WorldWideScience

Sample records for somatic mutation analysis

  1. RADIA: RNA and DNA integrated analysis for somatic mutation detection.

    Directory of Open Access Journals (Sweden)

    Amie J Radenbaugh

    Full Text Available The detection of somatic single nucleotide variants is a crucial component to the characterization of the cancer genome. Mutation calling algorithms thus far have focused on comparing the normal and tumor genomes from the same individual. In recent years, it has become routine for projects like The Cancer Genome Atlas (TCGA to also sequence the tumor RNA. Here we present RADIA (RNA and DNA Integrated Analysis, a novel computational method combining the patient-matched normal and tumor DNA with the tumor RNA to detect somatic mutations. The inclusion of the RNA increases the power to detect somatic mutations, especially at low DNA allelic frequencies. By integrating an individual's DNA and RNA, we are able to detect mutations that would otherwise be missed by traditional algorithms that examine only the DNA. We demonstrate high sensitivity (84% and very high precision (98% and 99% for RADIA in patient data from endometrial carcinoma and lung adenocarcinoma from TCGA. Mutations with both high DNA and RNA read support have the highest validation rate of over 99%. We also introduce a simulation package that spikes in artificial mutations to patient data, rather than simulating sequencing data from a reference genome. We evaluate sensitivity on the simulation data and demonstrate our ability to rescue back mutations at low DNA allelic frequencies by including the RNA. Finally, we highlight mutations in important cancer genes that were rescued due to the incorporation of the RNA.

  2. Detection of somatic mutations by high-resolution DNA melting (HRM) analysis in multiple cancers.

    Science.gov (United States)

    Gonzalez-Bosquet, Jesus; Calcei, Jacob; Wei, Jun S; Garcia-Closas, Montserrat; Sherman, Mark E; Hewitt, Stephen; Vockley, Joseph; Lissowska, Jolanta; Yang, Hannah P; Khan, Javed; Chanock, Stephen

    2011-01-17

    Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM) curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each). HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  3. Detection of somatic mutations by high-resolution DNA melting (HRM analysis in multiple cancers.

    Directory of Open Access Journals (Sweden)

    Jesus Gonzalez-Bosquet

    Full Text Available Identification of somatic mutations in cancer is a major goal for understanding and monitoring the events related to cancer initiation and progression. High resolution melting (HRM curve analysis represents a fast, post-PCR high-throughput method for scanning somatic sequence alterations in target genes. The aim of this study was to assess the sensitivity and specificity of HRM analysis for tumor mutation screening in a range of tumor samples, which included 216 frozen pediatric small rounded blue-cell tumors as well as 180 paraffin-embedded tumors from breast, endometrial and ovarian cancers (60 of each. HRM analysis was performed in exons of the following candidate genes known to harbor established commonly observed mutations: PIK3CA, ERBB2, KRAS, TP53, EGFR, BRAF, GATA3, and FGFR3. Bi-directional sequencing analysis was used to determine the accuracy of the HRM analysis. For the 39 mutations observed in frozen samples, the sensitivity and specificity of HRM analysis were 97% and 87%, respectively. There were 67 mutation/variants in the paraffin-embedded samples, and the sensitivity and specificity for the HRM analysis were 88% and 80%, respectively. Paraffin-embedded samples require higher quantity of purified DNA for high performance. In summary, HRM analysis is a promising moderate-throughput screening test for mutations among known candidate genomic regions. Although the overall accuracy appears to be better in frozen specimens, somatic alterations were detected in DNA extracted from paraffin-embedded samples.

  4. Identification of somatic mutations in cancer through Bayesian-based analysis of sequenced genome pairs.

    Science.gov (United States)

    Christoforides, Alexis; Carpten, John D; Weiss, Glen J; Demeure, Michael J; Von Hoff, Daniel D; Craig, David W

    2013-05-04

    The field of cancer genomics has rapidly adopted next-generation sequencing (NGS) in order to study and characterize malignant tumors with unprecedented resolution. In particular for cancer, one is often trying to identify somatic mutations--changes specific to a tumor and not within an individual's germline. However, false positive and false negative detections often result from lack of sufficient variant evidence, contamination of the biopsy by stromal tissue, sequencing errors, and the erroneous classification of germline variation as tumor-specific. We have developed a generalized Bayesian analysis framework for matched tumor/normal samples with the purpose of identifying tumor-specific alterations such as single nucleotide mutations, small insertions/deletions, and structural variation. We describe our methodology, and discuss its application to other types of paired-tissue analysis such as the detection of loss of heterozygosity as well as allelic imbalance. We also demonstrate the high level of sensitivity and specificity in discovering simulated somatic mutations, for various combinations of a) genomic coverage and b) emulated heterogeneity. We present a Java-based implementation of our methods named Seurat, which is made available for free academic use. We have demonstrated and reported on the discovery of different types of somatic change by applying Seurat to an experimentally-derived cancer dataset using our methods; and have discussed considerations and practices regarding the accurate detection of somatic events in cancer genomes. Seurat is available at https://sites.google.com/site/seuratsomatic.

  5. Somatic mutation analysis of MYH11 in breast and prostate cancer

    International Nuclear Information System (INIS)

    Alhopuro, Pia; Karhu, Auli; Winqvist, Robert; Waltering, Kati; Visakorpi, Tapio; Aaltonen, Lauri A

    2008-01-01

    MYH11 (also known as SMMHC) encodes the smooth-muscle myosin heavy chain, which has a key role in smooth muscle contraction. Inversion at the MYH11 locus is one of the most frequent chromosomal aberrations found in acute myeloid leukemia. We have previously shown that MYH11 mutations occur in human colorectal cancer, and may also be associated with Peutz-Jeghers syndrome. The mutations found in human intestinal neoplasia result in unregulated proteins with constitutive motor activity, similar to the mutant myh11 underlying the zebrafish meltdown phenotype characterized by disrupted intestinal architecture. Recently, MYH1 and MYH9 have been identified as candidate breast cancer genes in a systematic analysis of the breast cancer genome. The aim of this study was to investigate the role of somatic MYH11 mutations in two common tumor types; breast and prostate cancers. A total of 155 breast cancer and 71 prostate cancer samples were analyzed for those regions in MYH11 (altogether 8 exons out of 42 coding exons) that harboured mutations in colorectal cancer in our previous study. In breast cancer samples only germline alterations were observed. One prostate cancer sample harbored a frameshift mutation c.5798delC, which we have previously shown to result in a protein with unregulated motor activity. Little evidence for a role of somatic MYH11 mutations in the formation of breast or prostate cancers was obtained in this study

  6. Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data.

    Science.gov (United States)

    Haricharan, Svasti; Bainbridge, Matthew N; Scheet, Paul; Brown, Powel H

    2014-07-01

    Breast cancer is one of the most commonly diagnosed cancers in women. While there are several effective therapies for breast cancer and important single gene prognostic/predictive markers, more than 40,000 women die from this disease every year. The increasing availability of large-scale genomic datasets provides opportunities for identifying factors that influence breast cancer survival in smaller, well-defined subsets. The purpose of this study was to investigate the genomic landscape of various breast cancer subtypes and its potential associations with clinical outcomes. We used statistical analysis of sequence data generated by the Cancer Genome Atlas initiative including somatic mutation load (SML) analysis, Kaplan-Meier survival curves, gene mutational frequency, and mutational enrichment evaluation to study the genomic landscape of breast cancer. We show that ER(+), but not ER(-), tumors with high SML associate with poor overall survival (HR = 2.02). Further, these high mutation load tumors are enriched for coincident mutations in both DNA damage repair and ER signature genes. While it is known that somatic mutations in specific genes affect breast cancer survival, this study is the first to identify that SML may constitute an important global signature for a subset of ER(+) tumors prone to high mortality. Moreover, although somatic mutations in individual DNA damage genes affect clinical outcome, our results indicate that coincident mutations in DNA damage response and signature ER genes may prove more informative for ER(+) breast cancer survival. Next generation sequencing may prove an essential tool for identifying pathways underlying poor outcomes and for tailoring therapeutic strategies.

  7. Pitfalls of improperly procured adjacent non-neoplastic tissue for somatic mutation analysis using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Lei Wei

    2016-10-01

    Full Text Available Abstract Background The rapid adoption of next-generation sequencing provides an efficient system for detecting somatic alterations in neoplasms. The detection of such alterations requires a matched non-neoplastic sample for adequate filtering of non-somatic events such as germline polymorphisms. Non-neoplastic tissue adjacent to the excised neoplasm is often used for this purpose as it is simultaneously collected and generally contains the same tissue type as the neoplasm. Following NGS analysis, we and others have frequently observed low-level somatic mutations in these non-neoplastic tissues, which may impose additional challenges to somatic mutation detection as it complicates germline variant filtering. Methods We hypothesized that the low-level somatic mutation observed in non-neoplastic tissues may be entirely or partially caused by inadvertent contamination by neoplastic cells during the surgical pathology gross assessment or tissue procurement process. To test this hypothesis, we applied a systematic protocol designed to collect multiple grossly non-neoplastic tissues using different methods surrounding each single neoplasm. The procedure was applied in two breast cancer lumpectomy specimens. In each case, all samples were first sequenced by whole-exome sequencing to identify somatic mutations in the neoplasm and determine their presence in the adjacent non-neoplastic tissues. We then generated ultra-deep coverage using targeted sequencing to assess the levels of contamination in non-neoplastic tissue samples collected under different conditions. Results Contamination levels in non-neoplastic tissues ranged up to 3.5 and 20.9 % respectively in the two cases tested, with consistent pattern correlated with the manner of grossing and procurement. By carefully controlling the conditions of various steps during this process, we were able to eliminate any detectable contamination in both patients. Conclusion The results demonstrated that the

  8. Somatic mutations in breast and serous ovarian cancer young patients : a systematic review and meta-analysis

    NARCIS (Netherlands)

    Encinas, Giselly; Maistro, Simone; Pasini, Fatima Solange; Hirata Katayama, Maria Lucia; Brentani, Maria Mitzi; de Bock, Geertruida Hendrika; Azevedo Koike Folgueira, Maria Aparecida

    2015-01-01

    Objective: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC) or serous ovarian cancer (SOC). Methods: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of

  9. Somatic mutations in breast and serous ovarian cancer young patients: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Giselly Encinas

    2015-10-01

    Full Text Available Summary Objective: our aim was to evaluate whether somatic mutations in five genes were associated with an early age at presentation of breast cancer (BC or serous ovarian cancer (SOC. Methods: COSMIC database was searched for the five most frequent somatic mutations in BC and SOC. A systematic review of PubMed was performed. Young age for BC and SOC patients was set at ≤35 and ≤40 years, respectively. Age groups were also classified in <30years and every 10 years thereafter. Results: twenty six (1,980 patients, 111 younger and 16 studies (598, 41 younger, were analyzed for BC and SOC, respectively. In BC, PIK3CA wild type tumor was associated with early onset, not confirmed in binary regression with estrogen receptor (ER status. In HER2-negative tumors, there was increased frequency of PIK3CA somatic mutation in older age groups; in ER-positive tumors, there was a trend towards an increased frequency of PIK3CA somatic mutation in older age groups. TP53 somatic mutation was described in 20% of tumors from both younger and older patients; PTEN, CDH1 and GATA3 somatic mutation was investigated only in 16 patients and PTEN mutation was detected in one of them. In SOC, TP53 somatic mutation was rather common, detected in more than 50% of tumors, however, more frequently in older patients. Conclusion: frequency of somatic mutations in specific genes was not associated with early-onset breast cancer. Although very common in patients with serous ovarian cancer diagnosed at all ages, TP53 mutation was more frequently detected in older women.

  10. Somatic mutations in histiocytic sarcoma identified by next generation sequencing.

    Science.gov (United States)

    Liu, Qingqing; Tomaszewicz, Keith; Hutchinson, Lloyd; Hornick, Jason L; Woda, Bruce; Yu, Hongbo

    2016-08-01

    Histiocytic sarcoma is a rare malignant neoplasm of presumed hematopoietic origin showing morphologic and immunophenotypic evidence of histiocytic differentiation. Somatic mutation importance in the pathogenesis or disease progression of histiocytic sarcoma was largely unknown. To identify somatic mutations in histiocytic sarcoma, we studied 5 histiocytic sarcomas [3 female and 2 male patients; mean age 54.8 (20-72), anatomic sites include lymph node, uterus, and pleura] and matched normal tissues from each patient as germ line controls. Somatic mutations in 50 "Hotspot" oncogenes and tumor suppressor genes were examined using next generation sequencing. Three (out of five) histiocytic sarcoma cases carried somatic mutations in BRAF. Among them, G464V [variant frequency (VF) of 43.6 %] and G466R (VF of 29.6 %) located at the P loop potentially interfere with the hydrophobic interaction between P and activating loops and ultimately activation of BRAF. Also detected was BRAF somatic mutation N581S (VF of 7.4 %), which was located at the catalytic loop of BRAF kinase domain: its role in modifying kinase activity was unclear. A similar mutational analysis was also performed on nine acute monocytic/monoblastic leukemia cases, which did not identify any BRAF somatic mutations. Our study detected several BRAF mutations in histiocytic sarcomas, which may be important in understanding the tumorigenesis of this rare neoplasm and providing mechanisms for potential therapeutical opportunities.

  11. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  12. Somatic mitochondrial DNA mutations in cancer escape purifying selection and high pathogenicity mutations lead to the oncocytic phenotype: pathogenicity analysis of reported somatic mtDNA mutations in tumors

    International Nuclear Information System (INIS)

    Pereira, Luísa; Soares, Pedro; Máximo, Valdemar; Samuels, David C

    2012-01-01

    The presence of somatic mitochondrial DNA (mtDNA) mutations in cancer cells has been interpreted in controversial ways, ranging from random neutral accumulation of mutations, to positive selection for high pathogenicity, or conversely to purifying selection against high pathogenicity variants as occurs at the population level. Here we evaluated the predicted pathogenicity of somatic mtDNA mutations described in cancer and compare these to the distribution of variations observed in the global human population and all possible protein variations that could occur in human mtDNA. We focus on oncocytic tumors, which are clearly associated with mitochondrial dysfunction. The protein variant pathogenicity was predicted using two computational methods, MutPred and SNPs&GO. The pathogenicity score of the somatic mtDNA variants were significantly higher in oncocytic tumors compared to non-oncocytic tumors. Variations in subunits of Complex I of the electron transfer chain were significantly more common in tumors with the oncocytic phenotype, while variations in Complex V subunits were significantly more common in non-oncocytic tumors. Our results show that the somatic mtDNA mutations reported over all tumors are indistinguishable from a random selection from the set of all possible amino acid variations, and have therefore escaped the effects of purifying selection that act strongly at the population level. We show that the pathogenicity of somatic mtDNA mutations is a determining factor for the oncocytic phenotype. The opposite associations of the Complex I and Complex V variants with the oncocytic and non-oncocytic tumors implies that low mitochondrial membrane potential may play an important role in determining the oncocytic phenotype

  13. POLE somatic mutations in advanced colorectal cancer.

    Science.gov (United States)

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  14. Analysis of genotoxic activity of ketamine and rocuronium bromide using the somatic mutation and recombination test in Drosophila melanogaster.

    Science.gov (United States)

    Koksal, Pakize Muge; Gürbüzel, Mehmet

    2015-03-01

    The present study evaluated the mutagenic and recombinogenic effects of two commonly used anesthetic agents, ketamine and rocuronium bromide, in medicine using the wing somatic mutation and recombination test (SMART) in Drosophila. The standard (ST) cross and the high-bioactivation (HB) cross with high sensitivity to procarcinogens and promutagens were used. The SMART test is based on the loss of heterozygosity, which occurs via various mechanisms, such as chromosome loss and deletion, half-translocation, mitotic recombination, mutation, and non-disjunction. Genetic alterations occurring in the somatic cells of the wing's imaginal discs result in mutant clones in the wing blade. Three-day-old trans-heterozygous larvae with two recessive markers, multiple wing hairs (mwh) and flare (flr(3)), were treated with ketamine and rocuronium bromide. Analysis of the ST cross indicated that ketamine exhibited genotoxicity activity and that this activity was particularly dependent on homologous mitotic recombination at concentrations of 250 μg/ml and above. Rocuronium bromide did not exert mutagenic and/or recombinogenic effects. In the HB cross, ketamine at a concentration of 1000 μg/ml and rocuronium bromide at all concentrations, with the exception of 250 μg/ml (inconclusive), exerted genotoxic effects, which could also be associated with the increase in mitotic recombination. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    Science.gov (United States)

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Rapid targeted somatic mutation analysis of solid tumors in routine clinical diagnostics.

    Science.gov (United States)

    Magliacane, Gilda; Grassini, Greta; Bartocci, Paola; Francaviglia, Ilaria; Dal Cin, Elena; Barbieri, Gianluca; Arrigoni, Gianluigi; Pecciarini, Lorenza; Doglioni, Claudio; Cangi, Maria Giulia

    2015-10-13

    Tumor genotyping is an essential step in routine clinical practice and pathology laboratories face a major challenge in being able to provide rapid, sensitive and updated molecular tests. We developed a novel mass spectrometry multiplexed genotyping platform named PentaPanel to concurrently assess single nucleotide polymorphisms in 56 hotspots of the 5 most clinically relevant cancer genes, KRAS, NRAS, BRAF, EGFR and PIK3CA for a total of 221 detectable mutations. To both evaluate and validate the PentaPanel performance, we investigated 1025 tumor specimens of 6 different cancer types (carcinomas of colon, lung, breast, pancreas, and biliary tract, and melanomas), systematically addressing sensitivity, specificity, and reproducibility of our platform. Sanger sequencing was also performed for all the study samples. Our data showed that PentaPanel is a high throughput and robust tool, allowing genotyping for targeted therapy selection of 10 patients in the same run, with a practical turnaround time of 2 working days. Importantly, it was successfully used to interrogate different DNAs isolated from routinely processed specimens (formalin-fixed paraffin embedded, frozen, and cytological samples), covering all the requirements of clinical tests. In conclusion, the PentaPanel platform can provide an immediate, accurate and cost effective multiplex approach for clinically relevant gene mutation analysis in many solid tumors and its utility across many diseases can be particularly relevant in multiple clinical trials, including the new basket trial approach, aiming to identify appropriate targeted drug combination strategies.

  17. Mutation, somatic mutation and diseases of man

    International Nuclear Information System (INIS)

    Burnet, F.M.

    1976-01-01

    The relevance of the intrinsic mutagenesis for the evolution process, genetic diseases and the process of aging is exemplified. The fundamental reaction is the function of the DNA and the DNA-enzymes like the DNA-polymerases in replication, repair, and transcription. These defects are responsible for the mutation frequency and the genetic drift in the evolution process. They cause genetic diseases like Xeroderma pigmentosum which is described here in detail. The accumulation of structural and functional mistakes leads to diseases of old age, for example to autoimmune diseases and immune suppression. There is a proportionality between the duration of life and the frequency of mistakes in the enzymatic repair system. No possibility of prophylaxis or therapy is seen. Methods for prognosis could be developed. (AJ) [de

  18. Germinal and somatic mutations in cancer

    International Nuclear Information System (INIS)

    Knudson, A.G. Jr.

    1977-01-01

    The role of germinal and somatic mutations in carcinogenesis leads to the conclusion that environmental carcinogens probably exert their effects via somatic mutations. Susceptibility to this process may itself be genetically determined, so we may deduce that two groups, one genetic and one non-genetic, are included in the 'environmental' class. Other individuals seem to acquire cancer even in the absence of such environmental agents, and these too may be classified into a genetic and a non-genetic group. It has been estimated that in industrial countries, the environmental groups include 70-80% of all cancer cases, but we are only beginning to know how to separate the genetic and non-genetic subgroups. The genetic subgroup of the 'non-environmental' group is very small, probably of the order of magnitude of 1-2% for cancer as a whole. The remainder, about 25%, comprises a non-genetic, non-environmental subgroup that seems to arise as a consequence of 'spontaneous' somatic mutations. The incidence of these 'background' cancers is what we should combat with preventive and therapeutic measures

  19. Somatic mutations affect key pathways in lung adenocarcinoma

    Science.gov (United States)

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  20. Somatic mutation profiles of MSI and MSS colorectal cancer identified by whole exome next generation sequencing and bioinformatics analysis.

    Directory of Open Access Journals (Sweden)

    Bernd Timmermann

    Full Text Available BACKGROUND: Colorectal cancer (CRC is with approximately 1 million cases the third most common cancer worldwide. Extensive research is ongoing to decipher the underlying genetic patterns with the hope to improve early cancer diagnosis and treatment. In this direction, the recent progress in next generation sequencing technologies has revolutionized the field of cancer genomics. However, one caveat of these studies remains the large amount of genetic variations identified and their interpretation. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the first work on whole exome NGS of primary colon cancers. We performed 454 whole exome pyrosequencing of tumor as well as adjacent not affected normal colonic tissue from microsatellite stable (MSS and microsatellite instable (MSI colon cancer patients and identified more than 50,000 small nucleotide variations for each tissue. According to predictions based on MSS and MSI pathomechanisms we identified eight times more somatic non-synonymous variations in MSI cancers than in MSS and we were able to reproduce the result in four additional CRCs. Our bioinformatics filtering approach narrowed down the rate of most significant mutations to 359 for MSI and 45 for MSS CRCs with predicted altered protein functions. In both CRCs, MSI and MSS, we found somatic mutations in the intracellular kinase domain of bone morphogenetic protein receptor 1A, BMPR1A, a gene where so far germline mutations are associated with juvenile polyposis syndrome, and show that the mutations functionally impair the protein function. CONCLUSIONS/SIGNIFICANCE: We conclude that with deep sequencing of tumor exomes one may be able to predict the microsatellite status of CRC and in addition identify potentially clinically relevant mutations.

  1. Gamma ray induced somatic mutations in rose

    International Nuclear Information System (INIS)

    Datta, S.K.

    1989-01-01

    Budwood of 32 rose cultivars (Rosa spp.) was exposed to 3-4 krad of gamma rays and eyes were grafted on Rosa indica var. odorata root stock. Radiosensitivity with respect to sprouting, survival and plant height, and mutation frequency varied with the cultivar and dose of gamma rays. Somatic mutations in flower colour/shape were detected as chimera in 21 cultivars. The size of the mutant sector varied from a narrow streak on a petal to a whole flower and from a portion of a branch to an entire branch. 14 mutants were detected in M 1 V 1 , four in M 1 V 2 and three in M 1 V 3 . Maximum number of mutations was detected following 3 krad treatment. Eyes from mutant branches were grafted again on root stock and non-chimeric mutants were aimed at by vegetative propagation. Mutants from 11 cultivars only could be isolated in pure form. Isolation of non-chimeric mutants sometimes is difficult due to weak growth of a mutant branch. In such a case, all normal looking branches are removed to force a better growth of the mutant branch. It is advisable to maintain irradiated plants at least for four years with drastic pruning in each year. Nine mutants viz. 'Sharada', 'Sukumari', 'Tangerine Contempo', 'Yellow Contempo', 'Pink Contempo', 'Striped Contempo', 'Twinkle', 'Curio' and 'Light Pink Prize' have already been released as new cultivars for commercialization [ref. MBNL No. 23 and 31] and others are being multiplied and assessed. The mutation spectrum appears to be wider for the cultivars 'Contempo' and 'Imperator'. Pigment composition of the original variety is relevant for the kind of flower colour mutations that can be induced

  2. Analysis of relation between the mutation frequencies and somatic recombination induced by neutrons and the age of D. Melanogaster larvae

    International Nuclear Information System (INIS)

    Guzman R, J.; Zambrano A, F.; Paredes G, L.; Delfin L, A.; Quiroz R, C.

    1998-01-01

    Neutrons are subatomic particles with neutral electric charge, equal zero, which are emitted during the fissile material fission in nuclear reactors. It is known a little about biological effects induced by neutrons. There is a world interest in the use of reactors and accelerators for patients radiotherapy using neutrons with the purpose to destroy malignant cells of deep tumours where traditional methods have not given satisfactory results. There for it is required to do wide studies of biological effects of neutrons as well as their dosimetry. It was used the Smart test (Somatic Mutation and Recombination Test) of D. Melanogaster for quantifying the mutation induction and somatic recombination induced by neutrons of the National Institute of Nuclear Research reactor, at power of 300 and 1000 k W, with equivalent doses calculated 95.14 and 190.2 Sv for 300 k W and of 25.64 and 51.29 Sv for 1000 k W, using larvae with 72 or 96 hours aged. It was observed a linear relation between equivalent dose and genetic effects frequency, these last were greater when the reactor power was 1000 k W than those 300 k W. It was observed too that the damage was greater in 96 hours larvae than those 72 hours. The stain size presented an inverse relation with respect to larvae age. It is concluded that the Smart system is sensitive to neutrons effect and it responds of a directly proportional form to radiation dose, as well as to dose rate. It is noted more the effect when are used larvas in pre pupa stage where the irradiation target (imagal cells) is greater. The Smart is sensitive to damage induced by neutrons , thus can be used to studying its direct biological effects or by the use of chemical modulators. (Author)

  3. Population-based statistical inference for temporal sequence of somatic mutations in cancer genomes.

    Science.gov (United States)

    Rhee, Je-Keun; Kim, Tae-Min

    2018-04-20

    It is well recognized that accumulation of somatic mutations in cancer genomes plays a role in carcinogenesis; however, the temporal sequence and evolutionary relationship of somatic mutations remain largely unknown. In this study, we built a population-based statistical framework to infer the temporal sequence of acquisition of somatic mutations. Using the model, we analyzed the mutation profiles of 1954 tumor specimens across eight tumor types. As a result, we identified tumor type-specific directed networks composed of 2-15 cancer-related genes (nodes) and their mutational orders (edges). The most common ancestors identified in pairwise comparison of somatic mutations were TP53 mutations in breast, head/neck, and lung cancers. The known relationship of KRAS to TP53 mutations in colorectal cancers was identified, as well as potential ancestors of TP53 mutation such as NOTCH1, EGFR, and PTEN mutations in head/neck, lung and endometrial cancers, respectively. We also identified apoptosis-related genes enriched with ancestor mutations in lung cancers and a relationship between APC hotspot mutations and TP53 mutations in colorectal cancers. While evolutionary analysis of cancers has focused on clonal versus subclonal mutations identified in individual genomes, our analysis aims to further discriminate ancestor versus descendant mutations in population-scale mutation profiles that may help select cancer drivers with clinical relevance.

  4. Progression inference for somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Leif E. Peterson

    2017-04-01

    Full Text Available Computational methods were employed to determine progression inference of genomic alterations in commonly occurring cancers. Using cross-sectional TCGA data, we computed evolutionary trajectories involving selectivity relationships among pairs of gene-specific genomic alterations such as somatic mutations, deletions, amplifications, downregulation, and upregulation among the top 20 driver genes associated with each cancer. Results indicate that the majority of hierarchies involved TP53, PIK3CA, ERBB2, APC, KRAS, EGFR, IDH1, VHL, etc. Research into the order and accumulation of genomic alterations among cancer driver genes will ever-increase as the costs of nextgen sequencing subside, and personalized/precision medicine incorporates whole-genome scans into the diagnosis and treatment of cancer. Keywords: Oncology, Cancer research, Genetics, Computational biology

  5. Induction and isolation of somatic mutations in vegetatively propagated plants

    International Nuclear Information System (INIS)

    Donini, B.

    1975-01-01

    Research carried out since 1963 concentrated on techniques of mutagenic treatment: problems of exposure, type of radiation (acute irradiation by x- and γ-rays, and chronic exposure in the gamma field), conditions during and after irradiation, mechanisms of mutation induction, and methodology of isolation of somatic mutations. Analyses of somatic mutations included studies on apple, pear, olive, peach, grape and cherry plants. Young trees, dormant and rooted scions, summer and floral buds or seeds were used

  6. A Site Specific Model And Analysis Of The Neutral Somatic Mutation Rate In Whole-Genome Cancer Data

    DEFF Research Database (Denmark)

    Bertl, Johanna; Guo, Qianyun; Rasmussen, Malene Juul

    2017-01-01

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation ra...

  7. Significance of somatic mutations and content alteration of mitochondrial DNA in esophageal cancer

    Directory of Open Access Journals (Sweden)

    Wang Yu-Fen

    2006-04-01

    Full Text Available Abstract Background The roles of mitochondria in energy metabolism, the generation of ROS, aging, and the initiation of apoptosis have implicated their importance in tumorigenesis. In this study we aim to establish the mutation spectrum and to understand the role of somatic mtDNA mutations in esophageal cancer. Methods The entire mitochondrial genome was screened for somatic mutations in 20 pairs (18 esophageal squamous cell carcinomas, one adenosquamous carcinoma and one adenocarcinoma of tumor/surrounding normal tissue of esophageal cancers, using temporal temperature gradient gel electrophoresis (TTGE, followed by direct DNA sequencing to identify the mutations. Results Fourteen somatic mtDNA mutations were identified in 55% (11/20 of tumors analyzed, including 2 novel missense mutations and a frameshift mutation in ND4L, ATP6 subunit, and ND4 genes respectively. Nine mutations (64% were in the D-loop region. Numerous germline variations were found, at least 10 of them were novel and five were missense mutations, some of them occurred in evolutionarily conserved domains. Using real-time quantitative PCR analysis, the mtDNA content was found to increase in some tumors and decrease in others. Analysis of molecular and other clinicopathological findings does not reveal significant correlation between somatic mtDNA mutations and mtDNA content, or between mtDNA content and metastatic status. Conclusion Our results demonstrate that somatic mtDNA mutations in esophageal cancers are frequent. Some missense and frameshift mutations may play an important role in the tumorigenesis of esophageal carcinoma. More extensive biochemical and molecular studies will be necessary to determine the pathological significance of these somatic mutations.

  8. Somatic point mutation calling in low cellularity tumors.

    Directory of Open Access Journals (Sweden)

    Karin S Kassahn

    Full Text Available Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/ for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.

  9. Gastrointestinal stromal tumors, somatic mutations and candidate genetic risk variants.

    Directory of Open Access Journals (Sweden)

    Katie M O'Brien

    Full Text Available Gastrointestinal stromal tumors (GISTs are rare but treatable soft tissue sarcomas. Nearly all GISTs have somatic mutations in either the KIT or PDGFRA gene, but there are no known inherited genetic risk factors. We assessed the relationship between KIT/PDGFRA mutations and select deletions or single nucleotide polymorphisms (SNPs in 279 participants from a clinical trial of adjuvant imatinib mesylate. Given previous evidence that certain susceptibility loci and carcinogens are associated with characteristic mutations, or "signatures" in other cancers, we hypothesized that the characteristic somatic mutations in the KIT and PDGFRA genes in GIST tumors may similarly be mutational signatures that are causally linked to specific mutagens or susceptibility loci. As previous epidemiologic studies suggest environmental risk factors such as dioxin and radiation exposure may be linked to sarcomas, we chose 208 variants in 39 candidate genes related to DNA repair and dioxin metabolism or response. We calculated adjusted odds ratios (ORs and 95% confidence intervals (CIs for the association between each variant and 7 categories of tumor mutation using logistic regression. We also evaluated gene-level effects using the sequence kernel association test (SKAT. Although none of the association p-values were statistically significant after adjustment for multiple comparisons, SNPs in CYP1B1 were strongly associated with KIT exon 11 codon 557-8 deletions (OR = 1.9, 95% CI: 1.3-2.9 for rs2855658 and OR = 1.8, 95% CI: 1.2-2.7 for rs1056836 and wild type GISTs (OR = 2.7, 95% CI: 1.5-4.8 for rs1800440 and OR = 0.5, 95% CI: 0.3-0.9 for rs1056836. CYP1B1 was also associated with these mutations categories in the SKAT analysis (p = 0.002 and p = 0.003, respectively. Other potential risk variants included GSTM1, RAD23B and ERCC2. This preliminary analysis of inherited genetic risk factors for GIST offers some clues about the disease's genetic

  10. IgV(H) and bcl6 somatic mutation analysis reveals the heterogeneity of cutaneous B-cell lymphoma, and indicates the presence of undisclosed local antigens.

    Science.gov (United States)

    Franco, Renato; Camacho, Francisca I; Fernández-Vázquez, Amalia; Algara, Patrocinio; Rodríguez-Peralto, José L; De Rosa, Gaetano; Piris, Miguel A

    2004-06-01

    Our understanding of the ontology of B-cell lymphomas (BCL) has been improved by the study of mutational status of IgV(H) and bcl6 genes, but only a few cases of cutaneous BCL have been examined for this status. We analyzed IgV(H) and bcl6 somatic mutations in 10 cutaneous BCL, classified as follicular (three primary and one secondary), primary marginal zone (two cases), and diffuse large BCL (three primary and one secondary). We observed a lower rate (IgV(H) mutation in all marginal zone lymphomas, and a preferential usage of V(H)2-70 (one primary follicular and two primary diffuse large BCL). Fewer than expected replacement mutations in framework regions (FR) were observed in three primary follicular lymphomas (FLs) and in all diffuse large BCL, indicating a negative antigen selection pressure. Ongoing mutations were observed in eight of 10 cases. Only two primary FLs and two diffuse large BCL showed bcl6 somatic mutation. These data support the heterogeneous nature of the different cutaneous BCL, and specifically the distinction between cutaneous follicular and marginal zone lymphomas. The biased usage of V(H)2-70, the low rate of replacement mutation in the FR, and the presence of ongoing mutation imply that local antigens could modulate the growth of primary cutaneous BCL.

  11. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events.

    Directory of Open Access Journals (Sweden)

    Angela N Brooks

    Full Text Available Although recurrent somatic mutations in the splicing factor U2AF1 (also known as U2AF35 have been identified in multiple cancer types, the effects of these mutations on the cancer transcriptome have yet to be fully elucidated. Here, we identified splicing alterations associated with U2AF1 mutations across distinct cancers using DNA and RNA sequencing data from The Cancer Genome Atlas (TCGA. Using RNA-Seq data from 182 lung adenocarcinomas and 167 acute myeloid leukemias (AML, in which U2AF1 is somatically mutated in 3-4% of cases, we identified 131 and 369 splicing alterations, respectively, that were significantly associated with U2AF1 mutation. Of these, 30 splicing alterations were statistically significant in both lung adenocarcinoma and AML, including three genes in the Cancer Gene Census, CTNNB1, CHCHD7, and PICALM. Cell line experiments expressing U2AF1 S34F in HeLa cells and in 293T cells provide further support that these altered splicing events are caused by U2AF1 mutation. Consistent with the function of U2AF1 in 3' splice site recognition, we found that S34F/Y mutations cause preferences for CAG over UAG 3' splice site sequences. This report demonstrates consistent effects of U2AF1 mutation on splicing in distinct cancer cell types.

  12. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.

    Science.gov (United States)

    Bertl, Johanna; Guo, Qianyun; Juul, Malene; Besenbacher, Søren; Nielsen, Morten Muhlig; Hornshøj, Henrik; Pedersen, Jakob Skou; Hobolth, Asger

    2018-04-19

    Detailed modelling of the neutral mutational process in cancer cells is crucial for identifying driver mutations and understanding the mutational mechanisms that act during cancer development. The neutral mutational process is very complex: whole-genome analyses have revealed that the mutation rate differs between cancer types, between patients and along the genome depending on the genetic and epigenetic context. Therefore, methods that predict the number of different types of mutations in regions or specific genomic elements must consider local genomic explanatory variables. A major drawback of most methods is the need to average the explanatory variables across the entire region or genomic element. This procedure is particularly problematic if the explanatory variable varies dramatically in the element under consideration. To take into account the fine scale of the explanatory variables, we model the probabilities of different types of mutations for each position in the genome by multinomial logistic regression. We analyse 505 cancer genomes from 14 different cancer types and compare the performance in predicting mutation rate for both regional based models and site-specific models. We show that for 1000 randomly selected genomic positions, the site-specific model predicts the mutation rate much better than regional based models. We use a forward selection procedure to identify the most important explanatory variables. The procedure identifies site-specific conservation (phyloP), replication timing, and expression level as the best predictors for the mutation rate. Finally, our model confirms and quantifies certain well-known mutational signatures. We find that our site-specific multinomial regression model outperforms the regional based models. The possibility of including genomic variables on different scales and patient specific variables makes it a versatile framework for studying different mutational mechanisms. Our model can serve as the neutral null model

  13. Novel somatic and germline mutations in intracranial germ cell tumours.

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C

    2014-07-10

    Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.

  14. Novel somatic and germline mutations in intracranial germ cell tumors

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  15. The somatic mutation landscape of premalignant colorectal adenoma.

    Science.gov (United States)

    Lin, Shu-Hong; Raju, Gottumukkala S; Huff, Chad; Ye, Yuanqing; Gu, Jian; Chen, Jiun-Sheng; Hildebrandt, Michelle A T; Liang, Han; Menter, David G; Morris, Jeffery; Hawk, Ernest; Stroehlein, John R; Futreal, Andrew; Kopetz, Scott; Mishra, Lopa; Wu, Xifeng

    2017-06-12

    There are few studies which characterised the molecular alterations in premalignant colorectal adenomas. Our major goal was to establish colorectal adenoma genome atlas and identify molecular markers of progression from colorectal adenoma to adenocarcinoma. Whole-exome sequencing and targeted sequencing were carried out in 149 adenoma samples and paired blood from patients with conventional adenoma or sessile serrated adenoma to characterise the somatic mutation landscape for premalignant colorectal lesions. The identified somatic mutations were compared with those in colorectal cancer (CRC) samples from The Cancer Genome Atlas. A supervised random forest model was employed to identify gene panels differentiating adenoma from CRC. Similar somatic mutation frequencies, but distinctive driver mutations, were observed in sessile serrated adenomas and conventional adenomas. The final model included 20 genes and was able to separate the somatic mutation profile of colorectal adenoma and adenocarcinoma with an area under the curve of 0.941. The findings of this project hold potential to better identify patients with adenoma who may be candidates for targeted surveillance programmes and preventive interventions to reduce the incidence of CRC. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2

    NARCIS (Netherlands)

    Nangalia, J.; Massie, C.E.; Baxter, E.J.; Nice, F.L.; Gundem, G.; Wedge, D.C.; Avezov, E.; Li, J.; Kollmann, K.; Kent, D.G.; Aziz, A.; Godfrey, A.L.; Hinton, J.; Martincorena, I.; Loo, P. Van; Jones, A.V.; Guglielmelli, P.; Tarpey, P.; Harding, H.P.; Fitzpatrick, J.D.; Goudie, C.T.; Ortmann, C.A.; Loughran, S.J.; Raine, K.; Jones, D.R.; Butler, A.P.; Teague, J.W.; O'Meara, S.; McLaren, S.; Bianchi, M.; Silber, Y.; Dimitropoulou, D.; Bloxham, D.; Mudie, L.; Maddison, M.; Robinson, B.; Keohane, C.; Maclean, C.; Hill, K.; Orchard, K.; Tauro, S.; Du, M.Q.; Greaves, M.; Bowen, D.; Huntly, B.J.; Harrison, C.N.; Cross, N.C.; Ron, D.; Vannucchi, A.M.; Papaemmanuil, E.; Campbell, P.J.; Green, A.R.

    2013-01-01

    BACKGROUND: Somatic mutations in the Janus kinase 2 gene (JAK2) occur in many myeloproliferative neoplasms, but the molecular pathogenesis of myeloproliferative neoplasms with nonmutated JAK2 is obscure, and the diagnosis of these neoplasms remains a challenge. METHODS: We performed exome sequencing

  17. Somatic activating ARAF mutations in Langerhans cell histiocytosis

    NARCIS (Netherlands)

    Nelson, David S.; Quispel, Willemijn; Badalian-Very, Gayane; van Halteren, Astrid G. S.; van den Bos, Cor; Bovée, Judith V. M. G.; Tian, Sara Y.; van Hummelen, Paul; Ducar, Matthew; MacConaill, Laura E.; Egeler, R. Maarten; Rollins, Barrett J.

    2014-01-01

    The extracellular signal-regulated kinase (ERK) signaling pathway is activated in Langerhans cell histiocytosis (LCH) histiocytes, but only 60% of cases carry somatic activating mutations of BRAF. To identify other genetic causes of ERK pathway activation, we performed whole exome sequencing on

  18. In vivo somatic mutation systems in the mouse

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    In an effort to meet the need for a fast and cheap in vivo prescreen for inherited mammalian point mutations, a somatic forward-mutation method, originally developed in an x-ray experiment, has more recently been tested in work with chemical mutagens. The method makes use of coat-color mutations because the gene product is usually locally expressed, mosaics can be detected with minimal effort, and opportunities for making comparison with induction of germinal point mutations are greatest.--Following treatment of embryos that are heterozygous at specific coat-color loci, various induced genetic changes can result in expression of the recessive (RS) in clones derived from mutant melanocyte precursor cells. However, other events, such as decrease in the number of precursor cells, or disturbed differentiation, can also result in spots, which with careful classification can usually be distinguished from RS's on the basis of their location and color. When this is done, the relative RS frequencies for a series of compounds at least roughly parallel the relative spermatogonial mutation rates. The fact that easily measurable (though low) RS rates are obtained with compounds that have yielded negative results in spermatogonial tests is not surprising in view of the fact that RS's can be caused by several mechanisms besides point mutation.--In spite of the parallelism observed in one laboratory, the usefulness of the in vivo somatic mutation method as a prescreen could come to be doubted because of major discrepancies between results of similar experiments at different laboratories. However, It appears probable that at least some of these discrepancies are due to failure to discriminate between spots that probably resulted from melanocyte insufficiency and spots that resulted from expression of the recessive.--Reverse somatic mutation systems can potentially avoid some of the pitfalls of forward mutation systems. Such system are still in developmental stages

  19. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  20. Somatic Mutations and Clonal Hematopoiesis in Aplastic Anemia.

