WorldWideScience

Sample records for sonde cell current

  1. Ozone sonde cell current measurements and implications for observations of near-zero ozone concentrations in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    H. Vömel

    2010-04-01

    Full Text Available Laboratory measurements of the Electrochemical Concentration Cell (ECC ozone sonde cell current using ozone free air as well as defined amounts of ozone reveal that background current measurements during sonde preparation are neither constant as a function of time, nor constant as a function of ozone concentration. Using a background current, measured at a defined timed after exposure to high ozone may often overestimate the real background, leading to artificially low ozone concentrations in the upper tropical troposphere, and may frequently lead to operator dependent uncertainties. Based on these laboratory measurements an improved cell current to partial pressure conversion is proposed, which removes operator dependent variability in the background reading and possible artifacts in this measurement. Data from the Central Equatorial Pacific Experiment (CEPEX have been reprocessed using the improved background treatment based on these laboratory measurements. In the reprocessed data set near-zero ozone events no longer occur. At Samoa, Fiji, Tahiti, and San Cristóbal, nearly all near-zero ozone concentrations occur in soundings with larger background currents. To a large extent, these events are no longer observed in the reprocessed data set using the improved background treatment.

  2. Remote sensing of surface currents in the Fraser River plume with the SeaSonde HF radar

    International Nuclear Information System (INIS)

    Hodgins, D.O.; Hardy, J.S.; Tinis, S.E.

    1994-09-01

    The SeaSonde 12.5-MHz radar system was deployed to measure surface currents in the Juan de Fuca Strait in July 1992. Reliable data were obtained from the two radars installed, and successful trials were conducted with the Infosat satellite link to transmit data from the remote site. Data recovery from the SeaSonde was generally good, with maximum ranges varying from 15 km to over 30 km. Sea echo return strength at both radars was correlated with wind, consistent with lower Bragg scattering at lower wind speeds. A simple surface current forecasting algorithm, based on decomposing the signal into tidal and residual bands, was examined. It was found that tides account for the greatest portion of currents in the study area, and could be forecasted out to 48 h with 1-2 d of input data. The nonpredictable, fluctuating part of the current signal was isolated and its statistics were calculated. The algorithm tests showed that the SeaSonde data can be used to measure and predict the slowly varying tidal and mean flow velocities, as well as the random part of the signal, both of which are important in oil spill modelling. Surface flow patterns and time-series data from the SeaSonde measurements, and from a three-dimensional hydrodynamic model, were compared from an oil spill modelling perspective. In general, surface flow patterns from the model were smoother than those observed. The differences were most noticeable in the cross-channel direction. The radar data indicate that a flow-dependent eddy viscosity formulation, with coefficients calibrated to reproduce the features observed with the radar, would improve agreement and yield a good model for data assimilation. 21 refs., 478 figs., 3 tabs

  3. Atmospheric Sondes and Method for Tracking

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A system for wind profiling comprises sondes for being borne through the atmosphere by balloons and transmitting signals enabling identifying the sondes, and...

  4. Resonance probe; La sonde a resonance

    Energy Technology Data Exchange (ETDEWEB)

    Lepechinsky, D; Messiaen, A; Rolland, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    After a brief review of papers recently published on the resonance probe as a tool for plasma diagnostics, the main features of the theory proposed by one of us are recalled. In this theory the geometry of the resonator formed by the probe, the ion sheath and the plasma is explicitly taken into account with the quasi-static and cold plasma approximations. Some new results emerging from this theory are indicated and a comparison with experimental data obtained with a spherical probe placed in a quiescent mercury-vapour plasma is made. A good quantitative agreement has been observed, indicating that the theory is satisfactory and justifying the assumptions involved. Nevertheless it appears that in some cases experimental results can only be interpreted when non collisional damping phenomena are taken into consideration. (author) [French] Apres un apercu des etudes recemment publiees sur la sonde a resonance pour le diagnostic des plasmas, on rappelle l'essentiel de la theorie proposee par l'un de nous ou il est tenu compte explicitement de la geometrie du resonateur forme par le systeme sonde-gaine ionique-plasma dans l'approximation quasi-statique et du plasma froid. On indique quelques resultats nouveaux pouvant etre tires de cette theorie et on la confronte avec les donnees experimentales obtenues pour une sonde spherique placee dans un plasma de mercure en equilibre. Un tres bon accord quantitatif a ete constate, indiquant que la theorie est satisfaisante et justifiant les approximations faites dans celle-ci. Il apparait toutefois que certains resultats experimentaux ne peuvent etre interpretes qu'en tenant compte des phenomenes d'amortissement non collisionnels. (auteur)

  5. Modified ECC ozone sonde for long-duration flights aboard isopicnic drifting balloons

    Science.gov (United States)

    Gheusi, Francois; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clénet, Antoine; Fontaine, Alain; Jambert, Corinne; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2015-04-01

    Since few years, the French space agency CNES has developed boundary-layer pressurized balloons (BLPB) with the capability to transport scientific payloads at isopicnic level over very long distances and durations (up to several weeks in absence of navigation limits). However, the autonomy of conventional electrochemical concentration cell (ECC) ozone sondes, that are widely used for tropospheric and stratospheric soundings, is limited to few hours due to power consumption and electrolyte evaporation (owing to air bubbling in the cathode solution). In collaboration with the French research community, CNES has developed a new ozone payload suited for long duration flights aboard BLPB. The mechanical elements (Teflon pump and motor) and the electrochemical cell of conventional ECC sondes have been kept but the electronic implementation is entirely new. The main feature is the possibility of programming periodic measurement sequences -- with possible remote control during the flight. To increase the ozone sonde autonomy, a strategy has been adopted of short measurement sequences (typically 2-3 min) regularly spaced in time (e.g. every 15 min, which is usually sufficient for air quality studies). The rest of the time, the sonde is at rest (pump motor off). The response time of an ECC sonde to an ozone concentration step is below one minute. Consequently, the measurement sequence is typically composed of a one-minute spin-up period after the pump has been turned on, followed by a one- to two-minute acquisition period. All time intervals can be adjusted before and during the flight. Results of a preliminary ground-based test in spring 2012 are first presented. The sonde provided correct ozone concentrations against a reference UV analyzer every 15 minutes during 4 days. Then we illustrate results from 16 BLBP flights launched in the low troposphere over the Mediterranean during summer field campaings in 2012 and 2013 (TRAQA and ChArMEx programmes). BLPB drifting

  6. Caliper variable sonde for thermal conductivity measurements in situ

    Energy Technology Data Exchange (ETDEWEB)

    Oelsner, C; Leischner, H; Pischel, S

    1968-01-01

    For the measurement of the thermal conductivity of the formations surrounding a borehole, a sonde having variable diameter (consisting of an inflatable rubber cylinder with heating wires embedded in its wall) is described. The conditions for the usual sonde made of metal are no longer fulfilled, but the solution to the problem of determining the thermal conductivity from the temperature rise is given, based on an approach by Carslaw and Jaeger, which contains the Bessel functions of the second kind. It is shown that a simpler solution for large values of time can be obtained through the Laplace transformation, and the necessary series developments for computer application are also given. The sonde and the necessary measuring circuitry are described. Tests measurements have indicated that the thermal conductivity can be determined with this sonde with a precision of + 10%.

  7. Intercomparison of ozone measurements between Lidar and ECC-sondes

    Energy Technology Data Exchange (ETDEWEB)

    Grabbe, G.C. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Boesenberg, J. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Dier, H. [Meteorologisches Obs., Lindenberg (Germany); Goersdorf, U. [Meteorologisches Obs., Lindenberg (Germany); Matthias, V. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Peters, G. [Meteorologisches Obs., Lindenberg (Germany); Schaberl, T. [Hamburg Univ. (Germany). Meteorologisches Inst.; Senff, C. [Hamburg Univ. (Germany). Meteorologisches Inst.

    1996-02-01

    An intercomparison experiment for measurements of ozone vertical profiles in the lower troposphere was performed using a ground-based ozone DIAL (DIfferential Absorption Lidar) and ECC-sondes (Electrochemical Concentration Cell) attached to tethered as well as free flying balloons, which took place in June of 1994. The tethered balloon was used for ozone soundings in the planetary boundary layer up to an altitude of 500 m, while in the free troposphere free flying balloons were used. For the time series of up to 90 min obtained with the tethersondes both averages and standard deviations are compared. The mean difference for all measurements amounted to 3.5 {mu}g/m{sup 3} only, corresponding to 3.5%. For the instantaneous profiles compared to the free flying sondes the differences were only marginally larger, with a mean value of 3.6 {mu}g/m{sup 3} corresponding to 4.1%. With two exceptions all averages for a single profile stayed below 7 {mu}g/m{sup 3}. Larger individual excursions were observed. In some cases, in particular in regions of steep aerosol gradients at layer boundaries, most probably the lidar values cause the deviation, while in other cases the ECC-sonde is suspected to yield erroneous results. For the measured standard deviation those retrieved from DIAL measurements are generally larger than measured by the ECC-sondes, especially in regions of inhomogeneous aerosol distribution. For the measurements reported here, this is attributed to residual errors in the aerosol correction of the DIAL measurements. The general agreement found in this intercomparison is regarded as excellent, DIAL is proven to be a very valuable tool for detailed studies of the ozone distribution in the lower troposphere. (orig.)

  8. Evaluation of the Hydrolab HL4 water-quality sonde and sensors

    Science.gov (United States)

    Snazelle, Teri T.

    2017-12-18

    The U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility evaluated three Hydrolab HL4 multiparameter water-quality sondes by OTT Hydromet. The sondes were equipped with temperature, conductivity, pH, dissolved oxygen (DO), and turbidity sensors. The sensors were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors and to verify the validity of the manufacturer’s technical specifications. The conductivity sensors were evaluated for the accuracy of the specific conductance (SC) values (conductance at 25 degrees Celsius [oC]), that were calculated by using the vendor default method, Hydrolab Fresh. The HL4’s communication protocols and operating temperature range along with accuracy of the water-quality sensors were tested in a controlled laboratory setting May 1–19, 2016. To evaluate the sonde’s performance in a surface-water field application, an HL4 equipped with temperature, conductivity, pH, DO, and turbidity sensors was deployed June 20–July 22, 2016, at USGS water-monitoring site 02492620, Pearl River at National Space Technology Laboratories (NSTL) Station, Mississippi, located near Bay Saint Louis, Mississippi, and compared to the adjacent well-maintained EXO2 site sonde.The three HL4 sondes met the USGS temperature testing criteria and the manufacturer’s technical specifications for temperature based upon the median room temperature difference between the measured and standard temperatures, but two of the three sondes exceeded the allowable difference criteria at the temperature extremes of approximately 5 and 40 ºC. Two sondes met the USGS criteria for SC. One of the sondes failed the criteria for SC when evaluated in a 100,000-microsiemens-per-centimeter (μS/cm) standard at room temperature, and also failed in a 10,000-μS/cm standard at 5, 15, and 40 ºC. All three sondes met the USGS criteria for pH and DO at room temperature

  9. Development of a Low-Cost Arduino-Based Sonde for Coastal Applications

    Science.gov (United States)

    Lockridge, Grant; Dzwonkowski, Brian; Nelson, Reid; Powers, Sean

    2016-01-01

    This project addresses the need for an expansion in the monitoring of marine environments by providing a detailed description of a low cost, robust, user friendly sonde, built on Arduino Mega 2560 (Mega) and Arduino Uno (Uno) platforms. The sonde can be made without specialized tools or training and can be easily modified to meet individual application requirements. The platform allows for internal logging of multiple parameters of which conductivity, temperature, and GPS position are demonstrated. Two design configurations for different coastal hydrographic applications are highlighted to show the robust and versatile nature of this sensor platform. The initial sonde design was intended for use on a Lagrangian style surface drifter that recorded measurements of temperature; salinity; and position for a deployment duration of less than 24 h. Functional testing of the sensor consisted of a 55 h comparison with a regularly maintained water quality sensor (i.e., YSI 6600 sonde) in Mobile Bay, AL. The temperature and salinity data were highly correlated and had acceptable RMS errors of 0.154 °C and 1.35 psu for the environmental conditions. A second application using the sonde platform was designed for longer duration (~3–4 weeks); subsurface (1.5–4.0 m depths) deployment, moored to permanent structures. Design alterations reflected an emphasis on minimizing power consumption, which included the elimination of the GPS capabilities, increased battery capacity, and power-saving software modifications. The sonde designs presented serve as templates that will expand the hydrographic measurement capabilities of ocean scientists, students, and teachers. PMID:27089337

  10. Development of a Low-Cost Arduino-Based Sonde for Coastal Applications.

    Science.gov (United States)

    Lockridge, Grant; Dzwonkowski, Brian; Nelson, Reid; Powers, Sean

    2016-04-13

    This project addresses the need for an expansion in the monitoring of marine environments by providing a detailed description of a low cost, robust, user friendly sonde, built on Arduino Mega 2560 (Mega) and Arduino Uno (Uno) platforms. The sonde can be made without specialized tools or training and can be easily modified to meet individual application requirements. The platform allows for internal logging of multiple parameters of which conductivity, temperature, and GPS position are demonstrated. Two design configurations for different coastal hydrographic applications are highlighted to show the robust and versatile nature of this sensor platform. The initial sonde design was intended for use on a Lagrangian style surface drifter that recorded measurements of temperature; salinity; and position for a deployment duration of less than 24 h. Functional testing of the sensor consisted of a 55 h comparison with a regularly maintained water quality sensor (i.e., YSI 6600 sonde) in Mobile Bay, AL. The temperature and salinity data were highly correlated and had acceptable RMS errors of 0.154 °C and 1.35 psu for the environmental conditions. A second application using the sonde platform was designed for longer duration (~3-4 weeks); subsurface (1.5-4.0 m depths) deployment, moored to permanent structures. Design alterations reflected an emphasis on minimizing power consumption, which included the elimination of the GPS capabilities, increased battery capacity, and power-saving software modifications. The sonde designs presented serve as templates that will expand the hydrographic measurement capabilities of ocean scientists, students, and teachers.

  11. Onset in-river conductivity sonde data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Onset HOBO Model U24-01 in-river sondes were deployed to measure water temperature and electrical conductivity at each of the ISCO sampling sites at 5 min intervals....

  12. Field intercomparison of channel master ADCP with RiverSonde Radar for measuring river discharge

    Science.gov (United States)

    Spain, P.; Marsden, R.; Barrick, D.; Teague, C.; Ruhl, C.

    2005-01-01

    The RiverSonde radar makes non-contact measurement of a horizontal swath of surface velocity across a river section. This radar, which has worked successfully at several rivers in the Western USA, has shown encouraging correlation with simultaneous measurements of average currents at one level recorded by an acoustic travel-time system. This work reports a field study intercomparing data sets from a 600 kHz Channel Master ADCP with the RiverSonde radar. The primary goal was to begin to explore the robustness of the radar data as a reliable index of discharge. This site Is at Three Mile Slough in Northern California, USA. The larger intent of the work is to examine variability in space and time of the radar's surface currents compared with subsurface flows across the river section. Here we examine data from a couple of periods with strong winds. ?? 2005 IEEE.

  13. Evaluation of the Eureka Manta2 Water-Quality Multiprobe Sonde

    Science.gov (United States)

    Tillman, Evan F.

    2017-11-08

    Two Eureka Manta2 3.5 water-quality multiprobe sondes by Eureka Water Probes were tested at the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) against known standards over the sonde operating temperatures to verify the manufacturer’s stated accuracy specifications for pH, specific conductance (SC) at 25 degrees Celsius (°C), dissolved oxygen (DO), and turbidity. The Manta2 sondes were evaluated for compliance with the USGS National Field Manual for the Collection of Water-Quality Data (NFM) criteria for continuous water-quality monitors, and for compliance with the manufacturer’s technical specifications. The Manta2 was also evaluated for its compliance to Serial Digital Interface at 1200 baud (SDI-12) version 1.3.The Manta2 met the NFM recommendations and manufacturer’s accuracy specifications for DO and turbidity at all values tested. The Manta2 pH sensors met the NFM recommendations and manufacturer’s accuracy specification for nominal pH values of 10 and lower. One of the two sensors was out of compliance by 1.2 units for pH 11.16 at 15 °C and by 0.25 unit for pH 10.78 at 40 °C. The Manta2 sensors were within the NFM recommendations for SC, except at 100 microsiemens (μS/cm) at 40 °C, where the SC sensor exceeded the test standard value by as much as 25 percent. One of two sensors was within manufacturer’s accuracy specifications at 25 °C for all the tested SC values, while the other SC sensor was outside the manufacturer’s accuracy specifications at 100 μS/cm, exceeding the test standard value by 9 percent. One of two sensors was outside the manufacturer’s accuracy specifications at 10,000 μS/cm at 15°C, exceeding the test standard value by 3 percent. One Manta2 passed SDI-12 compliance testing with a NR Systems SDI-12 Verifier. One Manta2 was field tested for 6 weeks at USGS station 02492620, National Space Technology Laboratories (NSTL) Station, Mississippi, on the Pearl River and showed overall good agreement

  14. In-Situ Detection of SO2 Plumes in Costa Rica from Turrialba Volcano using Balloon-borne Sondes

    Science.gov (United States)

    Diaz, J. A.; Selkirk, H. B.; Morris, G. A.; Krotkov, N. A.; Pieri, D. C.; Corrales, E.

    2012-12-01

    The Turrialba Volcano near San Jose, Costa Rica regularly emits plumes containing SO2. These plumes have been detected by the Ozone Monitoring Instrument (OMI), and evidence of these plumes has also appeared in the in-situ Ticosonde project record: a continuous balloon-borne ozonesonde launch experiment conducted in a weekly basis in Costa Rica. In the case of the latter, the interference reaction of SO2 in the cathode cell of the standard electrochemical concentration cell (ECC) ozonesonde results in apparent "notches" in the ozone profile at the altitudes of the plume. In this paper, we present an overview of the Ticosonde observations and correlate the appearance of the notches with air mass back trajectory calculations that link the profiles features to emissions from the volcano. In addition, during February 2012, we deployed the dual O3/SO2 sonde from the University of Costa Rica and detected a plume of SO2 linked by back trajectory calcluations to Turrialba as well as an urban plume resulting from diesel exhaust in the boundary layer. The integrated column SO2 from the sonde profile data agree well with the OMI overpass data for this event. Data from a tethersonde measurement two days prior to the dual sonde reveal concentrations at the ppm level at the volcanic source.

  15. Design of a transport calculation system for logging sondes simulation

    International Nuclear Information System (INIS)

    Marquez Damian, Jose Ignacio

    2005-01-01

    Analysis of available resources in earth crust is performed by different techniques, one of them is neutron logging. Design of sondes that are used to make such logging is supported by laboratory experiments as well as by numerical calculations.This work presents several calculation schemes, designed to simplify the task of whom has to planify such experiments or optimize parameters of this kind of sondes.These schemes use transport calculation codes, especially DaRT, TORT and MCNP, and cross section processing modules from SCALE system.Additionally a system for DaRT and TORT data postprocessing using OpenDX is presented.It allows scalar flux spatial distribution analysis, as wells as cross section condensation and reaction rates calculation

  16. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  17. Surface current measurements in Juan de Fuca Strait using the SeaSonde HF [high frequency] radar

    International Nuclear Information System (INIS)

    Hodgins, D.O.

    1994-09-01

    The shore-based SeaSonde high-frequency (HF) radar was deployed for three weeks in summer 1993 to measure surface currents in the Strait of Georgia, British Columbia. Experimental objectives included documenting the complex flow regime generated by large tides and the brackish plume of the Fraser River, and determining the radar performance under low-wind, low-salinity conditions. The radar data showed that surface flows are dominated by the plume jet formed by the Fraser River outflow, giving rise to recurring, energetic eddies with scales of 8-12 km, strong flow meanders, and convergent fronts. These features were continuously modulated by the along-channel tidal flows. Comparisons with a detailed numerical model hindcast gave good correlation between observed and predicted flow fields, especially at tidal and low frequencies. Radar return was found to be correlated with local winds and radar performance was independent of salinity variations in the plume. Synthetic aperture radar (SAR) provides a map of the radar scattering characteristics of the ocean surface on a capillary wave scale. ERS-1 satellite and airborne SAR images for July 28, 1993 were obtained and surface features were examined in the context of the HF radar current fields. Results show that SAR images alone cannot reliably provide the dynamical data required in this region by oil spill models. Under certain conditions, however, the radar imagery offers valuable physical information on phenomena affecting oil slick development. Interpretation of SAR imagery in conjunction with other remote sensing information would offer more quantitative prediction data. 28 refs., 334 figs., 1 tab

  18. Probes and their application to the study of H.F. plasmoids; Les sondes et leur application dans l'etude des plasmoides H.F

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, A; Geller, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In the first part of this paper, we study the single Langmuir probe and the double-probe method. In the second part, we describe the probe-technique in connection with R.F. plasmoids. (author) [French] Dans la premiere partie de cet article, nous rappelons les principes d'utilisation de la sonde simple de Langmuir ainsi que la methode de la sonde double. La seconde partie est consacree a la pratique des sondes dans l'etude des plasmoides H.F. (auteur)

  19. Conception et exploitation d'une sonde électronique d'auscultation des réseaux d'assainissement urbains non visitables

    OpenAIRE

    Bedrani , Mourad

    1983-01-01

    Partant de l'hypothèse que, d'une part, aucun rejet ne peut se trouver à une température rigoureusement identique à celle des eaux drainées dans le réseau, et que, d'autre part, la température de la nappe phréatique est systématiquement plus basse que celle de différents rejets domestiques ou industriels, nous avons conçu une sonde autonome à double paramètre : température et conductivité, baptisée Ichtyotherme, pour l'auscultation des réseaux. L'appareil développé est couplé à un microordina...

  20. Invagination intestinale sur sonde de jéjunostomie: à propos d'un cas

    African Journals Online (AJOL)

    L'invagination intestinale sur sonde de jéjunostomie est une complication très rare.Nous rapportons le cas d'un patient âgé de 28 ans ayant ingéré l'esprit de sel dans le cadre d'une tentative de suicide. Une fibroscopie 'sogastroduodénale a montré des lésions oesophagiennes et gastriques stade IIb selon la classification ...

  1. Five Blind Men and an Elephant: Comparing Aura Ozone Datasets and Sonde with Model Simulations

    Science.gov (United States)

    Tang, Q.; Prather, M. J.

    2011-12-01

    The four Earth Observing System (EOS) Aura satellite ozone measurements (HIRDLS, MLS, OMI, and TES) as well as the coincident WOUDC sonde are the five ``blind men'' touching the ``elephant'' (ozone). They all measure ozone (O3) in the upper troposphere and lower stratosphere (UT/LS) region, providing the great opportunity to study how the tropospheric ozone is influenced by the stratospheric source, an important tropospheric ozone budget term with large uncertainties and discrepancies across different models and methods. Based upon the 2-D autocorrelation for the tropospheric column ozone anomalies of the OMI swaths, we show that the stratosphere-troposphere exchange (STE) processes occur on the scale of a few hundred kilometers. Applying the high resolution (1o±1o±40-layer±0.5 hr) atmospheric chemistry transport model (CTM) as a transfer standard, we compare the noncoincident Aura level 2 swath datasets with the exact matching simulations of each measurement to investigate the consistency of different instruments as well as evaluate the accuracy of modeled ozone. Different signs of the CTM biases against HIRDLS, MLS, and TES are found from tropics to northern hemisphere (NH) mid-latitudes in July 2005 at 215 hPa and over tropics at 147 hPa for July 2005 and January 2006, suggesting inconsistency across these Aura datasets. On the other hand, the CTM has great positive biases against satellite observations in the lower stratosphere of winter time southern hemisphere (SH) mid-latitudes, which is probably attributed to the problems in the stratospheric circulation of the driving met-fields. The model's ability of reproducing STE-related processes, such as tropospheric folds (TFs), is confirmed by the comparisons with WOUDC sonde. We found eight cases in year 2005 with all the four Aura measurements available and folding structures in the coincident sonde profile. The case studies indicate that all the four Aura instruments demonstrate some skills in catching the

  2. Parcours d’un roman postcolonial francophone en France et en Allemagne : Le Cœur des enfants léopards, de Wilfried N’Sondé

    Directory of Open Access Journals (Sweden)

    Myriam Louviot

    2010-12-01

    Full Text Available En 2007, Wilfried N’Sondé, Franco-congolais vivant à Berlin, publie en France son premier roman, Le Cœur des enfants léopards. Le livre rencontre un certain succès. Un an plus tard, la traduction allemande, Das Herz der Leopardenkinder semble faire une carrière comparable en Allemagne. On serait donc tenté de conclure qu’il n’y a pas tant de différence entre le lectorat français et le lectorat allemand. Un bon roman est un bon roman et il semble normal qu’il trouve son public des deux côtés du Rhin... Mais à y regarder de plus près, il apparaît que la réception du roman de Wilfried N’Sondé en France et en Allemagne suit des voies bien différentes. En France, les littératures postcoloniales sont essentiellement considérées à l’intérieur du cadre conceptuel de la francophonie et le roman de N’Sondé apparaît effectivement d’abord comme un roman francophone ; en Allemagne, il est plutôt rattaché à la littérature de la migration et est compris en fonction des traditions d’analyse qui s’y rattachent.2007 veröffentlicht der in Berlin lebende und aus Kongo stammende Franzose Wilfried N’Sondé, seinen ersten Roman, Le cœur des enfants léopards. Das Buch erfreut sich in Frankreich einer regen Aufmerksamkeit. Ein Jahr später scheint die deutsche Übersetzung, Das Herz der Leopardenkinder, am französischen Erfolg anzuknüpfen : ein guter Roman bleibt ein guter Roman und so scheint es nur normal dass, er auf beiden Seiten des Rheins sein Publikum findet. Dennoch wäre es falsch, daraus auf eine sehr ähnliche Leserschaft in den beiden Sprachräumen zu schließen. Bei genauerem Hinsehen zeigt sich, dass die Rezeption von Wilfried N’Sondés Roman in Frankreich und in Deutschland sehr unterschiedlich verläuft. Während der Roman in Frankreich im Kontext der postkolonialen Literatur in erster Linie als frankophones Werk rezipiert wird, konzentriert sich die deutsche Rezeption vornehmlich auf den

  3. Rauvolfianine, a new antimycobacterial glyceroglycolipid and other constituents from Rauvolfia caffra. Sond (Apocynaceae).

    Science.gov (United States)

    Ebeh Messanga, Robert; Dominique Serge, Ngono Bikobo; Abouem A Zintchem, Auguste; Norbert, Mbabi Nyemeck Ii; Esther Del Florence, Moni Ndedi; Patrick Hervé, Betote Diboué; Maximilienne Ascension, Nyegue; Alex De Théodore, Atchadé; Dieudonné Emmanuel, Pegnyemb; Christian G, Bochet; Koert, Ulrich

    2017-08-16

    The chemical investigation of the extract of the dried leaves of Rauvolfia caffra (Sond) (synonym Rauvolfia macrophylla) (Apocynaceae) led to isolation of a new glycoside derivative, rauvolfianine (1) as well as six known compounds: oleanolic acid (2), sitosterol-3-O-β-D-glucopyranoside (3), betulinic acid (4), vellosimine (5), sarpagine (6) and D-fructofuranosyl-β-(2→1)-α-D-glucopyranoside (7). Compounds 1, 2, 3, 4 and 7 were evaluated for antitubercular activity. Compounds 1 and 2 were the most active (MIC = 7.8125 and 31.25 μg/mL) towards the Isoniazid resistant strain of Mycobacterium tuberculosis AC45. Their structures and relative stereochemistry were elucidated by spectroscopic methods.

  4. Calibration of langmuir probes by a microwave method; Etalonnage des sondes de langmuir par une methode hyperfrequence

    Energy Technology Data Exchange (ETDEWEB)

    Consoli, T [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Measurements of the electronic density of a plasma between 10{sup 6} and 10{sup 8} e/cm{sup 3}, made by the Langmuir probe and by resonance frequency shift of a cavity are compared. (author) [French] On compare les mesures de la densite electronique d'un plasma peu dense 10{sup 6} < ne < 10{sup 8} e/cm{sup 3}, par sonde de Langmuir et par glissement de la frequence de resonance d'une cavite contenant le plasma. (auteur)

  5. A New Current Drogue System for Remotely Monitoring Shelf Current Circulation

    Science.gov (United States)

    Klemas, V. (Principal Investigator); Davis, G.; Whelan, W.; Tornatore, G.

    1975-01-01

    The author has identified the following significant results. An ocean current drogue system was developed for use in the coastal zone and continental shelf region. The method features an extremely simple radiosonde device whose position is determined from a pair of cooperative shore stations. These ocean sondes follow the tradition of the atmospheric radiosonde in that they are economically disposable at the end of their mission. The system was successfully tested in a number of environments, including the North Atlantic in two winter coastal storms. Tracking to the edge of the Baltimore and Wilmington trenches was achieved. The drogue system is being used in conjunction with remote sensing aircraft and satellites to chart current circulation at ocean waste disposal sites 40 miles off Delaware's coast.

  6. Geophysical borehole logging, dummy-sonding and optical imaging of the borehole OL-KR24 at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2006-03-01

    Suomen Malmi Oy conducted geophysical borehole logging, dummy-sonding and optical imaging surveys of the borehole OL-KR24 at the Olkiluoto site in Eurajoki during 1.10.2005 - 4.10.2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are caliper survey and optical imaging. The assignment included the field work of surveys, interpretation and processing of the data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  7. An electronic probe micro-analyser. A linear scan device; Microanalyseur a sonde electronique. Dispositif de balayage lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Kirianenko, A; Maurice, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The Castaing electronic probe micro-analyser makes possible static analysis at successive points. For two years this apparatus has been equipped by its constructor with an automatic device for surface scanning. In order to increase the micro-analyser's efficiency a 'linear' scan device has been incorporated making it possible to obtain semi-quantitative analyses very rapidly. (authors) [French] Le microanalyseur a sonde electronique de Castaing permet l'analyse statique en des points successifs. Depuis deux ans, cet appareil a ete equipe par son constructeur d'un dispositif de balayage automatique 'surface'. Afin d'augmenter l'efficacite du microanalyaeur, on a adapte un dispositif de balayage 'lineaire' qui permet d'obtenir tres rapidement des analyses semi-quantitative. (auteurs)

  8. The Eyjafjallajökull eruption in April 2010 – detection of volcanic plume using in-situ measurements, ozone sondes and lidar-ceilometer profiles

    Directory of Open Access Journals (Sweden)

    H. Flentje

    2010-10-01

    Full Text Available Volcanic emissions from the Eyjafjallajökull volcano eruption on the Southern fringe of Iceland in April 2010 were detected at the Global Atmosphere Watch (GAW station Zugspitze/Hohenpeissenberg (Germany by means of in-situ measurements, ozone sondes and ceilometers. Information from the German Meteorological Service (DWD ceilometer network (Flentje et al., 2010 aided identifying the air mass origin. We discuss ground level in-situ measurements of sulphur dioxide (SO2, sulphuric acid (H2SO4 and particulate matter as well as ozone sonde profiles and column measurements of SO2 by a Brewer spectrometer. At Hohenpeissenberg, a number of reactive gases, e.g. carbon monoxide and nitrogen oxides, and particle properties, e.g. size distribution and ionic composition, were additionally measured during this period. Our results describe the arrival of the volcanic plume at Zugspitze and Hohenpeissenberg during 16 and 17 April 2010 and its residence in the planetary boundary layer (PBL for several days thereafter. The ash plume was first seen in the ceilometer backscatter profiles at Hohenpeissenberg in about 6–7 km altitude. After entrainment into the PBL at noon of 17 April, largely enhanced values of sulphur dioxide, sulphuric acid and super-micron-particle number concentration were recorded at Zugspitze/Hohenpeissenberg till 21 April.

  9. Imposed currents in galvanic cells

    NARCIS (Netherlands)

    Biesheuvel, P.M.; Soestbergen, M.; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current

  10. Balloon-borne pressure sensor performance evaluation utilizing tracking radars

    Science.gov (United States)

    Norcross, G. A.; Brooks, R. L.

    1983-01-01

    The pressure sensors on balloon-borne sondes relate the sonde measurements to height above the Earth's surface through the hypsometric equation. It is crucial that sondes used to explore the vertical structure of the atmosphere do not contribute significant height errors to their measurements of atmospheric constituent concentrations and properties. A series of radiosonde flights was conducted. In most cases, each flight consisted of two sondes attached to a single balloon and each flight was tracked by a highly accurate C-band radar. For the first 19 radiosonde flights, the standard aneroid cell baroswitch assembly used was the pressure sensor. The last 26 radiosondes were equipped with a premium grade aneroid cell baroswitch assembly sensor and with a hypsometer. It is shown that both aneroid cell baroswitch sensors become increasingly inaccurate with altitude. The hypsometer radar differences are not strongly dependent upon altitude and it is found that the standard deviation of the differences at 35 km is 0.179 km.

  11. Imposed currents in galvanic cells

    International Nuclear Information System (INIS)

    Biesheuvel, P.M.; Soestbergen, M. van; Bazant, M.Z.

    2009-01-01

    We analyze the steady-state behavior of a general mathematical model for reversible galvanic cells, such as redox flow cells, reversible solid oxide fuel cells, and rechargeable batteries. We consider not only operation in the galvanic discharging mode, spontaneously generating a positive current against an external load, but also operation in two modes which require a net input of electrical energy: (i) the electrolytic charging mode, where a negative current is imposed to generate a voltage exceeding the open-circuit voltage, and (ii) the 'super-galvanic' discharging mode, where a positive current exceeding the short-circuit current is imposed to generate a negative voltage. Analysis of the various (dis-)charging modes of galvanic cells is important to predict the efficiency of electrical to chemical energy conversion and to provide sensitive tests for experimental validation of fuel cell models. In the model, we consider effects of diffuse charge on electrochemical charge-transfer rates by combining a generalized Frumkin-Butler-Volmer equation for reaction kinetics across the compact Stern layer with the full Poisson-Nernst-Planck transport theory, without assuming local electroneutrality. Since this approach is rare in the literature, we provide a brief historical review. To illustrate the general theory, we present results for a monovalent binary electrolyte, consisting of cations, which react at the electrodes, and non-reactive anions, which are either fixed in space (as in a solid electrolyte) or are mobile (as in a liquid electrolyte). The full model is solved numerically and compared to analytical results in the limit of thin diffuse layers, relative to the membrane thickness. The spatial profiles of the ion concentrations and electrostatic potential reveal a complex dependence on the kinetic parameters and the imposed current, in which the diffuse charge at each electrode and the total membrane charge can have either sign, contrary perhaps to intuition

  12. Regional analysis of whole cell currents from hair cells of the turtle posterior crista.

    Science.gov (United States)

    Brichta, Alan M; Aubert, Anne; Eatock, Ruth Anne; Goldberg, Jay M

    2002-12-01

    The turtle posterior crista is made up of two hemicristae, each consisting of a central zone containing type I and type II hair cells and a surrounding peripheral zone containing only type II hair cells and extending from the planum semilunatum to the nonsensory torus. Afferents from various regions of a hemicrista differ in their discharge properties. To see if afferent diversity is related to the basolateral currents of the hair cells innervated, we selectively harvested type I and II hair cells from the central zone and type II hair cells from two parts of the peripheral zone, one near the planum and the other near the torus. Voltage-dependent currents were studied with the whole cell, ruptured-patch method and characterized in voltage-clamp mode. We found regional differences in both outwardly and inwardly rectifying voltage-sensitive currents. As in birds and mammals, type I hair cells have a distinctive outwardly rectifying current (I(K,L)), which begins activating at more hyperpolarized voltages than do the outward currents of type II hair cells. Activation of I(K,L) is slow and sigmoidal. Maximal outward conductances are large. Outward currents in type II cells vary in their activation kinetics. Cells with fast kinetics are associated with small conductances and with partial inactivation during 200-ms depolarizing voltage steps. Almost all type II cells in the peripheral zone and many in the central zone have fast kinetics. Some type II cells in the central zone have large outward currents with slow kinetics and little inactivation. Although these currents resemble I(K,L), they can be distinguished from the latter both electrophysiologically and pharmacologically. There are two varieties of inwardly rectifying currents in type II hair cells: activation of I(K1) is rapid and monoexponential, whereas that of I(h) is slow and sigmoidal. Many type II cells either have both inward currents or only have I(K1); very few cells only have I(h). Inward currents are

  13. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    Science.gov (United States)

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  14. A new Zero-Current-Transition PWM switching cell

    Energy Technology Data Exchange (ETDEWEB)

    Grigore, V. [Electronics and Telecommunications Faculty, `Politechnica` University Bucharest (Romania); Kyyrae, J. [Helsinki University of Technology, Otaniemi (Finland): Institute of Intelligent Power Electronics

    1997-12-31

    In this paper a new Zero-Current-Transition (ZCT) PWM switching cell is presented. The proposed switching cell is composed of the normal hard-switched PWM cell (consisting of one active switch and one passive switch), plus as auxiliary circuit. The auxiliary circuit is inactive during the ON ad OFF intervals of the switches in the normal PWM switch. The transitions between the two states are controlled by the auxiliary circuit. Prior to turn-off, the current through the active switch in the PWM cell is forced to zero, thus the turn-off losses of the active switch are practically eliminated. At turn-on the auxiliary circuit slows down the growing rate of the current through the main switch. Thus, turn-on losses are also very much reduced. The active switch operates under ZCT conditions, the passive switch (diode) has a controlled reverse recovery, while the switch in the auxiliary circuit operates under Zero-Current-Switching (ZCS) conditions. (orig.) 3 refs.

  15. Ultra-Low Voltage Class AB Switched Current Memory Cell

    DEFF Research Database (Denmark)

    Igor, Mucha

    1996-01-01

    This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process with thr......This paper presents the theoretical basis for the design of class AB switched current memory cells employing floating-gate MOS transistors, suitable for ultra-low-voltage applications. To support the theoretical assumptions circuits based on these cells were designed using a CMOS process...... with threshold voltages of 0.9V. Both hand calculations and PSPICE simulations showed that the cells designed allowed a maximum signal range better than +/-13 micoamp, with a supply voltage down to 1V and a quiescent bias current of 1 microamp, resulting in a very high current efficiency and effective power...

  16. Calcium Homeostasis Modulator 1-Like Currents in Rat Fungiform Taste Cells Expressing Amiloride-Sensitive Sodium Currents.

    Science.gov (United States)

    Bigiani, Albertino

    2017-05-01

    Salt reception by taste cells is still the less understood transduction process occurring in taste buds, the peripheral sensory organs for the detection of food chemicals. Although there is evidence suggesting that the epithelial sodium channel (ENaC) works as sodium receptor, yet it is not clear how salt-detecting cells signal the relevant information to nerve endings. Taste cells responding to sweet, bitter, and umami substances release ATP as neurotransmitter through a nonvesicular mechanism. Three different channel proteins have been proposed as conduit for ATP secretion: pannexin channels, connexin hemichannels, and calcium homeostasis modulator 1 (CALHM1) channels. In heterologous expression systems, these channels mediate outwardly rectifying membrane currents with distinct biophysical and pharmacological properties. I therefore tested whether also salt-detecting taste cells were endowed with these currents. To this aim, I applied the patch-clamp techniques to single cells in isolated taste buds from rat fungiform papillae. Salt-detecting cells were functionally identified by exploiting the effect of amiloride, which induces a current response by shutting down ENaCs. I looked for the presence of outwardly rectifying currents by using appropriate voltage-clamp protocols and specific pharmacological tools. I found that indeed salt-detecting cells possessed these currents with properties consistent with the presence, at least in part, of CALHM1 channels. Unexpectedly, CALHM1-like currents in taste cells were potentiated by known blockers of pannexin, suggesting a possible inhibitory action of this protein on CALMH1. These findings indicate that communication between salt-detecting cells and nerve endings might involve ATP release by CALMH1 channels. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  18. Low cost bipolar current collector-separator for electrochemical cells

    International Nuclear Information System (INIS)

    Lawrence, R.

    1980-01-01

    A bipolar current collecting, cell separating element for electrochemical cells for conducting current from the anode electrode of one cell unit to cathode electrode of the adjacent cell unit comprises: (A) a pressure mold aggregate of electrically conductive carbon/graphite particles and thermoplastic fluorocarbon polymer resin particles in a weight ratio of 2.5:1 to 16:1 whereby said molded aggregated has a bulk resistivity which is less than 4x10 -3 ohm/inch, (B) said molded aggregate having a fluid imprevious main body, at least one recessed chamber on one side of said main body and a plurality of spaced, conductive projections extending from the base of said chamber for contacting and permitting current flow between the electrode of adjacent cell unit, and (C) means communicating with said recessed chambers to permit introduction and removal of fluids

  19. In-flight comparison of Brewer-Mast and electrochemical concentration cell ozonesondes

    Science.gov (United States)

    Stübi, René; Levrat, Gilbert; Hoegger, Bruno; Viatte, Pierre; Staehelin, Johannes; Schmidlin, F. J.

    2008-07-01

    The analysis of 140 dual flights between two types of ozonesondes, namely, the Brewer-Mast (BM) and the electrochemical concentration cell (ECC), is presented in this study. These dual flights were performed before the transition from BM to ECC as the operational ozonesonde for the Payerne Aerological Station, Switzerland. The different factors of the ozonesonde data processing are considered and their influences on the profile of the difference are evaluated. The analysis of the ozone difference between the BM and the ECC ozonesonde data shows good agreement between the two sonde types. The profile of the ozone difference is limited to ±5% (±0.3 mPa) from the ground to 32 km. The analysis confirms the appropriateness of the standard BM data processing method and the usefulness of the normalization of the ozonesonde data. The conclusions of the extended dual flight campaigns are corroborated by the analysis of the time series of the Payerne soundings for the periods of 5 years before and after the change from BM to ECC which occurred in September 2002. No significant discontinuity can be identified in 2002 attributable to the change of sonde.

  20. Neoplastic stem cells: current concepts and clinical perspectives.

    Science.gov (United States)

    Schulenburg, Axel; Brämswig, Kira; Herrmann, Harald; Karlic, Heidrun; Mirkina, Irina; Hubmann, Rainer; Laffer, Sylvia; Marian, Brigitte; Shehata, Medhat; Krepler, Clemens; Pehamberger, Hubert; Grunt, Thomas; Jäger, Ulrich; Zielinski, Christoph C; Valent, Peter

    2010-11-01

    Neoplastic stem cells have initially been characterized in myeloid leukemias where NOD/SCID mouse-repopulating progenitors supposedly reside within a CD34+/Lin- subset of the malignant clone. These progenitors are considered to be self-renewing cells responsible for the in vivo long-term growth of neoplastic cells in leukemic patients. Therefore, these cells represent an attractive target of therapy. In some lymphoid leukemias, NOD/SCID mouse-repopulating cells were also reported to reside within the CD34+/Lin- subfraction of the clone. More recently, several attempts have been made to transfer the cancer stem cell concept to solid tumors and other non-hematopoietic neoplasms. In several of these tumors, the cell surface antigens AC133 (CD133) and CD44 are considered to indicate the potential of a cell to initiate permanent tumor formation in vivo. However, several questions concerning the phenotype, self-renewal capacity, stroma-dependence, and other properties of cancer- or leukemia-initiating cells remain to be solved. The current article provides a summary of our current knowledge on neoplastic (cancer) stem cells, with special emphasis on clinical implications and therapeutic options as well as a discussion about conceptual and technical limitations. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Nicotine inhibits potassium currents in Aplysia bag cell neurons

    Science.gov (United States)

    White, Sean H.; Sturgeon, Raymond M.

    2016-01-01

    Acetylcholine and the archetypal cholinergic agonist, nicotine, are typically associated with the opening of ionotropic receptors. In the bag cell neurons, which govern the reproductive behavior of the marine snail, Aplysia californica, there are two cholinergic responses: a relatively large acetylcholine-induced current and a relatively small nicotine-induced current. Both currents are readily apparent at resting membrane potential and result from the opening of distinct ionotropic receptors. We now report a separate current response elicited by applying nicotine to cultured bag cell neurons under whole cell voltage-clamp. This current was ostensibly inward, best resolved at depolarized voltages, presented a noncooperative dose-response with a half-maximal concentration near 1.5 mM, and associated with a decrease in membrane conductance. The unique nicotine-evoked response was not altered by intracellular perfusion with the G protein blocker GDPβS or exposure to classical nicotinic antagonists but was occluded by replacing intracellular K+ with Cs+. Consistent with an underlying mechanism of direct inhibition of one or more K+ channels, nicotine was found to rapidly reduce the fast-inactivating A-type K+ current as well as both components of the delayed-rectifier K+ current. Finally, nicotine increased bag cell neuron excitability, which manifested as reduction in spike threshold, greater action potential height and width, and markedly more spiking to continuous depolarizing current injection. In contrast to conventional transient activation of nicotinic ionotropic receptors, block of K+ channels could represent a nonstandard means for nicotine to profoundly alter the electrical properties of neurons over prolonged periods of time. PMID:26864763

  2. Utilisation d'une sonde fluorimétrique benthique (la BenthoTorch, bbe) pour mesurer la croissance des diatomées, algues vertes et cyanobactéries périphytiques en plans d'eau

    OpenAIRE

    Roubeix, V.

    2015-01-01

    / Une sonde fluorimétrique benthique, la BenthoTorch (bbe) a été acquise par le pôle Onema-Irstea d'Hydroécologie des Plans d'eau pour développer un indice fonctionnel de production primaire dans les plans d'eau. Cet indice sera basé sur la dynamique de croissance du périphyton sur des substrats artificiels. Il constituerait un outil de diagnostic du fonctionnement écologique des systèmes lentiques, particulièrement utile dans le cadre du suivi de mesures de restauration. La BenthoTorch me...

  3. Simulation of forward dark current voltage characteristics of tandem solar cells

    International Nuclear Information System (INIS)

    Rubinelli, F.A.

    2012-01-01

    The transport mechanisms tailoring the shape of dark current–voltage characteristics of amorphous and microcrystalline silicon based tandem solar cell structures are explored with numerical simulations. Our input parameters were calibrated by fitting experimental current voltage curves of single and double junction structures measured under dark and illuminated conditions. At low and intermediate forward voltages the dark current–voltage characteristics show one or two regions with a current–voltage exponential dependence. The diode factor is unique in tandem cells with the same material in both intrinsic layers and two dissimilar diode factors are observed in tandem cells with different materials on the top and bottom intrinsic layers. In the exponential regions the current is controlled by recombination through gap states and by free carrier diffusion. At high forward voltages the current grows more slowly with the applied voltage. The current is influenced by the onset of electron space charge limited current (SCLC) in tandem cells where both intrinsic layers are of amorphous silicon and by series resistance of the bottom cell in tandem cells where both intrinsic layers are of microcrystalline silicon. In the micromorph cell the onset of SCLC becomes visible on the amorphous top sub-cell. The dark current also depends on the thermal generation of electron–hole (e–h) pairs present at the tunneling recombination junction. The highest dependence is observed in the tandem structure where both intrinsic layers are of microcrystalline silicon. The prediction of meaningless dark currents at low forward and reverse voltages by our code is discussed and one solution is given. - Highlights: ► Transport mechanisms shaping the dark current-voltage curves of tandem devices. ► The devices are amorphous and microcrystalline based tandem solar cells. ► Two regions with a current-voltage exponential dependence are observed. ► The tandem J-V diode factor is the

  4. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    collectors were studied: Au, Ni, Ag, and Pt. It was shown that the performance of the direct carbon fuel cell (DCFC) is dependent on the current collector materials, Ni and Pt giving the best performance, due to their catalytic activity. Gold is suggested to be the best material as an inert current collector......The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  5. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  6. Chick stem cells: Current progress and future prospects

    Science.gov (United States)

    Intarapat, Sittipon; Stern, Claudio D.

    2013-01-01

    Chick embryonic stem cells (cESCs) can be derived from cells obtained from stage X embryos (blastoderm stage); these have the ability to contribute to all somatic lineages in chimaeras, but not to the germ line. However, lines of stem cells that are able to contribute to the germ line can be established from chick primordial germ cells (cPGCs) and embryonic germ cells (cEGCs). This review provides information on avian stem cells, emphasizing different sources of cells and current methods for derivation and culture of pluripotent cells from chick embryos. We also review technologies for isolation and derivation of chicken germ cells and the production of transgenic birds. PMID:24103496

  7. MOS current gain cells with electronically variable gain and constant bandwidth

    NARCIS (Netherlands)

    Klumperink, Eric A.M.; Seevinck, Evert

    1989-01-01

    Two MOS current gain cells are proposed that provide linear amplification of currents supplied by several linear MOS V-I converters. The gain is electronically variable by a voltage or a current and can be made insensitive to temperature and IC processing. The gain cells have a constant

  8. Graphene as transparent and current spreading electrode in silicon solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Behura, Sanjay K., E-mail: sanjaybehura@gmail.com; Nayak, Sasmita; Jani, Omkar [Solar Energy Research Wing, Gujarat Energy Research and Management Institute - Research, Innovation and Incubation Centre, Gandhinagar 382007, Gujarat (India); Mahala, Pramila [School of Solar Energy, Pandit Deendayal Petroleum University, Gandhinagar 382007, Gujarat (India)

    2014-11-15

    Fabricated bi-layer graphene (BLG) has been studied as transparent and current spreading electrode (TCSE) for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE) and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%), in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  9. Cell cycle-dependent activity of the volume- and Ca2+-activated anion currents in Ehrlich lettre ascites cells

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Bergdahl, Andreas; Christophersen, Palle

    2007-01-01

    Recent evidence implicates the volume-regulated anion current (VRAC) and other anion currents in control or modulation of cell cycle progression; however, the precise involvement of anion channels in this process is unclear. Here, Cl- currents in Ehrlich Lettre Ascites (ELA) cells were monitored...... during cell cycle progression, under three conditions: (i) after osmotic swelling (i.e., VRAC), (ii) after an increase in the free intracellular Ca2+ concentration (i.e., the Ca2+-activated Cl- current, CaCC), and (iii) under steady-state isotonic conditions. The maximal swelling-activated VRAC current......+ in the pipette), was unaltered from G0 to G1, but decreased in early S phase. A novel high-affinity anion channel inhibitor, the acidic di-aryl-urea NS3728, which inhibited both VRAC and CaCC, attenuated ELA cell growth, suggesting a possible mechanistic link between cell cycle progression and cell cycle...

  10. Graphene as transparent and current spreading electrode in silicon solar cell

    Directory of Open Access Journals (Sweden)

    Sanjay K. Behura

    2014-11-01

    Full Text Available Fabricated bi-layer graphene (BLG has been studied as transparent and current spreading electrode (TCSE for silicon solar cell, using TCAD-Silvaco 2D simulation. We have carried out comparative study using both Ag grids and BLG as current spreading electrode (CSE and TCSE, respectively. Our study reveals that BLG based solar cell shows better efficiency of 24.85% than Ag-based cell (21.44%, in all of the critical aspects, including generation rate, recombination rate, electric field, potential and quantum efficiency. Further BLG based cell exhibits pronounce rectifying behavior, low saturation current, and good turn-on voltage while studying in dark.

  11. Current efficiency in the chlorate cell process

    Directory of Open Access Journals (Sweden)

    Spasojević Miroslav D.

    2014-01-01

    Full Text Available A mathematical model has been set up for current efficiency in a chlorate cell acting as an ideal electrochemical tubular reactor with a linear increase in hypochlorite concentration from the entrance to the exit. Good agreement was found between the results on current efficiency experimentally obtained under simulated industrial chlorate production conditions and the theoretical values provided by the mathematical model. [Projekat Ministarstva nauke Republike Srbije, br. 172057 i br. 172062

  12. Current applications of human pluripotent stem cells: possibilities and challenges.

    Science.gov (United States)

    Ho, Pai-Jiun; Yen, Men-Luh; Yet, Shaw-Fang; Yen, B Linju

    2012-01-01

    Stem cells are self-renewable cells with the differentiation capacity to develop into somatic cells with biological functions. This ability to sustain a renewable source of multi- and/or pluripotential differentiation has brought new hope to the field of regenerative medicine in terms of cell therapy and tissue engineering. Moreover, stem cells are invaluable tools as in vitro models for studying diverse fields, from basic scientific questions such as developmental processes and lineage commitment, to practical application including drug screening and testing. The stem cells with widest differentiation potential are pluripotent stem cells (PSCs), which are rare cells with the ability to generate somatic cells from all three germ layers. PSCs are considered the most optimal choice for therapeutic potential of stem cells, bringing new impetus to the field of regenerative medicine. In this article, we discuss the therapeutic potential of human PSCs (hPSCs) including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), reviewing the current preclinical and clinical data using these stem cells. We describe the classification of different sources of hPSCs, ongoing research, and currently encountered clinical obstacles of these novel and versatile human stem cells.

  13. The use of probe characteristics in plasma in the presence of a magnetic field (1960); Utilisation des caracteristiques de sondes dans des plasmas en presence de champ magnetique (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Brunet, A; Geller, R; Leroy, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In this article we recall the principal methods of interpretation of probe characteristics in plasma in the presence of magnetic fields. Our purpose is to resume and to present the methods in such a form as to be immediately applicable in a particular case. This article is therefore principally useful to experimenters. Finally we expose our practical view points by comparing of experimental methods. (author) [French] Dans cet article, nous rappelons les principales methodes d'interpretation des caracteristiques de sonde dans des plasmas en presence de champs magnetiques. Notre but est de resumer et de presenter sous forme inmediatement applicable ces methodes. Cet article est donc destine aux experimentateurs. Enfin, nous developpons nos etudes pratiques sur la question en etablissant des comparaisons experimentales entre les methodes. (auteur)

  14. Moderate hypoxia influences potassium outward currents in adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Mayuri Prasad

    Full Text Available Moderate hypoxic preconditioning of adipose-derived stem cells (ASCs enhances properties such as proliferation and secretion of growth factors, representing a valuable strategy to increase the efficiency of cell-based therapies. In a wide variety of cells potassium (K+ channels are key elements involved in the cellular responses to hypoxia, suggesting that ASCs cultured under low oxygen conditions may display altered electrophysiological properties. Here, the effects of moderate hypoxic culture on proliferation, whole-cell currents, and ion channel expression were investigated using human ASCs cultured at 5% and 20% oxygen. Although cell proliferation was greatly enhanced, the dose-dependent growth inhibition by the K+ channel blocker tetraethylammonium (TEA was not significantly affected by hypoxia. Under both normoxic and hypoxic conditions, ASCs displayed outward K+ currents composed by Ca2+-activated, delayed rectifier, and transient components. Hypoxic culture reduced the slope of the current-voltage curves and caused a negative shift in the voltage activation threshold of the whole-cell currents. However, the TEA-mediated shift of voltage activation threshold was not affected by hypoxia. Semiquantitative real-time RT-PCR revealed that expression of genes encoding for various ion channels subunits related to oxygen sensing and proliferation remained unchanged after hypoxic culture. In conclusion, outward currents are influenced by moderate hypoxia in ASCs through a mechanism that is not likely the result of modulation of TEA-sensitive K+ channels.

  15. Human iPS Cell-Derived Germ Cells: Current Status and Clinical Potential

    Directory of Open Access Journals (Sweden)

    Tetsuya Ishii

    2014-10-01

    Full Text Available Recently, fertile spermatozoa and oocytes were generated from mouse induced pluripotent (iPS cells using a combined in vitro and in vivo induction system. With regard to germ cell induction from human iPS cells, progress has been made particularly in the male germline, demonstrating in vitro generation of haploid, round spermatids. Although iPS-derived germ cells are expected to be developed to yield a form of assisted reproductive technology (ART that can address unmet reproductive needs, genetic and/or epigenetic instabilities abound in iPS cell generation and germ cell induction. In addition, there is still room to improve the induction protocol in the female germline. However, rapid advances in stem cell research are likely to make such obstacles surmountable, potentially translating induced germ cells into the clinical setting in the immediate future. This review examines the current status of the induction of germ cells from human iPS cells and discusses the clinical potential, as well as future directions.

  16. Current status of stem cells in cardiac repair.

    Science.gov (United States)

    Henning, Robert J

    2018-03-01

    One out of every two men and one out of every three women greater than the age of 40 will experience an acute myocardial infarction (AMI) at some time during their lifetime. As more patients survive their AMIs, the incidence of congestive heart failure (CHF) is increasing. 6 million people in the USA have ischemic cardiomyopathies and CHF. The search for new and innovative treatments for patients with AMI and CHF has led to investigations and use of human embryonic stem cells, cardiac stem/progenitor cells, bone marrow-derived mononuclear cells and mesenchymal stem cells for treatment of these heart conditions. This paper reviews current investigations with human embryonic, cardiac, bone marrow and mesenchymal stem cells, and also stem cell paracrine factors and exosomes.

  17. Mantle cell lymphoma-current literature overview.

    Science.gov (United States)

    Pejcic, Ivica; Petkovic, Ivan; Vrbic, Svetislav; Filipovic, Sladjana; Balic, Mirjana; Cvetanovic, Ana

    2014-01-01

    Mantle cell lymphoma (MCL) is a distinct subtype of lymphoma identified as a particular entity in the early 1990s. The prognosis of MCL is generally poor, and is considered one of the worst among all B-cell lymphomas. In general, conventional chemotherapy is only palliative and the median duration of remissions is only 1-2 years. With the exception of allogeneic hematopoietic stem cell transplantation (allo-SCT), current treatment approaches are not curative and the corresponding survival curve is characterized by a relatively steep and continuous decline, with a median survival of about 4 years and watch and wait strategy. Optimal first-line therapy in MCL is not established yet. Very intensive regimens, including autologous (auto-SCT) and allo-SCT, seem to be required to improve the outcome. Allogeneic stem cell transplantation is the only therapy that can achieve a plateau in the survival curve, but, however, it is not applicable in most of the cases due to the patients' older age when the disease mostly occurs. Molecular knowledge of MCL has progressed and therefore a large number of molecular targeted therapies have been introduced in relapsed and refractory disease.

  18. Development of a Direct Methanol Fuel Cell with Lightweight Disc Type Current Collectors

    Directory of Open Access Journals (Sweden)

    Yean-Der Kuan

    2014-05-01

    Full Text Available The direct methanol fuel cell (DMFC adopts methanol solution as a fuel suitable for low power portable applications. A miniature, lightweight, passive air-breathing design is therefore desired. This paper presents a novel planar disc-type DMFC with multiple cells containing a novel developed lightweight current collector at both the anode and cathode sides. The present lightweight current collector adopts FR4 Glass/Epoxy as the substrate with the current collecting areas located at the corresponding membrane electrolyte assembly (MEA areas. The current collecting areas are fabricated by sequentially coating a corrosion resistant layer and electrical conduction layer via the thermal evaporation technique. The anode current collector has carved flow channels for fuel transport and production. The cathode current collector has drilled holes for passive air breathing. In order to ensure feasibility in the present concept a 3-cell prototype DMFC module with lightweight disc type current collectors is designed and constructed. Experiments were conducted to measure the cell performance. The results show that the highest cell power output is 54.88 mW·cm−2 and successfully demonstrate the feasibility of this novel design.

  19. Degradation of Solid Oxide Electrolysis Cells Operated at High Current Densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2014-01-01

    In this work the durability of solid oxide cells for co-electrolysis of steam and carbon dioxide (45 % H2O + 45 % CO2 + 10 % H2) at high current densities was investigated. The tested cells are Ni-YSZ electrode supported, with a YSZ electrolyte and either a LSM-YSZ or LSCF-CGO oxygen electrode....... A current density of -1.5 and -2.0 A/cm2 was applied to the cell and the gas conversion was 45 % and 60 %, respectively. The cells were operated for a period of up to 700 hours. The electrochemical analysis revealed significant performance degradation for the ohmic process, oxygen ion interfacial transfer...

  20. Stem cell maintenance by manipulating signaling pathways: past, current and future

    Science.gov (United States)

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  1. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  2. Fullerene solubility-current density relationship in polymer solar cells

    International Nuclear Information System (INIS)

    Renz, Joachim A.; Gobsch, Gerhard; Hoppe, Harald; Troshin, Pavel A.; Razumov, V.F.

