nuclear and particle physics

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.

    1995-01-01

    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. copyright 1995 American Institute of Physics

  19. Transversal light forces in semiconductors

    CERN Document Server

    Lindberg, M

    2003-01-01

    The transversal light force is a well established effect in atomic and molecular systems that are exposed to spatially inhomogeneous light fields. In this paper it is shown theoretically that in an excited semiconductor, containing an electron-hole plasma or excitons, a similar light force exists, if the semiconductor is exposed to an ultrashort spatially inhomogeneous light field. The analysis is based on the equations of motion for the Wigner distribution functions of charge carrier populations and interband polarizations. The results show that, while the light force on the electron-hole plasma or the excitons does exist, its effects on the kinetic behaviour of the electron-hole plasma or the excitons are different compared to the situation in an atomic or molecular system. A detailed analysis presented here traces this difference back to the principal differences between atoms and molecules on the one hand and electron-hole plasmas or excitons on the other hand.

  20. Semiconductor electrolyte photovoltaic energy converter

    Science.gov (United States)

    Anderson, W. W.; Anderson, L. B.

    1975-01-01

    Feasibility and practicality of a solar cell consisting of a semiconductor surface in contact with an electrolyte are evaluated. Basic components and processes are detailed for photovoltaic energy conversion at the surface of an n-type semiconductor in contact with an electrolyte which is oxidizing to conduction band electrons. Characteristics of single crystal CdS, GaAs, CdSe, CdTe and thin film CdS in contact with aqueous and methanol based electrolytes are studied and open circuit voltages are measured from Mott-Schottky plots and open circuit photo voltages. Quantum efficiencies for short circuit photo currents of a CdS crystal and a 20 micrometer film are shown together with electrical and photovoltaic properties. Highest photon irradiances are observed with the GaAs cell.