    Science.gov (United States)

    Yoshizato, Tetsuichi; Dumitriu, Bogdan; Hosokawa, Kohei; Makishima, Hideki; Yoshida, Kenichi; Townsley, Danielle; Sato-Otsubo, Aiko; Sato, Yusuke; Liu, Delong; Suzuki, Hiromichi; Wu, Colin O; Shiraishi, Yuichi; Clemente, Michael J; Kataoka, Keisuke; Shiozawa, Yusuke; Okuno, Yusuke; Chiba, Kenichi; Tanaka, Hiroko; Nagata, Yasunobu; Katagiri, Takamasa; Kon, Ayana; Sanada, Masashi; Scheinberg, Phillip; Miyano, Satoru; Maciejewski, Jaroslaw P; Nakao, Shinji; Young, Neal S; Ogawa, Seishi

    2015-07-02

    In patients with acquired aplastic anemia, destruction of hematopoietic cells by the immune system leads to pancytopenia. Patients have a response to immunosuppressive therapy, but myelodysplastic syndromes and acute myeloid leukemia develop in about 15% of the patients, usually many months to years after the diagnosis of aplastic anemia. We performed next-generation sequencing and array-based karyotyping using 668 blood samples obtained from 439 patients with aplastic anemia. We analyzed serial samples obtained from 82 patients. Somatic mutations in myeloid cancer candidate genes were present in one third of the patients, in a limited number of genes and at low initial variant allele frequency. Clonal hematopoiesis was detected in 47% of the patients, most frequently as acquired mutations. The prevalence of the mutations increased with age, and mutations had an age-related signature. DNMT3A-mutated and ASXL1-mutated clones tended to increase in size over time; the size of BCOR- and BCORL1-mutated and PIGA-mutated clones decreased or remained stable. Mutations in PIGA and BCOR and BCORL1 correlated with a better response to immunosuppressive therapy and longer and a higher rate of overall and progression-free survival; mutations in a subgroup of genes that included DNMT3A and ASXL1 were associated with worse outcomes. However, clonal dynamics were highly variable and might not necessarily have predicted the response to therapy and long-term survival among individual patients. Clonal hematopoiesis was prevalent in aplastic anemia. Some mutations were related to clinical outcomes. A highly biased set of mutations is evidence of Darwinian selection in the failed bone marrow environment. The pattern of somatic clones in individual patients over time was variable and frequently unpredictable. (Funded by Grant-in-Aid for Scientific Research and others.).

  1. Transcriptome analysis of an apple (Malus × domestica) yellow fruit somatic mutation identifies a gene network module highly associated with anthocyanin and epigenetic regulation.

    Science.gov (United States)

    El-Sharkawy, Islam; Liang, Dong; Xu, Kenong

    2015-12-01

    Using RNA-seq, this study analysed an apple (Malus×domestica) anthocyanin-deficient yellow-skin somatic mutant 'Blondee' (BLO) and its red-skin parent 'Kidd's D-8' (KID), the original name of 'Gala', to understand the molecular mechanisms underlying the mutation. A total of 3299 differentially expressed genes (DEGs) were identified between BLO and KID at four developmental stages and/or between two adjacent stages within BLO and/or KID. A weighted gene co-expression network analysis (WGCNA) of the DEGs uncovered a network module of 34 genes highly correlated (r=0.95, P=9.0×10(-13)) with anthocyanin contents. Although 12 of the 34 genes in the WGCNA module were characterized and known of roles in anthocyanin, the remainder 22 appear to be novel. Examining the expression of ten representative genes in the module in 14 diverse apples revealed that at least eight were significantly correlated with anthocyanin variation. MdMYB10 (MDP0000259614) and MdGST (MDP0000252292) were among the most suppressed module member genes in BLO despite being undistinguishable in their corresponding sequences between BLO and KID. Methylation assay of MdMYB10 and MdGST in fruit skin revealed that two regions (MR3 and MR7) in the MdMYB10 promoter exhibited remarkable differences between BLO and KID. In particular, methylation was high and progressively increased alongside fruit development in BLO while was correspondingly low and constant in KID. The methylation levels in both MR3 and MR7 were negatively correlated with anthocyanin content as well as the expression of MdMYB10 and MdGST. Clearly, the collective repression of the 34 genes explains the loss-of-colour in BLO while the methylation in MdMYB10 promoter is likely causal for the mutation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    Science.gov (United States)

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  3. Determination of somatic mutations in human erythrocytes by cytometry

    International Nuclear Information System (INIS)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-01-01

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab

  4. Determination of somatic mutations in human erythrocytes by cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  5. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Anne Bruun Krøigård

    Full Text Available Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  6. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    Science.gov (United States)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  7. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    OpenAIRE

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.; Papadopoulos, Nickolas; Malek, Sami N.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell...

  8. Clinical significance of acquired somatic mutations in aplastic anaemia.

    Science.gov (United States)

    Marsh, J C W; Mufti, G J

    2016-08-01

    Aplastic anaemia (AA) is frequently associated with other disorders of clonal haemopoiesis such as paroxysmal nocturnal haemoglobinuria (PNH), myelodysplastic syndrome (MDS) and T-large granular lymphocytosis. Certain clones may escape the immune attack within the bone marrow environment and proliferate and attain a survival advantage over normal haemopoietic stem cells, such as trisomy 8, loss of heterozygosity of short arm of chromosome 6 and del13q clones. Recently acquired somatic mutations (SM), excluding PNH clones, have been reported in around 20-25 % of patients with AA, which predispose to a higher risk of later malignant transformation to MDS/acute myeloid leukaemia. Furthermore, certain SM, such as ASXL1 and DNMT3A are associated with poor survival following immunosuppressive therapy, whereas PIGA, BCOR/BCORL1 predict for good response and survival. Further detailed and serial analysis of the immune signature in AA is needed to understand the pathogenetic basis for the presence of clones with SM in a significant proportion of patients.

  9. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  10. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh

    2013-01-01

    Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple related samples over the accuracy of GATK\\'s Unified Genotyper, the state of the art multisample SNV caller. © 2013 Springer-Verlag.

  11. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth (Yale-MED); (UCLA); (Queens)

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  12. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors.

    Science.gov (United States)

    Sweeney, Carol; Boucher, Kenneth M; Samowitz, Wade S; Wolff, Roger K; Albertsen, Hans; Curtin, Karen; Caan, Bette J; Slattery, Martha L

    2009-01-01

    Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.

  13. Somatic Mutational Landscape of Splicing Factor Genes and Their Functional Consequences across 33 Cancer Types

    Directory of Open Access Journals (Sweden)

    Michael Seiler

    2018-04-01

    Full Text Available Summary: Hotspot mutations in splicing factor genes have been recently reported at high frequency in hematological malignancies, suggesting the importance of RNA splicing in cancer. We analyzed whole-exome sequencing data across 33 tumor types in The Cancer Genome Atlas (TCGA, and we identified 119 splicing factor genes with significant non-silent mutation patterns, including mutation over-representation, recurrent loss of function (tumor suppressor-like, or hotspot mutation profile (oncogene-like. Furthermore, RNA sequencing analysis revealed altered splicing events associated with selected splicing factor mutations. In addition, we were able to identify common gene pathway profiles associated with the presence of these mutations. Our analysis suggests that somatic alteration of genes involved in the RNA-splicing process is common in cancer and may represent an underappreciated hallmark of tumorigenesis. : Seiler et al. report that 119 splicing factor genes carry putative driver mutations over 33 tumor types in TCGA. The most common mutations appear to be mutually exclusive and are associated with lineage-independent altered splicing. Samples with these mutations show deregulation of cell-autonomous pathways and immune infiltration. Keywords: splicing, SF3B1, U2AF1, SRSF2, RBM10, FUBP1, cancer, mutation

  14. A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Chao Ling

    Full Text Available Previous genetic studies on colorectal carcinomas (CRC have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.

  15. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  16. Novel homozygous FANCL mutation and somatic heterozygous SETBP1 mutation in a Chinese girl with Fanconi Anemia.

    Science.gov (United States)

    Wu, Weiqing; Liu, Yang; Zhou, Qinghua; Wang, Qin; Luo, Fuwei; Xu, Zhiyong; Geng, Qian; Li, Peining; Zhang, Hui Z; Xie, Jiansheng

    2017-07-01

    Fanconi Anemia (FA) is a rare genetically heterogeneous disorder with 17 known complement groups caused by mutations in different genes. FA complementation group L (FA-L, OMIM #608111) occurred in 0.2% of all FA and only eight mutant variants in the FANCL gene were documented. Phenotype and genotype correlation in FANCL associated FA is still obscure. Here we describe a Chinese girl with FA-L caused by a novel homozygous mutation c.822_823insCTTTCAGG (p.Asp275LeufsX13) in the FANCL gene. The patient's clinical course was typical for FA with progression to bone marrow failure, and death from acute myelomonocytic leukemia (AML-M4) at 9 years of age. Mutation analysis also detected a likely somatic c.2608G > A (p.Gly870Ser) in the SETBP1 gene. Consistent copy number losses of 7q and 18p and gains of 3q and 21q and accumulated non-clonal single cell chromosomal abnormalities were detected in blood leukocytes as her FA progressed. This is the first Chinese FA-L case caused by a novel FANCL mutation. The somatic gene mutation and copy number aberrations could be used to monitor disease progression and the clinical findings provide further information for genotype-phenotype correlation for FA-L. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Somatic gene mutation in the human in relation to radiation risk

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1992-01-01

    This report discusses the measurement of somatic gene-mutation frequencies in the human. We ask the following questions. How well can they be measured? Do they respond to radiation? Can they also function as a dosimeter? What do they tell us about the somatic mutation theory of carcinogenesis?

  18. Induction of somatic mutation in chrysanthemum cultivar 'Anupam'

    International Nuclear Information System (INIS)

    Banerji, B.K.; Datta, S.K.

    1990-01-01

    Rooted cuttings of chrysanthemum cv. 'Anupam' were irradiated with 1.5, 2.0 and 2.5 Krad of gamma rays. Significant reduction in survival, plant height, branch, leaf and flower head number and leaf size were recorded after irradiation. Radio sensitivity was determined on the basis of different cytomorphological parameters. Different types of morphological abnormalities in leaves and flower and chromosomal abnormalities during root tip mitosis were observed and the total abnormalities increased with increase in exposure to gamma rays. Significant delay in flower bud initiation, first colour showing and full bloom were recorded in the treated population. Somatic mutations in flower colour could be induced in vM 1 as chimera and a total of three flower colour mutant, i.e., lighter, white and striped were isolated and established in pure form as new cultivars which are of direct use for floriculture industry. (author). 17 refs., 6 figs. , 2 tabs

  19. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  20. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  1. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  2. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  3. Somatic mutations in leafs of tobacco seedlings induced by ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Shin, H. S.; Kim, J. K.; Song, H. S.; Lee, Y. I.

    2001-01-01

    Somatic mutations induced by the combined treatment of pesticide and ionizing radiation were analyzed in the leaves of tobacco seedlings. The pesticide (1,5 and 10 ppm of parathion) was sprayed directly onto the seedlings. The seedlings, with or without pretreatment of pesticide, were irradiated with 0.1 ∼10 Gy of gamma ray. The difference in the somatic mutation frequencies were not significant among groups treated with different concentration of pesticide. The somatic mutations in tobacco seedlings irradiated with gamma-ray showed a clear dose-response relationship in a range of 0.1 to 10 Gy. However, the combined treatment of pesticide and radiation did not cause any synergistic enhancement in the mutation frequencies. The highest efficiency in the induction of somatic mutations could be obtained by irradiating the seedlings with 5 Gy, 12 hours after 1 ppm of pesticide treatment, or 24 hours after 5 ppm of pesticide treatment

  4. Improvement of some ornamental plants by induced somatic mutations at National Botanical Research Institute

    International Nuclear Information System (INIS)

    Gupta, M.N.

    1980-01-01

    Research work on improvement of some ornamental plants by induced somatic mutations has been in progress at the National Botanical Research Institute, Lucknow, since 1964. The methods of treatments with gamma rays, detection, isolation and multiplication of induced somatic mutations have been given for Bougainvillea, Chrysanthemum, perennial Portulaca, rose and tuberose. During the last 15 years, a total of 38 new cultivars of different ornamentals evolved by gamna induced somatic mutations have been released. They include Bougainvillea 1; Chrysanthemum 28; perennial portulaca 6; rose 1 and tuberose 2. Descriptions of the original cultivars and their gamma induced mutants are given along with other pertinent details. (author)

  5. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome.

    Science.gov (United States)

    Dowdell, Kennichi C; Niemela, Julie E; Price, Susan; Davis, Joie; Hornung, Ronald L; Oliveira, João Bosco; Puck, Jennifer M; Jaffe, Elaine S; Pittaluga, Stefania; Cohen, Jeffrey I; Fleisher, Thomas A; Rao, V Koneti

    2010-06-24

    Autoimmune lymphoproliferative syndrome (ALPS) is characterized by childhood onset of lymphadenopathy, hepatosplenomegaly, autoimmune cytopenias, elevated numbers of double-negative T (DNT) cells, and increased risk of lymphoma. Most cases of ALPS are associated with germline mutations of the FAS gene (type Ia), whereas some cases have been noted to have a somatic mutation of FAS primarily in their DNT cells. We sought to determine the proportion of patients with somatic FAS mutations among a group of our ALPS patients with no detectable germline mutation and to further characterize them. We found more than one-third (12 of 31) of the patients tested had somatic FAS mutations, primarily involving the intracellular domain of FAS resulting in loss of normal FAS signaling. Similar to ALPS type Ia patients, the somatic ALPS patients had increased DNT cell numbers and elevated levels of serum vitamin B(12), interleukin-10, and sFAS-L. These data support testing for somatic FAS mutations in DNT cells from ALPS patients with no detectable germline mutation and a similar clinical and laboratory phenotype to that of ALPS type Ia. These findings also highlight the potential role for somatic mutations in the pathogenesis of nonmalignant and/or autoimmune hematologic conditions in adults and children.

  6. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Gutman, David A.; Dunn, William D. [Emory University School of Medicine, Departments of Neurology, Atlanta, GA (United States); Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Grossmann, Patrick; Alexander, Brian M. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Cooper, Lee A.D. [Emory University School of Medicine, Biomedical Informatics, Atlanta, GA (United States); Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, GA (United States); Holder, Chad A. [Emory University School of Medicine, Radiology and Imaging Sciences, Atlanta, GA (United States); Ligon, Keith L. [Brigham and Women' s Hospital, Harvard Medical School, Pathology, Dana-Farber Cancer Institute, Boston, MA (United States); Aerts, Hugo J.W.L. [Harvard Medical School, Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women' s Hospital, Boston, MA (United States); Brigham and Women' s Hospital, Harvard Medical School, Radiology, Dana-Farber Cancer Institute, Boston, MA (United States)

    2015-12-15

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  7. Somatic mutations associated with MRI-derived volumetric features in glioblastoma

    International Nuclear Information System (INIS)

    Gutman, David A.; Dunn, William D.; Grossmann, Patrick; Alexander, Brian M.; Cooper, Lee A.D.; Holder, Chad A.; Ligon, Keith L.; Aerts, Hugo J.W.L.

    2015-01-01

    MR imaging can noninvasively visualize tumor phenotype characteristics at the macroscopic level. Here, we investigated whether somatic mutations are associated with and can be predicted by MRI-derived tumor imaging features of glioblastoma (GBM). Seventy-six GBM patients were identified from The Cancer Imaging Archive for whom preoperative T1-contrast (T1C) and T2-FLAIR MR images were available. For each tumor, a set of volumetric imaging features and their ratios were measured, including necrosis, contrast enhancing, and edema volumes. Imaging genomics analysis assessed the association of these features with mutation status of nine genes frequently altered in adult GBM. Finally, area under the curve (AUC) analysis was conducted to evaluate the predictive performance of imaging features for mutational status. Our results demonstrate that MR imaging features are strongly associated with mutation status. For example, TP53-mutated tumors had significantly smaller contrast enhancing and necrosis volumes (p = 0.012 and 0.017, respectively) and RB1-mutated tumors had significantly smaller edema volumes (p = 0.015) compared to wild-type tumors. MRI volumetric features were also found to significantly predict mutational status. For example, AUC analysis results indicated that TP53, RB1, NF1, EGFR, and PDGFRA mutations could each be significantly predicted by at least one imaging feature. MRI-derived volumetric features are significantly associated with and predictive of several cancer-relevant, drug-targetable DNA mutations in glioblastoma. These results may shed insight into unique growth characteristics of individual tumors at the macroscopic level resulting from molecular events as well as increase the use of noninvasive imaging in personalized medicine. (orig.)

  8. Key tumor suppressor genes inactivated by "greater promoter" methylation and somatic mutations in head and neck cancer

    NARCIS (Netherlands)

    Guerrero-Preston, Rafael; Michailidi, Christina; Marchionni, Luigi; Pickering, Curtis R.; Frederick, Mitchell J.; Myers, Jeffrey N.; Yegnasubramanian, Srinivasan; Hadar, Tal; Noordhuis, Maartje G.; Zizkova, Veronika; Fertig, Elana; Agrawal, Nishant; Westra, William; Koch, Wayne; Califano, Joseph; Velculescu, Victor E.; Sidransky, David

    Tumor suppressor genes (TSGs) are commonly inactivated by somatic mutation and/or promoter methylation; yet, recent high-throughput genomic studies have not identified key TSGs inactivated by both mechanisms. We pursued an integrated molecular analysis based on methylation binding domain sequencing

  9. No evidence of somatic aryl hydrocarbon receptor interacting protein mutations in sporadic endocrine neoplasia

    DEFF Research Database (Denmark)

    Raitila, A; Georgitsi, M; Karhu, A

    2007-01-01

    . Here, we have analyzed 32 pituitary adenomas and 79 other tumors of the endocrine system for somatic AIP mutations by direct sequencing. No somatic mutations were identified. However, two out of nine patients with prolactin-producing adenoma were shown to harbor a Finnish founder mutation (Q14X...... as non-secreting pituitary adenomas have been reported, most mutation-positive patients have had growth hormone-producing adenomas diagnosed at relatively young age. Pituitary adenomas are also component tumors of some familial endocrine neoplasia syndromes such as multiple endocrine neoplasia type 1...... (MEN1) and Carney complex (CNC). Genes underlying MEN1 and CNC are rarely mutated in sporadic pituitary adenomas, but more often in other lesions contributing to these two syndromes. Thus far, the occurrence of somatic AIP mutations has not been studied in endocrine tumors other than pituitary adenomas...

  10. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    Science.gov (United States)

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  11. The induction of somatic mutations by high-LET radiation observed using the Drosophila assay system

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Takatsuji, Toshihiro; Nagano, Masaaki; Hoshi, Masaharu; Takada, Jun; Endo, Satoru

    1999-01-01

    To evaluate the mutagenic potential of high-LET radiation, an analysis was made on the production of somatic mutations by 252 Cf fission neutron s and heavy particle ions accelerated by a synchrotron. A Drosophila strain that allows simultaneous detection of two types of mutations in an identical fly was constructed. One was a wing-hair mutation and the other was an eye-color mosaic spot mutation. Measurements were made using a combined assay system of both mutation assays. Larvae were exposed to radiation at the age of post-ovipositional day-3. The efficiency of 252 Cf neutrons for inducing wing-hair mosaic spots was very high, the relative biological effectiveness (RBE) = 8.5, but the efficiency for eye-color mosaic spot was nearly equal (RBE = 1.2) to that of 137 Cs γ-rays. The RBE of carbon ions for inducing wing-hair mosaic spots increased as an increase in LET values. The RBE for the induction of eye-color mutants did not change with LET. These relationships suggest that more complex types of DNA damages such as non-rejoinable strand break or clustered double strand break, which increase with LET may be responsible for the induction of wing-hair mutation, while simpler forms of molecular damage may induce a reversion in the white-ivory allele. (M.N.)

  12. Somatic mutations of the histone H3K27 demethylase, UTX, in human cancer

    Science.gov (United States)

    van Haaften, Gijs; Dalgliesh, Gillian L; Davies, Helen; Chen, Lina; Bignell, Graham; Greenman, Chris; Edkins, Sarah; Hardy, Claire; O’Meara, Sarah; Teague, Jon; Butler, Adam; Hinton, Jonathan; Latimer, Calli; Andrews, Jenny; Barthorpe, Syd; Beare, Dave; Buck, Gemma; Campbell, Peter J; Cole, Jennifer; Dunmore, Rebecca; Forbes, Simon; Jia, Mingming; Jones, David; Kok, Chai Yin; Leroy, Catherine; Lin, Meng-Lay; McBride, David J; Maddison, Mark; Maquire, Simon; McLay, Kirsten; Menzies, Andrew; Mironenko, Tatiana; Lee, Mulderrig; Mudie, Laura; Pleasance, Erin; Shepherd, Rebecca; Smith, Raffaella; Stebbings, Lucy; Stephens, Philip; Tang, Gurpreet; Tarpey, Patrick S; Turner, Rachel; Turrell, Kelly; Varian, Jennifer; West, Sofie; Widaa, Sara; Wray, Paul; Collins, V Peter; Ichimura, Koichi; Law, Simon; Wong, John; Yuen, Siu Tsan; Leung, Suet Yi; Tonon, Giovanni; DePinho, Ronald A; Tai, Yu-Tzu; Anderson, Kenneth C; Kahnoski, Richard J.; Massie, Aaron; Khoo, Sok Kean; Teh, Bin Tean; Stratton, Michael R; Futreal, P Andrew

    2010-01-01

    Somatically acquired epigenetic changes are present in many cancers. Epigenetic regulation is maintained via post-translational modifications of core histones. Here, we describe inactivating somatic mutations in the histone lysine demethylase, UTX, pointing to histone H3 lysine methylation deregulation in multiple tumour types. UTX reintroduction into cancer cells with inactivating UTX mutations resulted in slowing of proliferation and marked transcriptional changes. These data identify UTX as a new human cancer gene. PMID:19330029

  13. Somatic mutation in peripheral blood lymphocytes among Metro Manila residents: indicator of exposure to environmental pollution

    International Nuclear Information System (INIS)

    Yulo-Nazarea, Teresa; Cobar, Ma. Lucia C.; Nato, Alejandro Q.; Nazarea, Apolinario D.

    2001-01-01

    Results of a four-year study on somatic mutation in peripheral blood lymphocytes among Metro Manila residents as an indicator of exposure to environmental pollution conducted by the Philippine Nuclear Research Institute (PNRI) is presented. The study which involves mutation indexing of 200 blood donors demonstrated very strong correlation between high levels of ambient air pollution and increase incidence of mutation at the specific gene locus in peripheral blood lymphocytes among residents of specific areas in Metro Manila. Using the PNRI adapted protocol to determine incidence of mutation at a specific gene marker, hypoxanthine guanine phosphoribosyl transferase (HGPRT), our database analysis indicated a statistically significant difference between mean mutation index of blood donors residing in an area with lower level of pollution (Las Pinas) compared to those residents living in areas with the highest estimated pollution level (Valenzuela). The results of the statistical analyses should provide regulators the direction in incorporating the data into their pollution abatement program to maximize health impact. Biomarker analysis should play a greater role in the future in the formulation of national environment policies. The temporal variation of these ''aseline data'' as the Philippine moves forward through the next several years in its industrialization program should in itself be a very valuable source of environmental policy instruments. (Author)

  14. Somatic embryogenesis in cassava: A tool for mutation breeding

    International Nuclear Information System (INIS)

    Lee, K.S.; Duren, M. Van; Morpurgo, R.

    1997-01-01

    Cassava is an important food and livestock feed crop. The effect of gamma radiation on somatic embryogenesis and plant regeneration in cassava clones of African origin was investigated. Explants from young leaves of cassava were cultured on MS medium, supplemented with 18.1 mM 2,4-D and 2 mM CuSO4, solidified with 0.3% Phytagel. Compact and friable calli were observed after 10-15 days of explant culture in dark, which produced somatic embryos in all but one clone. The somatic embryos showed morphological aberrations, such as fused cotyledons, lack of meristematic tip, epicotyl elongation, and had low germination rate; desiccation of embryos increased germination. Histological study showed that the somatic embryos were of multicellular origin. Leaf explants were irradiated with doses between 4 to 38 Gy of gamma rays, and cultured on somatic embryo induction medium. In addition, somatic embryos were irradiated with gamma ray doses from 10 to 18 Gy, and analyzed for germination. LD 50 for embryogenic response of leaf-explants was at around 20 Gy, while that for somatic embryo germination was ca. 10 Gy. (author). 7 refs, 2 tabs

  15. Somatic embryogenesis in cassava: A tool for mutation breeding

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K S; Duren, M Van; Morpurgo, R [Agriculture and Biotechnology Laboratory, International Atomic Energy Agency, Seibersdorf (Austria)

    1997-07-01

    Cassava is an important food and livestock feed crop. The effect of gamma radiation on somatic embryogenesis and plant regeneration in cassava clones of African origin was investigated. Explants from young leaves of cassava were cultured on MS medium, supplemented with 18.1 mM 2,4-D and 2 mM CuSO4, solidified with 0.3% Phytagel. Compact and friable calli were observed after 10-15 days of explant culture in dark, which produced somatic embryos in all but one clone. The somatic embryos showed morphological aberrations, such as fused cotyledons, lack of meristematic tip, epicotyl elongation, and had low germination rate; desiccation of embryos increased germination. Histological study showed that the somatic embryos were of multicellular origin. Leaf explants were irradiated with doses between 4 to 38 Gy of gamma rays, and cultured on somatic embryo induction medium. In addition, somatic embryos were irradiated with gamma ray doses from 10 to 18 Gy, and analyzed for germination. LD{sub 50} for embryogenic response of leaf-explants was at around 20 Gy, while that for somatic embryo germination was ca. 10 Gy. (author). 7 refs, 2 tabs.

  16. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    Science.gov (United States)

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  17. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh; Saleh, Syed Shayon; Kashef-Haghighi, Dorna; Khavari, David; Newburger, Daniel E.; West, Robert B.; Sidow, Arend; Batzoglou, Serafim

    2013-01-01

    multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple

  18. Statistical method on nonrandom clustering with application to somatic mutations in cancer

    Directory of Open Access Journals (Sweden)

    Rejto Paul A

    2010-01-01

    Full Text Available Abstract Background Human cancer is caused by the accumulation of tumor-specific mutations in oncogenes and tumor suppressors that confer a selective growth advantage to cells. As a consequence of genomic instability and high levels of proliferation, many passenger mutations that do not contribute to the cancer phenotype arise alongside mutations that drive oncogenesis. While several approaches have been developed to separate driver mutations from passengers, few approaches can specifically identify activating driver mutations in oncogenes, which are more amenable for pharmacological intervention. Results We propose a new statistical method for detecting activating mutations in cancer by identifying nonrandom clusters of amino acid mutations in protein sequences. A probability model is derived using order statistics assuming that the location of amino acid mutations on a protein follows a uniform distribution. Our statistical measure is the differences between pair-wise order statistics, which is equivalent to the size of an amino acid mutation cluster, and the probabilities are derived from exact and approximate distributions of the statistical measure. Using data in the Catalog of Somatic Mutations in Cancer (COSMIC database, we have demonstrated that our method detects well-known clusters of activating mutations in KRAS, BRAF, PI3K, and β-catenin. The method can also identify new cancer targets as well as gain-of-function mutations in tumor suppressors. Conclusions Our proposed method is useful to discover activating driver mutations in cancer by identifying nonrandom clusters of somatic amino acid mutations in protein sequences.

  19. Nelson`s syndrome associated with a somatic frame shift mutation in the glucocorticoid recepter gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Stratakis, C.A.; Chrousos, G.P.; Katz, D.A.; Ali, I.U.; Oldfield, E.H. [National Inst. of Neurological Disorders and Stroke, Bethesda, MD (United States)] [and others

    1996-01-01

    Nelson`s syndrome is the appearance and/or progression of ACTH-secreting pituitary macroadenomas in patients who had previously undergone bilateral adrenalectomy for Cushing`s disease. Extremely high plasma ACTH levels and aggressive neoplastic growth might be explained by the lack of appropriate glucocorticoid negative feedback due to defective glucocorticoid signal transduction. To study the glucocorticoid receptor (GR) gene in Nelson`s syndrome, DNA was extracted from pituitary adenomas and leukocytes of four patients with this condition and amplified by PCR for direct sequence analysis. In one of the tumors, a heterozygous mutation, consisting of an insertion of a thymine between complementary DNA nucleotides 1188 and 1189, was found in exon 2. This frame-shift mutation led to premature termination at amino acid residue 366 of the world-type coding sequence, excluding the expression of a functioning receptor protein from the defective allele. The mutation was not detected in the sequence of the GR gene in the patient`s leukocyte DNA, indicating a somatic origin. By lowering the receptor number in tumorous cells, this defect might have caused local resistance to negative glucocorticoid feedback similar to that caused by the presence of a null allele in a kindred with the generalized glucocorticoid resistance syndrome. P53 protein accumulation, previously reported in 60% of corticotropinomas, could not be detected in any of the four pituitary tumors examined by immunohistochemistry. We suggest that a somatic GR defect might have played a pathophysiological role in the tumorigenesis of the corticotropinoma bearing this mutation. 35 refs., 3 figs., 1 tab.

  20. Molecular profiling of appendiceal epithelial tumors using massively parallel sequencing to identify somatic mutations.

    Science.gov (United States)

    Liu, Xiaoying; Mody, Kabir; de Abreu, Francine B; Pipas, J Marc; Peterson, Jason D; Gallagher, Torrey L; Suriawinata, Arief A; Ripple, Gregory H; Hourdequin, Kathryn C; Smith, Kerrington D; Barth, Richard J; Colacchio, Thomas A; Tsapakos, Michael J; Zaki, Bassem I; Gardner, Timothy B; Gordon, Stuart R; Amos, Christopher I; Wells, Wendy A; Tsongalis, Gregory J

    2014-07-01

    Some epithelial neoplasms of the appendix, including low-grade appendiceal mucinous neoplasm and adenocarcinoma, can result in pseudomyxoma peritonei (PMP). Little is known about the mutational spectra of these tumor types and whether mutations may be of clinical significance with respect to therapeutic selection. In this study, we identified somatic mutations using the Ion Torrent AmpliSeq Cancer Hotspot Panel v2. Specimens consisted of 3 nonneoplastic retention cysts/mucocele, 15 low-grade mucinous neoplasms (LAMNs), 8 low-grade/well-differentiated mucinous adenocarcinomas with pseudomyxoma peritonei, and 12 adenocarcinomas with/without goblet cell/signet ring cell features. Barcoded libraries were prepared from up to 10 ng of extracted DNA and multiplexed on single 318 chips for sequencing. Data analysis was performed using Golden Helix SVS. Variants that remained after the analysis pipeline were individually interrogated using the Integrative Genomics Viewer. A single Janus kinase 3 (JAK3) mutation was detected in the mucocele group. Eight mutations were identified in the V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and GNAS complex locus (GNAS) genes among LAMN samples. Additional gene mutations were identified in the AKT1 (v-akt murine thymoma viral oncogene homolog 1), APC (adenomatous polyposis coli), JAK3, MET (met proto-oncogene), phosphatidylinositol-4,5-bisphosphate 3-kinase (PIK3CA), RB1 (retinoblastoma 1), STK11 (serine/threonine kinase 11), and tumor protein p53 (TP53) genes. Among the PMPs, 6 mutations were detected in the KRAS gene and also in the GNAS, TP53, and RB1 genes. Appendiceal cancers showed mutations in the APC, ATM (ataxia telangiectasia mutated), KRAS, IDH1 [isocitrate dehydrogenase 1 (NADP+)], NRAS [neuroblastoma RAS viral (v-ras) oncogene homolog], PIK3CA, SMAD4 (SMAD family member 4), and TP53 genes. Our results suggest molecular heterogeneity among epithelial tumors of the appendix. Next generation sequencing efforts

  1. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    Science.gov (United States)

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  2. Analysis of the IgV(H) somatic mutations in splenic marginal zone lymphoma defines a group of unmutated cases with frequent 7q deletion and adverse clinical course.

    Science.gov (United States)

    Algara, Patricia; Mateo, Marisol S; Sanchez-Beato, Margarita; Mollejo, Manuela; Navas, Immaculada C; Romero, Lourdes; Solé, Francesc; Salido, Marta; Florensa, Lourdes; Martínez, Pedro; Campo, Elias; Piris, Miguel A

    2002-02-15

    This study aimed to correlate the frequency of somatic mutations in the IgV(H) gene and the use of specific segments in the V(H) repertoire with the clinical and characteristic features of a series of 35 cases of splenic marginal zone lymphoma (SMZL). The cases were studied by seminested polymerase chain reaction by using primers from the FR1 and J(H) region. The results showed unexpected molecular heterogeneity in this entity, with 49% unmutated cases (less than 2% somatic mutations). The 7q31 deletions and a shorter overall survival were more frequent in this group. Additionally a high percentage (18 of 40 sequences) of SMZL cases showed usage of the V(H)1-2 segment, thereby emphasizing the singularity of this neoplasia, suggesting that this tumor derives from a highly selected B-cell population and encouraging the search for specific antigens that are pathogenically relevant in the genesis or progression of this tumor.

  3. Parental somatic and germ-line mosaicism for a FBN2 mutation and analysis of FBN2 transcript levels in dermal fibroblasts

    NARCIS (Netherlands)

    Putnam, E. A.; Park, E. S.; Aalfs, C. M.; Hennekam, R. C.; Milewicz, D. M.

    1997-01-01

    Congenital contractural arachnodactyly (CCA) is an autosomal dominant disorder that is phenotypically related to the Marfan syndrome. CCA has recently been shown to result from mutations in the FBN2 gene, which encodes an elastin-associated microfibrillar protein called fibrillin-2. Two siblings are

  4. Genetic improvement of sweet potato through somatic embyrogenesis and in vitro induction of mutations

    Energy Technology Data Exchange (ETDEWEB)

    Sonnino, A; Thinh, N T; Santangelo, E; Mini, P [Centro Ricerche Energia, ENEA, Rome (Italy)

    1997-07-01

    Mutation breeding is a promising option for the genetic improvement of sweet potato. Callus induction, somatic embryogenesis and plant regeneration was investigated in twenty-two sweet potato varieties of different origin. Plant regeneration was found to depend on the genotype and composition of the induction medium. The regeneration through somatic embryogenesis induced morphological and physiological changes among the regenerated plants. The irradiation with 30 to 50 Gy of meristems before culture on induction medium inhibited somatic embryogenesis. A number of accessions were evaluated in field trials and showed wide differences in yield. (author). 6 refs, 6 tabs.

  5. Genetic improvement of sweet potato through somatic embyrogenesis and in vitro induction of mutations

    International Nuclear Information System (INIS)

    Sonnino, A.; Thinh, N.T.; Santangelo, E.; Mini, P.

    1997-01-01

    Mutation breeding is a promising option for the genetic improvement of sweet potato. Callus induction, somatic embryogenesis and plant regeneration was investigated in twenty-two sweet potato varieties of different origin. Plant regeneration was found to depend on the genotype and composition of the induction medium. The regeneration through somatic embryogenesis induced morphological and physiological changes among the regenerated plants. The irradiation with 30 to 50 Gy of meristems before culture on induction medium inhibited somatic embryogenesis. A number of accessions were evaluated in field trials and showed wide differences in yield. (author). 6 refs, 6 tabs

  6. Germline and somatic mutations in the MTOR gene in focal cortical dysplasia and epilepsy

    DEFF Research Database (Denmark)

    Møller, Rikke S; Weckhuysen, Sarah; Chipaux, Mathilde

    2016-01-01

    OBJECTIVE: To assess the prevalence of somatic MTOR mutations in focal cortical dysplasia (FCD) and of germline MTOR mutations in a broad range of epilepsies. METHODS: We collected 20 blood-brain paired samples from patients with FCD and searched for somatic variants using deep-targeted gene panel...... sequencing. Germline mutations in MTOR were assessed in a French research cohort of 93 probands with focal epilepsies and in a diagnostic Danish cohort of 245 patients with a broad range of epilepsies. Data sharing among collaborators allowed us to ascertain additional germline variants in MTOR. RESULTS: We...... detected recurrent somatic variants (p.Ser2215Phe, p.Ser2215Tyr, and p.Leu1460Pro) in the MTOR gene in 37% of participants with FCD II and showed histologic evidence for activation of the mTORC1 signaling cascade in brain tissue. We further identified 5 novel de novo germline missense MTOR variants in 6...

  7. Correlation of RET somatic mutations with clinicopathological features in sporadic medullary thyroid carcinomas

    Science.gov (United States)

    Moura, M M; Cavaco, B M; Pinto, A E; Domingues, R; Santos, J R; Cid, M O; Bugalho, M J; Leite, V

    2009-01-01

    Screening of REarranged during Transfection (RET) gene mutations has been carried out in different series of sporadic medullary thyroid carcinomas (MTC). RET-positive tumours seem to be associated to a worse clinical outcome. However, the correlation between the type of RET mutation and the patients' clinicopathological data has not been evaluated yet. We analysed RET exons 5, 8, 10–16 in fifty-one sporadic MTC, and found somatic mutations in thirty-three (64.7%) tumours. Among the RET-positive cases, exon 16 was the most frequently affected (60.6%). Two novel somatic mutations (Cys630Gly, c.1881del18) were identified. MTC patients were divided into three groups: group 1, with mutations in RET exons 15 and 16; group 2, with other RET mutations; group 3, having no RET mutations. Group 1 had higher prevalence (P=0.0051) and number of lymph node metastases (P=0.0017), and presented more often multifocal tumours (P=0.037) and persistent disease at last control (P=0.0242) than group 2. Detectable serum calcitonin levels at last screening (P=0.0119) and stage IV disease (P=0.0145) were more frequent in group 1, than in the other groups. Our results suggest that, among the sporadic MTC, cases with RET mutations in exons 15 and 16 are associated with the worst prognosis. Cases with other RET mutations have the most indolent course, and those with no RET mutations have an intermediate risk. PMID:19401695

  8. Somatic RET mutation in a patient with pigmented adrenal pheochromocytoma

    NARCIS (Netherlands)

    Maison, Nicole; Korpershoek, Esther; Eisenhofer, Graeme; Robledo, Mercedes; de Krijger, Ronald; Beuschlein, Felix

    UNLABELLED: Pheochromocytomas (PCC) and paraganglioma (PGL) are rare neuroendocrine tumors arising from chromaffin cells of the neural crest. Mutations in the RET-proto-oncogene are associated with sporadic pheochromocytoma, familial or sporadic medullary thyroid carcinoma (MTC) and multiple

  9. Analysis of IgV gene mutations in B cell chronic lymphocytic leukaemia according to antigen-driven selection identifies subgroups with different prognosis and usage of the canonical somatic hypermutation machinery.

    Science.gov (United States)

    Degan, Massimo; Bomben, Riccardo; Bo, Michele Dal; Zucchetto, Antonella; Nanni, Paola; Rupolo, Maurizio; Steffan, Agostino; Attadia, Vincenza; Ballerini, Pier Ferruccio; Damiani, Daniela; Pucillo, Carlo; Poeta, Giovanni Del; Colombatti, Alfonso; Gattei, Valter

    2004-07-01

    Cases of B-cell chronic lymphocytic leukaemia (B-CLL) with mutated (M) IgV(H) genes have a better prognosis than unmutated (UM) cases. We analysed the IgV(H) mutational status of B-CLL according to the features of a canonical somatic hypermutation (SHM) process, correlating this data with survival. In a series of 141 B-CLLs, 124 cases were examined for IgV(H) gene per cent mutations and skewing of replacement/silent mutations in the framework/complementarity-determining regions as evidence of antigen-driven selection; this identified three B-CLL subsets: significantly mutated (sM), with evidence of antigen-driven selection, not significantly mutated (nsM) and UM, without such evidence and IgV(H) gene per cent mutations above or below the 2% cut-off. sM B-CLL patients had longer survival within the good prognosis subgroup that had more than 2% mutations of IgV(H) genes. sM, nsM and UM B-CLL were also characterized for the biased usage of IgV(H) families, intraclonal IgV(H) gene diversification, preference of mutations to target-specific nucleotides or hotspots, and for the expression of enzymes involved in SHM (translesion DNA polymerase zeta and eta and activation-induced cytidine deaminase). These findings indicate the activation of a canonical SHM process in nsM and sM B-CLLs and underscore the role of the antigen in defining the specific clinical and biological features of B-CLL.

  10. Identification of somatic mutations in postmortem human brains by whole genome sequencing and their implications for psychiatric disorders.

    Science.gov (United States)

    Nishioka, Masaki; Bundo, Miki; Ueda, Junko; Katsuoka, Fumiki; Sato, Yukuto; Kuroki, Yoko; Ishii, Takao; Ukai, Wataru; Murayama, Shigeo; Hashimoto, Eri; Nagasaki, Masao; Yasuda, Jun; Kasai, Kiyoto; Kato, Tadafumi; Iwamoto, Kazuya

    2018-04-01

    Somatic mutations in the human brain are hypothesized to contribute to the functional diversity of brain cells as well as the pathophysiology of neuropsychiatric diseases. However, there are still few reports on somatic mutations in non-neoplastic human brain tissues. This study attempted to unveil the landscape of somatic mutations in the human brain. We explored the landscape of somatic mutations in human brain tissues derived from three individuals with no neuropsychiatric diseases by whole-genome deep sequencing at a depth of around 100. The candidate mutations underwent multi-layered filtering, and were validated by ultra-deep target amplicon sequencing at a depth of around 200 000. Thirty-one somatic mutations were identified in the human brain, demonstrating the utility of whole-genome sequencing of bulk brain tissue. The mutations were enriched in neuron-expressed genes, and two-thirds of the identified somatic single nucleotide variants in the brain tissues were cytosine-to-thymine transitions, half of which were in CpG dinucleotides. Our developed filtering and validation approaches will be useful to identify somatic mutations in the human brain. The vulnerability of neuron-expressed genes to mutational events suggests their potential relevance to neuropsychiatric diseases. © 2017 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.

  11. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed to...

  12. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance.

    Science.gov (United States)

    Kwok, Brian; Hall, Jeff M; Witte, John S; Xu, Yin; Reddy, Prashanti; Lin, Keming; Flamholz, Rachel; Dabbas, Bashar; Yung, Aine; Al-Hafidh, Jenan; Balmert, Emily; Vaupel, Christine; El Hader, Carlos; McGinniss, Matthew J; Nahas, Shareef A; Kines, Julie; Bejar, Rafael

    2015-11-19

    Establishing a diagnosis in patients suspected of having a myelodysplastic syndrome (MDS) can be challenging and could be informed by the identification of somatic mutations. We performed a prospective study to examine the frequency and types of mutations encountered in 144 patients with unexplained cytopenias. Based on bone marrow findings, 17% were diagnosed with MDS, 15% with idiopathic cytopenias of undetermined significance (ICUS) and some evidence of dysplasia, and 69% with ICUS and no dysplasia. Bone marrow DNA was sequenced for mutations in 22 frequently mutated myeloid malignancy genes. Somatic mutations were identified in 71% of MDS patients, 62% of patients with ICUS and some dysplasia, and 20% of ICUS patients and no dysplasia. In total, 35% of ICUS patients carried a somatic mutation or chromosomal abnormality indicative of clonal hematopoiesis. We validated these results in a cohort of 91 lower-risk MDS and 249 ICUS cases identified over a 6-month interval. Mutations were found in 79% of those with MDS, in 45% of those with ICUS with dysplasia, and in 17% of those with ICUS without dysplasia. The spectrum of mutated genes was similar with the exception of SF3B1 which was rarely mutated in patients without dysplasia. Variant allele fractions were comparable between clonal ICUS (CCUS) and MDS as were mean age and blood counts. We demonstrate that CCUS is a more frequent diagnosis than MDS in cytopenic patients. Clinical and mutational features are similar in these groups and may have diagnostic utility once outcomes in CCUS patients are better understood. © 2015 by The American Society of Hematology.