    2008-01-01

    During the last decade polymer solar cells have undergone a steady increase in overall device efficiency. To date, essential efficiency improvements of polymer-fullerene solar cells require the development of new materials. Whilst most research efforts aim at an improved or spectrally extended absorption of the donor polymer, not so much attention has been paid to the fullerene properties themselves. We have investigated a number of structurally related fullerenes, in order to study the relationship between chemical structure and resulting polymer-fullerene bulk heterojunction photovoltaic properties. Our study reveals a clear connection between the fullerene solubility as material property on one hand and the solar cells short circuit photocurrent on the other hand. The tendency of the less soluble fullerene derivates to aggregate was accounted for smaller current densities in the respective solar cells. Once a minimum solubility of approx. 25 mg/ml in chlorobenzene was overcome by the fullerene derivative, the short circuit current density reached a plateau, of about 8-10 mA/cm 2 . Thus the solubility of the fullerene derivative directly influences the blend morphology and displays an important parameter for efficient polymer-fullerene bulk heterojunction solar cell operation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  3. Limbal stem cell transplantation: current perspectives

    Directory of Open Access Journals (Sweden)

    Atallah MR

    2016-04-01

    Full Text Available Marwan Raymond Atallah, Sotiria Palioura, Victor L Perez, Guillermo Amescua Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA Abstract: Regeneration of the corneal surface after an epithelial insult involves division, migration, and maturation of a specialized group of stem cells located in the limbus. Several insults, both intrinsic and extrinsic, can precipitate destruction of the delicate microenvironment of these cells, resulting in limbal stem cell deficiency (LSCD. In such cases, reepithelialization fails and conjunctival epithelium extends across the limbus, leading to vascularization, persistent epithelial defects, and chronic inflammation. In partial LSCD, conjunctival epitheliectomy, coupled with amniotic membrane transplantation, could be sufficient to restore a healthy surface. In more severe cases and in total LSCD, stem cell transplantation is currently the best curative option. Before any attempts are considered to perform a limbal stem cell transplantation procedure, the ocular surface must be optimized by controlling causative factors and comorbid conditions. These factors include adequate eyelid function or exposure, control of the ocular surface inflammatory status, and a well-lubricated ocular surface. In cases of unilateral LSCD, stem cells can be obtained from the contralateral eye. Newer techniques aim at expanding cells in vitro or in vivo in order to decrease the need for large limbal resection that may jeopardize the “healthy” eye. Patients with bilateral disease can be treated using allogeneic tissue in combination with systemic immunosuppressive therapy. Another emerging option for this subset of patients is the use of noncorneal cells such as mucosal grafts. Finally, the use of keratoprosthesis is reserved for patients who are not candidates for any of the aforementioned options, wherein the choice of the type of keratoprosthesis depends on

  4. Analysis of each branch current of serial solar cells by using an equivalent circuit model

    International Nuclear Information System (INIS)

    Yi Shi-Guang; Zhang Wan-Hui; Ai Bin; Song Jing-Wei; Shen Hui

    2014-01-01

    In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (I sh1 and I sh2 ), diode currents (I D1 and I D2 ), and load current (I L ) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module. (interdisciplinary physics and related areas of science and technology)

  5. A new global real-time Lagrangian diagnostic system for stratosphere-troposphere exchange: evaluation during a balloon sonde campaign in eastern Canada

    Directory of Open Access Journals (Sweden)

    M. S. Bourqui

    2012-03-01

    Full Text Available A new global real-time Lagrangian diagnostic system for stratosphere-troposphere exchange (STE developed for Environment Canada (EC has been delivering daily archived data since July 2010. The STE calculations are performed following the Lagrangian approach proposed in Bourqui (2006 using medium-range, high-resolution operational global weather forecasts. Following every weather forecast, trajectories are started from a dense three-dimensional grid covering the globe, and are calculated forward in time for six days of the forecast. All trajectories crossing either the dynamical tropopause (±2 PVU or the 380 K isentrope and having a residence time greater than 12 h are archived, and also used to calculate several diagnostics. This system provides daily global STE forecasts that can be used to guide field campaigns, among other applications. The archived data set offers unique high-resolution information on transport across the tropopause for both extra-tropical hemispheres and the tropics. This will be useful for improving our understanding of STE globally, and as a reference for the evaluation of lower-resolution models. This new data set is evaluated here against measurements taken during a balloon sonde campaign with daily launches from three stations in eastern Canada (Montreal, Egbert, and Walsingham for the period 12 July to 4 August 2010. The campaign found an unexpectedly high number of observed stratospheric intrusions: 79% (38% of the profiles appear to show the presence of stratospheric air below than 500 hPa (700 hPa. An objective identification algorithm developed for this study is used to identify layers in the balloon-sonde profiles affected by stratospheric air and to evaluate the Lagrangian STE forecasts. We find that the predictive skill for the overall intrusion depth is very good for intrusions penetrating down to 300 and 500 hPa, while it becomes negligible for intrusions penetrating below 700 hPa. Nevertheless, the

  6. Cell cycle-dependent regulation of kainate-induced inward currents in microglia

    International Nuclear Information System (INIS)

    Yamada, Jun; Sawada, Makoto; Nakanishi, Hiroshi

    2006-01-01

    Microglia are reported to have α-amino-hydroxy-5-methyl-isoxazole-4-propionate/kainate (KA) types. However, only small population of primary cultured rat microglia (approximately 20%) responded to KA. In the present study, we have attempted to elucidate the regulatory mechanism of responsiveness to KA in GMIR1 rat microglial cell line. When the GMIR1 cells were plated at a low density in the presence of granulocyte macrophage colony-stimulating factor, the proliferation rate increased and reached the peak after 2 days in culture and then gradually decreased because of density-dependent inhibition. At cell proliferation stage, approximately 80% of the GMIR1 cells exhibited glutamate (Glu)- and KA-induced inward currents at cell proliferation stage, whereas only 22.5% of the cells showed responsiveness to Glu and KA at cell quiescent stage. Furthermore, the mean amplitudes of inward currents induced by Glu and KA at cell proliferation stage (13.8 ± 3.0 and 8.4 ± 0.6 pA) were significantly larger than those obtained at cell quiescent stage (4.7 ± 0.8 and 6.2 ± 1.2 pA). In the GMIR1 cells, KA-induced inward currents were markedly inhibited by (RS)-3-(2-carboxybenzyl) willardiine (UBP296), a selective antagonist for KA receptors. The KA-responsive cells also responded to (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective agonist for GluR5, in both GMIR1 cells and primary cultured rat microglia. Furthermore, mRNA levels of the KA receptor subunits, GluR5 and GluR6, at the cell proliferation stage were significantly higher than those at the cell quiescent stage. Furthermore, the immunoreactivity for GluR6/7 was found to increase in activated microglia in the post-ischemic hippocampus. These results strongly suggest that microglia have functional KA receptors mainly consisting of GluR5 and GluR6, and the expression levels of these subunits are closely regulated by the cell cycle mechanism

  7. Modelling the short-circuit current of polymer bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Geens, Wim; Martens, Tom; Poortmans, Jef; Aernouts, Tom; Manca, Jean; Lutsen, Laurence; Heremans, Paul; Borghs, Staf; Mertens, Robert; Vanderzande, Dirk

    2004-01-01

    An analytical model has been developed to estimate the short-circuit current density of conjugated polymer/fullerene bulk heterojunction solar cells. The model takes into account the solvent-dependent molecular morphology of the donor/acceptor blend, which was revealed by transmission electron microscopy. Field-effect transistors based on single and composite organic layers were fabricated to determine values for the charge carrier mobilities of such films. These values served as input parameters of the model. It is shown that the difference in short-circuit current density that was measured between toluene-cast and chlorobenzene-cast conjugated polymer/fullerene photovoltaic cells (Appl. Phys. Lett. 78 (2001) 841) could be very well simulated with the model. Moreover, the calculations illustrate how increasing the hole and electron mobilities in the photoactive blend can improve the overall short-circuit current density of the solar cell

  8. Characterization of Platinum Electrodes and In-situ Cell Confluency Measurement Based on Current Changes of Cell-Electrodes

    Directory of Open Access Journals (Sweden)

    Chin Fhong SOON

    2015-04-01

    Full Text Available This study aimed at the development of a biosensor to examine the growth confluency of human derived keratinocytes (HaCaT cell lines in-situ. The biosensor consists of a sputter- coated glass substrate with platinum patterns. Cells were grown on the conductive substrates and the confluency of the cells were monitored in-situ based on the conductivity changes of the substrates. Characterization of the cell proliferation and confluency were interrogated using electrical cell-substrate impedance sensing (ECIS techniques and current change of cells using a pico-ammeter. The investigation was followed by the electrical characterization of the platinum electrode (PE using a two probe I-V measurement system. The surface morphology of platinum electrodes were studied using an atomic force microscopy (AFM and the HaCaT cell morphology was studied using Field-Emission Scanning Electron Microscopy (FE-SEM. The microscopy results showed that the cells coupled and proliferated on the platinum electrodes. For monitoring the conductivity and impedance changes of the cell-electrode in-situ, the cover of a Petri dish was inserted with pogo pins to be in contact with the platinum electrodes. The impedance was sampled using the ECIS technique at a twenty-four hour interval. In our findings, the cell proliferation rate can be measured by observing the changes in capacitance or impedance measured at low ac frequencies ranged from 10 - 1 kHz. In good agreement, the current measured at micro-ampere range by the biosensor decreased as the cell coverage area increased over the time. Thus, the percent of cell confluence was shown inversely proportional to the current changes.

  9. Cell-type-dependent action potentials and voltage-gated currents in mouse fungiform taste buds.

    Science.gov (United States)

    Kimura, Kenji; Ohtubo, Yoshitaka; Tateno, Katsumi; Takeuchi, Keita; Kumazawa, Takashi; Yoshii, Kiyonori

    2014-01-01

    Taste receptor cells fire action potentials in response to taste substances to trigger non-exocytotic neurotransmitter release in type II cells and exocytotic release in type III cells. We investigated possible differences between these action potentials fired by mouse taste receptor cells using in situ whole-cell recordings, and subsequently we identified their cell types immunologically with cell-type markers, an IP3 receptor (IP3 R3) for type II cells and a SNARE protein (SNAP-25) for type III cells. Cells not immunoreactive to these antibodies were examined as non-IRCs. Here, we show that type II cells and type III cells fire action potentials using different ionic mechanisms, and that non-IRCs also fire action potentials with either of the ionic mechanisms. The width of action potentials was significantly narrower and their afterhyperpolarization was deeper in type III cells than in type II cells. Na(+) current density was similar in type II cells and type III cells, but it was significantly smaller in non-IRCs than in the others. Although outwardly rectifying current density was similar between type II cells and type III cells, tetraethylammonium (TEA) preferentially suppressed the density in type III cells and the majority of non-IRCs. Our mathematical model revealed that the shape of action potentials depended on the ratio of TEA-sensitive current density and TEA-insensitive current one. The action potentials of type II cells and type III cells under physiological conditions are discussed. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  10. Biphasic electrical currents stimulation promotes both proliferation and differentiation of fetal neural stem cells.

    Directory of Open Access Journals (Sweden)

    Keun-A Chang

    2011-04-01

    Full Text Available The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs significantly increased the proliferation of fetal neural stem cells (NSCs. Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.

  11. Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization

    International Nuclear Information System (INIS)

    Thantsha, N.M.; Macabebe, E.Q.B.; Vorster, F.J.; Dyk, E.E. van

    2009-01-01

    A different laser beam induced current (LBIC) mapping technique has been used for the measurements of spatial variation of light generated current of a solar cell. These variations are caused by parasitic resistances and defects at grain boundaries (GBs) in multicrystalline silicon solar cells (mc-Si). This study investigates and identifies the regions within mc-Si solar cells where dominating recombination and lifetime limiting processes occur. A description of the LBIC technique is presented and the results show how multicrystalline GBs and other defects affect the light generated current of a spot illuminated mc-Si solar cell. The results of the internal quantum efficiency (IQE) at wavelength of 660 nm revealed that some regions in mc-Si solar cell give rise to paths that lead current away from the intended load.

  12. Opto-electronic analysis of silicon solar cells by LBIC investigations and current-voltage characterization

    Energy Technology Data Exchange (ETDEWEB)

    Thantsha, N.M.; Macabebe, E.Q.B.; Vorster, F.J. [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    A different laser beam induced current (LBIC) mapping technique has been used for the measurements of spatial variation of light generated current of a solar cell. These variations are caused by parasitic resistances and defects at grain boundaries (GBs) in multicrystalline silicon solar cells (mc-Si). This study investigates and identifies the regions within mc-Si solar cells where dominating recombination and lifetime limiting processes occur. A description of the LBIC technique is presented and the results show how multicrystalline GBs and other defects affect the light generated current of a spot illuminated mc-Si solar cell. The results of the internal quantum efficiency (IQE) at wavelength of 660 nm revealed that some regions in mc-Si solar cell give rise to paths that lead current away from the intended load.

  13. Investigation of in vitro bone cell adhesion and proliferation on Ti using direct current stimulation

    International Nuclear Information System (INIS)

    Bodhak, Subhadip; Bose, Susmita; Kinsel, William C.; Bandyopadhyay, Amit

    2012-01-01

    Our objective was to establish an in vitro cell culture protocol to improve bone cell attachment and proliferation on Ti substrate using direct current stimulation. For this purpose, a custom made electrical stimulator was developed and a varying range of direct currents, from 5 to 25 μA, was used to study the current stimulation effect on bone cells cultured on conducting Ti samples in vitro. Cell–material interaction was studied for a maximum of 5 days by culturing with human fetal osteoblast cells (hFOB). The direct current was applied in every 8 h time interval and the duration of electrical stimulation was kept constant at 15 min for all cases. In vitro results showed that direct current stimulation significantly favored bone cell attachment and proliferation in comparison to nonstimulated Ti surface. Immunochemistry and confocal microscopy results confirmed that the cell adhesion was most pronounced on 25 μA direct current stimulated Ti surfaces as hFOB cells expressed higher vinculin protein with increasing amount of direct current. Furthermore, MTT assay results established that cells grew 30% higher in number under 25 μA electrical stimulation as compared to nonstimulated Ti surface after 5 days of culture period. In this work we have successfully established a simple and cost effective in vitro protocol offering easy and rapid analysis of bone cell–material interaction which can be used in promotion of bone cell attachment and growth on Ti substrate using direct current electrical stimulation in an in vitro model. - Highlights: ► D.C. stimulation was used to enhance in vitro bone cell adhesion and proliferation. ► Cells cultured on Ti were stimulated by using a custom made electrical stimulator. ► Optimization was performed by using a varying range of direct currents ∼ 5 to 25 μA. ► 25 μA stimulation was found most beneficial for promotion of cell adhesion/growth.

  14. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw

    2018-01-01

    Our understanding of satellite cells, now known to be the obligate stem cells of skeletal muscle, has increased dramatically in recent years due to the introduction of new molecular, genetic, and technical resources. In addition to their role in acute repair of damaged muscle, satellite cells are of interest in the fields of aging, exercise, neuromuscular disease, and stem cell therapy, and all of these applications have driven a dramatic increase in our understanding of the activity and potential of satellite cells. However, many fundamental questions of satellite cell biology remain to be answered, including their emergence as a specific lineage, the degree and significance of heterogeneity within the satellite cell population, the roles of their interactions with other resident and infiltrating cell types during homeostasis and regeneration, and the relative roles of intrinsic vs extrinsic factors that may contribute to satellite cell dysfunction in the context of aging or disease. This review will address the current state of these open questions in satellite cell biology. © 2018 Elsevier Inc. All rights reserved.

  15. On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, Nicole R.; Ha, Seungbum; He, Meinan; Dees, Dennis; Trask, Steve; Polzin, Bryant; Gallagher, Kevin G.

    2017-01-01

    In this study, parasitic side reactions in lithium-ion batteries were examined experimentally using a potentiostatic hold at high cell voltage. The experimental leakage current measured during the potentiostatic hold was compared to the Tafel expression and showed poor agreement with the expected transfer coefficient values, indicating that a more complicated expression could be needed to accurately capture the physics of this side reaction. Here we show that cross-talk between the electrodes is the primary contribution to the observed leakage current after the relaxation of concentration gradients has ceased. This cross-talk was confirmed with experiments using a lithium-ion conducting glass ceramic (LICGC) separator, which has high conductance only for lithium cations. The cells with LICGC separators showed significantly less leakage current during the potentiostatic hold test compared to cells with standard microporous separators where cross-talk is present. In addition, direct-current pulse power tests show an impedance rise for cells held at high potentials and for cells held at high temperatures, which could be attributed to film formation from the parasitic side reaction. Based on the experimental findings, a phenomenological mechanism is proposed for the parasitic side reaction which accounts for cross-talk and mass transport of the decomposition products across the separator.

  16. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells. [proton irradiation effects on ATS 1 cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1977-01-01

    Difficulties in relating observed current-voltage characteristics of individual silicon solar cells to their physical and material parameters were underscored by the unexpected large changes in the current-voltage characteristics telemetered back from solar cells on the ATS-1 spacecraft during their first year in synchronous orbit. Depletion region recombination was studied in cells exhibiting a clear double-exponential dark characteristic by subjecting the cells to proton irradiation. A significant change in the saturation current, an effect included in the Sah, Noyce, Shockley formulation of diode current resulting from recombination in the depletion region, was caused by the introduction of shallow levels in the depletion region by the proton irradiation. This saturation current is not attributable only to diffusion current from outside the depletion region and only its temperature dependence can clarify its origin. The current associated with the introduction of deep-lying levels did not change significantly in these experiments.

  17. Fluctuations of the peak current of tunnel diodes in multi-junction solar cells

    International Nuclear Information System (INIS)

    Jandieri, K; Baranovskii, S D; Stolz, W; Gebhard, F; Guter, W; Hermle, M; Bett, A W

    2009-01-01

    Interband tunnel diodes are widely used to electrically interconnect the individual subcells in multi-junction solar cells. Tunnel diodes have to operate at high current densities and low voltages, especially when used in concentrator solar cells. They represent one of the most critical elements of multi-junction solar cells and the fluctuations of the peak current in the diodes have an essential impact on the performance and reliability of the devices. Recently we have found that GaAs tunnel diodes exhibit extremely high peak currents that can be explained by resonant tunnelling through defects homogeneously distributed in the junction. Experiments evidence rather large fluctuations of the peak current in the diodes fabricated from the same wafer. It is a challenging task to clarify the reason for such large fluctuations in order to improve the performance of the multi-junction solar cells. In this work we show that the large fluctuations of the peak current in tunnel diodes can be caused by relatively small fluctuations of the dopant concentration. We also show that the fluctuations of the peak current become smaller for deeper energy levels of the defects responsible for the resonant tunnelling.

  18. Influence of wavelength on transient short-circuit current in polycrystalline silicon solar cells

    International Nuclear Information System (INIS)

    Ba, B.; Kane, M.

    1993-10-01

    The influence of the wavelength of a monochromatic illumination on transient short-circuit current in an n/p polycrystalline silicon part solar cell junction is investigated. A wavelength dependence in the initial part of the current decay is observed in the case of cells with moderate grain boundary effects. This influence is attenuated in polycrystalline cells with strong grain boundary activity. (author). 10 refs, 6 figs

  19. Ultra Low Voltage Class AB Switched Current Memory Cells Based on Floating Gate Transistors

    DEFF Research Database (Denmark)

    Mucha, Igor

    1999-01-01

    current memory cells were designed using a CMOS process with threshold voltages V-T0n = \\V-T0p\\ = 0.9 V for the n- and p-channel devices. Both hand calculations and PSPICE simulations showed that the designed example switched current memory cell allowed a maximum signal range better than +/-18 mu......A proposal for a class AB switched current memory cell, suitable for ultra-low-voltage applications is presented. The proposal employs transistors with floating gates, allowing to build analog building blocks for ultralow supply voltage operation also in CMOS processes with high threshold voltages....... This paper presents the theoretical basis for the design of "floating-gate'' switched current memory cells by giving a detailed description and analysis of the most important impacts degrading the performance of the cells. To support the theoretical assumptions circuits based on "floating-gate'' switched...

  20. Starting characteristics of direct current motors powered by solar cells

    Science.gov (United States)

    Singer, S.; Appelbaum, J.

    1989-01-01

    Direct current motors are used in photovoltaic systems. Important characteristics of electric motors are the starting to rated current and torque ratios. These ratios are dictated by the size of the solar cell array and are different for the various dc motor types. Discussed here is the calculation of the starting to rated current ratio and starting to rated torque ratio of the permanent magnet, and series and shunt excited motors when powered by solar cells for two cases: with and without a maximum-power-point-tracker (MPPT) included in the system. Comparing these two cases, one gets a torque magnification of about 3 for the permanent magnet motor and about 7 for other motor types. The calculation of the torques may assist the PV system designer to determine whether or not to include an MPPT in the system.

  1. Integrated fuel cell stack shunt current prevention arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Robert P. (Cheshire, CT); Nowak, Michael P. (Bolton, CT)

    1992-01-01

    A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.

  2. Current state of the art of blood cell labeling

    International Nuclear Information System (INIS)

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.; Gil, M.C.

    1985-01-01

    An update on some recent developments in the area of blood cell labeling is provided. Specific topics covered include red cell labeling with /sup 99m/Tc, platelet labeling using an antiplatelet monoclonal antibody, and the labeling of leukocytes with /sup 99m/Tc. Mechanistic information, where available, is discussed. A critical evaluation of current techniques, their pitfalls as well as advantages, and the problems that remain to be resolved, is presented. The promise shown by recent results using the antibody approach for cell labeling is emphasized. An assessment of the progress made in these areas is presented. 38 refs., 10 figs., 6 tabs

  3. Current-voltage analysis of the record-efficiency CuGaSe2 solar cell: Application of the current separation method and the interface recombination model

    International Nuclear Information System (INIS)

    Saad, M.; Kasis, A.

    2011-01-01

    Current-voltage (j-V) characteristics of the record-efficiency CuGaSe 2 solar cell measured under several illumination levels are analyzed using a two-diode equation for a more accurate description of cell behavior. The contribution of each diode to the total cell j-V characteristic under illumination was estimated using the current separation method presented recently. This is performed in an effort to identify the distinctive features of this record-efficiency cell which have led to the up-to-date highest open circuit voltage of V o c = 946 mV and fill factor of FF = 66.5% for CuGaSe 2 solar cells. Furthermore, the interface recombination component of the cell current under illumination is quantitatively discussed applying the interface recombination model presented earlier. (author)

  4. Calcium Transient and Sodium-Calcium Exchange Current in Human versus Rabbit Sinoatrial Node Pacemaker Cells

    Directory of Open Access Journals (Sweden)

    Arie O. Verkerk

    2013-01-01

    Full Text Available There is an ongoing debate on the mechanism underlying the pacemaker activity of sinoatrial node (SAN cells, focusing on the relative importance of the “membrane clock” and the “Ca2+ clock” in the generation of the small net membrane current that depolarizes the cell towards the action potential threshold. Specifically, the debate centers around the question whether the membrane clock-driven hyperpolarization-activated current, If, which is also known as the “funny current” or “pacemaker current,” or the Ca2+ clock-driven sodium-calcium exchange current, INaCa, is the main contributor to diastolic depolarization. In our contribution to this journal’s “Special Issue on Cardiac Electrophysiology,” we present a numerical reconstruction of If and INaCa in isolated rabbit and human SAN pacemaker cells based on experimental data on action potentials, If, and intracellular calcium concentration ([Ca2+]i that we have acquired from these cells. The human SAN pacemaker cells have a smaller If, a weaker [Ca2+]i transient, and a smaller INaCa than the rabbit cells. However, when compared to the diastolic net membrane current, INaCa is of similar size in human and rabbit SAN pacemaker cells, whereas If is smaller in human than in rabbit cells.

  5. The design of a five-cell high-current superconducting cavity

    International Nuclear Information System (INIS)

    Li Yongming; Zhu Feng; Quan Shengwen; Liu Kexin; Nassiri, Ali

    2012-01-01

    Energy recovery linacs are promising for achieving high average current with superior beam quality. The key component for accelerating such high-current beams is the superconducting radio-frequency cavity. The design of a 1.3 GHz five-cell high-current superconducting cavity has been carried out under cooperation between Peking University and the Argonne National Laboratory. The radio-frequency properties, damping of the higher order modes, multipacting and mechanical features of this cavity have been discussed and the final design is presented. (authors)

  6. Mycoplasma orale infection affects K+ and Cl- currents in the HSG salivary gland cell line.

    Science.gov (United States)

    Izutsu, K T; Fatherazi, S; Belton, C M; Oda, D; Cartwright, F D; Kenny, G E

    1996-06-01

    The relations between K+ channel and Cl- channel currents and mycoplasma infection status were studied longitudinally in HSG cells, a human submandibular gland cell line. The K+ channel currents were disrupted by the occurrence of mycoplasma infection: muscarinic activation of K+ channels and K+ channel expression as estimated by ionomycin- or hypotonically induced K+ current responses were all decreased. Similar decreases in ionomycin- and hypotonically induced responses were observed for Cl- channels, but only the latter decrease was statistically significant. Also, Cl- currents could be elicited more frequently than K+ currents (63% of cases versus 0%) in infected cells when tested by exposure to hypotonic media, indicating that mycoplasma infection affects K+ channels relatively more than Cl- channels. These changes occurred in the originally infected cells, were ameliorated when the infection was cleared with sparfloxacin, and recurred when the cells were reinfected. Such changes would be expected to result in hyposecretion of salivary fluid if they occurred in vivo.

  7. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  8. Current status of treating neurodegenerative disease with induced pluripotent stem cells.

    Science.gov (United States)

    Pen, A E; Jensen, U B

    2017-01-01

    Degenerative diseases of the brain have proven challenging to treat, let alone cure. One of the treatment options is the use of stem cell therapy, which has been under investigation for several years. However, treatment with stem cells comes with a number of drawbacks, for instance the source of these cells. Currently, a number of options are tested to produce stem cells, although the main issues of quantity and ethics remain for most of them. Over recent years, the potential of induced pluripotent stem cells (iPSCs) has been widely investigated and these cells seem promising for production of numerous different tissues both in vitro and in vivo. One of the major advantages of iPSCs is that they can be made autologous and can provide a sufficient quantity of cells by culturing, making the use of other stem cell sources unnecessary. As the first descriptions of iPSC production with the transcription factors Sox2, Klf4, Oct4 and C-Myc, called the Yamanaka factors, a variety of methods has been developed to convert somatic cells from all germ layers to pluripotent stem cells. Improvement of these methods is necessary to increase the efficiency of reprogramming, the quality of pluripotency and the safety of these cells before use in human trials. This review focusses on the current accomplishments and remaining challenges in the production and use of iPSCs for treatment of neurodegenerative diseases of the brain such as Alzheimer's disease and Parkinson's disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Two-group Current-equivalent Parameters for Control Rod Cells. Autocode Programme CRCC

    Energy Technology Data Exchange (ETDEWEB)

    Norinder, O; Nyman, K

    1962-06-15

    In two-group neutron diffusion calculations there is mostly necessary to describe the influence of control rods by equivalent homogeneous two-group parameters in regions about the control rods. The problem is solved for a control rod in a medium characterized by two-group parameters. The property of fast and thermal neutr. on current equivalence is selected to obtain equivalent two-group parameters for a homogeneous cell with the same radius as the control rod cell. For the parameters determined one obtains the same fast and thermal neutron current into the rod cell and the equivalent cell independent of the fast and thermal flux amplitudes on the cell boundaries. The equivalent parameters are obtained as a solution of a system of transcendental equations. A Ferranti Mercury Autocode performing the solution is described. Calculated equivalent parameters for control rods in a heavy water lattice are given for some representative cases.

  10. Docetaxel modulates the delayed rectifier potassium current (IK) and ATP-sensitive potassium current (IKATP) in human breast cancer cells.

    Science.gov (United States)

    Sun, Tao; Song, Zhi-Guo; Jiang, Da-Qing; Nie, Hong-Guang; Han, Dong-Yun

    2015-04-01

    Ion channel expression and activity may be affected during tumor development and cancer growth. Activation of potassium (K(+)) channels in human breast cancer cells is reported to be involved in cell cycle progression. In this study, we investigated the effects of docetaxel on the delayed rectifier potassium current (I K) and the ATP-sensitive potassium current (I KATP) in two human breast cancer cell lines, MCF-7 and MDA-MB-435S, using the whole-cell patch-clamp technique. Our results show that docetaxel inhibited the I K and I KATP in both cell lines in a dose-dependent manner. Compared with the control at a potential of +60 mV, treatment with docetaxel at doses of 0.1, 1, 5, and 10 µM significantly decreased the I K in MCF-7 cells by 16.1 ± 3.5, 30.2 ± 5.2, 42.5 ± 4.3, and 46.4 ± 9% (n = 5, P < 0.05), respectively and also decreased the I KATP at +50 mV. Similar results were observed in MDA-MB-435S cells. The G-V curves showed no significant changes after treatment of either MCF-7 or MDA-MB-435S cells with 10 μM docetaxel. The datas indicate that the possible mechanisms of I K and I KATP inhibition by docetaxel may be responsible for its effect on the proliferation of human breast cancer cells.

  11. A graphite based STT-RAM cell with reduction in switching current

    International Nuclear Information System (INIS)

    Varghani, Ali; Peiravi, Ali

    2015-01-01

    Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for “universal memory” because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 µA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF). - Highlights: • A new STT-RAM cell structure which uses perfect graphite based MTJ is proposed. • The amplitude of the switching current or its pulsewidth can be reduced without any sacrifice of data retention time. • The proposed design is down-scalable from 90 nm to 22 nm. • Micromagnetic simulations are done with OOMMF

  12. Plant cell engineering: current research, application and future prospects

    International Nuclear Information System (INIS)

    Wang Xunqing; Liu Luxiang

    2008-01-01

    This paper reviewed the current status of basic research in plant cell engineering, highlighted the application of embryo culture, double haploid (DH) technology, protoplast culture and somatic hybridization, somaclonal variation, rapid propagation, and bio-products production of plant-origin, and t he prospects. (authors)

  13. Nanosecond electric pulses differentially affect inward and outward currents in patch clamped adrenal chromaffin cells.

    Directory of Open Access Journals (Sweden)

    Lisha Yang

    Full Text Available This study examined the effect of 5 ns electric pulses on macroscopic ionic currents in whole-cell voltage-clamped adrenal chromaffin cells. Current-voltage (I-V relationships first established that the early peak inward current was primarily composed of a fast voltage-dependent Na+ current (INa, whereas the late outward current was composed of at least three ionic currents: a voltage-gated Ca2+ current (ICa, a Ca2+-activated K+ current (IK(Ca, and a sustained voltage-dependent delayed rectifier K+ current (IKV. A constant-voltage step protocol was next used to monitor peak inward and late outward currents before and after cell exposure to a 5 ns pulse. A single pulse applied at an electric (E-field amplitude of 5 MV/m resulted in an instantaneous decrease of ~4% in peak INa that then declined exponentially to a level that was ~85% of the initial level after 10 min. Increasing the E-field amplitude to 8 or 10 MV/m caused a twofold greater inhibitory effect on peak INa. The decrease in INa was not due to a change in either the steady-state inactivation or activation of the Na+ channel but instead was associated with a decrease in maximal Na+ conductance. Late outward current was not affected by a pulse applied at 5 MV/m. However, for a pulse applied at the higher E-field amplitudes of 8 and 10 MV/m, late outward current in some cells underwent a progressive ~22% decline over the course of the first 20 s following pulse exposure, with no further decline. The effect was most likely concentrated on ICa and IK(Ca as IKV was not affected. The results of this study indicate that in whole-cell patch clamped adrenal chromaffin cells, a 5 ns pulse differentially inhibits specific voltage-gated ionic currents in a manner that can be manipulated by tuning E-field amplitude.

  14. First Reprocessing of Southern Hemisphere ADditional OZonesondes Profile Records: 3. Uncertainty in Ozone Profile and Total Column

    Science.gov (United States)

    Witte, Jacquelyn C.; Thompson, Anne M.; Smit, Herman G. J.; Vömel, Holger; Posny, Françoise; Stübi, Rene

    2018-03-01

    Reprocessed ozonesonde data from eight SHADOZ (Southern Hemisphere ADditional OZonesondes) sites have been used to derive the first analysis of uncertainty estimates for both profile and total column ozone (TCO). The ozone uncertainty is a composite of the uncertainties of the individual terms in the ozone partial pressure (PO3) equation, those being the ozone sensor current, background current, internal pump temperature, pump efficiency factors, conversion efficiency, and flow rate. Overall, PO3 uncertainties (ΔPO3) are within 15% and peak around the tropopause (15 ± 3 km) where ozone is a minimum and ΔPO3 approaches the measured signal. The uncertainty in the background and sensor currents dominates the overall ΔPO3 in the troposphere including the tropopause region, while the uncertainties in the conversion efficiency and flow rate dominate in the stratosphere. Seasonally, ΔPO3 is generally a maximum in the March-May, with the exception of SHADOZ sites in Asia, for which the highest ΔPO3 occurs in September-February. As a first approach, we calculate sonde TCO uncertainty (ΔTCO) by integrating the profile ΔPO3 and adding the ozone residual uncertainty, derived from the McPeters and Labow (2012, doi:10.1029/2011JD017006) 1σ ozone mixing ratios. Overall, ΔTCO are within ±15 Dobson units (DU), representing 5-6% of the TCO. Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument (TOMS and OMI) satellite overpasses are generally within the sonde ΔTCO. However, there is a discontinuity between TOMS v8.6 (1998 to September 2004) and OMI (October 2004-2016) TCO on the order of 10 DU that accounts for the significant 16 DU overall difference observed between sonde and TOMS. By comparison, the sonde-OMI absolute difference for the eight stations is only 4 DU.

  15. Microstructure characterisation of solid oxide electrolysis cells operated at high current density

    DEFF Research Database (Denmark)

    Bowen, Jacob R.; Bentzen, Janet Jonna; Chen, Ming

    degradation of cell components in relation to the loss of electrochemical performance specific to the mode of operation. Thus descriptive microstructure characterization methods are required in combination with electrochemical characterization methods to decipher degradation mechanisms. In the present work......High temperature solid oxide cells can be operated either as fuel cells or electrolysis cells for efficient power generation or production of hydrogen from steam or synthesis gas (H2 + CO) from steam and CO2 respectively. When operated under harsh conditions, they often exhibit microstructural...... quantified using the mean linear intercept method as a function of current density and correlated to increases in serial resistance. The above structural changes are then compared in terms of electrode degradation observed during the co-electrolysis of steam and CO2 at current densities up to -1.5 A cm-2...

  16. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chandler, Kevin [Battelle, Columbus, OH (United States); Gikakis, Christina [Federal Transit Administration, Washington, DC (United States)

    2012-11-01

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year.

  17. Tunneling effects in the current-voltage characteristics of high-efficiency GaAs solar cells

    Science.gov (United States)

    Kachare, R.; Anspaugh, B. E.; Garlick, G. F. J.

    1988-01-01

    Evidence is that tunneling via states in the forbidden gap is the dominant source of excess current in the dark current-voltage (I-V) characteristics of high-efficiency DMCVD grown Al(x)Ga(1-x)As/GaAs(x is equal to or greater than 0.85) solar cells. The dark forward and reverse I-V measurements were made on several solar cells, for the first time, at temperatures between 193 and 301 K. Low-voltage reverse-bias I-V data of a number of cells give a thermal activation energy for excess current of 0.026 + or - 0.005 eV, which corresponds to the carbon impurity in GaAs. However, other energy levels between 0.02 eV and 0.04 eV were observed in some cells which may correspond to impurity levels introduced by Cu, Si, Ge, or Cd. The forward-bias excess current is mainly due to carrier tunneling between localized levels created in the space-charge layer by impurities such as carbon, which are incorporated during the solar cell growth process. A model is suggested to explain the results.

  18. Modeling and control of the output current of a Reformed Methanol Fuel Cell system

    DEFF Research Database (Denmark)

    Justesen, Kristian Kjær; Andreasen, Søren Juhl; Pasupathi, Sivakumar

    2015-01-01

    In this work, a dynamic Matlab SIMULINK model of the relationship between the fuel cell current set point of a Reformed Methanol Fuel Cell system and the output current of the system is developed. The model contains an estimated fuel cell model, based on a polarization curve and assumed first order...... dynamics, as well as a battery model based on an equivalent circuit model and a balance of plant power consumption model. The models are tuned with experimental data and verified using a verification data set. The model is used to develop an output current controller which can control the charge current...... of the battery. The controller is a PI controller with feedforward and anti-windup. The performance of the controller is tested and verified on the physical system....

  19. Maximizing the short circuit current of organic solar cells by partial decoupling of electrical and optical properties

    Science.gov (United States)

    Qarony, Wayesh; Hossain, Mohammad I.; Jovanov, Vladislav; Knipp, Dietmar; Tsang, Yuen Hong

    2018-03-01

    The partial decoupling of electronic and optical properties of organic solar cells allows for realizing solar cells with increased short circuit current and energy conversion efficiency. The proposed device consists of an organic solar cell conformally prepared on the surface of an array of single and double textured pyramids. The device geometry allows for increasing the optical thickness of the organic solar cell, while the electrical thickness is equal to the nominal thickness of the solar cell. By increasing the optical thickness of the solar cell, the short circuit current is distinctly increased. The quantum efficiency and short circuit current are determined using finite-difference time-domain simulations of the 3D solar cell structure. The influence of different solar cell designs on the quantum efficiency and short circuit current is discussed and optimal device dimensions are proposed.

  20. Current and emerging treatment options for hairy cell leukemia

    Directory of Open Access Journals (Sweden)

    López-Rubio M

    2015-08-01

    Full Text Available Montserrat López-Rubio,1 Jose Antonio Garcia-Marco2 1Department of Hematology, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, 2Department of Hematology, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, Madrid, Spain Abstract: Hairy cell leukemia (HCL is a lymphoproliferative B-cell disorder characterized by pancytopenia, splenomegaly, and characteristic cytoplasmic hairy projections. Precise diagnosis is essential in order to differentiate classic forms from HCL variants, such as the HCL-variant and VH4-34 molecular variant, which are more resistant to available treatments. The current standard of care is treatment with purine analogs (PAs, such as cladribine or pentostatin, which provide a high rate of long-lasting clinical remissions. Nevertheless, ~30%–40% of the patients relapse, and moreover, some of these are difficult-to-treat refractory cases. The use of the monoclonal antibody rituximab in combination with PA appears to produce even higher responses, and it is often employed to minimize or eliminate residual disease. Currently, research in the field of HCL is focused on identifying novel therapeutic targets and potential agents that are safe and can universally cure the disease. The discovery of the BRAF mutation and progress in understanding the biology of the disease has enabled the scientific community to explore new therapeutic targets. Ongoing clinical trials are assessing various treatment strategies such as the combination of PA and anti-CD20 monoclonal antibodies, recombinant immunotoxins targeting CD22, BRAF inhibitors, and B-cell receptor signal inhibitors. Keywords: hairy cell leukemia, purine analogs, rituximab, immunotoxins, vemurafenib, ibrutinib

  1. Current Stem Cell Biomarkers and Their Functional Mechanisms in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Kaile Zhang

    2016-07-01

    Full Text Available Currently there is little effective treatment available for castration resistant prostate cancer, which is responsible for the majority of prostate cancer related deaths. Emerging evidence suggested that cancer stem cells might play an important role in resistance to traditional cancer therapies, and the studies of cancer stem cells (including specific isolation and targeting on those cells might benefit the discovery of novel treatment of prostate cancer, especially castration resistant disease. In this review, we summarized major biomarkers for prostate cancer stem cells, as well as their functional mechanisms and potential application in clinical diagnosis and treatment of patients.

  2. Effects of constant voltage and constant current stress in PCBM:P3HT solar cells

    DEFF Research Database (Denmark)

    Cester, Andrea; Rizzo, Aldo; Bazzega, A.

    2015-01-01

    The aimof this work is the investigation of forward and reverse bias stress effects, cell self-heating and annealing in roll coated organic solar cells with PCBM:P3HT active layer. In reverse bias stress cells show a constant degradation over time. In forward current stress cells alternate...... mechanisms: the decrease of the net generation rate (due to formation of exciton quenching centres or the reduction of exciton separation rate); the formation of small leaky paths between anode and cathode, which reduces the total current extracted from the cell. The stress-induced damage can be recovered...... degradation and annealing phases, which are explained through the high power dissipation during the current stress, and the consequent self-heating. The high temperature is able to recover the cell performances at least until a critical temperature is reached. The degradation can be explained by the following...

  3. The comprehensive electrophysiological study of curcuminoids on delayed-rectifier K+ currents in insulin-secreting cells.

    Science.gov (United States)

    Kuo, Ping-Chung; Yang, Chia-Jung; Lee, Yu-Chi; Chen, Pei-Chun; Liu, Yen-Chin; Wu, Sheng-Nan

    2018-01-15

    Curcumin (CUR) has been demonstrated to induce insulin release from pancreatic β-cells; however, how curcuminoids (including demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC)) exert any possible effects on membrane ion currents inherently in insulin-secreting cells remains largely unclear. The effects of CUR and other structurally similar curcuminoids on ion currents in rat insulin-secreting (INS-1) insulinoma cells were therefore investigated in this study. The effects of these compounds on ionic currents and membrane potential were studied by patch-clamp technique. CUR suppressed the amplitude of delayed-rectifier K + current (I K(DR) ) in a time-, state- and concentration-dependent manner in these cells and the inhibition was not reversed by diazoxide, nicorandil or chlorotoxin. The value of dissociation constant for CUR-induced suppression of I K(DR) in INS-1 cells was 1.26μM. Despite the inability of CUR to alter the activation rate of I K(DR) , it accelerated current inactivation elicited by membrane depolarization. Increasing CUR concentrations shifted the inactivation curve of I K(DR) to hyperpolarized potential and slowed the recovery of I K(DR) inactivation. CUR, DMC, and BDMC all exerted depressant actions on I K(DR) amplitude to a similar magnitude, although DMC and BDMC did not increase current inactivation clearly. CUR slightly suppressed the peak amplitude of voltage-gated Na + current. CUR, DMC and BDMC depolarized the resting potential and increased firing frequency of action potentials. The CUR-mediated decrease of I K(DR) and the increase of current inactivation also occurred in βTC-6 INS-1 cells. Taken these results together, these effects may be one of the possible mechanisms contributing their insulin-releasing effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Numerical study of induced current perturbations in the vicinity of excitable cells exposed to extremely low frequency magnetic fields

    International Nuclear Information System (INIS)

    Hassan, Noha; Chatterjee, Indira; Publicover, Nelson G; Craviso, Gale L

    2003-01-01

    Realistic three-dimensional cell morphologies were modelled to determine the current density induced in excitable cell culture preparations exposed to 60 Hz magnetic fields and to identify important factors that can influence the responses of cells to these fields. Cell morphologies representing single spherical adrenal chromaffin cells, single elongated smooth muscle cells and chromaffin cell aggregates in a Petri dish containing culture medium were modelled using the finite element method. The computations for a spherical cell revealed alterations in the magnitude and spatial distribution of the induced current density in the immediate vicinity of the cell. Maxima occurred at the equatorial sides and minima at the poles. Proximity of cells to each other as well as cell aggregate shape, size and orientation with respect to the induced current influenced the magnitude and spatial distribution of the induced current density. For an elongated cell, effects on the induced current density were highly dependent on cell orientation with respect to the direction of the induced current. These results provide novel insights into the perturbations in induced current that occur in excitable cell culture preparations and lay a foundation for understanding the mechanisms of interaction with extremely low frequency magnetic fields at the tissue level

  5. Osteoblastic cells trigger gate currents on nanocrystalline diamond transistor

    Czech Academy of Sciences Publication Activity Database

    Ižák, Tibor; Krátká, Marie; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 129, May (2015), 95-99 ISSN 0927-7765 R&D Projects: GA ČR GAP108/12/0996 Grant - others:AVČR(CZ) M100101209 Institutional support: RVO:68378271 Keywords : field-effect transistors * nanocrystalline diamond * osteoblastic cells * leakage currents Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.902, year: 2015

  6. New measurements in plutonium L X ray emission spectrum using an electron probe micro-analyser; Nouvelles mesures dans le spectre d'emission L du plutonium au moyen d'un micro analyseur a sonde electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bobin, J L; Despres, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-07-01

    Further studies by means of an electron-probe micro-analyser, allowed report CEA-R--1798 authors to set up a larger plutonium X ray spectrum table. Measurements of plutonium L{sub II} and L{sub III} levels excitation potentials have also been achieved. Some remarks about apparatus performance data (such as spectrograph sensibility, resolving power and accuracy) will be found in the appendix. (authors) [French] Poursuivant les etudes exposees dans le rapport CEA-R--1798, les auteurs ont pu dresser un tableau plus etendu du spectre L du plutonium, au moyen du micro-analyseur a sonde electronique. Ils ont egalement effectue des mesures de potentiel d'excitation des niveaux L{sub II} et L{sub III} du plutonium. On trouvera en annexe quelques notes sur les constantes d'appareillage (sensibilite, pouvoir de resolution et precision des spectrographes). (auteurs)

  7. Electrophysiological heterogeneity of pacemaker cells in the rabbit intercaval region, including the SA node: insights from recording multiple ion currents in each cell.

    Science.gov (United States)

    Monfredi, Oliver; Tsutsui, Kenta; Ziman, Bruce; Stern, Michael D; Lakatta, Edward G; Maltsev, Victor A

    2018-03-01

    Cardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts. The beating rate was measured at baseline and after inhibition of the Ca 2+ pump with cyclopiazonic acid. Thereafter, in each cell, we consecutively measured the density of funny current ( I f ), delayed rectifier K + current ( I K ) (a surrogate of repolarization capacity), and L-type Ca 2+ current ( I Ca,L ) using whole cell patch clamp . The ionic current densities varied to a greater extent than previously appreciated, with some IPCs demonstrating very small or zero I f . The density of none of the currents was correlated with cell size, while I Ca,L and I f densities were related to baseline beating rates. I f density was correlated with I K density but not with that of I Ca,L . Inhibition of Ca 2+ cycling had a greater beating rate slowing effect in IPCs with lower I f densities. Our numerical model simulation indicated that 1) IPCs with small (or zero) I f or small I Ca,L can operate via a major contribution of Ca 2+ clock, 2) I f -Ca 2+ -clock interplay could be important for robust pacemaking function, and 3) coupled I f - I K function could regulate maximum diastolic potential. Thus, we have demonstrated marked electrophysiological heterogeneity of IPCs. This heterogeneity is manifested in basal beating rate and response to interference of Ca 2+ cycling, which is linked to I f . NEW & NOTEWORTHY In the present study, a hitherto unrecognized range of heterogeneity of ion currents in pacemaker cells from the intercaval region is demonstrated

  8. Theoretical study of electronic transfer current rate at dye-sensitized solar cells

    Science.gov (United States)

    AL-Agealy, Hadi J. M.; AlMaadhede, Taif Saad; Hassooni, Mohsin A.; Sadoon, Abbas K.; Ashweik, Ahmed M.; Mahdi, Hind Abdlmajeed; Ghadhban, Rawnaq Qays

    2018-05-01

    In this research, we present a theoretical study of electronic transfer kinetics rate in N719/TiO2 and N719/ZnO dye-sensitized solar cells (DSSC) systems using a simple model depending on the postulate of quantum mechanics theory. The evaluation of the electronic transition current rate in DSSC systems are function of many parameters such that; the reorientation transition energies ΛSe m D y e , the transition coupling parameter ℂT(0), potential exponential effect e-(E/C-EF ) kBT , unit cell volume VSem, and temperature T. Furthermore, the analysis of electronic transfer current rate in N719/TiO2 and N719/ZnO systems show that the rate upon dye-sensitization solar cell increases with increases of transition coupling parameter, decreasing potential that building at interface a results of different material in this devices and increasing with reorientation transition energy. On the other hand, we can find the electronic transfer behavior is dependent of the dye absorption spectrum and mainly depending on the reorientation of transition energy. The replacement of the solvents in both DSSC system caused increasing of current rates dramatically depending on polarity of solvent in subset devices. This change in current rate of electron transfer were attributed to much more available of recombination sites introduced by the solvents medium. The electronic transfer current dynamics are shown to occurs in N719/TiO2 system faster many time compare to ocuures at N719/ZnO system, this indicate that TiO2 a is a good and active material compare with ZnO to using in dye sensitized solar cell devices. In contrast, the large current rate in N719/TiO2 comparing to ZnO of N719/ZnO systems indicate that using TiO2 with N719 dye lead to increasing the efficiency of DSSC.

  9. The effect of electrodeposition process parameters on the current density distribution in an electrochemical cell

    Directory of Open Access Journals (Sweden)

    R. M. STEVANOVIC

    2001-02-01

    Full Text Available Cell voltage – current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.

  10. The morphological and molecular changes of brain cells exposed to direct current electric field stimulation.

    Science.gov (United States)

    Pelletier, Simon J; Lagacé, Marie; St-Amour, Isabelle; Arsenault, Dany; Cisbani, Giulia; Chabrat, Audrey; Fecteau, Shirley; Lévesque, Martin; Cicchetti, Francesca

    2014-12-07

    The application of low-intensity direct current electric fields has been experimentally used in the clinic to treat a number of brain disorders, predominantly using transcranial direct current stimulation approaches. However, the cellular and molecular changes induced by such treatment remain largely unknown. Here, we tested various intensities of direct current electric fields (0, 25, 50, and 100V/m) in a well-controlled in vitro environment in order to investigate the responses of neurons, microglia, and astrocytes to this type of stimulation. This included morphological assessments of the cells, viability, as well as shape and fiber outgrowth relative to the orientation of the direct current electric field. We also undertook enzyme-linked immunosorbent assays and western immunoblotting to identify which molecular pathways were affected by direct current electric fields. In response to direct current electric field, neurons developed an elongated cell body shape with neurite outgrowth that was associated with a significant increase in growth associated protein-43. Fetal midbrain dopaminergic explants grown in a collagen gel matrix also showed a reorientation of their neurites towards the cathode. BV2 microglial cells adopted distinct morphological changes with an increase in cyclooxygenase-2 expression, but these were dependent on whether they had already been activated with lipopolysaccharide. Finally, astrocytes displayed elongated cell bodies with cellular filopodia that were oriented perpendicularly to the direct current electric field. We show that cells of the central nervous system can respond to direct current electric fields both in terms of their morphological shape and molecular expression of certain proteins, and this in turn can help us to begin understand the mechanisms underlying the clinical benefits of direct current electric field. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  11. Antipsychotics, chlorpromazine and haloperidol inhibit voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Shin, Hyewon; Song, Jin-Ho

    2014-09-05

    Microglial dysfunction and neuroinflammation are thought to contribute to the pathogenesis of schizophrenia. Some antipsychotic drugs have anti-inflammatory activity and can reduce the secretion of pro-inflammatory cytokines and reactive oxygen species from activated microglial cells. Voltage-gated proton channels on the microglial cells participate in the generation of reactive oxygen species and neuronal toxicity by supporting NADPH oxidase activity. In the present study, we examined the effects of two typical antipsychotics, chlorpromazine and haloperidol, on proton currents in microglial BV2 cells using the whole-cell patch clamp method. Chlorpromazine and haloperidol potently inhibited proton currents with IC50 values of 2.2 μM and 8.4 μM, respectively. Chlorpromazine and haloperidol are weak bases that can increase the intracellular pH, whereby they reduce the proton gradient and affect channel gating. Although the drugs caused a marginal positive shift of the activation voltage, they did not change the reversal potential. This suggested that proton current inhibition was not due to an alteration of the intracellular pH. Chlorpromazine and haloperidol are strong blockers of dopamine receptors. While dopamine itself did not affect proton currents, it also did not alter proton current inhibition by the two antipsychotics, indicating dopamine receptors are not likely to mediate the proton current inhibition. Given that proton channels are important for the production of reactive oxygen species and possibly pro-inflammatory cytokines, the anti-inflammatory and antipsychotic activities of chlorpromazine and haloperidol may be partly derived from their ability to inhibit microglial proton currents. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2013

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gikakis, Christina [Federal Transit Administration, Washington, DC (United States)

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results from August 2012 through July 2013 for five FCEB demonstrations at four transit agencies.

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chander, K.; Gikakis, C.

    2012-11-01

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The report also provides a snapshot of current FCEB performance results over the last year. There are 25 active FCEBs in demonstrations this year at eight locations.

  14. Presenilin-1 mutations alter K+ currents in the human neuroblastoma cell line, SH-SY5Y

    DEFF Research Database (Denmark)

    Plant, Leigh D; Boyle, John P; Thomas, Natasha M

    2002-01-01

    Mutations in presenilin 1 (PS1) are the major cause of autosomal dominant Alzheimer's disease. We have measured the voltage-gated K+ current in the human neuroblastoma cell line SH-SY5Y using whole-cell patch-clamp. When cells were stably transfected to over-express PS1, no change in K+ current...

  15. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  16. A graphite based STT-RAM cell with reduction in switching current

    Science.gov (United States)

    Varghani, Ali; Peiravi, Ali

    2015-10-01

    Spin Transfer Torque Random Access Memory (STT-RAM) is a serious candidate for "universal memory" because of its non-volatility, fast access time, high density, good scalability, high endurance and relatively low power dissipation. However, problems with low write speed and large write current are important existing challenges in STT-RAM design and there is a tradeoff between them and data retention time. In this study, a novel STT-RAM cell structure which uses perfect graphite based Magnetic Tunnel Junction (MTJ) is proposed. First, the cross-section of the structure is selected to be an ellipse of 45 nm and 180 nm dimensions and a six-layer graphite is used as tunnel barrier. By passing a lateral current with a short pulse width (before applying STT current and independent of it) through four middle graphene layers of the tunnel barrier, a 27% reduction in the amplitude of the switching current (for fast switching time of 2 ns) or a 58% reduction in its pulse width is achieved without any reduction in data retention time. Finally, the effect of downscaling of technology on the proposed structure is evaluated. A reduction of 31.6% and 9% in switching current is achieved for 90 and 22 nm cell width respectively by passing sufficient current (100 μA with 0.1 ns pulse width) through the tunnel barrier. Simulations are done using Object Oriented Micro Magnetic Framework (OOMMF).

  17. A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW

    Directory of Open Access Journals (Sweden)

    PREDRAG M. ŽIVKOVIĆ

    2011-06-01

    Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.

  18. Utilization of transmission probabilities in the calculation of unit-cell by the interface-current method

    International Nuclear Information System (INIS)

    Queiroz Bogado Leite, S. de.

    1989-10-01

    A widely used but otherwise physically incorrect assumption in unit-cell calculations by the method of interface currents in cylindrical or spherical geometries, is that of that of isotropic fluxes at the surfaces of the cell annular regions, when computing transmission probabilities. In this work, new interface-current relations are developed without making use of this assumption and the effects on calculated integral parameters are shown for an idealized unit-cell example. (author) [pt

  19. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.; Gikakis, C.

    2011-11-01

    This status report, fifth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory (NREL), discusses the achievements and challenges of fuel cell propulsion for transit and summarizes the introduction of fuel cell transit buses in the United States. Progress this year includes an increase in the number of fuel cell electric buses (FCEBs), from 15 to 25, operating at eight transit agencies, as well as increased diversity of the fuel cell design options for transit buses. The report also provides an analysis of the combined results from fuel cell transit bus demonstrations evaluated by NREL with a focus on the most recent data through July 2011 including fuel cell power system reliability and durability; fuel economy; roadcall; and hydrogen fueling results. These evaluations cover 22 of the 25 FCEBs currently operating.

  20. Influence of epoxy resin as encapsulation material of silicon photovoltaic cells on maximum current

    Directory of Open Access Journals (Sweden)

    Acevedo-Gómez David

    2017-01-01

    Full Text Available This work presents an analysis about how the performance of silicon photovoltaic cells is influenced by the use of epoxy resin as encapsulation material with flat roughness. The effect of encapsulation on current at maximum power of mono-crystalline cell was tested indoor in a solar simulator bench at 1000 w/m² and AM1.5G. The results show that implementation of flat roughness layer onto cell surface reduces the maximum current inducing on average 2.7% less power with respect to a cell before any encapsulation. The losses of power and, in consequence, the less production of energy are explained by resin light absorption, reflection and partially neutralization of non-reflective coating.

  1. Doppler HF Radar Application for the Study of Spatial Structure of Currents in the Black Sea

    Directory of Open Access Journals (Sweden)

    V.V. Gorbatskiy

    2017-06-01

    Full Text Available The results of the surface current spatial structure observations performed by SeaSonde Doppler HF radar (operating frequency is 25 MHz in the Black Sea region adjacent to the city of Gelendzhik are represented. The observations imply a special technique consisting in successive measurements at two selected points of the coastline. Initially, the measurements are carried out in the first of two selected coastal points during two hours. Then the radar system is transferred to the second point on the coast where the procedure is repeated. At that the velocity field is assumed to remain unchanged during the total measurement period (including the time of the radar displacement from both points. The measurement results are shown in a form of a spatial map of the current velocity vectors in the research region (with 20 × 20 km dimensions. Some features of the current spatial and temporal variability in the coastal waters are revealed. Particularly, the eddy-like formations (the diameter is a few kilometers which rapidly move and collapse. Since similar eddies are detected using the contact measurement methods, complex and variable structure of the surface currents measured by a radar does not seem to be an artifact. Nevertheless, reliability of the data resulted from the radar measurements of the surface current velocity field should be verified in future by comparing it with the results of the quasi-synchronous velocity field measurements performed by stationary, drifting and towed velocity meters.

  2. Exploring dark current voltage characteristics of micromorph silicon tandem cells with computer simulations

    NARCIS (Netherlands)

    Sturiale, A.; Li, H. B. T.; Rath, J.K.; Schropp, R.E.I.; Rubinelli, F.A.

    2009-01-01

    The transport mechanisms controlling the forward dark current-voltage characteristic of the silicon micromorph tandem solar cell were investigated with numerical modeling techniques. The dark current-voltage characteristics of the micromorph tandem structure at forward voltages show three regions:

  3. Current concepts of chemotherapy and radiotherapy for small cell lung cancer

    International Nuclear Information System (INIS)

    Braun, T.J.; Bunn, P.A. Jr.

    1986-01-01

    Small cell lung cancer (SCLC) was projected to account for 20%-25% of the greater than 140,000 newly diagnosed lung cancers in 1985. If considered a separate disease entity, it would be the fourth leading cause of death by cancer. Previous studies have demonstrated distinct clinical and biologic features of small cell lung cancer, and early therapeutic trial results have demonstrated a high sensitivity to both chemotherapy and radiotherapy. More recent results demonstrated a marked survival improvement with the use of combination chemotherapy, which potentially cured a small minority of patients. Unfortunately, in most patients, drug resistance usually develops, as do chronic, often debilitating toxicities in the few long-term survivors. Although therapeutic advances have plateaued, new and important insights into the basic biology of the disease made the last several years offer the possibility of exciting new treatment approaches within the next decade. This chapter addresses our current understanding of therapy for small cell lung cancer, the current therapy questions under investigation, and potential future directions in clinical research

  4. A Metabolic Biofuel Cell: Conversion of Human Leukocyte Metabolic Activity to Electrical Currents

    Directory of Open Access Journals (Sweden)

    Cui X Tracy

    2011-05-01

    Full Text Available Abstract An investigation of the electrochemical activity of human white blood cells (WBC for biofuel cell (BFC applications is described. WBCs isolated from whole human blood were suspended in PBS and introduced into the anode compartment of a proton exchange membrane (PEM fuel cell. The cathode compartment contained a 50 mM potassium ferricyanide solution. Average current densities between 0.9 and 1.6 μA cm-2 and open circuit potentials (Voc between 83 and 102 mV were obtained, which were both higher than control values. Cyclic voltammetry was used to investigate the electrochemical activity of the activated WBCs in an attempt to elucidate the mechanism of electron transfer between the cells and electrode. Voltammograms were obtained for the WBCs, including peripheral blood mononuclear cells (PBMCs - a lymphocyte-monocyte mixture isolated on a Ficoll gradient, a B lymphoblastoid cell line (BLCL, and two leukemia cell lines, namely K562 and Jurkat. An oxidation peak at about 363 mV vs. SCE for the PMA (phorbol ester activated primary cells, with a notable absence of a reduction peak was observed. Oxidation peaks were not observed for the BLCL, K562 or Jurkat cell lines. HPLC confirmed the release of serotonin (5-HT from the PMA activated primary cells. It is believed that serotonin, among other biochemical species released by the activated cells, contributes to the observed BFC currents.