  13. Factors affecting the spontaneous mutational spectra in somatic mammalian cells

    Directory of Open Access Journals (Sweden)

    О.А. Ковальова

    2006-04-01

    Full Text Available  In our survey of references we are discussed the influence of factors biological origin on the spontaneous mutation specters in mammalian. Seasonal and age components influence on the frequence of cytogenetic anomalies. The immune and endocrinous systems are take part in control of the alteration of the spontaneous mutation specters. Genetical difference of sensibility in animal and human at the alteration of factors enviroment as and  genetical differences of repair systems activity are may influence on individual variation of spontaneous destabilization characters of chromosomal apparatus.

  14. Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation.

    Science.gov (United States)

    Diaz, M; Velez, J; Singh, M; Cerny, J; Flajnik, M F

    1999-05-01

    The pattern of somatic mutations of shark and frog Ig is distinct from somatic hypermutation of Ig in mammals in that there is a bias to mutate GC base pairs and a low frequency of mutations. Previous analysis of the new antigen receptor gene in nurse sharks (NAR), however, revealed no bias to mutate GC base pairs and the frequency of mutation was comparable to that of mammalian IgG. Here, we analyzed 1023 mutations in NAR and found no targeting of the mechanism to any particular nucleotide but did obtain strong evidence for a transition bias and for strand polarity. As seen for all species studied to date, the serine codon AGC/T in NAR was a mutational hotspot. The NAR mutational pattern is most similar to that of mammalian IgG and furthermore both are strikingly akin to mutations acquired during the neutral evolution of nuclear pseudogenes, suggesting that a similar mechanism is at work for both processes. In yeast, most spontaneous mutations are introduced by the translesion synthesis DNA polymerase zeta (REV3) and in various DNA repair-deficient backgrounds transitions were more often REV3-dependent than were transversions. Therefore, we propose a model of somatic hypermutation where DNA polymerase zeta is recruited to the Ig locus. An excess of DNA glycosylases in germinal center reactions may further enhance the mutation frequency by a REV3-dependent mutagenic process known as imbalanced base excision repair.

  15. Sun exposure causes somatic second-hit mutations and angiofibroma development in tuberous sclerosis complex

    Science.gov (United States)

    Tyburczy, Magdalena E.; Wang, Ji-an; Li, Shaowei; Thangapazham, Rajesh; Chekaluk, Yvonne; Moss, Joel; Kwiatkowski, David J.; Darling, Thomas N.

    2014-01-01

    Tuberous sclerosis complex (TSC) is characterized by the formation of tumors in multiple organs and is caused by germline mutation in one of two tumor suppressor genes, TSC1 and TSC2. As for other tumor suppressor gene syndromes, the mechanism of somatic second-hit events in TSC tumors is unknown. We grew fibroblast-like cells from 29 TSC skin tumors from 22 TSC subjects and identified germline and second-hit mutations in TSC1/TSC2 using next-generation sequencing. Eighteen of 22 (82%) subjects had a mutation identified, and 8 of the 18 (44%) subjects were mosaic with mutant allele frequencies of 0 to 19% in normal tissue DNA. Multiple tumors were available from four patients, and in each case, second-hit mutations in TSC2 were distinct indicating they arose independently. Most remarkably, 7 (50%) of the 14 somatic point mutations were CC>TT ultraviolet ‘signature’ mutations, never seen as a TSC germline mutation. These occurred exclusively in facial angiofibroma tumors from sun-exposed sites. These results implicate UV-induced DNA damage as a cause of second-hit mutations and development of TSC facial angiofibromas and suggest that measures to limit UV exposure in TSC children and adults should reduce the frequency and severity of these lesions. PMID:24271014

  16. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.

    Science.gov (United States)

    Lim, Weng Khong; Ong, Choon Kiat; Tan, Jing; Thike, Aye Aye; Ng, Cedric Chuan Young; Rajasegaran, Vikneswari; Myint, Swe Swe; Nagarajan, Sanjanaa; Nasir, Nur Diyana Md; McPherson, John R; Cutcutache, Ioana; Poore, Gregory; Tay, Su Ting; Ooi, Wei Siong; Tan, Veronique Kiak Mien; Hartman, Mikael; Ong, Kong Wee; Tan, Benita K T; Rozen, Steven G; Tan, Puay Hoon; Tan, Patrick; Teh, Bin Tean

    2014-08-01

    Fibroadenomas are the most common breast tumors in women under 30 (refs. 1,2). Exome sequencing of eight fibroadenomas with matching whole-blood samples revealed recurrent somatic mutations solely in MED12, which encodes a Mediator complex subunit. Targeted sequencing of an additional 90 fibroadenomas confirmed highly frequent MED12 exon 2 mutations (58/98, 59%) that are probably somatic, with 71% of mutations occurring in codon 44. Using laser capture microdissection, we show that MED12 fibroadenoma mutations are present in stromal but not epithelial mammary cells. Expression profiling of MED12-mutated and wild-type fibroadenomas revealed that MED12 mutations are associated with dysregulated estrogen signaling and extracellular matrix organization. The fibroadenoma MED12 mutation spectrum is nearly identical to that of previously reported MED12 lesions in uterine leiomyoma but not those of other tumors. Benign tumors of the breast and uterus, both of which are key target tissues of estrogen, may thus share a common genetic basis underpinned by highly frequent and specific MED12 mutations.

  17. Polycythemia and paraganglioma with a novel somatic HIF2A mutation in a male.

    Science.gov (United States)

    Toyoda, Hidemi; Hirayama, Jyunya; Sugimoto, Yuka; Uchida, Keiichi; Ohishi, Kohshi; Hirayama, Masahiro; Komada, Yoshihiro

    2014-06-01

    Recently, a new syndrome of paraganglioma, somatostatinoma, and polycythemia has been discovered (known as Pacak-Zhuang syndrome). This new syndrome, with somatic HIF2A gain-of-function mutations, has never been reported in male patients. We describe a male patient with Pacak-Zhuang syndrome who carries a newly discovered HIF2A mutation. Congenital polycythemias have diverse etiologies, including germline mutations in the oxygen-sensing pathway. These include von Hippel-Lindau (Chuvash polycythemia), prolyl hydroxylase domain-containing protein-2, and hypoxia-inducible factor-2α (HIF-2α). Somatic gain-of-function mutations in the gene encoding HIF-2α were reported in patients with paraganglioma and polycythemia and have been found exclusively in female patients. Through sequencing of the HIF2A using DNA from paraganglioma in 15-year-old male patient, we identified a novel mutation of HIF2A: a heterozygous C to A substitution at base 1589 in exon 12 of HIF2A. The mutation was not found in germline DNA from leukocytes. The C1589A mutations resulted in substitution of alanine 530 in the HIF-2α protein with glutamic acid. This mutation is undoubtedly associated with increased HIF-2α activity and increased protein half-life, because it affects the vicinity of the prolyl hydroxylase target residue, proline 531. To our knowledge, this is the first report describing Pacak-Zhuang syndrome with somatic gain-of-function mutation in HIF2A in a male patient. Congenital polycythemia of unknown origin should raise suspicion for the novel disorder Pacak-Zhuang syndrome, even in male patients. Copyright © 2014 by the American Academy of Pediatrics.

  18. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    Science.gov (United States)

    Werner, Benjamin; Sottoriva, Andrea

    2018-06-01

    The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99)). In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88) in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  19. Variation of mutational burden in healthy human tissues suggests non-random strand segregation and allows measuring somatic mutation rates.

    Directory of Open Access Journals (Sweden)

    Benjamin Werner

    2018-06-01

    Full Text Available The immortal strand hypothesis poses that stem cells could produce differentiated progeny while conserving the original template strand, thus avoiding accumulating somatic mutations. However, quantitating the extent of non-random DNA strand segregation in human stem cells remains difficult in vivo. Here we show that the change of the mean and variance of the mutational burden with age in healthy human tissues allows estimating strand segregation probabilities and somatic mutation rates. We analysed deep sequencing data from healthy human colon, small intestine, liver, skin and brain. We found highly effective non-random DNA strand segregation in all adult tissues (mean strand segregation probability: 0.98, standard error bounds (0.97,0.99. In contrast, non-random strand segregation efficiency is reduced to 0.87 (0.78,0.88 in neural tissue during early development, suggesting stem cell pool expansions due to symmetric self-renewal. Healthy somatic mutation rates differed across tissue types, ranging from 3.5 × 10-9/bp/division in small intestine to 1.6 × 10-7/bp/division in skin.

  20. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  1. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Umeki, Shigeko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Nakamura, Nori; Sasaki, Masao; Mori, Takesaburo; Ishikawa, Yuichi; Cologne, J.B.; Akiyama, Mitoshi.

    1992-10-01

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  2. Suppression of different classes of somatic mutations in Arabidopsis by vir gene-expressing Agrobacterium strains.

    Science.gov (United States)

    Shah, Jasmine M; Ramakrishnan, Anantha Maharasi; Singh, Amit Kumar; Ramachandran, Subalakshmi; Unniyampurath, Unnikrishnan; Jayshankar, Ajitha; Balasundaram, Nithya; Dhanapal, Shanmuhapreya; Hyde, Geoff; Baskar, Ramamurthy

    2015-08-26

    Agrobacterium infection, which is widely used to generate transgenic plants, is often accompanied by T-DNA-linked mutations and transpositions in flowering plants. It is not known if Agrobacterium infection also affects the rates of point mutations, somatic homologous recombinations (SHR) and frame-shift mutations (FSM). We examined the effects of Agrobacterium infection on five types of somatic mutations using a set of mutation detector lines of Arabidopsis thaliana. To verify the effect of secreted factors, we exposed the plants to different Agrobacterium strains, including wild type (Ach5), its derivatives lacking vir genes, oncogenes or T-DNA, and the heat-killed form for 48 h post-infection; also, for a smaller set of strains, we examined the rates of three types of mutations at multiple time-points. The mutation detector lines carried a non-functional β-glucuronidase gene (GUS) and a reversion of mutated GUS to its functional form resulted in blue spots. Based on the number of blue spots visible in plants grown for a further two weeks, we estimated the mutation frequencies. For plants co-cultivated for 48 h with Agrobacterium, if the strain contained vir genes, then the rates of transversions, SHRs and FSMs (measured 2 weeks later) were lower than those of uninfected controls. In contrast, co-cultivation for 48 h with any of the Agrobacterium strains raised the transposition rates above control levels. The multiple time-point study showed that in seedlings co-cultivated with wild type Ach5, the reduced rates of transversions and SHRs after 48 h co-cultivation represent an apparent suppression of an earlier short-lived increase in mutation rates (peaking for plants co-cultivated for 3 h). An increase after 3 h co-cultivation was also seen for rates of transversions (but not SHR) in seedlings exposed to the strain lacking vir genes, oncogenes and T-DNA. However, the mutation rates in plants co-cultivated for longer times with this strain subsequently

  3. NetNorM: Capturing cancer-relevant information in somatic exome mutation data with gene networks for cancer stratification and prognosis.

    Science.gov (United States)

    Le Morvan, Marine; Zinovyev, Andrei; Vert, Jean-Philippe

    2017-06-01

    Genome-wide somatic mutation profiles of tumours can now be assessed efficiently and promise to move precision medicine forward. Statistical analysis of mutation profiles is however challenging due to the low frequency of most mutations, the varying mutation rates across tumours, and the presence of a majority of passenger events that hide the contribution of driver events. Here we propose a method, NetNorM, to represent whole-exome somatic mutation data in a form that enhances cancer-relevant information using a gene network as background knowledge. We evaluate its relevance for two tasks: survival prediction and unsupervised patient stratification. Using data from 8 cancer types from The Cancer Genome Atlas (TCGA), we show that it improves over the raw binary mutation data and network diffusion for these two tasks. In doing so, we also provide a thorough assessment of somatic mutations prognostic power which has been overlooked by previous studies because of the sparse and binary nature of mutations.

  4. Somatic mutations in Tradescantia as a model system for studying the effects of the environmental agents

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1986-01-01

    The application of the plant model system for studying the biological effects of ionizing radiation and chemical mutagens is presented. The model system is based on the somatic mutation frequency in stamen hair cells of Tradescantia clones heterosygous for flower color. The interaction of chemical mutagens with radiation in the induction of somatic mutations was investigated. The results demonstrate the synergistic interaction between radiation and chemical mutagens like ethyl methanesulfonate and di-bromoethane. The synergistic effect is clearly manifested after combined treatment with radiation and chemicals. In the low dose region the effect depends on the radiation dose and chemical exposure. Other results show the influence of the fluoride treatment on the radiation effect. The fluoride treatment is likely to alter the DNA double strand breaks repair processes. Additionally the usefulness of the model system for studying the mutagenic effectiveness of the pollution in the ambient air is presented. 148 refs. (author)

  5. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  6. Immunohistochemical loss of 5-hydroxymethylcytosine expression in acute myeloid leukaemia: relationship to somatic gene mutations affecting epigenetic pathways.

    Science.gov (United States)

    Magotra, Minoti; Sakhdari, Ali; Lee, Paul J; Tomaszewicz, Keith; Dresser, Karen; Hutchinson, Lloyd M; Woda, Bruce A; Chen, Benjamin J

    2016-12-01

    Genes affecting epigenetic pathways are frequently mutated in myeloid malignancies, including acute myeloid leukaemia (AML). The genes encoding TET2, IDH1 and IDH2 are among the most commonly mutated genes, and cause defective conversion of 5-methylcytosine into 5-hydroxymethylcytosine (5hmC), impairing demethylation of DNA, and presumably serving as driver mutations in leukaemogenesis. The aim of this study was to correlate 5hmC immunohistochemical loss with the mutation status of genes involved in epigenetic pathways in AML. Immunohistochemical staining with an anti-5hmC antibody was performed on 41 decalcified, formalin-fixed paraffin-embedded (FFPE) bone marrow biopsies from patients with AML. Archived DNA was subjected to next-generation sequencing for analysis of a panel of genes, including TET2, IDH1, IDH2, WT1 and DNMT3A. TET2, IDH1, IDH2, WT1 and DNMT3A mutations were found in 46% (19/41) of the cases. Ten of 15 cases (67%) with TET2, IDH1, IDH2 or WT1 mutations showed deficient 5hmC staining, whereas nine of 26 cases (35%) without a mutation in these genes showed loss of 5hmC. It is of note that all four cases with TET2 mutations showed deficient 5hmC staining. Overall, somatic mutations in TET2, IDH1, IDH2, WT1 and DNMT3A were common in our cohort of AML cases. Immunohistochemical staining for 5hmC was lost in the majority of cases harbouring mutations in these genes, reflecting the proposed relationship between dysfunctional epigenetic pathways and leukaemogenesis. © 2016 John Wiley & Sons Ltd.

  7. Induction of somatic mutations in ornamental plants by ionizing radiations and chemical mutagens

    International Nuclear Information System (INIS)

    Desai, B.M.; Abraham, V.

    1980-01-01

    Improvement in some ornamental plants through induction of somatic mutations by ionizing radiations and chemical mutagens viz. colchicine, EMS and DS has been attempted. Mutants of high ornamental value have been evolved, isolated and multiplied in canna, perennial portulaca, tuberose, bougainvillea, hibiscus, daisy, lilies. These pertain to changes in colour, shape and size of flower and foliage. Procedural details on induction, isolation, stabilisation of the mutants and description of the new characteristics are presented. (author)

  8. Survey on the frequency of somatic mutations in A-bomb survivors

    International Nuclear Information System (INIS)

    Akiyama, Mitoshi

    1992-01-01

    Several methods have recently been established for quantitatively detecting somatic cell mutations on a specific locus using human blood cells. These methods have enabled the biological estimation of A-bomb radiation doses in surveys on somatic cell mutations. This paper outlines HPRT, GPA, and TCR assays used to measure somatic cell mutations, focusing on the outcome in A-bomb survivors. HPRT assay is based on colony formation with interleukin-2. The frequency of HPRT mutant cells was significantly increased with advancing age in A-bomb survivors and was positively correlated with the frequency of chromosomal aberrations in lymphocytes. There was also a significantly positive correlation between HPRT mutant cell frequencies and DS86 estimated doses, although the slope was slow. In GPA assay, flow cytometric measurements of fluorescence-labeled erythrocytes are used to detect somatic cell mutations. There was a positive correlation between GPA mutant cell frequencies and age in A-bomb survivors. The GPA mutant cell frequencies showed much more positive correlation with lymphocyte chromosomal aberration frequencies than the HPRT mutant cell frequencies. When anti-CD3 antibody and anti-CD4 antibody are labeled with different fluorescences and are analyzed by using flow cytometry, TCR mutant cells having CD3 - 4 + can be detected. When the frequency of TCR mutant cells was examined in 342 A-bomb survivors, it did not correlate with radiation doses. This implies that TCR assay may be unadequate for biological estimation of A-bomb radiation doses throughout a lifetime of A-bomb survivors, because TCR mutant cells seems to be unable to live for a long time due to national selection. (N.K.)

  9. Screening for acyanogenic somatic mutations in cassava (Manihot esculenta Crantz)

    International Nuclear Information System (INIS)

    Moh, C.C.

    1976-01-01

    By irradiating the young stem cuttings (6-8 months old wood) of a cassava cultivar, Japonesa, (Manihot esculenta Crantz) with an acute dose of 4 kR from a 60 CO source, it was found that in a number of cases, the induced mutant characters appeared in the whole R 1 plants or in large chimeric sectors. This result suggested that a cassava plant could develop from one or two initial cells in the shoot apex of a bud. This unusual biological response to radiation provides a great advantage for selection in mutation breeding. By using the sodium picrate method, 2676 leaves from 1338 R 1 plants irradiated with 4 kR were screened for hydrocyanic acid content (HCN). As compared with the control, some leaves had higher and some had lower HCN level, indicating that the radiation broadened the variability. Whether or not those R 1 plants producing a lower level of HCN in the leaves are truly a genetic mutant cannot be ascertained at present. Further screening of the selected R 1 plants in the subsequent vegetative propagation generations will help to distinguish whether they are genetic mutants. (author)

  10. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  11. Classification of breast cancer patients using somatic mutation profiles and machine learning approaches.

    Science.gov (United States)

    Vural, Suleyman; Wang, Xiaosheng; Guda, Chittibabu

    2016-08-26

    The high degree of heterogeneity observed in breast cancers makes it very difficult to classify the cancer patients into distinct clinical subgroups and consequently limits the ability to devise effective therapeutic strategies. Several classification strategies based on ER/PR/HER2 expression or the expression profiles of a panel of genes have helped, but such methods often produce misleading results due to their dynamic nature. In contrast, somatic DNA mutations are relatively stable and lead to initiation and progression of many sporadic cancers. Hence in this study, we explore the use of gene mutation profiles to classify, characterize and predict the subgroups of breast cancers. We analyzed the whole exome sequencing data from 358 ethnically similar breast cancer patients in The Cancer Genome Atlas (TCGA) project. Somatic and non-synonymous single nucleotide variants identified from each patient were assigned a quantitative score (C-score) that represents the extent of negative impact on the gene function. Using these scores with non-negative matrix factorization method, we clustered the patients into three subgroups. By comparing the clinical stage of patients, we identified an early-stage-enriched and a late-stage-enriched subgroup. Comparison of the mutation scores of early and late-stage-enriched subgroups identified 358 genes that carry significantly higher mutations rates in the late stage subgroup. Functional characterization of these genes revealed important functional gene families that carry a heavy mutational load in the late state rich subgroup of patients. Finally, using the identified subgroups, we also developed a supervised classification model to predict the stage of the patients. This study demonstrates that gene mutation profiles can be effectively used with unsupervised machine-learning methods to identify clinically distinguishable breast cancer subgroups. The classification model developed in this method could provide a reasonable

  12. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma.

    Science.gov (United States)

    Kiel, Mark J; Velusamy, Thirunavukkarasu; Betz, Bryan L; Zhao, Lili; Weigelin, Helmut G; Chiang, Mark Y; Huebner-Chan, David R; Bailey, Nathanael G; Yang, David T; Bhagat, Govind; Miranda, Roberto N; Bahler, David W; Medeiros, L Jeffrey; Lim, Megan S; Elenitoba-Johnson, Kojo S J

    2012-08-27

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (∼25%) cases of SMZL and in 1 of 19 (∼5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis.

  13. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977

    International Nuclear Information System (INIS)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves, are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R γ) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth

  14. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  15. Development of a human somatic mutation detection method--GPA assay

    International Nuclear Information System (INIS)

    Mao Jianping; Dong Yan; Liu Bin; Lin Ruxian; Sun Zhixian

    2000-01-01

    Objective: To study the damage to human body caused by environmental radiation, and supervise the somatic mutations. Methods: Three monoclonal antibodies specific to M-type(3G4), N-type(6A8), and MN-type (3C5) of glycophorin A, respectively, were prepared. Fluorescence or biotin conjugated antibodies were bound specifically to formalin and/or dimethyl suber-imidate fixed erythrocytes. M, MN and N type cells were divided by cytometry to demonstrate the erythrocyte mutation characteristics (MN→MO, MM, NO, NN) and give out the variant frequency. Results: 1Wa, 1Wb and 2Wa methods of GPA assay were developed. Erythrocytes of MN type individuals could be separated to normal and single locus variant groups by 1W methods and they could be sorted as normal (MN), single gene deletion mutants (MO, NO), homozygous mutants (MM, NN) cell groups by 2Wa method. Conclusion: The assay is applicable to evaluating the frequency of variant erythrocytes from human somatic mutation

  16. Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting.

    Science.gov (United States)

    Dougherty, Brian A; Lai, Zhongwu; Hodgson, Darren R; Orr, Maria C M; Hawryluk, Matthew; Sun, James; Yelensky, Roman; Spencer, Stuart K; Robertson, Jane D; Ho, Tony W; Fielding, Anitra; Ledermann, Jonathan A; Barrett, J Carl

    2017-07-04

    To gain a better understanding of the role of somatic mutations in olaparib response, next-generation sequencing (NGS) of BRCA1 and BRCA2 was performed as part of a planned retrospective analysis of tumors from a randomized, double-blind, Phase II trial (Study 19; D0810C00019; NCT00753545) in 265 patients with platinum-sensitive high-grade serous ovarian cancer. BRCA1/2 loss-of-function mutations were found in 55% (114/209) of tumors, were mutually exclusive, and demonstrated high concordance with Sanger-sequenced germline mutations in matched blood samples, confirming the accuracy (97%) of tumor BRCA1/2 NGS testing. Additionally, NGS identified somatic mutations absent from germline testing in 10% (20/209) of the patients. Somatic mutations had >80% biallelic inactivation frequency and were predominantly clonal, suggesting that BRCA1/2 loss occurs early in the development of these cancers. Clinical outcomes between placebo- and olaparib-treated patients with somatic BRCA1/2 mutations were similar to those with germline BRCA1/2 mutations, indicating that patients with somatic BRCA1/2 mutations benefit from treatment with olaparib.

  17. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.

    Science.gov (United States)

    Pikman, Yana; Lee, Benjamin H; Mercher, Thomas; McDowell, Elizabeth; Ebert, Benjamin L; Gozo, Maricel; Cuker, Adam; Wernig, Gerlinde; Moore, Sandra; Galinsky, Ilene; DeAngelo, Daniel J; Clark, Jennifer J; Lee, Stephanie J; Golub, Todd R; Wadleigh, Martha; Gilliland, D Gary; Levine, Ross L

    2006-07-01

    The JAK2V617F allele has recently been identified in patients with polycythemia vera (PV), essential thrombocytosis (ET), and myelofibrosis with myeloid metaplasia (MF). Subsequent analysis has shown that constitutive activation of the JAK-STAT signal transduction pathway is an important pathogenetic event in these patients, and that enzymatic inhibition of JAK2V617F may be of therapeutic benefit in this context. However, a significant proportion of patients with ET or MF are JAK2V617F-negative. We hypothesized that activation of the JAK-STAT pathway might also occur as a consequence of activating mutations in certain hematopoietic-specific cytokine receptors, including the erythropoietin receptor (EPOR), the thrombopoietin receptor (MPL), or the granulocyte-colony stimulating factor receptor (GCSFR). DNA sequence analysis of the exons encoding the transmembrane and juxtamembrane domains of EPOR, MPL, and GCSFR, and comparison with germline DNA derived from buccal swabs, identified a somatic activating mutation in the transmembrane domain of MPL (W515L) in 9% (4/45) of JAKV617F-negative MF. Expression of MPLW515L in 32D, UT7, or Ba/F3 cells conferred cytokine-independent growth and thrombopoietin hypersensitivity, and resulted in constitutive phosphorylation of JAK2, STAT3, STAT5, AKT, and ERK. Furthermore, a small molecule JAK kinase inhibitor inhibited MPLW515L-mediated proliferation and JAK-STAT signaling in vitro. In a murine bone marrow transplant assay, expression of MPLW515L, but not wild-type MPL, resulted in a fully penetrant myeloproliferative disorder characterized by marked thrombocytosis (Plt count 1.9-4.0 x 10(12)/L), marked splenomegaly due to extramedullary hematopoiesis, and increased reticulin fibrosis. Activation of JAK-STAT signaling via MPLW515L is an important pathogenetic event in patients with JAK2V617F-negative MF. The bone marrow transplant model of MPLW515L-mediated myeloproliferative disorders (MPD) exhibits certain features of human MF

  18. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia.

    Directory of Open Access Journals (Sweden)

    Yana Pikman

    2006-07-01

    Full Text Available The JAK2V617F allele has recently been identified in patients with polycythemia vera (PV, essential thrombocytosis (ET, and myelofibrosis with myeloid metaplasia (MF. Subsequent analysis has shown that constitutive activation of the JAK-STAT signal transduction pathway is an important pathogenetic event in these patients, and that enzymatic inhibition of JAK2V617F may be of therapeutic benefit in this context. However, a significant proportion of patients with ET or MF are JAK2V617F-negative. We hypothesized that activation of the JAK-STAT pathway might also occur as a consequence of activating mutations in certain hematopoietic-specific cytokine receptors, including the erythropoietin receptor (EPOR, the thrombopoietin receptor (MPL, or the granulocyte-colony stimulating factor receptor (GCSFR.DNA sequence analysis of the exons encoding the transmembrane and juxtamembrane domains of EPOR, MPL, and GCSFR, and comparison with germline DNA derived from buccal swabs, identified a somatic activating mutation in the transmembrane domain of MPL (W515L in 9% (4/45 of JAKV617F-negative MF. Expression of MPLW515L in 32D, UT7, or Ba/F3 cells conferred cytokine-independent growth and thrombopoietin hypersensitivity, and resulted in constitutive phosphorylation of JAK2, STAT3, STAT5, AKT, and ERK. Furthermore, a small molecule JAK kinase inhibitor inhibited MPLW515L-mediated proliferation and JAK-STAT signaling in vitro. In a murine bone marrow transplant assay, expression of MPLW515L, but not wild-type MPL, resulted in a fully penetrant myeloproliferative disorder characterized by marked thrombocytosis (Plt count 1.9-4.0 x 10(12/L, marked splenomegaly due to extramedullary hematopoiesis, and increased reticulin fibrosis.Activation of JAK-STAT signaling via MPLW515L is an important pathogenetic event in patients with JAK2V617F-negative MF. The bone marrow transplant model of MPLW515L-mediated myeloproliferative disorders (MPD exhibits certain features of

  19. MutSpec: a Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse cancer genomes.

    Science.gov (United States)

    Ardin, Maude; Cahais, Vincent; Castells, Xavier; Bouaoun, Liacine; Byrnes, Graham; Herceg, Zdenko; Zavadil, Jiri; Olivier, Magali

    2016-04-18

    The nature of somatic mutations observed in human tumors at single gene or genome-wide levels can reveal information on past carcinogenic exposures and mutational processes contributing to tumor development. While large amounts of sequencing data are being generated, the associated analysis and interpretation of mutation patterns that may reveal clues about the natural history of cancer present complex and challenging tasks that require advanced bioinformatics skills. To make such analyses accessible to a wider community of researchers with no programming expertise, we have developed within the web-based user-friendly platform Galaxy a first-of-its-kind package called MutSpec. MutSpec includes a set of tools that perform variant annotation and use advanced statistics for the identification of mutation signatures present in cancer genomes and for comparing the obtained signatures with those published in the COSMIC database and other sources. MutSpec offers an accessible framework for building reproducible analysis pipelines, integrating existing methods and scripts developed in-house with publicly available R packages. MutSpec may be used to analyse data from whole-exome, whole-genome or targeted sequencing experiments performed on human or mouse genomes. Results are provided in various formats including rich graphical outputs. An example is presented to illustrate the package functionalities, the straightforward workflow analysis and the richness of the statistics and publication-grade graphics produced by the tool. MutSpec offers an easy-to-use graphical interface embedded in the popular Galaxy platform that can be used by researchers with limited programming or bioinformatics expertise to analyse mutation signatures present in cancer genomes. MutSpec can thus effectively assist in the discovery of complex mutational processes resulting from exogenous and endogenous carcinogenic insults.

  20. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne Vibeke

    2016-01-01

    a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2...

  1. Endometrial cancer and somatic G>T KRAS transversion in patients with constitutional MUTYH biallelic mutations.

    Science.gov (United States)

    Tricarico, Rossella; Bet, Paola; Ciambotti, Benedetta; Di Gregorio, Carmela; Gatteschi, Beatrice; Gismondi, Viviana; Toschi, Benedetta; Tonelli, Francesco; Varesco, Liliana; Genuardi, Maurizio

    2009-02-18

    MUTYH-associated polyposis (MAP) is an autosomal recessive condition predisposing to colorectal cancer, caused by constitutional biallelic mutations in the base excision repair (BER) gene MUTYH. Colorectal tumours from MAP patients display an excess of somatic G>T mutations in the APC and KRAS genes due to defective BER function. To date, few extracolonic manifestations have been observed in MAP patients, and the clinical spectrum of this condition is not yet fully established. Recently, one patient with a diagnosis of endometrial cancer and biallelic MUTYH mutations has been described. We here report on two additional unrelated MAP patients with biallelic MUTYH germline mutations who developed endometrioid endometrial carcinoma. The endometrial tumours were evaluated for PTEN, PIK3CA, KRAS, BRAF and CTNNB1 mutations. A G>T transversion at codon 12 of the KRAS gene was observed in one tumour. A single 1bp frameshift deletion of PTEN was observed in the same sample. Overall, these findings suggest that endometrial carcinoma is a phenotypic manifestations of MAP and that inefficient repair of oxidative damage can be involved in its pathogenesis.

  2. Clinical implications of somatic mutations in aplastic anemia and myelodysplastic syndrome in genomic age.

    Science.gov (United States)

    Maciejewski, Jaroslaw P; Balasubramanian, Suresh K

    2017-12-08

    Recent technological advances in genomics have led to the discovery of new somatic mutations and have brought deeper insights into clonal diversity. This discovery has changed not only the understanding of disease mechanisms but also the diagnostics and clinical management of bone marrow failure. The clinical applications of genomics include enhancement of current prognostic schemas, prediction of sensitivity or refractoriness to treatments, and conceptualization and selective application of targeted therapies. However, beyond these traditional clinical aspects, complex hierarchical clonal architecture has been uncovered and linked to the current concepts of leukemogenesis and stem cell biology. Detection of clonal mutations, otherwise typical of myelodysplastic syndrome, in the course of aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria has led to new pathogenic concepts in these conditions and created a new link between AA and its clonal complications, such as post-AA and paroxysmal nocturnal hemoglobinuria. Distinctions among founder vs subclonal mutations, types of clonal evolution (linear or branching), and biological features of individual mutations (sweeping, persistent, or vanishing) will allow for better predictions of the biologic impact they impart in individual cases. As clonal markers, mutations can be used for monitoring clonal dynamics of the stem cell compartment during physiologic aging, disease processes, and leukemic evolution. © 2016 by The American Society of Hematology. All rights reserved.

  3. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A.

    1997-01-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  4. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    International Nuclear Information System (INIS)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis ( 3 H-thymidine, autoradiography) or protein synthesis ( 35 S-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test

  5. Molecular IgV(H) analysis demonstrates highly somatic mutated B cells in synovialitis of osteoarthritis: a degenerative disease is associated with a specific, not locally generated immune response.

    Science.gov (United States)

    Krenn, V; Hensel, F; Kim, H J; Souto Carneiro, M M; Starostik, P; Ristow, G; König, A; Vollmers, H P; Müller-Hermelink, H K

    1999-11-01

    In osteoarthritis (OA), the synovial tissue exhibits a nonfollicular inflammatory infiltration with a characteristic arrangement of lymphocytes and plasma cells. These arrangements are either small perivascular aggregates with plasma cells surrounding the lymphocytes or small groups of plasma cells, located in the vicinity of small blood vessels. These patterns suggest that B lymphocytes directly differentiate into plasma cells. To understand the B-cell response in OA, we analyzed the V(H) genes from B cells of synovial tissue of nine OA patients (average age, 71.5+/-10.5 years; six female and three male). V(H) gene repertoires were determined from RNA prepared from tissue cryosections and from DNA of single isolated B lymphocytes and plasma cells. The inflammatory infiltrate was analyzed immunohistochemically by detecting CD20, Ki-M4 (follicular dendritic cells), CD4, IgG, IgM, IgA, Ki-67, and by simultaneous demonstration of the plasma-cell-specific antigen CD138 (syndecan-1) and factor VIII. The molecular data demonstrate B cells with a high number of somatic mutations (average, 16.5 to 19.8), and high ratios of replacement to silent mutations in the small lymphocytic/plasmacellular aggregates of OA. In the tissue cryosections, the values of the sigmaR/sigmaS at the complementarity determining regions were 5.3 and 2.0 in the framework regions. For both the isolated B lymphocytes and plasma cells, the value of this ratio in the complementarity determining regions was 3.5. In the framework regions, the values of this ratio were 2.0 for the isolated B cells and 1.8 for the plasma cells. B lymphocytes and plasma cells exhibited a distribution not described thus far. Two patterns of B-cell distribution could be observed: (a) Centrally located CD20+ B and CD4+ and CD8+ T lymphocytes were surrounded directly by IgG (predominantly) or IgA and IgM plasma cells. No proliferating Ki-67-positive cells and no follicular dendritic cells (germinal centers) could be detected in

  6. A threshold in the dose-response relationship for X-ray induced somatic mutation frequency in drosophila melanogaster

    International Nuclear Information System (INIS)

    Koana, Takao; Sakai, Kazuo; Okada, M.O.

    2004-01-01

    The dose-response relationship of ionizing radiation and its stochastic effects has been thought to be linear without any thresholds for a long time. The basic data for this model was obtained from mutational assays using germ cells of male fruit fly Drosophila melanogaster. However, cancer-causing activity should be examined more appropriately in somatic cells than in germ cells. In this paper, we examined the dose-response relationship of X-ray irradiation and somatic mutation in drosophila, and found a threshold at approximately 1 Gy in the DNA repair proficient flies. In the repair deficient siblings, the threshold was smaller and the inclination of the dose-response curve was five times steeper. These results suggest that the dose-response relationship between X-ray irradiation and somatic mutation has a threshold, and that the DNA repair function contributes to its formation. (author)

  7. In utero DNA damage from environmental pollution is associated with somatic gene mutation in newborns

    Energy Technology Data Exchange (ETDEWEB)

    Perera, F.; Hemminki, K.; Jedrychowski, W.; Whyatt, R.; Campbell, U.; Hsu, Y.Z.; Santella, R.; Albertini, R.; O' Neill, J.P. [Columbia University, New York, NY (United States). School of Public Health

    2002-10-01

    Transplacental exposure to carcinogenic air pollutants from the combustion of fossil fuels is a growing health concern, given evidence of the heightened susceptibility of the fetus. These mutagenic/carcinogenic pollutants include aromatic compounds such as polycyclic aromatic hydrocarbons that bind to DNA, forming chemical-DNA adducts. The genotoxic effects of transplacental exposure in humans has been investigated by analyzing aromatic-DNA adducts and the frequency of gene mutations at the hypoxanthine-guanine phosphoribosyltransferase (HPRT) locus in umbilical cord and maternal blood samples. Here the authors show, in a cross-sectional study of 67 mothers and 64 newborns from the Krakow Region of Poland, that aromatic-DNA adducts measured by P-32-postlabeling are positively associated with HPRT mutant frequency in the newborns (beta = 0.56, P = 0.03) after controlling for exposure to tobacco smoke, diet, and socioeconomic status. In contrast to the fetus, HPRT mutations and DNA adducts do not reflect similar exposure periods in the mother, and the maternal biomarkers were not correlated. Adducts were higher in the newborn than the mother, indicating differential susceptibility of the fetus to DNA damage; but HPRT mutation frequency was 4-fold lower, consistent with the long lifetime of the biomarker. These results provide the first demonstration of a molecular link between somatic mutation in the newborn and transplacental exposure to common air pollutants, a finding that is relevant to cancer risk assessment.

  8. Somatic mutations in stilbene estrogen-induced Syrian hamster kidney tumors identified by DNA fingerprinting

    Directory of Open Access Journals (Sweden)

    Roy Deodutta

    2004-01-01

    Full Text Available Abstract Kidney tumors from stilbene estrogen (diethylstilbestrol-treated Syrian hamsters were screened for somatic genetic alterations by Random Amplified Polymorphic DNA-polymerase chain-reaction (RAPD-PCR fingerprinting. Fingerprints from tumor tissue were generated by single arbitrary primers and compared with fingerprints for normal tissue from the same animal, as well as normal and tumor tissues from different animals. Sixty one of the arbitrary primers amplified 365 loci that contain approximately 476 kbp of the hamster genome. Among these amplified DNA fragments, 44 loci exhibited either qualitative or quantitative differences between the tumor tissues and normal kidney tissues. RAPD-PCR loci showing decreased and increased intensities in tumor tissue DNA relative to control DNA indicate that loci have undergone allelic losses and gains, respectively, in the stilbene estrogen-induced tumor cell genome. The presence or absence of the amplified DNA fragments indicate homozygous insertions or deletions in the kidney tumor DNA compared to the age-matched normal kidney tissue DNA. Seven of 44 mutated loci also were present in the kidney tissues adjacent to tumors (free of macroscopic tumors. The presence of mutated loci in uninvolved (non-tumor surrounding tissue adjacent to tumors from stilbene estrogen-treated hamsters suggests that these mutations occurred in the early stages of carcinogenesis. The cloning and sequencing of RAPD amplified loci revealed that one mutated locus had significant sequence similarity with the hamster Cyp1A1 gene. The results show the ability of RAPD-PCR to detect and isolate, in a single step, DNA sequences representing genetic alterations in stilbene estrogen-induced cancer cells, including losses of heterozygosity, and homozygous deletion and insertion mutations. RAPD-PCR provides an alternative molecular approach for studying cancer cytogenetics in stilbene estrogen-induced tumors in humans and experimental

  9. The induction of somatic mutations by high-LET radiations using the drosophila assay system

    International Nuclear Information System (INIS)

    Yoshikawa, Isao; Takatsuji, Toshihiro

    2004-01-01

    Two types of somatic mutation in Drosophila melanogaster were examined to evaluate the relative biological effectiveness (RBE) of 252 Cf neutrons and heavy ions (carbon ions and neon ions) accelerated with a synchrotron for inducing mutations as a function of linear energy transfer (LET). One is the loss of heterozygosity for wing-hair mutations and the other the reversion of the mutant white-ivory. The measurements were made using a combined mutation assay system; so that induced mutant wing-hair clones as well as revertant eye-color clones could be detected simultaneously in the same fly. Larvae were irradiated at the age of 3 days post-oviposition. The efficiency of 252 Cf neutrons for inducing wing-hair mosaic spots is very high, RBE=8.5, but that for eye-color mosaic spot is almost equal (RBE=1.2) to that of 137 Cs γ-rays. RBE-LET relationships were obtained for the induction of wing-hair and eye-color mosaic spots. The RBE of carbon and neon ions for producing wing-hair mosaic spots increased with increasing LET values. The RBE for the induction of eye-color mutants did not change with LET. These relationships suggest that more complex types of DNA damage such as non-rejoinable strand breaks or clustered double strand breaks that increase with LET may be responsible for inducing the wing-hair mutation, while simpler forms of molecular damage may induce reversion in the white-ivory allele. (author)

  10. Enhanced susceptibility of a transposable-element-bearing strain of Drosophila melanogaster to somatic eye-color mutations by ethyl nitrosourea, methyl nitrosourea, and X-rays

    International Nuclear Information System (INIS)

    Ryo, H.; Kondo, S.; Rasmuson, B.

    1983-01-01

    A strain of Drosophila with the genes z and w + plus a transposable element (TE) is about 3 times more sensitive than a strain without TE toward somatic eye-color mutations after larval exposure to ethyl nitrosourea, methyl nitrosourea and X-rays. The assay system with TE is simple, reliable, and sensitive for detecting somatic mutations induced in vivo by mutagens. (orig.)

  11. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    OpenAIRE

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Link, Brian K.; Zou, Lihua

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include...

  12. Somatic mosaicism containing double mutations in PTCH1 revealed by generation of induced pluripotent stem cells from nevoid basal cell carcinoma syndrome.

    Science.gov (United States)

    Ikemoto, Yu; Takayama, Yoshinaga; Fujii, Katsunori; Masuda, Mokuri; Kato, Chise; Hatsuse, Hiromi; Fujitani, Kazuko; Nagao, Kazuaki; Kameyama, Kohzoh; Ikehara, Hajime; Toyoda, Masashi; Umezawa, Akihiro; Miyashita, Toshiyuki

    2017-08-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterised by developmental defects and tumorigenesis, such as medulloblastomas and basal cell carcinomas, caused by mutations of the patched-1 ( PTCH1 ) gene. In this article, we seek to demonstrate a mosaicism containing double mutations in PTCH1 in an individual with NBCCS. A de novo germline mutation of PTCH1 (c.272delG) was detected in a 31-year-old woman with NBCCS. Gene analysis of two out of four induced pluripotent stem cell (iPSC) clones established from the patient unexpectedly revealed an additional mutation, c.274delT. Deep sequencing confirmed a low-prevalence somatic mutation (5.5%-15.6% depending on the tissue) identical to the one found in iPSC clones. This is the first case of mosaicism unequivocally demonstrated in NBCCS. Furthermore, the mosaicism is unique in that the patient carries one normal and two mutant alleles. Because these mutations are located in close proximity, reversion error is likely to be involved in this event rather than a spontaneous mutation. In addition, this study indicates that gene analysis of iPSC clones can contribute to the detection of mosaicism containing a minor population carrying a second mutation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Hypochondriasis and somatization in college women: a personal projects analysis.

    Science.gov (United States)

    Karoly, P; Lecci, L

    1993-03-01

    Although the descriptive features of hypochondriasis and somatization have been widely studied, the motivational correlates (goal representations) of individuals manifesting abnormal illness patterns have not been considered. The Personal Projects Analysis method (Little, 1983) was used to contrast the health and nonhealth goals of female undergraduates. Subjects selected 10 goals for evaluation along a series of dimensions. When health pursuits alone were examined, hypochondriasis on the Minnesota Multiphasic Personality Inventory was found to correlate directly with goal appraisal dimensions subsumed by an anxiety-absorption factor and inversely with dimensions characterizing rewardingness, thus suggesting a negativity of health goal construal. Somatizers also pursued more health-related projects than did nonsomatizers; nonhealth goal cognition did not relate as strongly to hypochondriasis. Finally, using discriminant function analysis, goal representations were shown to significantly and substantially differentiate somatizers from nonsomatizers.