  5. Current status of JAERI Tokai hot cell facilities

    International Nuclear Information System (INIS)

    Itami, Hiroharu; Morozumi, Minoru; Yamahara, Takeshi

    1992-01-01

    JAERI has 4 hot cell facilities in order to examine high radioactive materials. Three of them, the Research Hot Laboratory, the Reactor Fuel Examination Facility and the Waste Safety Testing Facility are located in the JAERI Tokai site, and the rest is the JMTR Hot Laboratory in the Oarai site. The Research Hot Laboratory (RHL) was constructed for post-irradiation examination (PIE), especially nuclear related basic research experiment, such as metallurgical, chemical and mechanical examination on fuels and materials irradiated in research and test reactors. This facility has 10 large dimension concrete and 38 lead cells. At present the RHL is used for various kinds of examinations of high radioactive samples such as fuels of research and test reactors, power reactors and high temperature testing reactor (HTTR), and structural materials. The Reactor Fuel Examination Facility (RFEF) was designed and constructed for carrying out PIE of irradiated full-size fuel assemblies of light water reactors (LWRs). This facility has a storage pool, 8 concrete and 5 lead cells. They are currently used for safety evaluation on high burnup and advanced lWR fuels as part of the national program. The Waste Safety Testing Facility (WASTEF) was designed and constructed for safety research on long-term storage and disposal of high level radioactive wastes, generated by fuel reprocessing. The WASTEF has 5 concrete cells and 1 lead cell. Examinations on the behavior of various long-lived fission products in a glass form and in a canister and, releasing behavior of them out of a canister are carrying out under the condition at storage. (author)

  6. Current-voltage characteristics of bulk heterojunction organic solar cells: connection between light and dark curves

    Energy Technology Data Exchange (ETDEWEB)

    Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)

    2011-11-15

    A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Islet cell transplant: Update on current clinical trials

    Science.gov (United States)

    Schuetz, Christian; Markmann, James F.

    2016-01-01

    In the last 15 years clinical islet transplantation has made the leap from experimental procedure to standard of care for a highly selective group of patients. Due to a risk-benefit calculation involving the required systemic immunosuppression the procedure is only considered in patients with type 1 diabetes, complicated by severe hypoglycemia or end stage renal disease. In this review we summarize current outcomes of the procedure and take a look at ongoing and future improvements and refinements of beta cell therapy. PMID:28451515

  8. Animal-cell culture media: History, characteristics, and current issues.

    Science.gov (United States)

    Yao, Tatsuma; Asayama, Yuta

    2017-04-01

    Cell culture technology has spread prolifically within a century, a variety of culture media has been designed. This review goes through the history, characteristics and current issues of animal-cell culture media. A literature search was performed on PubMed and Google Scholar between 1880 and May 2016 using appropriate keywords. At the dawn of cell culture technology, the major components of media were naturally derived products such as serum. The field then gradually shifted to the use of chemical-based synthetic media because naturally derived ingredients have their disadvantages such as large batch-to-batch variation. Today, industrially important cells can be cultured in synthetic media. Nevertheless, the combinations and concentrations of the components in these media remain to be optimized. In addition, serum-containing media are still in general use in the field of basic research. In the fields of assisted reproductive technologies and regenerative medicine, some of the medium components are naturally derived in nearly all instances. Further improvements of culture media are desirable, which will certainly contribute to a reduction in the experimental variation, enhance productivity among biopharmaceuticals, improve treatment outcomes of assisted reproductive technologies, and facilitate implementation and popularization of regenerative medicine.

  9. The effect of flavin electron shuttles in microbial fuel cells current production

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Orta, Sharon B. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Head, Ian M.; Curtis, Thomas P. [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Civil Engineering and Geosciences; Scott, Keith [Newcastle Univ., Newcastle upon Tyne (United Kingdom). School of Chemical Engineering and Advanced Materials; Lloyd, Jonathan R.; Canstein, Harald von [Manchester Univ. (United Kingdom). School of Earth, Atmospheric and Environmental Sciences

    2010-02-15

    The effect of electron shuttles on electron transfer to microbial fuel cell (MFC) anodes was studied in systems where direct contact with the anode was precluded. MFCs were inoculated with Shewanella cells, and flavins used as the electron shuttling compound. In MFCs with no added electron shuttles, flavin concentrations monitored in the MFCs' bulk liquid increased continuously with FMN as the predominant flavin. The maximum concentrations were 0.6 {mu}M for flavin mononucleotide and 0.2 {mu}M for riboflavin. In MFCs with added flavins, micro-molar concentrations were shown to increase current and power output. The peak current was at least four times higher in MFCs with high concentrations of flavins (4.5-5.5 {mu}M) than in MFCs with low concentrations (0.2-0.6 {mu}M). Although high power outputs (around 150 mW/m{sup 2}) were achieved in MFCs with high concentrations of flavins, a Clostridium-like bacterium along with other reactor limitations affected overall coulombic efficiencies (CE) obtained, achieving a maximum CE of 13%. Electron shuttle compounds (flavins) permitted bacteria to utilise a remote electron acceptor (anode) that was not accessible to the cells allowing current production until the electron donor (lactate) was consumed. (orig.)

  10. Semi-solid electrode cell having a porous current collector and methods of manufacture

    Science.gov (United States)

    Chiang, Yet-Ming; Carter, William Craig; Cross, III, James C.; Bazzarella, Ricardo; Ota, Naoki

    2017-11-21

    An electrochemical cell includes an anode, a semi-solid cathode, and a separator disposed therebetween. The semi-solid cathode includes a porous current collector and a suspension of an active material and a conductive material disposed in a non-aqueous liquid electrolyte. The porous current collector is at least partially disposed within the suspension such that the suspension substantially encapsulates the porous current collector.

  11. On the surface recombination current of metal-insulator semiconductor inversion layer solar cells

    DEFF Research Database (Denmark)

    Nielsen, Otto M.

    1981-01-01

    voltages Voc were found to be lower than for ~ cells. The measured differences in Voc were higher than expected from the dark characteristics which is explained as a difference in the surface recombination current due to a higher interface state density Nss of ~ cells. Journal of Applied Physics...

  12. Hematopoietic cell transplantation in Fanconi anemia: current evidence, challenges and recommendations.

    Science.gov (United States)

    Ebens, Christen L; MacMillan, Margaret L; Wagner, John E

    2017-01-01

    Hematopoietic cell transplantation for Fanconi Anemia (FA) has improved dramatically over the past 40 years. With an enhanced understanding of the intrinsic DNA-repair defect and pathophysiology of hematopoietic failure and leukemogenesis, sequential changes to conditioning and graft engineering have significantly improved the expectation of survival after allogeneic hematopoietic cell transplantation (alloHCT) with incidence of graft failure decreased from 35% to 40% to <10%. Today, five-year overall survival exceeds 90% in younger FA patients with bone marrow failure but remains about 50% in those with hematologic malignancy. Areas covered: We review the evolution of alloHCT contributing to decreased rates of transplant related complications; highlight current challenges including poorer outcomes in cases of clonal hematologic disorders, alloHCT impact on endocrine function and intrinsic FA risk of epithelial malignancies; and describe investigational therapies for prevention and treatment of the hematologic manifestations of FA. Expert commentary: Current methods allow for excellent survival following alloHCT for FA associated BMF irrespective of donor hematopoietic cell source. Alternative curative approaches, such as gene therapy, are being explored to eliminate the risks of GVHD and minimize therapy-related adverse effects.

  13. Estimation of the potential efficiency of a multijunction solar cell at a limit balance of photogenerated currents

    Energy Technology Data Exchange (ETDEWEB)

    Mintairov, M. A., E-mail: mamint@mail.ioffe.ru; Evstropov, V. V.; Mintairov, S. A.; Shvarts, M. Z.; Timoshina, N. Kh.; Kalyuzhnyy, N. A. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2015-05-15

    A method is proposed for estimating the potential efficiency which can be achieved in an initially unbalanced multijunction solar cell by the mutual convergence of photogenerated currents: to extract this current from a relatively narrow band-gap cell and to add it to a relatively wide-gap cell. It is already known that the properties facilitating relative convergence are inherent to such objects as bound excitons, quantum dots, donor-acceptor pairs, and others located in relatively wide-gap cells. In fact, the proposed method is reduced to the problem of obtaining such a required light current-voltage (I–V) characteristic which corresponds to the equality of all photogenerated short-circuit currents. Two methods for obtaining the required light I–V characteristic are used. The first one is selection of the spectral composition of the radiation incident on the multijunction solar cell from an illuminator. The second method is a double shift of the dark I–V characteristic: a current shift J{sub g} (common set photogenerated current) and a voltage shift (−J{sub g}R{sub s}), where R{sub s} is the series resistance. For the light and dark I–V characteristics, a general analytical expression is derived, which considers the effect of so-called luminescence coupling in multijunction solar cells. The experimental I–V characteristics are compared with the calculated ones for a three-junction InGaP/GaAs/Ge solar cell with R{sub s} = 0.019 Ω cm{sup 2} and a maximum factual efficiency of 36.9%. Its maximum potential efficiency is estimated as 41.2%.

  14. Voltage-dependent inward currents in smooth muscle cells of skeletal muscle arterioles

    Science.gov (United States)

    Shirokov, Roman E.

    2018-01-01

    Voltage-dependent inward currents responsible for the depolarizing phase of action potentials were characterized in smooth muscle cells of 4th order arterioles in mouse skeletal muscle. Currents through L-type Ca2+ channels were expected to be dominant; however, action potentials were not eliminated in nominally Ca2+-free bathing solution or by addition of L-type Ca2+ channel blocker nifedipine (10 μM). Instead, Na+ channel blocker tetrodotoxin (TTX, 1 μM) reduced the maximal velocity of the upstroke at low, but not at normal (2 mM), Ca2+ in the bath. The magnitude of TTX-sensitive currents recorded with 140 mM Na+ was about 20 pA/pF. TTX-sensitive currents decreased five-fold when Ca2+ increased from 2 to 10 mM. The currents reduced three-fold in the presence of 10 mM caffeine, but remained unaltered by 1 mM of isobutylmethylxanthine (IBMX). In addition to L-type Ca2+ currents (15 pA/pF in 20 mM Ca2+), we also found Ca2+ currents that are resistant to 10 μM nifedipine (5 pA/pF in 20 mM Ca2+). Based on their biophysical properties, these Ca2+ currents are likely to be through voltage-gated T-type Ca2+ channels. Our results suggest that Na+ and at least two types (T- and L-) of Ca2+ voltage-gated channels contribute to depolarization of smooth muscle cells in skeletal muscle arterioles. Voltage-gated Na+ channels appear to be under a tight control by Ca2+ signaling. PMID:29694371

  15. Modeling of Single Event Transients With Dual Double-Exponential Current Sources: Implications for Logic Cell Characterization

    Science.gov (United States)

    Black, Dolores A.; Robinson, William H.; Wilcox, Ian Z.; Limbrick, Daniel B.; Black, Jeffrey D.

    2015-08-01

    Single event effects (SEE) are a reliability concern for modern microelectronics. Bit corruptions can be caused by single event upsets (SEUs) in the storage cells or by sampling single event transients (SETs) from a logic path. An accurate prediction of soft error susceptibility from SETs requires good models to convert collected charge into compact descriptions of the current injection process. This paper describes a simple, yet effective, method to model the current waveform resulting from a charge collection event for SET circuit simulations. The model uses two double-exponential current sources in parallel, and the results illustrate why a conventional model based on one double-exponential source can be incomplete. A small set of logic cells with varying input conditions, drive strength, and output loading are simulated to extract the parameters for the dual double-exponential current sources. The parameters are based upon both the node capacitance and the restoring current (i.e., drive strength) of the logic cell.

  16. A mother cell-to-forespore channel: current understanding and future challenges.

    Science.gov (United States)

    Crawshaw, Adam D; Serrano, Mónica; Stanley, Will A; Henriques, Adriano O; Salgado, Paula S

    2014-09-01

    Formation of endospores allows some bacteria to survive extreme nutrient limitation. The resulting dormant cell, the spore, persists in the environment and is highly resistant to physical and chemical stresses. During spore formation, cells divide asymmetrically and the mother cell engulfs the developing spore, encasing it within a double membrane and isolating it from the medium. Communication between mother cell and isolated forespore involves a specialised connection system that allows nurturing of the forespore and continued macromolecular synthesis, required to finalise spore maturation. Here, we review current understanding of this feeding channel formed by a forespore protein, SpoIIQ, and a mother cell protein, SpoIIIAH, in the model organism Bacillus subtilis and the important human pathogen Clostridium difficile. We also analyse the presence of this channel across endospore-forming bacteria and highlight the main questions still remaining. © 2014 The Authors FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  17. Effects of gamma irradiation on voltage-dependant NA+ and K+ currents in N1E-115 cells

    International Nuclear Information System (INIS)

    Diserbo, M.; Barbier, M.; Quignard, J.F.

    1998-01-01

    Effects of 15 Gy gamma irradiation on voltage-dependent Na + and K + currents in differentiated N1E-115 cells are studied by using whole cell recording. Only, we observed an activation of Na + currents at a lower threshold. (authors)

  18. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells

    Science.gov (United States)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-11-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  19. Neutron radiography characterization of an operating proton exchange membrane fuel cell with localized current distribution measurements

    International Nuclear Information System (INIS)

    Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.

    2009-01-01

    Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.

  20. Effect of cosine current approximation in lattice cell calculations in cylindrical geometry

    International Nuclear Information System (INIS)

    Mohanakrishnan, P.

    1978-01-01

    It is found that one-dimensional cylindrical geometry reactor lattice cell calculations using cosine angular current approximation at spatial mesh interfaces give results surprisingly close to the results of accurate neutron transport calculations as well as experimental measurements. This is especially true for tight light water moderated lattices. Reasons for this close agreement are investigated here. By re-examining the effects of reflective and white cell boundary conditions in these calculations it is concluded that one major reason is the use of white boundary condition necessitated by the approximation of the two-dimensional reactor lattice cell by a one-dimensional one. (orig.) [de

  1. Defects influence on short circuit current density in p-i-n silicon solar cell

    International Nuclear Information System (INIS)

    Wagah F Mohamad; Alhan M Mustafa

    2006-01-01

    The admittance analysis method has been used to calculate the collection efficiency and the short circuit current density in a-Si:H p-i-n solar cell, as a function of the thickness of i-layer. Its is evident that the results of the short circuit current can be used to determine the optimal thickness of the i-layer of a cell, and it will be more accurate in comparison with the previous studies using a constant generation rate or an empirical exponential function for the generation of charge carriers throughout the i-layer

  2. Contribution to the study of molecular movements in cyclohexane by electron spin resonance and electron-nuclear double resonance using a radical probe; Contribution a l'etude des mouvements moleculaires dans le cyclohexane par resonance paramagnetique electronique et double resonance electronique-nucleaire a l'aide d'une sonde radicalaire

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Solutions of stable free radicals of the nitroxide type have been studied as a function of temperature. In the plastic or globular state, the cyclohexane molecules have rapid rotational and diffusional movements. They transmit this movement to dissolved free radicals. Conversely, measurements by electron spin resonance of the absolute movement of the radicals, and by electron nuclear double resonance of their movement relative to the cyclohexane molecules give very precise methods for local analyses of the movement present in the cyclohexane matrix. The principle of these techniques makes up the 'radical probe method'. (author) [French] Des solutions de radicaux libres stables, du type nitroxyde dans le cyclohexane ont ete etudiees, en fonction de la temperature. Les molecules de cyclohexane, dans l'etat plastique ou globulaire, sont animees de mouvements rapides de rotation sur elles-memes et de diffusion. Elles transmettent leur mobilite aux radicaux libres dissous. Reciproquement, la mesure du mouvement absolu des radicaux, a l'aide de la resonance paramagnetique electronique, et celle du mouvement relatif des radicaux et des molecules de cyclohexane par double resonance electronique-nucleaire, constituent des methodes tres precises pour analyser localement les mouvements presents dans la matrice de cyclohexane. Ce principe et ces techniques constituent la 'methode de la sonde radicalaire'. (auteur)

  3. Current collector design for closed-plenum polymer electrolyte membrane fuel cells

    Science.gov (United States)

    Daniels, F. A.; Attingre, C.; Kucernak, A. R.; Brett, D. J. L.

    2014-03-01

    This work presents a non-isothermal, single-phase, three-dimensional model of the effects of current collector geometry in a 5 cm2 closed-plenum polymer electrolyte membrane (PEM) fuel cell constructed using printed circuit boards (PCBs). Two geometries were considered in this study: parallel slot and circular hole designs. A computational fluid dynamics (CFD) package was used to account for species, momentum, charge and membrane water distribution within the cell for each design. The model shows that the cell can reach high current densities in the range of 0.8 A cm-2-1.2 A cm-2 at 0.45 V for both designs. The results indicate that the transport phenomena are significantly governed by the flow field plate design. A sensitivity analysis on the channel opening ratio shows that the parallel slot design with a 50% opening ratio shows the most promising performance due to better species, heat and charge distribution. Modelling and experimental analysis confirm that flooding inhibits performance, but the risk can be minimised by reducing the relative humidity of the cathode feed to 50%. Moreover, overheating is a potential problem due to the insulating effect of the PCB base layer and as such strategies should be implemented to combat its adverse effects.

  4. Electromagnetic particle in cell modeling of the plasma focus: Current sheath formation and lift off

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2014-01-01

    The shaping and formation of the current sheath takes place in the breakdown phase of a plasma focus device and critically controls the device performance. Electrostatic particle in cell codes, with magnetic effects ignored, have been used to model the breakdown phase. This Letter reports the successful development and implementation of an electromagnetic particle in cell (EMPIC) code, including magnetic effects self-consistently, to simulate the breakdown phase; from the ionization, localization and gliding discharge along the insulator to the time instant of current sheath lift off. The magnetic field was found to be appreciable from the time the current sheath came into contact with the anode with increased local current, initiating the voltage breakdown of the device as a result

  5. Robust low frequency current ripple elimination algorithm for grid-connected fuel cell systems with power balancing technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Soo; Choe, Gyu-Yeong; Lee, Byoung-Kuk [School of Information and Communication Engineering, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Kang, Hyun-Soo [R and D Center, Advanced Drive Technology (ADT) Company, 689-26 Geumjeong-dong, Gunpo-si, Gyeonggi-do 435-862 (Korea, Republic of)

    2011-05-15

    The low frequency current ripple in grid-connected fuel cell systems is generated from dc-ac inverter operation, which generates 60 Hz fundamental component, and gives harmful effects on fuel cell stack itself, such as making cathode surface responses slower, causing an increase of more than 10% in the fuel consumption, creating oxygen starvation, causing a reduction in the operating lifetime, and incurring a nuisance tripping such as overload situation. With these reasons, low frequency current ripple makes fuel cell system unstable and lifetime of fuel cell stack itself short. This paper presents a fast and robust control algorithm to eliminate low frequency current ripple in grid-connected fuel cell systems. Compared with the conventional methods, in the proposed control algorithm, dc link voltage controller is shifted from dc-dc converter to dc-ac inverter, resulting that dc-ac inverter handles dc link voltage control and output current control simultaneously with help of power balancing technique. The results indicate that the proposed algorithm can not only completely eliminate current ripple but also significantly reduce the overshoot or undershoot during transient states without any extra hardware. The validity of the proposed algorithm is verified by computer simulations and also by experiments with a 1 kW laboratory prototype. (author)

  6. Short-circuit current improvement in thin cells with a gridded back contact

    Science.gov (United States)

    Giuliano, M.; Wohlgemuth, J.

    1980-01-01

    The use of gridded back contact on thin silicon solar cells 50 micrometers was investigated. An unexpected increase in short circuit current of almost 10 percent was experienced for 2 cm x 2 cm cells. Control cells with the standard continuous contact metallization were fabricated at the same time as the gridded back cells with all processes identical up to the formation of the back contact. The gridded back contact pattern was delineated by evaporation of Ti-Pd over a photo-resist mask applied to the back of the wafer; the Ti-Pd film on the controls was applied in the standard fashion in a continuous layer over the back of the cell. The Ti-Pd contacts were similarly applied to the front of the wafer, and the grid pattern on both sides of the cell was electroplated with 8-10 micrometers of silver.

  7. Oligometastatic non-small-cell lung cancer: current treatment strategies

    Directory of Open Access Journals (Sweden)

    Richard PJ

    2016-11-01

    Full Text Available Patrick J Richard, Ramesh Rengan Department of Radiation Oncology, University of Washington, Seattle, WA, USA Abstract: The oligometastatic disease theory was initially described in 1995 by Hellman and Weichselbaum. Since then, much work has been performed to investigate its existence in many solid tumors. This has led to subclassifications of stage IV cancer, which could redefine our treatment approaches and the therapeutic outcomes for this historically “incurable” entity. With a high incidence of stage IV disease, non-small-cell lung cancer (NSCLC remains a difficult cancer to treat and cure. Recent work has proven the existence of an oligometastatic state in NSCLC in terms of properly selecting patients who may benefit from aggressive therapy and experience long-term overall survival. This review discusses the current treatment approaches used in oligometastatic NSCLC and provides the evidence and rationale for each approach. The prognostic factors of many trials are discussed, which can be used to properly select patients for aggressive treatment regimens. Future advances in both molecular profiling of NSCLC to find targetable mutations and investigating patient selection may increase the number of patients diagnosed with oligometastatic NSCLC. As this disease entity increases, it is of utmost importance for oncologists treating NSCLC to be aware of the current treatment strategies that exist and the potential advantages/disadvantages of each. Keywords: oligometastatic, non-small-cell lung cancer, oligoprogressive, treatment

  8. Current-Induced Transistor Sensorics with Electrogenic Cells

    Directory of Open Access Journals (Sweden)

    Peter Fromherz

    2016-04-01

    Full Text Available The concepts of transistor recording of electroactive cells are considered, when the response is determined by a current-induced voltage in the electrolyte due to cellular activity. The relationship to traditional transistor recording, with an interface-induced response due to interactions with the open gate oxide, is addressed. For the geometry of a cell-substrate junction, the theory of a planar core-coat conductor is described with a one-compartment approximation. The fast electrical relaxation of the junction and the slow change of ion concentrations are pointed out. On that basis, various recording situations are considered and documented by experiments. For voltage-gated ion channels under voltage clamp, the effects of a changing extracellular ion concentration and the enhancement/depletion of ion conductances in the adherent membrane are addressed. Inhomogeneous ion conductances are crucial for transistor recording of neuronal action potentials. For a propagating action potential, the effects of an axon-substrate junction and the surrounding volume conductor are distinguished. Finally, a receptor-transistor-sensor is described, where the inhomogeneity of a ligand–activated ion conductance is achieved by diffusion of the agonist and inactivation of the conductance. Problems with regard to a development of reliable biosensors are mentioned.

  9. Tropospheric ozone observations - How well can we assess tropospheric ozone changes?

    Science.gov (United States)

    Tarasick, D. W.; Galbally, I. E.; Ancellet, G.; Leblanc, T.; Wallington, T. J.; Ziemke, J. R.; Steinbacher, M.; Stähelin, J.; Vigouroux, C.; Hannigan, J. W.; García, O. E.; Foret, G.; Zanis, P.; Liu, X.; Weatherhead, E. C.; Petropavlovskikh, I. V.; Worden, H. M.; Osman, M.; Liu, J.; Lin, M.; Cooper, O. R.; Schultz, M. G.; Granados-Muñoz, M. J.; Thompson, A. M.; Cuesta, J.; Dufour, G.; Thouret, V.; Hassler, B.; Trickl, T.

    2017-12-01

    Since the early 20th century, measurements of ozone in the free troposphere have evolved and changed. Data records have different uncertainties and biases, and differ with respect to coverage, information content, and representativeness. Almost all validation studies employ ECC ozonesondes. These have been compared to UV-absorption measurements in a number of intercomparison studies, and show a modest ( 1-5%) high bias in the troposphere, with an uncertainty of 5%, but no evidence of a change over time. Umkehr, lidar, FTIR, and commercial aircraft all show modest low biases relative to the ECCs, and so -- if the ECC biases are transferable -- all agree within 1σ with the modern UV standard. Relative to the UV standard, Brewer-Mast sondes show a 20% increase in sensitivity from 1970-1995, while Japanese KC sondes show an increase of 5-10%. Combined with the shift of the global ozonesonde network to ECCs, this can induce a false positive trend, in analyses based on sonde data. Passive sounding methods -- Umkehr, FTIR and satellites -- have much lower vertical resolution than active methods, and this can limit the attribution of trends. Satellite biases are larger than those of other measurement systems, ranging between -10% and +20%, and standard deviations are large: about 10-30%, versus 5-10% for sondes, aircraft, lidar and ground-based FTIR. There is currently little information on measurement drift for satellite measurements of tropospheric ozone. This is an evident area of concern if satellite retrievals are used for trend studies. The importance of ECC sondes as a transfer standard for satellite validation means that efforts to homogenize existing records, by correcting for known changes and by adopting strict standard operating procedures, should continue, and additional research effort should be put into understanding and reducing sonde uncertainties. Representativeness is also a potential source of large errors, which are difficult to quantify. The global

  10. Fault Detection and Diagnosis In Hall-Héroult Cells Based on Individual Anode Current Measurements Using Dynamic Kernel PCA

    Science.gov (United States)

    Yao, Yuchen; Bao, Jie; Skyllas-Kazacos, Maria; Welch, Barry J.; Akhmetov, Sergey

    2018-04-01

    Individual anode current signals in aluminum reduction cells provide localized cell conditions in the vicinity of each anode, which contain more information than the conventionally measured cell voltage and line current. One common use of this measurement is to identify process faults that can cause significant changes in the anode current signals. While this method is simple and direct, it ignores the interactions between anode currents and other important process variables. This paper presents an approach that applies multivariate statistical analysis techniques to individual anode currents and other process operating data, for the detection and diagnosis of local process abnormalities in aluminum reduction cells. Specifically, since the Hall-Héroult process is time-varying with its process variables dynamically and nonlinearly correlated, dynamic kernel principal component analysis with moving windows is used. The cell is discretized into a number of subsystems, with each subsystem representing one anode and cell conditions in its vicinity. The fault associated with each subsystem is identified based on multivariate statistical control charts. The results show that the proposed approach is able to not only effectively pinpoint the problematic areas in the cell, but also assess the effect of the fault on different parts of the cell.

  11. NO involvement in the inhibition of ghrelin on voltage-dependent potassium currents in rat hippocampal cells.

    Science.gov (United States)

    Lu, Yong; Dang, Shaokang; Wang, Xu; Zhang, Junli; Zhang, Lin; Su, Qian; Zhang, Huiping; Lin, Tianwei; Zhang, Xiaoxiao; Zhang, Yurong; Sun, Hongli; Zhu, Zhongliang; Li, Hui

    2018-01-01

    Ghrelin is a peptide hormone that plays an important role in promoting appetite, regulating distribution and rate of use of energy, cognition, and mood disorders, but the relevant neural mechanisms of these function are still not clear. In this study, we examined the effect of ghrelin on voltage-dependent potassium (K + ) currents in hippocampal cells of 1-3 days SD rats by whole-cell patch-clamp technique, and discussed whether NO was involved in this process. The results showed that ghrelin significantly inhibited the voltage-dependent K + currents in hippocampal cells, and the inhibitory effect was more significant when l-arginine was co-administered. In contrast, N-nitro- l-arginine methyl ester increased the ghrelin inhibited K + currents and attenuated the inhibitory effect of ghrelin. While d-arginine (D-AA) showed no significant impact on the ghrelin-induced decrease in K + current. These results show that ghrelin may play a physiological role by inhibiting hippocampal voltage dependent K + currents, and the NO pathway may be involved in this process. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Analytical Model for Voltage-Dependent Photo and Dark Currents in Bulk Heterojunction Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Mesbahus Saleheen

    2016-05-01

    Full Text Available A physics-based explicit mathematical model for the external voltage-dependent forward dark current in bulk heterojunction (BHJ organic solar cells is developed by considering Shockley-Read-Hall (SRH recombination and solving the continuity equations for both electrons and holes. An analytical model for the external voltage-dependent photocurrent in BHJ organic solar cells is also proposed by incorporating exponential photon absorption, dissociation efficiency of bound electron-hole pairs (EHPs, carrier trapping, and carrier drift and diffusion in the photon absorption layer. Modified Braun’s model is used to compute the electric field-dependent dissociation efficiency of the bound EHPs. The overall net current is calculated considering the actual solar spectrum. The mathematical models are verified by comparing the model calculations with various published experimental results. We analyze the effects of the contact properties, blend compositions, charge carrier transport properties (carrier mobility and lifetime, and cell design on the current-voltage characteristics. The power conversion efficiency of BHJ organic solar cells mostly depends on electron transport properties of the acceptor layer. The results of this paper indicate that improvement of charge carrier transport (both mobility and lifetime and dissociation of bound EHPs in organic blend are critically important to increase the power conversion efficiency of the BHJ solar cells.

  13. Bradykinin induced a positive chronotropic effect via stimulation of T- and L-type calcium currents in heart cells.

    Science.gov (United States)

    El-Bizri, Nesrine; Bkaily, Ghassan; Wang, Shimin; Jacques, Danielle; Regoli, Domenico; D'Orléans-Juste, Pedro; Sukarieh, Rami

    2003-03-01

    Using Fluo-3 calcium dye confocal microscopy and spontaneously contracting embryonic chick heart cells, bradykinin (10(-10) M) was found to induce positive chronotropic effects by increasing the frequency of the transient increase of cytosolic and nuclear free Ca2+. Pretreatment of the cells with either B1 or B2 receptor antagonists (R126 and R817, respectively) completely prevented bradykinin (BK) induced positive chronotropic effects on spontaneously contracting single heart cells. Using the whole-cell voltage clamp technique and ionic substitution to separate the different ionic current species, our results showed that BK (10(-6) M) had no effect on fast Na+ inward current and delayed outward potassium current. However, both L- and T-type Ca2+ currents were found to be increased by BK in a dose-dependent manner (10(-10)-10(-7) M). The effects of BK on T- and L-type Ca2+ currents were partially blocked by the B1 receptor antagonist [Leu8]des-Arg9-BK (R592) (10(-7) M) and completely reversed by the B2 receptor antagonist D-Arg[Hyp3,D-Phe7,Leu8]BK (R-588) (10(-7) M) or pretreatment with pertussis toxin (PTX). These results demonstrate that BK induced a positive chronotropic effect via stimulation of T- and L-type Ca2+ currents in heart cells mainly via stimulation of B2 receptor coupled to PTX-sensitive G-proteins. The increase of both types of Ca2+ current by BK in heart cells may explain the positive inotropic and chronotropic effects of this hormone.

  14. Comparative characteristic of transmembrane currents and caffeine-induced responses of intact and irradiated small intestine smooth muscle cells

    International Nuclear Information System (INIS)

    Stepanov, Yu.V.; Gordienko, D.V.; Preobrazhenskaya, T.D.; Stepanova, L.I.; Vojtsitskij, V.M.

    1994-01-01

    A comparative investigation of transmembrane ion currents and caffeine-induced responses of single smooth muscle cells isolated from the circular layer of rat small intestine was curried out by the method of 'patch-clamp'. No reliable difference in potential-dependent and amplitude-kinetic characteristics of transmembrane ion currents in cells of intact and irradiated with dose of 3 Gy rats was revealed. In cells of irradiated animals external application of caffeine (4 mM) was not accompanied by strong quick-inactivated transient Ca 2+ -dependent potassium current as in control

  15. Achievement report for fiscal 2000 on New Sunshine Project aiding program. Development of hot water utilizing power generation plant (Development of binary cycle power plant - development of system to detect well bottom information during geothermal well drilling); 2000 nendo nessui riyo hatsuden plant to kaihatsu seika hokokusho. Binary cycle hatsuden plant no kaihatsu (Chinetsusei kussakuji koutei joho kenchi system no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D has been performed on a system to detect well bottom information during geothermal well drilling (MWD) to identify items of well bottom information during drilling on a real time basis. This paper summarizes the achievements in fiscal 2000. This device measures and transmits to the ground surface the following items during geothermal well drilling at good accuracy under the mud water temperature of 200 degrees C: azimuth, inclination, tool face, bit load, bit torque, temperatures in the device, downhole temperature, and downhole pressure. The current fiscal year has performed improvement of the sonde, including decrease of the sonde length, electric power conservation, enhancement of anti-noise performance, and enhancement of operability. For the sonde performance evaluation, high-temperature test, long distance loop test, and vibration test were carried out. In addition, the experiment analyzing program (for noise processing) was improved. With regard to the well trajectory control aiding system and the well evaluation aiding system, an operation manual was prepared, entitled the 'MWD analyzing system'. Unification was attempted on the hardware of the ground surface detection device system and the analyzing system. (NEDO)

  16. Alternating current electric field effects on neural stem cell viability and differentiation.

    Science.gov (United States)

    Matos, Marvi A; Cicerone, Marcus T

    2010-01-01

    Methods utilizing stem cells hold tremendous promise for tissue engineering applications; however, many issues must be worked out before these therapies can be routinely applied. Utilization of external cues for preimplantation expansion and differentiation offers a potentially viable approach to the use of stem cells in tissue engineering. The studies reported here focus on the response of murine neural stem cells encapsulated in alginate hydrogel beads to alternating current electric fields. Cell viability and differentiation was studied as a function of electric field magnitude and frequency. We applied fields of frequency (0.1-10) Hz, and found a marked peak in neural stem cell viability under oscillatory electric fields with a frequency of 1 Hz. We also found an enhanced propensity for astrocyte differentiation over neuronal differentiation in the 1 Hz cultures, as compared to the other field frequencies we studied. Published 2010 American Institute of Chemical Engineers

  17. A segmented cell approach for studying the effects of serpentine flow field parameters on PEMFC current distribution

    International Nuclear Information System (INIS)

    Reshetenko, Tatyana V.; Bender, Guido; Bethune, Keith; Rocheleau, Richard

    2013-01-01

    Highlights: ► Effects of a flow field design on PEMFC were investigated. ► A segmented cell was used to study 6- and 10-channel serpentine flow fields. ► 10-Channel flow field improved a fuel cell's performance at high current. ► Performance distribution was more uniform for 10-channel than for 6-channel flow field. ► The performance improvement was due to an increased pressure drop. -- Abstract: A serpentine flow field is a commonly used design in proton exchange membrane fuel cells (PEMFCs). Consequently, optimization of the flow field parameters is critically needed. A segmented cell system was used to study the impact of the flow field's parameters on the current distribution in a PEMFC, and the data obtained were analyzed in terms of voltage overpotentials. 6-Channel and 10-channel serpentine flow field designs were investigated. At low current the segments performance was found to slightly decrease for a 10-channel serpentine flow field. However, increasing the number of channels increased the fuel cell performance when operating at high current and the cell performance became more uniform downstream. The observed improvement in fuel cell performance was attributed to a decrease in mass transfer voltage losses (permeability and diffusion), due to an increased pressure drop. Spatially distributed electrochemical impedance spectroscopy (EIS) data showed differences in the local segment impedance response and confirmed the performance distribution and the impact of the flow field design

  18. Simultaneous measurement of current and temperature distributions in a proton exchange membrane fuel cell during cold start processes

    International Nuclear Information System (INIS)

    Jiao Kui; Alaefour, Ibrahim E.; Karimi, Gholamreza; Li Xianguo

    2011-01-01

    Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.

  19. Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements – A parametric study

    International Nuclear Information System (INIS)

    Alaefour, Ibrahim; Karimi, G.; Jiao, Kui; Li, X.

    2012-01-01

    Highlights: ► Spatial local current distributions in a single PEMFC are measured. ► Effects of key operating conditions on the local current density are investigated. ► Increasing air and hydrogen stoichiometries improves local current density distributions. ► Operating pressure and temperature have negligible impact on local current distribution. - Abstract: Understanding of current distributions in proton exchange membrane fuel cells (PEMFCs) is crucial for designing cell components such as the flow field plates and the membrane electrode assembly (MEA). In this study, the spatial current density distributions in a single PEMFC with three serpentine flow channels are measured using a segmented bipolar plate and printed circuit board technique. The effects of key operating conditions such as stoichiometry ratios, inlet humidity levels, cell pressure and temperature on the local current density distributions for co-, counter-, and cross-flow arrangements are examined. It is observed that the local current density distribution over the MEA is directly affected by the cell operating conditions along with the configuration of the flow arrangement. It is also found that among the different flow configurations tested under the various operating conditions, the counter flow arrangement provides the optimum average current density and the lowest variations in the local current densities along the flow channels.

  20. Contribution to the study of molecular movements in cyclohexane by electron spin resonance and electron-nuclear double resonance using a radical probe; Contribution a l'etude des mouvements moleculaires dans le cyclohexane par resonance paramagnetique electronique et double resonance electronique-nucleaire a l'aide d'une sonde radicalaire

    Energy Technology Data Exchange (ETDEWEB)

    Volino, F. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    Solutions of stable free radicals of the nitroxide type have been studied as a function of temperature. In the plastic or globular state, the cyclohexane molecules have rapid rotational and diffusional movements. They transmit this movement to dissolved free radicals. Conversely, measurements by electron spin resonance of the absolute movement of the radicals, and by electron nuclear double resonance of their movement relative to the cyclohexane molecules give very precise methods for local analyses of the movement present in the cyclohexane matrix. The principle of these techniques makes up the 'radical probe method'. (author) [French] Des solutions de radicaux libres stables, du type nitroxyde dans le cyclohexane ont ete etudiees, en fonction de la temperature. Les molecules de cyclohexane, dans l'etat plastique ou globulaire, sont animees de mouvements rapides de rotation sur elles-memes et de diffusion. Elles transmettent leur mobilite aux radicaux libres dissous. Reciproquement, la mesure du mouvement absolu des radicaux, a l'aide de la resonance paramagnetique electronique, et celle du mouvement relatif des radicaux et des molecules de cyclohexane par double resonance electronique-nucleaire, constituent des methodes tres precises pour analyser localement les mouvements presents dans la matrice de cyclohexane. Ce principe et ces techniques constituent la 'methode de la sonde radicalaire'. (auteur)

  1. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    Science.gov (United States)

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  2. Landscape of current and emerging cell therapy clinical trials in the UK: current status, comparison to global trends and future perspectives.

    Science.gov (United States)

    Bisson, Isabelle; Green, Emma; Sharpe, Michaela; Herbert, Chris; Hyllner, Johan; Mount, Natalie

    2015-01-01

    Cell Therapy Clinical Trial and Preclinical Research databases have been established by the Cell Therapy Catapult to document current and future cell therapy clinical trials in the UK. We identified 41 ongoing trials in April 2014, an increase of seven trials from April 2013. In addition, we identified 45 late-stage preclinical research projects. The majority of the clinical trials are early phase, primarily led by academic groups. The leading therapeutic areas are cancer, cardiology and neurology. The trends in the UK are also seen globally. As the field matures, more later phase and commercial studies will emerge and the challenges will likely evolve into how to manufacture sufficient cell quantities, manage complex logistics for multi-center trials and control cost.

  3. Current distribution evaluation of dye-sensitized solar cell using HTS-SQUID-based magnetic measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji

    2016-11-15

    Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.

  4. Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles

    Directory of Open Access Journals (Sweden)

    Alejandro Mendez

    2014-07-01

    Full Text Available Autonomous Underwater Vehicles (AUVs are vehicles that are primarily used to accomplish oceanographic research data collection and auxiliary offshore tasks. At the present time, they are usually powered by lithium-ion secondary batteries, which have insufficient specific energies. In order for this technology to achieve a mature state, increased endurance is required. Fuel cell power systems have been identified as an effective means to achieve this endurance but no implementation in a commercial device has yet been realized. This paper summarizes the current state of development of the technology in this field of research. First, the most adequate type of fuel cell for this application is discussed. The prototypes and design concepts of AUVs powered by fuel cells which have been developed in the last few years are described. Possible commercial and experimental fuel cell stack options are analyzed, examining solutions adopted in the analogous aerial vehicle applications, as well as the underwater ones, to see if integration in an AUV is feasible. Current solutions in oxygen and hydrogen storage systems are overviewed and energy density is objectively compared between battery power systems and fuel cell power systems for AUVs. A couple of system configuration solutions are described including the necessary lithium-ion battery hybrid system. Finally, some closing remarks on the future of this technology are given.

  5. Purification of Proteins From Cell-Culture Medium or Cell-Lysate by High-Speed Counter-Current Chromatography Using Cross-Axis Coil Planet Centrifuge

    Science.gov (United States)

    Shibusawa, Yoichi; Ito, Yoichiro

    2014-01-01

    This review describes protein purifications from cell culture medium or cell-lysate by high speed counter-current chromatography using the cross-axis coil planet centrifuge. Purifications were performed using aqueous two phase systems composed of polyethylene glycols and dextrans. PMID:25360182

  6. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    Science.gov (United States)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  7. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Zhengqi Shi

    2017-12-01

    Full Text Available Commercial solar cells have a power conversion efficiency (PCE in the range of 10–22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contacts and active interfacial layer in solar cell fabrication. In this review, the current progress of this research is analyzed, starting from the graphene and graphene-based Schottky diode. Also, the discussion was focused on the progress of graphene-incorporated thin film solar cells that were fabricated with different light absorbers, in particular, the synthesis, fabrication, and characterization of devices. The effect of doping and layer thickness of graphene on PCE was also included. Currently, the PCE of graphene-incorporated bulk-heterojunction devices have enhanced in the range of 0.5–3%. However, device durability and cost-effectiveness are also the challenging factors for commercial production of graphene-incorporated solar cells. In addition to the application of graphene, graphene oxides have been also used in perovskite solar cells. The current needs and likely future investigations for graphene-incorporated solar cells are also discussed.

  8. Sodium leak channel, non-selective contributes to the leak current in human myometrial smooth muscle cells from pregnant women.

    Science.gov (United States)

    Reinl, Erin L; Cabeza, Rafael; Gregory, Ismail A; Cahill, Alison G; England, Sarah K

    2015-10-01

    Uterine contractions are tightly regulated by the electrical activity of myometrial smooth muscle cells (MSMCs). These cells require a depolarizing current to initiate Ca(2+) influx and induce contraction. Cationic leak channels, which permit a steady flow of cations into a cell, are known to cause membrane depolarization in many tissue types. Previously, a Gd(3+)-sensitive, Na(+)-dependent leak current was identified in the rat myometrium, but the presence of such a current in human MSMCs and the specific ion channel conducting this current was unknown. Here, we report the presence of a Na(+)-dependent leak current in human myometrium and demonstrate that the Na(+)-leak channel, NALCN, contributes to this current. We performed whole-cell voltage-clamp on fresh and cultured MSMCs from uterine biopsies of term, non-laboring women and isolated the leak currents by using Ca(2+) and K(+) channel blockers in the bath solution. Ohmic leak currents were identified in freshly isolated and cultured MSMCs with normalized conductances of 14.6 pS/pF and 10.0 pS/pF, respectively. The myometrial leak current was significantly reduced (P < 0.01) by treating cells with 10 μM Gd(3+) or by superfusing the cells with a Na(+)-free extracellular solution. Reverse transcriptase PCR and immunoblot analysis of uterine biopsies from term, non-laboring women revealed NALCN messenger RNA and protein expression in the myometrium. Notably, ∼90% knockdown of NALCN protein expression with lentivirus-delivered shRNA reduced the Gd(3+)-sensitive leak current density by 42% (P < 0.05). Our results reveal that NALCN, in part, generates the leak current in MSMCs and provide the basis for future research assessing NALCN as a potential molecular target for modulating uterine excitability. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Volcanic-aerosol-induced changes in stratospheric ozone following the eruption of Mount Pinatubo

    Science.gov (United States)

    Grant, W. B.; Browell, E. V.; Fishman, J.; Brackett, V. G.; Fenn, M. A.; Butler, C. F.; Nganga, D.; Minga, A.; Cros, B.; Mayor, S. D.

    1994-01-01

    Measurements of lower stratospheric ozone in the Tropics using electrochemical concentrations cell (ECC) sondes and the airborne UV Differential Absorption Lidar (DIAL) system after the eruption of Mt. Pinatubo are compared with the Stratospheric Aerosol and Gas Experiment 2 (SAGE 2) and ECC sonde measurements from below the eruption to determine what changes have occurred as a result. Aerosol data from the Advanced Very High Resolution Radiometer (AVHRR) and the visible and IR wavelengths of the lidar system are used to examine the relationship between aerosols and ozone changes. Ozone decreases of 30 percent at altitudes between 19 and 26 km, partial column (16-28 km) decreases of about 27 D.U., and slight increases (5.4 D.U.) between 28 and 31 km are found in comparison with SAGE 2 climatological values.

  10. Investigation of the double exponential in the current-voltage characteristics of silicon solar cells

    Science.gov (United States)

    Wolf, M.; Noel, G. T.; Stirn, R. J.

    1976-01-01

    A theoretical analysis is presented of certain peculiarities of the current-voltage characteristics of silicon solar cells, involving high values of the empirical constant A in the diode equation for a p-n junction. An attempt was made in a lab experiment to demonstrate that the saturation current which is associated with the exponential term qV/A2kT of the I-V characteristic, with A2 roughly equal to 2, originates in the space charge region and that it can be increased, as observed on ATS-1 cells, by the introduction of additional defects through low energy proton irradiation. It was shown that the proton irradiation introduces defects into the space charge region which give rise to a recombination current from this region, although the I-V characteristic is, in this case, dominated by an exponential term which has A = 1.

  11. Hairy cell leukemia: current concepts.

    Science.gov (United States)

    Cannon, Timothy; Mobarek, Dalia; Wegge, Julia; Tabbara, Imad A

    2008-10-01

    Hairy cell Leukemia (HCL) is a chronic lymphoproliferative disorder that was characterized in the late 1950s. HCL is defined, according to the WHO classification, as a mature (peripheral) B-cell neoplasm (1). HCL accounts for between 2-3% of all leukemia cases, with about 600 new cases diagnosed in the U.S. each year (1). HCL occurs more commonly in males, with an overall male to female ratio of approximately 4:1. The median age of onset is 52 years. This disease is seen more commonly in Caucasians and appears to be especially frequent in Ashkenazi Jewish males, with rare occurrence in persons of Asian and African descents (1). Hairy cells are distinct, clonal B cells arrested at a late stage of maturation. They are small B lymphoid cells that possess oval nuclei and abundant cytoplasm with characteristic micro-filamentous ("hairy") projections. They strongly express CD103, CD22, and CD11c (2). These cells typically infiltrate the bone marrow, the spleen, and to a lesser extent the liver, lymph nodes, and skin. Many patients present with splenomegaly and pancytopenia. Other clinical manifestations include recurrent opportunistic infections and vasculitis. Historically, HCL was considered uniformly fatal (2). However, recent treatment advances, using purine analogues such as Cladribine and Pentostatin, led to a significant improvement in prognosis with achievement of high response rates and durable remissions (2).

  12. Subcell Light Current-Voltage Characterization of Irradiated Multijunction Solar Cell

    Directory of Open Access Journals (Sweden)

    Walker Don

    2017-01-01

    Full Text Available The degradation of individual subcell J-V parameters, such as short circuit current, open circuit voltage, fill factor, and power of a GaInP/GaInAs/Ge triple junction solar cell by 1 MeV electrons were derived utilizing the spectral reciprocity relation between electroluminescence and external quantum efficiency. After exposure to a fluence of 1 × 1015 1 MeV electrons, it was observed that up to 67% of the voltage loss is from the middle, GaInAs subcell. Also, the dark saturation current of the Ge and GaInAs subcells increased but a simultaneous decrease in ideality factor caused a reduction of the open circuit voltage. The reduced ideality factor further indicates a change in the primary recombination mechanism.

  13. Current Smoking Dose-Dependently Associated with Decreased β-Cell Function in Chinese Men without Diabetes

    Directory of Open Access Journals (Sweden)

    Chun Wang

    2015-01-01

    Full Text Available The aim of this study was to evaluate the associations between chronic smoking and insulin resistance and β-cell function in Chinese men without diabetes. A total of 1,568 participants were recruited by multistage sampling. Using homeostatic model assessment (HOMA, geometric means of insulin resistance (HOMA-IR and β-cell function (HOMA-β with 95% confidence interval (CI were calculated by general linear model. Odds ratios (ORs with 95% CI were estimated to evaluate the associations between smoking status and insulin resistance and β-cell deficiency under a logistic regression model. Current smokers had higher levels of 2 h glucose (6.66 versus 6.48 mmol/L for oral glucose tolerance test and lower levels of fasting insulin (5.68 versus 6.03 mU/L than never smokers. The adjusted means for HOMA-β (% were 54.86 in current smokers and 58.81 in never smokers (P=0.0257. Current smoking was associated with β-cell deficiency (OR 1.29, 95% CI 1.01–1.64 compared to never smoking. The β-cell function gradually decreased with increasing smoking intensity (Ptrend=0.0026, and the differences were statistically significant when the pack-year of smoking was 20 or above. No association was observed between smoking status and HOMA-IR. Our study suggested that chronic smoking may dose-dependently suppress insulin secretion in Chinese men.

  14. Adenosine A₂A receptors inhibit delayed rectifier potassium currents and cell differentiation in primary purified oligodendrocyte cultures.

    Science.gov (United States)

    Coppi, Elisabetta; Cellai, Lucrezia; Maraula, Giovanna; Pugliese, Anna Maria; Pedata, Felicita

    2013-10-01

    Oligodendrocyte progenitor cells (OPCs) are a population of cycling cells which persist in the adult central nervous system (CNS) where, under opportune stimuli, they differentiate into mature myelinating oligodendrocytes. Adenosine A(2A) receptors are Gs-coupled P1 purinergic receptors which are widely distributed throughout the CNS. It has been demonstrated that OPCs express A(2A) receptors, but their functional role in these cells remains elusive. Oligodendrocytes express distinct voltage-gated ion channels depending on their maturation. Here, by electrophysiological recordings coupled with immunocytochemical labeling, we studied the effects of adenosine A(2A) receptors on membrane currents and differentiation of purified primary OPCs isolated from the rat cortex. We found that the selective A(2A) agonist, CGS21680, inhibits sustained, delayed rectifier, K(+) currents (I(K)) without modifying transient (I(A)) conductances. The effect was observed in all cells tested, independently from time in culture. CGS21680 inhibition of I(K) current was concentration-dependent (10-200 nM) and blocked in the presence of the selective A(2A) antagonist SCH58261 (100 nM). It is known that I(K) currents play an important role during OPC development since their block decreases cell proliferation and differentiation. In light of these data, our further aim was to investigate whether A(2A) receptors modulate these processes. CGS21680, applied at 100 nM in the culture medium of oligodendrocyte cultures, inhibits OPC differentiation (an effect prevented by SCH58261) without affecting cell proliferation. Data demonstrate that cultured OPCs express functional A(2A) receptors whose activation negatively modulate I(K) currents. We propose that, by this mechanism, A(2A) adenosine receptors inhibit OPC differentiation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells

    Science.gov (United States)

    Brew, Helen; Attwell, David

    1987-06-01

    Glutamate is taken up avidly by glial cells in the central nervous system1. Glutamate uptake may terminate the transmitter action of glutamate released from neurons1, and keep extracellular glutamate at concentrations below those which are neurotoxic. We report here that glutamate evokes a large inward current in retinal glial cells which have their membrane potential and intracellular ion concentrations controlled by the whole-cell patch-clamp technique2. This current seems to be due to an electrogenic glutamate uptake carrier, which transports at least two sodium ions with every glutamate anion carried into the cell. Glutamate uptake is strongly voltage-dependent, decreasing at depolarized potentials: when fully activated, it contributes almost half of the conductance in the part of the glial cell membrane facing the retinal neurons. The spatial localization, glutamate affinity and magnitude of the uptake are appropriate for terminating the synaptic action of glutamate released from photoreceptors and bipolar cells. These data challenge present explanations of how the b-wave of the electroretinogram is generated, and suggest a mechanism for non-vesicular voltage-dependent release of glutamate from neurons.

  16. Increased short circuit current in an azafullerene-based organic solar cell.

    Science.gov (United States)

    Cambarau, Werther; Fritze, Urs F; Viterisi, Aurélien; Palomares, Emilio; von Delius, Max

    2015-01-21

    We report the synthesis of a solution-processable, dodecyloxyphenyl-substituted azafullerene monoadduct (DPC59N) and its application as electron acceptor in bulk heterojunction organic solar cells (BHJ-OSCs). Due to its relatively strong absorption of visible light, DPC59N outperforms PC60BM in respect to short circuit current (JSC) and external quantum efficiency (EQE) in blends with donor P3HT.

  17. High short-circuit current density CdTe solar cells using all-electrodeposited semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Echendu, O.K., E-mail: oechendu@yahoo.com; Fauzi, F.; Weerasinghe, A.R.; Dharmadasa, I.M.

    2014-04-01

    CdS/CdTe and ZnS/CdTe n–n heterojunction solar cells have been fabricated using all-electrodeposited semiconductors. The best devices show remarkable high short-circuit current densities of 38.5 mAcm{sup −2} and 47.8 mAcm{sup −2}, open-circuit voltages of 630 mV and 646 mV and conversion efficiencies of 8.0% and 12.0% respectively. The major strength of these device structures lies in the combination of n–n heterojunction with a large Schottky barrier at the n-CdTe/metal back contact which provides the required band bending for the separation of photo-generated charge carriers. This is in addition to the use of a high quality n-type CdTe absorber layer with high electron mobility. The potential barrier heights estimated for these devices from the current–voltage characteristics exceed 1.09 eV and 1.13 eV for CdS/CdTe and ZnS/CdTe cells respectively. The diode rectification factors of both devices are in excess of four orders of magnitude with reverse saturation current densities of 1.0 × 10{sup −7} Acm{sup −2} and 4.0 × 10{sup −7} Acm{sup −2} respectively. These all-electrodeposited solar cell device structures are currently being studied and developed as an alternative to the well-known p–n junction structures which utilise chemical bath-deposited CdS. The preliminary material growth, device fabrication and assessment results are presented in this paper. - Highlights: • Two-electrode deposition. • High J{sub sc} Schottky barrier solar cells. • CdCl{sub 2} + CdF{sub 2} treatment.

  18. Development of processing procedures for advanced silicon solar cells. [antireflection coatings and short circuit currents

    Science.gov (United States)

    Scott-Monck, J. A.; Stella, P. M.; Avery, J. E.

    1975-01-01

    Ten ohm-cm silicon solar cells, 0.2 mm thick, were produced with short circuit current efficiencies up to thirteen percent and using a combination of recent technical advances. The cells were fabricated in conventional and wraparound contact configurations. Improvement in cell collection efficiency from both the short and long wavelengths region of the solar spectrum was obtained by coupling a shallow junction and an optically transparent antireflection coating with back surface field technology. Both boron diffusion and aluminum alloying techniques were evaluated for forming back surface field cells. The latter method is less complicated and is compatible with wraparound cell processing.

  19. Profiling the SO2 Plume from Volcan Turrialba: Ticosonde Balloon Measurements Compared with OMI and OMPS Retrievals

    Science.gov (United States)

    Selkirk, H. B.; Krotkov, N. A.; Li, C.; Morris, G.; Diaz, J. A.; Carn, S. A.; Voemel, H.; Nord, P. M.; Larson, K.

    2014-12-01

    The summit of Volcan Turrialba (elev. 3340 m) lies less than 50 km upstream in the prevailing easterlies from the Ticosonde balloon launch site at San Jose, Costa Rica, where ECC ozone sondes have been launched regularly since 2005. In 2006 we began to see telltale notches in the ozone profiles in the altitude range between 2 and 6 km. Given the proximity of Turrialba, it seemed likely that SO2 in the volcano's plume was interfering in the chemical reaction in the ECC ozone sonde used to detect ozone. In early 2010, fumarolic activity in the Turrialba crater increased strongly, and the profile notches in our soundings increased in frequency as well, consistent with this hypothesis. In February 2012 we tested a dual ECC sonde system, where an additional sonde is flown on the same payload using a selective SO2 filter. The difference of the measurements in the dual sonde is a direct measure of the amount of SO2 encountered. This first dual sonde passed through the plume, and the data indicated a tropospheric SO2 column of 1.4 DU, comparing favorably with a total column of 1.7 DU in the OMI 3-km linear fit (LF) product at the sonde profile location and at nearly the same time. We are now launching dual sondes on a regular basis with 18 launches in the first 12 months through July 2014; 11 of these have detectable SO2 signals. These soundings have great potential for validation of the Aura OMI and the Suomi-NPP OMPS retrievals of SO2. Here we present the sonde measurements and compare them with two satellite datasets: the Aura OMI Linear Fit (LF) product and the Suomi-NPP OMPS Principal Components Analysis (PCA) boundary layer product. The PCA algorithm reduces retrieval noise and artifacts by more accurately accounting for various interferences in SO2 retrievals such as O3 absorption and rotational Raman scattering. The comparisons with the in situ observations indicate a significant improvement of the PCA algorithm in capturing relatively weak volcanic SO2 signals.

  20. Profiling the SO2 Plume from Volcan Turrialba: Ticosonde Balloon Measurements Compared with OMI and OMPS Retrievals

    Science.gov (United States)

    Selkirk, Henry; Krotkov, Nickolay; Li, Can; Morris, Gary (Inventor); Diaz, Jorge Andres; Carn, Simon; Vomel, Holger; Corrales, Ernesto; Nord, Paul; Larson, Kelsey

    2014-01-01

    The summit of Volcan Turrialba (elev. 3340 m) lies less than 50 km upstream in the prevailing easterlies from the Ticosonde balloon launch site at San Jose, Costa Rica, where ECC ozone sondes have been launched regularly since 2005. In 2006 we began to see telltale notches in the ozone profiles in the altitude range between 2 and 6 km. Given the proximity of Turrialba, it seemed likely that SO2 in the volcano's plume was interfering in the chemical reaction in the ECC ozone sonde used to detect ozone. In early 2010, fumarolic activity in the Turrialba crater increased strongly, and the profile notches in our soundings increased in frequency as well, consistent with this hypothesis. In February 2012 we tested a dual ECC sonde system, where an additional sonde is flown on the same payload using a selective SO2 filter. The difference of the measurements in the dual sonde is a direct measure of the amount of SO2 encountered. This first dual sonde passed through the plume, and the data indicated a tropospheric SO2 column of 1.4 DU, comparing favorably with a total column of 1.7 DU in the OMI 3-km linear fit (LF) product at the sonde profile location and at nearly the same time. We are now launching dual sondes on a regular basis with 18 launches in the first 12 months through July 2014; 11 of these have detectable SO2 signals. These soundings have great potential for validation of the Aura OMI and the Suomi-NPP OMPS retrievals of SO2. Here we present the sonde measurements and compare them with two satellite datasets: the Aura OMI Linear Fit (LF) product and the Suomi-NPP OMPS Principal Components Analysis (PCA) boundary layer product. The PCA algorithm reduces retrieval noise and artifacts by more accurately accounting for various interferences in SO2 retrievals such as O3 absorption and rotational Raman scattering. The comparisons with the in situ observations indicate a significant improvement of the PCA algorithm in capturing relatively weak volcanic SO2 signals.

  1. Current status and developments in gene therapy for thalassemia and sickle cell disease

    Directory of Open Access Journals (Sweden)

    Evangelia Yannaki

    2014-12-01

    Full Text Available β-thalassemias and sickle cell anemia (SCA are the most common monogenic diseases worldwide for which curative treatments remain a desired goal. Allogeneic hematopoietic stem cell transplantation (allo-HCT, - the only curative treatment currently available for hemoglobinopaties-, has a narrow application window whereas it incurs several immunological risks. Gene therapy (GT, that is the autologous transplantation of genetically modified hematopoietic stem cells (CD34+, represents a promising new therapeutic strategy which is anticipated to reestablish effective hemoglobin production and render patients transfusion- and drug- independent without the immunological complications that normally accompany allo-HCT. Prior to the application of GT for hemoglobinopathies in the clinic, many years of extensive preclinical research were spent for the optimization of the gene transfer tools and conditions. To date, three GT clinical trials for β-thalassemia and sickle cell disease (SCD have been conducted or are in progress and 3 cases of transfusion independence in thalassemic β0/βΕ patients have been reported. In the present review, the prerequisites for successful implementation of GT, the tough pathway of GT for hemoglobinopathies towards the clinic and the knowledge gained from the first clinical trials as well as the remaining questions and challenges, will be discussed. Overall, after decades of research including achievements but pitfalls as well, the path to GT of human patients with hemoglobinopathies is currently open and highly promising...

  2. Dextromethorphan inhibition of voltage-gated proton currents in BV2 microglial cells.

    Science.gov (United States)

    Song, Jin-Ho; Yeh, Jay Z

    2012-05-10

    Dextromethorphan, an antitussive drug, has a neuroprotective property as evidenced by its inhibition of microglial production of pro-inflammatory cytokines and reactive oxygen species. The microglial activation requires NADPH oxidase activity, which is sustained by voltage-gated proton channels in microglia as they dissipate an intracellular acid buildup. In the present study, we examined the effect of dextromethorphan on proton currents in microglial BV2 cells. Dextromethorphan reversibly inhibited proton currents with an IC(50) value of 51.7 μM at an intracellular/extracellular pH gradient of 5.5/7.3. Dextromethorphan did not change the reversal potential or the voltage dependence of the gating. Dextrorphan and 3-hydroxymorphinan, major metabolites of dextromethorphan, and dextromethorphan methiodide were ineffective in inhibiting proton currents. The results indicate that dextromethorphan inhibition of proton currents would suppress NADPH oxidase activity and, eventually, microglial activation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. In vitro effects of direct current electric fields on adipose-derived stromal cells.

    Science.gov (United States)

    Hammerick, Kyle E; Longaker, Michael T; Prinz, Fritz B

    2010-06-18

    Endogenous electric fields play an important role in embryogenesis, regeneration, and wound repair and previous studies have shown that many populations of cells, leukocytes, fibroblasts, epithelial cells, and endothelial cells, exhibit directed migration in response to electric fields. As regenerative therapies continue to explore ways to control mesenchymal progenitor cells to recreate desirable tissues, it is increasingly necessary to characterize the vast nature of biological responses imposed by physical phenomena. Murine adipose-derived stromal cells (mASCs) migrated toward the cathode in direct current (DC) fields of physiologic strength and show a dose dependence of migration rate to stronger fields. Electric fields also caused mASCs to orient perpendicularly to the field vector and elicited a transient increase in cytosolic calcium. Additionally, their galvanotactic response appears to share classic chemotactic signaling pathways that are involved in the migration of other cell types. Galvanotaxis is one predominant result of electric fields on mASCs and it may be exploited to engineer adult stem cell concentrations and locations within implanted grafts or toward sites of wound repair. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  4. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  5. Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting

    Directory of Open Access Journals (Sweden)

    Christoph eSchmitz

    2014-05-01

    Full Text Available Stereologic cell counting has had a major impact on the field of neuroscience. A major bottleneck in stereologic cell counting is that the user must manually decide whether or not each cell is counted according to three-dimensional (3D stereologic counting rules by visual inspection within hundreds of microscopic fields-of-view per investigated brain or brain region. Reliance on visual inspection forces stereologic cell counting to be very labor-intensive and time-consuming, and is the main reason why biased, non-stereologic two-dimensional (2D cell counting approaches have remained in widespread use. We present an evaluation of the performance of modern automated cell detection and segmentation algorithms as a potential alternative to the manual approach in stereologic cell counting. The image data used in this study were 3D microscopic images of thick brain tissue sections prepared with a variety of commonly used nuclear and cytoplasmic stains. The evaluation compared the numbers and locations of cells identified unambiguously and counted exhaustively by an expert observer with those found by three automated 3D cell detection algorithms: nuclei segmentation from the FARSIGHT toolkit, nuclei segmentation by 3D multiple level set methods, and the 3D object counter plug-in for ImageJ. Of these methods, FARSIGHT performed best, with true-positive detection rates between 38–99% and false-positive rates from 3.6–82%. The results demonstrate that the current automated methods suffer from lower detection rates and higher false-positive rates than are acceptable for obtaining valid estimates of cell numbers. Thus, at present, stereologic cell counting with manual decision for object inclusion according to unbiased stereologic counting rules remains the only adequate method for unbiased cell quantification in histologic tissue sections.

  6. Caffeine inhibits nonselective cationic currents in interstitial cells of Cajal from the murine jejunum.

    Science.gov (United States)

    Jin, Nan Ge; Koh, Sang Don; Sanders, Kenton M

    2009-10-01

    Interstitial cells of Cajal (ICC) discharge unitary potentials in gastrointestinal muscles that constitute the basis for pacemaker activity. Caffeine has been used to block unitary potentials, but the ionic conductance responsible for unitary potentials is controversial. We investigated currents in cultured ICC from murine jejunum that may underlie unitary potentials and studied the effects of caffeine. Networks of ICC generated slow wave events under current clamp, and these events were blocked by caffeine in a concentration-dependent manner. Single ICC generated spontaneous transient inward currents (STICs) under voltage clamp at -60 mV and noisy voltage fluctuations in current clamp. STICs were unaffected when the equilibrium potential for Cl- (ECl) was set to -60 mV (excluding Cl- currents) and reversed at 0 mV, demonstrating that a nonselective cationic conductance, and not a Cl- conductance, is responsible for STICs in ICC. Caffeine inhibited STICs in a concentration-dependent manner. Reduced intracellular Ca2+ and calmidazolium (CMZ; 1 microM) activated persistent inward, nonselective cation currents in ICC. Currents activated by CMZ and by dialysis of cells with 10 mM BAPTA were also inhibited by caffeine. Excised inside-out patches contained channels that exhibited spontaneous openings, and resulting currents reversed at 0 mV. Channel openings were increased by reducing Ca2+ concentration from 10(-6) M to 10(-8) M. CMZ (1 microM) also increased openings of nonselective cation channels. Spontaneous currents and channels activated by CMZ were inhibited by caffeine (5 mM). The findings demonstrate that the Ca2+-inhibited nonselective cation channels that generate STICs in ICC are blocked directly by caffeine. STICs are responsible for unitary potentials in intact muscles, and the block of these events by caffeine is consistent with the idea that a nonselective cation conductance underlies unitary potentials in ICC.

  7. Analysis of whole-cell currents by patch clamp of guinea-pig myenteric neurones in intact ganglia

    Science.gov (United States)

    Rugiero, François; Gola, Maurice; Kunze, Wolf A A; Reynaud, Jean-Claude; Furness, John B; Clerc, Nadine

    2002-01-01

    Whole-cell patch-clamp recordings taken from guinea-pig duodenal myenteric neurones within intact ganglia were used to determine the properties of S and AH neurones. Major currents that determine the states of AH neurones were identified and quantified. S neurones had resting potentials of −47 ± 6 mV and input resistances (Rin) of 713 ± 49 MΩ at voltages ranging from −90 to −40 mV. At more negative levels, activation of a time-independent, caesium-sensitive, inward-rectifier current (IKir) decreased Rin to 103 ± 10 MΩ. AH neurones had resting potentials of −57 ± 4 mV and Rin was 502 ± 27 MΩ. Rin fell to 194 ± 16 MΩ upon hyperpolarization. This decrease was attributable mainly to the activation of a cationic h current, Ih, and to IKir. Resting potential and Rin exhibited a low sensitivity to changes in [K+]o in both AH and S neurones. This indicates that both cells have a low background K+ permeability. The cationic current, Ih, contributed about 20 % to the resting conductance of AH neurones. It had a half-activation voltage of −72 ± 2 mV, and a voltage sensitivity of 8.2 ± 0.7 mV per e-fold change. Ih has relatively fast, voltage-dependent kinetics, with on and off time constants in the range of 50–350 ms. AH neurones had a previously undescribed, low threshold, slowly inactivating, sodium-dependent current that was poorly sensitive to TTX. In AH neurones, the post-action-potential slow hyperpolarizing current, IAHP, displayed large variation from cell to cell. IAHP appeared to be highly Ca2+ sensitive, since its activation with either membrane depolarization or caffeine (1 mm) was not prevented by perfusing the cell with 10 mm BAPTA. We determined the identity of the Ca2+ channels linked to IAHP. Action potentials of AH neurones that were elongated by TEA (10 mm) were similarly shortened and IAHP was suppressed with each of the three Ω-conotoxins GVIA, MVIIA and MVIIC (0.3–0.5 μm), but not with Ω-agatoxin IVA (0.2 μm). There was no

  8. Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken.

    Science.gov (United States)

    Masetto, S; Bosica, M; Correia, M J; Ottersen, O P; Zucca, G; Perin, P; Valli, P

    2003-08-01

    In birds, type I and type II hair cells differentiate before birth. Here we describe that chick hair cells, from the semicircular canals, begin expressing a voltage-dependent Na current (INa) from embryonic day 14 (E14) and continue to express the current up to hatching (E21). During this period, INa was present in most (31/43) type I hair cells irrespective of their position in the crista, in most type II hair cells located far from the planum semilunatum (48/63), but only occasionally in type II hair cells close to the planum semilunatum (2/35). INa activated close to -60 mV, showed fast time- and voltage-dependent activation and inactivation, and was completely, and reversibly, blocked by submicromolar concentrations of tetrodotoxin (Kd = 17 nM). One peculiar property of INa concerns its steady-state inactivation, which is complete at -60 mV (half-inactivating voltage = -96 mV). INa was found in type I and type II hair cells from the adult chicken as well, where it had similar, although possibly not identical, properties and regional distribution. Current-clamp experiments showed that INa could contribute to the voltage response provided that the cell membrane was depolarized from holding potentials more negative than -80 mV. When recruited, INa produced a significant acceleration of the cell membrane depolarization, which occasionally elicited a large rapid depolarization followed by a rapid repolarization (action-potential-like response). Possible physiological roles for INa in the embryo and adult chicken are discussed.

  9. Understanding energy loss in parallelly connected microbial fuel cells: Non-Faradaic current.

    Science.gov (United States)

    An, Junyeong; Sim, Junyoung; Feng, Yujie; Lee, Hyung-Sool

    2016-03-01

    In this work, the mechanisms of energy loss in parallel connection of microbial fuel cells (MFCs) is explored using two MFC units producing different open circuit voltage (OCV) and current. In open circuit mode, non-Faradaic current flows in low OCV unit, implying energy loss caused by different OCVs in parallelly stacked MFCs. In a stacked MFC in parallel under close circuit mode, it is confirmed that energy loss occurs until the working voltage in high OCV unit becomes identical to the other unit having low OCV. This result indicates that different voltage between individual MFC units can cause energy loss due to both non-Faradic and Faradaic current that flow from high voltage unit to low voltage unit even in parallelly stacked MFCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com; Kapusta, Chris, E-mail: plotnikov@ge.com; Lin, David, E-mail: plotnikov@ge.com [GE Global Research, One Research Circle, Niskayuna, NY (United States)

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  11. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    Science.gov (United States)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  12. Solar Cell Short Circuit Current Errors and Uncertainties During High Altitude Calibrations

    Science.gov (United States)

    Snyder, David D.

    2012-01-01

    High altitude balloon based facilities can make solar cell calibration measurements above 99.5% of the atmosphere to use for adjusting laboratory solar simulators. While close to on-orbit illumination, the small attenuation to the spectra may result in under measurements of solar cell parameters. Variations of stratospheric weather, may produce flight-to-flight measurement variations. To support the NSCAP effort, this work quantifies some of the effects on solar cell short circuit current (Isc) measurements on triple junction sub-cells. This work looks at several types of high altitude methods, direct high altitude meas urements near 120 kft, and lower stratospheric Langley plots from aircraft. It also looks at Langley extrapolation from altitudes above most of the ozone, for potential small balloon payloads. A convolution of the sub-cell spectral response with the standard solar spectrum modified by several absorption processes is used to determine the relative change from AMO, lscllsc(AMO). Rayleigh scattering, molecular scatterin g from uniformly mixed gases, Ozone, and water vapor, are included in this analysis. A range of atmosph eric pressures are examined, from 0. 05 to 0.25 Atm to cover the range of atmospheric altitudes where solar cell calibrations a reperformed. Generally these errors and uncertainties are less than 0.2%

  13. Short circuit current changes in electron irradiated GaAlAs/GaAs solar cells

    Science.gov (United States)

    Walker, G. H.; Conway, E. J.

    1978-01-01

    Heteroface p-GaAlAs/p-GaAs/n-GaAs solar cells with junction depths of 0.8, 1.5, and 4 microns were irradiated with 1 MeV electrons. The short-circuit current for the 4 micron junction depth cells is significantly reduced by the electron irradiation. Reduction of the junction depth to 1.5 microns improves the electron radiation resistance of the cells while further reduction of the junction depth to 0.8 microns improves the stability of the cells even more. Primary degradation is in the blue region of the spectrum. Considerable recovery of lost response is obtained by annealing the cells at 200 C. Computer modeling shows that the degradation is caused primarily by a reduction in the minority carrier diffusion length in the p-GaAs.

  14. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases.

    Science.gov (United States)

    Weiss, Daniel J

    2014-01-01

    Lung diseases remain a significant and devastating cause of morbidity and mortality worldwide. In contrast to many other major diseases, lung diseases notably chronic obstructive pulmonary diseases (COPDs), including both asthma and emphysema, are increasing in prevalence and COPD is expected to become the third leading cause of disease mortality worldwide by 2020. New therapeutic options are desperately needed. A rapidly growing number of investigations of stem cells and cell therapies in lung biology and diseases as well as in ex vivo lung bioengineering have offered exciting new avenues for advancing knowledge of lung biology as well as providing novel potential therapeutic approaches for lung diseases. These initial observations have led to a growing exploration of endothelial progenitor cells and mesenchymal stem (stromal) cells in clinical trials of pulmonary hypertension and COPD with other clinical investigations planned. Ex vivo bioengineering of the trachea, larynx, diaphragm, and the lung itself with both biosynthetic constructs as well as decellularized tissues have been used to explore engineering both airway and vascular systems of the lung. Lung is thus a ripe organ for a variety of cell therapy and regenerative medicine approaches. Current state-of-the-art progress for each of the above areas will be presented as will discussion of current considerations for cell therapy-based clinical trials in lung diseases. © AlphaMed Press.

  15. Current density distribution mapping in PEM fuel cells as an instrument for operational measurements

    Energy Technology Data Exchange (ETDEWEB)

    Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)

    2010-07-01

    A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)

  16. Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements

    Directory of Open Access Journals (Sweden)

    Martin Geske

    2010-04-01

    Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.

  17. Use of Adult Stem Cells for Cartilage Tissue Engineering: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Catherine Baugé

    2015-01-01

    Full Text Available Due to their low self-repair ability, cartilage defects that result from joint injury, aging, or osteoarthritis, are the most often irreversible and are a major cause of joint pain and chronic disability. So, in recent years, researchers and surgeons have been working hard to elaborate cartilage repair interventions for patients who suffer from cartilage damage. However, current methods do not perfectly restore hyaline cartilage and may lead to the apparition of fibro- or hypertrophic cartilage. In the next years, the development of new strategies using adult stem cells, in scaffolds, with supplementation of culture medium and/or culture in low oxygen tension should improve the quality of neoformed cartilage. Through these solutions, some of the latest technologies start to bring very promising results in repairing cartilage from traumatic injury or chondropathies. This review discusses the current knowledge about the use of adult stem cells in the context of cartilage tissue engineering and presents clinical trials in progress, as well as in the future, especially in the field of bioprinting stem cells.

  18. Spermatogonial stem cell transplantation and male infertility: Current status and future directions

    Directory of Open Access Journals (Sweden)

    Connor M. Forbes

    2018-03-01

    Full Text Available Objective: To summarise the current state of research into spermatogonial stem cell (SSC therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. Materials and methods: We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. Results: In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Conclusions: Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research. Keywords: Non-obstructive azoospermia, Fertility preservation, Onco-fertility, Male infertility, Stem cell therapy, Allograft

  19. Short-circuit current density imaging of crystalline silicon solar cells via lock-in thermography: Robustness and simplifications

    International Nuclear Information System (INIS)

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    Spatially resolved determination of solar cell parameters is beneficial for loss analysis and optimization of conversion efficiency. One key parameter that has been challenging to access by an imaging technique on solar cell level is short-circuit current density. This work discusses the robustness of a recently suggested approach to determine short-circuit current density spatially resolved based on a series of lock-in thermography images and options for a simplified image acquisition procedure. For an accurate result, one or two emissivity-corrected illuminated lock-in thermography images and one dark lock-in thermography image have to be recorded. The dark lock-in thermography image can be omitted if local shunts are negligible. Furthermore, it is shown that omitting the correction of lock-in thermography images for local emissivity variations only leads to minor distortions for standard silicon solar cells. Hence, adequate acquisition of one image only is sufficient to generate a meaningful map of short-circuit current density. Beyond that, this work illustrates the underlying physics of the recently proposed method and demonstrates its robustness concerning varying excitation conditions and locally increased series resistance. Experimentally gained short-circuit current density images are validated for monochromatic illumination in comparison to the reference method of light-beam induced current

  20. Evaluation of ink-jet printed current collecting grids and bushbars for ITO-free organic solar cells

    NARCIS (Netherlands)

    Galagan, Y.O.; Coenen, E,W.C.; Sabik, S.; Gorter, H.H.; Barink, M.; Veenstra, S.C.; Kroon, J.M.; Andriessen, H.A.J.M.; Blom, P.W.M.

    2012-01-01

    ITO-free organic solar cells with ink-jet printed current collecting grids and high conducting PEDOT:PSS as composite anode are demonstrated. Inkjet printed current collecting grids with different cross-sectional are as have been investigated. The effect of the width and height of the gridlines and

  1. An EIS alternative for impedance measurement of a high temperature PEM fuel cell stack based on current pulse injection

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Araya, Samuel Simon; Sahlin, Simon Lennart

    2017-01-01

    In this paper a method for estimating the fuel cell impedance is presented, namely the current pulse injection (CPI) method, which is well suited for online implementation. This method estimates the fuel cell impedance and unlike electrochemical impedance spectroscopy (EIS), it is simple...... to implement at a low cost. This makes it appealing as a characterization method for on-line diagnostic algorithms. In this work a parameter estimation method for estimation of equivalent electrical circuit (EEC) parameters, which is suited for on-line use is proposed. Tests on a 10 cell high temperature PEM...... fuel cell show that the method yields consistent results in estimating EEC parameters for different current pulse at different current loads, with a low variance. A comparison with EIS shows that despite its simplicity the response of CPI can reproduce well the impedance response of the high...

  2. Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures

    KAUST Repository

    Velazquez-Rizo, Martin

    2017-07-01

    In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed magnet (Bhowmik et al., 2014). The possibility of setting the magnetization to both stable magnetization states in a controlled manner using a similar concept remains unknown, but the proposed structure poses to be a solution to this difficulty. The second cell proposed takes advantage of the multiple stable magnetic states that exist in ferromagnets with configurational anisotropy and also uses spin torques to manipulate its magnetization. It utilizes a square-shaped ferromagnet whose stable magnetization has preferred directions along the diagonals of the square, giving four stable magnetic states allowing to use the structure as a multi-bit memory cell. Both devices use spin currents generated in heavy metals by the Spin Hall effect present in these materials. Among the advantages of the structures proposed are their inherent non-volatility and the fact that there is no need for applying external magnetic fields during their operation, which drastically improves the energy efficiency of the devices. Computational simulations using the Object Oriented Micromagnetic Framework (OOMMF) software package were performed to study the dynamics of the magnetization process in both structures and predict their behavior. Besides, we fabricated a 4-terminal memory cell with configurational anisotropy similar to the device proposed, and found four stable resistive states on the structure, proving the feasibility of this technology for implementation of high-density, non-volatile memory cells.

  3. Spermatogonial stem cell transplantation and male infertility: Current status and future directions.

    Science.gov (United States)

    Forbes, Connor M; Flannigan, Ryan; Schlegel, Peter N

    2018-03-01

    To summarise the current state of research into spermatogonial stem cell (SSC) therapies with a focus on future directions, as SSCs show promise as a source for preserving or initiating fertility in otherwise infertile men. We performed a search for publications addressing spermatogonial stem cell transplantation in the treatment of male infertility. The search engines PubMed and Google Scholar were used from 1990 to 2017. Search terms were relevant for spermatogonial stem cell therapies. Titles of publications were screened for relevance; abstracts were read, if related and full papers were reviewed for directly pertinent original research. In all, 58 papers were found to be relevant to this review, and were included in appropriate subheadings. This review discusses the various techniques that SSCs are being investigated to treat forms of male infertility. Evidence does not yet support clinical application of SSCs in humans. However, significant progress in the in vitro and in vivo development of SSCs, including differentiation into functional germ cells, gives reason for cautious optimism for future research.

  4. BOBMEX: The Bay of Bengal Monsoon Experiment

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, G.S.; Gadgil, S.; Kumar, P.V.H.; Kalsi, S.R.; Madhusoodanan, P.; Murty, V.S.N.; Rao, C.V.K.P.; RameshBabu, V.; Rao, L.V.G.; Rao, R.R.; Ravichandran, M.; Reddy, K.G.; Rao, P.Sanjeeva; Sengupta, D.; Sikka, D.R.; Swain, J.; Vinayachandran, P.N.

    . However, unforeseen difficulties were faced in pro- curing radiosondes for one of the ships. Hence, radio- sondes (Vaisala model RS80-15G) were launched only from SK. More than 90 ascents covering active and weak phases of convection are available. The fre...- diosonde processor adjusted the calibration constants to take care of these minor differences. Before each launch, the radio- sonde humidity sensor was tested in a 100% RH chamber. The RH measured by the radio- sonde increased quickly to 90% within a few...

  5. Eddy current imaging for electrical characterization of silicon solar cells and TCO layers

    Science.gov (United States)

    Hwang, Byungguk; Hillmann, Susanne; Schulze, Martin; Klein, Marcus; Heuer, Henning

    2015-03-01

    Eddy Current Testing has been mainly used to determine defects of conductive materials and wall thicknesses in heavy industries such as construction or aerospace. Recently, high frequency Eddy Current imaging technology was developed. This enables the acquirement of information of different depth level in conductive thin-film structures by realizing proper standard penetration depth. In this paper, we summarize the state of the art applications focusing on PV industry and extend the analysis implementing achievements by applying spatially resolved Eddy Current Testing. The specific state of frequency and complex phase angle rotation demonstrates diverse defects from front to back side of silicon solar cells and characterizes homogeneity of sheet resistance in Transparent Conductive Oxide (TCO) layers. In order to verify technical feasibility, measurement results from the Multi Parameter Eddy Current Scanner, MPECS are compared to the results from Electroluminescence.

  6. A Cell-to-Cell Battery Equalizer With Zero-Current Switching and Zero-Voltage Gap Based on Quasi-Resonant LC Converter and Boost Converter

    DEFF Research Database (Denmark)

    Shang, Yunlong; Zhang, Chenghui; Cui, Naxin

    2015-01-01

    these difficulties, an innovative direct cell-to-cell battery equalizer based on quasi-resonant LC converter (QRLCC) and boost DC-DC converter (BDDC) is proposed. The QRLCC is employed to gain zero-current switching (ZCS), leading to a reduction of power losses. The BDDC is employed to enhance the equalization...

  7. Design and fabrication of light weight current collectors for direct methanol fuel cells using the micro-electro mechanical system technique

    Science.gov (United States)

    Sung, Min-Feng; Kuan, Yean-Der; Chen, Bing-Xian; Lee, Shi-Min

    The direct methanol fuel cell (DMFC) is suitable for portable applications. Therefore, a light weight and small size is desirable. The main objective of this paper is to design and fabricate a light weight current collector for DMFC usage. The light weight current collector mainly consists of a substrate with two thin film metal layers. The substrate of the current collector is an FR4 epoxy plate. The thin film metal layers are accomplished by the thermo coater technique to coat metal powders onto the substrate surfaces. The developed light weight current collectors are further assembled to a single cell DMFC test fixture to measure the cell performance. The results show that the proposed current collectors could even be applied to DMFCs because they are light, thin and low cost and have potential for mass production.

  8. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  9. Erythrina mulungu alkaloids are potent inhibitors of neuronal nicotinic receptor currents in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Pedro Setti-Perdigão

    Full Text Available Crude extracts and three isolated alkaloids from Erythrina mulungu plants have shown anxiolytic effects in different animal models. We investigated whether these alkaloids could affect nicotinic acetylcholine receptors and if they are selective for different central nervous system (CNS subtypes. Screening experiments were performed using a single concentration of the alkaloid co-applied with acetylcholine in whole cell patch-clamp recordings in three different cell models: (i PC12 cells natively expressing α3* nicotinic acetylcholine receptors; (ii cultured hippocampal neurons natively expressing α7* nicotinic acetylcholine receptors; and (iii HEK 293 cells heterologoulsy expressing α4β2 nicotinic acetylcholine receptors. For all three receptors, the percent inhibition of acetylcholine-activated currents by (+-11á-hydroxyerysotrine was the lowest, whereas (+-erythravine and (+-11á-hydroxyerythravine inhibited the currents to a greater extent. For the latter two substances, we obtained concentration-response curves with a pre-application protocol for the α7* and α4β2 nicotinic acetylcholine receptors. The IC50 obtained with (+-erythravine and (+-11á-hydroxyerythravine were 6 µM and 5 µM for the α7* receptors, and 13 nM and 4 nM for the α4β2 receptors, respectively. Our data suggest that these Erythrina alkaloids may exert their behavioral effects through inhibition of CNS nicotinic acetylcholine receptors, particularly the α4β2 subtype.

  10. Analysis of Gas Leakage and Current Loss of Solid Oxide Fuel Cells by Screen Printing

    DEFF Research Database (Denmark)

    Jia, Chuan; Han, Minfang; Chen, Ming

    2017-01-01

    Two types of anode supported solid oxide fuel cell (SOFC) NiO-YSZ/YSZ/GDC/LSCF with the same structure and different manufacturing process were tested. Gas leakage was suspected for cells manufactured with screen printing technique. Effective leak current densities for both types of cells were...... calculated. Their performances of electrochemical impedance spectroscopy (EIS) were compared and distribution function of relaxation times (DRT) technique was also used to find the clue of gas leakage. Finally, thinning and penetrating holes were observed in electrolyte layer, which confirmed the occurrence...

  11. Chronic bronchitis and current smoking are associated with more goblet cells in moderate to severe COPD and smokers without airflow obstruction.

    Directory of Open Access Journals (Sweden)

    Victor Kim

    Full Text Available Goblet cell hyperplasia is a classic but variable pathologic finding in COPD. Current literature shows that smoking is a risk factor for chronic bronchitis but the relationship of these clinical features to the presence and magnitude of large airway goblet cell hyperplasia has not been well described. We hypothesized that current smokers and chronic bronchitics would have more goblet cells than nonsmokers or those without chronic bronchitis (CB, independent of airflow obstruction.We recruited 15 subjects with moderate to severe COPD, 12 healthy smokers, and 11 healthy nonsmokers. Six endobronchial mucosal biopsies per subject were obtained by bronchoscopy and stained with periodic acid Schiff-Alcian Blue. Goblet cell density (GCD was quantified as goblet cell number per millimeter of basement membrane. Mucin volume density (MVD was quantified as volume of mucin per unit area of basement membrane.Healthy smokers had a greater GCD and MVD than nonsmokers and COPD subjects. COPD subjects had a greater GCD than nonsmokers. When current smokers (healthy smokers and COPD current smokers, n = 19 were compared with all nonsmokers (nonsmoking controls and COPD ex-smokers, n = 19, current smokers had a greater GCD and MVD. When those with CB (n = 12 were compared to those without CB (n = 26, the CB group had greater GCD. This finding was also seen in those with CB in the COPD group alone. In multivariate analysis, current smoking and CB were significant predictors of GCD using demographics, lung function, and smoking pack years as covariates. All other covariates were not significant predictors of GCD or MVD.Current smoking is associated with a more goblet cell hyperplasia and number, and CB is associated with more goblet cells, independent of the presence of airflow obstruction. This provides clinical and pathologic correlation for smokers with and without COPD.

  12. Chronic Bronchitis and Current Smoking Are Associated with More Goblet Cells in Moderate to Severe COPD and Smokers without Airflow Obstruction

    Science.gov (United States)

    Kim, Victor; Oros, Michelle; Durra, Heba; Kelsen, Steven; Aksoy, Mark; Cornwell, William D.; Rogers, Thomas J.; Criner, Gerard J.

    2015-01-01

    Background Goblet cell hyperplasia is a classic but variable pathologic finding in COPD. Current literature shows that smoking is a risk factor for chronic bronchitis but the relationship of these clinical features to the presence and magnitude of large airway goblet cell hyperplasia has not been well described. We hypothesized that current smokers and chronic bronchitics would have more goblet cells than nonsmokers or those without chronic bronchitis (CB), independent of airflow obstruction. Methods We recruited 15 subjects with moderate to severe COPD, 12 healthy smokers, and 11 healthy nonsmokers. Six endobronchial mucosal biopsies per subject were obtained by bronchoscopy and stained with periodic acid Schiff-Alcian Blue. Goblet cell density (GCD) was quantified as goblet cell number per millimeter of basement membrane. Mucin volume density (MVD) was quantified as volume of mucin per unit area of basement membrane. Results Healthy smokers had a greater GCD and MVD than nonsmokers and COPD subjects. COPD subjects had a greater GCD than nonsmokers. When current smokers (healthy smokers and COPD current smokers, n = 19) were compared with all nonsmokers (nonsmoking controls and COPD ex-smokers, n = 19), current smokers had a greater GCD and MVD. When those with CB (n = 12) were compared to those without CB (n = 26), the CB group had greater GCD. This finding was also seen in those with CB in the COPD group alone. In multivariate analysis, current smoking and CB were significant predictors of GCD using demographics, lung function, and smoking pack years as covariates. All other covariates were not significant predictors of GCD or MVD. Conclusions Current smoking is associated with a more goblet cell hyperplasia and number, and CB is associated with more goblet cells, independent of the presence of airflow obstruction. This provides clinical and pathologic correlation for smokers with and without COPD. PMID:25646735

  13. Ca(2+) currents and voltage responses in Type I and Type II hair cells of the chick embryo semicircular canal.

    Science.gov (United States)

    Masetto, Sergio; Zampini, Valeria; Zucca, Giampiero; Valli, Paolo

    2005-11-01

    Type I and Type II hair cells, and Type II hair cells located in different zones of the semicircular canal crista, express different patterns of voltage-dependent K channels, each one specifically shaping the hair cell receptor potential. We report here that, close to hatching, chicken embryo semicircular canal Type I and Type II hair cells express a similar voltage-dependent L-type calcium current (I(Ca)), whose main features are: activation above -60 mV, fast activation kinetics, and scarce inactivation. I(Ca) should be already active at rest in Zone 1 Type II hair cells, whose resting membrane potential was on average slightly less negative than -60 mV. Conversely, I(Ca) would not be active at rest in Type II hair cells from Zone 2 and 3, nor in Type I hair cells, since their resting membrane potential was significantly more negative than -60 mV. However, even small depolarising currents would activate I(Ca) steadily in Zone 2 and 3 Type II hair cells, but not in Type I hair cells because of the robust repolarising action of their specific array of K(+) currents. The implications of the present findings in the afferent discharge are discussed.

  14. Role of Nrf2 in preventing oxidative stress induced chloride current alteration in human lung cells.

    Science.gov (United States)

    Canella, Rita; Benedusi, Mascia; Martini, Marta; Cervellati, Franco; Cavicchio, Carlotta; Valacchi, Giuseppe

    2018-08-01

    The lung tissue is one of the main targets of oxidative stress due to external sources and respiratory activity. In our previous work, we have demonstrated in that O 3 exposure alters the Cl - current-voltage relationship, with the appearance of a large outward rectifier component mainly sustained by outward rectifier chloride channels (ORCCs) in human lung epithelial cells (A549 line). In the present study, we have performed patch clamp experiments, in order to identify which one of the O 3 byproducts (4hydroxynonenal (HNE) and/or H 2 O 2 ) was responsible for chloride current change. While 4HNE exposition (up to 25 μM for 30' before electrophysiological analysis) did not reproduce O 3 effect, H 2 O 2 produced by glucose oxidase 10 mU for 24 hr before electrophysiological analysis mimicked O 3 response. This result was confirmed treating the cell with catalase (CAT) before O 3 exposure (1,000 U/ml for 2 hr): CAT was able to rescue Cl - current alteration. Since CAT is regulated by Nrf2 transcription factor, we pre-treated the cells with the Nrf2 activators, resveratrol and tBHQ. Immunochemical and immunocytochemical results showed Nrf2 activation with both substances that lead to prevent OS effect on Cl - current. These data bring new insights into the mechanisms involved in OS-induced lung tissue damage, pointing out the role of H 2 O 2 in chloride current alteration and the ability of Nfr2 activation in preventing this effect. © 2017 Wiley Periodicals, Inc.

  15. Experimental Investigation of a Direct Methanol Fuel Cell with Hilbert Fractal Current Collectors

    Directory of Open Access Journals (Sweden)

    Jing-Yi Chang

    2014-01-01

    Full Text Available The Hilbert curve is a continuous type of fractal space-filling curve. This fractal curve visits every point in a square grid with a size of 2×2, 4×4, or any other power of two. This paper presents Hilbert fractal curve application to direct methanol fuel cell (DMFC current collectors. The current collectors are carved following first, second, and third order Hilbert fractal curves. These curves give the current collectors different free open ratios and opening perimeters. We conducted an experimental investigation into DMFC performance as a function of the free open ratio and opening perimeter on the bipolar plates. Nyquist plots of the bipolar plates are made and compared using electrochemical impedance spectroscopy (EIS experiments to understand the phenomena in depth. The results obtained in this paper could be a good reference for future current collector design.

  16. Current distribution over the electrode surface in a cylindrical VRLA cell during discharge

    Czech Academy of Sciences Publication Activity Database

    Křivák, P.; Bača, P.; Calábek, M.; Micka, Karel; Král, P.

    2006-01-01

    Roč. 154, č. 2 (2006), s. 518-522 ISSN 0378-7753 Grant - others:Advanced Lead-Acid Battery Consortium(ES) N4.2 Institutional research plan: CEZ:AV0Z40400503 Keywords : grid design * current distribution * cylindrical lead-acid cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.521, year: 2006

  17. Highly Conformal Ni Micromesh as a Current Collecting Front Electrode for Reduced Cost Si Solar Cell

    DEFF Research Database (Denmark)

    Gupta, Nikita; Rao, K. D. M.; Gupta, Ritu

    2017-01-01

    deposition of Ni wire network on corrugated solar cell, a short circuit current of 33.28 mA/cm2 was obtained in comparison to 20.53 mA/cm2 without the network electrode. On comparing the efficiency with the conventional cells with screen printed electrodes, a 20% increment in efficiency has been observed...

  18. Electrolytic tritium enrichment: Current control using current-stabilised Kepco Type JQE modular supplies

    International Nuclear Information System (INIS)

    1976-01-01

    This note describes the principles, design and operation of a current-stabilised power source for tritium electrolytic enrichment cells. A Kepoo Tpe JE, modular supply is current-stabilised by controlled current feedback. The accompanying control unit incorporates a temperature sensor or the cooling unit of the electrolysis cells, a line monitor to register current shut-off due to temporary power failure, a time-of-day clock, a current control potentiometer and a digital voltmeter providing current reading to an accuracy of 0.01A

  19. Electrolytic tritium enrichment: Current control using current-stabilised Kepco Type JQE modular supplies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1976-07-12

    This note describes the principles, design and operation of a current-stabilised power source for tritium electrolytic enrichment cells. A Kepoo Tpe JE, modular supply is current-stabilised by controlled current feedback. The accompanying control unit incorporates a temperature sensor or the cooling unit of the electrolysis cells, a line monitor to register current shut-off due to temporary power failure, a time-of-day clock, a current control potentiometer and a digital voltmeter providing current reading to an accuracy of 0.01A.

  20. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    Science.gov (United States)

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  1. Spermatogonial stem cells: Current biotechnological advances in reproduction and regenerative medicine.

    Science.gov (United States)

    Aponte, Pedro Manuel

    2015-05-26

    Spermatogonial stem cells (SSCs) are the germ stem cells of the seminiferous epithelium in the testis. Through the process of spermatogenesis, they produce sperm while concomitantly keeping their cellular pool constant through self-renewal. SSC biology offers important applications for animal reproduction and overcoming human disease through regenerative therapies. To this end, several techniques involving SSCs have been developed and will be covered in this article. SSCs convey genetic information to the next generation, a property that can be exploited for gene targeting. Additionally, SSCs can be induced to become embryonic stem cell-like pluripotent cells in vitro. Updates on SSC transplantation techniques with related applications, such as fertility restoration and preservation of endangered species, are also covered on this article. SSC suspensions can be transplanted to the testis of an animal and this has given the basis for SSC functional assays. This procedure has proven technically demanding in large animals and men. In parallel, testis tissue xenografting, another transplantation technique, was developed and resulted in sperm production in testis explants grafted into ectopical locations in foreign species. Since SSC culture holds a pivotal role in SSC biotechnologies, current advances are overviewed. Finally, spermatogenesis in vitro, already demonstrated in mice, offers great promises to cope with reproductive issues in the farm animal industry and human clinical applications.

  2. A STUDY ABOUT CELL ACTIVITY ON ANODIZED Ti-6Al-4V BY MEANS OF PULSED CURRENT

    Directory of Open Access Journals (Sweden)

    LUANA M. R. VASCONCELLOS

    2017-05-01

    Full Text Available Titanium and some of its alloys exhibit excellent anti-corrosive and biocompatibility properties due to rapid formation of a passive film on their surfaces when exposed to the atmosphere. However, such materials presentpoor osteoindutive properties. Surfaces modified via anodization are being proposed in this study to promote a chemical interaction between implants and bone cells. For this purpose, samples in Ti-6Al-4V alloy discs were anodized in a phosphoric acid solution using pulsed current for being applied in orthopaedic implants. The pulsed current is based on duty cycle (DC, which was supplied by a square wave pulse rectifier at 100 Hz and maximum tension of 30 V. A scanning electron microscope was used to obtain images of the anodized surfaces, thus revealing the presence of uniformly distributed pores over the entire surface, measuring approximately 2 m in diameter. Osteogenic cells grown on the surface of the control and anodized samples were assayed for cytotoxicity and mineralized matrix formation. The anodized surfaces presented a higher rate of viable cells after 10 days, as well as a higher amount of nodules (p = 0.05. In conclusion, these results suggest that the nanotopography promoted by anodization using pulsed current induces beneficial modulatory effects on osteoblastic cells.

  3. Current Understanding of Physicochemical Mechanisms for Cell Membrane Penetration of Arginine-rich Cell Penetrating Peptides: Role of Glycosaminoglycan Interactions.

    Science.gov (United States)

    Takechi-Haraya, Yuki; Saito, Hiroyuki

    2018-01-01

    Arginine-rich cell penetrating peptides (CPPs) are very promising drug carriers to deliver membrane-impermeable pharmaceuticals, such as siRNA, bioactive peptides and proteins. CPPs directly penetrate into cells across cell membranes via a spontaneous energy-independent process, in which CPPs appear to interact with acidic lipids in the outer leaflet of the cell membrane. However, acidic lipids represent only 10 to 20% of the total membrane lipid content and in mammalian cell membranes they are predominantly located in the inner leaflet. Alternatively, CPPs favorably bind in a charge density- dependent manner to negatively charged, sulfated glycosaminoglycans (GAGs), such as heparan sulfate and chondroitin sulfate, which are abundant on the cell surface and are involved in many biological functions. We have recently demonstrated that the interaction of CPPs with sulfated GAGs plays a critical role in their direct cell membrane penetration: the favorable enthalpy contribution drives the high-affinity binding of arginine-rich CPPs to sulfated GAGs, initiating an efficient cell membrane penetration. The favorable enthalpy gain is presumably mainly derived from a unique property of the guanidino group of arginine residues forming multidentate hydrogen bonding with sulfate and carboxylate groups in GAGs. Such interactions can be accompanied with charge neutralization of arginine-rich CPPs, promoting their partition into cell membranes. This review summarizes the current understanding of the physicochemical mechanism for lipid membrane penetration of CPPs, and discusses the role of the GAG interactions on the cell membrane penetration of CPPs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Soestbergen, M. van, E-mail: m.vansoestbergen@tudelft.n [Materials Innovation Institute, Mekelweg 2, 2628 CD Delft (Netherlands); Department of Precision and Microsystems Engineering, University of Technology Delft, Mekelweg 2, 2628 CD Delft (Netherlands)

    2010-02-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  5. Diffuse layer effects on the current in galvanic cells containing supporting electrolyte

    International Nuclear Information System (INIS)

    Soestbergen, M. van

    2010-01-01

    We study the effect of an inert supporting electrolyte on the steady-state ionic current through galvanic cells by solving the full Poisson-Nernst-Planck transport equation coupled to the generalized Frumkin-Butler-Volmer boundary equation for the electrochemical charge transfer at the electrodes. Consequently, the model presented here allows for non-zero space charge densities locally at the electrodes, thus extending the frequently used models based on the local electroneutrality condition by including diffuse layer (DL) effects. This extension is necessary since the DLs determine the ion concentration and electrical field at the reaction planes, which uniquely determine the charge transfer at the electrodes. In this work we present numerical results for systems which contain added inert supporting electrolyte using finite element discretization and compare those with semi-analytical results obtained using singular perturbation theory (limit of negligibly thin DLs). In case of negligibly thin DLs the presence of supporting electrolyte will introduce a limiting current below the classical diffusion-limiting current. Just as for systems without supporting electrolyte, the supporting electrolyte induced limiting current formally does not occur for systems having non-negligibly thin double DLs. For thin, however still finite, double layers this limit can still be seen as a steepening of the polarization curve for current vs. voltage.

  6. Current techniques for visualizing RNA in cells [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Lilith V.J.C. Mannack

    2016-04-01

    Full Text Available Labeling RNA is of utmost interest, particularly in living cells, and thus RNA imaging is an emerging field. There are numerous methods relying on different concepts ranging from hybridization-based probes, over RNA-binding proteins to chemo-enzymatic modification of RNA. These methods have different benefits and limitations. This review aims to outline the current state-of-the-art techniques and point out their benefits and limitations.

  7. Current neutralization of nanosecond risetime, high-current electron beam

    International Nuclear Information System (INIS)

    Lidestri, J.P.; Spence, P.W.; Bailey, V.L.; Putnam, S.D.; Fockler, J.; Eichenberger, C.; Champney, P.D.

    1991-01-01

    This paper reports that the authors have recently investigated methods to achieve current neutralization in fast risetime (<3 ns) electron beams propagating in low-pressure gas. For this investigation, they injected a 3-MV, 30-kA intense beam into a drift cell containing gas pressures from 0.10 to 20 torr. By using a fast net current monitor (100-ps risetime), it was possible to observe beam front gas breakdown phenomena and to optimize the drift cell gas pressure to achieve maximum current neutralization. Experimental observations have shown that by increasing the drift gas pressure (P ∼ 12.5 torr) to decrease the mean time between secondary electron/gas collisions, the beam can propagate with 90% current neutralization for the full beam pulsewidth (16 ns)

  8. Estrogen modulates potassium currents and expression of the Kv4.2 subunit in GT1-7 cells.

    Science.gov (United States)

    Farkas, Imre; Varju, Patricia; Liposits, Zsolt

    2007-03-01

    The proper maintenance of reproduction requires the pulsatile secretion of gonadotropin-releasing hormone (GnRH), which is ensured by synchronized periodic firing of multiple GnRH neurons. Both hormone secretion and electrophysiological properties of GnRH cells are influenced by estrogen. The impact of 17beta-estradiol treatment on the function of voltage gated A- and K-type potassium channels, known modulators of firing rate, was therefore examined in our experiments using immortalized GnRH-producing GT1-7 neurons. Whole cell patch clamp recordings showed the absence of the A-type current in GT1-7 cells cultured in estrogen-free medium and after 8h 17beta-estradiol treatment. Exposure of the cells to 17beta-estradiol for 24 and 48 h, respectively, resulted in the appearance of the A-type current. The induction of the A-type current by 17beta-estradiol was dose-related (50 pM to 15 nM range). In contrast, the K-type potassium current was apparent in the estrogen-free environment and 17beta-estradiol administration significantly decreased its amplitude. Co-administration of 17beta-estradiol and estrogen receptor blocker, Faslodex (ICI 182,780; 1 microM) abolished the occurrence of the A-type current. Real-time PCR data demonstrated that expression of the Kv4.2 subunit of the A-type channel was low at 0, 0.5, 2 and 8h, peaked at 24h and diminished at 48 h 17beta-estradiol treatment (15 nM). These data indicate that potassium channels of GT1-7 neurons are regulated by estrogen a mechanism that might contribute to modulation of firing rate and hormone secretion in GnRH neurons.

  9. Active load current sharing in fuel cell and battery fed DC motor drive for electric vehicle application

    International Nuclear Information System (INIS)

    Pany, Premananda; Singh, R.K.; Tripathi, R.K.

    2016-01-01

    Highlights: • Load current sharing in FC and battery fed dc drive. • Active current sharing control using LabVIEW. • Detail hardware implementation. • Controller performance is verified through MATLAB simulation and experimental results. - Abstract: In order to reduce the stress on fuel cell based hybrid source fed electric drive system the controller design is made through active current sharing (ACS) technique. The effectiveness of the proposed ACS technique is tested on a dc drive system fed from fuel cell and battery energy sources which enables both load current sharing and source power management. High efficiency and reliability of the hybrid system can be achieved by proper energy conversion and management of power to meet the load demand in terms of required voltage and current. To overcome the slow dynamics feature of FC, a battery bank of adequate power capacity has to be incorporated as FC voltage drops heavily during fast load demand. The controller allows fuel cell to operate in normal load region and draw the excess power from battery. In order to demonstrate the performance of the drive using ACS control strategy different modes of operation of the hybrid source with the static and dynamic behavior of the control system is verified through simulation and experimental results. This control scheme is implemented digitally in LabVIEW with PCI 6251 DAQ I/O interface card. The efficacy of the controller performance is demonstrated in system changing condition supplemented by experimental validation.

  10. Distribution of the Current Density in Electrolyte of the Pem Fuel Cell

    Directory of Open Access Journals (Sweden)

    Eugeniusz Kurgan

    2004-01-01

    Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.

  11. Stem Cells as New Agents for the Treatment of Infertility: Current and Future Perspectives and Challenges

    Directory of Open Access Journals (Sweden)

    Vladislav Volarevic

    2014-01-01

    Full Text Available Stem cells are undifferentiated cells that are present in the embryonic, fetal, and adult stages of life and give rise to differentiated cells that make up the building blocks of tissue and organs. Due to their unlimited source and high differentiation potential, stem cells are considered as potentially new therapeutic agents for the treatment of infertility. Stem cells could be stimulated in vitro to develop various numbers of specialized cells including male and female gametes suggesting their potential use in reproductive medicine. During past few years a considerable progress in the derivation of male germ cells from pluripotent stem cells has been made. In addition, stem cell-based strategies for ovarian regeneration and oocyte production have been proposed as future clinical therapies for treating infertility in women. In this review, we summarized current knowledge and present future perspectives and challenges regarding the use of stem cells in reproductive medicine.

  12. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Science.gov (United States)

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Muscarinic activation of Ca2+-activated Cl- current in interstitial cells of Cajal.

    Science.gov (United States)

    Zhu, Mei Hong; Sung, In Kyung; Zheng, Haifeng; Sung, Tae Sik; Britton, Fiona C; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2011-09-15

    Interstitial cells of Cajal (ICC) provide pacemaker activity and functional bridges between enteric motor nerve terminals and gastrointestinal smooth muscle cells. The ionic conductance(s) in ICC that are activated by excitatory neural inputs are unknown. Transgenic mice (Kit(copGFP/+)) with constitutive expression of a bright green fluorescent protein were used to investigate cellular responses of ICC to cholinergic stimulation. ICC displayed spontaneous transient inward currents (STICs) under voltage clamp that corresponded to spontaneous transient depolarizations (STDs) under current clamp. STICs reversed at 0 mV when E(Cl) = 0 mV and at -40 mV when E(Cl) was -40 mV, suggesting the STICs were due to a chloride conductance. Carbachol (CCh, 100 nm and 1 μm) induced a sustained inward current (depolarization in current clamp) and increased the amplitude and frequency of STICs and STDs. CCh responses were blocked by atropine (10 μm) or 4-DAMP (100 nm), an M(3) receptor antagonist. STDs were blocked by niflumic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (both 100 μm), and CCh had no effect in the presence of these drugs. The responses of intact circular muscles to CCh and stimulation of intrinsic excitatory nerves by electrical field stimulation (EFS) were also compared. CCh (1 μm) caused atropine-sensitive depolarization and increased the maximum depolarization of slow waves. Similar atropine-sensitive responses were elicited by stimulation of intrinsic excitatory neurons. Niflumic acid (100 μm) blocked responses to EFS but had minor effect on responses to exogenous CCh. These data suggest that different ionic conductances are responsible for electrical responses elicited by bath-applied CCh and cholinergic nerve stimulation.

  14. Cell Secretion: Current Structural and Biochemical Insights

    Directory of Open Access Journals (Sweden)

    Saurabh Trikha

    2010-01-01

    Full Text Available Essential physiological functions in eukaryotic cells, such as release of hormones and digestive enzymes, neurotransmission, and intercellular signaling, are all achieved by cell secretion. In regulated (calcium-dependent secretion, membrane-bound secretory vesicles dock and transiently fuse with specialized, permanent, plasma membrane structures, called porosomes or fusion pores. Porosomes are supramolecular, cup-shaped lipoprotein structures at the cell plasma membrane that mediate and control the release of vesicle cargo to the outside of the cell. The sizes of porosomes range from 150nm in diameter in acinar cells of the exocrine pancreas to 12nm in neurons. In recent years, significant progress has been made in our understanding of the porosome and the cellular activities required for cell secretion, such as membrane fusion and swelling of secretory vesicles. The discovery of the porosome complex and the molecular mechanism of cell secretion are summarized in this article.

  15. CaV 3.1 and CaV 3.3 account for T-type Ca2+ current in GH3 cells

    Directory of Open Access Journals (Sweden)

    M.A. Mudado

    2004-06-01

    Full Text Available T-type Ca2+ channels are important for cell signaling by a variety of cells. We report here the electrophysiological and molecular characteristics of the whole-cell Ca2+ current in GH3 clonal pituitary cells. The current inactivation at 0 mV was described by a single exponential function with a time constant of 18.32 ± 1.87 ms (N = 16. The I-V relationship measured with Ca2+ as a charge carrier was shifted to the left when we applied a conditioning pre-pulse of up to -120 mV, indicating that a low voltage-activated current may be present in GH3 cells. Transient currents were first activated at -50 mV and peaked around -20 mV. The half-maximal voltage activation and the slope factors for the two conditions are -35.02 ± 2.4 and 6.7 ± 0.3 mV (pre-pulse of -120 mV, N = 15, and -27.0 ± 0.97 and 7.5 ± 0.7 mV (pre-pulse of -40 mV, N = 9. The 8-mV shift in the activation mid-point was statistically significant (P < 0.05. The tail currents decayed bi-exponentially suggesting two different T-type Ca2+ channel populations. RT-PCR revealed the presence of a1G (CaV3.1 and a1I (CaV3.3 T-type Ca2+ channel mRNA transcripts.

  16. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells.

    NARCIS (Netherlands)

    Neijt, H.C.; Plomp, J.J.; Vijverberg, H.P.M.

    1989-01-01

    1. Ionic currents mediated by serotonin 5-HT3 receptors were studied in the mouse neuroblastoma cell line N1E-115, using suction pipettes for intracellular perfusion and voltage clamp recording. The dependence of the kinetics of the membrane current on serotonin concentration was investigated. 2. At

  17. Current density and catalyst-coated membrane resistance distribution of hydro-formed metallic bipolar plate fuel cell short stack with 250 cm2 active area

    Science.gov (United States)

    Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.

    2016-01-01

    An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.

  18. Particle-in-cell simulations of electron beam control using an inductive current divider

    Energy Technology Data Exchange (ETDEWEB)

    Swanekamp, S. B.; Angus, J. R.; Cooperstein, G.; Ottinger, P. F.; Richardson, A. S.; Schumer, J. W.; Weber, B. V. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    2015-11-15

    Kinetic, time-dependent, electromagnetic, particle-in-cell simulations of the inductive current divider are presented. The inductive current divider is a passive method for controlling the trajectory of an intense, hollow electron beam using a vacuum structure that inductively splits the beam's return current. The current divider concept was proposed and studied theoretically in a previous publication [Swanekamp et al., Phys. Plasmas 22, 023107 (2015)]. A central post carries a portion of the return current (I{sub 1}), while the outer conductor carries the remainder (I{sub 2}) with the injected beam current given by I{sub b} = I{sub 1} + I{sub 2}. The simulations are in agreement with the theory which predicts that the total force on the beam trajectory is proportional to (I{sub 2}−I{sub 1}) and the force on the beam envelope is proportional to I{sub b}. Independent control over both the current density and the beam angle at the target is possible by choosing the appropriate current-divider geometry. The root-mean-square (RMS) beam emittance (ε{sub RMS}) varies as the beam propagates through the current divider to the target. For applications where control of the beam trajectory is desired and the current density at the target is similar to the current density at the entrance foil, there is a modest 20% increase in ε{sub RMS} at the target. For other applications where the beam is pinched to a current density ∼5 times larger at the target, ε{sub RMS} is 2–3 times larger at the target.

  19. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Terence K. S. Wong

    2016-04-01

    Full Text Available The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O, cupric oxide (CuO and copper (III oxide (Cu4O3 is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%.

  20. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Science.gov (United States)

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  1. Development of an on-line analyzer for organic phase uranium concentration in extraction process

    International Nuclear Information System (INIS)

    Dong Yanwu; Song Yufen; Zhu Yaokun; Cong Peiyuan; Cui Songru

    1998-10-01

    The working principle, constitution, performance of an on-line analyzer and the development characteristic of immersion sonde, data processing system and examination standard are reported. The performance of this instrument is reliable. For identical sample, the signal fluctuation in continuous monitoring for four months is less than +-1%. According to required measurement range by choosing appropriate length of sample cell the precision of measurement is better than 1% at uranium concentration 100 g/L. The detection limit is (50 +- 10) mg/L. The uranium concentration in process stream can be automatically displayed and printed out in real time and 4∼20 mA current signal being proportional to the uranium concentration can be presented. So the continuous control and computer management for the extraction process can be achieved

  2. Cell-Type Specific Development of the Hyperpolarization-Activated Current, Ih, in Prefrontal Cortical Neurons

    Directory of Open Access Journals (Sweden)

    Sha-Sha Yang

    2018-05-01

    Full Text Available H-current, also known as hyperpolarization-activated current (Ih, is an inward current generated by the hyperpolarization-activated cyclic nucleotide-gated (HCN cation channels. Ih plays an essential role in regulating neuronal properties, synaptic integration and plasticity, and synchronous activity in the brain. As these biological factors change across development, the brain undergoes varying levels of vulnerability to disorders like schizophrenia that disrupt prefrontal cortex (PFC-dependent function. However, developmental changes in Ih in PFC neurons remains untested. Here, we examine Ih in pyramidal neurons vs. gamma-aminobutyric acid (GABAergic parvalbumin-expressing (PV+ interneurons in developing mouse PFC. Our findings show that the amplitudes of Ih in these cell types are identical during the juvenile period but differ at later time points. In pyramidal neurons, Ih amplitude significantly increases from juvenile to adolescence and follows a similar trend into adulthood. In contrast, the amplitude of Ih in PV+ interneurons decreases from juvenile to adolescence, and does not change from adolescence to adulthood. Moreover, the kinetics of HCN channels in pyramidal neurons is significantly slower than in PV+ interneurons, with a gradual decrease in pyramidal neurons and a gradual increase in PV+ cells across development. Our study reveals distinct developmental trajectories of Ih in pyramidal neurons and PV+ interneurons. The cell-type specific alteration of Ih during the critical period from juvenile to adolescence reflects the contribution of Ih to the maturation of the PFC and PFC-dependent function. These findings are essential for a better understanding of normal PFC function, and for elucidating Ih’s crucial role in the pathophysiology of neurodevelopmental disorders.

  3. Melatonin potentiates glycine currents through a PLC/PKC signalling pathway in rat retinal ganglion cells.

    Science.gov (United States)

    Zhao, Wen-Jie; Zhang, Min; Miao, Yanying; Yang, Xiong-Li; Wang, Zhongfeng

    2010-07-15

    In vertebrate retina, melatonin regulates various physiological functions. In this work we investigated the mechanisms underlying melatonin-induced potentiation of glycine currents in rat retinal ganglion cells (RGCs). Immunofluorescence double labelling showed that rat RGCs were solely immunoreactive to melatonin MT(2) receptors. Melatonin potentiated glycine currents of RGCs, which was reversed by the MT(2) receptor antagonist 4-P-PDOT. The melatonin effect was blocked by intracellular dialysis of GDP-beta-S. Either preincubation with pertussis toxin or application of the phosphatidylcholine (PC)-specific phospholipase C (PLC) inhibitor D609, but not the phosphatidylinositol (PI)-PLC inhibitor U73122, blocked the melatonin effect. The protein kinase C (PKC) activator PMA potentiated the glycine currents and in the presence of PMA melatonin failed to cause further potentiation of the currents, whereas application of the PKC inhibitor bisindolylmaleimide IV abolished the melatonin-induced potentiation. The melatonin effect persisted when [Ca(2+)](i) was chelated by BAPTA, and melatonin induced no increase in [Ca(2+)](i). Neither cAMP-PKA nor cGMP-PKG signalling pathways seemed to be involved because 8-Br-cAMP or 8-Br-cGMP failed to cause potentiation of the glycine currents and both the PKA inhibitor H-89 and the PKG inhibitor KT5823 did not block the melatonin-induced potentiation. In consequence, a distinct PC-PLC/PKC signalling pathway, following the activation of G(i/o)-coupled MT(2) receptors, is most likely responsible for the melatonin-induced potentiation of glycine currents of rat RGCs. Furthermore, in rat retinal slices melatonin potentiated light-evoked glycine receptor-mediated inhibitory postsynaptic currents in RGCs. These results suggest that melatonin, being at higher levels at night, may help animals to detect positive or negative contrast in night vision by modulating inhibitory signals largely mediated by glycinergic amacrine cells in the inner

  4. Current generation in microbial electrolysis cells with addition of amorphous ferric hydroxide, Tween 80, or DNA

    KAUST Repository

    Ren, Lijiao

    2012-11-01

    Iron-oxide nanoparticles and the Tween 80 have previously been shown to improve power generation in microbial fuel cells (MFCs), presumably by improving electron transfer from the bacteria to the anode. We examined whether several chemicals would affect current production in single-chamber microbial electrolysis cells (MECs), where hydrogen gas is produced at the cathode, using mixed cultures and Geobacter sulfurreducens. Tween 80 did not increase the current. Fe(OH) 3 addition increased the maximum current density of both the mixed cultures (from 6.1 ± 0.9 A/m 2 to 8.8 ± 0.3 A/m 2) and pure cultures (from 4.8 ± 0.5 A/m 2 to 7.4 ± 1.1 A/m 2). Improved current production was sustained even after iron was no longer added to the medium. It was demonstrated that increased current resulted from improved cathode performance. Analysis using electrochemical impedance spectroscopy (EIS) showed that the iron primarily reduced the diffusion resistances of the cathodes, and scanning electron microscopy (SEM) images showed the formation of highly porous structures on the cathode. The addition of DNA also did not improve MEC or MFC performance. These results demonstrated that among these treatments only Fe(OH) 3 addition was a viable method for enhancing current densities in MECs, primarily by improving cathode performance. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights.

  5. Post-arc current simulation based on measurement in vacuum circuit breaker with a one-dimensional particle-in-cell model

    Science.gov (United States)

    Jia, Shenli; Mo, Yongpeng; Shi, Zongqian; Li, Junliang; Wang, Lijun

    2017-10-01

    The post-arc dielectric recovery process has a decisive effect on the current interruption performance in a vacuum circuit breaker. The dissipation of residual plasma at the moment of current zero under the transient recovery voltage, which is the first stage of the post-arc dielectric recovery process and forms the post-arc current, has attracted many concerns. A one-dimensional particle-in-cell model is developed to simulate the measured post-arc current in the vacuum circuit breaker in this paper. At first, the parameters of the residual plasma are estimated roughly by the waveform of the post-arc current which is taken from measurements. After that, different components of the post-arc current, which are formed by the movement of charged particles in the residual plasma, are discussed. Then, the residual plasma density is adjusted according to the proportion of electrons and ions absorbed by the post-arc anode derived from the particle-in-cell simulation. After this adjustment, the post-arc current waveform obtained from the simulation is closer to that obtained from measurements.