  14. Human aging and somatic point mutations in mtDNA: a comparative study of generational differences (grandparents and grandchildren

    Directory of Open Access Journals (Sweden)

    Anderson Nonato do Rosário Marinho

    2011-01-01

    Full Text Available The accumulation of somatic mutations in mtDNA is correlated with aging. In this work, we sought to identify somatic mutations in the HVS-1 region (D-loop of mtDNA that might be associated with aging. For this, we compared 31 grandmothers (mean age: 63 ± 2.3 years and their 62 grandchildren (mean age: 15 ± 4.1 years, the offspring of their daughters. Direct DNA sequencing showed that mutations absent in the grandchildren were detected in a presumably homoplasmic state in three grandmothers and in a heteroplasmic state in an additional 13 grandmothers; no mutations were detected in the remaining 15 grandmothers. However, cloning followed by DNA sequencing in 12 grandmothers confirmed homoplasia in only one of the three mutations previously considered to be homoplasmic and did not confirm heteroplasmy in three out of nine grandmothers found to be heteroplasmic by direct sequencing. Thus, of 12 grandmothers in whom mtDNA was analyzed by cloning, eight were heteroplasmic for mutations not detected in their grandchildren. In this study, the use of genetically related subjects allowed us to demonstrate the occurrence of age-related (> 60 years old mutations (homoplasia and heteroplasmy. It is possible that both of these situations (homoplasia and heteroplasmy were a long-term consequence of mitochondrial oxidative phosphorylation that can lead to the accumulation of mtDNA mutations throughout life.

  15. TGF-beta Sma/Mab signaling mutations uncouple reproductive aging from somatic aging.

    Directory of Open Access Journals (Sweden)

    Shijing Luo

    2009-12-01

    Full Text Available Female reproductive cessation is one of the earliest age-related declines humans experience, occurring in mid-adulthood. Similarly, Caenorhabditis elegans' reproductive span is short relative to its total life span, with reproduction ceasing about a third into its 15-20 day adulthood. All of the known mutations and treatments that extend C. elegans' reproductive period also regulate longevity, suggesting that reproductive span is normally linked to life span. C. elegans has two canonical TGF-beta signaling pathways. We recently found that the TGF-beta Dauer pathway regulates longevity through the Insulin/IGF-1 Signaling (IIS pathway; here we show that this pathway has a moderate effect on reproductive span. By contrast, TGF-beta Sma/Mab signaling mutants exhibit a substantially extended reproductive period, more than doubling reproductive span in some cases. Sma/Mab mutations extend reproductive span disproportionately to life span and act independently of known regulators of somatic aging, such as Insulin/IGF-1 Signaling and Dietary Restriction. This is the first discovery of a pathway that regulates reproductive span independently of longevity and the first identification of the TGF-beta Sma/Mab pathway as a regulator of reproductive aging. Our results suggest that longevity and reproductive span regulation can be uncoupled, although they appear to normally be linked through regulatory pathways.

  16. Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia.

    Science.gov (United States)

    Ren, Weicheng; Li, Wei; Ye, Xiaofei; Liu, Hui; Pan-Hammarström, Qiang

    2017-07-01

    Here, we give an updated overview of the subtype distribution of lymphomas in East Asia and also present the genome sequencing data on two major subtypes of these tumors. The distribution of lymphoma types/subtypes among East Asian countries is very similar, with a lower proportion of B-cell malignancies and a higher proportion of T/natural killer (NK)-cell lymphomas as compared to Western populations. Extranodal NK/T-cell lymphoma is more frequently observed in East Asia, whereas follicular lymphoma and chronic lymphocytic leukemia, are proportionally lower. The incidence rate of lymphoma subtypes in Asians living in the US was generally intermediate to the general rate in US and Asia, suggesting that both genetic and environmental factors may underlie the geographical variations observed.Key cancer driver mutations have been identified in Asian patients with diffuse large B-cell lymphoma or extranodal NK/T-cell lymphoma through genome sequencing. A distinct somatic mutation profile has also been observed in Chinese diffuse large B-cell lymphoma patients. The incidence and distribution of lymphoma subtypes differed significantly between patients from East Asia and Western countries, suggesting subtype-specific etiologic mechanisms. Further studies on the mechanism underlying these geographical variations may give new insights into our understanding of lymphomagenesis.

  17. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    Science.gov (United States)

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  18. Impact of somatic PI3K pathway and ERBB family mutations on pathological complete response (pCR) in HER2-positive breast cancer patients who received neoadjuvant HER2-targeted therapies.

    LENUS (Irish Health Repository)

    Toomey, Sinead

    2017-07-27

    The Cancer Genome Atlas analysis revealed that somatic EGFR, receptor tyrosine-protein kinase erbB-2 (ERBB2), Erb-B2 receptor tyrosine kinase 3 (ERBB3) and Erb-B2 receptor tyrosine kinase 4 (ERBB4) gene mutations (ERBB family mutations) occur alone or co-occur with somatic mutations in the gene encoding the phosphatidylinositol 3-kinase (PI3K) catalytic subunit (PIK3CA) in 19% of human epidermal growth factor receptor 2 (HER2)-positive breast cancers. Because ERBB family mutations can activate the PI3K\\/AKT pathway and likely have similar canonical signalling effects to PI3K pathway mutations, we investigated their combined impact on response to neoadjuvant HER2-targeted therapies.

  19. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  20. Somatic HLA mutations expose the role of class I–mediated autoimmunity in aplastic anemia and its clonal complications

    Science.gov (United States)

    Duke, Jamie L.; Xie, Hongbo M.; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J. D.; Kearns, Jane; Porter, David L.; Podsakoff, Gregory M.; Eisenlohr, Laurence C.; Biegel, Jaclyn A.; Chou, Stella T.; Monos, Dimitrios S.; Bessler, Monica; Olson, Timothy S.

    2017-01-01

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by human leukocyte antigen (HLA)–restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole-exome sequencing (WES), we recently identified 2 patients with aAA with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the major histocompatibility complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping, we screened 66 patients with aAA for somatic HLA class I loss. We found somatic HLA loss in 11 patients (17%), with 13 loss-of-function mutations in HLA-A*33:03, HLA-A*68:01, HLA-B*14:02, and HLA-B*40:02 alleles. Three patients had more than 1 mutation targeting the same HLA allele. Interestingly, HLA-B*14:02 and HLA-B*40:02 were significantly overrepresented in patients with aAA compared with ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA and establishes a novel link between immunogenetics and clonal evolution of patients with aAA. PMID:28971166

  1. Somatic HLA Mutations Expose the Role of Class I-Mediated Autoimmunity in Aplastic Anemia and its Clonal Complications.

    Science.gov (United States)

    Babushok, Daria V; Duke, Jamie L; Xie, Hongbo M; Stanley, Natasha; Atienza, Jamie; Perdigones, Nieves; Nicholas, Peter; Ferriola, Deborah; Li, Yimei; Huang, Hugh; Ye, Wenda; Morrissette, Jennifer J D; Kearns, Jane; Porter, David L; Podsakoff, Gregory M; Eisenlohr, Laurence C; Biegel, Jaclyn A; Chou, Stella T; Monos, Dimitrios S; Bessler, Monica; Olson, Timothy S

    2017-10-10

    Acquired aplastic anemia (aAA) is an acquired deficiency of early hematopoietic cells, characterized by inadequate blood production, and a predisposition to myelodysplastic syndrome (MDS) and leukemia. Although its exact pathogenesis is unknown, aAA is thought to be driven by Human Leukocyte Antigen (HLA)-restricted T cell immunity, with earlier studies favoring HLA class II-mediated pathways. Using whole exome sequencing (WES), we recently identified two aAA patients with somatic mutations in HLA class I genes. We hypothesized that HLA class I mutations are pathognomonic for autoimmunity in aAA, but were previously underappreciated because the Major Histocompatibility Complex (MHC) region is notoriously difficult to analyze by WES. Using a combination of targeted deep sequencing of HLA class I genes and single nucleotide polymorphism array (SNP-A) genotyping we screened 66 aAA patients for somatic HLA class I loss. We found somatic HLA loss in eleven patients (17%), with thirteen loss-of-function mutations in HLA-A *33:03, HLA-A *68:01, HLA-B *14:02 and HLA-B *40:02 alleles. Three patients had more than one mutation targeting the same HLA allele. Interestingly, HLA-B *14:02 and HLA-B *40:02 were significantly overrepresented in aAA patients, compared to ethnicity-matched controls. Patients who inherited the targeted HLA alleles, regardless of HLA mutation status, had a more severe disease course with more frequent clonal complications as assessed by WES, SNP-A, and metaphase cytogenetics, and more frequent secondary MDS. The finding of recurrent HLA class I mutations provides compelling evidence for a predominant HLA class I-driven autoimmunity in aAA, and establishes a novel link between aAA patients' immunogenetics and clonal evolution.

  2. Pre-thymic somatic mutation leads to high mutant frequency at hypoxanthine-guanine phosphoribosyltransferase gene

    Energy Technology Data Exchange (ETDEWEB)

    Jett, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    While characterizing the background mutation spectrum of the Hypoxathine-guanine phosphoribosyltransferase (HPRT) gene in a healthy population, an outlier with a high mutant frequency of thioguanine resistant lymphocytes was found. When studied at the age of 46, this individual had been smoking 60 cigarettes per day for 38 years. His mutant frequency was calculated at 3.6 and 4.2x10{sup {minus}4} for two sampling periods eight months apart. Sequencing analysis of the HPRT gene in his mutant thioguanine resistant T lymphocytes was done to find whether the cells had a high rate of mutation, or if the mutation was due to a single occurrence of mutation and, if so, when in the T lymphocyte development the mutation occurred. By T-cell receptor analysis it has been found that out of 35 thioguanine resistant clones there was no dominant gamma T cell receptor gene rearrangement. During my appointment in the Science & Engineering Research Semester, I found that 34 of those clones have the same base substitution of G{yields}T at cDNA position 197. Due to the consistent mutant frequency from both sampling periods and the varying T cell receptors, the high mutant frequency cannot be due to recent proliferation of a mature mutant T lymphocyte. From the TCR and DNA sequence analysis we conclude that the G{yields}T mutation must have occurred in a T lymphocyte precursor before thymic differentiation so that the thioguanine resistant clones share the same base substitution but not the same gamma T cell receptor gene.

  3. Trichloroethylene exposure and somatic mutations of the VHL gene in patients with Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Fevotte Joelle

    2007-11-01

    Full Text Available Abstract Background We investigated the association between exposure to trichloroethylene (TCE and mutations in the von Hippel-Lindau (VHL gene and the subsequent risk for renal cell carcinoma (RCC. Methods Cases were recruited from a case-control study previously carried out in France that suggested an association between exposures to high levels of TCE and increased risk of RCC. From 87 cases of RCC recruited for the epidemiological study, 69 were included in the present study. All samples were evaluated by a pathologist in order to identify the histological subtype and then be able to focus on clear cell RCC. The majority of the tumour samples were fixed either in formalin or Bouin's solutions. The majority of the tumours were of the clear cell RCC subtype (48 including 2 cystic RCC. Mutation screening of the 3 VHL coding exons was carried out. A descriptive analysis was performed to compare exposed and non exposed cases of clear cell RCC in terms of prevalence of mutations in both groups. Results In the 48 cases of RCC, four VHL mutations were detected: within exon 1 (c.332G>A, p.Ser111Asn, at the exon 2 splice site (c.463+1G>C and c.463+2T>C and within exon 3 (c.506T>C, p.Leu169Pro. No difference was observed regarding the frequency of mutations in exposed versus unexposed groups: among the clear cell RCC, 25 had been exposed to TCE and 23 had no history of occupational exposure to TCE. Two patients with a mutation were identified in each group. Conclusion This study does not confirm the association between the number and type of VHL gene mutations and exposure to TCE previously described.

  4. A Somatic HIF2α Mutation-Induced Multiple and Recurrent Pheochromocytoma/Paraganglioma with Polycythemia: Clinical Study with Literature Review.

    Science.gov (United States)

    Liu, Qiuli; Wang, Yan; Tong, Dali; Liu, Gaolei; Yuan, Wenqiang; Zhang, Jun; Ye, Jin; Zhang, Yao; Yuan, Gang; Feng, Qingxing; Zhang, Dianzheng; Jiang, Jun

    2017-03-01

    A syndrome known as pheochromocytomas (PCC)/paragangliomas (PGL) and polycythemia resulted from gain-of-function mutation of hypoxia-inducible factor 2α (HIF2α) has been reported recently. However, clinical features of this syndrome vary from patient to patient. In our study, we described the clinical features of the patient within 15-year follow-up with a literature review. The patient presented with "red face" since childhood and was diagnosed with polycythemia and pheochromocytoma in 2000, and then, tumor was removed at his age of 27 (year 2000). However, 13 years later (2013), he was diagnosed with multiple paragangliomas. Moreover, 2 years later (2015), another two paragangaliomas were also confirmed. Genetic analysis of hereditary PCC/PGL-related genes was conducted. A somatic heterozygous missense mutation of HIF2α (c.1589C>T) was identified at exon 12, which is responsible for the elevated levels of HIF2α and erythropoietin (EPO) and subsequent development of paragangaliomas. However, this mutation was only found in the tumors from three different areas, not in the blood. So far, 13 cases of PCC/PGL with polycythemia have been reported. Among them, somatic mutations of HIF2α at exon 12 are responsible for 12 cases, and only 1 case was caused by germline mutation of HIF2α at exon 9. The HIF2α mutation-induced polycythemia with PCC/PGL is a rare syndrome with no treatment for cure. Comprehensive therapies for this disease include removal of the tumors and intermittent phlebotomies; administration of medications to control blood pressure and to prevent complications or death resulted from high concentration of red blood cell (RBC). Genetic test is strongly recommended for patients with early onset of polycythemia and multiple/recurrent PCC/PGL.

  5. Targeted capture massively parallel sequencing analysis of LCIS and invasive lobular cancer: Repertoire of somatic genetic alterations and clonal relationships.

    Science.gov (United States)

    Sakr, Rita A; Schizas, Michail; Carniello, Jose V Scarpa; Ng, Charlotte K Y; Piscuoglio, Salvatore; Giri, Dilip; Andrade, Victor P; De Brot, Marina; Lim, Raymond S; Towers, Russell; Weigelt, Britta; Reis-Filho, Jorge S; King, Tari A

    2016-02-01

    Lobular carcinoma in situ (LCIS) has been proposed as a non-obligate precursor of invasive lobular carcinoma (ILC). Here we sought to define the repertoire of somatic genetic alterations in pure LCIS and in synchronous LCIS and ILC using targeted massively parallel sequencing. DNA samples extracted from microdissected LCIS, ILC and matched normal breast tissue or peripheral blood from 30 patients were subjected to massively parallel sequencing targeting all exons of 273 genes, including the genes most frequently mutated in breast cancer and DNA repair-related genes. Single nucleotide variants and insertions and deletions were identified using state-of-the-art bioinformatics approaches. The constellation of somatic mutations found in LCIS (n = 34) and ILC (n = 21) were similar, with the most frequently mutated genes being CDH1 (56% and 66%, respectively), PIK3CA (41% and 52%, respectively) and CBFB (12% and 19%, respectively). Among 19 LCIS and ILC synchronous pairs, 14 (74%) had at least one identical mutation in common, including identical PIK3CA and CDH1 mutations. Paired analysis of independent foci of LCIS from 3 breasts revealed at least one common mutation in each of the 3 pairs (CDH1, PIK3CA, CBFB and PKHD1L1). LCIS and ILC have a similar repertoire of somatic mutations, with PIK3CA and CDH1 being the most frequently mutated genes. The presence of identical mutations between LCIS-LCIS and LCIS-ILC pairs demonstrates that LCIS is a clonal neoplastic lesion, and provides additional evidence that at least some LCIS are non-obligate precursors of ILC. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers.

    Science.gov (United States)

    Briggs, Sarah; Tomlinson, Ian

    2013-06-01

    Polymerases ε and δ are the main enzymes that replicate eukaryotic DNA. Accurate replication occurs through Watson-Crick base pairing and also through the action of the polymerases' exonuclease (proofreading) domains. We have recently shown that germline exonuclease domain mutations (EDMs) of POLE and POLD1 confer a high risk of multiple colorectal adenomas and carcinoma (CRC). POLD1 mutations also predispose to endometrial cancer (EC). These mutations are associated with high penetrance and dominant inheritance, although the phenotype can be variable. We have named the condition polymerase proofreading-associated polyposis (PPAP). Somatic POLE EDMs have also been found in sporadic CRCs and ECs, although very few somatic POLD1 EDMs have been detected. Both the germline and the somatic DNA polymerase EDMs cause an 'ultramutated', apparently microsatellite-stable, type of cancer, sometimes leading to over a million base substitutions per tumour. Here, we present the evidence for POLE and POLD1 as important contributors to the pathogenesis of CRC and EC, and highlight some of the key questions in this emerging field. Copyright © 2013 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  7. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    Science.gov (United States)

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  8. High-throughput in vivo genotoxicity testing: an automated readout system for the somatic mutation and recombination test (SMART.

    Directory of Open Access Journals (Sweden)

    Benoit Lombardot

    Full Text Available Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods.

  9. Somatic loss of function mutations in neurofibromin 1 and MYC associated factor X genes identified by exome-wide sequencing in a wild-type GIST case

    International Nuclear Information System (INIS)

    Belinsky, Martin G.; Rink, Lori; Cai, Kathy Q.; Capuzzi, Stephen J.; Hoang, Yen; Chien, Jeremy; Godwin, Andrew K.; Mehren, Margaret von

    2015-01-01

    Approximately 10–15 % of gastrointestinal stromal tumors (GISTs) lack gain of function mutations in the KIT and platelet-derived growth factor receptor alpha (PDGFRA) genes. An alternate mechanism of oncogenesis through loss of function of the succinate-dehydrogenase (SDH) enzyme complex has been identified for a subset of these “wild type” GISTs. Paired tumor and normal DNA from an SDH-intact wild-type GIST case was subjected to whole exome sequencing to identify the pathogenic mechanism(s) in this tumor. Selected findings were further investigated in panels of GIST tumors through Sanger DNA sequencing, quantitative real-time PCR, and immunohistochemical approaches. A hemizygous frameshift mutation (p.His2261Leufs*4), in the neurofibromin 1 (NF1) gene was identified in the patient’s GIST; however, no germline NF1 mutation was found. A somatic frameshift mutation (p.Lys54Argfs*31) in the MYC associated factor X (MAX) gene was also identified. Immunohistochemical analysis for MAX on a large panel of GISTs identified loss of MAX expression in the MAX-mutated GIST and in a subset of mainly KIT-mutated tumors. This study suggests that inactivating NF1 mutations outside the context of neurofibromatosis may be the oncogenic mechanism for a subset of sporadic GIST. In addition, loss of function mutation of the MAX gene was identified for the first time in GIST, and a broader role for MAX in GIST progression was suggested. The online version of this article (doi:10.1186/s12885-015-1872-y) contains supplementary material, which is available to authorized users

  10. Non-hyperfunctioning nodules from multinodular goiters: a minor role in pathogenesis for somatic activating mutations in the TSH-receptor and Gsalpha subunit genes.

    Science.gov (United States)

    Derrien, C; Sonnet, E; Gicquel, I; Le Gall, J Y; Poirier, J Y; David, V; Maugendre, D

    2001-05-01

    Constitutive activation of the cAMP pathway stimulates thyrocyte proliferation. Gain-of-function mutations in Gsalpha protein have already been identified in thyroid nodules which have lost the ability to trap iodine. In contrast, most of the studies failed to detect somatic activating mutations in the thyrotropin receptor (TSH-R) in non-hyperfunctioning thyroid tumors. The aim of this study was to screen for mutations TSH-R exon 10, encoding the whole intracytoplasmic area involved in signal transduction, and Gsalpha exons 8 and 9, containing the two hot-spot codons 201 and 227, in a subset of non-hyperfunctioning nodules from multinodular goiter. Identified by matching ultrasonography and scintiscan, 22 eufunctioning (normal 99Tc uptake) and 15 nonfunctioning (decreased 99Tc uptake) nodules from 27 non-toxic multinodular goiters were isolated. After DNA extraction, TSH-R exon 10 was analyzed by direct sequencing of the PCR products and Gsalpha exons 8 and 9 by Denaturing Gradient Gel Electrophoresis. No mutation of TSH-R or Gsalpha was detected in the 37 nodules analyzed. This absence of mutation, despite the use of two sensitive screening methods associated with the analysis of the TSH-R whole intracytoplasmic area and Gsalpha two hot-spot codons, suggests that TSH-R and Gsalpha play a minor role in the pathogenesis of non-toxic nodules from multinodular goiters.

  11. The uranyl influence on a mutation process in germ and somatic cells of mice

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Mosseh, I.B.; Molofej, V.P.

    2008-01-01

    The mutagenic effect of uranyl was revealed by the chromosome rearrangement test in germ and somatic cells of mice. The effect value depended on duration of substance administration into organism. (authors)

  12. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    Science.gov (United States)

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  13. Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study

    DEFF Research Database (Denmark)

    Rose, Giuseppina; Romeo, Giuseppe; Dato, Serena

    2010-01-01

    and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions....

  14. Somatic mosaicism for the COL7A1 mutation p.Gly2034Arg in the unaffected mother of a patient with dystrophic epidermolysis bullosa pruriginosa

    NARCIS (Netherlands)

    van den Akker, P. C.; Pasmooij, A. M. G.; Meijer, R.; Scheffer, H.; Jonkman, M. F.

    Dystrophic epidermolysis bullosa (DEB) is a heritable blistering disorder caused by mutations in the type VII collagen gene, COL7A1. Although revertant mosaicism is well known in DEB, 'forward' somatic mosaicism, in which a pathogenic mutation arises on a wild-type (WT) background, extending beyond

  15. Somatic mosaicism for the COL7A1 mutation p.Gly2034Arg in the unaffected mother of a patient with dystrophic epidermolysis bullosa pruriginosa

    NARCIS (Netherlands)

    Akker, P.C. van den; Pasmooij, A.M.; Meijer, R.; Scheffer, H.; Jonkman, M.F.

    2015-01-01

    Dystrophic epidermolysis bullosa (DEB) is a heritable blistering disorder caused by mutations in the type VII collagen gene, COL7A1. Although revertant mosaicism is well known in DEB, 'forward' somatic mosaicism, in which a pathogenic mutation arises on a wild-type (WT) background, extending beyond

  16. Abiotic stress leads to somatic and heritable changes in homologous recombination frequency, point mutation frequency and microsatellite stability in Arabidopsis plants

    International Nuclear Information System (INIS)

    Yao Youli; Kovalchuk, Igor

    2011-01-01

    In earlier studies, we showed that abiotic stresses, such as ionizing radiation, heavy metals, temperature and water, trigger an increase in homologous recombination frequency (HRF). We also demonstrated that many of these stresses led to inheritance of high-frequency homologous recombination, HRF. Although an increase in recombination frequency is an important indicator of genome rearrangements, it only represents a minor portion of possible stress-induced mutations. Here, we analyzed the influence of heat, cold, drought, flood and UVC abiotic stresses on two major types of mutations in the genome, point mutations and small deletions/insertions. We used two transgenic lines of Arabidopsis thaliana, one allowing an analysis of reversions in a stop codon-containing inactivated β-glucuronidase transgene and another one allowing an analysis of repeat stability in a microsatellite-interrupted β-glucuronidase transgene. The transgenic Arabidopsis line carrying the β-glucuronidase-based homologous recombination substrate was used as a positive control. We showed that the majority of stresses increased the frequency of point mutations, homologous recombination and microsatellite instability in somatic cells, with the frequency of homologous recombination being affected the most. The analysis of transgenerational changes showed an increase in HRF to be the most prominent effect observed in progeny. Significant changes in recombination frequency were observed upon exposure to all types of stress except drought, whereas changes in microsatellite instability were observed upon exposure to UVC, heat and cold. The frequency of point mutations in the progeny of stress-exposed plants was the least affected; an increase in mutation frequency was observed only in the progeny of plants exposed to UVC. We thus conclude that transgenerational changes in genome stability in response to stress primarily involve an increase in recombination frequency.

  17. Simultaneous DNA and RNA mapping of somatic mitochondrial mutations across diverse human cancers

    DEFF Research Database (Denmark)

    Stewart, James B.; Alaei-Mahabadi, Babak; Radhakrishnan, Sabarinathan

    2015-01-01

    of evidence from both genomic and transcriptomic sequencing. We find that there is selective pressure against deleterious coding mutations, supporting that functional mitochondria are required in tumor cells, and also observe a strong mutational strand bias, compatible with endogenous replication...

  18. TumorTracer: a method to identify the tissue of origin from the somatic mutations of a tumor specimen

    DEFF Research Database (Denmark)

    Marquard, Andrea Marion; Birkbak, Nicolai Juul; Thomas, Cecilia Engel

    2015-01-01

    A substantial proportion of cancer cases present with a metastatic tumor and require further testing to determine the primary site; many of these are never fully diagnosed and remain cancer of unknown primary origin (CUP). It has been previously demonstrated that the somatic point mutations......-copy-number classifier on three independent data sets: 1669 newly available public tumors of various types, a cohort of 91 breast metastases, and a set of 24 specimens from 9 lung cancer patients subjected to multiregion sequencing. The cross-validation accuracy was highest when all three types of information were used...... detected in a tumor can be used to identify its site of origin with limited accuracy. We hypothesized that higher accuracy could be achieved by a classification algorithm based on the following feature sets: 1) the number of nonsynonymous point mutations in a set of 232 specific cancer-associated genes, 2...

  19. Comparison of somatic mutation frequencies at HGPRT locus induced by radiation and chemical pollutant from energy system

    International Nuclear Information System (INIS)

    Xu Honglan; Cao Yi; Duan Zhikai; Wu Qiqing; Chen Ying; Zhang Shuxian

    1998-12-01

    The somatic induction frequencies of mutation at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus induced by 60 Co γ-rays and Benzo-a-pyrene (B(a)P), which are representative of hazardous emission and pollutant from nuclear energy cycle and fossil-fuelled energy cycle respectively, were detected by using forward mutation assay and cloning technique in both V 79 Chinese hamster cells and human peripheral blood T-lymphocytes. Resistant mutants were selected with 6-thioguanine (6-TG). Dose-response curves and mathematical expressions were obtained for mutation frequencies and survival following γ-ray and B(a)P(+S 9 ) treatments. The dose ranges for the two mutagens were compared when they induced the same mutation frequencies. In V 79 /HGPRT assay system, when the mutation frequencies were 5∼35 mutants/10 6 cells the response of γ-rays in the dose range from 0.93∼4.96 Gy at dose rate of 1.16 Gy/min is nearly equivalent to that in the B(a)P dose range from 0.52∼4.27 μg/ml. By using cloning technique in T-lymphocytes, when the mutation frequencies were 1∼14 mutants/10 5 cells the response of γ-rays in the dose range from 0.05∼4.77 Gy at dose rate of 1.03 Gy/min is nearly equivalent to that in the B(a)P dose range from 0.15∼7.36 μg/ml. When the survival fraction is 37%, the mutation frequency induced by B(a)P is higher than that induced by 60 Co γ-rays

  20. Somatic mutation and recombination induced by fast neutrons in the wing spot test of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Guzman R, J.; Varela, A.; Policroniades, R.; Delfin, A.; Graf, U.

    1994-01-01

    In the last decades, a large number of studies have been undertaken to evaluate the biological effects of gamma and X rays in Drosophila melanogaster. The majority of these investigations were performed on female and male germ cells. However, comparatively little is known in relation to the biological effects of fast neutrons, and especially in relation to their effects in somatic cells. (Author)

  1. Polyphenols distributions and reserve substances analysis in cacao somatic embryogenesis

    OpenAIRE

    Adriana María Gallego Rúa; Ana María Henao Ramírez; Aura Inés Urrea Trujillo; Lucía Atehortúa Garcés

    2016-01-01

    ABSTRACTIn order to understand the causes of lack of regeneration in cacao somatic embryos, two cacao varieties with different responses to regeneration potential were described based on their capacity to store different compounds. It is well known that seed reserves play a central role in the regenerative capability of somatic embryos; thus, we followed histochemical changes and reserve fluctuations of proteins, polysaccharides and polyphenols during somatic embryogenesis (SE) in the two cac...

  2. POLYPHENOLS DISTRIBUTION AND RESERVE SUBSTANCES ANALYSIS IN CACAO SOMATIC EMBRYOGENESIS

    OpenAIRE

    GALLEGO RÚA, Adriana María; HENAO RAMÍREZ, Ana María; URREA TRUJILLO, Aura Inés; ATEHORTÚA GARCÉS, Lucía

    2016-01-01

    In order to understand the causes of lack of regeneration in cacao somatic embryos, two cacao varieties with different responses to regeneration potential were described based on their capacity to store different compounds. It is well known that seed reserves play a central role in the regenerative capability of somatic embryos; thus, we followed histochemical changes and reserve fluctuations of proteins, polysaccharides and polyphenols during somatic embryogenesis (SE) in the two cacao varie...

  3. A Threshold Exists in the Dose-response Relationship for Somatic Mutation Frequency Inducted by X-ray Irradiation of Drosophia

    International Nuclear Information System (INIS)

    Koana, T.; Takashima, Y.; Okada, M. O.; Ikehata, M.; Miyakoshi, J.; Sakai, K.

    2004-01-01

    The dose-response relationship of ionizing radiation and its stochastic effects has been thought to be linear without any thresholds. The basic data for this model was obtained from mutational assays in the male germ cells of fruits fly Drosophila melanogaster. However, carcinogenic activity should be examined more appropriately in somatic cells than in germ cells. Here, the dose-response relationship of X- ray irradiation and somatic mutation is examined in Drosophila. A threshold at approximately 1Gy was observed in the DNA repair proficient flies. In the repair deficient siblings, the threshold was smaller and the inclination of the dose-response curve was much steeper. These results suggest that the dose-response relationship between X-ray irradiation and somatic mutation has a threshold, and that the DNA repair function contributes to its formation. (Author) 35 refs

  4. Induction of somatic mutations by low-dose X-rays: the challenge in recognizing radiation-induced events.

    Science.gov (United States)

    Nagashima, Haruki; Shiraishi, Kumiko; Ohkawa, Saori; Sakamoto, Yuki; Komatsu, Kenshi; Matsuura, Shinya; Tachibana, Akira; Tauchi, Hiroshi

    2017-10-19

    It is difficult to distinguish radiation-induced events from spontaneous events during induction of stochastic effects, especially in the case of low-dose or low-dose-rate exposures. By using a hypersensitive system for detecting somatic mutations at the HPRT1 locus, we investigated the frequency and spectrum of mutations induced by low-dose X-rays. The mutant frequencies induced by doses of >0.15 Gy were statistically significant when compared with the spontaneous frequency, and a clear dose dependency was also observed for mutant frequencies at doses of >0.15 Gy. In contrast, mutant frequencies at doses of 0.2 Gy. Our observations suggest that there could be a critical dose for mutation induction at between 0.1 Gy and 0.2 Gy, where mutagenic events are induced by multiple DNA double-strand breaks (DSBs). These observations also suggest that low-dose radiation delivered at doses of <0.1 Gy may not result in DSB-induced mutations but may enhance spontaneous mutagenesis events. © The Author 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  5. Somatic mutation in larvae of the silkworm, Bombyx mori, induced by heavy ion irradiation to diapause eggs

    Energy Technology Data Exchange (ETDEWEB)

    Kotani, Eiji; Furusawa, Toshiharu [Kyoto Inst. of Tech. (Japan). Faculty of Textile Science; Nagaoka, Shunji [Fujita Health Univ., Toyoake, Aichi (Japan). School of Health Sciences] [and others

    2002-12-01

    In order to investigate whether eggs of the black-striped strain (P{sup S}) of the silkworm, Bombyx mori, represent an appropriate model for estimating the biological effect of cosmic radiation, radiosensitivity of the eggs against X-rays and heavy ion particles was examined as ground-based experiments. The exposure of diapause eggs to X-rays or heavy ion particles resulted in somatic mutations appearing as a white spot on the black integument during larval stage. Irradiation of non-diapause eggs with X-rays demonstrated a significant difference in frequency of the mutation between fractionated and single administration doses, but no difference was observed in diapause eggs. Incidence of the mutation as induced by carbon ion beams for 15-day old eggs was higher for eggs that had been kept at 15 deg C than those kept at 25 deg C. Neon beam irradiation of diapause eggs displayed dose- and linear energy transfer (LET)-dependent effects, causing a maximal rate of the mutation at 150 keV/{mu}m. These results confirm that B. mori eggs represent valid models for estimating the biological effects of cosmic radiation. (author)

  6. Somatic mutations in PIK3CA and activation of AKT in intraductal tubulopapillary neoplasms of the pancreas.

    Science.gov (United States)

    Yamaguchi, Hiroshi; Kuboki, Yuko; Hatori, Takashi; Yamamoto, Masakazu; Shiratori, Keiko; Kawamura, Shunji; Kobayashi, Makio; Shimizu, Michio; Ban, Shinichi; Koyama, Isamu; Higashi, Morihiro; Shin, Nobuhiro; Ishida, Kazuyuki; Morikawa, Takanori; Motoi, Fuyuhiko; Unno, Michiaki; Kanno, Atsushi; Satoh, Kennichi; Shimosegawa, Tooru; Orikasa, Hideki; Watanabe, Tomoo; Nishimura, Kazuhiko; Harada, Youji; Furukawa, Toru

    2011-12-01

    Intraductal tubulopapillary neoplasm (ITPN) is a recently recognized rare variant of intraductal neoplasms of the pancreas. Molecular aberrations underlying the neoplasm remain unknown. We investigated somatic mutations in PIK3CA, PTEN, AKT1, KRAS, and BRAF. We also investigated aberrant expressions of phosphorylated AKT, phosphatase and tensin homolog (PTEN), tumor protein 53 (TP53), SMAD4, and CTNNB1 in 11 cases of ITPNs and compared these data with those of 50 cases of intraductal papillary mucinous neoplasm (IPMN), another distinct variant of pancreatic intraductal neoplasms. Mutations in PIK3CA were found in 3 of 11 ITPNs but not in IPMNs (P = 0.005; Fisher exact test). In contrast, mutations in KRAS were found in none of the ITPNs but were found in 26 of the 50 IPMNs (P = 0.001; Fisher exact test). PIK3CA mutations were associated with strong expression of phosphorylated AKT (P AKT was apparent in most ITPNs but only in a few IPMNs (P SMAD4, and CTNNB1 were not statistically different between these neoplasms. Mutations in PIK3CA and the expression of phosphorylated AKT were not associated with age, sex, tissue invasion, and patients' prognosis in ITPNs. These results indicate that activation of the phosphatidylinositol 3-kinase pathway may play a crucial role in ITPNs but not in IPMNs. In contrast, the mutation in KRAS seems to play a major role in IPMNs but not in ITPNs. The activated phosphatidylinositol 3-kinase pathway may be a potential target for molecular diagnosis and therapy of ITPNs.

  7. Synchronous Onset of Breast and Pancreatic Cancers: Results of Germline and Somatic Genetic Analysis

    Directory of Open Access Journals (Sweden)

    Michael Castro

    2016-07-01

    Full Text Available Background: Synchronous cancers have occasionally been detected at initial diagnosis among patients with breast and ovarian cancer. However, simultaneous coexistence and diagnosis of breast and pancreas cancer has not previously been reported. Case Report: Paternal transmission of a germline BRCA2 mutation to a patient who was diagnosed at age 40 with locally advanced breast and pancreas cancer is presented. Somatic genomic analysis of both cancers with next-generation DNA sequencing confirmed the germline result and reported a variety of variants of unknown significance alterations, of which two were present in both the breast and pancreas cancers. Discussion: The possibility that genomic alterations could have been responsible for modulating the phenotypic or clinical expression of this rare presentation is considered. The authors call attention to the practice of privatizing the clinicogenetic information gained from genetic testing and call for health policy that will facilitate sharing in order to advance the outcomes of patients diagnosed with hereditary cancers.

  8. Improvement of mutation rate and reduction of somatic effects by double treatment of chemical mutagens in barley

    International Nuclear Information System (INIS)

    Koo, B.C.; Maluszynski, M.

    1996-01-01

    Mutation techniques inducing more useful mutations and reducing somatic effects need to be improved for crop breeding. Seeds of barley varieties; Dema, Grosso were treated with two types of mutagens; 1) chemical treatment: single treatment or double treatment of two mutagens (N-nitroso-N-methylurea ; MNH, Sodium Azide; NaN 3 ) 2) gamma ray irradiation treatment. After treatment, half of seeds were used for germination test and half of seeds were sown to the field. With the higher dose of mutagen both chemical and gamma ray were plants treated, the higher rate of growth reduction rate was in M 1 seedling. In chemical treatment, germination rate of seeds, growth rate of coleoptile and root in double treatment of chemical mutagens were better than single treatments, especially in same dose. Growth inhibition rate of plant in double treatment of 1.0 mM MNH (0.5 mM MNH + 0.5 mM MNH), for example, were less than one of plants of single treatment of 1.0 mM MNH in pot and petri dish test. Growth reduction rate of culm and fertility rate in M 1 plants double treated in same dose of single treatment were also less than single one. With the higher dose of mutagen both chemical and gamma ray were plants treated, the higher frequency of chlorophyll mutants was in M 2 seedling. The rate of chlorophyll mutants in double treatment of chemical mutagens were higher than single treatment. Double treatment methods can be a improved method for induction of new good mutants, which were induced more useful mutations and reduced harmful somatic effects

  9. [THE SOMATIC MUTATIONS AND ABERRANT METHYLATION AS POTENTIAL GENETIC MARKERS OF URINARY BLADDER CANCER].

    Science.gov (United States)

    Mikhailenko, D S; Kushlinskii, N E

    2016-02-01

    All around the world, more than 330 thousands cases of bladder cancer are registered annually hence representing actual problem of modern oncology. Still in demand are search and characteristic of new molecular markers of bladder cancer detecting in tumor cells from urinary sediment and having high diagnostic accuracy. The studies of last decade, especially using methods of genome-wide sequencing, permitted to receive a large amount of experimental data concerning development and progression of bladder cancer The review presents systematic analysis of publications available in PubMed data base mainly of last five years. The original studies of molecular genetic disorders under bladder cancer and meta-analyzes were considered This approach permitted to detected the most common local alterations of DNA under bladder cancer which can be detected using routine genetic methods indifferent clinical material and present prospective interest for development of test-systems. The molecular genetic markers of disease can be activating missense mutations in 7 and 10 exons of gene of receptor of growth factor of fibroblasts 3 (FGFR3), 9 and 20 exons of gene of Phosphatidylinositol-4,5-bi-phosphate-3-kinase (PIK3CA) and mutation in -124 and -146 nucleotides in promoter of gene of catalytic subunit telomerase (TERT). The development of test-systems on the basis of aberrant methylation of CpG-islets of genes-suppressors still is seemed as a difficult task because of differences in pattern of methylation of different primary tumors at various stages of clonal evolution of bladder cancer though they can be considered as potential markers.

  10. Somatic mutation in peripheral blood lymphocytes among Metro Manila residents: indicator of exposure to environmental pollution

    International Nuclear Information System (INIS)

    Yulo-Nazarea, M.T.; Cobar, M.L.C.; Endriga, M.A.; Sta Maria, E.J.; Nato, A.Q.; Eduardo, J.; Dy, R.

    1994-01-01

    Metro Manila is ranked as one of the world's most polluted cities where air quality levels are 2-3 times higher than the levels set by WHO. Development of diseases could be alleviated if early warning signs as occurrence of gene mutations are detected early enough. The adapted hypoxanthine guanine phosphoribosyl transferase (HGPRT) mutation assay measures the degree of mutation on the HGPRT gene and allows rapid evaluation of the occurrence of mutation in an individual exposed to radiation or mutagens within six months after exposure. The objective of the project is to (1) assay exposure of Metro Manila residents exposed to environmental pollution, (2) determine population groups significantly affected by pollutants and (3) construct an environmental baseline HGPRT mutation data bank specific to area in Metro Manila. A composite table of personal information of donors against mutation index in two barangays in Venezuela is presented. About 30% of the total samples are shown to have mutation index greater than 0.5. So far, the data show a slightly higher mutation rate among donors who are smokers with more than 5 hours outdoor exposure to pollutants per day than the corresponding class of non-smokers. (author). 5 refs.; 5 tabs

  11. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer

    NARCIS (Netherlands)

    Peifer, Martin; Fernandez-Cuesta, Lynnette; Sos, Martin L.; George, Julie; Seidel, Danila; Kasper, Lawryn H.; Plenker, Dennis; Leenders, Frauke; Sun, Ruping; Zander, Thomas; Menon, Roopika; Koker, Mirjam; Dahmen, Ilona; Mueller, Christian; Di Cerbo, Vincenzo; Schildhaus, Hans-Ulrich; Altmueller, Janine; Baessmann, Ingelore; Becker, Christian; de Wilde, Bram; Vandesompele, Jo; Boehm, Diana; Ansen, Sascha; Gabler, Franziska; Wilkening, Ines; Heynck, Stefanie; Heuckmann, Johannes M.; Lu, Xin; Carter, Scott L.; Cibulskis, Kristian; Banerji, Shantanu; Getz, Gad; Park, Kwon-Sik; Rauh, Daniel; Gruetter, Christian; Fischer, Matthias; Pasqualucci, Laura; Wright, Gavin; Wainer, Zoe; Russell, Prudence; Petersen, Iver; Chen, Yuan; Stoelben, Erich; Ludwig, Corinna; Schnabel, Philipp; Hoffmann, Hans; Muley, Thomas; Brockmann, Michael; Engel-Riedel, Walburga; Muscarella, Lucia A.; Fazio, Vito M.; Groen, Harry; Timens, Wim; Sietsma, Hannie; Thunnissen, Erik; Smit, Egbert; Heideman, Danielle A. M.; Snijders, Peter J. F.; Cappuzzo, Federico; Ligorio, Claudia; Damiani, Stefania; Field, John; Solberg, Steinar; Brustugun, Odd Terje; Lund-Iversen, Marius; Saenger, Joerg; Clement, Joachim H.; Soltermann, Alex; Moch, Holger; Weder, Walter; Solomon, Benjamin; Soria, Jean-Charles; Validire, Pierre; Besse, Benjamin; Brambilla, Elisabeth; Brambilla, Christian; Lantuejoul, Sylvie; Lorimier, Philippe; Schneider, Peter M.; Hallek, Michael; Pao, William; Meyerson, Matthew; Sage, Julien; Shendure, Jay; Schneider, Robert; Buettner, Reinhard; Wolf, Juergen; Nuernberg, Peter; Perner, Sven; Heukamp, Lukas C.; Brindle, Paul K.; Haas, Stefan; Thomas, Roman K.

    2012-01-01

    Small-cell lung cancer (SCLC) is an aggressive lung tumor subtype with poor prognosis(1-3). We sequenced 29 SCLC exomes, 2 genomes and 15 transcriptomes and found an extremely high mutation rate of 7.4 +/- 1 protein-changing mutations per million base pairs. Therefore, we conducted integrated

  12. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Directory of Open Access Journals (Sweden)

    Matei Irina

    2001-08-01

    Full Text Available Abstract Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP positive and negative gastric carcinomas (GCs. Methods We analyzed 50 gastric carcinomas (GCs for mutations in the BLM poly(A tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases but not in any of the MMP negative GCs (0/35 cases. The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %, BAX (27%, hMSH6 (20%,hMSH3 (13%, CBL (13%, IGFIIR (7%, RECQL (0% and WRN (0%. Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors.

  13. Somatic frameshift mutations in the Bloom syndrome BLM gene are frequent in sporadic gastric carcinomas with microsatellite mutator phenotype

    Science.gov (United States)

    Calin, George; Ranzani, Guglielmina N; Amadori, Dino; Herlea, Vlad; Matei, Irina; Barbanti-Brodano, Giuseppe; Negrini, Massimo

    2001-01-01

    Background Genomic instability has been reported at microsatellite tracts in few coding sequences. We have shown that the Bloom syndrome BLM gene may be a target of microsatelliteinstability (MSI) in a short poly-adenine repeat located in its coding region. To further characterize the involvement of BLM in tumorigenesis, we have investigated mutations in nine genes containing coding microsatellites in microsatellite mutator phenotype (MMP) positive and negative gastric carcinomas (GCs). Methods We analyzed 50 gastric carcinomas (GCs) for mutations in the BLM poly(A) tract aswell as in the coding microsatellites of the TGFβ1-RII, IGFIIR, hMSH3, hMSH6, BAX, WRN, RECQL and CBL genes. Results BLM mutations were found in 27% of MMP+ GCs (4/15 cases) but not in any of the MMP negative GCs (0/35 cases). The frequency of mutations in the other eight coding regions microsatellite was the following: TGFβ1-RII (60 %), BAX (27%), hMSH6 (20%),hMSH3 (13%), CBL (13%), IGFIIR (7%), RECQL (0%) and WRN (0%). Mutations in BLM appear to be more frequently associated with frameshifts in BAX and in hMSH6and/or hMSH3. Tumors with BLM alterations present a higher frequency of unstable mono- and trinucleotide repeats located in coding regions as compared with mutator phenotype tumors without BLM frameshifts. Conclusions BLM frameshifts are frequent alterations in GCs specifically associated with MMP+tumors. We suggest that BLM loss of function by MSI may increase the genetic instability of a pre-existent unstable genotype in gastric tumors. PMID:11532193

  14. Somatic mutation of EZH2 (Y641) in follicular and diffuse large B-cell lymphomas of germinal center origin | Office of Cancer Genomics

    Science.gov (United States)

    Morin et al. describe recurrent somatic mutations in EZH2, a polycomb group oncogene. The mutation, found in the SET domain of this gene encoding a histone methyltransferase, is found only in a subset of lymphoma samples. Specifically, EZH2 mutations are found in about 12% of follicular lymphomas (FL) and almost 23% of diffuse large B-cell lymphomas (DLBCL) of germinal center origin. This paper goes on to demonstrate that altered EZH2 proteins, corresponding to the most frequent mutations found in human lymphomas, have reduced activity using in vitro histone methylation assays.

  15. Biodosimetry of Chernobyl cleanup workers from Estonia and Latvia using the glycophorin A in vivo somatic cell mutation assay

    International Nuclear Information System (INIS)

    Bigbee, W.L.; Jensen, R.H.; Veidebaum, T.

    1997-01-01

    The reactor accident at Chernobyl in 1986 necessitated a massive environmental cleanup that involved over 600,000 workers from all 15 Republics of the former Soviet Union. To determine whether the whole-body radiation received by workers in the course of these decontamination activities resulted in a detectable biological response, over 1,500 blood samples were obtained from cleanup workers sent from two Baltic countries, Estonia and Latvia. Here we report the results of studies of biodosimetry using the glycophorin A (GPA) locus in vivo somatic cell mutation assay applied to 734 blood samples from these workers, to 51 control samples from unexposed Baltic populations and to 94 samples from historical U.S. controls. The data reveal inconsistent evidence that the protracted radiation exposures received by these workers resulted in a significant dose-associated increase in GPA locus mutations compared with the controls. Taken together, these data suggest that the average radiation exposure to these workers does not greatly exceed 10 cGy, the minimum levels at which radiation effects might be detectable by the assay. Although the protracted nature of the exposure may have reduced the efficiency of induction of GPA locus mutations, it is likely that the estimated physical doses for these cleanup worker populations (median reported dose 9.5 cGy) were too low to result in radiation damage to erythroid stem cells that can be detected reliably by this method. 25 refs., 2 figs., 3 tabs

  16. Estimating Exceptionally Rare Germline and Somatic Mutation Frequencies via Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Jordan Eboreime

    Full Text Available We used targeted next generation deep-sequencing (Safe Sequencing System to measure ultra-rare de novo mutation frequencies in the human male germline by attaching a unique identifier code to each target DNA molecule. Segments from three different human genes (FGFR3, MECP2 and PTPN11 were studied. Regardless of the gene segment, the particular testis donor or the 73 different testis pieces used, the frequencies for any one of the six different mutation types were consistent. Averaging over the C>T/G>A and G>T/C>A mutation types the background mutation frequency was 2.6x10-5 per base pair, while for the four other mutation types the average background frequency was lower at 1.5x10-6 per base pair. These rates far exceed the well documented human genome average frequency per base pair (~10-8 suggesting a non-biological explanation for our data. By computational modeling and a new experimental procedure to distinguish between pre-mutagenic lesion base mismatches and a fully mutated base pair in the original DNA molecule, we argue that most of the base-dependent variation in background frequency is due to a mixture of deamination and oxidation during the first two PCR cycles. Finally, we looked at a previously studied disease mutation in the PTPN11 gene and could easily distinguish true mutations from the SSS background. We also discuss the limits and possibilities of this and other methods to measure exceptionally rare mutation frequencies, and we present calculations for other scientists seeking to design their own such experiments.

  17. Is Increased Low-dose somatic Radiosensitivity Associated with Increased Transgenerational Germline Mutation

    International Nuclear Information System (INIS)

    Brenner, David J.

    2008-01-01

    Using single-molecule polymerase chain reaction, the frequency of spontaneous and radiation-induced mutation at an expanded simple tandem repeat (ESTR) locus was studied in DNA samples extracted from sperm and bone marrow of Atm knockout (Atm+/-) heterozygous male mice. The frequency of spontaneous mutation in sperm and bone marrow in Atm+/- males did not significantly differ from that in wild-type BALB/c mice. Acute gamma-ray exposure did not affect ESTR mutation frequency in bone marrow and resulted in similar increases in sperm samples taken from Atm+/- and BALB/c males. Taken together, these results suggest that the Atm haploinsufficiency analyzed in our study does not affect spontaneous and radiation-induced ESTR mutation frequency in mice

  18. NF2 tumor suppressor gene: a comprehensive and efficient detection of somatic mutations by denaturing HPLC and microarray-CGH.

    Science.gov (United States)

    Szijan, Irene; Rochefort, Daniel; Bruder, Carl; Surace, Ezequiel; Machiavelli, Gloria; Dalamon, Viviana; Cotignola, Javier; Ferreiro, Veronica; Campero, Alvaro; Basso, Armando; Dumanski, Jan P; Rouleau, Guy A

    2003-01-01

    The NF2 tumor suppressor gene, located in chromosome 22q12, is involved in the development of multiple tumors of the nervous system, either associated with neurofibromatosis 2 or sporadic ones, mainly schwannomas and meningiomas. In order to evaluate the role of the NF2 gene in sporadic central nervous system (CNS) tumors, we analyzed NF2 mutations in 26 specimens: 14 meningiomas, 4 schwannomas, 4 metastases, and 4 other histopathological types of neoplasms. Denaturing high performance liquid chromatography (denaturing HPLC) and comparative genomic hybridization on a DNA microarray (microarray- CGH) were used as scanning methods for small mutations and gross rearrangements respectively. Small mutations were identified in six out of seventeen meningiomas and schwannomas, one mutation was novel. Large deletions were detected in six meningiomas. All mutations were predicted to result in truncated protein or in the absence of a large protein domain. No NF2 mutations were found in other histopathological types of CNS tumors. These results provide additional evidence that mutations in the NF2 gene play an important role in the development of sporadic meningiomas and schwannomas. Denaturing HPLC analysis of small mutations and microarray-CGH of large deletions are complementary, fast, and efficient methods for the detection of mutations in tumor tissues.

  19. Germline PMS2 and somatic POLE exonuclease mutations cause hypermutability of the leading DNA strand in biallelic mismatch repair deficiency syndrome brain tumours.

    Science.gov (United States)

    Andrianova, Maria A; Chetan, Ghati Kasturirangan; Sibin, Madathan Kandi; Mckee, Thomas; Merkler, Doron; Narasinga, Rao Kvl; Ribaux, Pascale; Blouin, Jean-Louis; Makrythanasis, Periklis; Seplyarskiy, Vladimir B; Antonarakis, Stylianos E; Nikolaev, Sergey I

    2017-11-01

    Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo - , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo - disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  20. Targeted heavy-ion microbeam irradiation of the embryo but not yolk in the diapause-terminated egg of the silkworm, bombyx mori, induces the somatic mutation

    International Nuclear Information System (INIS)

    Furusawa, Toshiharu; Fukamoto, Kana; Sakashita, Tetsuya; Funayama, Tomoo; Kobayashi, Yasuhiko; Kakizaki, Takehiko; Wada, Seiichi; Hamada, Nobuyuki; Suzuki, Hiromi; Ishioka, Noriaki; Nagaoka, Shunji

    2009-01-01

    Using heavy-ion microbeam, we report target irradiation of selected compartments within the diapause-terminated egg and its mutational consequences in the silkworm, Bombyx mori. On one hand, carbon-ion exposure of embryo to 0.5-6 Gy increased the somatic mutation frequency, suggesting targeted radiation effects. On the other, such increases were not observed when yolk was targeted, suggesting a lack of nontargeted bystander effect. (author)

  1. Functional Analysis of Somatic Mutations in Lung Cancer

    Science.gov (United States)

    2015-10-01

    transformed cells. As shown in Figure 4, the 2nd generation inhibitors afatinib and neratinib , originally developed against the EGFR T790M mutant...show Figure. 4. Effect of EGFR inhibitors on growth of Ba/F3 cells transformed with EGFR exon 20 insertion mutants. Afatinib and neratinib (top panel...and EGFR L858R-expressing cells but, as with afatinib and neratinib , also inhibited wild type EGFR-expressing cells more effectively than cells

  2. Somatic mutations in ATP1A1 and ATP2B3 lead to aldosterone-producing adenomas and secondary hypertension

    DEFF Research Database (Denmark)

    Beuschlein, Felix; Boulkroun, Sheerazed; Osswald, Andrea

    2013-01-01

    Primary aldosteronism is the most prevalent form of secondary hypertension. To explore molecular mechanisms of autonomous aldosterone secretion, we performed exome sequencing of aldosterone-producing adenomas (APAs). We identified somatic hotspot mutations in the ATP1A1 (encoding an Na+/K+ ATPase α...

  3. Somatic mosaicism of a point mutation in the dystrophin gene in a patient presenting with an asymmetrical muscle weakness and contractures

    NARCIS (Netherlands)

    Helderman-van den Enden, A. T. J. M.; Ginjaar, H. B.; Kneppers, A. L. J.; Bakker, E.; Breuning, M. H.; de Visser, M.

    2003-01-01

    We describe a patient with somatic mosaicism of a point mutation in the dystrophin gene causing benign muscular dystrophy with an unusual asymmetrical distribution of muscle weakness and contractures. To our knowledge this is the first patient with asymmetrical weakness and contractures in an

  4. Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients.

    Science.gov (United States)

    Palomo, Laura; Fuster-Tormo, Francisco; Alvira, Daniel; Ademà, Vera; Armengol, María Pilar; Gómez-Marzo, Paula; de Haro, Nuri; Mallo, Mar; Xicoy, Blanca; Zamora, Lurdes; Solé, Francesc

    2017-08-01

    Whole genome amplification (WGA) has become an invaluable method for preserving limited samples of precious stock material and has been used during the past years as an alternative tool to increase the amount of DNA before library preparation for next-generation sequencing. Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by presenting somatic mutations in several myeloid-related genes. In this work, targeted deep sequencing has been performed on four paired fresh DNA and WGA DNA samples from bone marrow of MDS patients, to assess the feasibility of using WGA DNA for detecting somatic mutations. The results of this study highlighted that, in general, the sequencing and alignment statistics of fresh DNA and WGA DNA samples were similar. However, after variant calling and when considering variants detected at all frequencies, there was a high level of discordance between fresh DNA and WGA DNA (overall, a higher number of variants was detected in WGA DNA). After proper filtering, a total of three somatic mutations were detected in the cohort. All somatic mutations detected in fresh DNA were also identified in WGA DNA and validated by whole exome sequencing.

  5. Somatic mtDNA mutation spectra in the aging human putamen.

    Directory of Open Access Journals (Sweden)

    Siôn L Williams

    Full Text Available The accumulation of heteroplasmic mitochondrial DNA (mtDNA deletions and single nucleotide variants (SNVs is a well-accepted facet of the biology of aging, yet comprehensive mutation spectra have not been described. To address this, we have used next generation sequencing of mtDNA-enriched libraries (Mito-Seq to investigate mtDNA mutation spectra of putamen from young and aged donors. Frequencies of the "common" deletion and other "major arc" deletions were significantly increased in the aged cohort with the fold increase in the frequency of the common deletion exceeding that of major arc deletions. SNVs also increased with age with the highest rate of accumulation in the non-coding control region which contains elements necessary for translation and replication. Examination of predicted amino acid changes revealed a skew towards pathogenic SNVs in the coding region driven by mutation bias. Levels of the pathogenic m.3243A>G tRNA mutation were also found to increase with age. Novel multimeric tandem duplications that resemble murine control region multimers and yeast ρ(- mtDNAs, were identified in both young and aged specimens. Clonal ∼50 bp deletions in the control region were found at high frequencies in aged specimens. Our results reveal the complex manner in which the mitochondrial genome alters with age and provides a foundation for studies of other tissues and disease states.

  6. JAK2V617F Somatic Mutation In The General Population

    DEFF Research Database (Denmark)

    Nielsen, Camilla; Bojesen, Stig E; Nordestgaard, Børge G

    2014-01-01

    of myeloproliferative neoplasm from no disease (n=8 at re-examination) through essential thrombocythemia (n=20) and polycythemia vera (n=13) to primary myelofibrosis (n=7). Among those diagnosed with a myeloproliferative neoplasm only at re-examination in 2012, in the preceding years JAK2V617F mutation burden increased...

  7. Gain-of-function somatic mutations contribute to inflammation and blood vessel damage that lead to Alzheimer dementia: a hypothesis.

    Science.gov (United States)

    Marchesi, Vincent T

    2016-02-01

    Amyloid deposits are a characteristic feature of advanced Alzheimer dementia (AD), but whether they initiate the disease or are a consequence of it remains an unsettled question. To explore an alternative pathogenic mechanism, I propose that the triggering events that begin the pathogenic cascade are not amyloid deposits but damaged blood vessels caused by inflammatory reactions that lead to ischemia, amyloid accumulation, axonal degeneration, synaptic loss, and eventually irreversible neuronal cell death. Inflammation and blood vessel damage are well recognized complications of AD, but what causes them and why the cerebral microvasculature is affected have never been adequately addressed. Because heritable autosomal dominant mutations of NLRP3, APP, TREX1, NOTCH3, and Col4A1 are known to provoke inflammatory reactions and damage the brain in a wide variety of diseases, I propose that one or more low abundant, gain-of-function somatic mutations of the same 5 gene families damage the microvasculature of the brain that leads to dementia. This implies that the pathogenic triggers that lead to AD are derived not from external invaders or amyloid but from oxidative damage of our own genes. © FASEB.

  8. Analysis of relation between the mutation frequencies and somatic recombination induced by neutrons and the age of D. Melanogaster larvae; Analisis de la relacion entre las frecuencias de mutacion y recombinacion somaticas inducidas por neutrones y la edad de las larvas en D. Melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Guzman R, J; Zambrano A, F; Paredes G, L; Delfin L, A; Quiroz R, C [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    Neutrons are subatomic particles with neutral electric charge, equal zero, which are emitted during the fissile material fission in nuclear reactors. It is known a little about biological effects induced by neutrons. There is a world interest in the use of reactors and accelerators for patients radiotherapy using neutrons with the purpose to destroy malignant cells of deep tumours where traditional methods have not given satisfactory results. There for it is required to do wide studies of biological effects of neutrons as well as their dosimetry. It was used the Smart test (Somatic Mutation and Recombination Test) of D. Melanogaster for quantifying the mutation induction and somatic recombination induced by neutrons of the National Institute of Nuclear Research reactor, at power of 300 and 1000 k W, with equivalent doses calculated 95.14 and 190.2 Sv for 300 k W and of 25.64 and 51.29 Sv for 1000 k W, using larvae with 72 or 96 hours aged. It was observed a linear relation between equivalent dose and genetic effects frequency, these last were greater when the reactor power was 1000 k W than those 300 k W. It was observed too that the damage was greater in 96 hours larvae than those 72 hours. The stain size presented an inverse relation with respect to larvae age. It is concluded that the Smart system is sensitive to neutrons effect and it responds of a directly proportional form to radiation dose, as well as to dose rate. It is noted more the effect when are used larvas in pre pupa stage where the irradiation target (imagal cells) is greater. The Smart is sensitive to damage induced by neutrons , thus can be used to studying its direct biological effects or by the use of chemical modulators. (Author)

  9. Combination of RNA- and exome-sequencing efficiently eliminates false-positive somatic point mutations and indels – exemplified by cases of CN-AML

    DEFF Research Database (Denmark)

    Herborg, Laura Laine; Hansen, Marcus Celik; Roug, Anne Stidsholt

    Thorough annotation as a means of detecting highly relevant mutations, and aberrated genes, is becoming more feasible as the evidence of biological pathways underlying malignant transformation compiles. However, there is a continuous risk of misinterpretating both true and false positive observat......Thorough annotation as a means of detecting highly relevant mutations, and aberrated genes, is becoming more feasible as the evidence of biological pathways underlying malignant transformation compiles. However, there is a continuous risk of misinterpretating both true and false positive...... in the workflow, not only provides information on malignant expression profiles excluded here, but importantly help to capture the, often very few somatic mutations of myeloid leukaemia....

  10. [Product safety analysis of somatic cell cloned bovine].

    Science.gov (United States)

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  11. Analysis of cytoplasmic genomes in somatic hybrids between navel orange (Citrus sinensis Osb.) and 'Murcott' tangor.

    Science.gov (United States)

    Kobayashi, S; Ohgawara, T; Fujiwara, K; Oiyama, I

    1991-07-01

    Somatic hybrid plants were produced by protoplast fusion of navel orange and 'Murcott' tangor. Hybridity of the plants was confirmed by the restriction endonuclease analysis of nuclear ribosomal DNA. All of the plants (16 clones) were normal, uniform, and had the amphidiploid chromosome number of 36 (2n=2x=18 for each parent). The cpDNA analysis showed that each of the 16 somatic hybrids contained either one parental chloroplast genome or the other. In all cases, the mitochondrial genomes of the regenerated somatic hybrids were of the navel orange type.

  12. Novel somatic mutations in the catalytic subunit of the protein kinase A as a cause of adrenal Cushing's syndrome: a European multicentric study.

    Science.gov (United States)

    Di Dalmazi, Guido; Kisker, Caroline; Calebiro, Davide; Mannelli, Massimo; Canu, Letizia; Arnaldi, Giorgio; Quinkler, Marcus; Rayes, Nada; Tabarin, Antoine; Laure Jullié, Marie; Mantero, Franco; Rubin, Beatrice; Waldmann, Jens; Bartsch, Detlef K; Pasquali, Renato; Lohse, Martin; Allolio, Bruno; Fassnacht, Martin; Beuschlein, Felix; Reincke, Martin

    2014-10-01

    Somatic mutations in PRKACA gene, encoding the catalytic subunit of protein kinase A (PKA), have been recently found in a high proportion of sporadic adenomas associated with Cushing's syndrome. The aim was to analyze the PRKACA mutation in a large cohort of patients with adrenocortical masses. Samples from nine European centers were included (Germany, n = 4; Italy, n = 4; France, n = 1). Samples were drawn from 149 patients with nonsecreting adenomas (n = 32 + 2 peritumoral), subclinical hypercortisolism (n = 36), Cushing's syndrome (n = 64 + 2 peritumoral), androgen-producing tumors (n = 4), adrenocortical carcinomas (n = 5 + 2 peritumoral), and primary bilateral macronodular adrenal hyperplasias (n = 8). Blood samples were available from patients with nonsecreting adenomas (n = 15), subclinical hypercortisolism (n = 10), and Cushing's syndrome (n = 35). Clinical and hormonal data were collected. DNA amplification by PCR of exons 6 and 7 of the PRKACA gene and direct sequencing were performed. PRKACA heterozygous mutations were found in 22/64 samples of Cushing's syndrome patients (34%). No mutations were found in peritumoral tissue and blood samples or in other tumors examined. The c.617A>C (p.Leu206Arg) occurred in 18/22 patients. Furthermore, two novel mutations were identified: c.600_601insGTG/p.Cys200_Gly201insVal in three patients and c.639C>G+c.638_640insATTATCCTGAGG/p.Ser213Arg+p.Leu212_Lys214insIle-Ile-Leu-Arg) in one. All the mutations involved a region implicated in interaction between PKA regulatory and catalytic subunits. Patients with somatic PRKACA mutations showed higher levels of cortisol after dexamethasone test and a smaller adenoma size, compared with nonmutated subjects. These data confirm and extend previous observations that somatic PRKACA mutations are specific for adrenocortical adenomas causing Cushing's syndrome.

  13. Somatic PTPN11 Mutation in a Child With Neuroblastoma and Protein Losing Enteropathy.

    Science.gov (United States)

    Obasaju, Patience; Brondon, Jennifer; Mir, Sabina; Fordham, Lynn A; Lee, Sang; Blatt, Julie

    2018-05-01

    Neuroblastoma and protein losing enteropathy (PLE) are diagnoses commonly seen by oncologists and gastroenterologists, respectively. The concurrence of these 2 entities is rare, and not well explained. We describe the sixth case of PLE in a child with neuroblastoma, and the first for which genetic information is available. Tumor DNA had a mutation in the PTPN11 gene, which has been described in neuroblastoma, and in Noonan syndrome-a diagnosis in which neuroblastoma and PLE independently have been reported. Constitutional DNA was normal. Genetic studies in future patients will be needed to support the link between neuroblastoma and PLE.

  14. Induction of somatic mutations in some vegetatively Propagated ornamentals by gamma radiation

    International Nuclear Information System (INIS)

    Das, P.K.; Ghosh, P.; Dube, S.; Dhua, S.P.

    1974-01-01

    Attempts were made to produce mutations in some vegetatively propagated ornamentals by acute and chronic gamma irradiation. Rooted cutting of Chrysanthemums and dormant bulbs of Dahlias were exposed to 1.5, 2.5, 3.5 and 2.0, 3.0 kR of acute doses respectively. In chronic irradiation, potted plants of Bougainvillea, Hibiscus, Allamanda, Achania, Jasminum, Chrysanthemum were exposed to several dose rates at different isodose arcs in the gamma field. Isolated mutants are being vegetatively multiplied and some of them have already been stabilized as pure forms. (M.G.B.)

  15. Domain-restricted mutation analysis to identify novel driver events in human cancer

    Directory of Open Access Journals (Sweden)

    Sanket Desai

    2017-10-01

    Full Text Available Analysis of mutational spectra across various cancer types has given valuable insights into tumorigenesis. Different approaches have been used to identify novel drivers from the set of somatic mutations, including the methods which use sequence conservation, geometric localization and pathway information. Recent computational methods suggest use of protein domain information for analysis and understanding of the functional consequence of non-synonymous mutations. Similarly, evidence suggests recurrence at specific position in proteins is robust indicators of its functional impact. Building on this, we performed a systematic analysis of TCGA exome derived somatic mutations across 6089 PFAM domains and significantly mutated domains were identified using randomization approach. Multiple alignment of individual domain allowed us to prioritize for conserved residues mutated at analogous positions across different proteins in a statistically disciplined manner. In addition to the known frequently mutated genes, this analysis independently identifies low frequency Meprin and TRAF-Homology (MATH domain in Speckle Type BTB/POZ (SPOP protein, in prostate adenocarcinoma. Results from this analysis will help generate hypotheses about the downstream molecular mechanism resulting in cancer phenotypes.

  16. Restriction endonuclease analysis of chloroplast DNA in interspecies somatic Hybrids of Petunia.

    Science.gov (United States)

    Kumar, A; Cocking, E C; Bovenberg, W A; Kool, A J

    1982-12-01

    Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.

  17. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  18. Novel mutations in the CDKL5 gene in complex genotypes associated with West syndrome with variable phenotype: First description of somatic mosaic state.

    Science.gov (United States)

    Jdila, Marwa Ben; Issa, Abir Ben; Khabou, Boudour; Rhouma, Bochra Ben; Kamoun, Fatma; Ammar-Keskes, Leila; Triki, Chahnez; Fakhfakh, Faiza

    2017-10-01

    West syndrome is a rare epileptic encephalopathy of early infancy, characterized by epileptic spasms, hypsarrhythmia, and psychomotor retardation beginning in the first year of life. The present study reports the clinical, molecular and bioinformatic investigation in the three studied West patients. The results revealed a complex genotype with more than one mutation in each patient including the known mutations c.1910C>G (P2, P3); c.2372A>C in P3 and c.2395C>G in P1 and novel variants including c.616G>A, shared by the three patients P1, P2 and P3; c.1403G>C shared by P2 and P3 and c.2288A>G in patient P1. All the mutations were at somatic mosaic state and were de novo in the patients except ones (c.2372A>C). To our knowledge; the somatic mosaic state is described for the first time in patients with West syndrome. Five identified mutations were located in the C-terminal domain of the protein, while the novel mutation (c.616G>A) was in the catalytic domain. Bioinformatic tools predicted that this latter is the most pathogenic substitution affecting 3D protein structure and the secondary mRNA structure. Complex genotype composed of different combinations of mutations in each patient seems to be related to the phenotype variability. Copyright © 2017. Published by Elsevier B.V.

  19. The JAK2 V617F somatic mutation, mortality and cancer risk in the general population

    DEFF Research Database (Denmark)

    Nielsen, Camilla; Birgens, Henrik S; Nordestgaard, Børge G

    2011-01-01

    .1-1.1). Multifactorially adjusted hazard ratios for any cancer, hematologic cancer and myeloproliferative cancer were 3.7 (1.7-8.0), 58 (13-261) and 161 (12-2,197), respectively. Corresponding hazard ratios were 1.2 (0.8-2.0), 2.3 (0.2-25), 1.3 (0.3-5.4) for men versus women, and 1.0 (1.0-1.1), 1.1 (0.9-1.2), 0.9 (0......JAK2 V617F is present in the majority of patients with myeloproliferative cancer; however, its prevalence and clinical significance in the general population is unknown. We screened for presence of the mutation in 10,507 participants from the Copenhagen City Heart Study with up to 17.6 years...

  20. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum

    International Nuclear Information System (INIS)

    Trigiano, R.N.; Scott, M.C.; Caetano-Anolles, G.

    1998-01-01

    The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars 'Dark Charm', 'Salmon Charm', 'Coral Charm' and 'Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of 'Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing approximately 37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars

  1. [Comparative study of effect of infrared, submillimeter, and millimeter electromagnetic radiation on wing somatic mutations in Drosophila melanogaster induced by gamma-irradiation].

    Science.gov (United States)

    Fedorov, V I; Pogodin, A S; Dubatolova, T D; Varlamov, A V; Leont'ev, K V; Khamoian, A G

    2001-01-01

    It was shown that the number of spontaneous and gamma-radiation-induced somatic mutations in wing cells of fruit flies (third instar larvae) exposed to laser irradiation of submillimeter range (lambda = 81.5 microns) was significantly lower than in control. Laser irradiation did not affect the number of recombinations. Exposure to laser radiation in the infrared range and electromagnetic waves of the millimeter range (lambda = 3.8 mm) enhanced the effect of gamma-irradiation.

  2. Somatic mutation frequency in the stamen hairs of Tradescantia KU 7 and KU 9 clones exposed to low-level gamma rays

    International Nuclear Information System (INIS)

    Ichikawa, S.; Nagashima, C.; Takahashi, C.S.

    1981-01-01

    Two triploid clones (KU 7 and KU 9) of Tradescantia heterozygous for flower color were exposed to 1 to 42.3R of gamma rays or the scattering radiation in the gamma field of the Institute of Radiation . Breeding. Occurrence of somatic pink mutations in the stamen hairs was investigated 10 to 16 (or 14) days after irradiation. The mutation frequency was found to increase linearly with increasing gamma-ray exposure in the both clones, and the frequencies of 0.437 and 0.468 pink mutant events per 10 3 hairs per R were determined for KU 7 and KU 9, respectively. When the data collected in the present study were analyzed together with those obtained in earlier experiments in the gamma field, linear relationships of the somatic mutation frequency with gamma-ray (2.1 to 201.6R) and scattering radiation (0.72 to 57.6R) exposures were confirmed. Scattering radiation was found to have a genetical efficiency more than two times higher than that of gamma rays. Variation of spontaneous mutation frequency observed in the present study and in earlier studies was inversely correlated to temperature variation

  3. Frequency of Somatic TP53 Mutations in Combination with Known Pathogenic Mutations in Colon Adenocarcinoma, Non–Small Cell Lung Carcinoma, and Gliomas as Identified by Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Zahra Shajani-Yi

    2018-03-01

    Full Text Available The tumor suppressor gene TP53 is the most frequently mutated gene in human cancer. It encodes p53, a DNA-binding transcription factor that regulates multiple genes involved in DNA repair, metabolism, cell cycle arrest, apoptosis, and senescence. TP53 is associated with human cancer by mutations that lead to a loss of wild-type p53 function as well as mutations that confer alternate oncogenic functions that enable them to promote invasion, metastasis, proliferation, and cell survival. Identifying the discrete TP53 mutations in tumor cells may help direct therapies that are more effective. In this study, we identified the frequency of individual TP53 mutations in patients with colon adenocarcinoma (48%, non–small cell lung carcinoma (NSCLC (36%, and glioma/glioblastoma (28% at our institution using next-generation sequencing. We also identified the occurrence of somatic mutations in numerous actionable genes including BRAF, EGFR, KRAS, IDH1, and PIK3CA that occurred concurrently with these TP53 mutations. Of the 480 tumors examined that contained one or more mutations in the TP53 gene, 219 were colon adenocarcinomas, 215 were NSCLCs, and 46 were gliomas/glioblastomas. Among the patients positive for TP53 mutations diagnosed with colon adenocarcinoma, 50% also showed at least one mutation in pathogenic genes of which 14% were BRAF, 33% were KRAS, and 3% were NRAS. Forty-seven percent of NSCLC patients harboring TP53 mutations also had a mutation in at least one actionable pathogenic variant with the following frequencies: BRAF: 4%, EGFR: 10%, KRAS: 28%, and PIK3CA: 4%. Fifty-two percent of patients diagnosed with glioma/glioblastoma with a positive TP53 mutation had at least one concurrent mutation in a known pathogenic gene of which 9% were CDKN2A, 41% were IDH1, and 11% were PIK3CA.

  4. Frameshift mutational target gene analysis identifies similarities and differences in constitutional mismatch repair-deficiency and Lynch syndrome.

    Science.gov (United States)

    Maletzki, Claudia; Huehns, Maja; Bauer, Ingrid; Ripperger, Tim; Mork, Maureen M; Vilar, Eduardo; Klöcking, Sabine; Zettl, Heike; Prall, Friedrich; Linnebacher, Michael

    2017-07-01

    Mismatch-repair deficient (MMR-D) malignancies include Lynch Syndrome (LS), which is secondary to germline mutations in one of the MMR genes, and the rare childhood-form of constitutional mismatch repair-deficiency (CMMR-D); caused by bi-allelic MMR gene mutations. A hallmark of LS-associated cancers is microsatellite instability (MSI), characterized by coding frameshift mutations (cFSM) in target genes. By contrast, tumors arising in CMMR-D patients are thought to display a somatic mutation pattern differing from LS. This study has the main goal to identify cFSM in MSI target genes relevant in CMMR-D and to compare the spectrum of common somatic mutations, including alterations in DNA polymerases POLE and D1 between LS and CMMR-D. CMMR-D-associated tumors harbored more somatic mutations compared to LS cases, especially in the TP53 gene and in POLE and POLD1, where novel mutations were additionally identified. Strikingly, MSI in classical mononucleotide markers BAT40 and CAT25 was frequent in CMMR-D cases. MSI-target gene analysis revealed mutations in CMMR-D-associated tumors, some of them known to be frequently hit in LS, such as RNaseT2, HT001, and TGFβR2. Our results imply a general role for these cFSM as potential new drivers of MMR-D tumorigenesis. © 2017 Wiley Periodicals, Inc.

  5. Somatic mutation frequencies in the stamen hairs of stable and mutable clones of Tradescantia after acute gamma-ray treatments with small doses

    International Nuclear Information System (INIS)

    Ichikawa, Sadao; Takahashi, C.S.

    1977-01-01

    Young inflorescences of two different Tradescantia clones heterozygous for flower and stamen-hair color, one stable (KU 9) and the other spontaneously mutable (KU 20), were irradiated acutely with small doses (approx. 3 to 50 R) of 60 Co gamma-rays. Somatic mutation frequencies from blue to pink in the stamen hairs scored on post-irradiation days 10 to 16 increased essentially linearly with increasing gamma-ray dose in both clones. Despite about a 5-fold difference in spontaneous mutation frequency per hair found between the two clones, the dose-response curves of pink mutations determined were similar to each other, giving average mutation frequencies of 1.51 and 1.41 pink-mutant events per 1000 hairs per R for KU 9 and KU 20, respectively. These frequencies are comparable to earlier results obtained from acute irradiation treatments of other clones with higher doses. The doubling dose of pink mutation (the radiation dose making the mutation frequency double the spontaneous level) was calculated to be 2.09 R for KU 9, and this low doubling dose must be given full attention. On the other hand, the doubling dose for KU 20 (calculated to be 10.4 R) is of questionable value, being greatly subject to change because of the diversely variable spontaneous mutation frequency of this clone

  6. Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens.

    Science.gov (United States)

    Lin, Katherine I; Tam, Constantine S; Keating, Michael J; Wierda, William G; O'Brien, Susan; Lerner, Susan; Coombes, Kevin R; Schlette, Ellen; Ferrajoli, Alessandra; Barron, Lynn L; Kipps, Thomas J; Rassenti, Laura; Faderl, Stefan; Kantarjian, Hagop; Abruzzo, Lynne V

    2009-04-02

    Although immunoglobulin V(H) mutation status (IgV(H) MS) is prognostic in patients with chronic lymphocytic leukemia (CLL) who are treated with alkylating agents or single-agent fludarabine, its significance in the era of chemoimmunotherapy is not known. We determined the IgV(H) somatic mutation status (MS) in 177 patients enrolled in a phase 2 study of fludarabine, cyclophosphamide, and rituximab (FCR) and in 127 patients treated with subsequent chemoimmunotherapy protocols. IgV(H) MS did not impact significantly on the complete remission (CR) rate of patients receiving FCR or related regimens. However, CR duration was significantly shorter in patients with CLL that used unmutated IgV(H) than those whose CLL used mutated IgV(H) (TTP 47% vs 82% at 6 years, P IgV(H) MS emerged as the only determinant of remission duration (hazard ratio 3.8, P IgV(H) status.

  7. Molecular spectrum of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC somatic gene mutations in Arab patients with colorectal cancer: determination of frequency and distribution pattern

    Science.gov (United States)

    Al-Shamsi, Humaid O.; Jones, Jeremy; Fahmawi, Yazan; Dahbour, Ibrahim; Tabash, Aziz; Abdel-Wahab, Reham; Abousamra, Ahmed O. S.; Shaw, Kenna R.; Xiao, Lianchun; Hassan, Manal M.; Kipp, Benjamin R.; Kopetz, Scott; Soliman, Amr S.; McWilliams, Robert R.; Wolff, Robert A.

    2016-01-01

    Background The frequency rates of mutations such as KRAS, NRAS, BRAF, and PIK3CA in colorectal cancer (CRC) differ among populations. The aim of this study was to assess mutation frequencies in the Arab population and determine their correlations with certain clinicopathological features. Methods Arab patients from the Arab Gulf region and a population of age- and sex-matched Western patients with CRC whose tumors were evaluated with next-generation sequencing (NGS) were identified and retrospectively reviewed. The mutation rates of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC were recorded, along with clinicopathological features. Other somatic mutation and their rates were also identified. Fisher’s exact test was used to determine the association between mutation status and clinical features. Results A total of 198 cases were identified; 99 Arab patients and 99 Western patients. Fifty-two point seven percent of Arab patients had stage IV disease at initial presentation, 74.2% had left-sided tumors. Eighty-nine point two percent had tubular adenocarcinoma and 10.8% had mucinous adenocarcinoma. The prevalence rates of KRAS, NRAS, BRAF, PIK3CA, TP53, APC, SMAD, FBXW7 mutations in Arab population were 44.4%, 4%, 4%, 13.1%, 52.5%, 27.3%, 2% and 3% respectively. Compared to 48.4%, 4%, 4%, 12.1%, 47.5%, 24.2%, 11.1% and 0% respectively in matched Western population. Associations between these mutations and patient clinicopathological features were not statistically significant. Conclusions This is the first study to report comprehensive hotspot mutations using NGS in Arab patients with CRC. The frequency of KRAS, NRAS, BRAF, TP53, APC and PIK3CA mutations were similar to reported frequencies in Western population except SMAD4 that had a lower frequency and higher frequency of FBXW7 mutation. PMID:28078112

  8. Mutation and Methylation Analysis of the Chromodomain-Helicase-DNA Binding 5 Gene in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kylie L. Gorringe

    2008-11-01

    Full Text Available Chromodomain, helicase, DNA binding 5 (CHD5 is a member of a subclass of the chromatin remodeling Swi/Snf proteins and has recently been proposed as a tumor suppressor in a diverse range of human cancers. We analyzed all 41 coding exons of CHD5 for somatic mutations in 123 primary ovarian cancers as well as 60 primary breast cancers using high-resolution melt analysis. We also examined methylation of the CHD5 promoter in 48 ovarian cancer samples by methylation-specific single-stranded conformation polymorphism and bisulfite sequencing. In contrast to previous studies, no mutations were identified in the breast cancers, but somatic heterozygous missense mutations were identified in 3 of 123 ovarian cancers. We identified promoter methylation in 3 of 45 samples with normal CHD5 and in 2 of 3 samples with CHD5 mutation, suggesting these tumors may have biallelic inactivation of CHD5. Hemizygous copy number loss at CHD5 occurred in 6 of 85 samples as assessed by single nucleotide polymorphism array. Tumors with CHD5 mutation or methylation were more likely to have mutation of KRAS or BRAF (P = .04. The aggregate frequency of CHD5 haploinsufficiency or inactivation is 16.2% in ovarian cancer. Thus, CHD5 may play a role as a tumor suppressor gene in ovarian cancer; however, it is likely that there is another target of the frequent copy number neutral loss of heterozygosity observed at 1p36.

  9. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  10. Recent advances in understanding Cushing disease: resistance to glucocorticoid negative feedback and somatic USP8 mutations [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Eleni Daniel

    2017-05-01

    Full Text Available Cushing’s disease is a rare disease with a characteristic phenotype due to significant hypercortisolism driven by over-secretion of adrenocorticotropic hormone and to high morbidity and mortality if untreated. It is caused by a corticotroph adenoma of the pituitary, but the exact mechanisms leading to tumorigenesis are not clear. Recent advances in molecular biology such as the discovery of somatic mutations of the ubiquitin-specific peptidase 8 (USP8 gene allow new insights into the pathogenesis, which could be translated into exciting and much-needed therapeutic applications.

  11. A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA.

    Science.gov (United States)

    Sozou, P D; Kirkwood, T B

    2001-12-21

    Human diploid fibroblast cells can divide for only a limited number of times in vitro, a phenomenon known as replicative senescence or the Hayflick limit. Variability in doubling potential is observed within a clone of cells, and between two sister cells arising from a single mitotic division. This strongly suggests that the process by which cells become senescent is intrinsically stochastic. Among the various biochemical mechanisms that have been proposed to explain replicative senescence, particular interest has been focussed on the role of telomere reduction. In the absence of telomerase--an enzyme switched off in normal diploid fibro-blasts-cells lose telomeric DNA at each cell division. According to the telomere hypothesis of cell senescence, cells eventually reach a critically short telomere length and cell cycle arrest follows. In support of this concept, forced expression of telomerase in normal fibroblasts appears to prevent cell senescence. Nevertheless, the telomere hypothesis in its basic form has some difficulty in explaining the marked stochastic variations seen in the replicative lifespans of individual cells within a culture, and there is strong empirical and theoretical support for the concept that other kinds of damage may contribute to cellular ageing. We describe a stochastic network model of cell senescence in which a primary role is played by telomere reduction but in which other mechanisms (oxidative stress linked particularly to mitochondrial damage, and nuclear somatic mutations) also contribute. The model gives simulation results that are in good agreement with published data on intra-clonal variability in cell doubling potential and permits an analysis of how the various elements of the stochastic network interact. Such integrative models may aid in developing new experimental approaches aimed at unravelling the intrinsic complexity of the mechanisms contributing to human cell ageing. Copyright 2001 Academic Press.

  12. Somatic mutation and recombination induced with reactor thermal neutrons in Drosophila melanogaster; Mutacion y recombinacion somaticas inducidas con neutrones termicos de reactor en Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Zambrano A, F.; Guzman R, J.; Paredes G, L.; Delfin L, A. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The SMART test of Drosophila melanogaster was used to quantify the effect over the somatic mutation and recombination induced by thermal and fast neutrons at the TRIGA Mark III reactor of the ININ at the power of 300 k W for times of 30, 60 and 120 minutes with total equivalent doses respectively of 20.8, 41.6 and 83.2 Sv. A linear relation between the radiation equivalent dose and the frequency of the genetic effects such as mutation and recombination was observed. The obtained results allow to conclude that SMART is a sensitive system to the induced damage by neutrons, so this can be used for studying its biological effects. (Author)

  13. Reduction of spontaneous somatic mutation frequency by a low-dose X irradiation of Drosophila larvae and possible involvement of DNA single-strand damage repair.