  6. Muscarinic activation of Ca2+-activated Cl− current in interstitial cells of Cajal

    Science.gov (United States)

    Zhu, Mei Hong; Sung, In Kyung; Zheng, Haifeng; Sung, Tae Sik; Britton, Fiona C; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2011-01-01

    Abstract Interstitial cells of Cajal (ICC) provide pacemaker activity and functional bridges between enteric motor nerve terminals and gastrointestinal smooth muscle cells. The ionic conductance(s) in ICC that are activated by excitatory neural inputs are unknown. Transgenic mice (KitcopGFP/+) with constitutive expression of a bright green fluorescent protein were used to investigate cellular responses of ICC to cholinergic stimulation. ICC displayed spontaneous transient inward currents (STICs) under voltage clamp that corresponded to spontaneous transient depolarizations (STDs) under current clamp. STICs reversed at 0 mV when ECl = 0 mV and at –40 mV when ECl was –40 mV, suggesting the STICs were due to a chloride conductance. Carbachol (CCh, 100 nm and 1 μm) induced a sustained inward current (depolarization in current clamp) and increased the amplitude and frequency of STICs and STDs. CCh responses were blocked by atropine (10 μm) or 4-DAMP (100 nm), an M3 receptor antagonist. STDs were blocked by niflumic acid and 5-nitro-2-(3-phenylpropylamino)-benzoic acid (both 100 μm), and CCh had no effect in the presence of these drugs. The responses of intact circular muscles to CCh and stimulation of intrinsic excitatory nerves by electrical field stimulation (EFS) were also compared. CCh (1 μm) caused atropine-sensitive depolarization and increased the maximum depolarization of slow waves. Similar atropine-sensitive responses were elicited by stimulation of intrinsic excitatory neurons. Niflumic acid (100 μm) blocked responses to EFS but had minor effect on responses to exogenous CCh. These data suggest that different ionic conductances are responsible for electrical responses elicited by bath-applied CCh and cholinergic nerve stimulation. PMID:21768263

  7. Effects of heat and water transport on the performance of polymer electrolyte membrane fuel cell under high current density operation

    International Nuclear Information System (INIS)

    Tabuchi, Yuichiro; Shiomi, Takeshi; Aoki, Osamu; Kubo, Norio; Shinohara, Kazuhiko

    2010-01-01

    Key challenges to the acceptance of polymer electrolyte membrane fuel cells (PEMFCs) for automobiles are the cost reduction and improvement in its power density for compactness. In order to get the solution, the further improvement in a fuel cell performance is required. In particular, under higher current density operation, water and heat transport in PEMFCs has considerable effects on the cell performance. In this study, the impact of heat and water transport on the cell performance under high current density was investigated by experimental evaluation of liquid water distribution and numerical validation. Liquid water distribution in MEA between rib and channel area is evaluated by neutron radiography. In order to neglect the effect of liquid water in gas channels and reactant species concentration distribution in the flow direction, the differential cell was used in this study. Experimental results suggested that liquid water under the channel was dramatically changed with rib/channel width. From the numerical study, it is found that the change of liquid water distribution was significantly affected by temperature distribution in MEA between rib and channel area. In addition, not only heat transport but also water transport through the membrane also significantly affected the cell performance under high current density operation.

  8. Atmospheric Profiles, Clouds, and the Evolution of Sea Ice Cover in the Beaufort and Chukchi Seas: Atmospheric Observations and Modeling as Part of the Seasonal Ice Zone Reconnaissance Surveys

    Science.gov (United States)

    2015-09-30

    diameter cardboard tube, weighs 1 lb. 11 GliderSonde Deployment Sequence 1. GliderSonde is powered inside the deployment tube by pressing a button...wings are unfolded by a continuous rotation servo and locked in place by a spring-loaded detent mechanism. The flight control servos are also

  9. Modelling effects of current distributions on performance of micro-tubular hollow fibre solid oxide fuel cells

    International Nuclear Information System (INIS)

    Doraswami, U.; Droushiotis, N.; Kelsall, G.H.

    2010-01-01

    A three-dimensional model, considering mass, momentum, energy and charge conservation, was developed and the equations solved to describe the physico-chemical phenomena occurring within a single, micro-tubular hollow fibre solid oxide fuel cell (HF-SOFC). The model was used to investigate the spatial distributions of potential, current and reactants in a 10 mm long HF-SOFC. The predicted effects of location of current collectors, electrode conductivities, cathode thickness and porosity were analysed to minimise the ranges of current density distributions and maximise performance by judicious design. To decrease the computational load, azimuthal symmetry was assumed to model 50 and 100 mm long reactors in 2-D. With connectors at the same end of the HF-SOFC operating at a cell voltage of 0.5 V and a mean 5 kA m -2 , axial potential drops of ca. 0.14 V in the cathode were predicted, comparable to the cathode activation overpotential. Those potential drops caused average current densities to decrease from ca. 6.5 to ca.1 kA m -2 as HF-SOFC length increased from 10 to 100 mm, at which much of the length was inactive. Peak power densities were predicted to vary from 3.8 to -2 , depending on the location of the current collectors; performance increased with increasing cathode thickness and decreasing porosity.

  10. High performance of mixed halide perovskite solar cells: Role of halogen atom and plasmonic nanoparticles on the ideal current density of cell

    Science.gov (United States)

    Mohebpour, Mohammad Ali; Saffari, Mohaddeseh; Soleimani, Hamid Rahimpour; Tagani, Meysam Bagheri

    2018-03-01

    To be able to increase the efficiency of perovskite solar cells which is one of the most substantial challenges ahead in photovoltaic industry, the structural and optical properties of perovskite CH3NH3PbI3-xBrx for values x = 1-3 have been studied employing density functional theory (DFT). Using the optical constants extracted from DFT calculations, the amount of light reflectance and ideal current density of a simulated single-junction perovskite solar cell have been investigated. The results of DFT calculations indicate that adding halogen bromide to CH3NH3PbI3 compound causes the relocation of energy bands in band structure which its consequence is increasing the bandgap. In addition, the effect of increasing Br in this structure can be seen as a reduction in lattice constant, refractive index, extinction and absorption coefficient. As well, results of the simulation suggest a significant current density enhancement as much as 22% can be achieved by an optimized array of Platinum nanoparticles that is remarkable. This plan is able to be a prelude for accomplishment of solar cells with higher energy conversion efficiency.

  11. Alternating current electrical stimulation enhanced chemotherapy: a novel strategy to bypass multidrug resistance in tumor cells

    International Nuclear Information System (INIS)

    Janigro, Damir; Perju, Catalin; Fazio, Vincent; Hallene, Kerri; Dini, Gabriele; Agarwal, Mukesh K; Cucullo, Luca

    2006-01-01

    Tumor burden can be pharmacologically controlled by inhibiting cell division and by direct, specific toxicity to the cancerous tissue. Unfortunately, tumors often develop intrinsic pharmacoresistance mediated by specialized drug extrusion mechanisms such as P-glycoprotein. As a consequence, malignant cells may become insensitive to various anti-cancer drugs. Recent studies have shown that low intensity very low frequency electrical stimulation by alternating current (AC) reduces the proliferation of different tumor cell lines by a mechanism affecting potassium channels while at intermediate frequencies interfere with cytoskeletal mechanisms of cell division. The aim of the present study is to test the hypothesis that permeability of several MDR1 over-expressing tumor cell lines to the chemotherapic agent doxorubicin is enhanced by low frequency, low intensity AC stimulation. We grew human and rodent cells (C6, HT-1080, H-1299, SKOV-3 and PC-3) which over-expressed MDR1 in 24-well Petri dishes equipped with an array of stainless steel electrodes connected to a computer via a programmable I/O board. We used a dedicated program to generate and monitor the electrical stimulation protocol. Parallel cultures were exposed for 3 hours to increasing concentrations (1, 2, 4, and 8 μM) of doxorubicin following stimulation to 50 Hz AC (7.5 μA) or MDR1 inhibitor XR9576. Cell viability was assessed by determination of adenylate kinase (AK) release. The relationship between MDR1 expression and the intracellular accumulation of doxorubicin as well as the cellular distribution of MDR1 was investigated by computerized image analysis immunohistochemistry and Western blot techniques. By the use of a variety of tumor cell lines, we show that low frequency, low intensity AC stimulation enhances chemotherapeutic efficacy. This effect was due to an altered expression of intrinsic cellular drug resistance mechanisms. Immunohistochemical, Western blot and fluorescence analysis revealed

  12. Combined local current distribution measurements and high resolution neutron radiography of operating direct methanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials

    2010-07-01

    Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)

  13. Ten years since the discovery of iPS cells: The current state of their clinical application.

    Science.gov (United States)

    Aznar, J; Tudela, J

    On the 10-year anniversary of the discovery of induced pluripotent stem cells, we review the main results from their various fields of application, the obstacles encountered during experimentation and the potential applications in clinical practice. The efficacy of induced pluripotent cells in clinical experimentation can be equated to that of human embryonic stem cells; however, unlike stem cells, induced pluripotent cells do not involve the severe ethical difficulties entailed by the need to destroy human embryos to obtain them. The finding of these cells, which was in its day a true scientific milestone worthy of a Nobel Prize in Medicine, is currently enveloped by light and shadow: high hopes for regenerative medicine versus the, as of yet, poorly controlled risks of unpredictable reactions, both in the processes of dedifferentiation and subsequent differentiation to the cell strains employed for therapeutic or experimentation goals. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  14. Data Analysis of the TK-1G Sounding Rocket Installed with a Satellite Navigation System

    Directory of Open Access Journals (Sweden)

    Lesong Zhou

    2017-10-01

    Full Text Available This article gives an in-depth analysis of the experimental data of the TK-1G sounding rocket installed with the satellite navigation system. It turns out that the data acquisition rate of the rocket sonde is high, making the collection of complete trajectory and meteorological data possible. By comparing the rocket sonde measurements with those obtained by virtue of other methods, we find that the rocket sonde can be relatively precise in measuring atmospheric parameters within the scope of 20–60 km above the ground. This establishes the fact that the TK-1G sounding rocket system is effective in detecting near-space atmospheric environment.

  15. Investigation of the effects of external current systems on the MAGSAT data utilizing grid cell modeling techniques

    Science.gov (United States)

    Klumpar, D. M. (Principal Investigator)

    1982-01-01

    The feasibility of modeling magnetic fields due to certain electrical currents flowing in the Earth's ionosphere and magnetosphere was investigated. A method was devised to carry out forward modeling of the magnetic perturbations that arise from space currents. The procedure utilizes a linear current element representation of the distributed electrical currents. The finite thickness elements are combined into loops which are in turn combined into cells having their base in the ionosphere. In addition to the extensive field modeling, additional software was developed for the reduction and analysis of the MAGSAT data in terms of the external current effects. Direct comparisons between the models and the MAGSAT data are possible.

  16. Electrodeposition of nickel onto steel, using a thermostatic cell and movable anode by a variable current

    International Nuclear Information System (INIS)

    Vega G, J.D.

    1994-01-01

    In this work, metallic coatings of nickel was made over carbon steel using two different electrolytic solutions: The Watts's bath and the nickel sulfamate bath, using a pulse variable current. The method use was the traditional method, its means a thermostatic cell and one movable anode, which is a few know technique nowadays, it allow realize depositions away from any laboratory or special workshop, it has the advantage to be a portable dispositive. At last of all the electro depositions the coatings quality was valuable by them physical properties like: adhesion, hardness, wrinkled and thickness. The best results was obtain by the Nickel sulfamate bath and movable anode, less in the thickness, which has higher on the thermostatic cell. The variable current was obtain by a Pulse Generator and a Cathodic galvanometer. (Author)

  17. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.; Kros, Corne J.

    2016-01-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they

  18. Current advanced therapy cell-based medicinal products for type-1-diabetes treatment.

    Science.gov (United States)

    Cañibano-Hernández, Alberto; Del Burgo, Laura Sáenz; Espona-Noguera, Albert; Ciriza, Jesús; Pedraz, Jose Luis

    2018-03-27

    In the XXI century diabetes mellitus has become one of the main threats to human health with higher incidence in regions such as Europe and North America. Type 1 diabetes mellitus (T1DM) occurs as a consequence of the immune-mediated destruction of insulin producing β-cells located in the endocrine part of the pancreas, the islets of Langerhans. The administration of exogenous insulin through daily injections is the most prominent treatment for T1DM but its administration is frequently associated to failure in glucose metabolism control, finally leading to hyperglycemia episodes. Other approaches have been developed in the past decades, such as whole pancreas and islet allotransplantation, but they are restricted to patients who exhibit frequent episodes of hypoglycemia or renal failure because the lack of donors and islet survival. Moreover, patients transplanted with either whole pancreas or islets require of immune suppression to avoid the rejection of the transplant. Currently, advanced therapy medicinal products (ATMP), such as implantable devices, have been developed in order to reduce immune rejection response while increasing cell survival. To overcome these issues, ATMPs must promote vascularization, guaranteeing the nutritional contribution, while providing O 2 until vasculature can surround the device. Moreover, it should help in the immune-protection to avoid acute and chronic rejection. The transplanted cells or islets should be embedded within biomaterials with tunable properties like injectability, stiffness and porosity mimicking natural ECM structural characteristics. And finally, an infinitive cell source that solves the donor scarcity should be found such as insulin producing cells derived from mesenchymal stem cells (MSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Several companies have registered their ATMPs and future studies envision new prototypes. In this review, we will discuss the mechanisms and etiology of

  19. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries.

    Science.gov (United States)

    Qu, Lihui; Yu, Lei; Wang, Yanli; Jin, Xin; Zhang, Qianlong; Lu, Ping; Yu, Xiufeng; Zhong, Weiwei; Zheng, Xiaodong; Cui, Ningren; Jiang, Chun; Zhu, Daling

    2015-01-01

    Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir) play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs) that was regulated by the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren't determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.

  20. Inward Rectifier K+ Currents Are Regulated by CaMKII in Endothelial Cells of Primarily Cultured Bovine Pulmonary Arteries.

    Directory of Open Access Journals (Sweden)

    Lihui Qu

    Full Text Available Endothelium lines the interior surface of vascular walls and regulates vascular tones. The endothelial cells sense and respond to chemical and mechanical stimuli in the circulation, and couple the stimulus signals to vascular smooth muscles, in which inward rectifier K+ currents (Kir play an important role. Here we applied several complementary strategies to determine the Kir subunit in primarily cultured pulmonary arterial endothelial cells (PAECs that was regulated by the Ca2+/calmodulin (CaM-dependent protein kinase II (CaMKII. In whole-cell voltage clamp, the Kir currents were sensitive to micromolar concentrations of extracellular Ba2+. In excised inside-out patches, an inward rectifier K+ current was observed with single-channel conductance 32.43 ± 0.45 pS and Popen 0.27 ± 0.04, which were consistent with known unitary conductance of Kir 2.1. RT-PCR and western blot results showed that expression of Kir 2.1 was significantly stronger than that of other subtypes in PAECs. Pharmacological analysis of the Kir currents demonstrated that insensitivity to intracellular ATP, pinacidil, glibenclamide, pH, GDP-β-S and choleratoxin suggested that currents weren't determined by KATP, Kir2.3, Kir2.4 and Kir3.x. The currents were strongly suppressed by exposure to CaMKII inhibitor W-7 and KN-62. The expression of Kir2.1 was inhibited by knocking down CaMKII. Consistently, vasodilation was suppressed by Ba2+, W-7 and KN-62 in isolated and perfused pulmonary arterial rings. These results suggest that the PAECs express an inward rectifier K+ current that is carried dominantly by Kir2.1, and this K+ channel appears to be targeted by CaMKII-dependent intracellular signaling systems.

  1. Stem cell treatment for avascular necrosis of the femoral head: current perspectives

    Directory of Open Access Journals (Sweden)

    Houdek MT

    2014-04-01

    Full Text Available Matthew T Houdek,1 Cody C Wyles,2 John R Martin,1 Rafael J Sierra11Department of Orthopedic Surgery, 2School of Medicine, Mayo Clinic, Rochester, MN, USAAbstract: Avascular necrosis (AVN of the femoral head is a progressive disease that predominantly affects younger patients. Although the exact pathophysiology of AVN has yet to be elucidated, the disease is characterized by a vascular insult to the blood supply of the femoral head, which can lead to collapse of the femoral head and subsequent degenerative changes. If AVN is diagnosed in the early stages of the disease, it may be possible to attempt surgical procedures which preserve the hip joint, including decompression of the femoral head augmented with concentrated bone marrow. The use of autologous stem cells has shown promise in halting the progression of AVN of the femoral head, and subsequently preventing young patients from undergoing total hip arthroplasty. The purpose of this study was to review the current use of stem cells for the treatment of AVN of the femoral head.Keywords: avascular necrosis, femoral head, osteonecrosis, stem cells, concentrated bone marrow

  2. Treatment of giant cell tumor of bone: Current concepts.

    Science.gov (United States)

    Puri, Ajay; Agarwal, Manish

    2007-04-01

    Giant cell tumor (GCT) of bone though one of the commonest bone tumors encountered by an orthopedic surgeon continues to intrigue treating surgeons. Usually benign, they are locally aggressive and may occasionally undergo malignant transformation. The surgeon needs to strike a balance during treatment between reducing the incidence of local recurrence while preserving maximal function.Differing opinions pertaining to the use of adjuvants for extension of curettage, the relative role of bone graft or cement to pack the defect and the management of recurrent lesions are some of the issues that offer topics for eternal debate.Current literature suggests that intralesional curettage strikes the best balance between controlling disease and preserving optimum function in the majority of the cases though there may be occasions where the extent of the disease mandates resection to ensure adequate disease clearance.An accompanying treatment algorithm helps outline the management strategy in GCT.

  3. Treatment of giant cell tumor of bone: Current concepts

    Directory of Open Access Journals (Sweden)

    Puri Ajay

    2007-01-01

    Full Text Available Giant cell tumor (GCT of bone though one of the commonest bone tumors encountered by an orthopedic surgeon continues to intrigue treating surgeons. Usually benign, they are locally aggressive and may occasionally undergo malignant transformation. The surgeon needs to strike a balance during treatment between reducing the incidence of local recurrence while preserving maximal function. Differing opinions pertaining to the use of adjuvants for extension of curettage, the relative role of bone graft or cement to pack the defect and the management of recurrent lesions are some of the issues that offer topics for eternal debate. Current literature suggests that intralesional curettage strikes the best balance between controlling disease and preserving optimum function in the majority of the cases though there may be occasions where the extent of the disease mandates resection to ensure adequate disease clearance. An accompanying treatment algorithm helps outline the management strategy in GCT.

  4. Effects of current stress and thermal storage on polymeric heterojunction P3HT:PCBM solar cell

    DEFF Research Database (Denmark)

    Rizzo, Antonio; Cester, Andrea; Torto, Lorenzo

    2016-01-01

    We subjected P3HT:PCBM solar cells to electrical constant current stress and thermal storage. We employed the impedance spectroscopy technique combined to conventional DC measurements for device characterization during all stresses. We identified and separated different contributions affecting...... the open circuit voltage and short circuit current. Several mechanisms are behind these changes during the stresses; in particular, we underlined the exciton recombination rate and the variation of the built-in voltage....

  5. Influence of Different Surface Modifications on the Photovoltaic Performance and Dark Current of Dye-Sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    XU Weiwei; DAI Songyuan; HU Linhua; ZHANG Changneng; XIAO Shangfeng; LUO Xiangdong; JING Weiping; WANG Kongjia

    2007-01-01

    The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TiCU treatment. A suitable concentration and number of times for TiCU treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TiCU will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interfacial link in the conductive glass substrate/dye interface and dye/TiO2 interface.

  6. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    Science.gov (United States)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  7. Development of an air-breathing direct methanol fuel cell with the cathode shutter current collectors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufeng; Liu, Xiaowei [Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001 (China); MEMS Center, Harbin Institute of Technology, Harbin 150001 (China); Zhang, Peng; Zhang, Bo; Li, Jianmin; Deng, Huichao [MEMS Center, Harbin Institute of Technology, Harbin 150001 (China)

    2010-06-15

    An air-breathing direct methanol fuel cell with a novel cathode shutter current collector is fabricated to develop the power sources for consumer electronic devices. Compared with the conventional circular cathode current collector, the shutter one improves the oxygen consumption and mass transport. The anode and cathode current collectors are made of stainless steel using thermal stamping die process. Moreover, an encapsulation method using the tailor-made clamps is designed to assemble the current collectors and MEA for distributing the stress of the edges and inside uniformly. It is observed that the maximum power density of the air-breathing DMFC operating with 1 M methanol solution achieves 19.7 mW/cm{sup 2} at room temperature. Based on the individual DMFCs, the air-breathing stack consisting of 36 DMFC units is achieved and applied to power a notebook computer. (author)

  8. A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries

    DEFF Research Database (Denmark)

    Matchkov, Vladimir; Aalkjær, Christian; Nilsson, Holger

    2004-01-01

    We have previously demonstrated the presence of a cyclic GMP (cGMP)-dependent calcium-activated inward current in vascular smooth-muscle cells, and suggested this to be of importance in synchronizing smooth-muscle contraction. Here we demonstrate the characteristics of this current. Using......M) in the pipette solution. The current was found to be a calcium-activated chloride current with an absolute requirement for cyclic GMP (EC50 6.4 microM). The current could be activated by the constitutively active subunit of PKG. Current activation was blocked by the protein kinase G antagonist Rp-8-Br-PET-cGMP...... differed from those of the calcium-activated chloride current in pulmonary myocytes, which was cGMP-independent, exhibited a high sensitivity to inhibition by niflumic acid, was unaffected by zinc ions, and showed outward current rectification as has previously been reported for this current. Under...

  9. The human ether-a-go-go-related gene (hERG) current inhibition selectively prolongs action potential of midmyocardial cells to augment transmural dispersion.

    Science.gov (United States)

    Yasuda, C; Yasuda, S; Yamashita, H; Okada, J; Hisada, T; Sugiura, S

    2015-08-01

    The majority of drug induced arrhythmias are related to the prolongation of action potential duration following inhibition of rapidly activating delayed rectifier potassium current (I(Kr)) mediated by the hERG channel. However, for arrhythmias to develop and be sustained, not only the prolongation of action potential duration but also its transmural dispersion are required. Herein, we evaluated the effect of hERG inhibition on transmural dispersion of action potential duration using the action potential clamp technique that combined an in silico myocyte model with the actual I(Kr) measurement. Whole cell I(Kr) current was measured in Chinese hamster ovary cells stably expressing the hERG channel. The measured current was coupled with models of ventricular endocardial, M-, and epicardial cells to calculate the action potentials. Action potentials were evaluated under control condition and in the presence of 1, 10, or 100 μM disopyramide, an hERG inhibitor. Disopyramide dose-dependently increased the action potential durations of the three cell types. However, action potential duration of M-cells increased disproportionately at higher doses, and was significantly different from that of epicardial and endocardial cells (dispersion of repolarization). By contrast, the effects of disopyramide on peak I(Kr) and instantaneous current-voltage relation were similar in all cell types. Simulation study suggested that the reduced repolarization reserve of M-cell with smaller amount of slowly activating delayed rectifier potassium current levels off at longer action potential duration to make such differences. The action potential clamp technique is useful for studying the mechanism of arrhythmogenesis by hERG inhibition through the transmural dispersion of repolarization.

  10. Bone Marrow Stem Cell Derived Paracrine Factors for Regenerative Medicine: Current Perspectives and Therapeutic Potential

    Directory of Open Access Journals (Sweden)

    Tom J. Burdon

    2011-01-01

    Full Text Available During the past several years, there has been intense research in the field of bone marrow-derived stem cell (BMSC therapy to facilitate its translation into clinical setting. Although a lot has been accomplished, plenty of challenges lie ahead. Furthermore, there is a growing body of evidence showing that administration of BMSC-derived conditioned media (BMSC-CM can recapitulate the beneficial effects observed after stem cell therapy. BMSCs produce a wide range of cytokines and chemokines that have, until now, shown extensive therapeutic potential. These paracrine mechanisms could be as diverse as stimulating receptor-mediated survival pathways, inducing stem cell homing and differentiation or regulating the anti-inflammatory effects in wounded areas. The current review reflects the rapid shift of interest from BMSC to BMSC-CM to alleviate many logistical and technical issues regarding cell therapy and evaluates its future potential as an effective regenerative therapy.

  11. Initial Results from Radiometer and Polarized Radar-Based Icing Algorithms Compared to In-Situ Data

    Science.gov (United States)

    Serke, David; Reehorst, Andrew L.; King, Michael

    2015-01-01

    In early 2015, a field campaign was conducted at the NASA Glenn Research Center in Cleveland, Ohio, USA. The purpose of the campaign is to test several prototype algorithms meant to detect the location and severity of in-flight icing (or icing aloft, as opposed to ground icing) within the terminal airspace. Terminal airspace for this project is currently defined as within 25 kilometers horizontal distance of the terminal, which in this instance is Hopkins International Airport in Cleveland. Two new and improved algorithms that utilize ground-based remote sensing instrumentation have been developed and were operated during the field campaign. The first is the 'NASA Icing Remote Sensing System', or NIRSS. The second algorithm is the 'Radar Icing Algorithm', or RadIA. In addition to these algorithms, which were derived from ground-based remote sensors, in-situ icing measurements of the profiles of super-cooled liquid water (SLW) collected with vibrating wire sondes attached to weather balloons produced a comprehensive database for comparison. Key fields from the SLW-sondes include air temperature, humidity and liquid water content, cataloged by time and 3-D location. This work gives an overview of the NIRSS and RadIA products and results are compared to in-situ SLW-sonde data from one icing case study. The location and quantity of super-cooled liquid as measured by the in-situ probes provide a measure of the utility of these prototype hazard-sensing algorithms.

  12. Adapted ECC ozonesonde for long-duration flights aboard boundary-layer pressurised balloons

    Science.gov (United States)

    Gheusi, François; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clenet, Antoine; Derrien, Solène; Doerenbecher, Alexis; El Amraoui, Laaziz; Fontaine, Alain; Hache, Emeric; Jambert, Corinne; Jaumouillé, Elodie; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore

    2016-12-01

    Since the 1970s, the French space agency CNES has developed boundary-layer pressurised balloons (BLPBs) with the capability to transport lightweight scientific payloads at isopycnic level and offer a quasi-Lagrangian sampling of the lower atmosphere over very long distances and durations (up to several weeks).Electrochemical concentration cell (ECC) ozonesondes are widely used under small sounding balloons. However, their autonomy is limited to a few hours owing to power consumption and electrolyte evaporation. An adaptation of the ECC sonde has been developed specifically for long-duration BLPB flights. Compared to conventional ECC sondes, the main feature is the possibility of programming periodic measurement sequences (with possible remote control during the flight). To increase the ozonesonde autonomy, the strategy has been adopted of short measurement sequences (2-3 min) regularly spaced in time (e.g. every 15 min). The rest of the time, the sonde pump is turned off. Results of preliminary ground-based tests are first presented. In particular, the sonde was able to provide correct ozone concentrations against a reference UV-absorption ozone analyser every 15 min for 4 days. Then we illustrate results from 16 BLBP flights launched over the western Mediterranean during three summer field campaigns of the ChArMEx project (http://charmex.lsce.ipsl.fr): TRAQA in 2012, and ADRIMED and SAFMED in 2013. BLPB drifting altitudes were in the range 0.25-3.2 km. The longest flight lasted more than 32 h and covered more than 1000 km. Satisfactory data were obtained when compared to independent ozone measurements close in space and time. The quasi-Lagrangian measurements allowed a first look at ozone diurnal evolution in the marine boundary layer as well as in the lower free troposphere. During some flight segments, there was indication of photochemical ozone production in the marine boundary layer or even in the free troposphere, at rates ranging from 1 to 2 ppbv h -1, which

  13. Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate

    DEFF Research Database (Denmark)

    Sun, Guotao; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    Implementation of microbial fuel cells (MFCs) for electricity production requires effective current generation from waste products via robust cathode reduction. Three cathode types using dissolved oxygen cathodes (DOCs), ferricyanide cathodes (FeCs) and air cathodes (AiCs) were therefore assessed...... to be the most sustainable option since it does not require ferricyanide. The data offer a new add-on option to the straw biorefinery by using bioethanol effluent for microbial electricity production....... using bioethanol effluent, containing 20.5 g/L xylose, 1.8 g/L arabinose and 2.5 g/L propionic acid. In each set-up the anode and cathode had an electrode surface area of 88 cm(2), which was used for calculation of the current density. Electricity generation was evaluated by quantifying current...

  14. Mesure de la teneur en eau en continu durant le séchage du foin en balles

    OpenAIRE

    Cormier, Étienne

    2008-01-01

    Une mesure en continu et précise de la teneur en eau (TEE) permettrait d'optimiser le séchage du foin dans un séchoir commercial à grande échelle. Pour mesurer la précision des lectures dans ces conditions, un capteur électronique relié à 16 sondes a été utilisé pour estimer la TEE dans un séchoir expérimental. Deux sondes et un thermocouple étaient insérés dans huit couches de foin superposées, de 135 mm d'épaisseur chacune. Les TEE estimées par les sondes ont été comparées à des TEE exactes...

  15. Effect of lycium barbarum polysaccharides on high glucose-induced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Ma

    2017-05-01

    Full Text Available Objective: To study the effect of lycium barbarum polysaccharides (LBP on high glucoseinduced retinal ganglion cell apoptosis, gene expression and delayed rectifier potassium current. Methods: RGC-5 retinal ganglion cell lines were cultured and divided into control group, high glucose group and LBP group that were treated with normal DMEM, highglucose DMEM as well as high-glucose DMEM containing 500 ng/mL LBP respectively. After treatment, the Annexin V-FITC/PI kits were used to measure the number of apoptotic cells, fluorescence quantitative PCR kits were used to determine the expression of apoptosis genes and antioxidant genes, and patch clamp was used to test delayed rectifier potassium current. Results: 12, 24, 36 and 48 h after intervention, the number of apoptotic cells of high glucose group was significantly higher than that of control group, and the number of apoptotic cells of LBP group was significantly lower than that of high glucose group (P<0.05; 24 and 48 h after intervention, c-fos, c-jun, caspase-3, caspase-9, Nrf-2, NQO1 and HO-1 mRNA expression as well as potassium current amplitude (IK and maximum conductance (Gmax of high glucose group were significantly higher than those of control group while half maximum activation voltage (V1/2 was significantly lower than that of control group (P<0.05; c-fos, c-jun, caspase-3 and caspase-9 mRNA expression as well as IK and Gmax of LBP group were significantly lower than those of high glucose group, while Nrf-2, NQO1 and HO-1 mRNA expression as well as V1/2 of LBP group were significantly higher than those of high glucose group (P<0.05. Conclusions: LBP can reduce the high glucose-induced retinal ganglion cell apoptosis and inhibit the delayed rectifier potassium current amplitude.

  16. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions.

    Science.gov (United States)

    Sanganalmath, Santosh K; Bolli, Roberto

    2013-08-30

    Despite significant therapeutic advances, the prognosis of patients with heart failure (HF) remains poor, and current therapeutic approaches are palliative in the sense that they do not address the underlying problem of the loss of cardiac tissue. Stem cell-based therapies have the potential to fundamentally transform the treatment of HF by achieving what would have been unthinkable only a few years ago-myocardial regeneration. For the first time since cardiac transplantation, a therapy is being developed to eliminate the underlying cause of HF, not just to achieve damage control. Since the initial report of cell therapy (skeletal myoblasts) in HF in 1998, research has proceeded at lightning speed, and numerous preclinical and clinical studies have been performed that support the ability of various stem cell populations to improve cardiac function and reduce infarct size in both ischemic and nonischemic cardiomyopathy. Nevertheless, we are still at the dawn of this therapeutic revolution. Many important issues (eg, mechanism(s) of action of stem cells, long-term engraftment, optimal cell type(s), and dose, route, and frequency of cell administration) remain to be resolved, and no cell therapy has been conclusively shown to be effective. The purpose of this article is to critically review the large body of work performed with respect to the use of stem/progenitor cells in HF, both at the experimental and clinical levels, and to discuss current controversies, unresolved issues, challenges, and future directions. The review focuses specifically on chronic HF; other settings (eg, acute myocardial infarction, refractory angina) are not discussed.

  17. Thermal neutron measurements on electrolytic cells with deuterated palladium cathodes subjected to a pulsed current

    International Nuclear Information System (INIS)

    Granada, J.R.; Mayer, R.E.; Guido, G.; Florido, P.C.; Larreteguy, A.; Gillette, V.H.; Patino, N.E.; Converti, J.; Gomez, S.E.

    1990-01-01

    The present work describes the design of a high efficiency thermal neutron detection system and the measurements performed with it on electrolytic cells containing LiH dissolved in D 2 O with palladium cathodes. A procedure involving the use of a non-stationary (pulsed) current through the cell caused a correlated neutron production to be observed in a repeatable manner. These patterns are strongly dependent on the previous charging history of the cathodes. The technique employed seems to be very useful as a research tool for a systematic study of the different variables governing the phenomenon. (author)

  18. Synergistic Inhibition of Delayed Rectifier K+ and Voltage-Gated Na+ Currents by Artemisinin in Pituitary Tumor (GH3) Cells.

    Science.gov (United States)

    So, Edmund Cheung; Wu, Sheng-Nan; Wu, Ping-Ching; Chen, Hui-Zhen; Yang, Chia-Jung

    2017-01-01

    Artemisinin (ART) is an anti-malarial agent reported to influence endocrine function. Effects of ART on ionic currents and action potentials (APs) in pituitary tumor (GH3) cells were evaluated by patch clamp techniques. ART inhibited the amplitude of delayed-rectifier K+ current (IK(DR)) in response to membrane depolarization and accelerated the process of current inactivation. It exerted an inhibitory effect on IK(DR) with an IC50 value of 11.2 µM and enhanced IK(DR) inactivation with a KD value of 14.7 µM. The steady-state inactivation curve of IK(DR) was shifted to hyperpolarization by 10 mV. Pretreatment of chlorotoxin (1 µM) or iloprost (100 nM) did not alter the magnitude of ART-induced inhibition of IK(DR) in GH3 cells. ART also decreased the peak amplitude of voltage-gated Na+ current (INa) with a concentration-dependent slowing in inactivation rate. Application of KMUP-1, an inhibitor of late INa, was effective at reversing ART-induced prolongation in inactivation time constant of INa. Under current-clamp recordings, ART alone reduced the amplitude of APs and prolonged the duration of APs. Under ART exposure, the inhibitory actions on both IK(DR) and INa could be a potential mechanisms through which this drug influences membrane excitability of endocrine or neuroendocrine cells appearing in vivo. © 2017 The Author(s). Published by S. Karger AG, Basel.

  19. Current as an indicator of ammonia concentration during wastewater treatment in an integrated microbial electrolysis cell - Nitrification system

    DEFF Research Database (Denmark)

    Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng

    2018-01-01

    with synthetic ammonia-rich wastewater. A good linear relationship (R2 = 0.9419) was observed between current (0.5130–3.906 mA) and ammonia levels (0–62.1 mg NH4+-N/L). Such linear relationship was always obtained regardless of the tested external power supply or wastewater pH. The external electrochemical cell......A key challenge for ammonia monitoring during nitrogen removal process is the extra cost and toxic reagent consuming. Herein the feasibility of current generated by an integrated microbial electrolysis cell (MEC) - nitrification reactor as an indicator of initial ammonia levels (NH3/NH4......+) in wastewater was explored. In this loop system, ammonia was first oxidized to nitrate in the nitrification reactor, and then the effluent was introduced into the cathode of MEC where nitrate was reduced as electron acceptor. The correlation between current and ammonia concentration was first investigated...

  20. A dense voltage-mode Josephson memory cell insensitive to systematic variations in critical current density

    International Nuclear Information System (INIS)

    Bradley, P.; Van Duzer, T.

    1985-01-01

    A destructive read-out (DRO) memory cell using three Josephson junctions has been devised whose operation depends only on the ratio of critical currents and application of the proper read/write voltages. The effects of run-to-run and across-thewafer variations in I /SUB c/ are minimized since all three junctions for a given cell are quite close to each other. Additional advantages are: immunity from flux trapping, high circuit density, and fast switching. Since destructive read-out is generally undesirable, a self-rewriting scheme is necessary. Rows and columns of cells with drivers and sense circuits, as well as small memory arrays and decoders have been simulated on SPICE. Power dissipation of cells and bias circuits for a 1K-bit RAM is estimated at about 2 mW. Inclusion of peripheral circuitry raises this by as much as a factor of five depending on the driving scheme and speed desired. Estimated access time is appreciably less than a nanosecond. Preliminary experimental investigations are reported

  1. Cell cycle-related fluctuations in transcellular ionic currents and plasma membrane Ca2+/Mg2+ ATPase activity during early cleavages of Lymnaea stagnalis embryos.

    Science.gov (United States)

    Zivkovic, Danica; Créton, Robbert; Dohmen, René

    1991-08-01

    During the first four mitotic division cycles of Lymnaea stagnalis embryos, we have detected cell cycle-dependent changes in the pattern of transcellular ionic currents and membrane-bound Ca 2+ -stimulated ATPase activity. Ionic currents ranging from 0.05 to 2.50 μA/cm 2 have been measured using the vibrating probe technique. Enzyme activity was detected using Ando's cytochemical method (Ando et al. 1981) which reveals Ca 2+ /Mg 2+ ATPase localization at the ultrastructural level, and under high-stringency conditions with respect to calcium availability, it reveals Ca 2+ -stimulated ATPase. The ionic currents and Ca 2+ -stimulated ATPase localization have in common that important changes occur during the M-phase of the cell cycles. Minimal outward current at the vegetal pole coincides with metaphase/anaphase. Maximal inward current at the animal pole coincides with the onset of cytokinesis at that pole. Ca 2+ -stimulated ATPase is absent from one half of the embryo at metaphase/anaphase of the two- and four-cell stage, whereas it is present in all cells during the remaining part of the cell cycle. Since fluctuations of cytosolic free calcium concentrations appear to correlate with both karyokinesis and cytokinesis, we speculate that part of the cyclic pattern of Ca 2+ -stimulated ATPase localization and of the transcellular ionic currents reflects the elevation of cytosolic free calcium concentration during the M-phase.

  2. Osteoporosis: the current status of mesenchymal stem cell-based therapy.

    Science.gov (United States)

    Phetfong, Jitrada; Sanvoranart, Tanwarat; Nartprayut, Kuneerat; Nimsanor, Natakarn; Seenprachawong, Kanokwan; Prachayasittikul, Virapong; Supokawej, Aungkura

    2016-01-01

    Osteoporosis, or bone loss, is a progressive, systemic skeletal disease that affects millions of people worldwide. Osteoporosis is generally age related, and it is underdiagnosed because it remains asymptomatic for several years until the development of fractures that confine daily life activities, particularly in elderly people. Most patients with osteoporotic fractures become bedridden and are in a life-threatening state. The consequences of fracture can be devastating, leading to substantial morbidity and mortality of the patients. The normal physiologic process of bone remodeling involves a balance between bone resorption and bone formation during early adulthood. In osteoporosis, this process becomes imbalanced, resulting in gradual losses of bone mass and density due to enhanced bone resorption and/or inadequate bone formation. Several growth factors underlying age-related osteoporosis and their signaling pathways have been identified, such as osteoprotegerin (OPG)/receptor activator of nuclear factor B (RANK)/RANK ligand (RANKL), bone morphogenetic protein (BMP), wingless-type MMTV integration site family (Wnt) proteins and signaling through parathyroid hormone receptors. In addition, the pathogenesis of osteoporosis has been connected to genetics. The current treatment of osteoporosis predominantly consists of antiresorptive and anabolic agents; however, the serious adverse effects of using these drugs are of concern. Cell-based replacement therapy via the use of mesenchymal stem cells (MSCs) may become one of the strategies for osteoporosis treatment in the future.

  3. Current Treatment Limitations in Age-Related Macular Degeneration and Future Approaches Based on Cell Therapy and Tissue Engineering

    Science.gov (United States)

    Fernández-Robredo, P.; Sancho, A.; Johnen, S.; Recalde, S.; Gama, N.; Thumann, G.; Groll, J.; García-Layana, A.

    2014-01-01

    Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein. PMID:24672707

  4. Current density and polarization curves for radial flow field patterns applied to PEMFCs (Proton Exchange Membrane Fuel Cells)

    International Nuclear Information System (INIS)

    Cano-Andrade, S.; Hernandez-Guerrero, A.; Spakovsky, M.R. von; Damian-Ascencio, C.E.; Rubio-Arana, J.C.

    2010-01-01

    A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use.

  5. T Helper Cells in the Immunopathogenesis of Systemic Sclerosis – Current Trends

    Directory of Open Access Journals (Sweden)

    Krasimirova E.

    2017-05-01

    Full Text Available Systemic sclerosis (SSc is a chronic progressive autoimmune disease characterized by skin and multiorgan involvement with alterations in both the innate and adaptive immunities. The hallmark of the disease is widespread fibrosis engaging the skin and multiple internal organs, as well as the musculoskeletal system. There is mounting evidence that T cells are key players in the pathogenesis of scleroderma. The current review discusses the role of the different T helper (Th lymphocyte subsets in the processes of inflammation and fibrosis, characteristics for the pathogenesis of the disease. Cytokines produced by Th cell populations have a major effect on endothelial cells and fibroblasts in the context of favoring/inhibiting the vasculopathy and the fibrosis spread. The Th2 pro-fibrotic cytokines IL-4 and IL-13 have been shown to induce collagen synthesis by fibroblasts, whereas IFN-γ demonstrates an inhibitory effect. Increased Th17 cells are present in the scleroderma skin infiltrates. The combination of IL-17, IFN-γ and TGF-β levels in CD45RO and CD45RA cells from patients with SSc is useful to distinguish between the limited and the diffuse phenotype of the disease. There are accumulating data for functional and numerical alterations in the Tregs in SSc. High levels of TNF-α which might reduce the suppressive ability of Tregs have been described. According to some studies, the number of Tregs in scleroderma skin biopsies has been decreased against the normal absolute number of Tregs in peripheral blood of the same patients, which suggests suppressed immunomodulatory response. Other studies reported increased frequency of Tregs in peripheral blood of patients with systemic sclerosis and established a correlation with disease activity. The main immunological challenge remains the identification of the trigger of the autoimmune response in SSc, the causes for preferential Th2-type cell responses and the immunological differences between the

  6. An update on current management of advanced renal cell cancer, biomarkers, and future directions

    OpenAIRE

    Zhi, Wanqing Iris; Kim, Jenny J.

    2014-01-01

    In the past decade, metastatic renal cell carcinoma (mRCC) treatment underwent significant advancement that resulted in an unprecedented improvement in the prognosis of this disease. This review will provide an updated review of currently approved treatment options, namely antiangiogenic and immunotherapy, as well as treatment guideline recommended by the National Comprehensive Cancer Network (NCCN). We will summarize studies ongoing in determining prognostic and predictive biomarkers in maxi...

  7. Milestones of Hematopoietic Stem Cell Transplantation – From First Human Studies to Current Developments

    Science.gov (United States)

    Juric, Mateja Kralj; Ghimire, Sakhila; Ogonek, Justyna; Weissinger, Eva M.; Holler, Ernst; van Rood, Jon J.; Oudshoorn, Machteld; Dickinson, Anne; Greinix, Hildegard T.

    2016-01-01

    Since the early beginnings, in the 1950s, hematopoietic stem cell transplantation (HSCT) has become an established curative treatment for an increasing number of patients with life-threatening hematological, oncological, hereditary, and immunological diseases. This has become possible due to worldwide efforts of preclinical and clinical research focusing on issues of transplant immunology, reduction of transplant-associated morbidity, and mortality and efficient malignant disease eradication. The latter has been accomplished by potent graft-versus-leukemia (GvL) effector cells contained in the stem cell graft. Exciting insights into the genetics of the human leukocyte antigen (HLA) system allowed improved donor selection, including HLA-identical related and unrelated donors. Besides bone marrow, other stem cell sources like granulocyte-colony stimulating-mobilized peripheral blood stem cells and cord blood stem cells have been established in clinical routine. Use of reduced-intensity or non-myeloablative conditioning regimens has been associated with a marked reduction of non-hematological toxicities and eventually, non-relapse mortality allowing older patients and individuals with comorbidities to undergo allogeneic HSCT and to benefit from GvL or antitumor effects. Whereas in the early years, malignant disease eradication by high-dose chemotherapy or radiotherapy was the ultimate goal; nowadays, allogeneic HSCT has been recognized as cellular immunotherapy relying prominently on immune mechanisms and to a lesser extent on non-specific direct cellular toxicity. This chapter will summarize the key milestones of HSCT and introduce current developments. PMID:27881982

  8. Historical Perspectives and Current Challenges in Cell Microencapsulation

    NARCIS (Netherlands)

    de Vos, Paul; Opara, Emmanuel C.

    2017-01-01

    The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in

  9. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook; Yang, Wulin; Saikaly, Pascal; Logan, Bruce E

    2018-01-01

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  10. Copper current collectors reduce long-term fouling of air cathodes in microbial fuel cells

    KAUST Repository

    Myung, Jaewook

    2018-02-05

    Long-term operation of wastewater-fed, microbial fuel cells (MFCs) with cathodes made of activated carbon and stainless steel (SS) current collectors can result in decreased performance due to cathode fouling. Copper has good antimicrobial properties, and it is more electrically conductive than SS. To demonstrate that a copper current collector could produce a more fouling resistant cathode, MFCs with air cathodes using either SS or copper current collectors were operated using domestic wastewater for 27 weeks. The reduction in biofouling over time was shown by less biofilm formation on the copper cathode surface compared to SS cathodes, due to the antimicrobial properties of copper. Maximum power densities from 17–27 weeks were 440 ± 38 mW/m2 using copper and 370 ± 21 mW/m2 using SS cathodes. The main difference in the microbial community was a nitrifying community on the SS cathodes, which was not present on the copper cathodes.

  11. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    Science.gov (United States)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  12. A two-dimensional finite element model of front surface current flow in cells under non-uniform, concentrated illumination

    Energy Technology Data Exchange (ETDEWEB)

    Mellor, A.; Domenech-Garret, J.L.; Chemisana, D.; Rosell, J.I. [Departament de Medi Ambient i C.S., University of Lleida, Av. Alcalde Rovira Roure 191, E25198 (Spain)

    2009-09-15

    A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail. (author)

  13. Assessment of the Current Level of Automation in the Manufacture of Fuel Cell Systems for Combined Heat and Power Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ulsh, M.; Wheeler, D.; Protopappas, P.

    2011-08-01

    The U.S. Department of Energy (DOE) is interested in supporting manufacturing research and development (R&D) for fuel cell systems in the 10-1,000 kilowatt (kW) power range relevant to stationary and distributed combined heat and power applications, with the intent to reduce manufacturing costs and increase production throughput. To assist in future decision-making, DOE requested that the National Renewable Energy Laboratory (NREL) provide a baseline understanding of the current levels of adoption of automation in manufacturing processes and flow, as well as of continuous processes. NREL identified and visited or interviewed key manufacturers, universities, and laboratories relevant to the study using a standard questionnaire. The questionnaire covered the current level of vertical integration, the importance of quality control developments for automation, the current level of automation and source of automation design, critical balance of plant issues, potential for continuous cell manufacturing, key manufacturing steps or processes that would benefit from DOE support for manufacturing R&D, the potential for cell or stack design changes to support automation, and the relationship between production volume and decisions on automation.

  14. [Immunotherapy for renal cell carcinoma - current status].

    Science.gov (United States)

    Grimm, Marc-Oliver; Foller, Susan

    2018-04-01

    Systemic treatment of metastatic renal cell carcinoma (mRCC) has substantially changed during the last 2 years due to approval of the immune-checkpoint inhibitor Nivolumab (Opdivo ® ) and new multikinase inhibitors (Cabozantinib, Lenvatinib, Tivozanib). The german kidney tumor guideline strongly recommends Nivolumab and Cabozantinib as 2nd line treatments after prior VEGF targeted therapy. CheckMate 025, the prospective randomized trial which led to approval of Nivolumab demonstrated improved overall survival (26 month vs. 19.7 month; hazard ratio 0.73; p = 0.0006) and response rate (26 % vs. 5 %) as well as a favorable toxicity profile compared with Everolimus. Currently, numerous combinations with PD-1/PD-L1 inhibitors are compared to Sunitinib as first line treatment of mRCC. Out of these CheckMate 214, a randomized phase-3 trial is the first to demonstrate a significant higher objective response rate (42 % vs. 27 %, p < 0.0001) and overall survival (Sunitinib 26.0 month, median for Nivo + Ipi has been not yet reached (28.2 - NR); Hazard ratio 0.63) for the combination of Nivolumab and the CTLA-4 antibody Ipilimumab in IMDC intermediate and high risk patients. Furthermore, CheckMate 214 shows better side effect profile and quality of life in patients receiving Nivolumab and Ipilimumab compared with Sunitinib. However, a considerable increase of immune related adverse events is associated with the immune combination therapy. Another randomized trial demonstrates improved progression-free survival for the combination of the PD-L1 inhibitor Atezolizumab and the VEGF antibody Bevacizumab in patients with PD-L1 positive tumors; this was found in all IMDC risk groups. Further phase-3 trials with "new" VEGFR-TKIs (Axitinib, Cabozantinib, Lenvatinib) and PD-1/PD-L1 inhibitor combinations are ongoing.In conclusion, the PD-1 immune checkpoint inhibitor Nivolumab will remain a standard treatment for patients with metastatic renal cell carcinoma

  15. Current Standards of Care and Long Term Outcomes for Thalassemia and Sickle Cell Disease.

    Science.gov (United States)

    Chonat, Satheesh; Quinn, Charles T

    2017-01-01

    Thalassemia and sickle cell disease (SCD) are disorders of hemoglobin that affect millions of people worldwide. The carrier states for these diseases arose as common, balanced polymorphisms during human history because they afforded protection against severe forms of malaria. These complex, multisystem diseases are reviewed here with a focus on current standards of clinical management and recent research findings. The importance of a comprehensive, multidisciplinary and lifelong system of care is also emphasized.

  16. Extra-high short-circuit current for bifacial solar cells in sunny and dark-light conditions.

    Science.gov (United States)

    Duan, Jialong; Duan, Yanyan; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2017-09-05

    We present here a symmetrically structured bifacial solar cell tailored by two fluorescent photoanodes and a platinum/titanium/platinum counter electrode, yielding extra-high short-circuit current densities as high as 28.59 mA cm -2 and 119.9 μA cm -2 in simulated sunlight irradiation (100 mW cm -2 , AM1.5) and dark-light conditions, respectively.

  17. Hürthle cell carcinoma: current perspectives

    Directory of Open Access Journals (Sweden)

    Ahmadi S

    2016-11-01

    Full Text Available Sara Ahmadi,1 Michael Stang,2 Xiaoyin “Sara” Jiang,3 Julie Ann Sosa2,4,5 1Division of Endocrinology, Department of Medicine, 2Section of Endocrine Surgery, Department of Surgery, 3Department of Pathology, Duke University Medical Center, 4Duke Cancer Institute, 5Duke Clinical Research Institute, Duke University Medical Center, Durham, NC, USA Abstract: Hürthle cell carcinoma (HCC can present either as a minimally invasive or as a widely invasive tumor. HCC generally has a more aggressive clinical behavior compared with the other differentiated thyroid cancers, and it is associated with a higher rate of distant metastases. Minimally invasive HCC demonstrates much less aggressive behavior; lesions <4 cm can be treated with thyroid lobectomy alone, and without radioactive iodine (RAI. HCC has been observed to be less iodine-avid compared with other differentiated thyroid cancers; however, recent data have demonstrated improved survival with RAI use in patients with HCC >2 cm and those with nodal and distant metastases. Patients with localized iodine-resistant disease who are not candidates for a wait-and-watch approach can be treated with localized therapies. Systemic therapy is reserved for patients with progressive, widely metastatic HCC. Keywords: thyroid cancer, thyroid nodule, follicular cell carcinoma, Hurthle cell lesion, minimally invasive HCC

  18. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes.

    Science.gov (United States)

    Altabas, Velimir; Altabas, Karmela; Kirigin, Lora

    2016-10-01

    Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Radial direct bandgap p-i-n GaNP microwire solar cells with enhanced short circuit current

    Energy Technology Data Exchange (ETDEWEB)

    Sukrittanon, Supanee [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Liu, Ren; Pan, Janet L. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Breeden, Michael C. [Department of Nanoengineering, University of California, San Diego, La Jolla, California 92037 (United States); Jungjohann, K. L. [Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Tu, Charles W., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu; Dayeh, Shadi A., E-mail: ctu@ece.ucsd.edu, E-mail: sdayeh@ece.ucsd.edu [Graduate Program of Materials Science and Engineering, University of California, San Diego, La Jolla, California 92037 (United States); Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92037 (United States)

    2016-08-07

    We report the demonstration of dilute nitride heterostructure core/shell microwire solar cells utilizing the combination of top-down reactive-ion etching to create the cores (GaP) and molecular beam epitaxy to create the shells (GaNP). Systematic studies of cell performance over a series of microwire lengths, array periods, and microwire sidewall morphologies examined by transmission electron microscopy were conducted to shed light on performance-limiting factors and to optimize the cell efficiency. We show by microscopy and correlated external quantum efficiency characterization that the open circuit voltage is degraded primarily due to the presence of defects at the GaP/GaNP interface and in the GaNP shells, and is not limited by surface recombination. Compared to thin film solar cells in the same growth run, the microwire solar cells exhibit greater short circuit current but poorer open circuit voltage due to greater light absorption and number of defects in the microwire structure, respectively. The comprehensive understanding presented in this work suggests that performance benefits of dilute nitride microwire solar cells can be achieved by further tuning of the epitaxial quality of the underlying materials.

  20. The factors influencing nonlinear characteristics of the short-circuit current in dye-sensitized solar cells investigated by a numerical model.

    Science.gov (United States)

    Shi, Yushuai; Dong, Xiandui

    2013-06-24

    A numerical model for interpretation of the light-intensity-dependent nonlinear characteristics of the short-circuit current in dye-sensitized solar cells is suggested. The model is based on the continuity equation and includes the influences of the nongeminate recombination between electrons and electron acceptors in the electrolyte and the geminate recombination between electrons and oxidized dye molecules. The influences of the order and rate constant of the nongeminate recombination reaction, the light-absorption coefficient of the dye, the film thickness, the rate constant of geminate recombination, and the regeneration rate constant on the nonlinear characteristics of the short-circuit current are simulated and analyzed. It is proposed that superlinear and sublinear characteristics of the short-circuit current should be attributed to low electron-collection efficiency and low dye-regeneration efficiency, respectively. These results allow a deep understanding of the origin of the nonlinear characteristics of the short-circuit current in solar cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Sahba Mobini

    2017-01-01

    Full Text Available Background Electrical stimulation (ES has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM- and adipose tissue- (AT- derived mesenchymal stem cells (MSCs to direct current electrical stimulation (DC ES and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.

  3. Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus.

    Science.gov (United States)

    Isokawa, M

    1996-05-01

    1. Inhibitory postsynaptic currents (IPSCs) were studied in hippocampal dentate granule cells (DGCs) in the pilocarpine model and human temporal lobe epilepsy, with the use of the whole cell patch-clamp recording technique in slice preparations. 2. In the pilocarpine model, hippocampal slices were prepared from rats that were allowed to experience spontaneous seizures for 2 mo. Human hippocampal specimens were obtained from epileptic patients who underwent surgical treatment for medically intractable seizures. 3. IPSCs were generated by single perforant path stimulation and recorded at a membrane potential (Vm) of 0 mV near the reversal potential of glutamate excitatory postsynaptic currents in the voltage-clamp recording. IPSCs were pharmacologically identified as gamma-aminobutyric acid-A (GABAA) IPSCs by 10 microM bicuculline methiodide. 4. During low-frequency stimulation, IPSCs were not different in amplitude among non-seizure-experienced rat hippocampi, human nonsclerotic hippocampi, seizure-experienced rat hippocampi, and human sclerotic hippocampi. In the last two groups of DGCs, current-clamp recordings indicated the presence of prolonged excitatory postsynaptic potentials (EPSPs) mediated by the N-methyl-D-aspartate (NMDA) receptor. 5. High-frequency stimulation, administered at Vm = -30 mV to activate NMDA currents, reduced GABAA IPSC amplitude specifically in seizure-experienced rat hippocampi (t = 2.5, P < 0.03) and human sclerotic hippocampi (t = 7.7, P < 0.01). This reduction was blocked by an NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (50 microM). The time for GABAA IPSCs to recover to their original amplitude was also shortened by the application of APV. 6. I conclude that, when intensively activated, NMDA receptor-mediated excitatory transmission may interact with GABAergic synaptic inhibition in DGCs in seizure-experienced hippocampus to transiently reduce GABA(A) receptor-channel function. Such interactions may contribute to

  4. Na+/K+-ATPase inhibition partially mimics the ethanol-induced increase of the Golgi cell-dependent component of the tonic GABAergic current in rat cerebellar granule cells.

    Directory of Open Access Journals (Sweden)

    Marvin R Diaz

    Full Text Available Cerebellar granule cells (CGNs are one of many neurons that express phasic and tonic GABAergic conductances. Although it is well established that Golgi cells (GoCs mediate phasic GABAergic currents in CGNs, their role in mediating tonic currents in CGNs (CGN-I(tonic is controversial. Earlier studies suggested that GoCs mediate a component of CGN-I(tonic that is present only in preparations from immature rodents. However, more recent studies have detected a GoC-dependent component of CGN-I(tonic in preparations of mature rodents. In addition, acute exposure to ethanol was shown to potentiate the GoC component of CGN-I(tonic and to induce a parallel increase in spontaneous inhibitory postsynaptic current frequency at CGNs. Here, we tested the hypothesis that these effects of ethanol on GABAergic transmission in CGNs are mediated by inhibition of the Na(+/K(+-ATPase. We used whole-cell patch-clamp electrophysiology techniques in cerebellar slices of male rats (postnatal day 23-30. Under these conditions, we reliably detected a GoC-dependent component of CGN-I(tonic that could be blocked with tetrodotoxin. Further analysis revealed a positive correlation between basal sIPSC frequency and the magnitude of the GoC-dependent component of CGN-I(tonic. Inhibition of the Na(+/K(+-ATPase with a submaximal concentration of ouabain partially mimicked the ethanol-induced potentiation of both phasic and tonic GABAergic currents in CGNs. Modeling studies suggest that selective inhibition of the Na(+/K(+-ATPase in GoCs can, in part, explain these effects of ethanol. These findings establish a novel mechanism of action of ethanol on GABAergic transmission in the central nervous system.

  5. Exposure of Bacterial Biofilms to Electrical Current Leads to Cell Death Mediated in Part by Reactive Oxygen Species.

    Science.gov (United States)

    Brinkman, Cassandra L; Schmidt-Malan, Suzannah M; Karau, Melissa J; Greenwood-Quaintance, Kerryl; Hassett, Daniel J; Mandrekar, Jayawant N; Patel, Robin

    2016-01-01

    Bacterial biofilms may form on indwelling medical devices such as prosthetic joints, heart valves and catheters, causing challenging-to-treat infections. We have previously described the 'electricidal effect', in which bacterial biofilms are decreased following exposure to direct electrical current. Herein, we sought to determine if the decreased bacterial quantities are due to detachment of biofilms or cell death and to investigate the role that reactive oxygen species (ROS) play in the observed effect. Using confocal and electron microscopy and flow cytometry, we found that direct current (DC) leads to cell death and changes in the architecture of biofilms formed by Gram-positive and Gram-negative bacteria. Reactive oxygen species (ROS) appear to play a role in DC-associated cell death, as there was an increase in ROS-production by Staphylococcus aureus and Staphylococcus epidermidis biofilms following exposure to DC. An increase in the production of ROS response enzymes catalase and superoxide dismutase (SOD) was observed for S. aureus, S. epidermidis and Pseudomonas aeruginosa biofilms following exposure to DC. Additionally, biofilms were protected from cell death when supplemented with antioxidants and oxidant scavengers, including catalase, mannitol and Tempol. Knocking out SOD (sodAB) in P. aeruginosa led to an enhanced DC effect. Microarray analysis of P. aeruginosa PAO1 showed transcriptional changes in genes related to the stress response and cell death. In conclusion, the electricidal effect results in death of bacteria in biofilms, mediated, at least in part, by production of ROS.