    Science.gov (United States)

    Koana, Takao; Takahashi, Takashi; Tsujimura, Hidenobu

    2012-03-01

    The third instar larvae of Drosophila were irradiated with X rays, and the somatic mutation frequency in their wings was measured after their eclosion. In the flies with normal DNA repair and apoptosis functions, 0.2 Gy irradiation at 0.05 Gy/min reduced the frequency of the so-called small spot (mutant cell clone with reduced reproductive activity) compared with that in the sham-irradiated flies. When apoptosis was suppressed using the baculovirus p35 gene, the small spot frequency increased four times in the sham-irradiated control group, but the reduction by the 0.2-Gy irradiation was still evident. In a non-homologous end joining-deficient mutant, the small spot frequency was also reduced by 0.2 Gy radiation. In a mutant deficient in single-strand break repair, no reduction in the small spot frequency by 0.2 Gy radiation was observed, and the small spot frequency increased with the radiation dose. Large spot (mutant cell clone with normal reproductive activity) frequency was not affected by suppression of apoptosis and increased monotonically with radiation dose in wild-type larvae and in mutants for single- or double-strand break repair. It is hypothesized that some of the small spots resulted from single-strand damage and, in wild-type larvae, 0.2 Gy radiation activated the normal single-strand break repair gene, which reduced the background somatic mutation frequency.

  14. [Long-term analysis of disability pensions in survivors of the Holocaust: somatic and psychiatric diagnoses].

    Science.gov (United States)

    Biermann, T; Sperling, W; Müller, H; Schütz, P; Kornhuber, J; Reulbach, U

    2010-12-01

    Survivors of the Holocaust are known to suffer more often from mental as well as somatic consequential illness. The assessment of the degree of disability and invalidity due to the persecution complies with the interaction of directly Holocaust-related mental and somatic primary injuries as well as physical, psychical and psychosocial disadvantages and illnesses acquired later on. The presented descriptive as well as multivariate analyses included complete reports (expertise, medical records, physicians' assessments, witnessed hand-written notes of the patients) of 56 survivors of the Holocaust (36 women and 20 men). The disability pension reports of 56 Holocaust survivors (36 women and 20 men) were analysed referring to the diagnostic groups and socio-demographic aspects. In 92.3 % a psychiatric illness could be diagnosed within the first year after liberation. In a separate analysis of somatic diagnoses, gastrointestinal diseases were statistically significant more often in Holocaust survivors with a degree of disability of more than 30 % (chi-square χ (2) = 4.0; df = 1; p = 0.046). The question of an aggravation of psychiatrically relevant and persecution-associated symptomatology is mainly the objective of the expert opinion taking into account endogenous and exogenous factors such as so-called life events. Above all, newly acquired somatic diseases seem to be responsible for an aggravation of persecution-associated psychiatric symptoms, at least in the presented sample of Holocaust survivors. © Georg Thieme Verlag KG Stuttgart · New York.

  15. Analysis of a new morphogenetic mutation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mglinets, V.A.

    1987-01-01

    Somatic mosaicism for mutations monster and yellow was induced by gamma-irradiation of Drosophila melanogaster y/y; Dp(1; 2)sc 19 M(2)z/mn d embryos and larvae. Frequencies of mosaicism increased with the age of treated larvae, especially in the end of the 2nd larval instar. Autonomous expression of mn was observed throughout the whole range of larval age studied, though neither for all y/y spots nor for all parts of the spots. Dissimilarities in dynamics of mosaic spots and duplication induction suggest that the latter are not due to mn expression in somatic clones

  16. The Number of Point Mutations in Induced Pluripotent Stem Cells and Nuclear Transfer Embryonic Stem Cells Depends on the Method and Somatic Cell Type Used for Their Generation.

    Science.gov (United States)

    Araki, Ryoko; Mizutani, Eiji; Hoki, Yuko; Sunayama, Misato; Wakayama, Sayaka; Nagatomo, Hiroaki; Kasama, Yasuji; Nakamura, Miki; Wakayama, Teruhiko; Abe, Masumi

    2017-05-01

    Induced pluripotent stem cells hold great promise for regenerative medicine but point mutations have been identified in these cells and have raised serious concerns about their safe use. We generated nuclear transfer embryonic stem cells (ntESCs) from both mouse embryonic fibroblasts (MEFs) and tail-tip fibroblasts (TTFs) and by whole genome sequencing found fewer mutations compared with iPSCs generated by retroviral gene transduction. Furthermore, TTF-derived ntESCs showed only a very small number of point mutations, approximately 80% less than the number observed in iPSCs generated using retrovirus. Base substitution profile analysis confirmed this greatly reduced number of point mutations. The point mutations in iPSCs are therefore not a Yamanaka factor-specific phenomenon but are intrinsic to genome reprogramming. Moreover, the dramatic reduction in point mutations in ntESCs suggests that most are not essential for genome reprogramming. Our results suggest that it is feasible to reduce the point mutation frequency in iPSCs by optimizing various genome reprogramming conditions. We conducted whole genome sequencing of ntES cells derived from MEFs or TTFs. We thereby succeeded in establishing TTF-derived ntES cell lines with far fewer point mutations. Base substitution profile analysis of these clones also indicated a reduced point mutation frequency, moving from a transversion-predominance to a transition-predominance. Stem Cells 2017;35:1189-1196. © 2017 AlphaMed Press.

  17. MicroRNA genes and their target 3'-untranslated regions are infrequently somatically mutated in ovarian cancers.

    Directory of Open Access Journals (Sweden)

    Georgina L Ryland

    Full Text Available MicroRNAs are key regulators of gene expression and have been shown to have altered expression in a variety of cancer types, including epithelial ovarian cancer. MiRNA function is most often achieved through binding to the 3'-untranslated region of the target protein coding gene. Mutation screening using massively-parallel sequencing of 712 miRNA genes in 86 ovarian cancer cases identified only 5 mutated miRNA genes, each in a different case. One mutation was located in the mature miRNA, and three mutations were predicted to alter the secondary structure of the miRNA transcript. Screening of the 3'-untranslated region of 18 candidate cancer genes identified one mutation in each of AKT2, EGFR, ERRB2 and CTNNB1. The functional effect of these mutations is unclear, as expression data available for AKT2 and EGFR showed no increase in gene transcript. Mutations in miRNA genes and 3'-untranslated regions are thus uncommon in ovarian cancer.

  18. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao.

    Science.gov (United States)

    Niemenak, Nicolas; Kaiser, Edward; Maximova, Siela N; Laremore, Tatiana; Guiltinan, Mark J

    2015-05-15

    Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Visualization portal for genetic variation (VizGVar): a tool for interactive visualization of SNPs and somatic mutations in exons, genes and protein domains.

    Science.gov (United States)

    Solano-Román, Antonio; Alfaro-Arias, Verónica; Cruz-Castillo, Carlos; Orozco-Solano, Allan

    2018-03-15

    VizGVar was designed to meet the growing need of the research community for improved genomic and proteomic data viewers that benefit from better information visualization. We implemented a new information architecture and applied user centered design principles to provide a new improved way of visualizing genetic information and protein data related to human disease. VizGVar connects the entire database of Ensembl protein motifs, domains, genes and exons with annotated SNPs and somatic variations from PharmGKB and COSMIC. VizGVar precisely represents genetic variations and their respective location by colored curves to designate different types of variations. The structured hierarchy of biological data is reflected in aggregated patterns through different levels, integrating several layers of information at once. VizGVar provides a new interactive, web-based JavaScript visualization of somatic mutations and protein variation, enabling fast and easy discovery of clinically relevant variation patterns. VizGVar is accessible at http://vizport.io/vizgvar; http://vizport.io/vizgvar/doc/. asolano@broadinstitute.org or allan.orozcosolano@ucr.ac.cr.

  20. Comparison of X-ray and gamma-ray dose-response curves for pink somatic mutations in Tradescantia clone 02

    International Nuclear Information System (INIS)

    Underbrink, A.G.; Kellerer, A.M.; Mills, R.E.; Sparrow, A.H.; Brookhaven National Lab., Upton, N.Y.

    1976-01-01

    Microdosimetric data indicate that the mean specific energy, xi, produced by individual charged particles from X rays and gamma rays is different for the two radiation qualities by nearly a factor of two. In order to test whether this influences the initial, linear component in the dose-effect relations, a comparison was made between dose-response curves for pink somatic mutations in Tradescantia clone 02 stamen hairs following X and gamma irradiations. Absorbed doses ranged from 2.66 to 300 rad. The results are in agreement with predictions made on the basis of microdosimetric data. At low doses gamma rays are substantially less effective than X rays. The RBE of gamma rays vs. X rays at low doses was approximately 0.6, a value lower than those usually reported in other experimental systems. (orig.) [de

  1. Mutation Analysis in Classical Phenylketonuria Patients Followed by Detecting Haplotypes Linked to Some PAH Mutations.

    Science.gov (United States)

    Dehghanian, Fatemeh; Silawi, Mohammad; Tabei, Seyed M B

    2017-02-01

    Deficiency of phenylalanine hydroxylase (PAH) enzyme and elevation of phenylalanine in body fluids cause phenylketonuria (PKU). The gold standard for confirming PKU and PAH deficiency is detecting causal mutations by direct sequencing of the coding exons and splicing involved sequences of the PAH gene. Furthermore, haplotype analysis could be considered as an auxiliary approach for detecting PKU causative mutations before direct sequencing of the PAH gene by making comparisons between prior detected mutation linked-haplotypes and new PKU case haplotypes with undetermined mutations. In this study, 13 unrelated classical PKU patients took part in the study detecting causative mutations. Mutations were identified by polymerase chain reaction (PCR) and direct sequencing in all patients. After that, haplotype analysis was performed by studying VNTR and PAHSTR markers (linked genetic markers of the PAH gene) through application of PCR and capillary electrophoresis (CE). Mutation analysis was performed successfully and the detected mutations were as follows: c.782G>A, c.754C>T, c.842C>G, c.113-115delTCT, c.688G>A, and c.696A>G. Additionally, PAHSTR/VNTR haplotypes were detected to discover haplotypes linked to each mutation. Mutation detection is the best approach for confirming PAH enzyme deficiency in PKU patients. Due to the relatively large size of the PAH gene and high cost of the direct sequencing in developing countries, haplotype analysis could be used before DNA sequencing and mutation detection for a faster and cheaper way via identifying probable mutated exons.

  2. TumorNext-Lynch-MMR: a comprehensive next generation sequencing assay for the detection of germline and somatic mutations in genes associated with mismatch repair deficiency and Lynch syndrome.

    Science.gov (United States)

    Gray, Phillip N; Tsai, Pei; Chen, Daniel; Wu, Sitao; Hoo, Jayne; Mu, Wenbo; Li, Bing; Vuong, Huy; Lu, Hsiao-Mei; Batth, Navanjot; Willett, Sara; Uyeda, Lisa; Shah, Swati; Gau, Chia-Ling; Umali, Monalyn; Espenschied, Carin; Janicek, Mike; Brown, Sandra; Margileth, David; Dobrea, Lavinia; Wagman, Lawrence; Rana, Huma; Hall, Michael J; Ross, Theodora; Terdiman, Jonathan; Cullinane, Carey; Ries, Savita; Totten, Ellen; Elliott, Aaron M

    2018-04-17

    The current algorithm for Lynch syndrome diagnosis is highly complex with multiple steps which can result in an extended time to diagnosis while depleting precious tumor specimens. Here we describe the analytical validation of a custom probe-based NGS tumor panel, TumorNext-Lynch-MMR, which generates a comprehensive genetic profile of both germline and somatic mutations that can accelerate and streamline the time to diagnosis and preserve specimen. TumorNext-Lynch-MMR can detect single nucleotide variants, small insertions and deletions in 39 genes that are frequently mutated in Lynch syndrome and colorectal cancer. Moreover, the panel provides microsatellite instability status and detects loss of heterozygosity in the five Lynch genes; MSH2 , MSH6 , MLH1 , PMS2 and EPCAM . Clinical cases are described that highlight the assays ability to differentiate between somatic and germline mutations, precisely classify variants and resolve discordant cases.

  3. Longitudinal Analysis of Somatic Cell Count for Joint Genetic Evaluation of Mastitis and Recovery Liability

    DEFF Research Database (Denmark)

    Welderufael, Berihu Gebremedhin; de Koning, D J; Janss, Luc

    Abstract Text: Better models of genetic evaluation for mastitis can be developed through longitudinal analysis of somatic cell count (SCC) which usually is used as a proxy for mastitis. Mastitis and recovery data with weekly observations of SCC were simulated for daughter groups of 60 and 240 per...... sire. Data were created to define cases: 1 if SCC was above a pre-specified boundary, else 0. A transition from below to above the boundary indicates probability to contract mastitis, and the other way indicates recovery. The MCMCglmm package was used to estimate breeding values. In the 60 daughters...

  4. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  5. Somatic mutations in mismatch repair genes in sporadic gastric carcinomas are not a cause but a consequence of the mutator phenotype

    NARCIS (Netherlands)

    Pinto, Mafalda; Wub, Ying; Mensink, Rob G. J.; Cirnes, Luis; Seruca, Raquel; Hofstra, Robert M. W.

    2008-01-01

    In hereditary nonpolyposis colorectal cancer (HNPCC), patients' mismatch repair (MMR) gene mutations cause MMR deficiency, leading to microsatellite instability (MSI-H). MSI-H is also found in a substantial fraction of sporadic gastric carcinomas (SGC), mainly due to MLH1 promoter hypermethylation,

  6. Synergistic effects of methyl methanesulfonate and X rays in inducing somatic mutations in the stamen hairs of Tradescantia clones, KU 27 and BNL 4430

    International Nuclear Information System (INIS)

    Ichikawa, Sadao; Yamaguchi, Akihiko; Okumura, Mikiko

    1993-01-01

    Young influorescences of Tradescantia clones KU 27 and BNL 4430, the both of which are blue/pink heterozygotes and have been demonstrated to be highly sensitive to alkylating agents, were exposed either to aqueous solutions of methyl methanesulfonate (MMS) for 16 hr alone (at 0.005 to 0.02% for KU 27 and at 0.005% for BNL 4430) or to acute 150 kVp X rays alone (161 to 531 mGy for Ku 27 and 501 to 976 mGy for BNL 4430), or in combinations (134 to 448 mGy for KU 27 and 458 to 865 mGy for BNL 4430 after the 0.005% MMS treatment). The induced somatic pink mutation frequencies per hair-cell division were studied and compared, and clone BNL 4430 was found to be nearly two times more sensitive to MMS than clone KU 27, while the X-ray-induced mutation frequencies in the latter was about 1.5 times higher than those in the former. The lower sensitivity to MMS of clone KU 27 (as compared with BNL 4430) was nevertheless about 5.6 times higher as compared with the responses of clone BNL 02 to MMS reported earlier, proving the high sensitivities of the two clones used in the present study. Clear synergistic effects of MMS and X rays were observed in the both clones, indicating that the mechanisms of inducing mutations are common at least in part between MMS and X rays. (author)

  7. Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves

    Czech Academy of Sciences Publication Activity Database

    Gichner, Tomáš; Patková, Zdeňka; Száková, J.; Demnerová, K.

    2004-01-01

    Roč. 559, 1/2 (2004), s. 49-57 ISSN 1383-5718 R&D Projects: GA ČR GA526/02/0293; GA ČR GA521/02/0400; GA MŠk LN00B030 Institutional research plan: CEZ:AV0Z5038910 Keywords : beta-Glucuronidase * Chlorophyll mutations * Comet assay Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.020, year: 2004

  8. Somatic mutations, allele loss, and DNA methylation of the Cub and Sushi Multiple Domains 1 (CSMD1 gene reveals association with early age of diagnosis in colorectal cancer patients.

    Directory of Open Access Journals (Sweden)

    Austin Y Shull

    Full Text Available The Cub and Sushi Multiple Domains 1 (CSMD1 gene, located on the short arm of chromosome 8, codes for a type I transmembrane protein whose function is currently unknown. CSMD1 expression is frequently lost in many epithelial cancers. Our goal was to characterize the relationships between CSMD1 somatic mutations, allele imbalance, DNA methylation, and the clinical characteristics in colorectal cancer patients.We sequenced the CSMD1 coding regions in 54 colorectal tumors using the 454FLX pyrosequencing platform to interrogate 72 amplicons covering the entire coding sequence. We used heterozygous SNP allele ratios at multiple CSMD1 loci to determine allelic balance and infer loss of heterozygosity. Finally, we performed methylation-specific PCR on 76 colorectal tumors to determine DNA methylation status for CSMD1 and known methylation targets ALX4, RUNX3, NEUROG1, and CDKN2A.Using 454FLX sequencing and confirming with Sanger sequencing, 16 CSMD1 somatic mutations were identified in 6 of the 54 colorectal tumors (11%. The nonsynonymous to synonymous mutation ratio of the 16 somatic mutations was 15:1, a ratio significantly higher than the expected 2:1 ratio (p = 0.014. This ratio indicates a presence of positive selection for mutations in the CSMD1 protein sequence. CSMD1 allelic imbalance was present in 19 of 37 informative cases (56%. Patients with allelic imbalance and CSMD1 mutations were significantly younger (average age, 41 years than those without somatic mutations (average age, 68 years. The majority of tumors were methylated at one or more CpG loci within the CSMD1 coding sequence, and CSMD1 methylation significantly correlated with two known methylation targets ALX4 and RUNX3. C:G>T:A substitutions were significantly overrepresented (47%, suggesting extensive cytosine methylation predisposing to somatic mutations.Deep amplicon sequencing and methylation-specific PCR reveal that CSMD1 alterations can correlate with earlier clinical

  9. Influence of radiation exposure rate on somatic mutation frequency and loss of reproductive integrity in tradescantia stamen hairs

    International Nuclear Information System (INIS)

    Ichikawa, S.; Nauman, C.H.; Sparrow, A.H.; Takahashi, C.S.

    1978-01-01

    Inflorescences of Tradescantia clone 02 (2n=12), hetero- or hemi-zygous for flower color, were exposed to a series of γ-ray exposures at two different exposure rates, 29.3 R/min and 0.026-0.52 R/min. Pink mutation-response curves, and survival curves based on reproductive integrity, were constructed for each of the exposure rates. Loss of reproductive integrity was also assessed at high (256 R/min) and low (0.52-4.17 R/min) γ-ray exposure rates in T. blossfeldiana (2n=72). All observations were made on stamen hairs. The higher exposure rate was 1.3-1.7 times more effective in inducing pink mutations in clone 02. A greater efficiency of the higher exposure rate was also found for both taxa at the loss of reproductive integrity endpoint. The D 0 values obtained at the higher exposure rates, 154 R for clone 02 and 720 R for T. blossfeldiana, were significantly lower than the corresponding values of 270 R and 1880 R obtained at the lower exposure rates. These D 0 's differ by factors of 1.75 and 2.61 for clone 02 and T. blossfeldiana, respectively. D 0 's for the two taxa were found to be inversely correlated with their interphase chromosome volumes. (Auth.)

  10. Somatic symptom profiles in the general population: a latent class analysis in a Danish population-based health survey

    Directory of Open Access Journals (Sweden)

    Eliasen M

    2017-08-01

    Full Text Available Marie Eliasen,1 Torben Jørgensen,1–3 Andreas Schröder,4 Thomas Meinertz Dantoft,1 Per Fink,4 Chalotte Heinsvig Poulsen,1,5 Nanna Borup Johansen,1 Lene Falgaard Eplov,5 Sine Skovbjerg,1 Svend Kreiner2 1Research Centre for Prevention and Health, Centre for Health, The Capital Region of Denmark, Glostrup, 2Department of Public Health, University of Copenhagen, Copenhagen, 3Department of Clinical Medicine, Aalborg University, Aalborg, 4Research Clinic for Functional Disorders and Psychosomatics, Aarhus University Hospital, Aarhus C, 5Mental Health Centre Copenhagen, The Capital Region of Denmark, Hellerup, Denmark Purpose: The aim of this study was to identify and describe somatic symptom profiles in the general adult population in order to enable further epidemiological research within multiple somatic symptoms.Methods: Information on 19 self-reported common somatic symptoms was achieved from a population-based questionnaire survey of 36,163 randomly selected adults in the Capital Region of Denmark (55.4% women. The participants stated whether they had been considerably bothered by each symptom within 14 days prior to answering the questionnaire. We used latent class analysis to identify the somatic symptom profiles. The profiles were further described by their association with age, sex, chronic disease, and self-perceived health.Results: We identified 10 different somatic symptom profiles defined by number, type, and site of the symptoms. The majority of the population (74.0% had a profile characterized by no considerable bothering symptoms, while a minor group of 3.9% had profiles defined by a high risk of multiple somatic symptoms. The remaining profiles were more likely to be characterized by a few specific symptoms. The profiles could further be described by their associations with age, sex, chronic disease, and self-perceived health.Conclusion: The identified somatic symptom profiles could be distinguished by number, type, and site of

  11. Immunohistochemical null-phenotype for mismatch repair proteins in colonic carcinoma associated with concurrent MLH1 hypermethylation and MSH2 somatic mutations.

    Science.gov (United States)

    Wang, Tao; Stadler, Zsofia K; Zhang, Liying; Weiser, Martin R; Basturk, Olca; Hechtman, Jaclyn F; Vakiani, Efsevia; Saltz, Lenard B; Klimstra, David S; Shia, Jinru

    2018-04-01

    Microsatellite instability, a well-established driver pathway in colorectal carcinogenesis, can develop in both sporadic and hereditary conditions via different molecular alterations in the DNA mismatch repair (MMR) genes. MMR protein immunohistochemistry (IHC) is currently widely used for the detection of MMR deficiency in solid tumors. The IHC test, however, can show varied staining patterns, posing challenges in the interpretation of the staining results in some cases. Here we report a case of an 80-year-old female with a colonic adenocarcinoma that exhibited an unusual "null" IHC staining pattern with complete loss of all four MMR proteins (MLH1, MSH2, MSH6, and PMS2). This led to subsequent MLH1 methylation testing and next generation sequencing which demonstrated that the loss of all MMR proteins was associated with concurrent promoter hypermethylation of MLH1 and double somatic truncating mutations in MSH2. These molecular findings, in conjunction with the patient's age being 80 years and the fact that the patient had no personal or family cancer history, indicated that the MMR deficiency was highly likely sporadic in nature. Thus, the stringent Lynch syndrome type surveillance programs were not recommended to the patient and her family members. This case illustrates a rare but important scenario where a null IHC phenotype signifies complex underlying molecular alternations that bear clinical management implications, highlighting the need for recognition and awareness of such unusual IHC staining patterns.

  12. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Koch, Christian A; Brouwers, Frederieke M; Vortmeyer, Alexander O; Tannapfel, Andrea; Libutti, Steven K; Zhuang, Zhengping; Pacak, Karel; Neumann, Hartmut PH; Paschke, Ralf

    2006-01-01

    Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a 'second hit' mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

  13. SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing.

    Directory of Open Access Journals (Sweden)

    Noushin Niknafs

    2015-10-01

    Full Text Available Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones--cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8 can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can

  14. SubClonal Hierarchy Inference from Somatic Mutations: Automatic Reconstruction of Cancer Evolutionary Trees from Multi-region Next Generation Sequencing.

    Science.gov (United States)

    Niknafs, Noushin; Beleva-Guthrie, Violeta; Naiman, Daniel Q; Karchin, Rachel

    2015-10-01

    Recent improvements in next-generation sequencing of tumor samples and the ability to identify somatic mutations at low allelic fractions have opened the way for new approaches to model the evolution of individual cancers. The power and utility of these models is increased when tumor samples from multiple sites are sequenced. Temporal ordering of the samples may provide insight into the etiology of both primary and metastatic lesions and rationalizations for tumor recurrence and therapeutic failures. Additional insights may be provided by temporal ordering of evolving subclones--cellular subpopulations with unique mutational profiles. Current methods for subclone hierarchy inference tightly couple the problem of temporal ordering with that of estimating the fraction of cancer cells harboring each mutation. We present a new framework that includes a rigorous statistical hypothesis test and a collection of tools that make it possible to decouple these problems, which we believe will enable substantial progress in the field of subclone hierarchy inference. The methods presented here can be flexibly combined with methods developed by others addressing either of these problems. We provide tools to interpret hypothesis test results, which inform phylogenetic tree construction, and we introduce the first genetic algorithm designed for this purpose. The utility of our framework is systematically demonstrated in simulations. For most tested combinations of tumor purity, sequencing coverage, and tree complexity, good power (≥ 0.8) can be achieved and Type 1 error is well controlled when at least three tumor samples are available from a patient. Using data from three published multi-region tumor sequencing studies of (murine) small cell lung cancer, acute myeloid leukemia, and chronic lymphocytic leukemia, in which the authors reconstructed subclonal phylogenetic trees by manual expert curation, we show how different configurations of our tools can identify either a single

  15. Phenylketonuria mutation analysis in Northern Ireland: A rapid stepwise approach

    Energy Technology Data Exchange (ETDEWEB)

    Zschocke, J.; Graham, C.A.; Nevin, N.C. [Queen`s Univ., Belfast (Australia)] [and others

    1995-12-01

    We present a multistep approach for the rapid analysis of phenylketonuria (PKU) mutations. In the first step, three common mutations and a polymorphic short tandem repeat (STR) system are rapidly analyzed with a fluorescent multiplex assay. In the second step, minihaplotypes combining STR and VNTR data are used to determine rare mutations likely to be present in an investigated patient, which are then confirmed by restriction enzyme analysis. The remaining mutations are analyzed with denaturant gradient-gel electrophoresis and sequencing. The first two steps together identify both mutations in 90%-95% of PKU patients, and results can be obtained within 2 d. We have investigated 121 Northern Irish families with hyperphenylalaninemia, including virtually all patients born since 1972, and have found 34 different mutations on 241 of the 242 mutant alleles. Three mutations (R408W, 165T, and F39L) account for 57.5% of mutations, while 14 mutations occur with a frequency of 1%-6%. The present analysis system is efficient and inexpensive and is particularly well suited to routine mutation analysis in a diagnostic setting. 19 refs., 5 tabs.

  16. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex

    Directory of Open Access Journals (Sweden)

    Antonio Federico

    2017-04-01

    Full Text Available The integrator complex has been recently identified as a key regulator of RNA Polymerase II-mediated transcription, with many functions including the processing of small nuclear RNAs, the pause-release and elongation of polymerase during the transcription of protein coding genes, and the biogenesis of enhancer derived transcripts. Moreover, some of its components also play a role in genome maintenance. Thus, it is reasonable to hypothesize that their functional impairment or altered expression can contribute to malignancies. Indeed, several studies have described the mutations or transcriptional alteration of some Integrator genes in different cancers. Here, to draw a comprehensive pan-cancer picture of the genomic and transcriptomic alterations for the members of the complex, we reanalyzed public data from The Cancer Genome Atlas. Somatic mutations affecting Integrator subunit genes and their transcriptional profiles have been investigated in about 11,000 patients and 31 tumor types. A general heterogeneity in the mutation frequencies was observed, mostly depending on tumor type. Despite the fact that we could not establish them as cancer drivers, INTS7 and INTS8 genes were highly mutated in specific cancers. A transcriptome analysis of paired (normal and tumor samples revealed that the transcription of INTS7, INTS8, and INTS13 is significantly altered in several cancers. Experimental validation performed on primary tumors confirmed these findings.

  17. Mutations in the FHA-domain of ectopically expressed NBS1 lead to radiosensitization and to no increase in somatic mutation rates via a partial suppression of homologous recombination

    International Nuclear Information System (INIS)

    Ohara, Maki; Funyu, Yumi; Ebara, Shunsuke

    2014-01-01

    Ionizing radiation induces DNA double-strand breaks (DSBs). Mammalian cells repair DSBs through multiple pathways, and the repair pathway that is utilized may affect cellular radiation sensitivity. In this study, we examined effects on cellular radiosensitivity resulting from functional alterations in homologous recombination (HR). HR was inhibited by overexpression of the forkhead-associated (FHA) domain-mutated NBS1 (G27D/R28D: FHA-2D) protein in HeLa cells or in hamster cells carrying a human X-chromosome. Cells expressing FHA-2D presented partially (but significantly) HR-deficient phenotypes, which were assayed by the reduction of gene conversion frequencies measured with a reporter assay, a decrease in radiation-induced Mre11 foci formation, and hypersensitivity to camptothecin treatments. Interestingly, ectopic expression of FHA-2D did not increase the frequency of radiation-induced somatic mutations at the HPRT locus, suggesting that a partial reduction of HR efficiency has only a slight effect on genomic stability. The expression of FHA-2D rendered the exponentially growing cell population slightly (but significantly) more sensitive to ionizing radiation. This radiosensitization effect due to the expression of FHA-2D was enhanced when the cells were irradiated with split doses delivered at 24-h intervals. Furthermore, enhancement of radiation sensitivity by split dose irradiation was not seen in contact-inhibited G0/G1 populations, even though the cells expressed FHA-2D. These results suggest that the FHA domain of NBS1 might be an effective molecular target that can be used to induce radiosensitization using low molecular weight chemicals, and that partial inhibition of HR might improve the effectiveness of cancer radiotherapy. (author)

  18. The somatic FAH C.1061C>A change counteracts the frequent FAH c.1062+5G>A mutation and permits U1snRNA-based splicing correction.

    Science.gov (United States)

    Scalet, Daniela; Sacchetto, Claudia; Bernardi, Francesco; Pinotti, Mirko; van de Graaf, Stan F J; Balestra, Dario

    2018-05-01

    In tyrosinaemia type 1(HT1), a mosaic pattern of fumarylacetoacetase (FAH) immunopositive or immunonegative nodules in liver tissue has been reported in many patients. This aspect is generally explained by a spontaneous reversion of the mutation into a normal genotype. In one HT1 patient carrying the frequent FAH c.1062+5G>A mutation, a second somatic change (c.1061C>A) has been reported in the same allele, and found in immunopositive nodules. Here, we demonstrated that the c.1062+5G>A prevents usage of the exon 12 5' splice site (ss), even when forced by an engineered U1snRNA specifically designed on the FAH 5'ss to strengthen its recognition. Noticeably the new somatic c.1061C>A change, in linkage with the c.1062+5G>A mutation, partially rescues the defective 5'ss and is associated to trace level (~5%) of correct transcripts. Interestingly, this combined genetic condition strongly favored the rescue by the engineered U1snRNA, with correct transcripts reaching up to 60%. Altogether, these findings elucidate the molecular basis of HT1 caused by the frequent FAH c.1062+5G>A mutation, and demonstrate the compensatory effect of the c.1061C>A change in promoting exon definition, thus unraveling a rare mechanism leading to FAH immune-reactive mosaicism.

  19. Not All Next Generation Sequencing Diagnostics are Created Equal: Understanding the Nuances of Solid Tumor Assay Design for Somatic Mutation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Phillip N., E-mail: pgray@ambrygen.com; Dunlop, Charles L.M.; Elliott, Aaron M. [Ambry Genetics, 15 Argonaut, Aliso Viejo, CA 92656 (United States)

    2015-07-17

    The molecular characterization of tumors using next generation sequencing (NGS) is an emerging diagnostic tool that is quickly becoming an integral part of clinical decision making. Cancer genomic profiling involves significant challenges including DNA quality and quantity, tumor heterogeneity, and the need to detect a wide variety of complex genetic mutations. Most available comprehensive diagnostic tests rely on primer based amplification or probe based capture methods coupled with NGS to detect hotspot mutation sites or whole regions implicated in disease. These tumor panels utilize highly customized bioinformatics pipelines to perform the difficult task of accurately calling cancer relevant alterations such as single nucleotide variations, small indels or large genomic alterations from the NGS data. In this review, we will discuss the challenges of solid tumor assay design/analysis and report a case study that highlights the need to include complementary technologies (i.e., arrays) and germline analysis in tumor testing to reliably identify copy number alterations and actionable variants.

  20. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  1. Preferential Allele Expression Analysis Identifies Shared Germline and Somatic Driver Genes in Advanced Ovarian Cancer

    Science.gov (United States)

    Halabi, Najeeb M.; Martinez, Alejandra; Al-Farsi, Halema; Mery, Eliane; Puydenus, Laurence; Pujol, Pascal; Khalak, Hanif G.; McLurcan, Cameron; Ferron, Gwenael; Querleu, Denis; Al-Azwani, Iman; Al-Dous, Eman; Mohamoud, Yasmin A.; Malek, Joel A.; Rafii, Arash

    2016-01-01

    Identifying genes where a variant allele is preferentially expressed in tumors could lead to a better understanding of cancer biology and optimization of targeted therapy. However, tumor sample heterogeneity complicates standard approaches for detecting preferential allele expression. We therefore developed a novel approach combining genome and transcriptome sequencing data from the same sample that corrects for sample heterogeneity and identifies significant preferentially expressed alleles. We applied this analysis to epithelial ovarian cancer samples consisting of matched primary ovary and peritoneum and lymph node metastasis. We find that preferentially expressed variant alleles include germline and somatic variants, are shared at a relatively high frequency between patients, and are in gene networks known to be involved in cancer processes. Analysis at a patient level identifies patient-specific preferentially expressed alleles in genes that are targets for known drugs. Analysis at a site level identifies patterns of site specific preferential allele expression with similar pathways being impacted in the primary and metastasis sites. We conclude that genes with preferentially expressed variant alleles can act as cancer drivers and that targeting those genes could lead to new therapeutic strategies. PMID:26735499

  2. Analysis of time of death of prenatally lethal Steeloid mutations

    International Nuclear Information System (INIS)

    Rinchik, E.M.; Cummings, C.C.; Bangham, J.W.; Hunsicker, P.R.; Phipps, E.L.; Stelzner, K.F.

    1987-01-01

    Deletion mutations have been extremely useful in initiating the functional and molecular dissections of regions of the mouse genome. For the d-se and c regions, for example, it was observed that radiation mutations carrying lethal factors separable, by complementation analysis, from the primary d, se, or c mutation itself, could often be associated at both the genetic and molecular levels with multilocus chromosomal deletions. Since many of the Oak Ridge Sld mutations arose in radiation mutagenesis experiments, a substantial number may carry chromosomal deletions that involve the Sl locus in chromosome 10. Because of the great value of deletion mutations for the genetic and molecular analysis of chromosomal regions and complex genetic loci, they have initiated a series of experiments designed to test whether radiation-induced Sld mutations carry other lethal factors, in addition to the lethality caused by severe alleles of the Sl locus itself, as one prescreen for identifying Sld's that are caused by deletions

  3. Deciphering KRAS and NRAS mutated clone dynamics in MLL-AF4 paediatric leukaemia by ultra deep sequencing analysis.

    Science.gov (United States)

    Trentin, Luca; Bresolin, Silvia; Giarin, Emanuela; Bardini, Michela; Serafin, Valentina; Accordi, Benedetta; Fais, Franco; Tenca, Claudya; De Lorenzo, Paola; Valsecchi, Maria Grazia; Cazzaniga, Giovanni; Kronnie, Geertruy Te; Basso, Giuseppe

    2016-10-04

    To induce and sustain the leukaemogenic process, MLL-AF4+ leukaemia seems to require very few genetic alterations in addition to the fusion gene itself. Studies of infant and paediatric patients with MLL-AF4+ B cell precursor acute lymphoblastic leukaemia (BCP-ALL) have reported mutations in KRAS and NRAS with incidences ranging from 25 to 50%. Whereas previous studies employed Sanger sequencing, here we used next generation amplicon deep sequencing for in depth evaluation of RAS mutations in 36 paediatric patients at diagnosis of MLL-AF4+ leukaemia. RAS mutations including those in small sub-clones were detected in 63.9% of patients. Furthermore, the mutational analysis of 17 paired samples at diagnosis and relapse revealed complex RAS clone dynamics and showed that the mutated clones present at relapse were almost all originated from clones that were already detectable at diagnosis and survived to the initial therapy. Finally, we showed that mutated patients were indeed characterized by a RAS related signature at both transcriptional and protein levels and that the targeting of the RAS pathway could be of beneficial for treatment of MLL-AF4+ BCP-ALL clones carrying somatic RAS mutations.

  4. Genotoxic valuation of Zinalco, a zinc base alloy, by the mutation and somatic recombination test in Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Ramirez V, P.

    1995-01-01

    Zinalco is an eutectoid alloy made of zinc, aluminium and copper (78% , 20% and 2%), because of its physical, chemical and mechanical characteristics, it has been established as a structural material and valued as a feasible bio material. Previous authors have studies on the cytotoxic effect of Zinalco, so for concluded that it is harmless to the organism. However, was considered necessary to evaluate its potential genotoxicity. The present work was done with the fruit fly Drosophila Melanogaster. The objectives were: to determine the administered particle size, to evaluate its ingestion zinalco and to score the genotoxic effect by means of the SMART test in wing cells of D. Melanogaster. The protocol consisted of an oral chronic treatment, to groups of 72th age larvae, with concentrations of 0,1,2,4,8 and 16 mg of zinalco in ml of water on 1.5 g of synthetic medium. Statistical analysis was done through the SMART program. The results obtained showed an average particle size of 16 m long x 5.9 m wide. The normal amount of the alloy elements in the larvae was increased and finally, no genotoxicity at any of the administered doses could be detected. (Author)

  5. Mutational analysis of the HGO gene in Finnish alkaptonuria patients

    Science.gov (United States)

    de Bernabe, D. B.-V.; Peterson, P.; Luopajarvi, K.; Matintalo, P.; Alho, A.; Konttinen, Y.; Krohn, K.; de Cordoba, S. R.; Ranki, A.

    1999-01-01

    Alkaptonuria (AKU), the prototypic inborn error of metabolism, has recently been shown to be caused by loss of function mutations in the homogentisate-1,2-dioxygenase gene (HGO). So far 17 mutations have been characterised in AKU patients of different ethnic origin. We describe three novel mutations (R58fs, R330S, and H371R) and one common AKU mutation (M368V), detected by mutational and polymorphism analysis of the HGO gene in five Finnish AKU pedigrees. The three novel AKU mutations are most likely specific for the Finnish population and have originated recently.


Keywords: alkaptonuria; homogentisate-1,2-dioxygenase; Finland PMID:10594001

  6. A Somatic Movement Approach to Fostering Emotional Resiliency through Laban Movement Analysis

    Directory of Open Access Journals (Sweden)

    Rachelle P. Tsachor

    2017-09-01

    Full Text Available Although movement has long been recognized as expressing emotion and as an agent of change for emotional state, there was a dearth of scientific evidence specifying which aspects of movement influence specific emotions. The recent identification of clusters of Laban movement components which elicit and enhance the basic emotions of anger, fear, sadness and happiness indicates which types of movements can affect these emotions (Shafir et al., 2016, but not how best to apply this knowledge. This perspective paper lays out a conceptual groundwork for how to effectively use these new findings to support emotional resiliency through voluntary choice of one's posture and movements. We suggest that three theoretical principles from Laban Movement Analysis (LMA can guide the gradual change in movement components in one's daily movements to somatically support shift in affective state: (A Introduce new movement components in developmental order; (B Use LMA affinities-among-components to guide the expansion of expressive movement range and (C Sequence change among components based on Laban's Space Harmony theory to support the gradual integration of that new range. The methods postulated in this article have potential to foster resiliency and provide resources for self-efficacy by expanding our capacity to adapt emotionally to challenges through modulating our movement responses.

  7. Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis

    Directory of Open Access Journals (Sweden)

    Kazutaka Kitaura

    2017-05-01

    Full Text Available A diverse antibody repertoire is primarily generated by the rearrangement of V, D, and J genes and subsequent somatic hypermutation (SHM. Class-switch recombination (CSR produces various isotypes and subclasses with different functional properties. Although antibody isotypes and subclasses are considered to be produced by both direct and sequential CSR, it is still not fully understood how SHMs accumulate during the process in which antibody subclasses are generated. Here, we developed a new next-generation sequencing (NGS-based antibody repertoire analysis capable of identifying all antibody isotype and subclass genes and used it to examine the peripheral blood mononuclear cells of 12 healthy individuals. Using a total of 5,480,040 sequences, we compared percentage frequency of variable (V, junctional (J sequence, and a combination of V and J, diversity, length, and amino acid compositions of CDR3, SHM, and shared clones in the IgM, IgD, IgG3, IgG1, IgG2, IgG4, IgA1, IgE, and IgA2 genes. The usage and diversity were similar among the immunoglobulin (Ig subclasses. Clonally related sequences sharing identical V, D, J, and CDR3 amino acid sequences were frequently found within multiple Ig subclasses, especially between IgG1 and IgG2 or IgA1 and IgA2. SHM occurred most frequently in IgG4, while IgG3 genes were the least mutated among all IgG subclasses. The shared clones had almost the same SHM levels among Ig subclasses, while subclass-specific clones had different levels of SHM dependent on the genomic location. Given the sequential CSR, these results suggest that CSR occurs sequentially over multiple subclasses in the order corresponding to the genomic location of IGHCs, but CSR is likely to occur more quickly than SHMs accumulate within Ig genes under physiological conditions. NGS-based antibody repertoire analysis should provide critical information on how various antibodies are generated in the immune system.

  8. Somatic mosaicism caused by monoallelic reversion of a mutation in T cells of a patient with ADA-SCID and the effects of enzyme replacement therapy on the revertant phenotype.

    Science.gov (United States)

    Moncada-Vélez, M; Vélez-Ortega, A; Orrego, J; Santisteban, I; Jagadeesh, J; Olivares, M; Olaya, N; Hershfield, M; Candotti, F; Franco, J

    2011-11-01

    Patients with adenosine deaminase (ADA) deficiency exhibit spontaneous and partial clinical remission associated with somatic reversion of inherited mutations. We report a child with severe combined immunodeficiency (T-B- SCID) due to ADA deficiency diagnosed at the age of 1 month, whose lymphocyte counts including CD4+ and CD8+ T and NK cells began to improve after several months with normalization of ADA activity in Peripheral blood lymphocytes (PBL), as a result of somatic mosaicism caused by monoallelic reversion of the causative mutation in the ADA gene. He was not eligible for haematopoietic stem cell transplantation (HSCT) or gene therapy (GT); therefore he was placed on enzyme replacement therapy (ERT) with bovine PEG-ADA. The follow-up of metabolic and immunologic responses to ERT included gradual improvement in ADA activity in erythrocytes and transient expansion of most lymphocyte subsets, followed by gradual stabilization of CD4+ and CD8+ T (with naïve phenotype) and NK cells, and sustained expansion of TCRγδ+ T cells. This was accompanied by the disappearance of the revertant T cells as shown by DNA sequencing from PBL. Although the patient's clinical condition improved marginally, he later developed a germinal cell tumour and eventually died at the age of 67 months from sepsis. This case adds to our current knowledge of spontaneous reversion of mutations in ADA deficiency and shows that the effects of the ERT may vary among these patients, suggesting that it could depend on the cell and type in which the somatic mosaicism is established upon reversion. © 2011 The Authors. Scandinavian Journal of Immunology © 2011 Blackwell Publishing Ltd.

  9. Mutational Analysis of Merkel Cell Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Erstad, Derek J. [Department of Surgery, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States); Cusack, James C. Jr., E-mail: jcusack@mgh.harvard.edu [Division of Surgical Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114 (United States)

    2014-10-17

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge.

  10. Mutational Analysis of Merkel Cell Carcinoma

    International Nuclear Information System (INIS)

    Erstad, Derek J.; Cusack, James C. Jr.

    2014-01-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine malignancy that is associated with a poor prognosis. The pathogenesis of MCC is not well understood, and despite a recent plethora of mutational analyses, we have yet to find a set of signature mutations implicated in the majority of cases. Mutations, including TP53, Retinoblastoma and PIK3CA, have been documented in subsets of patients. Other mechanisms are also likely at play, including infection with the Merkel cell polyomavirus in a subset of patients, dysregulated immune surveillance, epigenetic alterations, aberrant protein expression, posttranslational modifications and microRNAs. In this review, we summarize what is known about MCC genetic mutations and chromosomal abnormalities, and their clinical significance. We also examine aberrant protein function and microRNA expression, and discuss the therapeutic and prognostic implications of these findings. Multiple clinical trials designed to selectively target overexpressed oncogenes in MCC are currently underway, though most are still in early phases. As we accumulate more molecular data on MCC, we will be better able to understand its pathogenic mechanisms, develop libraries of targeted therapies, and define molecular prognostic signatures to enhance our clinicopathologic knowledge

  11. Discordant diagnoses obtained by different approaches in antithrombin mutation analysis

    DEFF Research Database (Denmark)

    Feddersen, Søren; Nybo, Mads

    2014-01-01

    OBJECTIVES: In hereditary antithrombin (AT) deficiency it is important to determine the underlying mutation since the future risk of thromboembolism varies considerably between mutations. DNA investigations are in general thought of as flawless and irrevocable, but the diagnostic approach can...... be critical. We therefore investigated mutation results in the AT gene, SERPINC1, with two different approaches. DESIGN AND METHODS: Sixteen patients referred to the Centre for Thrombosis and Haemostasis, Odense University Hospital, with biochemical indications of AT deficiency, but with a negative denaturing...... high-performance liquid chromatography (DHPLC) mutation screening (routine approach until recently) were included. As an alternative mutation analysis, direct sequencing of all exons and exon-intron boundaries without pre-selection by DHPLC was performed. RESULTS: Out of sixteen patients...

  12. As good as it gets? A meta-analysis and systematic review of methodological quality of heart rate variability studies in functional somatic disorders

    NARCIS (Netherlands)

    Tak, L.M.; Riese, H.; de Bock, G.H.; Manoharan, A.; Kok, I.C.; Rosmalen, J.G.M.

    2009-01-01

    Autonomic nervous system (ANS) dysfunction is a potential mechanism connecting psychosocial stress to functional somatic disorders (FSD), such as chronic fatigue syndrome, fibromyalgia and irritable bowel syndrome. We present the first meta-analysis and systematic review of methodological study

  13. Induced mutation and somatic recombination as tools for genetic analysis and breeding of imperfect fungi

    NARCIS (Netherlands)

    Bos, C.J.

    1986-01-01

    Many fungi which are important in Agriculture as plant pathogens or in Biotechnology as producers of organic acids, antibiotics or enzymes, are imperfect fungi. These fungi do not have a sexual stage, which implies that they lack a meiotic recombination mechanism.

    However, many

  14. Mindfulness-based therapies in the treatment of somatization disorders: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Shaheen E Lakhan

    Full Text Available BACKGROUND: Mindfulness-based therapy (MBT has been used effectively to treat a variety of physical and psychological disorders, including depression, anxiety, and chronic pain. Recently, several lines of research have explored the potential for mindfulness-therapy in treating somatization disorders, including fibromyalgia, chronic fatigue syndrome, and irritable bowel syndrome. METHODS: Thirteen studies were identified as fulfilling the present criteria of employing randomized controlled trials to determine the efficacy of any form of MBT in treating somatization disorders. A meta-analysis of the effects of mindfulness-based therapy on pain, symptom severity, quality of life, depression, and anxiety was performed to determine the potential of this form of treatment. FINDINGS: While limited in power, the meta-analysis indicated a small to moderate positive effect of MBT (compared to wait-list or support group controls in reducing pain (SMD = -0.21, 95% CI: -0.37, -0.03; p<0.05, symptom severity (SMD = -0.40, 95% CI: -0.54, -0.26; p<0.001, depression (SMD = -0.23, 95% CI: -0.40, -0.07, p<0.01, and anxiety (SMD = -0.20, 95% CI: -0.42, 0.02, p = 0.07 associated with somatization disorders, and improving quality of life (SMD = 0.39, 95% CI: 0.19, 0.59; p<0.001 in patients with this disorder. Subgroup analyses indicated that the efficacy of MBT was most consistent for irritable bowel syndrome (p<0.001 for pain, symptom severity, and quality of life, and that mindfulness-based stress reduction (MBSR and mindfulness-based cognitive therapy (MCBT were more effective than eclectic/unspecified MBT. CONCLUSIONS: Preliminary evidence suggests that MBT may be effective in treating at least some aspects of somatization disorders. Further research is warranted.

  15. IDH Mutation Analysis in Ewing Sarcoma Family Tumors

    Directory of Open Access Journals (Sweden)

    Ki Yong Na

    2015-05-01

    Full Text Available Background: Isocitrate dehydrogenase (IDH catalyzes the oxidative decarboxylation of isocitrate to yield α-ketoglutarate (α-KG with production of reduced nicotinamide adenine dinucleotide (NADH. Dysfunctional IDH leads to reduced production of α-KG and NADH and increased production of 2-hydroxyglutarate, an oncometabolite. This results in increased oxidative damage and stabilization of hypoxia-inducible factor α, causing cells to be prone to tumorigenesis. Methods: This study investigated IDH mutations in 61 Ewing sarcoma family tumors (ESFTs, using a pentose nucleic acid clamping method and direct sequencing. Results: We identified four cases of ESFTs harboring IDH mutations. The number of IDH1 and IDH2 mutations was equal and the subtype of IDH mutations was variable. Clinicopathologic analysis according to IDH mutation status did not reveal significant results. Conclusions: This study is the first to report IDH mutations in ESFTs. The results indicate that ESFTs can harbor IDH mutations in previously known hot-spot regions, although their incidence is rare. Further validation with a larger case-based study would establish more reliable and significant data on prevalence rate and the biological significance of IDH mutations in ESFTs.

  16. Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret).

    Science.gov (United States)

    Fraga, Hugo Pacheco de Freitas; Agapito-Tenfen, Sarah Zanon; Caprestano, Clarissa Alves; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2013-09-01

    Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Genetic stability evaluation of quercus suber l. somatic embryogenesis by rapd analysis

    International Nuclear Information System (INIS)

    Fernandes, P.; Costa, A.; Rocha, A.C.C.; Santos, C.

    2011-01-01

    A reliable protocol for adult Quercus suber L. somatic embryogenesis (SE) was developed recently. To evaluate the potential use of this protocol in cork oak forest breeding programs, it is essential to guarantee somatic embryos/emblings genetic stability. Random Amplification of Polymorphic DNA (RAPD) is currently used to assess somaclonal variation providing information on genetic variability of the micropropagation process. In this work, SE was induced from adult trees by growing leaf explants on MS medium supplemented with 2,4-D and zeatin. Embling conversion took place on MS medium without growth regulators. DNA from donor tree, somatic embryos and emblings was used to assess genetic variability by RAPD fingerprinting. Fourteen primers produced 165 genetic loci with high quality and reproducibility. Despite somatic embryos originated some poor quality PCR-profiles, replicable and excellent fingerprints were obtained for both donor plant and embling. Results presented no differences among regenerated emblings and donor plant. Hence, the SE protocol used did not induce, up to moment, any genetic variability, confirming data previously obtained with other molecular/genetic techniques, supporting that this protocol may be used to provide true-to-type plants from important forestry species. (author)

  18. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype

    Directory of Open Access Journals (Sweden)

    Virijevic Marijana

    2016-12-01

    Full Text Available Mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2 genes are frequent molecular lesions in acute myeloid leukaemia with normal karyotype (AML-NK. The effects of IDH mutations on clinical features and treatment outcome in AML-NK have been widely investigated, but only a few studies monitored these mutations during follow-up.

  19. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  20. Are There Mutator Polymerases?

    Directory of Open Access Journals (Sweden)

    Miguel Garcia-Diaz

    2003-01-01

    Full Text Available DNA polymerases are involved in different cellular events, including genome replication and DNA repair. In the last few years, a large number of novel DNA polymerases have been discovered, and the biochemical analysis of their properties has revealed a long list of intriguing features. Some of these polymerases have a very low fidelity and have been suggested to play mutator roles in different processes, like translesion synthesis or somatic hypermutation. The current view of these processes is reviewed, and the current understanding of DNA polymerases and their role as mutator enzymes is discussed.

  1. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  2. Mutational analysis and clinical correlation of metastatic colorectal cancer.

    Science.gov (United States)

    Russo, Andrea L; Borger, Darrell R; Szymonifka, Jackie; Ryan, David P; Wo, Jennifer Y; Blaszkowsky, Lawrence S; Kwak, Eunice L; Allen, Jill N; Wadlow, Raymond C; Zhu, Andrew X; Murphy, Janet E; Faris, Jason E; Dias-Santagata, Dora; Haigis, Kevin M; Ellisen, Leif W; Iafrate, Anthony J; Hong, Theodore S

    2014-05-15

    Early identification of mutations may guide patients with metastatic colorectal cancer toward targeted therapies that may be life prolonging. The authors assessed tumor genotype correlations with clinical characteristics to determine whether mutational profiling can account for clinical similarities, differences, and outcomes. Under Institutional Review Board approval, 222 patients with metastatic colon adenocarcinoma (n = 158) and rectal adenocarcinoma (n = 64) who underwent clinical tumor genotyping were reviewed. Multiplexed tumor genotyping screened for >150 mutations across 15 commonly mutated cancer genes. The chi-square test was used to assess genotype frequency by tumor site and additional clinical characteristics. Cox multivariate analysis was used to assess the impact of genotype on overall survival. Broad-based tumor genotyping revealed clinical and anatomic differences that could be linked to gene mutations. NRAS mutations were associated with rectal cancer versus colon cancer (12.5% vs 0.6%; P colon cancer (13% vs 3%; P = .024) and older age (15.8% vs 4.6%; P = .006). TP53 mutations were associated with rectal cancer (30% vs 18%; P = .048), younger age (14% vs 28.7%; P = .007), and men (26.4% vs 14%; P = .03). Lung metastases were associated with PIK3CA mutations (23% vs 8.7%; P = .004). Only mutations in BRAF were independently associated with decreased overall survival (hazard ratio, 2.4; 95% confidence interval, 1.09-5.27; P = .029). The current study suggests that underlying molecular profiles can differ between colon and rectal cancers. Further investigation is warranted to assess whether the differences identified are important in determining the optimal treatment course for these patients. © 2014 American Cancer Society.

  3. Mutational analysis of FLASH and PTPN13 genes in colorectal carcinomas.

    Science.gov (United States)

    Jeong, Eun Goo; Lee, Sung Hak; Yoo, Nam Jin; Lee, Sug Hyung

    2008-01-01

    The Fas-Fas ligand system is considered a major pathway for induction of apoptosis in cells and tissues. FLASH was identified as a pro-apoptotic protein that transmits apoptosis signal during Fas-mediated apoptosis. PTPN13 interacts with Fas and functions as both suppressor and inducer of Fas-mediated apoptosis. There are polyadenine tracts in both FLASH (A8 and A9 in exon 8) and PTPN13 (A8 in exon 7) genes that could be frameshift mutation targets in colorectal carcinomas. Because genes encoding proteins in Fas-mediated apoptosis frequently harbor somatic mutations in cancers, we explored the possibility as to whether mutations of FLASH and PTPN13 are a feature of colorectal carcinomas. We analysed human FLASH in exon 8 and PTPN13 in exon 7 for the detection of somatic mutations in 103 colorectal carcinomas by a polymerase chain reaction (PCR)- based single-strand conformation polymorphism (SSCP). We detected two mutations in FLASH gene, but none in PTPN13 gene. However, the two mutations were not frameshift (deletion or insertion) mutations in the polyadenine tracts of FLASH. The two mutations consisted of a deletion mutation (c.3734-3737delAGAA) and a missense mutation (c.3703A>C). These data indicate that frameshift mutation in the polyadenine tracts in both FLASH and PTPN13 genes is rare in colorectal carcinomas. Also, the data suggest that both FLASH and PTPN13 mutations in the polyadenine tracts may not have a crucial role in the pathogenesis of colorectal carcinomas.

  4. Quantitative analysis of DNA methylation at all human imprinted regions reveals preservation of epigenetic stability in adult somatic tissue

    Directory of Open Access Journals (Sweden)

    Woodfine Kathryn

    2011-01-01

    -line and the somatic DMRs. Conclusions Our validated pyrosequencing methylation assays can be widely used as a tool to investigate DNA methylation levels of imprinted genes in clinical samples. This first comprehensive analysis of normal methylation levels in adult somatic tissues at human imprinted regions confirm that, despite intra-individual variability and tissue specific expression, imprinted genes faithfully maintain their DNA methylation in healthy adult tissue. DNA methylation levels of a selection of imprinted genes are, therefore, a valuable indicator for epigenetic stability.

  5. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma

    NARCIS (Netherlands)

    Schindler, G.; Capper, D.; Meyer, J.; Janzarik, W.; Omran, H.; Herold-Mende, C.; Schmieder, K.; Wesseling, P.; Mawrin, C.; Hasselblatt, M.; Louis, D.N.; Korshunov, A.; Pfister, S.; Hartmann, C.; Paulus, W.; Reifenberger, G.; Deimling, A. Von

    2011-01-01

    Missense mutations of the V600E type constitute the vast majority of tumor-associated somatic alterations in the v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) gene. Initially described in melanoma, colon and papillary thyroid carcinoma, these alterations have also been observed in primary

  6. Integrated analysis of whole genome and transcriptome sequencing reveals diverse transcriptomic aberrations driven by somatic genomic changes in liver cancers.

    Directory of Open Access Journals (Sweden)

    Yuichi Shiraishi

    Full Text Available Recent studies applying high-throughput sequencing technologies have identified several recurrently mutated genes and pathways in multiple cancer genomes. However, transcriptional consequences from these genomic alterations in cancer genome remain unclear. In this study, we performed integrated and comparative analyses of whole genomes and transcriptomes of 22 hepatitis B virus (HBV-related hepatocellular carcinomas (HCCs and their matched controls. Comparison of whole genome sequence (WGS and RNA-Seq revealed much evidence that various types of genomic mutations triggered diverse transcriptional changes. Not only splice-site mutations, but also silent mutations in coding regions, deep intronic mutations and structural changes caused splicing aberrations. HBV integrations generated diverse patterns of virus-human fusion transcripts depending on affected gene, such as TERT, CDK15, FN1 and MLL4. Structural variations could drive over-expression of genes such as WNT ligands, with/without creating gene fusions. Furthermore, by taking account of genomic mutations causing transcriptional aberrations, we could improve the sensitivity of deleterious mutation detection in known cancer driver genes (TP53, AXIN1, ARID2, RPS6KA3, and identified recurrent disruptions in putative cancer driver genes such as HNF4A, CPS1, TSC1 and THRAP3 in HCCs. These findings indicate genomic alterations in cancer genome have diverse transcriptomic effects, and integrated analysis of WGS and RNA-Seq can facilitate the interpretation of a large number of genomic alterations detected in cancer genome.

  7. [FANCA gene mutation analysis in Fanconi anemia patients].

    Science.gov (United States)

    Chen, Fei; Peng, Guang-Jie; Zhang, Kejian; Hu, Qun; Zhang, Liu-Qing; Liu, Ai-Guo

    2005-10-01

    To screen the FANCA gene mutation and explore the FANCA protein function in Fanconi anemia (FA) patients. FANCA protein expression and its interaction with FANCF were analyzed using Western blot and immunoprecipitation in 3 cases of FA-A. Genomic DNA was used for MLPA analysis followed by sequencing. FANCA protein was undetectable and FANCA and FANCF protein interaction was impaired in these 3 cases of FA-A. Each case of FA-A contained biallelic pathogenic mutations in FANCA gene. No functional FANCA protein was found in these 3 cases of FA-A, and intragenic deletion, frame shift and splice site mutation were the major pathogenic mutations found in FANCA gene.

  8. BRCA1/2 mutation analysis in 41 ovarian cell lines reveals only one functionally deleterious BRCA1 mutation.

    LENUS (Irish Health Repository)

    Stordal, Britta

    2013-06-01

    Mutations in BRCA1\\/2 increase the risk of developing breast and ovarian cancer. Germline BRCA1\\/2 mutations occur in 8.6-13.7% of unselected epithelial ovarian cancers, somatic mutations are also frequent. BRCA1\\/2 mutated or dysfunctional cells may be sensitive to PARP inhibition by synthetic lethality. The aim of this study is to comprehensively characterise the BRCA1\\/2 status of a large panel of ovarian cancer cell lines available to the research community to assist in biomarker studies of novel drugs and in particular of PARP inhibitors. The BRCA1\\/2 genes were sequenced in 41 ovarian cell lines, mRNA expression of BRCA1\\/2 and gene methylation status of BRCA1 was also examined. The cytotoxicity of PARP inhibitors olaparib and veliparib was examined in 20 cell lines. The cell line SNU-251 has a deleterious BRCA1 mutation at 5564G > A, and is the only deleterious BRCA1\\/2 mutant in the panel. Two cell lines (UPN-251 and PEO1) had deleterious mutations as well as additional reversion mutations that restored the protein functionality. Heterozygous mutations in BRCA1\\/2 were relatively common, found in 14.6% of cell lines. BRCA1 was methylated in two cell lines (OVCAR8, A1847) and there was a corresponding decrease in gene expression. The BRCA1 methylated cell lines were more sensitive to PARP inhibition than wild-type cells. The SNU-251 deleterious mutant was more sensitive to PARP inhibition, but only in a long-term exposure to correct for its slow growth rate. Cell lines derived from metastatic disease are significantly more resistant to veliparib (2.0 fold p = 0.03) compared to those derived from primary tumours. Resistance to olaparib and veliparib was correlated Pearsons-R 0.5393, p = 0.0311. The incidence of BRCA1\\/2 deleterious mutations 1\\/41 cell lines derived from 33 different patients (3.0%) is much lower than the population incidence. The reversion mutations and high frequency of heterozygous mutations suggest that there is a selective

  9. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  10. Spectrum of somatic mutations detected by targeted next-generation sequencing and their prognostic significance in adult patients with acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2017-02-01

    Full Text Available Abstract Target-specific next-generation sequencing technology was used to analyze 112 genes in adult patients with acute lymphoblastic leukemia (ALL. This sequencing mainly focused on the specific mutational hotspots. Among the 121 patients, 93 patients were B-ALL (76.9%, and 28 patients (23.1% were T-ALL. Of the 121 patients, 110 (90.9% harbored at least one mutation. The five most frequently mutated genes in T-ALL are NOTCH1, JAK3, FBXW7, FAT1, and NRAS. In B-ALL, FAT1, SF1, CRLF2, TET2, and PTPN1 have higher incidence of mutations. Gene mutations are different between Ph+ALL and Ph−ALL patients. B-ALL patients with PTPN11 mutation and T-ALL patients with NOTCH1 and/or FBXW7 mutations showed better survival. But B-ALL with JAK1/JAK2 mutations showed worse survival. The results suggest that gene mutations exist in adult ALL patients universally, they are related with prognosis.

  11. KIT mutation analysis in mast cell neoplasms

    DEFF Research Database (Denmark)

    Arock, M; Sotlar, K; Akin, C

    2015-01-01

    mutations in patients with mastocytosis at diagnosis and during follow-up with sufficient precision and sensitivity in daily practice. In addition, we provide recommendations for sampling and storage of diagnostic material as well as a robust diagnostic algorithm. Using highly sensitive assays, KIT D816V...... can be detected in peripheral blood leukocytes from most patients with systemic mastocytosis (SM) that is a major step forward in screening and SM diagnosis. In addition, the KIT D816V allele burden can be followed quantitatively during the natural course or during therapy. Our recommendations should...... greatly facilitate diagnostic and follow-up investigations in SM in daily practice as well as in clinical trials. In addition, the new tools and algorithms proposed should lead to a more effective screen, early diagnosis of SM and help to avoid unnecessary referrals....

  12. The Somatic Genomic Landscape of Glioblastoma

    Science.gov (United States)

    Brennan, Cameron W.; Verhaak, Roel G.W.; McKenna, Aaron; Campos, Benito; Noushmehr, Houtan; Salama, Sofie R.; Zheng, Siyuan; Chakravarty, Debyani; Sanborn, J. Zachary; Berman, Samuel H.; Beroukhim, Rameen; Bernard, Brady; Wu, Chang-Jiun; Genovese, Giannicola; Shmulevich, Ilya; Barnholtz-Sloan, Jill; Zou, Lihua; Vegesna, Rahulsimham; Shukla, Sachet A.; Ciriello, Giovanni; Yung, WK; Zhang, Wei; Sougnez, Carrie; Mikkelsen, Tom; Aldape, Kenneth; Bigner, Darell D.; Van Meir, Erwin G.; Prados, Michael; Sloan, Andrew; Black, Keith L.; Eschbacher, Jennifer; Finocchiaro, Gaetano; Friedman, William; Andrews, David W.; Guha, Abhijit; Iacocca, Mary; O’Neill, Brian P.; Foltz, Greg; Myers, Jerome; Weisenberger, Daniel J.; Penny, Robert; Kucherlapati, Raju; Perou, Charles M.; Hayes, D. Neil; Gibbs, Richard; Marra, Marco; Mills, Gordon B.; Lander, Eric; Spellman, Paul; Wilson, Richard; Sander, Chris; Weinstein, John; Meyerson, Matthew; Gabriel, Stacey; Laird, Peter W.; Haussler, David; Getz, Gad; Chin, Lynda

    2013-01-01

    We describe the landscape of somatic genomic alterations based on multi-dimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer. PMID:24120142

  13. Mutation breeding in ornamental plants

    International Nuclear Information System (INIS)

    Datta, S.K.

    1990-01-01

    Full text: Mutation induction produced a large number of new promising varieties in ornamental species. 37 new mutants of Chrysanthemum and 14 of rose have been developed by mutations and released for commercialisation. The mutations in flower colour/shape were detected as chimeras in M 1 V 1 , M 1 V 2 , M 1 V 3 generations. The mutation frequency varied with the cultivar and exposure to gamma rays. Comparative analysis of original cultivars and their respective induced mutants on cytomorphological, anatomical and biochemical characters are being carried out for better understanding of the mechanism involved in the origin and evolution of somatic flower colour/shape mutations. Cytological analysis with reference to chromosomal aberrations, chromosome number, ICV, INV and DNA content gave no differences between the original and mutant cultivars. Analysis of florets/petal pigments by TLC and spectrophotometric methods indicated both qualitative and quantitative changes. (author)

  14. Activating HER2 mutations in HER2 gene amplification negative breast cancer.

    Science.gov (United States)

    Bose, Ron; Kavuri, Shyam M; Searleman, Adam C; Shen, Wei; Shen, Dong; Koboldt, Daniel C; Monsey, John; Goel, Nicholas; Aronson, Adam B; Li, Shunqiang; Ma, Cynthia X; Ding, Li; Mardis, Elaine R; Ellis, Matthew J

    2013-02-01

    Data from 8 breast cancer genome-sequencing projects identified 25 patients with HER2 somatic mutations in cancers lacking HER2 gene amplification. To determine the phenotype of these mutations, we functionally characterized 13 HER2 mutations using in vitro kinase assays, protein structure analysis, cell culture, and xenograft experiments. Seven of these mutations are activating mutations, including G309A, D769H, D769Y, V777L, P780ins, V842I, and R896C. HER2 in-frame deletion 755-759, which is homologous to EGF receptor (EGFR) exon 19 in-frame deletions, had a neomorphic phenotype with increased phosphorylation of EGFR or HER3. L755S produced lapatinib resistance, but was not an activating mutation in our experimental systems. All of these mutations were sensitive to the irreversible kinase inhibitor, neratinib. These findings show that HER2 somatic mutation is an alternative mechanism to activate HER2 in breast cancer and they validate HER2 somatic mutations as drug targets for breast cancer treatment. We show that the majority of HER2 somatic mutations in breast cancer patients are activating mutations that likely drive tumorigenesis. Several patients had mutations that are resistant to the reversible HER2 inhibitor lapatinib, but are sensitive to the irreversible HER2 inhibitor, neratinib. Our results suggest that patients with HER2 mutation–positive breast cancers could benefit from existing HER2-targeted drugs.

  15. Genome-wide analysis of transcription factors during somatic embryogenesis in banana (Musa spp.) cv. Grand Naine.

    Science.gov (United States)

    Shivani; Awasthi, Praveen; Sharma, Vikrant; Kaur, Navjot; Kaur, Navneet; Pandey, Pankaj; Tiwari, Siddharth

    2017-01-01

    Transcription factors BABY BOOM (BBM), WUSCHEL (WUS), BSD, LEAFY COTYLEDON (LEC), LEAFY COTYLEDON LIKE (LIL), VIVIPAROUS1 (VP1), CUP SHAPED COTYLEDONS (CUC), BOLITA (BOL), and AGAMOUS LIKE (AGL) play a crucial role in somatic embryogenesis. In this study, we identified eighteen genes of these nine transcription factors families from the banana genome database. All genes were analyzed for their structural features, subcellular, and chromosomal localization. Protein sequence analysis indicated the presence of characteristic conserved domains in these transcription factors. Phylogenetic analysis revealed close evolutionary relationship among most transcription factors of various monocots. The expression patterns of eighteen genes in embryogenic callus containing somatic embryos (precisely isolated by Laser Capture Microdissection), non-embryogenic callus, and cell suspension cultures of banana cultivar Grand Naine were analyzed. The application of 2, 4-dichlorophenoxyacetic acid (2, 4-D) in the callus induction medium enhanced the expression of MaBBM1, MaBBM2, MaWUS2, and MaVP1 in the embryogenic callus. It suggested 2, 4-D acts as an inducer for the expression of these genes. The higher expression of MaBBM2 and MaWUS2 in embryogenic cell suspension (ECS) as compared to non-embryogenic cells suspension (NECS), suggested that these genes may play a crucial role in banana somatic embryogenesis. MaVP1 showed higher expression in both ECS and NECS, whereas MaLEC2 expression was significantly higher in NECS. It suggests that MaLEC2 has a role in the development of non-embryogenic cells. We postulate that MaBBM2 and MaWUS2 can be served as promising molecular markers for the embryogencity in banana.

  16. Mutational Analysis of the Rhodopsin Gene in Sector Retinitis Pigmentosa.

    Science.gov (United States)

    Napier, Maria L; Durga, Dash; Wolsley, Clive J; Chamney, Sarah; Alexander, Sharon; Brennan, Rosie; Simpson, David A; Silvestri, Giuliana; Willoughby, Colin E

    2015-01-01

    To determine the role of rhodopsin (RHO) gene mutations in patients with sector retinitis pigmentosa (RP) from Northern Ireland. A case series of sector RP in a tertiary ocular genetics clinic. Four patients with sector RP were recruited from the Royal Victoria Hospital (Belfast, Northern Ireland) and Altnagelvin Hospital (Londonderry, Northern Ireland) following informed consent. The diagnosis of sector RP was based on clinical examination, International Society for Clinical Electrophysiology of Vision (ISCEV) standard electrophysiology, and visual field analysis. DNA was extracted from peripheral blood leucocytes and the coding regions and adjacent flanking intronic sequences of the RHO gene were polymerase chain reaction (PCR) amplified and cycle sequenced. Rhodopsin mutational status. A heterozygous missense mutation in RHO (c.173C > T) resulting in a non-conservative substitution of threonine to methionine (p. Thr58Met) was identified in one patient and was absent from 360 control individuals. This non-conservative substitution (p.Thr58Met) replaces a highly evolutionary conserved polar hydrophilic threonine residue with a non-polar hydrophobic methionine residue at position 58 near the cytoplasmic border of helix A of RHO. The study identified a RHO gene mutation (p.Thr58Met) not previously reported in RP in a patient with sector RP. These findings outline the phenotypic variability associated with RHO mutations. It has been proposed that the regional effects of RHO mutations are likely to result from interplay between mutant alleles and other genetic, epigenetic and environmental factors.

  17. GPR143 gene mutation analysis in pediatric patients with albinism.

    Science.gov (United States)

    Trebušak Podkrajšek, Katarina; Stirn Kranjc, Branka; Hovnik, Tinka; Kovač, Jernej; Battelino, Tadej

    2012-09-01

    X-linked ocular albinism type 1 is difficult to differentiate clinically from other forms of albinism in young patients. X-linked ocular albinism type 1 is caused by mutations in the GPR143 gene, encoding melanosome specific G-protein coupled receptor. Patients typically present with moderately to severely reduced visual acuity, nystagmus, strabismus, photophobia, iris translucency, hypopigmentation of the retina, foveal hypoplasia and misrouting of optic nerve fibers at the chiasm. Following clinical ophthalmological evaluation, GPR143 gene mutational analyses were performed in a cohort of 15 pediatric male patients with clinical signs of albinism. Three different mutations in the GPR143 gene were identified in four patients, including a novel c.886G>A (p.Gly296Arg) mutation occurring "de novo" and a novel intronic c.360 + 5G>A mutation, identified in two related boys. Four patients with X-linked ocular albinism type 1 were identified from a cohort of 15 boys with clinical signs of albinism using mutation detection methods. Genetic analysis offers the possibility of early definitive diagnosis of ocular albinism type 1 in a significant portion of boys with clinical signs of albinism.

  18. Molecular analysis of radiation-induced mutations in vitro

    International Nuclear Information System (INIS)

    Kronenberg, A.

    1996-01-01

    This review will focus on the nature of specific locus mutations detected in mammalian cells exposed in vitro to different types of ionizing radiations. Ionizing radiation has been shown to produce a wide variety of heritable alterations in DNA. These range from single base pair substitutions to stable loss or translocation of large portions of whole chromosomes. Data will be reviewed for certain test systems that reveal different mutation spectra. Techniques for the analysis of molecular alterations include applications of the polymerase chain reaction, some of which may be coupled with DNA sequence analysis, and a variety of hybridization-based techniques. The complexity of large scale rearrangements is approached with cytogenetic techniques including high resolution banding and various applications of the fluorescence in situ hybridization (FISH) technique. Radiation-induced mutant frequencies and mutation spectra are a function of the linkage constraints on the recovery of viable mutants for a given locus and test system. 44 refs

  19. Origin of Somatic Mutations in β-Catenin versus Adenomatous Polyposis Coli in Colon Cancer: Random Mutagenesis in Animal Models versus Nonrandom Mutagenesis in Humans.

    Science.gov (United States)

    Yang, Da; Zhang, Min; Gold, Barry

    2017-07-17

    Wnt signaling is compromised early in the development of human colorectal cancer (CRC) due to truncating nonsense mutations in adenomatous polyposis coli (APC). CRC induced by chemical carcinogens, such as heterocyclic aromatic amines and azoxymethane, in mice also involves dysregulation of Wnt signaling but via activating missense mutations in the β-catenin oncogene despite the fact that genetically modified mice harboring an inactive APC allele efficiently develop CRC. In contrast, activating mutations in β-catenin are rarely observed in human CRC. Dysregulation of the Wnt signaling pathway by the two distinct mechanisms reveals insights into the etiology of human CRC. On the basis of calculations related to DNA adduct levels produced in mouse CRC models using mutagens, and the number of stem cells in the mouse colon, we show that two nonsense mutations required for biallelic disruption of APC are statistically unlikely to produce CRC in experiments using small numbers of mice. We calculate that an activating mutation in one allele near the critical GSK3β phosphorylation site on β-catenin is >10 5 -times more likely to produce CRC by random mutagenesis due to chemicals than inactivating two alleles in APC, yet it does not occur in humans. Therefore, the mutagenesis mechanism in human CRC cannot be random. We explain that nonsense APC mutations predominate in human CRC because of deamination at 5-methylcytosine at CGA and CAG codons, coupled with the number of human colonic stem cells and lifespan. Our analyses, including a comparison of mutation type and age at CRC diagnosis in U.S. and Chinese patients, also indicate that APC mutations in CRC are not due to environmental mutagens that randomly damage DNA.

  20. Comparative effects of ionizing radiation and two gaseous chemical mutagens on somatic mutation induction in one mutable and two non-mutable clones of Tradescantia

    International Nuclear Information System (INIS)

    Nauman, C.H.; Sparrow, A.H.; Schairer, L.A.

    1976-01-01

    The X-ray dose responses of mutable clone 0106 of Tradescantia (mutable for blue to pink), and its parent clone 02 have been determined for pink and colorless mutations in stamen hair cells, and are compared to the previously determined X-ray response for pink mutations of a third unrelated clone, clone 4430 (hybrid of T. subacaulis and T. hirsutiflora). X-ray response curves are compared to the response curves of the same three clones after exposure to the gaseous phase of the alkylating agent ethyl methanesulfate (EMS) and the fumigant and gasoline additive 1,2-dibromoethane (DBE). X-irradiation induces a pink mutation rate in mutable clone 0106 that is significantly higher than that of the nearly identical pink mutation rates in clones 02 and 4430. However, the colorless mutation rates of clones 02 and 0106 are not significantly different from one another. In clones 02 and 0106, pink mutations occur more frequently than colorless mutations at lower doses, but colorless dose-response curves saturate at higher doses than do those for pink mutations. Exposure-response curves for EMS and DBE have characteristics similar to those of X-ray response curves: exponential rise followed by an area of saturation. However, it was found that the relative sensitivities of the three clones to the gaseous mutagens and to ionizing radiation do not parallel one another. Where clones 02 and 4430 are equally sensitive to X-rays, at equal mutagen concentration clone 4430 is 6-7 times more sensitive to EMS and 7-9 times more sensitive to DBE than is clone 02. Mutable clone 0106 shows intermediate sensitivities to both EMS and DBE

  1. Detection of EGFR somatic mutations in non-small cell lung cancer (NSCLC) using a novel mutant-enriched liquidchip (MEL) technology.

    Science.gov (United States)

    Zhang, Li; Yang, Huiyi; Zhao, Yanwei; Liu, Wenchao; Wu, Shiyang; He, Jiaying; Luo, Xiaodi; Zhu, Zeyao; Xu, Jiasen; Zhou, Qinghua; Ren-Heidenreich, Lifen

    2012-09-01

    We have developed and standardized a novel technology, mutant-enriched liquidchip (MEL), for clinical detection of EGFR mutations. The MEL integrates a mutant-enriched PCR procedure with liquidchip technology for detections of EGFR exon 19 deletions and L858R mutation on both formalin-fixed and paraffin-embedded (FFPE) slides and plasma samples from patients with non-small cell lung cancer (NSCLC). The detection sensitivity was 0.1% of mutant DNA in the presence of its wild-type DNA. The cross-reaction rate was lower than 5%. To evaluate the MEL platform, the EGFR mutation status of 59 patients with advanced NSCLC treated with EGFRTKIs (Tyrosine Kinase Inhibitors) were tested on their FFPE samples. EGFR exon 19 deletions and L858R were detected in 21 patients (21/59) and 76.2% (16/21) of them had partial response to the EGFR-TKIs, while by sequencing method, only 4 (4/59) mutations were detected. Plasma samples from 627 patients with various stages of NSCLC were examined with the MEL and 22% of EGFR exon 19 deletions and L858R were detected. Furthermore, in patients with advanced disease there are more mutations detected in plasma samples than in patients with less advanced disease. In conclusion, the MEL is a sensitive, stable, and robust technology for detecting EGFR DNA mutations from both FFPE and plasma samples from patients with NSCLC and is now routinely used for clinical diagnosis.

  2. Knowledge-based analysis of functional impacts of mutations in ...

    Indian Academy of Sciences (India)

    Knowledge-based analysis of functional impacts of mutations in microRNA seed regions. Supplementary figure 1. Summary of predicted miRNA targets from ... All naturally occurred SNPs in seed regions of human miRNAs. The information of the columns is given in the second sheet. Hihly expressed miRNAs are ...

  3. Somatic symptom disorder

    Science.gov (United States)

    ... related disorders; Somatization disorder; Somatiform disorders; Briquet syndrome; Illness anxiety disorder References American Psychiatric Association. Somatic symptom disorder. Diagnostic and Statistical Manual of Mental Disorders . ...

  4. MO-DE-207B-01: JACK FOWLER JUNIOR INVESTIGATOR COMPETITION WINNER: Between Somatic Mutations and PET-Based Radiomic Features in Non-Small Cell Lung Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yip, S; Coroller, T; Rios Velazquez, E; Parmar, C; Mak, R; Aerts, H [Brigham and Women’s Hospital, Dana Farber Cancer Institute, and Harvard Medical School, Boston, MA (United States); Kim, J [Brigham and Women’s Hospital, Boston Children’s Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Although PET-based radiomic features have been proposed to quantify tumor heterogeneity and shown promise in outcome prediction, little is known about their relationship with tumor genetics. This study assessed the association of [{sup 18}F]fluorodeoxyglucose (FDG)-PET-based radiomic features with non-small cell lung cancer (NSCLC) mutations. Methods: 348 NSCLC patients underwent FDG-PET/CT scans before treatment and were tested for genetic mutations. 13% (44/348) and 28% (96/348) patients were found to harbor EGFR (EGFR+) and KRAS (KRAS+) mutations, respectively. We evaluated nineteen PET-based radiomic features quantifying phenotypic traits, and compared them with conventional PET features (metabolic tumor volume (MTV) and maximum-SUV). The association between the feature values and mutation status was evaluated using the Wilcoxcon-rank-sum-test. The ability of each measure to predict mutations was assessed by the area under the receiver operating curve (AUC). Noether’s test was used to determine if the AUCs were significantly from random (AUC=0.50). All p-values were corrected for multiple testing by controlling the false discovery rate (FDR{sub Wilcoxon} and FDR{sub Noether}) of 10%. Results: Eight radiomic features, MTV, and maximum-SUV, were significantly associated with the EGFR mutation (FDR{sub Wilcoxon}=0.01–0.10). However, KRAS+ demonstrated no significantly distinctive imaging features compared to KRAS− (FDR{sub Wilcoxon}≥0.92). EGFR+ and EGFR− were significantly discriminated by conventional PET features (AUC=0.61, FDR{sub Noether}=0.04 for MTV and AUC=0.64, FDR{sub Noether}=0.01 for maximum-SUV). Eight radiomic features were significantly predictive for EGFR+ compared to EGFR− (AUC=0.59–0.67, FDR{sub Noether}=0.0032–0.09). Normalized-inverse-difference-moment outperformed all features in predicting EGFR mutation (AUC=0.67, FDR{sub Noether}=0.0032). Moreover, only the radiomic feature normalized-inverse-difference-moment could

  5. [Mutation analysis of seven patients with Waardenburg syndrome].

    Science.gov (United States)

    Hao, Ziqi; Zhou, Yongan; Li, Pengli; Zhang, Quanbin; Li, Jiao; Wang, Pengfei; Li, Xiangshao; Feng, Yong

    2016-06-01

    To perform genetic analysis for 7 patients with Waardenburg syndrome. Potential mutation of MITF, PAX3, SOX10 and SNAI2 genes was screened by polymerase chain reaction and direct sequencing. Functions of non-synonymous polymorphisms were predicted with PolyPhen2 software. Seven mutations, including c.649-651delAGA (p.R217del), c.72delG (p.G24fs), c.185T>C (p.M62T), c.118C>T (p.Q40X), c.422T>C (p.L141P), c.640C>T (p.R214X) and c.28G>T(p.G43V), were detected in the patients. Among these, four mutations of the PAX3 gene (c.72delG, c.185T>C, c.118C>T and c.128G>T) and one SOX10 gene mutation (c.422T>C) were not reported previously. Three non-synonymous SNPs (c.185T>C, c.128G>T and c.422T>C) were predicted as harmful. Genetic mutations have been detected in all patients with Waardenburg syndrome.

  6. Analysis of APC mutation in human ameloblastoma and clinical significance.

    Science.gov (United States)

    Li, Ning; Liu, Bing; Sui, Chengguang; Jiang, Youhong

    2016-01-01

    As a highly conserved signaling pathway, Wnt/β-catenin signal transduction pathway plays an important role in many processes. Either in the occurrence or development of tumor, activation of this pathway takes an important place. APC inhibits Wnt/β-catenin pathway to regulate cell proliferation and differentiation. This study aimed to investigate the function of cancer suppressor gene. PCR amplification and sequencing method was used to analyze APC mutations of human clinical specimens. The pathological specimens were collected for PCR and clear electrophoretic bands were obtained after electrophoresis. The gene sequence obtained after purification and sequencing analysis was compared with the known APC gene sequence (NM_000038.5). Base mutations at APC 1543 (T → C), APC-4564 (G → A), APC-5353 (T → G), APC-5550 (T → A) and APC-5969 (G → A) locus existed in 22 (27.5 %), 12 (15 %), 5 (6.25 %), 13 (16.25 %) and 12 patients (15 %), respectively. Gene mutations existed in ameloblastoma, and the mutation loci were 1543 locus (T → C), 4564 locus (G → A), 5353 locus (T → G), 5550 locus (T → A) and 5969 locus (G → A) 15 %, respectively. APC mutation plays a certain role in monitoring the tumor malignant degree as it may indicate the transition process of ameloblastoma malignant phenotype.

  7. Calreticulin mutation analysis in non-mutated Janus kinase 2 essential thrombocythemia patients in Chiang Mai University: analysis of three methods and clinical correlations.