  6. Does bipolar pacemaker current activate blood platelets?

    DEFF Research Database (Denmark)

    Gjesdal, Grunde; Hansen, Annebirthe Bo; Brandes, Axel

    2009-01-01

    OBJECTIVE: The aim of this study was to investigate whether bipolar pacemaker current lead can activate blood platelets. The null hypothesis was that 1 minute of electrical stimulation of platelets would not influence their subsequent reactivity to adenosine diphosphate (ADP). BACKGROUND: Both...... platelets and muscle cells contain actin and myosin filaments, and both cells are activated following calcium influx. Muscle cells open their calcium channels and contract when exposed to an electric current. Current through a bipolar pacemaker lead will expose a small volume of blood, including platelets......, to the depolarizing current. Platelet activation may ensue, resulting in aggregation, release reaction, and contraction. In contrast, a unipolar pacemaker system will not depolarize blood, but transmit current directly into the myocardium, and the current afterward passes through other tissues before returning...

  7. Artificial Intelligence approaches in hematopoietic cell transplant: A review of the current status and future directions.

    Science.gov (United States)

    Muhsen, Ibrahim N; ElHassan, Tusneem; Hashmi, Shahrukh K

    2018-06-08

    Currently, the evidence-based literature on healthcare is expanding exponentially. The opportunities provided by the advancement in artificial intelligence (AI) tools i.e. machine learning are appealing in tackling many of the current healthcare challenges. Thus, AI integration is expanding in most fields of healthcare, including the field of hematology. This study aims to review the current applications of AI in the field hematopoietic cell transplant (HCT). Literature search was done involving the following databases: Ovid-Medline including in-Process and Other Non-Indexed Citations and google scholar. The abstracts of the following professional societies: American Society of Haematology (ASH), American Society for Blood and Marrow Transplantation (ASBMT) and European Society for Blood and Marrow Transplantation (EBMT) were also screened. Literature review showed that the integration of AI in the field of HCT has grown remarkably in the last decade and confers promising avenues in diagnosis and prognosis within HCT populations targeting both pre and post-transplant challenges. Studies on AI integration in HCT have many limitations that include poorly tested algorithms, lack of generalizability and limited use of different AI tools. Machine learning techniques in HCT is an intense area of research that needs a lot of development and needs extensive support from hematology and HCT societies / organizations globally since we believe that this would be the future practice paradigm. Key words: Artificial intelligence, machine learning, hematopoietic cell transplant.

  8. Radiation transport methods for nuclear log assessment - an overview

    International Nuclear Information System (INIS)

    Badruzzaman, A.

    1996-01-01

    Methods of radiation transport have been applied to well-logging problems with nuclear sources since the early 1960s. Nuclear sondes are used in identifying rock compositions and fluid properties in reservoirs to predict the porosity and oil saturation. Early computational effort in nuclear logging used diffusion techniques. As computers became more powerful, deterministic transport methods and, finally, Monte Carlo methods were applied to solve these problems in three dimensions. Recently, the application has been extended to problems with a new generation of devices, including spectroscopic sondes that measure such quantities as the carbon/oxygen ratio to predict oil saturation and logging-while-drilling (LWD) sondes that take neutron and gamma measurements as they rotate in the borehole. These measurements present conditions that will be difficult to calibrate in the laboratory

  9. Direct imaging of enhanced current collection on grain boundaries of Cu(In,Ga)Se{sub 2} solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, JunHo, E-mail: jhk@incheon.ac.kr [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States); Kim, SeongYeon [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Jiang, Chun-Sheng; Ramanathan, Kannan; Al-Jassim, Mowafak M. [National Center for Photovoltaics, National Renewable Energy Laboratory (NREL), Golden, Colorado 80401 (United States)

    2014-02-10

    We report on direct imaging of current collection by performing conductive atomic force microscopy (C-AFM) measurement on a complete Cu(In,Ga)Se{sub 2} solar cell. The localized current was imaged by milling away the top conductive layer of the device by repeated C-AFM scans. The result exhibits enhanced photocurrent collection on grain boundaries (GBs) of CIGS films, consistent with the argument for electric-field-assisted carrier collection on the GBs.

  10. Effect of temperature on current voltage characteristics in ZnO/CdS/CuGaSe2 single crystal solar cells

    International Nuclear Information System (INIS)

    Saad, M.; Kassis, A.

    2005-03-01

    Current voltage characteristics of Zn O/CdS/CuGaSe 2 single crystal solar cells, which have gone through repetitive annealing treatment and have been measured at different values of temperature and illumination intensity, were analyzed using the two-diode equation. The analysis revealed that current transport in these cells is governed by two competing transport mechanisms relating strongly to interface states and that both mechanisms are thermally and light activated. These two mechanisms are interface recombination and tunneling enhanced interface recombination. The activation energy values of the saturation current density in both mechanisms were calculated from the temperature dependence of the parameters describing each of them. It was found that these values depend on temperature and illumination intensity. Furthermore, the behavior of the photovoltaic parameters could be explained relying on the results of the analysis. (Authors)

  11. Understanding the cancer cell phenotype beyond the limitations of current omics analyses.

    Science.gov (United States)

    Moreno-Sánchez, Rafael; Saavedra, Emma; Gallardo-Pérez, Juan Carlos; Rumjanek, Franklin D; Rodríguez-Enríquez, Sara

    2016-01-01

    Efforts to understand the mechanistic principles driving cancer metabolism and proliferation have been lately governed by genomic, transcriptomic and proteomic studies. This paper analyzes the caveats of these approaches. As molecular biology's central dogma proposes a unidirectional flux of information from genes to mRNA to proteins, it has frequently been assumed that monitoring the changes in the gene sequences and in mRNA and protein contents is sufficient to explain complex cellular processes. Such a stance commonly disregards that post-translational modifications can alter the protein function/activity and also that regulatory mechanisms enter into action, to coordinate the protein activities of pathways/cellular processes, in order to keep the cellular homeostasis. Hence, the actual protein activities (as enzymes/transporters/receptors) and their regulatory mechanisms ultimately dictate the final outcomes of a pathway/cellular process. In this regard, it is here documented that the mRNA levels of many metabolic enzymes and transcriptional factors have no correlation with the respective protein contents and activities. The validity of current clinical mRNA-based tests and proposed metabolite biomarkers for cancer detection/prognosis is also discussed. Therefore, it is proposed that, to achieve a thorough understanding of the modifications undergone by proliferating cancer cells, it is mandatory to experimentally analyze the cellular processes at the functional level. This could be achieved (a) locally, by examining the actual protein activities in the cell and their kinetic properties (or at least kinetically characterize the most controlling steps of the pathway/cellular process); (b) systemically, by analyzing the main fluxes of the pathway/cellular process, and how they are modulated by metabolites, all which should contribute to comprehending the regulatory mechanisms that have been altered in cancer cells. By adopting a more holistic approach it may

  12. Light-current-induced acceleration of degradation of methylammonium lead iodide perovskite solar cells

    Science.gov (United States)

    Xiang, Yuren; Zhang, Fan; He, Junjie; Lian, Jiarong; Zeng, Pengju; Song, Jun; Qu, Junle

    2018-04-01

    The photo-conversion efficiency of perovskite solar cells (PSCs) has been improved considerably in recent years, but the poor stability of PSCs still prevents their commercialization. In this report, we use the rate of the integrated short-circuit current change (Drate) to investigate the performance degradation kinetics and identify the degradation of PSCs that is accelerated by the light current. The value of Drate increases by an order of magnitude from about 0.02 to 0.35 mA cm-2·min-1 after light-IV testing. The accelerated degradation progress is proven to be dominated by the hydration process and the migration of the iodine ions of the light current. The migration of the iodine ions enhances the hydration process through a chain reaction, enabling the formation of fast diffusion channels for both H2O and O2, which induce the rapid decomposition of the perovskite film and increase the density of the trap state. The X-ray photoelectron spectroscopy measurement data also indicate that the super oxygen may be formed due to the PCBM damage caused by the migration iodine ions. An understanding of the degradation acceleration mechanism would provide an insight into the effect of ion migration on the stability of PSCs.

  13. Role of action potential configuration and the contribution of Ca2+ and K+ currents to isoprenaline-induced changes in canine ventricular cells

    Science.gov (United States)

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, PP

    2012-01-01

    BACKGROUND AND PURPOSE Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca2+ current (ICa), slow delayed rectifier K+ current (IKs) and fast delayed rectifier K+ current (IKr) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. EXPERIMENTAL APPROACH Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. KEY RESULTS In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the IKr blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the IKs blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the ICa blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating ICa followed by a rise in IKs, both currents increased with increasing the cycle length. CONCLUSIONS AND IMPLICATIONS The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of IKs– but not IKr– may be responsible for the observed shortening of action potentials. PMID:22563726

  14. Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Berg, Lise Charlotte; Betts, Dean H.

    2009-01-01

    This paper provides a bird's-eye perspective of the general principles of stem-cell therapy and tissue engineering; it relates comparative knowledge in this area to the current and future status of equine regenerative medicine.The understanding of equine stem cell biology, biofactors, and scaffolds...... mesenchymal stromal cells, unless there is proof that they exhibit the fundamental in vivo characteristics of pluripotency and the ability to self-renew. That said, these cells from various tissues hold great promise for therapeutic use in horses. The 3 components of tissue engineering - cells, biological...... factors, and biomaterials - are increasingly being applied in equine medicine, fuelled by better scaffolds and increased understanding of individual biofactors and cell sources.The effectiveness of stem cell-based therapies and most tissue engineering concepts has not been demonstrated sufficiently...

  15. Optimization of the short-circuit current in an InP nanowire array solar cell through opto-electronic modeling.

    Science.gov (United States)

    Chen, Yang; Kivisaari, Pyry; Pistol, Mats-Erik; Anttu, Nicklas

    2016-09-23

    InP nanowire arrays with axial p-i-n junctions are promising devices for next-generation photovoltaics, with a demonstrated efficiency of 13.8%. However, the short-circuit current in such arrays does not match their absorption performance. Here, through combined optical and electrical modeling, we study how the absorption of photons and separation of the resulting photogenerated electron-hole pairs define and limit the short-circuit current in the nanowires. We identify how photogenerated minority carriers in the top n segment (i.e. holes) diffuse to the ohmic top contact where they recombine without contributing to the short-circuit current. In our modeling, such contact recombination can lead to a 60% drop in the short-circuit current. To hinder such hole diffusion, we include a gradient doping profile in the n segment to create a front surface barrier. This approach leads to a modest 5% increase in the short-circuit current, limited by Auger recombination with increased doping. A more efficient approach is to switch the n segment to a material with a higher band gap, like GaP. Then, a much smaller number of holes is photogenerated in the n segment, strongly limiting the amount that can diffuse and disappear into the top contact. For a 500 nm long top segment, the GaP approach leads to a 50% higher short-circuit current than with an InP top segment. Such a long top segment could facilitate the fabrication and contacting of nanowire array solar cells. Such design schemes for managing minority carriers could open the door to higher performance in single- and multi-junction nanowire-based solar cells.

  16. CURRENT TRENDS IN THE MANAGEMENT OF SICKLE CELL ...

    African Journals Online (AJOL)

    drclement

    level as sickle cell disease. Sickle cell anemia is due to the substitution of thymine for adenine ..... and local instillation of vaso-active drugs, shunting ... oral pseudoephedrine at night as an attempt to ..... Management of Cancer. Pain. Clinical ...

  17. Specific Intensity Direct Current (DC) Electric Field Improves Neural Stem Cell Migration and Enhances Differentiation towards βIII-Tubulin+ Neurons

    Science.gov (United States)

    Zhao, Huiping; Steiger, Amanda; Nohner, Mitch; Ye, Hui

    2015-01-01

    Control of stem cell migration and differentiation is vital for efficient stem cell therapy. Literature reporting electric field–guided migration and differentiation is emerging. However, it is unknown if a field that causes cell migration is also capable of guiding cell differentiation—and the mechanisms for these processes remain unclear. Here, we report that a 115 V/m direct current (DC) electric field can induce directional migration of neural precursor cells (NPCs). Whole cell patching revealed that the cell membrane depolarized in the electric field, and buffering of extracellular calcium via EGTA prevented cell migration under these conditions. Immunocytochemical staining indicated that the same electric intensity could also be used to enhance differentiation and increase the percentage of cell differentiation into neurons, but not astrocytes and oligodendrocytes. The results indicate that DC electric field of this specific intensity is capable of promoting cell directional migration and orchestrating functional differentiation, suggestively mediated by calcium influx during DC field exposure. PMID:26068466

  18. Simulator of Non-homogenous Alumina and Current Distribution in an Aluminum Electrolysis Cell to Predict Low-Voltage Anode Effects

    Science.gov (United States)

    Dion, Lukas; Kiss, László I.; Poncsák, Sándor; Lagacé, Charles-Luc

    2018-04-01

    Perfluorocarbons are important contributors to aluminum production greenhouse gas inventories. Tetrafluoromethane and hexafluoroethane are produced in the electrolysis process when a harmful event called anode effect occurs in the cell. This incident is strongly related to the lack of alumina and the current distribution in the cell and can be classified into two categories: high-voltage and low-voltage anode effects. The latter is hard to detect during the normal electrolysis process and, therefore, new tools are necessary to predict this event and minimize its occurrence. This paper discusses a new approach to model the alumina distribution behavior in an electrolysis cell by dividing the electrolytic bath into non-homogenous concentration zones using discrete elements. The different mechanisms related to the alumina distribution are discussed in detail. Moreover, with a detailed electrical model, it is possible to calculate the current distribution among the different anodic assemblies. With this information, the model can evaluate if low-voltage emissions are likely to be present under the simulated conditions. Using the simulator will help the understanding of the role of the alumina distribution which, in turn, will improve the cell energy consumption and stability while reducing the occurrence of high- and low-voltage anode effects.

  19. Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells

    KAUST Repository

    Hong, Yiying

    2011-10-01

    One form of power overshoot commonly observed with mixed culture microbial fuel cells (MFCs) is doubling back of the power density curve at higher current densities, but the reasons for this type of overshoot have not been well explored. To investigate this, MFCs were acclimated to different external resistances, producing a range of anode potentials and current densities. Power overshoot was observed for reactors acclimated to higher (500 and 5000. Ω) but not lower (5 and 50. Ω) resistances. Acclimation of the high external resistance reactors for a few cycles to low external resistance (5. Ω), and therefore higher current densities, eliminated power overshoot. MFCs initially acclimated to low external resistances exhibited both higher current in cyclic voltammograms (CVs) and higher levels of redox activity over a broader range of anode potentials (-0.4 to 0. V; vs. a Ag/AgCl electrode) based on first derivative cyclic voltammetry (DCV) plots. Reactors acclimated to higher external resistances produced lower current in CVs, exhibited lower redox activity over a narrower anode potential range (-0.4 to -0.2. V vs. Ag/AgCl), and failed to produce higher currents above ∼-0.3. V (vs. Ag/AgCl). After the higher resistance reactors were acclimated to the lowest resistance they also exhibited similar CV and DCV profiles. Our findings show that to avoid overshoot, prior to the polarization and power density tests the anode biofilm must adapt to low external resistances to be capable of higher currents. © 2011 Elsevier B.V.

  20. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH rat cerebral arterial muscle cells.

    Directory of Open Access Journals (Sweden)

    Debebe Gebremedhin

    Full Text Available The transient receptor potential vallinoid type 4 (TRPV4 is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR, Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and

  1. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal.

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don; Sanders, Kenton M

    2015-04-15

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca(2+)-activated Cl(-) channels. We investigated the hypothesis that the Ca(2+) responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca(2+) stores. ICC, obtained from the small intestine of Kit(+/copGFP) mice, were studied under voltage and current clamp to determine the effects of blocking Ca(2+) uptake into stores and release of Ca(2+) via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca(2+) concentration, suggesting that pacemaker activity depends on Ca(2+) dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca(2+) from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. Copyright © 2015 the American Physiological Society.

  2. Intracellular Ca2+ release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal

    Science.gov (United States)

    Zhu, Mei Hong; Sung, Tae Sik; O'Driscoll, Kate; Koh, Sang Don

    2015-01-01

    Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca2+-activated Cl− channels. We investigated the hypothesis that the Ca2+ responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca2+ stores. ICC, obtained from the small intestine of Kit+/copGFP mice, were studied under voltage and current clamp to determine the effects of blocking Ca2+ uptake into stores and release of Ca2+ via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca2+ concentration, suggesting that pacemaker activity depends on Ca2+ dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca2+ from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC. PMID:25631870

  3. Laser-beam-induced current mapping evaluation of porous silicon-based passivation in polycrystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rabha, M. Ben; Bessais, B. [Laboratoire de Nanomateriaux et des Systemes pour l' Energie, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia); Dimassi, W.; Bouaicha, M.; Ezzaouia, H. [Laboratoire de photovoltaique, des semiconducteurs et des nanostructures, Centre de Recherches et des Technologies de l' Energie - Technopole de Borj-Cedria BP 95, 2050 Hammam-Lif (Tunisia)

    2009-05-15

    In the present work, we report on the effect of introducing a superficial porous silicon (PS) layer on the performance of polycrystalline silicon (pc-Si) solar cells. Laser-beam-induced current (LBIC) mapping shows that the PS treatment on the emitter of pc-Si solar cells improves their quantum response and reduce the grain boundaries (GBs) activity. After the porous silicon treatment, mapping investigation shows an enhancement of the LBIC and the internal quantum efficiency (IQE), due to an improvement of the minority carrier diffusion length and the passivation of recombination centers at the GBs as compared to the reference substrate. It was quantitatively shown that porous silicon treatment can passivate both the grains and GBs. (author)

  4. High-temperature geothermal cableheads

    Science.gov (United States)

    Coquat, J. A.; Eifert, R. W.

    1981-11-01

    Two high temperature, corrosion resistant logging cable heads which use metal seals and a stable fluid to achieve proper electrical terminations and cable sonde interfacings are described. A tensile bar provides a calibrated yield point, and a cone assembly anchors the cable armor to the head. Electrical problems of the sort generally ascribable to the cable sonde interface were absent during demonstration hostile environment loggings in which these cable heads were used.

  5. Treatment Options for Paediatric Anaplastic Large Cell Lymphoma (ALCL: Current Standard and beyond

    Directory of Open Access Journals (Sweden)

    Nina Prokoph

    2018-03-01

    Full Text Available Anaplastic Lymphoma Kinase (ALK-positive Anaplastic Large Cell Lymphoma (ALCL, remains one of the most curable cancers in the paediatric setting; multi-agent chemotherapy cures approximately 65–90% of patients. Over the last two decades, major efforts have focused on improving the survival rate by intensification of combination chemotherapy regimens and employing stem cell transplantation for chemotherapy-resistant patients. More recently, several new and ‘renewed’ agents have offered the opportunity for a change in the paradigm for the management of both chemo-sensitive and chemo-resistant forms of ALCL. The development of ALK inhibitors following the identification of the EML4-ALK fusion gene in Non-Small Cell Lung Cancer (NSCLC has opened new possibilities for ALK-positive ALCL. The uniform expression of CD30 on the cell surface of ALCL has given the opportunity for anti-CD30 antibody therapy. The re-evaluation of vinblastine, which has shown remarkable activity as a single agent even in the face of relapsed disease, has led to the consideration of a revised approach to frontline therapy. The advent of immune therapies such as checkpoint inhibition has provided another option for the treatment of ALCL. In fact, the number of potential new agents now presents a real challenge to the clinical community that must prioritise those thought to offer the most promise for the future. In this review, we will focus on the current status of paediatric ALCL therapy, explore how new and ‘renewed’ agents are re-shaping the therapeutic landscape for ALCL, and identify the strategies being employed in the next generation of clinical trials.

  6. A new soft switched push pull current fed converter for fuel cell applications

    International Nuclear Information System (INIS)

    Delshad, Majid; Farzanehfard, Hosein

    2011-01-01

    In this paper a new zero voltage switching current fed push pull dc-dc converter is proposed for fuel cell generation system. The auxiliary circuit in this converter, not only absorbs the voltage surge across the switches at turn off instance, but also provides zero voltage switching condition for all converter switches. Therefore, the converter efficiency is increased and size and weight of the converter can be decreased. Also implementation of control circuit is very simple since the converter is PWM controlled. In this paper, the proposed dc-dc converter operating modes are analyzed and to verify the converter operation a laboratory prototype is implemented and the experimental results are presented.

  7. Current treatments for advanced stage non-small cell lung cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E; Socinski, Mark A

    2009-04-15

    Lung cancer remains the leading cause of cancer mortality in the United States, and the majority of patients will have non-small cell lung cancer (NSCLC) and will present with locally advanced or metastatic disease. In the United States, the most common histology is adenocarcinoma, followed by squamous cell, large cell, and not otherwise specified. For patients with a preserved performance status (PS), double agent platinum-based therapy extends survival, improves quality of life (Qol), and reduces disease-related symptoms. The addition of a third cytotoxic agent increases toxicity without any clinical benefit. However, the addition of a targeted agent (bevacizumab, an antiangioegenesis agent, or cetuximab, an antibody against the epidermal growth factor receptor [EGFR]) to platinum-based therapy has yielded an improvement in survival compared with platinum-based therapy alone. To receive bevacizumab, patients are required to have nonsquamous histology, a PS of 0 or 1, and no evidence of brain metastases, hemoptysis, uncontrolled hypertension, and no need for therapeutic anticoagulation. The benefits of chemotherapy for patients with a poor performance status are less well defined, and the current recommendations are for treatment with single-agent chemotherapy. Elderly patients (defined as age > or = 70 yr) derive a survival and Qol benefit from chemotherapy treatment, and for the majority of elderly patients single-agent chemotherapy is the standard. However, elderly patients with a good performance status and without co-morbidities can tolerate platinum-based therapy without excessive toxicity and appear to derive a survival benefit similar to that in younger patients. Recently, a separate population of patients defined by a light or never-smoking history has been identified. This patient population appears to have unique clinical and molecular characteristics, and may benefit from initial therapy with an EGFR tyrosine kinase inhibitor. Once patients have

  8. Red blood cell transfusion in preterm neonates: current perspectives

    Directory of Open Access Journals (Sweden)

    Chirico G

    2014-06-01

    were evaluated, the girls in the liberal group had the most significant abnormalities. In conclusion, it would seem preferable to adopt restrictive criteria. Current recommendation on transfusion therapy should be revised to take into account this suggestion.Keywords: preterm neonates, red blood cells, transfusion, anemia

  9. A randomized, double-blind, phase III study comparing two doses of erlotinib for second-line treatment of current smokers with advanced non-small-cell lung cancer (CurrentS).

    Science.gov (United States)

    Smit, Egbert F; Wu, Yi-Long; Gervais, Radj; Zhou, Caicun; Felip, Enriqueta; Feng, Jifeng; Guclu, Salih Zeki; Hoiczyk, Mathias; Dorokhova, Elena; Freudensprung, Ulrich; Grange, Susan; Perez-Moreno, Pablo Diego; Mitchell, Lada; Reck, Martin

    2016-09-01

    Active smokers with non-small-cell lung cancer (NSCLC) have increased erlotinib metabolism versus non-smoking patients, which reduces exposure. Therefore, an increased erlotinib dose may be beneficial. The CurrentS study (NCT01183858) assessed efficacy and safety of 300mg erlotinib (E300) as second-line therapy in current smokers with locally advanced or metastatic NSCLC versus the standard 150mg dose (E150). Patients with stage IIIB/IV NSCLC (current smokers who failed first-line platinum-based chemotherapy) were randomized to receive E150 or E300 until progression/death/unacceptable toxicity. progression-free survival (PFS). Secondary endpoints: overall survival (OS), disease control rate and safety. A total of 342 patients were screened; the intent-to-treat population comprised 159 E300 patients and 154 E150 patients. Median PFS was 7.0 versus 6.9 weeks with E300 versus E150, respectively (unstratified hazard ratio [HR]=1.05, 95% confidence interval [CI]: 0.83-1.33; unstratified log-rank P=0.671). Median OS was 6.8 months in both arms (unstratified HR=1.03, 95% CI: 0.80-1.32; unstratified log-rank P=0.846). Overall, 89.2% (E300 arm) and 84.4% (E150 arm) experienced ≥1 adverse event (AE) of any grade (44.3% and 37%, respectively, experienced grade ≥3 AEs); AEs of special interest were reported in 67.7% and 47.4% of patients, respectively. E300 resulted in higher mean plasma concentrations versus E150, however, this did not improve efficacy. Despite the difference in erlotinib exposure, there was no evidence of an incremental efficacy benefit of a higher erlotinib dose versus the standard dose in this population of highly active smokers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Current perspectives in Set7 mediated stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Nazanin Karimnia

    2016-12-01

    Full Text Available Set7 is a key regulatory enzyme involved in the methylation of lysine residues of histone and non-histone proteins. This lysine methyltransferase is induced during stem cell differentiation and regulates lineage specific gene transcription and cell fate. In this article we discuss recent experimental evidence identifying regulatory targets under the control of Set7 as well as emerging evidence of regulation in stem cell differentiation. Furthermore, we discuss the function of non-coding RNAs regulated by Set7 implicated in cell plasticity.

  11. Current and future molecular diagnostics in non-small-cell lung cancer.

    Science.gov (United States)

    Li, Chun Man; Chu, Wing Ying; Wong, Di Lun; Tsang, Hin Fung; Tsui, Nancy Bo Yin; Chan, Charles Ming Lok; Xue, Vivian Wei Wen; Siu, Parco Ming Fai; Yung, Benjamin Yat Ming; Chan, Lawrence Wing Chi; Wong, Sze Chuen Cesar

    2015-01-01

    The molecular investigation of lung cancer has opened up an advanced area for the diagnosis and therapeutic management of lung cancer patients. Gene alterations in cancer initiation and progression provide not only information on molecular changes in lung cancer but also opportunities in advanced therapeutic regime by personalized targeted therapy. EGFR mutations and ALK rearrangement are important predictive biomarkers for the efficiency of tyrosine kinase inhibitor treatment in lung cancer patients. Moreover, epigenetic aberration and microRNA dysregulation are recent advances in the early detection and monitoring of lung cancer. Although a wide range of molecular tests are available, standardization and validation of assay protocols are essential for the quality of the test outcome. In this review, current and new advancements of molecular biomarkers for non-small-cell lung cancer will be discussed. Recommendations on future development of molecular diagnostic services will also be explored.

  12. Light and current induced degradation in p-type multi-crystalline cells and development of an inspection method and a stabilization method

    Energy Technology Data Exchange (ETDEWEB)

    Broek, K.M.; Bennett, I.J.; Jansen, M.J.; Borg, Van der N.J.C.M.; Eerenstein, W. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    Stable solar cells are needed for durability testing of different combinations of module materials. In such a test, significant power losses in full-size modules with multi-crystalline cells after thermal cycling have been observed. This has been related to degradation of the solar cells used and it appeared that this was caused by current induced degradation. This phenomenon is not limited to boron doped Cz-Si, but can also occur in p-type multi-crystalline silicon. Work was done to develop an incoming inspection method for new batches of cells. Also, stabilisation procedures for modules containing cells that are sensitive to degradation have been determined.

  13. Effects of currently used pesticides and their mixtures on the function of thyroid hormone and aryl hydrocarbon receptor in cell culture

    Energy Technology Data Exchange (ETDEWEB)

    Ghisari, Mandana; Long, Manhai; Tabbo, Agnese; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    2015-05-01

    Evidence suggest that exposure to pesticides can interfere with the endocrine system by multiple mechanisms. The endocrine disrupting potential of currently used pesticides in Denmark was analyzed as single compounds and in an equimolar mixture of 5 selected pesticides. The pesticides were previously analyzed for effects on the function of estrogen and androgen receptors, the aromatase enzyme and steroidogenesis in vitro. In this study, the effect on thyroid hormone (TH) function and aryl hydrocarbon receptor (AhR) transactivity was assessed using GH3 cell proliferation assay (T-screen) and AhR responsive luciferase reporter gene bioassay, respectively. Thirteen pesticides were analyzed as follows: 2-methyl-4-chlorophenoxyacetic acid, terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb and its metabolite ethylene thiourea, cypermethrin, tau-fluvalinate, and malathion (currently banned in DK). In the T-screen, prothioconazole, malathion, tau-fluvalinate, cypermethrin, terbuthylazine and mancozeb significantly stimulated and bitertanol and propiconazole slightly reduced the GH3 cell proliferation. In the presence of triiodothyronine (T3), prothioconazole, tau-fluvalinate, propiconazole, cypermethrin and bitertanol significantly antagonized the T3-induced GH3 cell proliferation. Eleven of the tested pesticides agonized the AhR function, and bitertanol and prothioconazole inhibited the basal AhR activity. Bitertanol, propiconazole, prothioconazole and cypermethrin antagonized the TCDD-induced AhR transactivation at the highest tested concentration. The 5-component mixture had inducing effect but the combined effect could not be predicted due to the presence of bitertanol eliciting inhibitory effect. Upon removal of bitertanol from the mixture, the remaining four pesticides acted additively. In conclusion, our data suggest that pesticides currently used in Denmark

  14. Single-channel L-type Ca2+ currents in chicken embryo semicircular canal type I and type II hair cells.

    Science.gov (United States)

    Zampini, Valeria; Valli, Paolo; Zucca, Giampiero; Masetto, Sergio

    2006-08-01

    Few data are available concerning single Ca channel properties in inner ear hair cells and particularly none in vestibular type I hair cells. By using the cell-attached configuration of the patch-clamp technique in combination with the semicircular canal crista slice preparation, we determined the elementary properties of voltage-dependent Ca channels in chicken embryo type I and type II hair cells. The pipette solutions included Bay K 8644. With 70 mM Ba(2+) in the patch pipette, Ca channel activity appeared as very brief openings at -60 mV. Ca channel properties were found to be similar in type I and type II hair cells; therefore data were pooled. The mean inward current amplitude was -1.3 +/- 0.1 (SD) pA at - 30 mV (n = 16). The average slope conductance was 21 pS (n = 20). With 5 mM Ba(2+) in the patch pipette, very brief openings were already detectable at -80 mV. The mean inward current amplitude was -0.7 +/- 0.2 pA at -40 mV (n = 9). The average slope conductance was 11 pS (n = 9). The mean open time and the open probability increased significantly with depolarization. Ca channel activity was still present and unaffected when omega-agatoxin IVA (2 microM) and omega-conotoxin GVIA (3.2 microM) were added to the pipette solution. Our results show that types I and II hair cells express L-type Ca channels with similar properties. Moreover, they suggest that in vivo Ca(2+) influx might occur at membrane voltages more negative than -60 mV.

  15. Pharmacological analysis of the activation and receptor properties of the tonic GABA(CR current in retinal bipolar cell terminals.

    Directory of Open Access Journals (Sweden)

    Stefanie M Jones

    Full Text Available GABAergic inhibition in the central nervous system (CNS can occur via rapid, transient postsynaptic currents and via a tonic increase in membrane conductance, mediated by synaptic and extrasynaptic GABA(A receptors (GABA(ARs respectively. Retinal bipolar cells (BCs exhibit a tonic current mediated by GABA(CRs in their axon terminal, in addition to synaptic GABA(AR and GABA(CR currents, which strongly regulate BC output. The tonic GABA(CR current in BC terminals (BCTs is not dependent on vesicular GABA release, but properties such as the alternative source of GABA and the identity of the GABA(CRs remain unknown. Following a recent report that tonic GABA release from cerebellar glial cells is mediated by Bestrophin 1 anion channels, we have investigated their role in non-vesicular GABA release in the retina. Using patch-clamp recordings from BCTs in goldfish retinal slices, we find that the tonic GABA(CR current is not reduced by the anion channel inhibitors NPPB or flufenamic acid but is reduced by DIDS, which decreases the tonic current without directly affecting GABA(CRs. All three drugs also exhibit non-specific effects including inhibition of GABA transporters. GABA(CR ρ subunits can form homomeric and heteromeric receptors that differ in their properties, but BC GABA(CRs are thought to be ρ1-ρ2 heteromers. To investigate whether GABA(CRs mediating tonic and synaptic currents may differ in their subunit composition, as is the case for GABA(ARs, we have examined the effects of two antagonists that show partial ρ subunit selectivity: picrotoxin and cyclothiazide. Tonic and synaptic GABA(CR currents were differentially affected by both drugs, suggesting that a population of homomeric ρ1 receptors contributes to the tonic current. These results extend our understanding of the multiple forms of GABAergic inhibition that exist in the CNS and contribute to visual signal processing in the retina.

  16. Comparisons of temperature, pressure and humidity measurements by balloon-borne radiosondes and frost point hygrometers during MOHAVE-2009

    Directory of Open Access Journals (Sweden)

    D. F. Hurst

    2011-12-01

    Full Text Available We compare coincident, in situ, balloon-borne measurements of temperature (T and pressure (P by two radiosondes (Vaisala RS92, Intermet iMet-1-RSB and similar measurements of relative humidity (RH by RS92 sondes and frost point hygrometers. Data from a total of 28 balloon flights with at least one pair of radiosondes are analyzed in 1-km altitude bins to quantify measurement differences between the sonde sensors and how they vary with altitude. Each comparison (T, P, RH exposes several profiles of anomalously large measurement differences. Measurement difference statistics, calculated with and without the anomalous profiles, are compared to uncertainties quoted by the radiosonde manufacturers. Excluding seven anomalous profiles, T differences between 19 pairs of RS92 and iMet sondes exceed their measurement uncertainty limits (2 σ 31% of the time and reveal a statistically significant, altitude-independent bias of 0.5 ± 0.2 °C. Similarly, RS92-iMet P differences in 22 non-anomalous profiles exceed their uncertainty limits 23% of the time, with a disproportionate 83% of the excessive P differences at altitudes >16 km. The RS92-iMet pressure differences increase smoothly from −0.6 hPa near the surface to 0.8 hPa above 25 km. Temperature and P differences between all 14 pairs of RS92 sondes exceed manufacturer-quoted, reproducibility limits (σ 28% and 11% of the time, respectively. About 95% of the excessive T differences are eliminated when 5 anomalous RS92-RS92 profiles are excluded. Only 5% of RH measurement differences between 14 pairs of RS92 sondes exceed the manufacturer's measurement reproducibility limit (σ. RH measurements by RS92 sondes are also compared to RH values calculated from frost point hygrometer measurements and coincident T measurements by the radiosondes. The influences of RS92-iMet Tand P differences on RH values and water vapor mixing

  17. The GABAA Antagonist DPP-4-PIOL Selectively Antagonises Tonic over Phasic GABAergic Currents in Dentate Gyrus Granule Cells

    DEFF Research Database (Denmark)

    Boddum, Kim; Frølund, Bente; Kristiansen, Uffe

    2014-01-01

    that phasic and tonic GABAA receptor currents can be selectively inhibited by the antagonists SR 95531 and the 4-PIOL derivative, 4-(3,3-diphenylpropyl)-5-(4-piperidyl)-3-isoxazolol hydrobromide (DPP-4-PIOL), respectively. In dentate gyrus granule cells, SR 95531 was found approximately 4 times as potent...

  18. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    Science.gov (United States)

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling and control of a proton exchange membrane fuel cell with the air compressor according to requested electrical current

    Directory of Open Access Journals (Sweden)

    Malekbala Mohammad Rahim

    2015-01-01

    Full Text Available The aim of this paper is to design and investigate the dynamic behavior of a PEM fuel cell system. Dynamic analysis of a PEM fuel cell system has been done in Matlab\\Simulink software according to electrical current that has been applied from hybrid system. In addition, dynamical fuel cell system has been explained according to oriented control that is started from air injection compressor model. Also hydrogen valve actuator has been controlled according to the compressor model. The results of the fuel cell dynamic model as well as the applied compressor model are fully validated based on the available results in the open literature. Finally, the effects of several operating parameters of the fuel cell system such as anode and cathode pressures, cell voltage, compressor voltage, compressor mass flow rate variation with respect to inlet pressure ratio, net and stack powers on the dynamic behavior of the hybrid system are investigated. The results show that the model can predict the dynamic behavior of the fuel cell system accurately and it can be used directly for any control purposes.

  20. The link between ozone and temperature as derived from sonde measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fortuin, J P.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands)

    1996-12-31

    The current study is based on ozone and temperature measurements, recorded at 8 ozonesonde stations over the period 1971 -1991. The ozonesonde and raw instruments are attached to the same balloon, which has the advantage that datasets are truly synoptic. The ozonesonde stations are located in Canada (Resolute, Edmonton, Churchill and Goose Bay), Japan (Sapporo, Tateno and Kagoshima U.S.) (Wallops Island). The ozone and temperature datasets are submitted to a multiple linear regression analysis. The predictors are time cycle, solar flux at 10.7 cm, quasi-biennial oscillation (equatorial wind at 30 hPa where available), the wind direction recorded during the same balloon flight. To account possible changes in ozonesonde instruments, a step function is used. The El Chichon volcanic eruption is accounted for using the 9-season window technique. Results are presented for the warm and cold half year periods of the annual cycle

  1. The link between ozone and temperature as derived from sonde measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fortuin, J.P.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands)

    1995-12-31

    The current study is based on ozone and temperature measurements, recorded at 8 ozonesonde stations over the period 1971 -1991. The ozonesonde and raw instruments are attached to the same balloon, which has the advantage that datasets are truly synoptic. The ozonesonde stations are located in Canada (Resolute, Edmonton, Churchill and Goose Bay), Japan (Sapporo, Tateno and Kagoshima U.S.) (Wallops Island). The ozone and temperature datasets are submitted to a multiple linear regression analysis. The predictors are time cycle, solar flux at 10.7 cm, quasi-biennial oscillation (equatorial wind at 30 hPa where available), the wind direction recorded during the same balloon flight. To account possible changes in ozonesonde instruments, a step function is used. The El Chichon volcanic eruption is accounted for using the 9-season window technique. Results are presented for the warm and cold half year periods of the annual cycle

  2. Effect of dislocations on the open-circuit voltage, short-circuit current and efficiency of heteroepitaxial indium phosphide solar cells

    Science.gov (United States)

    Jain, Raj K.; Flood, Dennis J.

    1990-01-01

    Excellent radiation resistance of indium phosphide solar cells makes them a promising candidate for space power applications, but the present high cost of starting substrates may inhibit their large scale use. Thin film indium phosphide cells grown on Si or GaAs substrates have exhibited low efficiencies, because of the generation and propagation of large number of dislocations. Dislocation densities were calculated and its influence on the open circuit voltage, short circuit current, and efficiency of heteroepitaxial indium phosphide cells was studied using the PC-1D. Dislocations act as predominant recombination centers and are required to be controlled by proper transition layers and improved growth techniques. It is shown that heteroepitaxial grown cells could achieve efficiencies in excess of 18 percent AMO by controlling the number of dislocations. The effect of emitter thickness and surface recombination velocity on the cell performance parameters vs. dislocation density is also studied.

  3. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Science.gov (United States)

    Szmyd, Janusz S.; Komatsu, Yosuke; Brus, Grzegorz; Ghigliazza, Francesco; Kimijima, Shinji; Ściążko, Anna

    2014-09-01

    This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V) correlation. The current-based fuel control (CBFC) was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  4. The effect of applied control strategy on the current-voltage correlation of a solid oxide fuel cell stack during dynamic operation

    Directory of Open Access Journals (Sweden)

    Szmyd Janusz S.

    2014-09-01

    Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.

  5. On second order effects in a galvanic cell : Part I. Polarization by a sine wave modulated high frequency current

    NARCIS (Netherlands)

    Pol, F. van der; Sluyters-Rehbach, M.; Sluyters, J.H.

    1975-01-01

    A theoretical study is presented concerning the application of a high-frequency alternating current, amplitude modulated by a low-frequency sine wave, to a galvanic cell. Based on the correlation with the faradaic rectification technique, expressions are given for the low-frequency demodulation

  6. Degradation of solid oxide cells during co-electrolysis of H2O and CO2: Carbon deposition under high current densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2012-01-01

    conversions of the reactants were no more than 66.8 %. Ni-YSZ electrode delamination and carbon nano-fibers could be observed after test at the Ni-YSZ | YSZ electrolyte interface for two of the cells. Thermodynamic calculation shows that the reactant conversion needed for carbon formation is above 99 %, far...... above the experimental conversions. The observed carbon formation may be caused by the gas diffusion limitations at high current densities. Carbon nano-fibers were only observed close to the YSZ electrolyte indicating a large overpotential gradient at the TPBs close to the electrolyte......During co-electrolysis of H2O and CO2 using solid oxide cells (SOCs) the risk of carbon deposition in the Ni-YSZ electrode under high current densities (∼ 2.0 A/cm2) was studied in this work. Five galvanostatic tests were performed at current density between 1.5 and 2.25 A/cm2 and the average...

  7. Electron-beam induced current characterization of back-surface field solar cells using a chopped scanning electron microscope beam

    Science.gov (United States)

    Luke, K. L.; Cheng, L.-J.

    1984-01-01

    A chopped electron beam induced current (EBIC) technique for the chacterization of back-surface field (BSF) solar cells is presented. It is shown that the effective recombination velocity of the low-high junction forming the back-surface field of BSF cells, in addition to the diffusion length and the surface recombination velocity of the surface perpendicular to both the p-n and low-high junctions, can be determined from the data provided by a single EBIC scan. The method for doing so is described and illustrated. Certain experimental considerations taken to enhance the quality of the EBIC data are also discussed.

  8. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields.

    Directory of Open Access Journals (Sweden)

    Robart Babona-Pilipos

    Full Text Available BACKGROUND: The existence of neural stem and progenitor cells (together termed neural precursor cells in the adult mammalian brain has sparked great interest in utilizing these cells for regenerative medicine strategies. Endogenous neural precursors within the adult forebrain subependyma can be activated following injury, resulting in their proliferation and migration toward lesion sites where they differentiate into neural cells. The administration of growth factors and immunomodulatory agents following injury augments this activation and has been shown to result in behavioural functional recovery following stroke. METHODS AND FINDINGS: With the goal of enhancing neural precursor migration to facilitate the repair process we report that externally applied direct current electric fields induce rapid and directed cathodal migration of pure populations of undifferentiated adult subependyma-derived neural precursors. Using time-lapse imaging microscopy in vitro we performed an extensive single-cell kinematic analysis demonstrating that this galvanotactic phenomenon is a feature of undifferentiated precursors, and not differentiated phenotypes. Moreover, we have shown that the migratory response of the neural precursors is a direct effect of the electric field and not due to chemotactic gradients. We also identified that epidermal growth factor receptor (EGFR signaling plays a role in the galvanotactic response as blocking EGFR significantly attenuates the migratory behaviour. CONCLUSIONS: These findings suggest direct current electric fields may be implemented in endogenous repair paradigms to promote migration and tissue repair following neurotrauma.

  9. Changing paradigms in cranio-facial regeneration: current and new strategies for the activation of endogenous stem cells

    Directory of Open Access Journals (Sweden)

    Luigi eMele

    2016-02-01

    Full Text Available Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients’ quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients’ own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet–Rich-Plasma and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue.

  10. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Testing and Measurement Techniques in Heat Transfer and Combustion.

    Science.gov (United States)

    1980-09-01

    fine brass gauze, which have initially been heated or cooled by passing air through copper spiral coils immersed in a bath of heated oil or alcohol and...par l’analyseur peut Ctre interpr~t~e soit cornie 6tant celle r~ellement presente dans la flamme, sojt canine r~sultant d’une oxydation de NO syant...pr~l ,vement et analyse provient d’one oxydation de NO en proportion variltle suivant le type de sonde utilis6. De plus ii apparalt que cette

  12. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

    KAUST Repository

    Yilmazel, Yasemin D.

    2017-10-02

    Few microorganisms have been examined for current generation under thermophilic (40–65 °C) or hyperthermophilic temperatures (≥ 80 °C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68 ± 0.11 A/m2 was attained in F. placidus MECs at 85 °C, and 0.57 ± 0.10 A/m2 in G. ahangari MECs at 80 °C, with an applied voltage of 0.7 V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of − 0.39 V (vs. Ag/AgCl) for F. placidus and − 0.37 V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

  13. Electrical current generation in microbial electrolysis cells by hyperthermophilic archaea Ferroglobus placidus and Geoglobus ahangari

    KAUST Repository

    Yilmazel, Yasemin D.; Zhu, Xiuping; Kim, Kyoung-Yeol; Holmes, Dawn E.; Logan, Bruce E.

    2017-01-01

    Few microorganisms have been examined for current generation under thermophilic (40–65 °C) or hyperthermophilic temperatures (≥ 80 °C) in microbial electrochemical systems. Two iron-reducing archaea from the family Archaeoglobaceae, Ferroglobus placidus and Geoglobus ahangari, showed electro-active behavior leading to current generation at hyperthermophilic temperatures in single-chamber microbial electrolysis cells (MECs). A current density (j) of 0.68 ± 0.11 A/m2 was attained in F. placidus MECs at 85 °C, and 0.57 ± 0.10 A/m2 in G. ahangari MECs at 80 °C, with an applied voltage of 0.7 V. Cyclic voltammetry (CV) showed that both strains produced a sigmoidal catalytic wave, with a mid-point potential of − 0.39 V (vs. Ag/AgCl) for F. placidus and − 0.37 V for G. ahangari. The comparison of CVs using spent medium and turnover CVs, coupled with the detection of peaks at the same potentials in both turnover and non-turnover conditions, suggested that mediators were not used for electron transfer and that both archaea produced current through direct contact with the electrode. These two archaeal species, and other hyperthermophilic exoelectrogens, have the potential to broaden the applications of microbial electrochemical technologies for producing biofuels and other bioelectrochemical products under extreme environmental conditions.

  14. Current-Sheet Formation and Reconnection at a Magnetic X Line in Particle-in-Cell Simulations

    Science.gov (United States)

    Black, C.; Antiochos, S. K.; Hesse, M.; Karpen, J. T.; Kuznetsova, M. M.; Zenitani, S.

    2011-01-01

    The integration of kinetic effects into macroscopic numerical models is currently of great interest to the heliophysics community, particularly in the context of magnetic reconnection. Reconnection governs the large-scale energy release and topological rearrangement of magnetic fields in a wide variety of laboratory, heliophysical, and astrophysical systems. We are examining the formation and reconnection of current sheets in a simple, two-dimensional X-line configuration using high-resolution particle-in-cell (PIC) simulations. The initial minimum-energy, potential magnetic field is perturbed by excess thermal pressure introduced into the particle distribution function far from the X line. Subsequently, the relaxation of this added stress leads self-consistently to the development of a current sheet that reconnects for imposed stress of sufficient strength. We compare the time-dependent evolution and final state of our PIC simulations with macroscopic magnetohydrodynamic simulations assuming both uniform and localized electrical resistivities (C. R. DeVore et al., this meeting), as well as with force-free magnetic-field equilibria in which the amount of reconnection across the X line can be constrained to be zero (ideal evolution) or optimal (minimum final magnetic energy). We will discuss implications of our results for understanding magnetic-reconnection onset and cessation at kinetic scales in dynamically formed current sheets, such as those occurring in the solar corona and terrestrial magnetotail.

  15. Asymptotic and numerical prediction of current-voltage curves for an organic bilayer solar cell under varying illumination and comparison to the Shockley equivalent circuit

    KAUST Repository

    Foster, J. M.; Kirkpatrick, J.; Richardson, G.

    2013-01-01

    In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified

  16. Effect of ciguatoxin 3C on voltage-gated Na+ and K+ currents in mouse taste cells.

    Science.gov (United States)

    Ghiaroni, Valeria; Fuwa, Haruhiko; Inoue, Masayuki; Sasaki, Makoto; Miyazaki, Keisuke; Hirama, Masahiro; Yasumoto, Takeshi; Rossini, Gian Paolo; Scalera, Giuseppe; Bigiani, Albertino

    2006-09-01

    The marine dinoflagellate Gambierdiscus toxicus produces highly lipophilic, polycyclic ether toxins that cause a seafood poisoning called ciguatera. Ciguatoxins (CTXs) and gambierol represent the two major causative agents of ciguatera intoxication, which include taste alterations (dysgeusiae). However, information on the mode of action of ciguatera toxins in taste cells is scarce. Here, we have studied the effect of synthetic CTX3C (a CTX congener) on mouse taste cells. By using the patch-clamp technique to monitor membrane ion currents, we found that CTX3C markedly affected the operation of voltage-gated Na(+) channels but was ineffective on voltage-gated K(+) channels. This result was the exact opposite of what we obtained earlier with gambierol, which inhibits K(+) channels but not Na(+) channels. Thus, CTXs and gambierol affect with high potency the operation of separate classes of voltage-gated ion channels in taste cells. Our data suggest that taste disturbances reported in ciguatera poisoning might be due to the ability of ciguatera toxins to interfere with ion channels in taste buds.

  17. Direct double-contrast examination of the small intestines

    International Nuclear Information System (INIS)

    Vadon, G.; Mako, E.; Toeroek, I.

    1981-01-01

    A special small intestinal sonde (Intest-Sonde, pfm) is conducted into the stomach and carried by the peristaltic waves to the desired place. Thereafter the contrast material is injected by constant velocity of approx. 100 ml/min until it reaches the coecum. Best results are obtained by the 40% mixture of Mixobar HD (Byk Gulden). Then the peristalsis is inhibited by i.v. glucagon and after blowing 500-800 ml air, the radiograms are taken in different positions. (L.E.)

  18. Apamin does not inhibit human cardiac Na+ current, L-type Ca2+ current or other major K+ currents.

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Yu

    Full Text Available Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear.To test the hypothesis that apamin does not inhibit any major cardiac ion currents.We studied human embryonic kidney (HEK 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration.Ca2+ currents (CACNA1c+CACNB2b were not affected by apamin (500 nM (data are presented as median [25th percentile;75th percentile] (from -16 [-20;-10] to -17 [-19;-13] pA/pF, P = NS, but were reduced by nifedipine to -1.6 [-3.2;-1.3] pA/pF (p = 0.008. Na+ currents (SCN5A were not affected by apamin (from -261 [-282;-145] to -268 [-379;-132] pA/pF, P = NS, but were reduced by flecainide to -57 [-70;-47] pA/pF (p = 0.018. None of the major K+ currents (IKs, IKr, IK1 and Ito were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from -46 [-48;-40] to -46 [-51;-35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]. Apamin did not inhibit the INa or ICaL in isolated rabbit ventricular myocytes (INa, from -67 [-75;-59] to -68 [-71;-59] pA/pF; ICaL, from -16 [-17;-14] to -14 [-15;-13] pA/pF, P = NS for both.Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.

  19. Preliminary results of cold fusion studies using a five module high current electrolytic cell (Paper No. A2)

    International Nuclear Information System (INIS)

    Nayar, M.G.; Mitra, S.K.; Raghunathan, P.; Krishnan, M.S.; Malhotra, S.K.; Gaonkar, D.G.; Sikka, S.K.; Shyam, A.; Chitra, V.

    1989-01-01

    A high current modular palladium-nickel electrolytic cell was designed and operated to observe cold fusion reactions. The cathode was made up of palladium (25 per cent)-silver and the anode was made up of porous nickel. Using NaOD in D 2 O (20 per cent) as an electrolyte, the electrolyser was operated continuously at a current of 60 to 65 amps and applied voltage of ∼ 12.5V. The deuterium and oxygen gases produced were carried out of the cell to a recombination unit consisting of burner and condenser. The resultant heavy water was recycled back to the electrolyser. Measurement of the neutron output and tritium content of the electrolyte during and after electrolysis conclusively showed occurrence of cold fusion reactions. Gross neutron to tritium yield ratio was observed to be ∼ 10 -9 which should be taken as a lower limit, because a considerable quantity of tritium carried away by the gas stream could not recovered and taken into account. (M.G.B.). 2 tabs., 2 figs

  20. A HIGH CURRENT, HIGH VOLTAGE SOLID-STATE PULSE GENERATOR FOR THE NIF PLASMA ELECTRODE POCKELS CELL

    International Nuclear Information System (INIS)

    Arnold, P A; Barbosa, F; Cook, E G; Hickman, B C; Akana, G L; Brooksby, C A

    2007-01-01

    A high current, high voltage, all solid-state pulse modulator has been developed for use in the Plasma Electrode Pockels Cell (PEPC) subsystem in the National Ignition Facility. The MOSFET-switched pulse generator, designed to be a more capable plug-in replacement for the thyratron-switched units currently deployed in NIF, offers unprecedented capabilities including burst-mode operation, pulse width agility and a steady-state pulse repetition frequency exceeding 1 Hz. Capable of delivering requisite fast risetime, 17 kV flattop pulses into a 6 (Omega) load, the pulser employs a modular architecture characteristic of the inductive adder technology, pioneered at LLNL for use in acceleration applications, which keeps primary voltages low (and well within the capabilities of existing FET technology), reduces fabrication costs and is amenable to rapid assembly and quick field repairs

  1. Axisymmetrical particle-in-cell/Monte Carlo simulation of narrow gap planar magnetron plasmas. I. Direct current-driven discharge

    International Nuclear Information System (INIS)

    Kondo, Shuji; Nanbu, Kenichi

    2001-01-01

    An axisymmetrical particle-in-cell/Monte Carlo simulation is performed for modeling direct current-driven planar magnetron discharge. The axisymmetrical structure of plasma parameters such as plasma density, electric field, and electron and ion energy is examined in detail. The effects of applied voltage and magnetic field strength on the discharge are also clarified. The model apparatus has a narrow target-anode gap of 20 mm to make the computational time manageable. This resulted in the current densities which are very low compared to actual experimental results for a wider target-anode gap. The current-voltage characteristics show a negative slope in contrast with many experimental results. However, this is understandable from Gu and Lieberman's similarity equation. The negative slope appears to be due to the narrow gap

  2. Laser induced non-monotonic degradation in short-circuit current of triple-junction solar cells

    Science.gov (United States)

    Dou, Peng-Cheng; Feng, Guo-Bin; Zhang, Jian-Min; Song, Ming-Ying; Zhang, Zhen; Li, Yun-Peng; Shi, Yu-Bin

    2018-06-01

    In order to study the continuous wave (CW) laser radiation effects and mechanism of GaInP/GaAs/Ge triple-junction solar cells (TJSCs), 1-on-1 mode irradiation experiments were carried out. It was found that the post-irradiation short circuit current (ISC) of the TJSCs initially decreased and then increased with increasing of irradiation laser power intensity. To explain this phenomenon, a theoretical model had been established and then verified by post-damage tests and equivalent circuit simulations. Conclusion was drawn that laser induced alterations in the surface reflection and shunt resistance were the main causes for the observed non-monotonic decrease in the ISC of the TJSCs.

  3. Lung cancer: Current status and prospects for the future

    International Nuclear Information System (INIS)

    Mountain, C.F.; Carr, D.T.

    1986-01-01

    This book contains 32 papers. Some of the titles are: Activation of cellular ras genes in human neoplasms; The valve of definitive radiation therapy of unresectable squamous cell carcinoma, large cell carcinoma, and adenocarcinoma of the lung; Current concepts of chemotherapy and radiotherapy for small cell lung cancer, and Current status of immunotherapy for lung cancer

  4. Determination of Charge-Carrier Mobility in Disordered Thin-Film Solar Cells as a Function of Current Density

    Science.gov (United States)

    Mäckel, Helmut; MacKenzie, Roderick C. I.

    2018-03-01

    Charge-carrier mobility is a fundamental material parameter, which plays an important role in determining solar-cell efficiency. The higher the mobility, the less time a charge carrier will spend in a device and the less likely it is that it will be lost to recombination. Despite the importance of this physical property, it is notoriously difficult to measure accurately in disordered thin-film solar cells under operating conditions. We, therefore, investigate a method previously proposed in the literature for the determination of mobility as a function of current density. The method is based on a simple analytical model that relates the mobility to carrier density and transport resistance. By revising the theoretical background of the method, we clearly demonstrate what type of mobility can be extracted (constant mobility or effective mobility of electrons and holes). We generalize the method to any combination of measurements that is able to determine the mean electron and hole carrier density, and the transport resistance at a given current density. We explore the robustness of the method by simulating typical organic solar-cell structures with a variety of physical properties, including unbalanced mobilities, unbalanced carrier densities, and for high or low carrier trapping rates. The simulations reveal that near VOC and JSC , the method fails due to the limitation of determining the transport resistance. However, away from these regions (and, importantly, around the maximum power point), the method can accurately determine charge-carrier mobility. In the presence of strong carrier trapping, the method overestimates the effective mobility due to an underestimation of the carrier density.

  5. Direct electric current treatment modifies mitochondrial function and lipid body content in the A549 cancer cell line.

    Science.gov (United States)

    Holandino, Carla; Teixeira, Cesar Augusto Antunes; de Oliveira, Felipe Alves Gomes; Barbosa, Gleyce Moreno; Siqueira, Camila Monteiro; Messeder, Douglas Jardim; de Aguiar, Fernanda Silva; da Veiga, Venicio Feo; Girard-Dias, Wendell; Miranda, Kildare; Galina, Antonio; Capella, Marcia Alves Marques; Morales, Marcelo Marcos

    2016-10-01

    Electrochemical therapy (EChT) entails treatment of solid tumors with direct electric current (DC). This work evaluated the specific effects of anodic flow generated by DC on biochemical and metabolic features of the A549 human lung cancer cell line. Apoptosis was evaluated on the basis of caspase-3 activity and mitochondrial transmembrane potential dissipation. Cell morphology was analyzed using transmission electron microscopy, and lipid droplets were studied through morphometric analysis and X-ray qualitative elemental microanalysis. High-resolution respirometry was used to assess mitochondrial respiratory parameters. Results indicated A549 viability decreased in a dose-dependent manner with a prominent drop between 18 and 24h after treatment (ppotential. Furthermore, treated cells demonstrated important ultrastructural mitochondria damage and a three-fold increase in the cytoplasmic lipid bodies' number, quantified by morphometrical analyses. Conversely, 24h after treatment, the cells presented a two-fold increase of residual oxygen consumption, accounting for 45.3% of basal oxygen consumption. These results show remarkable alterations promoted by anodic flow on human lung cancer cells which are possibly involved with the antitumoral effects of EChT. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    Science.gov (United States)

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Role of action potential configuration and the contribution of C²⁺a and K⁺ currents to isoprenaline-induced changes in canine ventricular cells.

    Science.gov (United States)

    Szentandrássy, N; Farkas, V; Bárándi, L; Hegyi, B; Ruzsnavszky, F; Horváth, B; Bányász, T; Magyar, J; Márton, I; Nánási, P P

    2012-10-01

    Although isoprenaline (ISO) is known to activate several ion currents in mammalian myocardium, little is known about the role of action potential morphology in the ISO-induced changes in ion currents. Therefore, the effects of ISO on action potential configuration, L-type Ca²⁺ current (I(Ca)), slow delayed rectifier K⁺ current (I(Ks)) and fast delayed rectifier K⁺ current (I(Kr)) were studied and compared in a frequency-dependent manner using canine isolated ventricular myocytes from various transmural locations. Action potentials were recorded with conventional sharp microelectrodes; ion currents were measured using conventional and action potential voltage clamp techniques. In myocytes displaying a spike-and-dome action potential configuration (epicardial and midmyocardial cells), ISO caused reversible shortening of action potentials accompanied by elevation of the plateau. ISO-induced action potential shortening was absent in endocardial cells and in myocytes pretreated with 4-aminopyridine. Application of the I(Kr) blocker E-4031 failed to modify the ISO effect, while action potentials were lengthened by ISO in the presence of the I(Ks) blocker HMR-1556. Both action potential shortening and elevation of the plateau were prevented by pretreatment with the I(Ca) blocker nisoldipine. Action potential voltage clamp experiments revealed a prominent slowly inactivating I(Ca) followed by a rise in I(Ks) , both currents increased with increasing the cycle length. The effect of ISO in canine ventricular cells depends critically on action potential configuration, and the ISO-induced activation of I(Ks) - but not I(Kr) - may be responsible for the observed shortening of action potentials. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  8. PLC-dependent intracellular Ca2+ release was associated with C6-ceramide-induced inhibition of Na+ current in rat granule cells.

    Science.gov (United States)

    Liu, Zheng; Fei, Xiao-Wei; Fang, Yan-Jia; Shi, Wen-Jie; Zhang, Yu-Qiu; Mei, Yan-Ai

    2008-09-01

    In this report, the effects of C(6)-ceramide on the voltage-gated inward Na(+) currents (I(Na)), two types of main K(+) current [outward rectifier delayed K(+) current (I(K)) and outward transient K(+) current (I(A))], and cell death in cultured rat cerebellar granule cells were investigated. At concentrations of 0.01-100 microM, ceramide produced a dose-dependent and reversible inhibition of I(Na) without alteration of the steady-state activation and inactivation properties. Treatment with C(2)-ceramide caused a similar inhibitory effect on I(Na). However, dihydro-C(6)-ceramide failed to modulate I(Na). The effect of C(6)-ceramide on I(Na) was abolished by intracellular infusion of the Ca(2+)-chelating agent, 1,2-bis (2-aminophenoxy) ethane-N, N, N9, N9-tetraacetic acid, but was mimicked by application of caffeine. Blocking the release of Ca(2+) from the sarcoplasmic reticulum with ryanodine receptor blocker induced a gradual increase in I(Na) amplitude and eliminated the effect of ceramide on I(Na). In contrast, the blocker of the inositol 1,4,5-trisphosphate-sensitive Ca(2+) receptor did not affect the action of C(6)-ceramide. Intracellular application of GTPgammaS also induced a gradual decrease in I(Na) amplitude, while GDPbetaS eliminated the effect of C(6)-ceramide on I(Na). Furthermore, the C(6)-ceramide effect on I(Na) was abolished after application of the phospholipase C (PLC) blockers and was greatly reduced by the calmodulin inhibitors. Fluorescence staining showed that C(6)-ceramide decreased cell viability and blocking I(Na) by tetrodotoxin did not mimic the effect of C(6)-ceramide, and inhibiting intracellular Ca(2+) release by dantrolene could not decrease the C(6)-ceramide-induced cell death. We therefore suggest that increased PLC-dependent Ca(2+) release through the ryanodine-sensitive Ca(2+) receptor may be responsible for the C(6)-ceramide-induced inhibition of I(Na), which does not seem to be associated with C(6)-ceramide-induced granule

  9. A Review on Current Status of Stability and Knowledge on Liquid Electrolyte-Based Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Frédéric Sauvage

    2014-01-01

    Full Text Available The purpose of this review is to gather the current background in materials development and provide the reader with an accurate image of today’s knowledge regarding the stability of dye-sensitized solar cells. This contribution highlights the literature from the 1970s to the present day on nanostructured TiO2, dye, Pt counter electrode, and liquid electrolyte for which this review is focused on.

  10. Models for mature T-cell lymphomas--a critical appraisal of experimental systems and their contribution to current T-cell tumorigenic concepts.

    Science.gov (United States)

    Warner, Kathrin; Crispatzu, Giuliano; Al-Ghaili, Nabil; Weit, Nicole; Florou, Vaia; You, M James; Newrzela, Sebastian; Herling, Marco

    2013-12-01

    Mature T-cell lymphomas/leukemias (MTCL) have been understudied lymphoid neoplasms that currently receive growing attention. Our historically rudimentary molecular understanding and dissatisfactory interventional success in this complex and for the most part poor-prognostic group of tumors is only slightly improving. A major limiting aspect in further progress in these rare neoplasms is the lack of suitable model systems that would substantially facilitate pathogenic studies and pre-clinical drug evaluations. Such representations of MTCL have thus far not been systematically appraised. We therefore provide an overview on existing models and point out their particular advantages and limitations in the context of the specific scientific questions. After addressing issues of species-specific differences and classifications, we summarize data on MTCL cell lines of human as well as murine origin, on murine strain predispositions to MTCL, on available models of genetically engineered mice, and on transplant systems. From an in-silico meta-analysis of available primary data of gene expression profiles on human MTCL we cross-reference genes reported to transform T-cells in mice and reflect on their general vs entity-restricted relevance and on target-promoter influences. Overall, we identify the urgent need for new models of higher fidelity to human MTCL with respect to their increasingly recognized diversity and to predictions of drug response. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Resistance probe for liquid hydrogen; Sonde a resistance pour l'hydrogene liquide

    Energy Technology Data Exchange (ETDEWEB)

    Beauval, J J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    A simple device for determining the level of a liquid in equilibrium with its vapour is described. It makes use of the variation in heat exchange between a filament heated by a current and the atmosphere, on passing from the liquid to the gas. This apparatus is used to measure liquid hydrogen levels in liquefying dewar vessels. (author) [French] On decrit un dispositif simple permettant de determiner le niveau d'un liquide en equilibre avec sa vapeur. Il utilise la variation de l'echange thermique entre un filament chauffe par un courant et le milieu ambiant, quand on passe du liquide au gaz. Cet appareil est utilise pour mesurer des niveaux d'hydrogene liquide dans les dewars du liquefacteur. (auteur)

  12. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    International Nuclear Information System (INIS)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-01-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm 2 ) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm 2 ) is found to be superlinear, showing a relation of I = P n , where n = 1.4.

  13. State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology.

    Science.gov (United States)

    Asan, Esther; Drenckhahn, Detlev

    2008-12-01

    Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.

  14. Shunt resistance and saturation current determination in CdTe and CIGS solar cells. Part 1: a new theoretical procedure and comparison with other methodologies

    Science.gov (United States)

    Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio

    2018-04-01

    A new proposal for the extraction of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is given. First, the Cheung method is extended to obtain the series resistance (R s ), the ideality factor (n) and an upper limit for I sat . In this article which is Part 1 of two parts, two procedures are proposed to obtain fitting values for R sh and I sat within some voltage range. These two procedures are used in two simulated I-V curves (one in darkness and the other one under illumination) to recover the known solar cell parameters R sh , R s , n, I sat and the light current I lig and test its accuracy. The method is compared with two different common parameter extraction methods. These three procedures are used and compared in Part 2 in the I-V curves of CdS-CdTe and CIGS-CdS solar cells.

  15. Current therapy of small cell lung cancer

    DEFF Research Database (Denmark)

    Sorensen, M; Lassen, U; Hansen, H H

    1998-01-01

    This article reviews the most important recent clinical trials on the treatment of small cell lung cancer (SCLC). Two randomized studies addressing the timing of thoracic radiotherapy in limited stage SCLC are discussed. In the smaller of the two studies (n = 103), a survival benefit was associated...

  16. Immobilized cell technology in beer brewing: Current experience and results

    Directory of Open Access Journals (Sweden)

    Leskošek-Čukalov Ida J.

    2005-01-01

    Full Text Available Immobilized cell technology (ICT has been attracting continual attention in the brewing industry over the past 30 years. Some of the reasons are: faster fermentation rates and increased volumetric productivity, compared to those of traditional beer production based on freely suspended cells, as well as the possibility of continuous operation. Nowadays, ICT technology is well established in secondary fermentation and alcohol- free and low-alcohol beer production. In main fermentation, the situation is more complex and this process is still under scrutiny on both the lab and pilot levels. The paper outlines the most important ICT processes developed for beer brewing and provides an overview of carrier materials, bioreactor design and examples of their industrial applications, as well as some recent results obtained by our research group. We investigated the possible applications of polyvinyl alcohol in the form of LentiKats®, as a potential porous matrices carrier for beer fermentation. Given are the results of growth studies of immobilized brewer's yeast Saccharomyces uvarum and the kinetic parameters obtained by using alginate microbeads with immobilized yeast cells and suspension of yeast cells as controls. The results indicate that the immobilization procedure in LentiKat® carriers has a negligible effect on cell viability and growth. The apparent specific growth rate of cells released in medium was comparable to that of freely suspended cells, implying preserved cell vitality. A series of batch fermentations performed in shaken flasks and an air-lift bioreactor indicated that the immobilized cells retained high fermentation activity. The full attenuation in green beer was reached after 48 hours in shaken flasks and less than 24 hours of fermentation in gas-lift bioreactors.

  17. Achieving 12.8% Efficiency by Simultaneously Improving Open-Circuit Voltage and Short-Circuit Current Density in Tandem Organic Solar Cells.

    Science.gov (United States)

    Qin, Yunpeng; Chen, Yu; Cui, Yong; Zhang, Shaoqing; Yao, Huifeng; Huang, Jiang; Li, Wanning; Zheng, Zhong; Hou, Jianhui

    2017-06-01

    Tandem organic solar cells (TOSCs), which integrate multiple organic photovoltaic layers with complementary absorption in series, have been proved to be a strong contender in organic photovoltaic depending on their advantages in harvesting a greater part of the solar spectrum and more efficient photon utilization than traditional single-junction organic solar cells. However, simultaneously improving open circuit voltage (V oc ) and short current density (J sc ) is a still particularly tricky issue for highly efficient TOSCs. In this work, by employing the low-bandgap nonfullerene acceptor, IEICO, into the rear cell to extend absorption, and meanwhile introducing PBDD4T-2F into the front cell for improving V oc , an impressive efficiency of 12.8% has been achieved in well-designed TOSC. This result is also one of the highest efficiencies reported in state-of-the-art organic solar cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ocular progenitor cells and current applications in regenerative medicines – Review

    Directory of Open Access Journals (Sweden)

    K. Gokuladhas

    2017-06-01

    Full Text Available The recent emerging field of regenerative medicine is to present solutions for chronic diseases which cannot be sufficiently repaired by the body's own mechanisms. Stem cells are undifferentiated biological cells and have the potential to develop into many different cell types in the body during early life and growth. Self renewal and totipotency are the characteristic features of stem cells and it holds a promising result for treating various diseases like diabetic foot ulcer, heart diseases, lung diseases, Autism, Skin diseases, arthritis including eye disease. Failure of complete recovery of eye diseases and complications that follow conventional treatments have shifted search to a new form of regenerative medicine using Stem cells. The ocular progenitor cells are remarkable in stem cell biology and replenishing degenerated cells despite being present in low quantity and quiescence in our body has a high therapeutic value. In this paper we have review the applications on ocular progenitor stem cells in treatment of human eye diseases and address the strategies that have been exploited in an effort to regain visual function in the advance treatment of stem cells without any side effects and also present the significance in advance stem cell research.

  19. Soft X-ray beam induced current technique

    Energy Technology Data Exchange (ETDEWEB)

    Watts, B; Ade, H [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Queen, D; Hellman, F [Department of Physics, University of California, Berkeley, CA 94720 (United States); Kilcoyne, A L D; Tyliszczak, T, E-mail: benjamin.watts@gmail.co [Advanced Light Source, Lawrence Berkeley Nat. Lab., Berkeley, CA 94720 (United States)

    2009-09-01

    Direct mapping of the charge transport efficiency of polymer solar cell devices using a soft X-ray beam induced current (SoXBIC) method is described. By fabricating a polymer solar cell on an x-ray transparent substrate, we demonstrate the ability to map polymer composition and nanoscale structure within an operating solar cell device and to simultaneously measure the local charge transport efficiency via the short-circuit current. A simple model is calculated and compared to experimental SoXBIC data of a PFB:F8BT bulk-heterojunction device in order to gain greater insight into the device operation and physics.

  20. Solid state dye-sensitized solar cells. Current state of the art. Challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Lenzmann, F.O.; Olson, C.L.; Goris, M.J.A.A.; Kroon, J.M. [ECN Solar Energy, Petten (Netherlands)

    2008-09-15

    The first generation of dye-sensitized solar cell technology is based on a liquid electrolyte component. Today, this technology is on the verge of commercialization. The step towards the market and real applications is supported by the prospect of low manufacturing costs, good efficiency as well as the expectation that the current stability level of this technology is at least sufficient for applications in mobile electronics. These favorable developments may be reinforced and accelerated even further, if the corrosive liquid electrolyte could be replaced by a non-corrosive solid, since this would ease a number of stringent requirements in the production process. A successful exchange of the liquid electrolyte by a solid-state holeconductor requires to at least maintain, preferably improve, the most relevant technical parameters of the solar cell (efficiency, stability, cost). First pioneering work with solid-state hole conductors was carried out 10 years ago with an initial efficiency level below 1%. Until 2007, the record efficiency could be improved to 5%. This paper gives an overview of the solid-state concept as an early stage approach with good perspectives for the mid-term future (5-10 years)

  1. A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells

    International Nuclear Information System (INIS)

    Feron, K.; Fell, C. J.; Zhou, X.; Belcher, W. J.; Dastoor, P. C.

    2014-01-01

    We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known to remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects

  2. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    Science.gov (United States)

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  3. Degradation of solid oxide cells during co-electrolysis of steam and carbon dioxide at high current densities

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Mogensen, Mogens Bjerg

    2016-01-01

    and ∼15 μm LSM–YSZ oxygen electrode. The gas conversion was 45% at −1.5 A cm−2 and 60% at −2.0 A cm−2, and the operating durations were up to 700 h. The detailed electrochemical analysis revealed significant increase of the ohmic resistance, oxide ion transport resistance in the Ni–YSZ composite......In this work, the durability of Ni–YSZ based solid oxide cells was investigated during co-electrolysis of steam and carbon dioxide (45% H2O + 45% CO2 + 10% H2) at current density of −1.5 or −2.0 A cm−2. The cell consists of ∼300 μm Ni–YSZ support, ∼10 μm Ni–YSZ electrode, ∼10 μm YSZ electrolyte...

  4. Chloride currents in cones modify feedback from horizontal cells to cones in goldfish retina

    Science.gov (United States)

    Endeman, Duco; Fahrenfort, Iris; Sjoerdsma, Trijntje; Steijaert, Marvin; ten Eikelder, Huub; Kamermans, Maarten

    2012-01-01

    In neuronal systems, excitation and inhibition must be well balanced to ensure reliable information transfer. The cone/horizontal cell (HC) interaction in the retina is an example of this. Because natural scenes encompass an enormous intensity range both in temporal and spatial domains, the balance between excitation and inhibition in the outer retina needs to be adaptable. How this is achieved is unknown. Using electrophysiological techniques in the isolated retina of the goldfish, it was found that opening Ca2+-dependent Cl− channels in recorded cones reduced the size of feedback responses measured in both cones and HCs. Furthermore, we show that cones express Cl− channels that are gated by GABA released from HCs. Similar to activation of ICl(Ca), opening of these GABA-gated Cl− channels reduced the size of light-induced feedback responses both in cones and HCs. Conversely, application of picrotoxin, a blocker of GABAA and GABAC receptors, had the opposite effect. In addition, reducing GABA release from HCs by blocking GABA transporters also led to an increase in the size of feedback. Because the independent manipulation of Ca2+-dependent Cl− currents in individual cones yielded results comparable to bath-applied GABA, it was concluded that activation of either Cl− current by itself is sufficient to reduce the size of HC feedback. However, additional effects of GABA on outer retinal processing cannot be excluded. These results can be accounted for by an ephaptic feedback model in which a cone Cl− current shunts the current flow in the synaptic cleft. The Ca2+-dependent Cl− current might be essential to set the initial balance between the feedforward and the feedback signals active in the cone HC synapse. It prevents that strong feedback from HCs to cones flood the cone with Ca2+. Modulation of the feedback strength by GABA might play a role during light/dark adaptation, adjusting the amount of negative feedback to the signal to noise ratio of the

  5. Numerical and experimental studies of stack shunt current for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Yin, Cong; Guo, Shaoyun; Fang, Honglin; Liu, Jiayi; Li, Yang; Tang, Hao

    2015-01-01

    Highlights: • A coupled three-dimensional model of VRB cell stack is developed. • Shunt current of the stack is studied with the model and experiment. • Increased electrolyte resistance in channel and manifold lowers the shunt current. • Shunt current loss increases with stack cell number nonlinearly. - Abstract: The stack shunt current of VRB (vanadium redox flow battery) was investigated with experiments and 3D (three-dimensional) simulations. In the proposed model, cell voltages and electrolyte conductivities were calculated based on electrochemical reaction distributions and SOC (state of charge) values, respectively, while coulombic loss was estimated according to shunt current and vanadium ionic crossover through membrane. Shunt current distributions and coulombic efficiency are analyzed in terms of electrolyte conductivities and stack cell numbers. The distributions of cell voltages and shunt currents calculated with proposed model are validated with single cell and short stack tests. The model can be used to optimize VRB stack manifold and channel designs to improve VRB system efficiency

  6. The role of bulk and interface states on performance of a-Si: H p-i-n solar cells using reverse current-voltage technique

    International Nuclear Information System (INIS)

    Mahmood, S A; Kabir, M Z; Murthy, R V R; Dutta, V

    2009-01-01

    The defect state densities in the bulk of the i-layer and at the p/i interface have been studied in hydrogenated amorphous silicon (a-Si : H) solar cells using reverse current-voltage (J-V) measurements. In this work the cells have been soaked with blue and red lights prior to measurements. The voltage-dependent reverse current has been analysed on the basis of thermal generation of the carriers from midgap states in the i-layer and the carrier injection through the p/i interface. Based on the reverse current behaviour, it has been analysed that at lower reverse bias (reverse voltage, V r r ∼ 25 V) the defect states at the p/i interface are contributing to the reverse currents. The applied reverse bias annealing (RBA) treatment on these cells shows more significant annihilation of defect states at the p/i interface as compared with the bulk of the i-layer. An analytical model is developed to explain the observed behaviour. There is good agreement between the theory and the experimental observations. The fitted defect state densities are 9.1 x 10 15 cm -3 and 8 x 10 18 cm -3 in the bulk of the i-layer and near the p/i interface, respectively. These values decrease to 2.5 x 10 15 cm -3 and 6 x 10 17 cm -3 , respectively, in the samples annealed under reverse bias at 2 V.

  7. Mesh optimization for microbial fuel cell cathodes constructed around stainless steel mesh current collectors

    KAUST Repository

    Zhang, Fang

    2011-02-01

    Mesh current collectors made of stainless steel (SS) can be integrated into microbial fuel cell (MFC) cathodes constructed of a reactive carbon black and Pt catalyst mixture and a poly(dimethylsiloxane) (PDMS) diffusion layer. It is shown here that the mesh properties of these cathodes can significantly affect performance. Cathodes made from the coarsest mesh (30-mesh) achieved the highest maximum power of 1616 ± 25 mW m-2 (normalized to cathode projected surface area; 47.1 ± 0.7 W m-3 based on liquid volume), while the finest mesh (120-mesh) had the lowest power density (599 ± 57 mW m-2). Electrochemical impedance spectroscopy showed that charge transfer and diffusion resistances decreased with increasing mesh opening size. In MFC tests, the cathode performance was primarily limited by reaction kinetics, and not mass transfer. Oxygen permeability increased with mesh opening size, accounting for the decreased diffusion resistance. At higher current densities, diffusion became a limiting factor, especially for fine mesh with low oxygen transfer coefficients. These results demonstrate the critical nature of the mesh size used for constructing MFC cathodes. © 2010 Elsevier B.V. All rights reserved.

  8. ASIC-like currents in freshly isolated cerebral artery smooth muscle cells are inhibited by endogenous oxidase activity.

    Science.gov (United States)

    Chung, Wen-Shuo; Farley, Jerry M; Drummond, Heather A

    2011-01-01

    The aim of this study was to determine if VSMC ASIC-like currents are regulated by oxidative state. We used whole-cell patch clamp of isolated mouse cerebral VSMCs to determine if 1) reducing agents, such as DTT and GSH, and 2) inhibition of endogenous oxidase activity from NADPH and Xanthine oxidases potentiate active currents and activate electrically silent currents. Pretreatment with 2 mM DTT or GSH, increased the mean peak amplitude of ASIC-like currents evoked by pH 6.0 from 0.4 ± 0.1 to 14.9 ± 3.6 pA/pF, and from 0.9 ± 0.3 to 11.3 ± 2.4 pA/pF, respectively. Pretreatment with apocynin, a NADPH oxidase inhibitor, mimics the effect of the reducing agents, with the mean peak current amplitude increased from 0.9 ± 0.5 to 7.0 ± 2.6 pA/pF and from 0.5 ± 0.2 to 26.4 ± 6.8 pA/pF by 50 and 200 μM apocynin, respectively. Pretreatment with allopurinol, a xanthine oxidase inhibitor, also potentiates the VSMC ASIC-like activity. These findings suggest that VSMC ASIC-like channels are regulated by oxidative state and may be inhibited by basal endogenous oxidative sources such as NADPH and xanthine oxidase. Copyright © 2011 S. Karger AG, Basel.

  9. Tricarbonyldichlororuthenium (II) dimer (CORM2) activates non-selective cation current in human endothelial cells independently of carbon monoxide releasing.

    Science.gov (United States)

    Dong, De-Li; Chen, Chang; Huang, Wei; Chen, Yan; Zhang, Xiao-Lan; Li, Zhe; Li, Yue; Yang, Bao-Feng

    2008-08-20

    Tricarbonyldichlororuthenium (II) dimer (CORM2) has been developed as carbon monoxide (CO) donor. We found that CORM2 activated a type of specific current which was distinct from the big-conductance Ca(2+)-activated K(+) current activated by CO in human umbilical vein endothelial cells (HUVECs). So the aim of the present study was to characterize the CORM2-induced current and to access the relation with CO releasing. CORM2 (100 microM) activated a kind of bi-directional current in HUVECs when the ramp protocol (holding potential 0 mV, from -120 mV to +120 mV) was applied. The current was not blocked by apamin, TRAM-34 and iberiotoxin, the small, intermediate and big-conductance Ca(2+) -activated K(+) channel blockers, and it was not sensitive to the pipette solution chelated with EGTA. CORM2 still activated the current when the chloride in the pipette solution was substituted by equal mol gluconic acid. Substitution of the sodium in the bath with choline significantly reduced the current activated by CORM2. The current was regarded as the non-selective cation current. The current showed slightly inward rectifier property and was not sensitive to Gd(3+) (100 microM), La(3+) (10 microM) or 2-aminoethoxydiphenyl borate (100 microM). CO (10 microM), CORM3 (100, 200 microM) and RuCl(3) (100 microM) were used as controls and showed no effect of the current activation. In conclusion, CORM2 activated the non-selective cation current in HUVECs independently of its CO releasing.

  10. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Hougaard, Charlotte; Hoffmann, Else K

    2006-01-01

    swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P(2......) analogue or a PtdIns(4,5)P(2)-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P(2). It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part......The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P(2...

  11. a Borehole Seismic System for Active and Passive Seimsic Studies to 3 KM at Ptrc's Aquistore Project

    Science.gov (United States)

    Schmitt, D. R.; Nixon, C.; Kofman, R.; White, D. J.; Worth, K.

    2015-12-01

    We have constructed a downhole seismic recording system for application to depths of nearly 3 km and temperatures up to 135 °C at Aquistore, an independent research and monitoring project in which liquid CO2 is being stored in a brine and sandstone water formation. The key component to this system is a set of commercially available slim-hole 3-C sondes carrying 15 Hz geophones deployable in open and cased boreholes with diameters as small as 57 mm. The system is currently hosted on a 4-conductor wireline with digital information streamed to the surface recording unit. We have further incorporated these sondes into a mobile passive monitoring unit that includes a number of redundancies such as a multiple Tbyte network accessible RAID hard-drive system (NAS) and a self-designed uninterruptible power supply. The system can be remotely controlled via the internet. The system is currently deployed covering a range of depths from 2850 m to 2910 m. Ambient temperatures at this depth are approximately 110 °C with onboard tool temperatures running at 115 °C. Data is continuously streamed to the NAS for archiving, approximately 11 GBytes of data is recorded per day at the sampling period of 0.5 ms. The lack of noise at this depth allows short data snippets to be flagged with a simple amplitude threshold criteria. The greatly reduced data volume of the snippets allows for ready access via the internet to the system for ongoing quality control. Spurious events, mostly small amplitude tube waves originating at or near the surface, are readily discounted. Active seismic measurements are carried out simultaneously but these require that an appropriately accurate independent GPS based time synchronization be used. Various experiences with event detection, orientation of sondes using both explosives and seismic vibrator, potential overheating of the surface electronics, and issues related to loss of shore power provide for a detailed case study. Aquistore, managed by the

  12. Skeletal Muscle Cell Induction from Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yusaku Kodaka

    2017-01-01

    Full Text Available Embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs have the potential to differentiate into various types of cells including skeletal muscle cells. The approach of converting ESCs/iPSCs into skeletal muscle cells offers hope for patients afflicted with the skeletal muscle diseases such as the Duchenne muscular dystrophy (DMD. Patient-derived iPSCs are an especially ideal cell source to obtain an unlimited number of myogenic cells that escape immune rejection after engraftment. Currently, there are several approaches to induce differentiation of ESCs and iPSCs to skeletal muscle. A key to the generation of skeletal muscle cells from ESCs/iPSCs is the mimicking of embryonic mesodermal induction followed by myogenic induction. Thus, current approaches of skeletal muscle cell induction of ESCs/iPSCs utilize techniques including overexpression of myogenic transcription factors such as MyoD or Pax3, using small molecules to induce mesodermal cells followed by myogenic progenitor cells, and utilizing epigenetic myogenic memory existing in muscle cell-derived iPSCs. This review summarizes the current methods used in myogenic differentiation and highlights areas of recent improvement.

  13. Metastatic non-small cell lung cancer Current treatment based on evidence (ONCOL Group)

    International Nuclear Information System (INIS)

    Castro, Carlos; Cardona, Andres Felipe; Reveiz, Ludovic; Serrano, Silvia Juliana; Carranza, Hernan; Vargas, Carlos Alberto; Reguart, Noemi; Campo, Felipe; Ospina, Edgar Guillermo; Sanchez, Oswaldo; Torres, Diana; Otero, Jorge Miguel

    2010-01-01

    to perform a review of evidence about the treatment of non-small cell lung cancer (NSCLC). Source of data: the information was obtained from searches conducted in Medline, CCTR, Biosis, Embase, Lilacs and CINHAL. We also collected the most representative references presented during the last five years at Asco, ESMO and IASLC. Data extraction: data were extracted by associate members to the ONCOL Group. The collection of information did not follow a uniform strategy. Results of data synthesis: therapy for NSCLC can prolong survival and improve quality of life, but the majority of advanced stage patients dies due to disease progression within 2 years, meaning that there is room for improvement. The standard chemotherapy for NSCLC involves one of a number of platinum-based doublets that have been shown to improve survival when compared with single agents or best supportive care. These doublets are generally comparable in terms of efficacy, differing primarily in their toxicity profiles. However, encouraging new options may be approaching, including therapies targeted to specific patient subpopulations, and the use of combinations of current and new drugs to produce synergistic effects. This review present a detailed analysis of current evidence regarding the treatment of NSCLC based on a representative case series. This review didn't conduct a systematic evaluation of the evidence. Conclusion: medical therapy for NSCLC produces positive changes in main outcomes, including quality of life

  14. Population dynamics and current-generation mechanisms in cassette-electrode microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kazuya [ERATO/JST, Tokyo (Japan). Hashimoto Light Energy Conversion Project; Tokyo Univ. (Japan). Research Center for Advanced Science and Technology; Tokyo Univ. of Pharmacy and Life Sciences (Japan). School of Life Sciences; Miyahara, Morio [ERATO/JST, Tokyo (Japan). Hashimoto Light Energy Conversion Project; Shimoyama, Takefumi [Tokyo Univ. (Japan). Research Center for Advanced Science and Technology; Hashimoto, Kazuhito [ERATO/JST, Tokyo (Japan). Hashimoto Light Energy Conversion Project; Tokyo Univ. (Japan). Dept. of Applied Chemistry

    2011-12-15

    Cassette-electrode microbial fuel cells (CE-MFCs) have been demonstrated useful to treat biomass wastes and recover electric energy from them. In order to reveal electricity-generation mechanisms in CE-MFCs, the present study operated a bench-scale reactor (1 l in capacity; approximately 1,000 cm{sup 2} in anode and cathode areas) for treating a high-strength model organic wastewater (comprised of starch, peptone, and fish extract). Approximately 1 month was needed for the bench reactor to attain a stable performance, after which volumetric maximum power densities persisted between 120 and 150 mW/l throughout the experiment (for over 2 months). Temporal increases in the external resistance were found to induce subsequent increases in power outputs. After electric output became stable, electrolyte and anode were sampled from the reactor for evaluating their current-generation abilities; it was estimated that most of current (over 80%) was generated by microbes in the electrolyte. Cyclic voltammetry of an electrolyte supernatant detected several electron shuttles with different standard redox potentials at high concentrations (equivalent to or more than 100 {mu}M 5-hydroxy-1,4-naphthoquinone). Denaturing gradient gel electrophoresis and quantitative real-time PCR of 16S ribosomal RNA gene fragments showed that bacteria related to the genus Dysgonomonas occurred abundantly in association with the increases in power outputs. These results suggest that mediated electron transfer was the main mechanism for electricity generation in CE-MFC, where high-concentration electron shuttles and Dysgonomonas bacteria played important roles. (orig.)

  15. Incremental Innovation and Progress in Advanced Squamous Cell Lung Cancer: Current Status and Future Impact of Treatment.

    Science.gov (United States)

    Langer, Corey J; Obasaju, Coleman; Bunn, Paul; Bonomi, Philip; Gandara, David; Hirsch, Fred R; Kim, Edward S; Natale, Ronald B; Novello, Silvia; Paz-Ares, Luis; Pérol, Maurice; Reck, Martin; Ramalingam, Suresh S; Reynolds, Craig H; Socinski, Mark A; Spigel, David R; Wakelee, Heather; Mayo, Carlos; Thatcher, Nick

    2016-12-01

    Squamous cell lung cancer (sqCLC) is an aggressive form of cancer that poses many therapeutic challenges. Patients tend to be older, present at a later stage, and have a high incidence of comorbidities, which can compromise treatment delivery and exacerbate toxicity. In addition, certain agents routinely available for nonsquamous cell histologic subtypes, such as bevacizumab and pemetrexed, are contraindicated or lack efficacy in sqCLC. Therapeutic progress has been much slower for advanced sqCLC, with median survival times of approximately 9 to 11 months in most studies. Herein, we discuss the current therapeutic landscape for patients with sqCLC versus with nonsquamous NSCLC. Current evidence indicates that new targeted treatments, notably monoclonal antibodies such as ramucirumab and necitumumab, and immunotherapies such as nivolumab and pembrolizumab can provide survival prolongation, although the benefits are still relatively modest. These incremental improvements, all realized since 2012, in aggregate, will very likely have a clinically meaningful impact for patients with sqCLC. We also discuss recent genomic studies of sqCLC that have identified potentially actionable molecular targets, as well as the relevant targeted agents in clinical development. Finally, we discuss the magnitude of survival benefit and the risk-to-benefit ratio that would prove clinically meaningful in this underserved patient population with unmet needs. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. Current advances in T-cell-based cancer immunotherapy

    Science.gov (United States)

    Wang, Mingjun; Yin, Bingnan; Wang, Helen Y; Wang, Rong-Fu

    2015-01-01

    Cancer is a leading cause of death worldwide; due to the lack of ideal cancer biomarkers for early detection or diagnosis, most patients present with late-stage disease at the time of diagnosis, thus limiting the potential for successful treatment. Traditional cancer treatments, including surgery, chemotherapy and radiation therapy, have demonstrated very limited efficacy for patients with late-stage disease. Therefore, innovative and effective cancer treatments are urgently needed for cancer patients with late-stage and refractory disease. Cancer immunotherapy, particularly adoptive cell transfer, has shown great promise in the treatment of patients with late-stage disease, including those who are refractory to standard therapies. In this review, we will highlight recent advances and discuss future directions in adoptive cell transfer based cancer immunotherapy. PMID:25524383

  17. Mathematical modeling of current density distribution in composite cathode of solid oxide fuel cells. Paper no. IGEC-1-099

    International Nuclear Information System (INIS)

    Kenney, B.; Karan, K.

    2005-01-01

    Cathodes processes in a solid oxide fuel cell (SOFC) are thought to dominate the overall electrochemical losses. One strategy for minimizing the cathode electrochemical losses in a state-of-the-art SOFC that utilize lanthanum-strontium-manganate (LSM) electrocatalyst and yttria-stabilized-zirconia (YSZ) electrolyte is to utilize composite cathodes comprising a mixture of LSM and YSZ. Composite cathodes improve performance by extending the active reaction zone from electrolyte-electrode interface to throughout the electrode. In this study, a two-dimensional composite cathode model was developed to assess cathode performance in terms of current density distributions. The model results indicate that geometric and microstructural parameters strongly influence current density distribution. In addition electrode composition affects magnitude and distribution of current. An optimum composition for equal-sized LSM/YSZ is 40 vol% LSM and 60 vol% YSZ at 900 o C. (author)

  18. Applications of outcrop gamma-ray logging to field development and exploration

    International Nuclear Information System (INIS)

    Jordan, D.W.; Slatt, R.M.; Gillespie, R.H.; D'Agostino, A.E.; Scheihing, M.H.

    1991-01-01

    Gamma-ray logs of outcrops have been generated using two techniques. These techniques demonstrate the applicability of outcrop logging to better understand reservoir facies architecture and exploration type problems. The first logging technique employs the use of a standard logging truck and gamma-ray sonde. The truck is positioned near the top of the cliff face and the sonde is lowered to the bottom of the cliff. Gamma-ray counts are recorded as the sonde is raised at a constant rate. The second logging technique employs the use of a commercially available, hand-held, gamma-ray scintillometer. The tool measures total radiation at the outcrop. Equally-spaced measurements are made along the section and are displayed as a function of depth below a reference point. In this paper examples of gamma-ray logging experiments conducted on turbidities of the Jackfork Group (Pennsylvanian) in central and southern Arkansas are discussed, as are application of outcrop gamma-ray logging in the Long Beach Unit of Wilmington Oil Field, California, and Point Mugu (Santa Barbara Channel), California

  19. Frequency analysis of DC tolerant current transformers

    International Nuclear Information System (INIS)

    Mlejnek, P; Kaspar, P

    2013-01-01

    This article deals with wide frequency range behaviour of DC tolerant current transformers that are usually used in modern static energy meters. In this application current transformers must comply with European and International Standards in their accuracy and DC tolerance. Therefore, the linear DC tolerant current transformers and double core current transformers are used in this field. More details about the problems of these particular types of transformers can be found in our previous works. Although these transformers are designed mainly for power distribution network frequency (50/60 Hz), it can be interesting to understand their behaviour in wider frequency range. Based on this knowledge the new generations of energy meters with measuring quality of electric energy will be produced. This solution brings better measurement of consumption of nonlinear loads or measurement of non-sinusoidal voltage and current sources such as solar cells or fuel cells. The determination of actual power consumption in such energy meters is done using particular harmonics component of current and voltage. We measured the phase and ratio errors that are the most important parameters of current transformers, to characterize several samples of current transformers of both types

  20. Device for monitoring cell voltage

    Science.gov (United States)

    Doepke, Matthias [Garbsen, DE; Eisermann, Henning [Edermissen, DE

    2012-08-21

    A device for monitoring a rechargeable battery having a number of electrically connected cells includes at least one current interruption switch for interrupting current flowing through at least one associated cell and a plurality of monitoring units for detecting cell voltage. Each monitoring unit is associated with a single cell and includes a reference voltage unit for producing a defined reference threshold voltage and a voltage comparison unit for comparing the reference threshold voltage with a partial cell voltage of the associated cell. The reference voltage unit is electrically supplied from the cell voltage of the associated cell. The voltage comparison unit is coupled to the at least one current interruption switch for interrupting the current of at least the current flowing through the associated cell, with a defined minimum difference between the reference threshold voltage and the partial cell voltage.

  1. Mesenchymal stromal cells for cardiovascular repair: current status and future challenges

    DEFF Research Database (Denmark)

    Mathiasen, Anders Bruun; Haack-Sørensen, Mandana; Kastrup, Jens

    2009-01-01

    of treatments in patients with heart failure, the 1-year mortality is still approximately 20% after the diagnosis has been established. Treatment with stem cells with the potential to regenerate the damaged myocardium is a relatively new approach. Mesenchymal stromal cells are a promising source of stem cells...... studies are promising, but there are still many unanswered questions. In this review, we explore present preclinical and clinical knowledge regarding the use of stem cells in cardiovascular regenerative medicine, with special focus on mesenchymal stromal cells. We take a closer look at sources of stem...... for regenerative therapy. Clinical studies on stem cell therapy for cardiac regeneration have shown significant improvements in ventricular pump function, ventricular remodeling, myocardial perfusion, exercise potential and clinical symptoms compared with conventionally treated control groups. The results of most...

  2. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    Science.gov (United States)

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  3. GABA-independent GABAA Receptor Openings Maintain Tonic Currents

    Science.gov (United States)

    Wlodarczyk, Agnieszka I.; Sylantyev, Sergiy; Herd, Murray B.; Kersanté, Flavie; Lambert, Jeremy J.; Rusakov, Dmitri A.; Linthorst, Astrid C.E.; Semyanov, Alexey; Belelli, Delia; Pavlov, Ivan; Walker, Matthew C.

    2013-01-01

    Activation of GABAA receptors (GABAARs) produces two forms of inhibition: ‘phasic’ inhibition generated by the rapid, transient activation of synaptic GABAARs by presynaptic GABA release, and tonic inhibition generated by the persistent activation of peri- or extrasynaptic GABAARs which can detect extracellular GABA. Such tonic GABAAR-mediated currents are particularly evident in dentate granule cells in which they play a major role in regulating cell excitability. Here we show that in rat dentate granule cells in ex-vivo hippocampal slices, tonic currents are predominantly generated by GABA-independent GABAA receptor openings. This tonic GABAAR conductance is resistant to the competitive GABAAR antagonist SR95531, which at high concentrations acts as a partial agonist, but can be blocked by an open channel blocker picrotoxin. When slices are perfused with 200 nM GABA, a concentration that is comparable to cerebrospinal fluid concentrations but is twice that measured by us in the hippocampus in vivo using zero-net-flux microdialysis, negligible GABA is detected by dentate granule cells. Spontaneously opening GABAARs, therefore, maintain dentate granule cell tonic currents in the face of low extracellular GABA concentrations. PMID:23447601

  4. Current Technologies Based on the Knowledge of the Stem Cells Microenvironments.

    Science.gov (United States)

    Mawad, Damia; Figtree, Gemma; Gentile, Carmine

    2017-01-01

    The stem cell microenvironment or niche plays a critical role in the regulation of survival, differentiation and behavior of stem cells and their progenies. Recapitulating each aspect of the stem cell niche is therefore essential for their optimal use in in vitro studies and in vivo as future therapeutics in humans. Engineering of optimal conditions for three-dimensional stem cell culture includes multiple transient and dynamic physiological stimuli, such as blood flow and tissue stiffness. Bioprinting and microfluidics technologies, including organs-on-a-chip, are among the most recent approaches utilized to replicate the three-dimensional stem cell niche for human tissue fabrication that allow the integration of multiple levels of tissue complexity, including blood flow. This chapter focuses on the physico-chemical and genetic cues utilized to engineer the stem cell niche and provides an overview on how both bioprinting and microfluidics technologies are improving our knowledge in this field for both disease modeling and tissue regeneration, including drug discovery and toxicity high-throughput assays and stem cell-based therapies in humans.

  5. The importance of an external circuit in a particle-in-cell/Monte Carlo collisions model for a direct current planar magnetron

    International Nuclear Information System (INIS)

    Bultinck, E.; Kolev, I.; Bogaerts, A.; Depla, D.

    2008-01-01

    In modeling direct current (dc) discharges, such as dc magnetrons, a current-limiting device is often neglected. In this study, it is shown that an external circuit consisting of a voltage source and a resistor is inevitable in calculating the correct cathode current. Avoiding the external circuit can cause the current to converge (if at all) to a wrong volt-ampere regime. The importance of this external circuit is studied by comparing the results with those of a model without current-limiting device. For this purpose, a 2d3v particle-in-cell/Monte Carlo collisions model was applied to calculate discharge characteristics, such as cathode potential and current, particle fluxes and densities, and potential distribution in the plasma. It is shown that the calculated cathode current is several orders of magnitude lower when an external circuit is omitted, leading to lower charged particle fluxes and densities, and a wider plasma sheath. Also, it was shown, that only simulations with external circuit can bring the cathode current into a certain plasma regime, which has its own typical properties. In this work, the normal and abnormal regimes were studied

  6. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    Science.gov (United States)

    Saive, Rebecca; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert; Kowalsky, Wolfgang

    2013-12-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces.

  7. Understanding S-shaped current-voltage characteristics of organic solar cells: Direct measurement of potential distributions by scanning Kelvin probe

    International Nuclear Information System (INIS)

    Saive, Rebecca; Kowalsky, Wolfgang; Mueller, Christian; Schinke, Janusz; Lovrincic, Robert

    2013-01-01

    We present a comparison of the potential distribution along the cross section of bilayer poly(3-hexylthiophene)/1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (P3HT/PCBM) solar cells, which show normal and anomalous, S-shaped current-voltage (IV) characteristics. We expose the cross sections of the devices with a focussed ion beam and measure them with scanning Kelvin probe microscopy. We find that in the case of S-shaped IV-characteristics, there is a huge potential drop at the PCBM/Al top contact, which does not occur in solar cells with normal IV-characteristics. This behavior confirms the assumption that S-shaped curves are caused by hindered charge transport at interfaces

  8. Design of a CMOS temperature sensor with current output

    NARCIS (Netherlands)

    Kolling, A.; Kölling, Arjan; Bak, Frans; Bergveld, Piet; Seevinck, E.; Seevinck, Evert

    1990-01-01

    In this paper a CMOS temperature-to-current converter is presented of which the output current is the difference between a PTC current and an NTC current. The PTC current is derived from a PTAT cell, while the NTC current is derived from a threshold voltage reference source. It is shown that this

  9. Reviewing the current evidence supporting early B-cells as the cellular origin of Merkel cell carcinoma.

    Science.gov (United States)

    Sauer, C M; Haugg, A M; Chteinberg, E; Rennspiess, D; Winnepenninckx, V; Speel, E-J; Becker, J C; Kurz, A K; Zur Hausen, A

    2017-08-01

    Merkel cell carcinoma (MCC) is a highly malignant skin cancer characterized by early metastases and poor survival. Although MCC is a rare malignancy, its incidence is rapidly increasing in the U.S. and Europe. The discovery of the Merkel cell polyomavirus (MCPyV) has enormously impacted our understanding of its etiopathogenesis and biology. MCCs are characterized by trilinear differentiation, comprising the expression of neuroendocrine, epithelial and B-lymphoid lineage markers. To date, it is generally accepted that the initial assumption of MCC originating from Merkel cells (MCs) is unlikely. This is owed to their post-mitotic character, absence of MCPyV in MCs and discrepant protein expression pattern in comparison to MCC. Evidence from mouse models suggests that epidermal/dermal stem cells might be of cellular origin in MCC. The recently formulated hypothesis of MCC originating from early B-cells is based on morphology, the consistent expression of early B-cell lineage markers and the finding of clonal immunoglobulin chain rearrangement in MCC cells. In this review we elaborate on the cellular ancestry of MCC, the identification of which could pave the way for novel and more effective therapeutic regimens. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Effects of salinity variations on CODAR ranges during the 2016 Bonnet Carré Spillway Opening

    Science.gov (United States)

    Howden, S. D.; Diercks, A. R.; Hode, L. E.; Cambazoglu, M. K.; Martin, K. M.

    2017-12-01

    On January 10, 2016 the Bonnet Carré Spillway was opened to relieve flooding on the Mississippi River, diverting river water into Lake Pontchartrain and then through the western Mississippi Sound. As part of the response to understand the effects of the spillway opening on the Mississippi Sound, a pair of 25 MHz CODAR SeaSondes were deployed on the coast of the western Mississippi Sound to monitor surface currents. This presented the additional opportunity to run a natural experiment on the effect of salinity on the range of CODAR signals. During the spillway event, salinities in the CODAR coverage area, as measured by monitoring stations operated by a partnership between the Mississippi Department of Marine Resources and the United States Geological Survey in the Sound ranged from over 30 to less than 2. Ranges from the CODAR stations were significantly correlated with these salinities. Additionally, the Naval Coastal Ocean Model output, run with real-time river input plus the Bonnet Carré Spillway freshwater input, was available for the analyzes for the spillway event time frame. The observations and modeling were used to investigate the role of salinity on SeaSonde range and how well those variations agree with theory.

  11. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jeffers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through July 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.

  12. The activity of spontaneous action potentials in developing hair cells is regulated by Ca(2+-dependence of a transient K+ current.

    Directory of Open Access Journals (Sweden)

    Snezana Levic

    Full Text Available Spontaneous action potentials have been described in developing sensory systems. These rhythmic activities may have instructional roles for the functional development of synaptic connections. The importance of spontaneous action potentials in the developing auditory system is underpinned by the stark correlation between the time of auditory system functional maturity, and the cessation of spontaneous action potentials. A prominent K(+ current that regulates patterning of action potentials is I(A. This current undergoes marked changes in expression during chicken hair cell development. Although the properties of I(A are not normally classified as Ca(2+-dependent, we demonstrate that throughout the development of chicken hair cells, I(A is greatly reduced by acute alterations of intracellular Ca(2+. As determinants of spike timing and firing frequency, intracellular Ca(2+ buffers shift the activation and inactivation properties of the current to more positive potentials. Our findings provide evidence to demonstrate that the kinetics and functional expression of I(A are tightly regulated by intracellular Ca(2+. Such feedback mechanism between the functional expression of I(A and intracellular Ca(2+ may shape the activity of spontaneous action potentials, thus potentially sculpting synaptic connections in an activity-dependent manner in the developing cochlea.

  13. Effects of tacrolimus on action potential configuration and transmembrane ion currents in canine ventricular cells.

    Science.gov (United States)

    Szabó, László; Szentandrássy, Norbert; Kistamás, Kornél; Hegyi, Bence; Ruzsnavszky, Ferenc; Váczi, Krisztina; Horváth, Balázs; Magyar, János; Bányász, Tamás; Pál, Balázs; Nánási, Péter P

    2013-03-01

    Tacrolimus is a commonly used immunosuppressive agent which causes cardiovascular complications, e.g., hypertension and hypertrophic cardiomyopathy. In spite of it, there is little information on the cellular cardiac effects of the immunosuppressive agent tacrolimus in larger mammals. In the present study, therefore, the concentration-dependent effects of tacrolimus on action potential morphology and the underlying ion currents were studied in canine ventricular cardiomyocytes. Standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques were applied in myocytes enzymatically dispersed from canine ventricular myocardium. Tacrolimus (3-30 μM) caused a concentration-dependent reduction of maximum velocity of depolarization and repolarization, action potential amplitude, phase-1 repolarization, action potential duration, and plateau potential, while no significant change in the resting membrane potential was observed. Conventional voltage clamp experiments revealed that tacrolimus concentrations ≥3 μM blocked a variety of ion currents, including I(Ca), I(to), I(K1), I(Kr), and I(Ks). Similar results were obtained under action potential voltage clamp conditions. These effects of tacrolimus developed rapidly and were fully reversible upon washout. The blockade of inward currents with the concomitant shortening of action potential duration in canine myocytes is the opposite of those observed previously with tacrolimus in small rodents. It is concluded that although tacrolimus blocks several ion channels at higher concentrations, there is no risk of direct interaction with cardiac ion channels when applying tacrolimus in therapeutic concentrations.

  14. Analysis of the tropospheric water distribution during FIRE 2

    Science.gov (United States)

    Westphal, Douglas L.

    1993-01-01

    The Penn State/NCAR mesoscale model, as adapted for use at ARC, was used as a testbed for the development and validation of cloud models for use in General Circulation Models (GCM's). This modeling approach also allows us to intercompare the predictions of the various cloud schemes within the same dynamical framework. The use of the PSU/NCAR mesoscale model also allows us to compare our results with FIRE-II (First International Satellite Cloud Climatology Project Regional Experiment) observations, instead of climate statistics. Though a promising approach, our work to date revealed several difficulties. First, the model by design is limited in spatial coverage and is only run for 12 to 48 hours at a time. Hence the quality of the simulation will depend heavily on the initial conditions. The poor quality of upper-tropospheric measurements of water vapor is well known and the situation is particularly bad for mid-latitude winter since the coupling with the surface is less direct than in summer so that relying on the model to spin-up a reasonable moisture field is not always successful. Though one of the most common atmospheric constituents, water vapor is relatively difficult to measure accurately, especially operationally over large areas. The standard NWS sondes have little sensitivity at the low temperatures where cirrus form and the data from the GOES 6.7 micron channel is difficult to quantify. For this reason, the goals of FIRE Cirrus II included characterizing the three-dimensional distribution of water vapor and clouds. In studying the data from FIRE Cirrus II, it was found that no single special observation technique provides accurate regional distributions of water vapor. The Raman lidar provides accurate measurements, but only at the Hub, for levels up to 10 km, and during nighttime hours. The CLASS sondes are more sensitive to moisture at low temperatures than are the NWS sondes, but the four stations only cover an area of two hundred kilometers on a side

  15. Current advances in the generation of human iPS cells: implications in cell-based regenerative medicine.

    Science.gov (United States)

    Revilla, Ana; González, Clara; Iriondo, Amaia; Fernández, Bárbara; Prieto, Cristina; Marín, Carlos; Liste, Isabel

    2016-11-01

    Over the last few years, the generation of induced pluripotent stem cells (iPSCs) from human somatic cells has proved to be one of the most potentially useful discoveries in regenerative medicine. iPSCs are becoming an invaluable tool to study the pathology of different diseases and for drug screening. However, several limitations still affect the possibility of applying iPS cell-based technology in therapeutic prospects. Most strategies for iPSCs generation are based on gene delivery via retroviral or lentiviral vectors, which integrate into the host's cell genome, causing a remarkable risk of insertional mutagenesis and oncogenic transformation. To avoid such risks, significant advances have been made with non-integrative reprogramming strategies. On the other hand, although many different kinds of somatic cells have been employed to generate iPSCs, there is still no consensus about the ideal type of cell to be reprogrammed. In this review we present the recent advances in the generation of human iPSCs, discussing their advantages and limitations in terms of safety and efficiency. We also present a selection of somatic cell sources, considering their capability to be reprogrammed and tissue accessibility. From a translational medicine perspective, these two topics will provide evidence to elucidate the most suitable combination of reprogramming strategy and cell source to be applied in each human iPSC-based therapy. The wide variety of diseases this technology could treat opens a hopeful future for regenerative medicine. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Generation of Electricity Using Spartina Patens with Stainless Steel Current Collectors in a Plant-Microbial Fuel Cell

    Science.gov (United States)

    Narula, Deep

    At present, the global energy infrastructure is highly dependent on (i) non-renewable fossil fuels with significant emissions of greenhouse gasses (ii) green fuels such as bioethanol and biodiesel with impact on current agricultural practices competing with food production for arable lands, fertilizers, also requiring additional energy input. Plant-based microbial fuel cell (PMFC) technology can be found as a promising alternative to produce electricity without any side effects with an advantage of using sunlight as an energy source. In the present study, we developed PMFCs using Spartina patens, a marshland grass, abundantly available in the coastal regions of the USA. Figure 1 is a schematic for a PMFC with the anode and cathode compartments where others have used carbon-based electrodes for current collection. In contrast, we attempted to utilize stainless steel wires with more surface area to enhance the current collection in the anode compartment as well as to increase the rate of reduction in the cathode chamber and thereby increase the amount of electricity produced. The study will give results on the periodic use of Spartina patens in PMFC along with the porous stainless steel electrodes which have never been employed in PMFCs before.

  17. Ground Return Current Behaviour in High Voltage Alternating Current Insulated Cables

    Directory of Open Access Journals (Sweden)

    Roberto Benato

    2014-12-01

    Full Text Available The knowledge of ground return current in fault occurrence plays a key role in the dimensioning of the earthing grid of substations and of cable sealing end compounds, in the computation of rise of earth potential at substation sites and in electromagnetic interference (EMI on neighbouring parallel metallic conductors (pipes, handrails, etc.. Moreover, the ground return current evaluation is also important in steady-state regime since this stray current can be responsible for EMI and also for alternating current (AC corrosion. In fault situations and under some assumptions, the ground return current value at a substation site can be computed by means of k-factors. The paper shows that these simplified and approximated approaches have a lot of limitations and only multiconductor analysis can show the ground return current behaviour along the cable (not only the two end values both in steady-state regime and in short circuit occurrence (e.g., phase-to-ground and phase-to-phase-to-ground. Multiconductor cell analysis (MCA considers the cable system in its real asymmetry without simplified and approximated hypotheses. The sensitivity of ground return current on circuit parameters (cross-bonding box resistances, substation earthing resistances, soil resistivity is presented in the paper.

  18. Mesenchymal Stem/Progenitor Cells Derived from Articular Cartilage, Synovial Membrane and Synovial Fluid for Cartilage Regeneration: Current Status and Future Perspectives.

    Science.gov (United States)

    Huang, Yi-Zhou; Xie, Hui-Qi; Silini, Antonietta; Parolini, Ornella; Zhang, Yi; Deng, Li; Huang, Yong-Can

    2017-10-01

    Large articular cartilage defects remain an immense challenge in the field of regenerative medicine because of their poor intrinsic repair capacity. Currently, the available medical interventions can relieve clinical symptoms to some extent, but fail to repair the cartilaginous injuries with authentic hyaline cartilage. There has been a surge of interest in developing cell-based therapies, focused particularly on the use of mesenchymal stem/progenitor cells with or without scaffolds. Mesenchymal stem/progenitor cells are promising graft cells for tissue regeneration, but the most suitable source of cells for cartilage repair remains controversial. The tissue origin of mesenchymal stem/progenitor cells notably influences the biological properties and therapeutic potential. It is well known that mesenchymal stem/progenitor cells derived from synovial joint tissues exhibit superior chondrogenic ability compared with those derived from non-joint tissues; thus, these cell populations are considered ideal sources for cartilage regeneration. In addition to the progress in research and promising preclinical results, many important research questions must be answered before widespread success in cartilage regeneration is achieved. This review outlines the biology of stem/progenitor cells derived from the articular cartilage, the synovial membrane, and the synovial fluid, including their tissue distribution, function and biological characteristics. Furthermore, preclinical and clinical trials focusing on their applications for cartilage regeneration are summarized, and future research perspectives are discussed.

  19. Ni/Ni-YSZ current collector/anode dual layer hollow fibers for micro-tubular solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kanawka, K.; Othman, M.H.D.; Droushiotis, N.; Wu, Z.; Kelsall, G.; Li, K. [Department of Chemical Engineering and Chemical Technology, Imperial College London, London SW7 2AZ (United Kingdom)

    2011-10-15

    A co-extrusion technique was employed to fabricate a novel dual layer NiO/NiO-YSZ hollow fiber (HF) precursor which was then co-sintered at 1,400 C and reduced at 700 C to form, respectively, a meshed porous inner Ni current collector and outer Ni-YSZ anode layers for SOFC applications. The inner thin and highly porous ''mesh-like'' pure Ni layer of approximately 50 {mu}m in thickness functions as a current collector in micro-tubular solid oxide fuel cell (SOFC), aiming at highly efficient current collection with low fuel diffusion resistance, while the thicker outer Ni-YSZ layer of 260 {mu}m acts as an anode, providing also major mechanical strength to the dual-layer HF. Achieved morphology consisted of short finger-like voids originating from the inner lumen of the HF, and a sponge-like structure filling most of the Ni-YSZ anode layer, which is considered to be suitable macrostructure for anode SOFC system. The electrical conductivity of the meshed porous inner Ni layer is measured to be 77.5 x 10{sup 5} S m{sup -1}. This result is significantly higher than previous reported results on single layer Ni-YSZ HFs, which performs not only as a catalyst for the oxidation reaction, but also as a current collector. These results highlight the advantages of this novel dual-layer HF design as a new and highly efficient way of collecting current from the lumen of micro-tubular SOFC. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice

    Directory of Open Access Journals (Sweden)

    Csilla eBordas

    2015-04-01

    Full Text Available The pedunculopontine nucleus is known as a cholinergic nucleus of the reticular activating system, participating in regulation of sleep and wakefulness. Besides cholinergic neurons, it consists of GABAergic and glutamatergic neurons as well. According to classical and recent studies, more subgroups of neurons were defined. Groups based on the neurotransmitter released by a neuron are not homogenous, but can be further subdivided.The PPN neurons do not only provide cholinergic and non-cholinergic inputs to several subcortical brain areas but they are also targets of cholinergic and other different neuromodulatory actions. Although cholinergic neuromodulation has been already investigated in the nucleus, one of its characteristic targets, the M-type potassium current has not been described yet.Using slice electrophysiology, we provide evidence in the present work that cholinergic neurons possess M-current, whereas GABAergic neurons lack it. The M-current contributes to certain functional differences of cholinergic and GABAergic neurons, as spike frequency adaptation, action potential firing frequency or the amplitude difference of medium afterhyperpolarizations. Furthermore, we showed that high threshold membrane potential oscillation with high power, around 20 Hz frequency is a functional property of almost all cholinergic cells, whereas GABAergic neurons have only low amplitude oscillations. Blockade of the M-current abolished the oscillatory activity at 20 Hz, and largely diminished it at other frequencies.Taken together, the M-current seems to be characteristic for PPN cholinergic neurons. It provides a possibility for modulating gamma band activity of these cells, thus contributing to neuromodulatory regulation of the reticular activating system.

  1. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field.

    Science.gov (United States)

    Yang, Gang; Long, Haiyan; Ren, Xiaomei; Ma, Kunlong; Xiao, Zhenghua; Wang, Ying; Guo, Yingqiang

    2017-02-01

    Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors. © 2017 Japanese Society of Developmental Biologists.

  2. Current Treatments for Surgically Resectable, Limited-Stage, and Extensive-Stage Small Cell Lung Cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2017-12-01

    The prevalence of small cell lung cancer (SCLC) has declined in the U.S. as the prevalence of tobacco use has declined. However, a significant number of people in the U.S. are current or former smokers and are at risk of developing SCLC. Routine histological or cytological evaluation can reliably make the diagnosis of SCLC, and immunohistochemistry stains (thyroid transcription factor-1, chromogranin, synaptophysin, and CD56) can be used if there is uncertainty about the diagnosis. Rarely do patients present with SCLC amendable to surgical resection, and evaluation requires a meticulous workup for extra-thoracic metastases and invasive staging of the mediastinum. Resected patients require adjuvant chemotherapy and/or thoracic radiation therapy (TRT), and prophylactic cranial radiation (PCI) should be considered depending on the stage. For limited-stage disease, concurrent platinum-etoposide and TRT followed by PCI is the standard. Thoracic radiation therapy should be started early in treatment, and can be given twice daily to 45 Gy or once daily to 60-70 Gy. For extensive-stage disease, platinum-etoposide remains the standard first-line therapy, and the standard second-line therapy is topotecan. Preliminary studies have demonstrated the activity of immunotherapy, and the response rate is approximately 10-30% with some durable responses observed. Rovalpituzumab tesirine, an antibody drug conjugate, has shown promising activity in patients with high delta-like protein 3 tumor expression (approximately 70% of patients with SCLC). The emergence of these and other promising agents has rekindled interest in drug development in SCLC. Several ongoing trials are investigating novel agents in the first-line, maintenance, and second-line settings. This review will provide an update on the standard therapies for surgically resected limited-stage small cell lung cancer and extensive-stage small cell lung cancer that have been investigated in recent clinical trials. © Alpha

  3. 75 years of J. Heyrovsky's Oscillographic Polarography and Present Constant Current Chronopotentiometry

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Heyrovský, Michael

    2017-01-01

    Roč. 111, č. 1 (2017), s. 73-77 ISSN 0009-2770 Institutional support: RVO:68081707 ; RVO:61388955 Keywords : oscillographic polarography with controlled current * constant current chronopotentiometry * electrochemistry of nucleic acids Subject RIV: CG - Electrochemistry; CG - Electrochemistry (UFCH-W) OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis); Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) (UFCH-W) Impact factor: 0.387, year: 2016

  4. Enhancement of short-circuit current density in polymer bulk heterojunction solar cells comprising plasmonic silver nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuzhao; Lin, Xiaofeng; Ou, Jiemei; Chen, Xudong, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education of China, Sun Yat-sen University, Guangzhou 510275 (China); Qing, Jian; Zhong, Zhenfeng; Zhou, Xiang, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn; Chen, Yujie, E-mail: cescxd@mail.sysu.edu.cn, E-mail: stszx@mail.sysu.edu.cn, E-mail: chenyj69@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Hu, Chenglong [Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan 430056 (China)

    2014-03-24

    We demonstrate that the influence of plasmonic effects based on silver nanowires (Ag NWs) on the characteristics of polymer solar cells (PSCs). The solution-processed Ag NWs are situated at the interface of anode buffer layer and active layer, which could enhance the performance especially the photocurrent of PSCs by scattering, localized surface plasmon resonance, and surface plasmon polaritons. Plasmonic effects are confirmed by the enhancement of extinction spectra, external quantum efficiency, and steady state photoluminescence. Consequently, the short-circuit current density (J{sub sc}) and power conversion efficiency enhance about 24% and 18%, respectively, under AM1.5 illumination when Ag NWs plasmonic nanostructure incorporated into PSCs.

  5. The short circuit current improvement in P3HT:PCBM based polymer solar cell by introducing PSBTBT as additional electron donor.

    Science.gov (United States)

    Sun, Lu; Shen, Liang; Mengd, Fanxu; Xu, Peng; Guo, Wenbin; Ruan, Shengping

    2014-05-01

    Here we demonstrate the influence of electron-donating polymer addition on the performance of poly(3-hexylthiophene) (P3HT):1 -(3-methoxycarbonyl)-propyl-1-phenyl-(6,6) C61 (PCBM) solar cells. Poly[(4,42-bis(2-ethylhexyl) dithieno [3,2-b:22,32-d] silole)-2,6-diylalt-(2,1,3-benzothiadiazole)-4,7-diyl] (PSBTBT) was chosen as the electron-donating polymer to improve the short circuit current (J(sc)) due to its distinct absorption in the near-IR range and similar HOMO level with that of P3HT. In the study, we found that J(sc) was improved for ternary blend (P3HT:PSBTBT:PCBM) solar cells. The dependence of device performance was investigated. J(sc) got decreased with increasing the ratio of PSBTBT. Result showed that J(sc) of ternary blend solar cells was improved greatly after thermal annealing at 150 degrees C, close to that of the binary blend (PSBTBT:PCBM) solar cells.

  6. The Outwardly Rectifying Current of Layer 5 Neocortical Neurons that was Originally Identified as "Non-Specific Cationic" Is Essentially a Potassium Current.

    Directory of Open Access Journals (Sweden)

    Omer Revah

    Full Text Available In whole-cell patch clamp recordings from layer 5 neocortical neurons, blockade of voltage gated sodium and calcium channels leaves a cesium current that is outward rectifying. This current was originally identified as a "non-specific cationic current", and subsequently it was hypothesized that it is mediated by TRP channels. In order to test this hypothesis, we used fluorescence imaging of intracellular sodium and calcium indicators, and found no evidence to suggest that it is associated with influx of either of these ions to the cell body or dendrites. Moreover, the current is still prominent in neurons from TRPC1-/- and TRPC5-/- mice. The effects on the current of various blocking agents, and especially its sensitivity to intracellular tetraethylammonium, suggest that it is not a non-specific cationic current, but rather that it is generated by cesium-permeable delayed rectifier potassium channels.

  7. Current Collecting Grids for ITO-Free Solar Cells

    DEFF Research Database (Denmark)

    Galagan, Yulia; Zimmermann, Birger; Coenen, Erica W. C.

    2012-01-01

    Indium-tin-oxide (ITO) free polymer solar cells prepared by ink jet printing a composite front electrode comprising silver grid lines and a semitransparent PEDOT:PSS conductor are demonstrated. The effect of grid line density is explored for a large series of devices and a careful modeling study...

  8. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells.

    Science.gov (United States)

    Lim, Ji-Hey; McCullen, Seth D; Piedrahita, Jorge A; Loboa, Elizabeth G; Olby, Natasha J

    2013-10-01

    Application of sinusoidal electric fields (EFs) has been observed to affect cellular processes, including alignment, proliferation, and differentiation. In the present study, we applied low-frequency alternating current (AC) EFs to porcine neural progenitor cells (pNPCs) and investigated the effects on cell patterning, proliferation, and differentiation. pNPCs were grown directly on interdigitated electrodes (IDEs) localizing the EFs to a region accessible visually for fluorescence-based assays. Cultures of pNPCs were exposed to EFs (1 V/cm) of 1 Hz, 10 Hz, and 50 Hz for 3, 7, and 14 days and compared to control cultures. Immunocytochemistry was performed to evaluate the expression of neural markers. pNPCs grew uniformly with no evidence of alignment to the EFs and no change in cell numbers when compared with controls. Nestin expression was shown in all groups at 3 and 7 days, but not at 14 days. NG2 expression was low in all groups. Co-expression of glial fibrillary acidic protein (GFAP) and TUJ1 was significantly higher in the cultures exposed to 10- and 50-Hz EFs than the controls. In summary, sinusoidal AC EFs via IDEs did not alter the alignment and proliferation of pNPCs, but higher frequency stimulation appeared to delay differentiation into mature astrocytes.

  9. Current Management of Sickle Cell Anemia

    Science.gov (United States)

    McGann, Patrick T.; Nero, Alecia C.; Ware, Russell E.

    2013-01-01

    Proper management of sickle cell anemia (SCA) begins with establishing the correct diagnosis early in life, ideally during the newborn period. The identification of affected infants by neonatal screening programs allows early initiation of prophylactic penicillin and pneumococcal immunizations, which help prevent overwhelming sepsis. Ongoing education of families promotes the early recognition of disease-released complications, which allows prompt and appropriate medical evaluation and therapeutic intervention. Periodic evaluation by trained specialists helps provide comprehensive care, including transcranial Doppler examinations to identify children at risk for primary stroke, plus assessments for other parenchymal organ damage as patients become teens and adults. Treatment approaches that previously highlighted acute vaso-occlusive events are now evolving to the concept of preventive therapy. Liberalized use of blood transfusions and early consideration of hydroxyurea treatment represent a new treatment paradigm for SCA management. PMID:23709685

  10. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2015

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gikakis, Christina [Federal Transit Administration, Washington, DC (United States)

    2015-12-11

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including FCEB developers, transit agencies, and system integrators, have expressed the value of this annual status report, which provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. The annual status report tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The 2015 summary results primarily focus on the most recent year for each demonstration, from August 2014 through July 2015. The results for these buses account for more than 1,045,000 miles traveled and 83,000 hours of fuel cell power system operation. The primary results presented in the report are from two demonstrations of fuel-cell-dominant bus designs: the Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California and the American Fuel Cell Bus Project at SunLine Transit Agency in California.

  11. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  12. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    Science.gov (United States)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  13. Induced pluripotent stem cells and personalized medicine: current progress and future perspectives

    OpenAIRE

    Chun, Yong Soon; Byun, Kyunghee; Lee, Bonghee

    2011-01-01

    Generation of induced pluripotent stem cells (iPSCs) has revolutionized the field of regenerative medicine by providing researchers with a unique tool to derive disease-specific stem cells for study. iPSCs can self-renew and can differentiate into many cell types, offering a potentially unlimited source of cells for targeted differentiation into somatic effector cells. Hence, iPSCs are likely to be invaluable for therapeutic applications and disease-related research. In this review, we summar...

  14. New materials for polymer electrolyte membrane fuel cell current collectors

    Science.gov (United States)

    Hentall, Philip L.; Lakeman, J. Barry; Mepsted, Gary O.; Adcock, Paul L.; Moore, Jon M.

    Polymer Electrolyte Membrane Fuel cells for automotive applications need to have high power density, and be inexpensive and robust to compete effectively with the internal combustion engine. Development of membranes and new electrodes and catalysts have increased power significantly, but further improvements may be achieved by the use of new materials and construction techniques in the manufacture of the bipolar plates. To show this, a variety of materials have been fabricated into flow field plates, both metallic and graphitic, and single fuel cell tests were conducted to determine the performance of each material. Maximum power was obtained with materials which had lowest contact resistance and good electrical conductivity. The performance of the best material was characterised as a function of cell compression and flow field geometry.

  15. On the use of the correction factor with Japanese ozonesonde data

    Directory of Open Access Journals (Sweden)

    G. A. Morris

    2013-02-01

    Full Text Available In submitting data to the World Meteorological Organization (WMO World Ozone and Ultraviolet Data Center (WOUDC, numerous ozonesonde stations include a correction factor (CF that multiplies ozone concentration profile data so that the columns computed agree with column measurements from co-located ground-based and/or overpassing satellite instruments. We evaluate this practice through an examination of data from four Japanese ozonesonde stations: Kagoshima, Naha, Sapporo, and Tsukuba. While agreement between the sonde columns and Total Ozone Mapping Spectrometer (TOMS or Ozone Mapping Instrument (OMI is improved by use of the CF, agreement between the sonde ozone concentrations reported near the surface and data from surface monitors near the launch sites is negatively impacted. In addition, we find the agreement between the mean sonde columns without the CF and the ground-based Dobson instrument columns is improved by ~1.5 % by using the McPeters et al. (1997 balloon burst climatology rather than the constant mixing ratio assumption (that has been used for the data in the WOUDC archive for the above burst height column estimate. Limited comparisons of coincident ozonesonde profiles from Hokkaido University with those in the WOUDC database suggest that while the application of the CFs in the stratosphere improves agreement, it negatively impacts the agreement in the troposphere. Finally and importantly, unexplained trends and changing trends in the CFs appear over the last 20 years. The overall trend in the reported CFs for the four Japanese ozonesonde stations from 1990–2010 is (−0.264 ± 0.036 × 10−2 yr−1; but from 1993–1999 the trend is (−2.18 ± 0.14 × 10−2 yr−1 and from 1999–2009 is (1.089 ± 0.075 × 10−2 yr−1, resulting in a statistically significant difference in CF trends between these two periods of (3.26 ± 0.16 × 10−2 yr

  16. Mesenchymal stem cell treatment for hemophilia: a review of current knowledge.

    Science.gov (United States)

    Sokal, E M; Lombard, C; Mazza, G

    2015-06-01

    Hemophilia remains a non-curative disease, and patients are constrained to undergo repeated injections of clotting factors. In contrast, the sustained production of endogenous factors VIII (FVIII) or IX (FIX) by the patient's own cells could represent a curative treatment. Gene therapy has thus provided new hope for these patients. However, the issues surrounding the durability of expression and immune responses against gene transfer vectors remain. Cell therapy, involving stem cells expanded in vitro, can provide de novo protein synthesis and, if implanted successfully, could induce a steady-state production of low quantities of factors, which may keep the patient above the level required to prevent spontaneous bleeding. Liver-derived stem cells are already being assessed in clinical trials for inborn errors of metabolism and, in view of their capacity to produce FVIII and FIX in cell culture, they are now also being considered for clinical application in hemophilia patients. © 2015 International Society on Thrombosis and Haemostasis.

  17. Current Status on Stem Cells and Cancers of the Gastric Epithelium

    Directory of Open Access Journals (Sweden)

    Werner Hoffmann

    2015-08-01

    Full Text Available Gastric cancer is still a leading cause of cancer-related mortality worldwide in spite of declining incidence. Gastric cancers are, essentially, adenocarcinomas and one of the strongest risk factors is still infection with Helicobacter pylori. Within the last years, it became clear that gastric self-renewal and carcinogenesis are intimately linked, particularly during chronic inflammatory conditions. Generally, gastric cancer is now regarded as a disease resulting from dysregulated differentiation of stem and progenitor cells, mainly due to an inflammatory environment. However, the situation in the stomach is rather complex, consisting of two types of gastric units which show bidirectional self-renewal from an unexpectedly large variety of progenitor/stem cell populations. As in many other tumors, cancer stem cells have also been characterized for gastric cancer. This review focuses on the various gastric epithelial stem cells, how they contribute to self-renewal and which routes are known to gastric adenocarcinomas, including their stem cells.

  18. RNAi Technique in Stem Cell Research: Current Status and Future Perspectives.

    Science.gov (United States)

    Zou, Gang-Ming

    2017-01-01

    RNAi is a mechanism displayed by most eukaryotic cells to rid themselves of foreign double-strand RNA molecules. In the 18 years since the initial report, RNAi has now been demonstrated to function in mammalian cells to alter gene expression and has been used as a means for genetic discovery as well as a possible strategy for genetic correction and genetic therapy in cancer and other disease. The aim of this review is to provide a general overview of how RNAi suppresses gene expression and to examine some published RNAi approaches that have resulted in changes in stem cell function and suggest the possible clinical relevance of this work in cancer therapy through targeting cancer stem cells.

  19. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells.

    Directory of Open Access Journals (Sweden)

    Kelly P Nevin

    Full Text Available The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate as the sole electron acceptor. Fumarate-grown biofilms were not immediately capable of significant current production, suggesting substantial physiological differences from current-producing biofilms. Microarray analysis revealed 13 genes in current-harvesting biofilms that had significantly higher transcript levels. The greatest increases were for pilA, the gene immediately downstream of pilA, and the genes for two outer c-type membrane cytochromes, OmcB and OmcZ. Down-regulated genes included the genes for the outer-membrane c-type cytochromes, OmcS and OmcT. Results of quantitative RT-PCR of gene transcript levels during biofilm growth were consistent with microarray results. OmcZ and the outer-surface c-type cytochrome, OmcE, were more abundant and OmcS was less abundant in current-harvesting cells. Strains in which pilA, the gene immediately downstream from pilA, omcB, omcS, omcE, or omcZ was deleted demonstrated that only deletion of pilA or omcZ severely inhibited current production and biofilm formation in current-harvesting mode. In contrast, these gene deletions had no impact on biofilm formation on graphite surfaces when fumarate served as the electron acceptor. These results suggest that biofilms grown harvesting current are specifically poised for electron transfer to electrodes and that, in addition to pili, OmcZ is a key component in electron transfer through differentiated G. sulfurreducens biofilms to electrodes.

  20. Optimum Peak Current Hysteresis Control for Energy Recovering Converter in CDI Desalination

    Directory of Open Access Journals (Sweden)

    Alberto M. Pernía

    2014-06-01

    Full Text Available Capacitive De-Ionization (CDI is becoming a suitable alternative for desalination. The low cost of the materials required and its reduced energy consumption can be critical factors for developing this technique. CDI technology does not require a high-pressure system and the energy storage capability of CDI cells allows it to be reused in other CDI cells, thus minimizing consumption. The goal of the power stage responsible of the energy recovery is transferring the stored energy from one cell to another with the maximum possible efficiency, thus allowing the desalination process to continue. Assuming hysteresis current control is implemented at the DC/DC (direct current converter, this paper aims to determine the optimum peak current through the inductor in each switching period with a view to maximizing overall efficiency. The geometrical parameters of the desalination cell and the NaCl concentration modify the cell electrical properties. The peak current control of the power stage should be adapted to the cell characteristics so that the efficiency behavior of the whole CDI system can be improved. The mathematical model defined in this paper allows the CDI plant automation using the peak inductor current as control variable, adapting its value to the salt concentration during the desalination process.

  1. Electrochemical evaluation of sulfur poisoning in a methane-fuelled solid oxide fuel cell: Effect of current density and sulfur concentration

    DEFF Research Database (Denmark)

    Hagen, Anke; Johnson, Gregory B.; Hjalmarsson, Per

    2014-01-01

    , the effect of sulfur was less pronounced on mass transfer/fuel reforming processes but quite significant on the charge transfer/TPB processes. Overall, sulfur related performance loss was more severe at the highest current density (1 A cm−2), due to the deactivation of catalytic fuel reforming reactions......A Ni/ScYSZ based SOFC was tested at 1, 0.5, 0.25, and 0 (OCV) A cm−2 in methane fuel containing 0–100 ppm H2S. Analysis of cell voltage loss during short-term H2S poisoning showed that SOFC performance loss was generally larger at higher current loads. Separating the effect of H2S on catalytic...... reforming and electrochemical activity by evaluating the relevant area specific resistances and charge transfer processes based on impedance spectroscopy revealed that the poisoning of electrochemical activity was not dependent on current density. Two major anode processes were significantly affected...

  2. Method for measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1986-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)p 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is determined

  3. Measurement of flowing water salinity within or behind wellbore casing

    International Nuclear Information System (INIS)

    Arnold, D.M.

    1981-01-01

    Water flowing within or behind a wellbore casing is irradiated with 14 MeV neutrons from a source in a downhole sonde. Gamma radiation from the isotope nitrogen-16 induced from the O 16 (n,p)N 16 reaction and the products of either the Na 23 (n,α)F 20 or the Cl 37 (n,α)P 34 reactions is measured in intensity and energy with detectors in the sonde. From the gamma radiation measurements, the relative presence of oxygen to at least one of sodium or chlorine in the water is measured, and from the measurement the salinity of the water is to be determined. (author)

  4. CURRENT-VOLTAGE CURVES FOR TREATING EFFLUENT CONTAINING HEDP: DETERMINATION OF THE LIMITING CURRENT

    Directory of Open Access Journals (Sweden)

    T. Scarazzato

    2015-12-01

    Full Text Available Abstract Membrane separation techniques have been explored for treating industrial effluents to allow water reuse and component recovery. In an electrodialysis system, concentration polarization causes undesirable alterations in the ionic transportation mechanism. The graphic construction of the current voltage curve is proposed for establishing the value of the limiting current density applied to the cell. The aim of this work was to determine the limiting current density in an electrodialysis bench stack, the function of which was the treatment of an electroplating effluent containing HEDP. For this, a system with five compartments was used with a working solution simulating the rinse waters of HEDP-based baths. The results demonstrated correlation between the regions defined by theory and the experimental data.

  5. Surface current double-heterogeneous multilayer multicell methodology

    International Nuclear Information System (INIS)

    Stepanek, J.; Segev, M.

    1991-01-01

    A surface current methodology is developed to respond to the need for treating the various levels of material heterogeneity in a double-heterogeneous multilayer multicell in processing neutron multigroup cross sections in the resonance as well as thermal energy range. First, the basic surface cosine current transport equations to calculate the energy-dependent neutron flux spatial distribution in the multilayered multicell are formulated. Slab, spherical and cylindrical geometries, as well as square and hexagonal lattices and pebble-bed configurations with white or reflective cell boundary conditions, are considered. Second, starting from the surface cosine-current formulation, a two-zone three-layer multicell formalism for reduction of heterogeneous flux expressions to equivalent homogeneous flux expression for table method was developed. This formalism allows an infinite, as well as a limited, number of second-heterogeneity cells within a partial first-heterogeneity cell layer to be considered. Also, the number of the first-and second-heterogeneity cell types is quite general. The 'outer' (right side) as well as 'inner' (left side) Dancoff probabilities can be calculated for any particular layer. An accurate, efficient, and compact interpolation procedure is developed to calculate the basic collision probabilities. These are transmission and escape probabilities for shells in slab, cylindrical, and spherical geometries, as well as Dancoff probabilities for cylinders in square and hexagonal lattices. The use of the interpolation procedure is exemplified in a multilayer multicell approximation for the Dancoff probability, enabling a routine evaluation of the equivalence-based shielded resonance integral in highly complex lattices of slab, cylindrical, or spherical cells. (author) 1 fig., 2 tabs., 10 refs

  6. Context-Dependent Modulation of GABAAR-Mediated Tonic Currents

    DEFF Research Database (Denmark)

    Patel, Bijal; Bright, Damian P; Mortensen, Martin

    2016-01-01

    UNLABELLED: Tonic GABA currents mediated by high-affinity extrasynaptic GABAA receptors, are increasingly recognized as important regulators of cell and neuronal network excitability. Dysfunctional GABAA receptor signaling that results in modified tonic GABA currents is associated with a number o...

  7. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, L.; Chandler, K.; Gigakis, C.

    2010-11-01

    This status report, fourth in a series of annual status reports from the U.S. Department of Energy's National Renewable Energy Laboratory, summarizes progress and accomplishments from demonstrations of fuel cell transit buses in the United States. This year's assessment report provides the results from the fifth year of operation of five Van Hool, ISE, and UTC Power fuel cell buses operating at AC Transit, SunLine, and CTTRANSIT. The achievements and challenges of this bus design, implementation, and operating are presented, with a focus on the next steps for implementing larger numbers and new and different designs of fuel cell buses. The major positive result from nearly five years of operation is the dramatic increase in reliability experienced for the fuel cell power system.

  8. Current status of hybrid, battery and fuel cell electric vehicles: From electrochemistry to market prospects

    International Nuclear Information System (INIS)

    Pollet, Bruno G.; Staffell, Iain; Shang, Jin Lei

    2012-01-01

    Decarbonising transport is proving to be one of today's major challenges for the global automotive industry due to many factors such as the increase in greenhouse gas and particulate emissions affecting not only the climate but also humans, the increase in pollution, rapid oil depletion, issues with energy security and dependency from foreign sources and population growth. For more than a century, our society has been dependent upon oil, and major breakthroughs in low- and ultra-low carbon technologies and vehicles are urgently required. This review paper highlights the current status of hybrid, battery and fuel cell electric vehicles from an electrochemical and market point of view. The review paper also discusses the advantages and disadvantages of using each technology in the automotive industry and the impact of these technologies on consumers.

  9. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014

    Science.gov (United States)

    2014-12-03

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. Various stakeholders, including d...

  10. The effects of magnetite (Fe3O4 nanoparticles on electroporation-induced inward currents in pituitary tumor (GH3 cells and in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Liu YC

    2012-03-01

    Full Text Available Yen-Chin Liu1, Ping-Ching Wu2, Dar-Bin Shieh2–5, Sheng-Nan Wu3,6,71Department of Anesthesiology, 2Institute of Oral Medicine and Department of Stomatology, 3Department of Physiology, National Cheng Kung University Hospital, College of Medicine, 4Advanced Optoelectronic Technology Center, 5Center for Micro/Nano Science and Technology, National Cheng Kung University, 6Innovation Center for Advanced Medical Device Technology, National Cheng Kung University, 7Department of Anatomy and Cell Biology, National Cheng Kung University Medical College, Tainan, TaiwanAims: Fe3O4 nanoparticles (NPs have been known to provide a distinct image contrast effect for magnetic resonance imaging owing to their super paramagnetic properties on local magnetic fields. However, the possible effects of these NPs on membrane ion currents that concurrently induce local magnetic field perturbation remain unclear.Methods: We evaluated whether amine surface-modified Fe3O4 NPs have any effect on ion currents in pituitary tumor (GH3 cells via voltage clamp methods.Results: The addition of Fe3O4 NPs decreases the amplitude of membrane electroporation-induced currents (IMEP with a half-maximal inhibitory concentration at 45 µg/mL. Fe3O4 NPs at a concentration of 3 mg/mL produced a biphasic response in the amplitude of IMEP, ie, an initial decrease followed by a sustained increase. A similar effect was also noted in RAW 264.7 macrophages.Conclusion: The modulation of magnetic electroporation-induced currents by Fe3O4 NPs constitutes an important approach for cell tracking under various imaging modalities or facilitated drug delivery.Keywords: iron oxide, ion current, free radical

  11. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2015

    Science.gov (United States)

    2015-12-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  12. Magnetization Dynamics in Two Novel Current-Driven Spintronic Memory Cell Structures

    KAUST Repository

    Velazquez-Rizo, Martin

    2017-01-01

    In this work, two new spintronic memory cell structures are proposed. The first cell uses the diffusion of polarized spins into ferromagnets with perpendicular anisotropy to tilt their magnetization followed by their dipolar coupling to a fixed

  13. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    Science.gov (United States)

    2017-11-01

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of ...

  14. The importance of band tail recombination on current collection and open-circuit voltage in CZTSSe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E. [Naval Research Laboratory, Washington, DC 20375 (United States); Purdue University, West Lafayette, Indiana 47907 (United States); Hages, Charles J. [Purdue University, West Lafayette, Indiana 47907 (United States); Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Agrawal, Rakesh; Lundstrom, Mark S.; Gray, Jeffery L. [Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-07-11

    Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) solar cells typically exhibit high short-circuit current density (J{sub sc}), but have reduced cell efficiencies relative to other thin film technologies due to a deficit in the open-circuit voltage (V{sub oc}), which prevent these devices from becoming commercially competitive. Recent research has attributed the low V{sub oc} in CZTSSe devices to small scale disorder that creates band tail states within the absorber band gap, but the physical processes responsible for this V{sub oc} reduction have not been elucidated. In this paper, we show that carrier recombination through non-mobile band tail states has a strong voltage dependence and is a significant performance-limiting factor, and including these effects in simulation allows us to simultaneously explain the V{sub oc} deficit, reduced fill factor, and voltage-dependent quantum efficiency with a self-consistent set of material parameters. Comparisons of numerical simulations to measured data show that reasonable values for the band tail parameters (characteristic energy, capture rate) can account for the observed low V{sub oc}, high J{sub sc}, and voltage dependent collection efficiency. These results provide additional evidence that the presence of band tail states accounts for the low efficiencies of CZTSSe solar cells and further demonstrates that recombination through non-mobile band tail states is the dominant efficiency limiting mechanism.

  15. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017

    Energy Technology Data Exchange (ETDEWEB)

    Eudy, Leslie [National Renewable Energy Lab. (NREL), Golden, CO (United States); Post, Matthew B [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-11-21

    This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage research and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.

  16. Microscopie thermique par sonde thermoélectrique

    OpenAIRE

    Bontempi , Alexia

    2015-01-01

    This PhD thesis deals with the development of a thermalmicroscope using a local probe. This imagingsystem presents two functioning modes that allow determining either surface temperature or thermalproperties of materials. A micro-wire thermocouple is used as a thermal sensor. It is less invasiveand allows measuring the surface temperature with a large temperature range. Furthermore, themicroscope offers an advantage to be less sensitive to the optical nature of a sample surface thanoptical me...

  17. Consistency between GRUAN sondes, LBLRTM and IASI

    Directory of Open Access Journals (Sweden)

    X. Calbet

    2017-06-01

    Full Text Available Radiosonde soundings from the GCOS Reference Upper-Air Network (GRUAN data record are shown to be consistent with Infrared Atmospheric Sounding Instrument (IASI-measured radiances via LBLRTM (Line-By-Line Radiative Transfer Model in the part of the spectrum that is mostly affected by water vapour absorption in the upper troposphere (from 700 hPa up. This result is key for climate data records, since GRUAN, IASI and LBLRTM constitute reference measurements or a reference radiative transfer model in each of their fields. This is specially the case for night-time radiosonde measurements. Although the sample size is small (16 cases, daytime GRUAN radiosonde measurements seem to have a small dry bias of 2.5 % in absolute terms of relative humidity, located mainly in the upper troposphere, with respect to LBLRTM and IASI. Full metrological closure is not yet possible and will not be until collocation uncertainties are better characterized and a full uncertainty covariance matrix is clarified for GRUAN.

  18. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2013

    Science.gov (United States)

    2013-12-01

    This report is the seventh in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. This r...

  19. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2012

    Science.gov (United States)

    2012-11-12

    This report is the sixth in an annual series of reports that summarize the progress of fuel cell electric bus (FCEB) development in the United States and discuss the achievements and challenges of introducing fuel cell propulsion in transit. The repo...

  20. Bone marrow micrometastases and circulating tumor cells: current aspects and future perspectives

    International Nuclear Information System (INIS)

    Müller, Volkmar; Pantel, Klaus

    2004-01-01

    Early tumor cell dissemination at the single-cell level can be revealed in patients with breast cancer by using sensitive immunocytochemical and molecular assays. Recent clinical studies involving more than 4000 breast cancer patients demonstrated that the presence of disseminated tumor cells in bone marrow at primary diagnosis is an independent prognostic factor. In addition, various assays for the detection of circulating tumor cells in the peripheral blood have recently been developed and some studies also suggest a potential clinical relevance of this measure. These findings provide the basis for the potential use of disseminated tumor cells in bone marrow or blood as markers for the early assessment of therapeutic response in prospective clinical trials

  1. Current and Emerging Therapeutics for Cutaneous T-Cell Lymphoma: Histone Deacetylase Inhibitors

    OpenAIRE

    Annabelle L. Rodd; Katherine Ververis; Tom C. Karagiannis

    2012-01-01

    Cutaneous T-cell lymphoma is a term that encompasses a spectrum of non-Hodgkin’s T-cell lymphomas with primary manifestations in the skin. It describes a heterogeneous group of neoplasms that are characterised by an accumulation of malignant T cells of the CD4 phenotype that have the propensity to home and accumulate in the skin, lymph nodes, and peripheral blood. The two most common variants of cutaneous T-cell lymphoma include mycosis fungoides and the leukemic variant, the Sézary syndrome....

  2. Current status of Westinghouse tubular solid oxide fuel cell program

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.G. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1996-04-01

    In the last ten years the solid oxide fuel cell (SOFC) development program at Westinghouse has evolved from a focus on basic material science to the engineering of fully integrated electric power systems. Our endurance for this cell is 5 to 10 years. To date we have successfully operated at power for over six years. For power plants it is our goal to have operated before the end of this decade a MW class power plant. Progress toward these goals is described.

  3. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2011

    Science.gov (United States)

    2011-11-11

    his report is the fifth in a series of annual status reports that summarize the progress resulting from fuel cell transit bus demonstrations in the United States and provide a discussion of the achievements and challenges of fuel cell propulsion in t...

  4. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin

    2018-01-23

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  5. Controlling Blend Morphology for Ultra-High Current Density in Non-Fullerene Acceptor Based Organic Solar Cells

    KAUST Repository

    Song, Xin; Gasparini, Nicola; Ye, Long; Yao, Huifeng; Hou, Jianhui; Ade, Harald; Baran, Derya

    2018-01-01

    Due to the high absorption coefficient and modulated band gap of non-fullerene small molecule acceptors (NFAs), photons can be utilized more efficiently in near-infrared (NIR) range. In this report, we highlight a system with a well-known polymer donor (PTB7-Th) blended with a narrow bandgap non-fullerene acceptor (IEICO-4F) as active layer and 1-chloronaphthalene (CN) as the solvent additive. The optimization of the photoactive layer nanomorphology yields short-circuit current density value (Jsc) of 27.3 mA/cm2, one of the highest value in OSCs reported to date, which competes with other types of solution processed solar cells such as perovskite or quantum dot devices. Along with decent open-circuit voltage (0.71V) and fill factor values (66%), a power conversion efficiency of 12.8% is achieved for the champion devices. Grazing incidence wide-angle X-ray scattering (GIWAXS) patterns and resonant soft X-ray scattering (R-SoXS) elucidate that the origin of this high photocurrent is mainly due to increased π-π coherence length of the acceptor, the domain spacing as well as the mean-square composition variation of the blend. Optoelectronic measurements confirm a balanced hole and electron mobility and reduced trap-assisted recombination for the best devices. These findings unveil the relevant solvent processing-nanostructure-electronic properties correlation in low band gap non-fullerene based solar cells, which provide a helpful guide for maximizing photocurrent that can pave the way for high efficiency organic solar cells.

  6. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia - current trends.

    Science.gov (United States)

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Khan, Haji; Ali, Gul Shad

    2017-11-01

    The genus Artemisia has been utilized worldwide due to its immense potential for protection against various diseases, especially malaria. Artemisia absinthium, previously renowned for its utilization in the popular beverage absinthe, is gaining resurgence due to its extensive pharmacological activities. Like A. annua, this species exhibits strong biological activities like antimalarial, anticancer and antioxidant. Although artemisinin was found to be the major metabolite for its antimalarial effects, several flavonoids and terpenoids are considered to possess biological activities when used alone and also to synergistically boost the bioavailability of artemisinin. However, due to the limited quantities of these metabolites in wild plants, in vitro cultures were established and strategies have been adopted to enhance medicinally important secondary metabolites in these cultures. This review elaborates on the traditional medicinal uses of Artemisia species and explains current trends to establish cell cultures of A. annua and A. absinthium for enhanced production of medicinally important secondary metabolites.

  7. Inhibition of PaCaMKII-E isoform in the dorsal unpaired median neurosecretory cells of cockroach reduces nicotine- and clothianidin-induced currents.

    Science.gov (United States)

    List, Olivier; Calas-List, Delphine; Taillebois, Emiliane; Juchaux, Marjorie; Heuland, Emilie; Thany, Steeve H

    2014-08-01

    Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with α-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through α-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via α-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is

  8. 21 CFR 1271.150 - Current good tissue practice requirements.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Current good tissue practice requirements. 1271... HUMAN CELLS, TISSUES, AND CELLULAR AND TISSUE-BASED PRODUCTS Current Good Tissue Practice § 1271.150 Current good tissue practice requirements. (a) General. This subpart D and subpart C of this part set...

  9. In utero hematopoietic stem cell transfer: current status and future strategies.

    Science.gov (United States)

    Surbek, D V; Gratwohl, A; Holzgreve, W

    1999-07-01

    Successful prenatal treatment of severe immunodeficiencies by allogeneic hematopoietic stem cell transplantation in utero has been reported. Though other diseases like hemoglobinopathies or storage diseases are potentially amenable to this novel therapeutic approach, no success has yet been achieved in recipients without severe immunodeficiency. Graft rejection by the developing fetus and/or lack of selective, competitive advantage of donor versus host stem cells preventing stable engraftment seem to be the major obstacles. Several strategies to overcome these hurdles are being explored in preclinical settings, including timing and repeated dosing of stem cell administration to the fetus, ex vivo modification of the transplant, using different fetal compartments as targets for early stem cell transfer, or inducing microchimerism for postnatal transplantation from the same donor. In addition, the exact definition of the basic concept of early fetal immunologic naivete and the understanding of the molecular basics of migration and homing in fetal hematopoiesis system seem mandatory for a successful approach. Gene therapy using ex vivo transduced autologous cord blood cells or direct gene targeting in utero are other potential means to correct hematopoietic and immunologic single gene disorders in utero, though this approach is still away from the stage of clinical trials.

  10. Biomarkers in pancreatic adenocarcinoma: current perspectives.

    Science.gov (United States)

    Swords, Douglas S; Firpo, Matthew A; Scaife, Courtney L; Mulvihill, Sean J

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis, with a 5-year survival rate of 7.7%. Most patients are diagnosed at an advanced stage not amenable to potentially curative resection. A substantial portion of this review is dedicated to reviewing the current literature on carbohydrate antigen (CA 19-9), which is currently the only guideline-recommended biomarker for PDAC. It provides valuable prognostic information, can predict resectability, and is useful in decision making about neoadjuvant therapy. We also discuss carcinoembryonic antigen (CEA), CA 125, serum biomarker panels, circulating tumor cells, and cell-free nucleic acids. Although many biomarkers have now been studied in relation to PDAC, significant work still needs to be done to validate their usefulness in the early detection of PDAC and management of patients with PDAC.

  11. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2010

    Science.gov (United States)

    2010-11-11

    This past year has been one of transition for the introduction of fuel cell transit buses. The existing generation of fuel cell buses from Van Hool and UTC Power has continued to operate in service at three transit agencies. At the same time, a new g...

  12. The effects of high frequency current ripple on electric vehicle battery performance

    International Nuclear Information System (INIS)

    Uddin, Kotub; Moore, Andrew D.; Barai, Anup; Marco, James

    2016-01-01

    Highlights: • Experimental study into the impact of current ripple on li-ion battery degradation. • 15 cells exercised with 1200 cycles coupled AC–DC signals, at 5 frequencies. • Results highlight a greater spread of degradation for cells exposed to AC excitation. • Implications for BMS control, thermal management and system integration. - Abstract: The power electronic subsystems within electric vehicle (EV) powertrains are required to manage both the energy flows within the vehicle and the delivery of torque by the electrical machine. Such systems are known to generate undesired electrical noise on the high voltage bus. High frequency current oscillations, or ripple, if unhindered will enter the vehicle’s battery system. Real-world measurements of the current on the high voltage bus of a series hybrid electric vehicle (HEV) show that significant current perturbations ranging from 10 Hz to in excess of 10 kHz are present. Little is reported within the academic literature about the potential impact on battery system performance and the rate of degradation associated with exposing the battery to coupled direct current (DC) and alternating currents (AC). This paper documents an experimental investigation that studies the long-term impact of current ripple on battery performance degradation. Initial results highlight that both capacity fade and impedance rise progressively increase as the frequency of the superimposed AC current increases. A further conclusion is that the spread of degradation for cells cycled with a coupled AC–DC signal is considerably more than for cells exercised with a traditional DC waveform. The underlying causality for this degradation is not yet understood. However, this has important implications for the battery management system (BMS). Increased variations in cell capacity and impedance will cause differential current flows and heat generation within the battery pack that if not properly managed will further reduce battery life

  13. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts.

    Science.gov (United States)

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2017-12-01

    Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.

  14. A High-Current, Stable Nonaqueous Organic Redox Flow Battery

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiaoliang; Duan, Wentao; Huang, Jinhua; Zhang, Lu; Li, Bin; Reed, David; Xu, Wu; Sprenkle, Vincent; Wang, Wei

    2016-10-14

    Nonaqueous redox flow batteries are promising in pursuit of high-energy storage systems owing to the broad voltage window, but currently are facing key challenges such as poor cycling stability and lack of suitable membranes. Here we report a new nonaqueous all-organic flow chemistry that demonstrates an outstanding cell cycling stability primarily because of high chemical persistency of the organic radical redox species and their good compatibility with the supporting electrolyte. A feasibility study shows that Daramic® and Celgard® porous separators can lead to high cell conductivity in flow cells thus producing remarkable cell efficiency and material utilization even at high current operations. This result suggests that the thickness and pore size are the key performance-determining factors for porous separators. With the greatly improved flow cell performance, this new flow system largely addresses the above mentioned challenges and the findings may greatly expedite the development of durable nonaqueous flow batteries.

  15. Solar cells from 120 PPMA carbon-contaminated feedstock without significantly higher reverse current or shunt

    Energy Technology Data Exchange (ETDEWEB)

    Manshanden, P.; Coletti, G. [ECN Solar Energy, Petten (Netherlands)

    2012-09-15

    In a bid to drive down the cost of silicon wafers, several options for solar grade silicon feedstock have been investigated over the years. All methods have in common that the resulting silicon contains higher levels of impurities like dopants, oxygen, carbon or transition metals, the type and level of impurities depending on the raw materials and refining processes. In this work wafers from a p-type mc-Si ingot made with feedstock contaminated with 120 ppma of carbon have been processed into solar cells together with reference uncontaminated feedstock from semiconductor grade polysilicon with <0.4 ppma carbon. The results show that comparable reverse current, shunts, and efficiencies can be reached for both types of wafers. Gettering and defect hydrogenation effectiveness also did not deviate from the reference. Electroluminescence pictures do not show increased hotspot formation, even at -16V.

  16. Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation

    DEFF Research Database (Denmark)

    Zhou, Fan; Andreasen, Søren Juhl; Kær, Søren Knudsen

    2015-01-01

    Operation under fuel starvation has been proved to be harmful to the fuel cell by causing severe and irreversible degradation. To characterize the behaviors of the high temperature PEM fuel cell under fuel starvation conditions, the cell voltage and local current density is measured simultaneously...... under different H2 stoichiometries below 1.0 and at different current loads. The experimental results show that the cell voltage decreases promptly when the H2 stoichiometry decreases to below 1.0. Negative cell voltage can be observed which indicates cell reversal. The local current density starts...... to diverge when the cell voltage decreases. In the H2 upstream regions the current densities show an increasing trend, while those in the H2 downstream regions show a decreasing trend. Consequently, the current density distribution becomes very uneven. The current density is the highest in the upstream...

  17. Thin Film Energy Storage Device with Spray‐Coated Sliver Paste Current Collector

    Directory of Open Access Journals (Sweden)

    Seong Man Yoon

    2017-12-01

    Full Text Available This paper challenges the fabrication of a thin film energy storage device on a flexible polymer substrate specifically by replacing most commonly used metal foil current collectors with coated current collectors. Mass‐manufacturable spray‐coating technology enables the fabrication of two different half‐cell electric double layer capacitors (EDLC with a spray‐coated silver paste current collector and a Ni foil current collector. The larger specific capacitances of the half‐cell EDLC with the spray‐coated silver current collector are obtained as 103.86 F/g and 76.8 F/g for scan rates of 10 mV/s and 500 mV/s, respectively. Further, even though the half‐cell EDLC with the spray‐coated current collector is heavier than that with the Ni foil current collector, smaller Warburg impedance and contact resistance are characterized from Nyquist plots. For the applied voltages ranging from −0.5 V to 0.5 V, the spray‐coated thin film energy storage device exhibits a better performance.

  18. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells.

    Science.gov (United States)

    Chen, Lung-Chien; Lin, Yu-Shiang; Tang, Po-Wen; Tai, Chao-Yi; Tseng, Zong-Liang; Lin, Ja-Hon; Chen, Sheng-Hui; Kuo, Hao-Chung

    2017-11-23

    Comprehensive studies were carried out to understand the origin of the current hysteresis effects in highly efficient C 60 -CH 3 NH 3 PbI 3 (MAPbI 3 ) heterojunction solar cells, using atomic-force microscopy, transmittance spectra, photoluminescence spectra, X-ray diffraction patterns and a femtosecond time-resolved pump-probe technique. The power conversion efficiency (PCE) of C 60 -MAPbI 3 solar cells can be increased to 18.23% by eliminating the point (lattice) defects in the MAPbI 3 thin film which is fabricated by using the one-step spin-coating method with toluene washing treatment. The experimental results show that the point defects and surface defects of the MAPbI 3 thin films can be minimized by varying the dropping time of the washing solvent. The point defects (surface defects) can be reduced with an (a) increase (decrease) in the dropping time, resulting in an optimized dropping time for obtaining the defect-minimized MAPbI 3 thin film deposited on top of the C 60 thin film. Consequently, the formation of the defect-minimized MAPbI 3 thin film allows for high-efficiency MAPbI 3 solar cells.

  19. Fast inhibition of glutamate-activated currents by caffeine.

    Directory of Open Access Journals (Sweden)

    Nicholas P Vyleta

    Full Text Available BACKGROUND: Caffeine stimulates calcium-induced calcium release (CICR in many cell types. In neurons, caffeine stimulates CICR presynaptically and thus modulates neurotransmitter release. METHODOLOGY/PRINCIPAL FINDINGS: Using the whole-cell patch-clamp technique we found that caffeine (20 mM reversibly increased the frequency and decreased the amplitude of miniature excitatory postsynaptic currents (mEPSCs in neocortical neurons. The increase in mEPSC frequency is consistent with a presynaptic mechanism. Caffeine also reduced exogenously applied glutamate-activated currents, confirming a separate postsynaptic action. This inhibition developed in tens of milliseconds, consistent with block of channel currents. Caffeine (20 mM did not reduce currents activated by exogenous NMDA, indicating that caffeine block is specific to non-NMDA type glutamate receptors. CONCLUSIONS/SIGNIFICANCE: Caffeine-induced inhibition of mEPSC amplitude occurs through postsynaptic block of non-NMDA type ionotropic glutamate receptors. Caffeine thus has both pre and postsynaptic sites of action at excitatory synapses.

  20. Charge carrier transport in Cu(In,Ga)Se2 thin-film solar-cells studied by electron beam induced current and temperature and illumination dependent current voltage analysis

    International Nuclear Information System (INIS)

    Nichterwitz, Melanie

    2012-01-01

    This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se 2 (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe 2 absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p + layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p + layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface. The p + layer leads

  1. Regenerative BBU starting currents in standing wave cavities

    International Nuclear Information System (INIS)

    Vetter, A.M.; Buller, T.L.

    1992-01-01

    An analytical method for determining regenerative beam breakup (BBU) starting current, in which the contributions of single-cell field configuration and multi-cell structure mode are separated, is described. The field configuration within each cell is determined to close approximation through the use of mesh codes, which also relate the wall losses to the voltage drop along the beam path. The cell-to-cell amplitude variation may be determined by bead pull measurements on model cavities, or by assuming idealized structure modes. As an example, the I S Q L product for TM 110 -like modes of a 433-MHz, 5-cell, slot-coupled cavity is obtained. (author). 3 figs

  2. Simple Cell Balance Circuit

    Science.gov (United States)

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.

    2012-01-01

    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  3. A Promising Tool in Retina Regeneration: Current Perspectives and Challenges When Using Mesenchymal Progenitor Stem Cells in Veterinary and Human Ophthalmological Applications.

    Science.gov (United States)

    Cislo-Pakuluk, Anna; Marycz, Krzysztof

    2017-10-01

    Visual impairment is a common ailment of the current world population, with more exposure to CCD screens and fluorescent lighting, approximately 285 billion people suffer from this deficiency and 13% of those are considered clinically blind. More common causes for visual impairment include age-related macular degeneration (AMD), glaucoma and diabetic retinopathy (Zhu et al. Molecular Medicine Reports, 2015; Kolb et al. 2007; Machalińska et al. Current Eye Research, 34(9),748-760, 2009) among a few. As cases of retinal and optic nerve diseases rise, it is vital to find a treatment, which has led to investigation of the therapeutic potential of various stem cells types (Bull et al. Investigative Opthalmology & Visual Science, 50(9), 4244, 2009; Bull et al. Investigative Opthalmology & Visual Science, 49(8), 3449, 2008; Yu et al. Biochemical and Biophysical Research Communications, 344(4), 1071-1079, 2006; Na et al. Graefe's Archive for Clinical and Experimental Ophthalmology, 247(4), 503-514, 2008). In previous studies, some of the stem cell variants used include human Muller SCs and bone marrow derived SCs. Some of the regenerative potential characteristics of mesenchymal progenitor stem cells (MSCs) include their multilineage differentiation potential, their immunomodulatory effects, their high proliferative activity, they can be easily cultured in vitro, and finally their potential to synthesize and secrete membrane derived vesicles rich in growth factors, mRNA and miRNA which possibly aid in regulation of tissue damage regeneration. These facts alone, explain why MSCs are so widely used in clinical trials, 350 up to date (Switonski, Reproductive Biology, 14(1), 44-50, 2014). Animal studies have demonstrated that sub-retinal transplantation of MSCs delays retinal degeneration and preserves retinal function through trophic response (Inoue et al. Experimental Eye Research, 85(2), 234-241, 2007). Umbilical cord derived MSCs (UC/MSCs) have also been shown to contain

  4. Current developments in cell- and biomaterial-based approaches for stroke repair

    Czech Academy of Sciences Publication Activity Database

    Jendelová, Pavla; Kubinová, Šárka; Sandvig, I.; Erceg, Slaven; Sandvig, A.; Syková, Eva

    2016-01-01

    Roč. 16, č. 1 (2016), s. 43-56 ISSN 1471-2598 R&D Projects: GA MŠk(CZ) 7F14057 Institutional support: RVO:68378041 Keywords : clinical trials * ischemic lesion * mesenchymal stem cells * neural progenitors * neurogenesis * noninvasive imaging * stem cells * stroke * translation Subject RIV: FH - Neurology Impact factor: 3.684, year: 2016

  5. Numerical Simulation of Luminescent Downshifting in Top Cell of Monolithic Tandem Solar Cells

    Directory of Open Access Journals (Sweden)

    Mahfoud Abderrezek

    2013-01-01

    Full Text Available The increase in the conversion efficiency of monolithic tandem solar cells is limited by the short-circuit current density matching between the top and the bottom cells. Generally, the top cell presents the lowest current in the two subcells. In this paper, in order to increase the short-circuit current density in the top cell, we present a theoretical survey of the luminescence downshifting (LDS approach for the design of monolithic tandem solar cells. The photovoltaic (PV glass encapsulation material is replaced with a polymer material of polymethyl methacrylate (PMMA type which is doped with diverse kinds of organic dyes. The performance of the n-p-p+ GaInP structure has been simulated as a function of the organic dyes. Gains achieved for the short-circuit current density and conversion efficiency are, respectively, 13.13% and 13.38%, under AM1.5G illumination spectra.

  6. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Science.gov (United States)

    Yoshida, Toshiyuki; Washio, Kaoru; Iwata, Takanori; Okano, Teruo; Ishikawa, Isao

    2012-01-01

    It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy. PMID:22315604

  7. Current Status and Future Development of Cell Transplantation Therapy for Periodontal Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Toshiyuki Yoshida

    2012-01-01

    Full Text Available It has been shown that stem cell transplantation can regenerate periodontal tissue, and several clinical trials involving transplantation of stem cells into human patients have already begun or are in preparation. However, stem cell transplantation therapy is a new technology, and the events following transplantation are poorly understood. Several studies have reported side effects and potential risks associated with stem cell transplantation therapy. To protect patients from such risks, governments have placed regulations on stem cell transplantation therapies. It is important for the clinicians to understand the relevant risks and governmental regulations. This paper describes the ongoing clinical studies, basic research, risks, and governmental controls related to stem cell transplantation therapy. Then, one clinical study is introduced as an example of a government-approved periodontal cell transplantation therapy.

  8. Read method compensating parasitic sneak currents in a crossbar memristive memory

    KAUST Repository

    Zidan, Mohammed A.

    2017-03-02

    Methods are provided for mitigating problems caused by sneak- paths current during memory cell access in gateless arrays. Example methods contemplated herein utilize adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer memory system to address this sneak-paths problem. The method of the invention is a method for reading a target memory cell located at an intersection of a target row of a gateless array and a target column of the gateless array, the method comprising: -reading a value of the target memory cell; and -calculating an actual value of the target memory cell based on the read value of the memory cell and a component of the read value caused by sneak path current. Utilizing either an "initial bits" strategy or a "dummy bits" strategy in order to calculate the component of the read value caused by sneak path current, example embodiments significantly reduce the number of memory accesses pixel for an array readout. In addition, these strategies consume an order of magnitude less power in comparison to alternative state-of-the-art readout techniques.

  9. Tissue Engineering in Osteoarthritis: Current Status and Prospect of Mesenchymal Stem Cell Therapy.

    Science.gov (United States)

    Im, Gun-Il

    2018-04-27

    Osteoarthritis (OA) is the most common form of arthritis. Over the last 20 years, attempts have been made to regenerate articular cartilage to overcome the limitations of conventional treatments. As OA is generally associated with larger and diffuse involvement of articular surfaces and alteration of joint homeostasis, a tissue engineering approach for cartilage regeneration is more difficult than in simple chondral defects. Autologous and allogeneic mesenchymal stem cells (MSCs) have rapidly emerged as investigational products for cartilage regeneration. This review outlines points to consider in MSC-based approaches for OA treatment, including allogeneic MSCs, sources of MSCs, dosages, feasibility of multiple injections, indication according to severity of OA lesion and patient age, and issues regarding implantation versus injection. We introduce possible mechanisms of action of implanted or injected MSCs as well as the immunological aspects of MSC therapy and provide a summary of clinical trials of MSCs in the treatment of OA. Given current knowledge, it is too early to draw conclusions on the ultimate effectiveness of intra-articular application of MSCs in terms of regenerative effects. Further radiological and histological data will be needed, with a larger pool of patients, before this question can be answered.

  10. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  11. Metastatic castration-resistant prostate cancer: a current view on drug therapy and alternative tumor cell regulation

    Directory of Open Access Journals (Sweden)

    R. A. Gafanov

    2018-01-01

    Full Text Available Prostate cancer (PC is one of the most common causes of death from malignant neoplasms in men in many countries around the world. Transmission of the signal in the androgenic axis of regulation is crucial for the development and progression of PC. Despite the constant dependence on androgen receptor signals in castration resistance, the use of new anti-androgenic drugs invariably leads to the stability  of the ongoing treatment. The interaction of androgen receptor and alternative (phosphoinositide-3-kinases, PI3K pathways in the regulation of cells can be one of the mechanisms of resistance to treatment. In this article, we describe current treatments for metastatic castration-resistant PC and the possible role of the PI3K pathway in the pathogenesis and progression of PC.

  12. Activation of H2O2-induced VSOR Cl- currents in HTC cells require phospholipase Cgamma1 phosphorylation and Ca2+ mobilisation

    DEFF Research Database (Denmark)

    Varela, Diego; Simon, Felipe; Olivero, Pablo

    2007-01-01

    )R) blocker 2-APB. In line with these results, manoeuvres that prevented PLCgamma1 activation and/or [Ca(2+)](i) rise, abolished H(2)O(2)-induced VSOR Cl(-) currents. Furthermore, in cells that overexpress a phosphorylation-defective dominant mutant of PLCgamma1, H(2)O(2) did not induce activation......Volume-sensitive outwardly rectifying (VSOR) Cl(-) channels participate in several physiological processes such as regulatory volume decrease, cell cycle regulation, proliferation and apoptosis. Recent evidence points to a significant role of hydrogen peroxide (H(2)O(2)) in VSOR Cl(-) channel...... activation. The aim of this study was to determine the signalling pathways responsible for H(2)O(2)-induced VSOR Cl(-) channel activation. In rat hepatoma (HTC) cells, H(2)O(2) elicited a transient increase in tyrosine phosphorylation of phospholipase Cgamma1 (PLCgamma1) that was blocked by PP2, a Src...

  13. Large wood influence on stream metabolism at a reach-scale in the Assabet River, Massachusetts

    Science.gov (United States)

    David, G. C. L.; Snyder, N. P.; Rosario, G. M.

    2016-12-01

    Total stream metabolism (TSM) represents the transfer of carbon through a channel by both primary production and respiration, and thus represents the movement of energy through a watershed. Large wood (LW) creates geomorphically complex channels by diverting flows, altering shear stresses on the channel bed and banks, and pool development. The increase in habitat complexity around LW is expected to increase TSM, but this change has not been directly measured. In this study, we measured changes in TSM around a LW jam in a Massachusetts river. Dissolved oxygen (DO) time series data are used to quantify gross primary production (GPP), ecosystem respiration (ER), which equal TSM when summed. Two primary objectives of this study are to (1) assess changes in TSM around LW and (2) compare empirical methods of deriving TSM to Grace et al.'s (2015) BASE model. We hypothesized that LW would increase TSM by providing larger pools, increasing coverage for fish and macroinvertebrates, increasing organic matter accumulation, and providing a place for primary producers to anchor and grow. The Assabet River is a 78 km2 drainage basin in central Massachusetts that provides public water supply to 7 towns. A change in TSM over a reach-scale was assessed using two YSI 6-Series Multiparameter Water Quality sondes over a 140 m long pool-riffle open meadow section. The reach included 6 pools and one LW jam. Every two weeks from July to November 2015, the sondes were moved to different pools. The sondes collected DO, temperature, depth, pH, salinity, light intensity, and turbidity at 15-minute intervals. Velocity (V) and discharge (Q) were measured weekly around the sondes and at established cross sections. Instantaneous V and Q were calculated for each sonde by modeling flows in HEC-RAS. Overall, TSM was heavily influenced by the pool size and indirectly to the LW jam which was associated with the largest pool. The largest error in TSM calculations is related to the empirically

  14. Haematopoietic stem cell transplantation as first-line treatment in myeloma: a global perspective of current concepts and future possibilities

    Directory of Open Access Journals (Sweden)

    Catriona Elizabeth Mactier

    2012-10-01

    Full Text Available Stem cell transplantation forms an integral part of the treatment for multiple myeloma. This paper reviews the current role of transplantation and the progress that has been made in order to optimize the success of this therapy. Effective induction chemotherapy is important and a combination regimen incorporating the novel agent bortezomib is now favorable. Adequate induction is a crucial adjunct to stem cell transplantation and in some cases may potentially postpone the need for transplant. Different conditioning agents prior to transplantation have been explored: high-dose melphalan is most commonly used and bortezomib is a promising additional agent. There is no well-defined superior transplantation protocol but single or tandem autologous stem cell transplantations are those most commonly used, with allogeneic transplantation only used in clinical trials. The appropriate timing of transplantation in the treatment plan is a matter of debate. Consolidation and maintenance chemotherapies, particularly thalidomide and bortezomib, aim to improve and prolong disease response to transplantation and delay recurrence. Prognostic factors for the outcome of stem cell transplant in myeloma have been highlighted. Despite good responses to chemotherapy and transplantation, the problem of disease recurrence persists. Thus, there is still much room for improvement. Treatments which harness the graft-versus-myeloma effect may offer a potential cure for this disease. Trials of novel agents are underway, including targeted therapies for specific antigens such as vaccines and monoclonal antibodies.

  15. Simulation of mechano-electrical transduction in the cochlea considering basilar membrane vibration and the ionic current of the inner hair cells

    Science.gov (United States)

    Lee, Sinyoung; Koike, Takuji

    2018-05-01

    The inner hair cells (IHCs) in the cochlea transduce mechanical vibration of the basilar membrane (BM), caused by sound pressure, to electrical signals that are transported along the acoustic nerve to the brain. The mechanical vibration of the BM and the ionic behaviors of the IHCs have been investigated. However, consideration of the ionic behavior of the IHCs related to mechanical vibration is necessary to investigate the mechano-electrical transduction of the cochlea. In this study, a finite-element model of the BM, which takes into account the non-linear activities of the outer hair cells (OHCs), and an ionic current model of IHC were combined. The amplitudes and phases of the vibration at several points on the BM were obtained from the finite-element model by applying sound pressure. These values were fed into the ionic current model, and changes in membrane potential and calcium ion concentration of the IHCs were calculated. The membrane potential of the IHC at the maximum amplitude point (CF point) was higher than that at the non-CF points. The calcium ion concentration at the CF point was also higher than that at the non-CF points. These results suggest that the cochlea achieves its good frequency discrimination ability through mechano-electrical transduction.

  16. Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells.

    Directory of Open Access Journals (Sweden)

    Tobias Eckrich

    Full Text Available Inner hair cells (IHCs, the primary sensory receptors of the mammalian cochlea, fire spontaneous Ca(2+ action potentials before the onset of hearing. Although this firing activity is mainly sustained by a depolarizing L-type (Ca(V1.3 Ca(2+ current (I(Ca, IHCs also transiently express a large Na(+ current (I(Na. We aimed to investigate the specific contribution of I(Na to the action potentials, the nature of the channels carrying the current and whether the biophysical properties of I(Na differ between low- and high-frequency IHCs. We show that I(Na is highly temperature-dependent and activates at around -60 mV, close to the action potential threshold. Its size was larger in apical than in basal IHCs and between 5% and 20% should be available at around the resting membrane potential (-55 mV/-60 mV. However, in vivo the availability of I(Na could potentially increase to >60% during inhibitory postsynaptic potential activity, which transiently hyperpolarize IHCs down to as far as -70 mV. When IHCs were held at -60 mV and I(Na elicited using a simulated action potential as a voltage command, we found that I(Na contributed to the subthreshold depolarization and upstroke of an action potential. We also found that I(Na is likely to be carried by the TTX-sensitive channel subunits Na(V1.1 and Na(V1.6 in both apical and basal IHCs. The results provide insight into how the biophysical properties of I(Na in mammalian cochlear IHCs could contribute to the spontaneous physiological activity during cochlear maturation in vivo.

  17. Effects of new-generation TMEM16A inhibitors on calcium-activated chloride currents in rabbit urethral interstitial cells of Cajal.

    Science.gov (United States)

    Fedigan, Stephen; Bradley, Eamonn; Webb, Timothy; Large, Roddy J; Hollywood, Mark A; Thornbury, Keith D; McHale, Noel G; Sergeant, Gerard P

    2017-11-01

    Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit Ca 2+ -activated Cl - currents (I ClCa ) that are important for the development of urethral tone. Here, we examined if TMEM16A (ANO1) contributed to this activity by examining the effect of "new-generation" TMEM16A inhibitors, CACC inh -A01 and T16A inh -A01, on I ClCa recorded from freshly isolated rabbit urethral ICC (RUICC) and on contractions of intact strips of rabbit urethra smooth muscle. Real-time quantitative PCR experiments demonstrated that TMEM16A was highly expressed in rabbit urethra smooth muscle, in comparison to TMEM16B and TMEM16F. Single-cell RT-PCR experiments revealed that only TMEM16A was expressed in freshly isolated RUICC. Depolarization-evoked I ClCa in isolated RUICC, recorded using voltage clamp, were inhibited by CACC inh -A01 and T16A inh -A01 with IC 50 values of 1.2 and 3.4 μM, respectively. Similarly, spontaneous transient inward currents (STICs) recorded from RUICC voltage clamped at -60 mV and spontaneous transient depolarizations (STDs), recorded in current clamp, were also inhibited by CACC inh -A01 and T16A inh -A01. In contrast, spontaneous Ca 2+ waves in isolated RUICC were only partially reduced by CACC inh -A01 and T16A inh -A01. Finally, neurogenic contractions of strips of rabbit urethra smooth muscle (RUSM), evoked by electric field stimulation (EFS), were also significantly reduced by CACC inh -A01 and T16A inh -A01. These data are consistent with the idea that TMEM16A is involved with CACCs in RUICC and in contraction of rabbit urethral smooth muscle.

  18. Dendritic cell-tumor cell hybrids and immunotherapy

    DEFF Research Database (Denmark)

    Cathelin, Dominique; Nicolas, Alexandra; Bouchot, André

    2011-01-01

    Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation...

  19. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line.

    Science.gov (United States)

    Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham

    2016-01-01

    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.

  20. A Start-up Calibration Method for Generic Current-Steering D/A Converters with Optimal Area Solution

    NARCIS (Netherlands)

    Radulov, G.I.; Quinn, P.J.; Hegt, J.A.; Roermund, van A.H.M.

    2005-01-01

    This paper presents a new start-up calibration method for current-steering D/A converters, based on a 1-bit ADC. The paper proposes a new current cell that allows calibration of non-identical current sources by way of a shared calibration apparatus. The current cell uses parallel selfcalibrated unit