    Science.gov (United States)

    Rattarittamrong, Ekarat; Tantiworawit, Adisak; Kumpunya, Noppamas; Wongtagan, Ornkamon; Tongphung, Ratchanoo; Phusua, Arunee; Chai-Adisaksopha, Chatree; Hantrakool, Sasinee; Rattanathammethee, Thanawat; Norasetthada, Lalita; Charoenkwan, Pimlak; Lekawanvijit, Suree

    2018-03-09

    The primary objective was to determine the prevalence of calreticulin (CALR) mutation in patients with non-JAK2V617F mutated essential thrombocythemia (ET). The secondary objectives were to evaluate the accuracy of CALR mutation analysis by high-resolution melting (HRM) analysis and real-time polymerase chain reaction (PCR) compared with DNA sequencing and to compare clinical characteristics of CALR mutated and JAK2V617F mutated ET. This was a prospective cohort study involving ET patients registered at Chiang Mai University in the period September 2015-September 2017 who were aged more than 2 years, and did not harbor JAK2V617F mutation. The presence of CALR mutation was established by DNA sequencing, HRM, and real-time PCR for type 1 and type 2 mutation. Clinical data were compared with that from ET patients with mutated JAK2V617F. Twenty-eight patients were enrolled onto the study. CALR mutations were found in 10 patients (35.7%). Three patients had type 1 mutation, 5 patients had type 2 mutation, 1 patient had type 18 mutation, and 1 patients had novel mutations (c.1093 C-G, c.1098_1131 del, c.1135 G-A). HRM could differentiate between the types of mutation in complete agreement with DNA sequencing. Patients with a CALR mutation showed a significantly greater male predominance and had a higher platelet count when compared with 42 JAK2V617F patients. The prevalence of CALR mutation in JAK2V617F-negative ET in this study is 35.7%. HRM is an effective method of detecting CALR mutation and is a more advantageous method of screening for CALR mutation.

  8. Three-dimensional analysis of somatic mitochondrial dynamics in fission-deficient injured motor neurons using FIB/SEM.

    Science.gov (United States)

    Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi

    2017-08-01

    Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.

  9. A mutational analysis of Caenorhabditis elegans in space

    International Nuclear Information System (INIS)

    Zhao Yang; Lai, Kenneth; Cheung, Iris; Youds, Jillian; Tarailo, Maja; Tarailo, Sanja; Rose, Ann

    2006-01-01

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight

  10. A mutational analysis of Caenorhabditis elegans in space

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yang [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Lai, Kenneth [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Cheung, Iris [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Youds, Jillian [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Maja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Tarailo, Sanja [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada); Rose, Ann [Department of Medical Genetics, University of British Columbia, Life Sciences Centre, Room 1364-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3 (Canada)]. E-mail: arose@gene.nce.ubc.ca

    2006-10-10

    The International Caenorhabditis elegans Experiment First Flight (ICE-First) was a project using C. elegans as a model organism to study the biological effects of short duration spaceflight (11 days in the International Space Station). As a member of the ICE-First research team, our group focused on the mutational effects of spaceflight. Several approaches were taken to measure mutational changes that occurred during the spaceflight including measurement of the integrity of poly-G/poly-C tracts, determination of the mutation frequency in the unc-22 gene, analysis of lethal mutations captured by the genetic balancer eT1(III;V), and identification of alterations in telomere length. By comparing the efficiency, sensitivity, and convenience of these methods, we deduced that the eT1 balancer system is well-suited for capturing, maintaining and recovering mutational events that occur over several generations during spaceflight. In the course of this experiment, we have extended the usefulness of the eT1 balancer system by identifying the physical breakpoints of the eT1 translocation and have developed a PCR assay to follow the eT1 chromosomes. C. elegans animals were grown in a defined liquid media during the spaceflight. This is the first analysis of genetic changes in C. elegans grown in the defined media. Although no significant difference in mutation rate was detected between spaceflight and control samples, which is not surprising given the short duration of the spaceflight, we demonstrate here the utility of worms as an integrating biological dosimeter for spaceflight.

  11. Excess costs from functional somatic syndromes in Germany - An analysis using entropy balancing.

    Science.gov (United States)

    Grupp, Helen; Kaufmann, Claudia; König, Hans-Helmut; Bleibler, Florian; Wild, Beate; Szecsenyi, Joachim; Herzog, Wolfgang; Schellberg, Dieter; Schäfert, Rainer; Konnopka, Alexander

    2017-06-01

    The aim of this study was to calculate disorder-specific excess costs in patients with functional somatic syndromes (FSS). We compared 6-month direct and indirect costs in a patient group with FSS (n=273) to a control group of the general adult population in Germany without FSS (n=2914). Data on the patient group were collected between 2007 and 2009 in a randomized controlled trial (speciAL). Data on the control group were obtained from a telephone survey, representative for the general German population, conducted in 2014. Covariate balance between the patient group and the control group was achieved using entropy balancing. Excess costs were calculated by estimating generalized linear models and two-part models for direct costs and indirect costs. Further, we estimated excess costs according to the level of somatic symptom severity (SSS). FSS patients differed significantly from the control group regarding 6-month costs of outpatient physicians (+€280) and other outpatient providers (+€74). According to SSS, significantly higher outpatient physician costs were found for mild (+€151), moderate (+€306) and severe (+€376) SSS. We also found significantly higher costs of other outpatient providers in patients with mild, moderate and severe SSS. Regarding costs of rehabilitation and hospital treatments, FSS patients did not differ significantly from the control group for any level of SSS. Indirect costs were significantly higher in patients with severe SSS (+€760). FSS were of major importance in the outpatient sector. Further, we found significantly higher indirect costs in patients with severe SSS. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Signatures of mutational processes in human cancer

    NARCIS (Netherlands)

    Alexandrov, L.B.; Nik-Zainal, S.; Wedge, D.C.; Aparicio, S.A.; Behjati, S.; Biankin, A.V.; Bignell, G.R.; Bolli, N.; Borg, A.; Borresen-Dale, A.L.; Boyault, S.; Burkhardt, B.; Butler, A.P.; Caldas, C.; Davies, H.R.; Desmedt, C.; Eils, R.; Eyfjord, J.E.; Foekens, J.A.; Greaves, M.; Hosoda, F.; Hutter, B.; Ilicic, T.; Imbeaud, S.; Imielinsk, M.; Jager, N.; Jones, D.T.; Knappskog, S.; Kool, M.; Lakhani, S.R.; Lopez-Otin, C.; Martin, S.; Munshi, N.C.; Nakamura, H.; Northcott, P.A.; Pajic, M.; Papaemmanuil, E.; Paradiso, A.; Pearson, J.V.; Puente, X.S.; Raine, K.; Ramakrishna, M.; Richardson, A.L.; Richter, J.; Rosenstiel, P.; Schlesner, M.; Schumacher, T.N.; Span, P.N.; Teague, J.W.; Totoki, Y.; Tutt, A.N.; Valdes-Mas, R.; Buuren, M.M. van; Veer, L. van 't; Vincent-Salomon, A.; Waddell, N.; Yates, L.R.; Zucman-Rossi, J.; Futreal, P.A.; McDermott, U.; Lichter, P.; Meyerson, M.; Grimmond, S.M.; Siebert, R.; Campo, E.; Shibata, T.; Pfister, S.M.; Campbell, P.J.; Stratton, M.R.; Schlooz-Vries, M.S.; Tol, J.J. van; Laarhoven, H.W. van; Sweep, F.C.; Bult, P.; et al.,

    2013-01-01

    All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362

  13. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Science.gov (United States)

    Wu, Zhiyuan; Yuan, Hong; Zhang, Xinju; Liu, Weiwei; Xu, Jinhua; Zhang, Wei; Guan, Ming

    2011-01-01

    JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex) in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type) covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  14. Development and inter-laboratory validation of unlabeled probe melting curve analysis for detection of JAK2 V617F mutation in polycythemia vera.

    Directory of Open Access Journals (Sweden)

    Zhiyuan Wu

    Full Text Available BACKGROUND: JAK2 V617F, a somatic point mutation that leads to constitutive JAK2 phosphorylation and kinase activation, has been incorporated into the WHO classification and diagnostic criteria of myeloid neoplasms. Although various approaches such as restriction fragment length polymorphism, amplification refractory mutation system and real-time PCR have been developed for its detection, a generic rapid closed-tube method, which can be utilized on routine genetic testing instruments with stability and cost-efficiency, has not been described. METHODOLOGY/PRINCIPAL FINDINGS: Asymmetric PCR for detection of JAK2 V617F with a 3'-blocked unlabeled probe, saturate dye and subsequent melting curve analysis was performed on a Rotor-Gene® Q real-time cycler to establish the methodology. We compared this method to the existing amplification refractory mutation systems and direct sequencing. Hereafter, the broad applicability of this unlabeled probe melting method was also validated on three diverse real-time systems (Roche LightCycler® 480, Applied Biosystems ABI® 7500 and Eppendorf Mastercycler® ep realplex in two different laboratories. The unlabeled probe melting analysis could genotype JAK2 V617F mutation explicitly with a 3% mutation load detecting sensitivity. At level of 5% mutation load, the intra- and inter-assay CVs of probe-DNA heteroduplex (mutation/wild type covered 3.14%/3.55% and 1.72%/1.29% respectively. The method could equally discriminate mutant from wild type samples on the other three real-time instruments. CONCLUSIONS: With a high detecting sensitivity, unlabeled probe melting curve analysis is more applicable to disclose JAK2 V617F mutation than conventional methodologies. Verified with the favorable inter- and intra-assay reproducibility, unlabeled probe melting analysis provided a generic mutation detecting alternative for real-time instruments.

  15. Somatic symptom profiles in the general population: a latent class analysis in a Danish population-based health survey

    DEFF Research Database (Denmark)

    Eliasen, Marie; Torben, Jørgensen; Schröder, Andreas Bak

    2017-01-01

    PURPOSE: The aim of this study was to identify and describe somatic symptom profiles in the general adult population in order to enable further epidemiological research within multiple somatic symptoms. METHODS: Information on 19 self-reported common somatic symptoms was achieved from a population....... The profiles were further described by their association with age, sex, chronic disease, and self-perceived health. RESULTS: We identified 10 different somatic symptom profiles defined by number, type, and site of the symptoms. The majority of the population (74.0%) had a profile characterized......, and self-perceived health. CONCLUSION: The identified somatic symptom profiles could be distinguished by number, type, and site of the symptoms. The profiles have the potential to be used in further epidemiological studies on risk factors and prognosis of somatic symptoms but should be confirmed in other...

  16. Risk of malignant paraganglioma in SDHB-mutation and SDHD-mutation carriers: a systematic review and meta-analysis

    NARCIS (Netherlands)

    van Hulsteijn, L.T.; Dekkers, O.M.; Hes, F.J.; Smit, J.W.A.; Corssmit, E.P.

    2012-01-01

    The main objective of this study was to perform a systematic review and meta-analysis on the risk of developing malignant paraganglioma (PGL) in SDHB-mutation and SDHD-mutation carriers. PubMed, EMBASE, Web of Science, COCHRANE and Academic Search Premier (2000-August 2011) and references of key

  17. Osteoporosis and Somatization of Anxiety

    Directory of Open Access Journals (Sweden)

    Maria Papanikou

    2013-12-01

    Full Text Available Chronic stress can now be physiologically traced as a significant player in the creation of osteoporotic bones. The present pilot study involved 100 women (N = 42 have been diagnosed with osteopenia, N = 21 have been diagnosed with osteoporosis, N = 37 had a non-osteoporotic condition who participated in the Hellenic Society of Osteoporosis Association Support. Correlations between somatic symptoms of anxiety and osteoporosis, and among medications and somatization in women were explored. Assessments were based on a self-report demographic questionnaire and on the Short Anxiety Screening Test (SAST administered for detection of anxiety disorder and somatization. Statistical analysis detected non-significant differences regarding the correlation between anxiety symptomatology or somatization due to osteoporosis and osteopenia diagnosis. The same pattern is observed among women’s age group, the occupational and marital status. Hypothesis that the osteoporosis and osteopenia group would manifest significant relationships with the age group and medicines was confirmed, as well as between somatization and medicines that women with osteoporosis and osteopenia undertake. The results suggest that women are not prone to manifest anxiety or somatization in relation to the osteoporosis condition. However, the majority of women with osteoporosis and osteopenia consume more than two medicines other than those for osteoporosis. This quantity and combination they undertake appear to contribute and deteriorate their anxiety/somatization symptomatology. Further research based on a larger sample would give more definite results.

  18. Downregulation but lack of promoter hypermethylation or somatic mutations of the potential tumor suppressor CXXC5 in MDS and AML with deletion 5q

    DEFF Research Database (Denmark)

    Treppendahl, Marianne Bach; Möllgård, L; Hellström-Lindberg, E

    2013-01-01

    During recent years mutations in epigenetic modulators have been identified in several human cancers, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)[1]. CXXC5 has been found to be necessary for retinoic acid induced differentiation of myelocytic leukemia cells, identify......During recent years mutations in epigenetic modulators have been identified in several human cancers, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)[1]. CXXC5 has been found to be necessary for retinoic acid induced differentiation of myelocytic leukemia cells...

  19. Unusual late presentation of X-linked chronic granulomatous disease in an adult female with a somatic mosaic for a novel mutation in CYBB

    NARCIS (Netherlands)

    Wolach, Baruch; Scharf, Yitshak; Gavrieli, Ronit; de Boer, Martin; Roos, Dirk

    2005-01-01

    Most patients with chronic granulomatous disease (CGD) have mutations in the X-linked CYBB gene that encodes gp91(phox), a component of the phagocyte NADPH oxidase. The resulting X-linked form of CGD is usually manifested in boys. Rarely, X-CGD is encountered in female carriers with extreme

  20. The WHIM-like CXCR4(S338X) somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom's Macroglobulinemia.

    Science.gov (United States)

    Cao, Y; Hunter, Z R; Liu, X; Xu, L; Yang, G; Chen, J; Patterson, C J; Tsakmaklis, N; Kanan, S; Rodig, S; Castillo, J J; Treon, S P

    2015-01-01

    CXCR4(WHIM) somatic mutations are common Waldenstrom's Macroglobulinemia (WM), and are associated with clinical resistance to ibrutinib. We engineered WM cells to express the most common WHIM (Warts, Hypogammaglobulinemia, Infections and Myelokathexis), CXCR(S338X) mutation in WM. Following SDF-1a stimulation, CXCR4(S338X) WM cells exhibited decreased receptor internalization, enhanced and sustained AKT kinase (AKT) and extracellular regulated kinase (ERK) signaling, decreased poly (ADP-ribose) polymerase and caspase 3 cleavage, and decreased Annexin V staining versus CXCR4 wild-type (WT) cells. CXCR4(S338X)-related signaling and survival effects were blocked by the CXCR4 inhibitor AMD3100. SDF-1a-treated CXCR4(S338X) WM cells showed sustained AKT and ERK activation and decreased apoptotic changes versus CXCR4(WT) cells following ibrutinib treatment, findings which were also reversed by AMD3100. AKT or ERK antagonists restored ibrutinib-triggered apoptotic changes in SDF-1a-treated CXCR4(S338X) WM cells demonstrating their role in SDF-1a-mediated ibrutinib resistance. Enhanced bone marrow pAKT staining was also evident in CXCR4(WHIM) versus CXCR4(WT) WM patients, and remained active despite ibrutinib therapy in CXCR4(WHIM) patients. Last, CXCR4(S338X) WM cells showed varying levels of resistance to other WM relevant therapeutics, including bendamustine, fludarabine, bortezomib and idelalisib in the presence of SDF-1a. These studies demonstrate a functional role for CXCR4(WHIM) mutations, and provide a framework for investigation of CXCR4 inhibitors in WM.

  1. The relationship of different somatic mutations induced by neutrons and X rays to loss of reproductive integrity in Tradescantia stamen hairs

    International Nuclear Information System (INIS)

    Underbrink, A.G.; Huczkowski, J.; Woch, B.; Gedlek, E.; Cebulska-Wasilewska, A.; Litwiniszyn, M.; Kasper, E.

    1978-01-01

    It was found that the survival curves derived from X-irradiations and neutrons of two energies are characteristic for those usually found in many other systems. It was also found that the loss of reproductive integrity and two visible cell-type aberrations or mutations follow a 1:1 ratio until higher doses are reached after neutron irradiation. This is also true for X rays, except that lethality was not observed at relatively low doses. The mutant event spectrum was found to change after a certain level of lethality was reached. It was also found that the spectra of mutations in relation to survival may be changed not only by dose but also by radiation quality. (author)

  2. Comparative studies of the induction of somatic eye-color mutations in an unstable strain of Drosophila melanogaster by MMS and X-rays at different developmental stages

    International Nuclear Information System (INIS)

    Rasmuson, Aa.

    1985-01-01

    The UZ system in Drosophila melanogaster can be used as a screening system for mutagens. This survey is an attempt to correlate the size of the mutated area of the eyes with the age of the larvae at mutagen treatment. X-rays and MMS were used to give an indication of the mechanism of the instability, according to the different kinds of DNA damage induced. The results show that the mean size of red spots decreased with increasing age of larvae at treatment, while the mutation frequencies were increased because of the multiplication of the cells in the eye anlage susceptible to the mutagens. Red spots induced with MMS are smaller in size than X-ray-induced red spots, indicating a delay in the establishment of mutations from chemically-induced lesions compared to irradiation damage. White spots on the other hand were equally large in size, irrespective of inducing agent and about twice the size of the chemically-induced red spots, implying a faster and more direct action for fixation of deletions than for the production of MMS induced shifts in eye color from zeste to red. (Auth.)

  3. Validation of high-resolution DNA melting analysis for mutation scanning of the CDKL5 gene: identification of novel mutations.

    Science.gov (United States)

    Raymond, Laure; Diebold, Bertrand; Leroux, Céline; Maurey, Hélène; Drouin-Garraud, Valérie; Delahaye, Andre; Dulac, Olivier; Metreau, Julia; Melikishvili, Gia; Toutain, Annick; Rivier, François; Bahi-Buisson, Nadia; Bienvenu, Thierry

    2013-01-01

    Mutations in the cyclin-dependent kinase-like 5 gene (CDKL5) have been predominantly described in epileptic encephalopathies of female, including infantile spasms with Rett-like features. Up to now, detection of mutations in this gene was made by laborious, expensive and/or time consuming methods. Here, we decided to validate high-resolution melting analysis (HRMA) for mutation scanning of the CDKL5 gene. Firstly, using a large DNA bank consisting to 34 samples carrying different mutations and polymorphisms, we validated our analytical conditions to analyse the different exons and flanking intronic sequences of the CDKL5 gene by HRMA. Secondly, we screened CDKL5 by both HRMA and denaturing high performance liquid chromatography (dHPLC) in a cohort of 135 patients with early-onset seizures. Our results showed that point mutations and small insertions and deletions can be reliably detected by HRMA. Compared to dHPLC, HRMA profiles are more discriminated, thereby decreasing unnecessary sequencing. In this study, we identified eleven novel sequence variations including four pathogenic mutations (2.96% prevalence). HRMA appears cost-effective, easy to set up, highly sensitive, non-toxic and rapid for mutation screening, ideally suited for large genes with heterogeneous mutations located along the whole coding sequence, such as the CDKL5 gene. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Butterfly Sprint Swimming Technique, Analysis of Somatic and Spatial-Temporal Coordination Variables

    Directory of Open Access Journals (Sweden)

    Strzała Marek

    2017-12-01

    Full Text Available The aim of this study was to investigate somatic properties and force production of leg extensor muscles measured in the countermovement jump test (CMJ, as well as to analyse kinematic variables of sprint surface butterfly swimming. Thirty-four male competitive swimmers were recruited with an average age of 19.3 ± 1.83 years. Their average body height (BH was 183.7 ± 5.93 cm, body fat content 10.8 ± 2.64% and body mass (BM 78.3 ± 5.0 kg. Length measurements of particular body segments were taken and a counter movement jump (CMJ as well as an all-out 50 m butterfly speed test were completed. The underwater movements of the swimmers’ bodies were recorded with a digital camera providing side-shots. We registered a significant relationship between body mass (r = 0.46, lean body mass (r = 0.48 and sprint surface butterfly swimming (VSBF. The anaerobic power measured in the CMJ test, total body length (TBL as well as upper and lower extremity length indices did not influence swimming speed significantly. The temporal entry-kick index (the time ratio between the first kick and arm entry significantly influenced VSBF (r = -0.45. Similarly, medium power of the coefficient was indicated between a stroke rate kinematics (SR, b duration of the first leg kick (LP1, c air phase duration of arm recovery (Fly-arm, and VSBF (r = 0.40; r = 0.40 and r = 0.41, respectively. The entry-kick temporal index showed that, in the butterfly cycle, an appropriately early executed initial kick when compared to arm entry was associated with a longer arm propulsion phase, which in turn was associated with minimizing resistive gliding phases and enabled relatively longer and less resistive air arm recovery (higher value of the fly-arm index. The higher value of SR kinematic was another important element of the best butterfly results in this study.

  5. Characterization of pathogenic germline mutations in human Protein Kinases

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2011-07-01

    Full Text Available Abstract Background Protein Kinases are a superfamily of proteins involved in crucial cellular processes such as cell cycle regulation and signal transduction. Accordingly, they play an important role in cancer biology. To contribute to the study of the relation between kinases and disease we compared pathogenic mutations to neutral mutations as an extension to our previous analysis of cancer somatic mutations. First, we analyzed native and mutant proteins in terms of amino acid composition. Secondly, mutations were characterized according to their potential structural effects and finally, we assessed the location of the different classes of polymorphisms with respect to kinase-relevant positions in terms of subfamily specificity, conservation, accessibility and functional sites. Results Pathogenic Protein Kinase mutations perturb essential aspects of protein function, including disruption of substrate binding and/or effector recognition at family-specific positions. Interestingly these mutations in Protein Kinases display a tendency to avoid structurally relevant positions, what represents a significant difference with respect to the average distribution of pathogenic mutations in other protein families. Conclusions Disease-associated mutations display sound differences with respect to neutral mutations: several amino acids are specific of each mutation type, different structural properties characterize each class and the distribution of pathogenic mutations within the consensus structure of the Protein Kinase domain is substantially different to that for non-pathogenic mutations. This preferential distribution confirms previous observations about the functional and structural distribution of the controversial cancer driver and passenger somatic mutations and their use as a proxy for the study of the involvement of somatic mutations in cancer development.

  6. Mutational analysis of GALT gene in Greek patients with galactosaemia: identification of two novel mutations and clinical evaluation.

    Science.gov (United States)

    Schulpis, Kleopatra H; Thodi, Georgia; Iakovou, Konstantinos; Chatzidaki, Maria; Dotsikas, Yannis; Molou, Elina; Triantafylli, Olga; Loukas, Yannis L

    2017-10-01

    Classical galactosaemia is an inborn error of metabolism due to the deficiency of the enzyme galactose-1-phosphate uridylyltransferase (GALT). The aim of the study was to identify the underlying mutations in Greek patients with GALT deficiency and evaluate their psychomotor and speech development. Patients with GALT deficiency (n = 17) were picked up through neonatal screening. Mutational analysis was conducted via Sanger sequencing, while in silico analysis was used in the cases of novel missense mutations. Psychomotor speech development tests were utilized for the clinical evaluation of the patients. Eleven different mutations in the GALT gene were detected in the patient cohort, including two novel ones. The most frequent mutation was p.Q188R (c.563 A > G). As for the novel mutations, p.M298I (c.894 G > A) was identified in four out of 32 independent alleles, while p.P115S (c.343 C > T) was identified once. Psychomotor evaluation revealed that most of the patients were found in the borderline area (Peabody test), while only two had speech delay problems. The WISK test revealed three patients at borderline limits and two were at lower than normal limits. The mutational spectrum of the GALT gene in Greek patients is presented for the first time. The mutation p.Q188R is the most frequent among Greek patients. Two novel mutations were identified and their potential pathogenicity was estimated. Regarding the phenotypic characteristics, psychomotor disturbances and speech delay were mainly observed among GALT-deficient patients.

  7. Cortisol and somatization.

    Science.gov (United States)

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  8. Haplotype analysis suggest that the MLH1 c.2059C > T mutation is a Swedish founder mutation.

    Science.gov (United States)

    von Salomé, Jenny; Liu, Tao; Keihäs, Markku; Morak, Moni; Holinski-Feder, Elke; Berry, Ian R; Moilanen, Jukka S; Baert-Desurmont, Stéphanie; Lindblom, Annika; Lagerstedt-Robinson, Kristina

    2017-12-29

    Lynch syndrome (LS) predisposes to a spectrum of cancers and increases the lifetime risk of developing colorectal- or endometrial cancer to over 50%. Lynch syndrome is dominantly inherited and is caused by defects in DNA mismatch-repair genes MLH1, MSH2, MSH6 or PMS2, with the vast majority detected in MLH1 and MSH2. Recurrent LS-associated variants observed in apparently unrelated individuals, have either arisen de novo in different families due to mutation hotspots, or are inherited from a founder (a common ancestor) that lived several generations back. There are variants that recur in some populations while also acting as founders in other ethnic groups. Testing for founder mutations can facilitate molecular diagnosis of Lynch Syndrome more efficiently and more cost effective than screening for all possible mutations. Here we report a study of the missense mutation MLH1 c.2059C > T (p.Arg687Trp), a potential founder mutation identified in eight Swedish families and one Finnish family with Swedish ancestors. Haplotype analysis confirmed that the Finnish and Swedish families shared a haplotype of between 0.9 and 2.8 Mb. While MLH1 c.2059C > T exists worldwide, the Swedish haplotype was not found among mutation carriers from Germany or France, which indicates a common founder in the Swedish population. The geographic distribution of MLH1 c.2059C > T in Sweden suggests a single, ancient mutational event in the northern part of Sweden.

  9. Single base pair mutation analysis by PNA directed PCR clamping

    DEFF Research Database (Denmark)

    Ørum, H.; Nielsen, P.E.; Egholm, M.

    1993-01-01

    A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity...... allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers....

  10. Preoperative RAS Mutational Analysis Is of Great Value in Predicting Follicular Variant of Papillary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Tae Sook Hwang

    2015-01-01

    Full Text Available Follicular variant of papillary thyroid carcinoma (FVPTC, particularly the encapsulated subtype, often causes a diagnostic dilemma. We reconfirmed the molecular profiles in a large number of FVPTCs and investigated the efficacy of the preoperative mutational analysis in indeterminate thyroid nodules. BRAF V600E/K601E and RAS mutational analysis was performed on 187 FVPTCs. Of these, 132 (70.6% had a point mutation in one of the BRAF V600E (n=57, BRAF K601E (n=11, or RAS (n=64 genes. All mutations were mutually exclusive. The most common RAS mutations were at NRAS codon 61. FNA aspirates from 564 indeterminate nodules were prospectively tested for BRAF and RAS mutation and the surgical outcome was correlated with the mutational status. Fifty-seven and 47 cases were positive for BRAF and RAS mutation, respectively. Twenty-seven RAS-positive patients underwent surgery and all except one patient had FVPTC. The PPV and accuracy of RAS mutational analysis for predicting FVPTC were 96% and 84%, respectively. BRAF or RAS mutations were present in more than two-thirds of FVPTCs and these were mutually exclusive. BRAF mutational analysis followed by N, H, and KRAS codon 61 mutational analysis in indeterminate thyroid nodules would streamline the management of patients with malignancies, mostly FVPTC.

  11. Sensitive KIT D816V mutation analysis of blood as a diagnostic test in mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Vestergaard, Hanne; Bindslev-Jensen, Carsten

    2014-01-01

    The recent progress in sensitive KIT D816V mutation analysis suggests that mutation analysis of peripheral blood (PB) represents a promising diagnostic test in mastocytosis. However, there is a need for systematic assessment of the analytical sensitivity and specificity of the approach in order...... to establish its value in clinical use. We therefore evaluated sensitive KIT D816V mutation analysis of PB as a diagnostic test in an entire case-series of adults with mastocytosis. We demonstrate for the first time that by using a sufficiently sensitive KIT D816V mutation analysis, it is possible to detect...... the mutation in PB in nearly all adult mastocytosis patients. The mutation was detected in PB in 78 of 83 systemic mastocytosis (94%) and 3 of 4 cutaneous mastocytosis patients (75%). The test was 100% specific as determined by analysis of clinically relevant control patients who all tested negative. Mutation...

  12. Management of somatic symptoms

    DEFF Research Database (Denmark)

    Schröder, Andreas; Dimsdale, Joel

    2014-01-01

    on the recognition and effective management of patients with excessive and disabling somatic symptoms. The clinical presentation of somatic symptoms is categorized into three groups of patients: those with multiple somatic symptoms, those with health anxiety, and those with conversion disorder. The chapter provides...

  13. Somatic Expression of Psychological Problems (Somatization: Examination with Structural Equation Model

    Directory of Open Access Journals (Sweden)

    Tugba Seda Çolak

    2014-09-01

    Full Text Available The main purpose of the research is to define which psychological symptoms (somatization, depression, obsessive ‐ compulsive, hostility, interpersonal sensitivity, anxiety, phobic anxiety, paranoid ideation and psychoticism cause somatic reactions at most. Total effect of these psychological symptoms on somatic symptoms had been investigated. Study was carried out with structural equation model to research the relation between the psychological symptoms and somatization. The main material of the research is formed by the data obtained from 492 people. SCL‐90‐R scale was used in order to obtain the data. As a result of the structural equation analysis, it has been found that 1Psychoticism, phobic anxiety, and paranoid ideation do not predict somatic symptoms.2There is a negative relation between interpersonal sensitivity level mand somatic reactions.3Anxiety symptoms had been found as causative to occur the highest level of somatic reactions.

  14. 'Haruna': uma nova mutação somática natural da videira 'Itália' 'Haruna': a new natural somatic mutation of 'Italia' grapevine

    Directory of Open Access Journals (Sweden)

    Adriane Marinho de Assis

    2013-03-01

    Full Text Available O objetivo deste estudo foi descrever as principais características físico-químicas e produtivas da uva fina de mesa 'Haruna', uma nova mutação natural originada da cv. Itália, em Uraí-PR, Brasil. O formato das bagas, elipsoide alongado bastante expressivo, é uma das características que mais difere essa nova mutação da uva 'Itália'. As bagas apresentam coloração verde-clara, tendendo ao amarelo na maturação plena, com pincel e polpa verde, crocante, firme, textura carnosa e de sabor moscatel, enquanto os cachos apresentam formato cilíndrico-cônico. O ciclo, bem como o desempenho produtivo e a suscetibilidade às doenças fúngicas assemelham- se aos da cv. Itália. Durante a maturação plena, apresenta teor médio de sólidos solúveis de 16,2ºBrix, superior à 'Itália, 0,5% de ácido tartárico e índice de maturação de 31,2. Trata-se de uma nova cultivar de uva fina de mesa com bom potencial de cultivo no Brasil.The aim of this study was to describe the main physical -chemical and productive characteristics of 'Haruna' table grape, a new natural mutation originated from cv. Italia, in Uraí, PR, Brazil. The berries present a very expressive large oval shape, which is the main characteristic that differ this new mutation from 'Italia' grape. The berries color is light green, tending to yellow at full maturity, with brush and flesh green, crunchy, firm, with fleshy texture and moscatel flavor, while the clusters present cylindrical-conical shape. The cycle, as well as the production performance and the susceptibility to fungal diseases is similar to the cv. Italia. During the full maturation, it has an average content of soluble solids of 16.2ºBrix, higher than 'Italia', 0.5% of tartaric acid and maturation index of 31.2. This is a new cultivar of fine table grape with potential for cultivation in Brazil.

  15. [Observation and analysis on mutation of routine STR locus].

    Science.gov (United States)

    Li, Qiu-yang; Feng, Wei-jun; Yang, Qin-gen

    2005-05-01

    To observe and analyze the characteristic of mutation at STR locus. 27 mutant genes observed in 1211 paternity testing cases were checked by PAGE-silver stained and PowerPlex 16 System Kit and validated by sequencing. Mutant genes locate on 15 loci. The pattern of mutation was accord with stepwise mutation model. The mutation ratio of male-to-female was 8:1 and correlated to the age of father. Mutation rate is correlated to the geometric mean of the number of homogeneous repeats of locus. The higher the mean, the higher the mutation rate. These loci are not so appropriate for use in paternity testing.

  16. A parylene-based dual channel microelectrophoresis system for rapid mutation detection via heteroduplex analysis

    NARCIS (Netherlands)

    Sukas, S.; Erson, Ayse Elif; Sert, Cuneyt; Kulah, Haluk

    2008-01-01

    A new dual channel micro-electrophoresis system for rapid mutation detection based on heteroduplex analysis was designed and implemented. Mutation detection was successfully achieved in a total separation length of 250 μm in less than 3 min for a 590 bp DNA sample harboring a 3 bp mutation causing

  17. Molecular cloning and in silico analysis of three somatic embryogenesis receptor kinase mRNA from date palm

    Directory of Open Access Journals (Sweden)

    Rekik Imen

    2013-01-01

    Full Text Available We report here the isolation and characterizations of three somatic embryogenesis receptor kinase (PhSERK genes from palm date by a rapid amplification of cDNA ends (RACE approach. PhSERKs belong to a small family of receptor kinase genes, share a conserved structure and extensive sequence homology with previously reported plant SERK genes. Sequence analysis of these genes revealed the sequence size of 11051 pb (PhSERK1, 7981 pb (PhSERK2 and 10510 pb (PhSERK3. The open reading frames of PhSERK1, PhSERK2 and PhSERK3 are 1914 pb, 1797 pb and 1719 pb respectively. PhSERKs belongs to the LRR-type cell surface RLKs, which possess a number of characteristic domains. These include an extracellular domain (EX containing a variable number of LRR units, signal pepetide (SP immediately followed by a single transmembrane domain (TM and an intracellular kinase domain. The phylogenetic tree shows that the protein PhSERK1, PhSERK2 and PhSERK3 clustered within monocots SERKs proteins groups. We also predicted the secondary and tertiary with ligand binding sites structure of the protein PhSERKs.

  18. Pachyonychia congenita: Report of two cases and mutation analysis

    Directory of Open Access Journals (Sweden)

    Jia-Ming Yeh

    2012-09-01

    Full Text Available Pachyonychia congenita (PC comprises a group of rare autosomal dominant genetic disorders that involve ectodermal dysplasia. It is characterized by hypertrophic nail dystrophy, focal palmoplantar keratoderma, follicular keratoses, and oral leukokeratosis. Historically, PC has been subdivided into two subtypes, PC-1 or PC-2, on the basis of clinical presentation. However, differential diagnosis based on clinical grounds, especially in young and/or not fully penetrant patients, can be difficult. In addition, clinical analysis of the large case series has shown that there is considerable phenotypic overlap between these two subtypes recently. Based on the advent of molecular genetics and the identification of the genes causing PC, more specific nomenclature has been adopted. Therefore, diagnosis at the molecular level is useful and important to confirm the clinical impression. In this report, we describe two typical cases of PC with mutation analysis revealed a small deletion (514_516delACC, Asn172del and a point mutation (487 G > A, GAG → AAG, Glu163Lys in the KRT6A gene.

  19. Induction and identification of somatic mutations with particular reference to perennial plants. Part of a coordinated programme on improvement of vegetatively propagated crops and tree crops through radiation-induced mutations

    International Nuclear Information System (INIS)

    Zubrzycki, H.M.

    1980-06-01

    An attempt was made to obtain resistance of oranges (Citrus sinensis L. Osbeck) and grapefruit (C. paradisi Macf.) to Tristeza virus by induced mutation breeding. Two methods were used. In one, buds were treated with X or gamma radiation. The detached sprouts were subsequently grafted. In the other, a number of chemical mutagens were used: diethyl sulfate or propylenoxide on buds; diethyl sulfate or nitrosemethylurethane on seeds (2400). The selection and isolation of mutants from treated buds and seeds, respectively, are described. Intermediate results only are given and discussed

  20. Analysis of potential radiation-induced genetic and somatic effects to man from milling of uranium

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1984-01-01

    Potential mortality from natural causes and from radiation exposure conditions typical of those in the vicinity of uranium mills in the western USA was calculated. The exposure conditions were those assumed to exist in the vicinity of a hypothetical model mill. Dose rates to organs at risk were calculated as a function of time using the Uranium Dispersion and Dosimetry Code (Momeni et al. 1979). The changes in population size, birth rates, and radiation-induced and natural mortalities were calculated using the PRIM code (Momeni 1983). The population of the region within a radius of 80 km from the model mill is projected to increase from 57 428 to 75 638.6 during the 85 years of this analysis. Within the same period, the average birth rates for five-year periods increase from 5067.8 to 7436.1. The cumulative deaths within the five-year periods increase from 724 and 3501.8 from spontaneously induced neoplasms and all causes, respectively, to 1538.2 and 6718.2. In comparison to natural causes, radiation-induced mortality is negligible. The highest rate of death from radiation in any five-year period is only 0.2, compared with 1538.2 deaths attributable to spontaneous incidence. The total radiation-induced genetic disorders were much less than unity for the 85-year period of analysis, in contrast with the 10.7% natural incidence of these disorders

  1. Systematic Analysis of Splice-Site-Creating Mutations in Cancer

    Directory of Open Access Journals (Sweden)

    Reyka G. Jayasinghe

    2018-04-01

    Full Text Available Summary: For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. : Jayasinghe et al. identify nearly 2,000 splice-site-creating mutations (SCMs from over 8,000 tumor samples across 33 cancer types. They provide a more accurate interpretation of previously mis-annotated mutations, highlighting the importance of integrating data types to understand the functional and the clinical implications of splicing mutations in human disease. Keywords: splicing, RNA, mutations of clinical relevance

  2. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    Science.gov (United States)

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  3. cDNA cloning, genomic organization and expression analysis during somatic embryogenesis of the translationally controlled tumor protein (TCTP) gene from Japanese larch (Larix leptolepis).

    Science.gov (United States)

    Zhang, Li-Feng; Li, Wan-Feng; Han, Su-Ying; Yang, Wen-Hua; Qi, Li-Wang

    2013-10-15

    A full-length cDNA and genomic sequences of a translationally controlled tumor protein (TCTP) gene were isolated from Japanese larch (Larix leptolepis) and designated LaTCTP. The length of the cDNA was 1, 043 bp and contained a 504 bp open reading frame that encodes a predicted protein of 167 amino acids, characterized by two signature sequences of the TCTP protein family. Analysis of the LaTCTP gene structure indicated four introns and five exons, and it is the largest of all currently known TCTP genes in plants. The 5'-flanking promoter region of LaTCTP was cloned using an improved TAIL-PCR technique. In this region we identified many important potential cis-acting elements, such as a Box-W1 (fungal elicitor responsive element), a CAT-box (cis-acting regulatory element related to meristem expression), a CGTCA-motif (cis-acting regulatory element involved in MeJA-responsiveness), a GT1-motif (light responsive element), a Skn-1-motif (cis-acting regulatory element required for endosperm expression) and a TGA-element (auxin-responsive element), suggesting that expression of LaTCTP is highly regulated. Expression analysis demonstrated ubiquitous localization of LaTCTP mRNA in the roots, stems and needles, high mRNA levels in the embryonal-suspensor mass (ESM), browning embryogenic cultures and mature somatic embryos, and low levels of mRNA at day five during somatic embryogenesis. We suggest that LaTCTP might participate in the regulation of somatic embryo development. These results provide a theoretical basis for understanding the molecular regulatory mechanism of LaTCTP and lay the foundation for artificial regulation of somatic embryogenesis. © 2013.

  4. Transcriptome Analysis of mRNA and miRNA in Somatic Embryos of Larix leptolepis Subjected to Hydrogen Treatment

    Directory of Open Access Journals (Sweden)

    Yali Liu

    2016-11-01

    Full Text Available Hydrogen is a therapeutic antioxidant that has been used extensively in clinical trials. It also acts as a bioactive molecule that can alleviate abiotic stress in plants. However, the biological effects of hydrogen in somatic embryos and the underlying molecular basis remain largely unknown. In this study, the morphological and physiological influence of exogenous H2 treatment during somatic embryogenesis was characterized in Larix leptolepis Gordon. The results showed that exposure to hydrogen increased the proportions of active pro-embryogenic cells and normal somatic embryos. We sequenced mRNA and microRNA (miRNA libraries to identify global transcriptome changes at different time points during H2 treatment of larch pro-embryogenic masses (PEMs. A total of 45,393 mRNAs and 315 miRNAs were obtained. Among them, 4253 genes and 96 miRNAs were differentially expressed in the hydrogen-treated libraries compared with the control. Further, a large number of the differentially expressed mRNAs and miRNAs were related to reactive oxygen species (ROS homeostasis and cell cycle regulation. We also identified 4399 potential target genes for 285 of the miRNAs. The differential expression data and the mRNA-miRNA interaction network described here provide new insights into the molecular mechanisms that determine the performance of PEMs exposed to H2 during somatic embryogenesis.

  5. Efficient somatic embryogenesis and molecular marker based analysis as effective tools for conservation of red-listed plant Commiphora wightii

    Directory of Open Access Journals (Sweden)

    ASHOK KUMAR PARMAR

    2014-08-01

    Full Text Available A refined and high efficiency protocol for in vitro regeneration of Commiphora wightii, a red-listed medicinal plant of medicinal importance, has been developed through optimized somatic embryogenesis pathway. Cultures from immature fruits were induced and proliferated on B5 medium supplemented with 2.26 µM 2,4-D. Embryogenic calli were obtained and then maintained for extended periods by alternately subculturing on modified MS medium supplemented with 1.11 µM BAP, 0.57 µM IBA and with 0.5% activated charcoal or without PGR every 3-4 weeks. Cyclic embryogenesis was obtained. Late torpedo and early cotyledonary stages somatic embryos were regularly harvested from PGR-free modified MS medium. It was found that percent moisture available in culture containers play a critical role in maturation and subsequent germination of somatic embryos of C. wighti. Maximum germination of more than 80% was achieved through media recycling. Somatic embryo derived plants (emblings were acclimatized. After 5 months, acclimatized plants were out-planted in experimental field. These morphologically normal plants have been surviving for over 3 years. Molecular polymorphism was clearly evident when these plants were tested using RAPD primers, making the plants suitable for use in its species restoration program.

  6. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    Science.gov (United States)

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  7. The somatic genomic landscape of chromophobe renal cell carcinoma.

    Science.gov (United States)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. High resolution melting analysis: a rapid and accurate method to detect CALR mutations.

    Directory of Open Access Journals (Sweden)

    Cristina Bilbao-Sieyro

    Full Text Available The recent discovery of CALR mutations in essential thrombocythemia (ET and primary myelofibrosis (PMF patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN. We tested the feasibility of high-resolution melting (HRM as a screening method for rapid detection of CALR mutations.CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET.Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34, 14% of persistent thrombocytosis suggestive of MPN (3/21 and none of the secondary thrombocytosis (0/98. Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%.This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations.

  9. The application of a linear algebra to the analysis of mutation rates.

    Science.gov (United States)

    Jones, M E; Thomas, S M; Clarke, K

    1999-07-07

    Cells and bacteria growing in culture are subject to mutation, and as this mutation is the ultimate substrate for selection and evolution, the factors controlling the mutation rate are of some interest. The mutational event is not observed directly, but is inferred from the phenotype of the original mutant or of its descendants; the rate of mutation is inferred from the number of such mutant phenotypes. Such inference presumes a knowledge of the probability distribution for the size of a clone arising from a single mutation. We develop a mathematical formulation that assists in the design and analysis of experiments which investigate mutation rates and mutant clone size distribution, and we use it to analyse data for which the classical Luria-Delbrück clone-size distribution must be rejected. Copyright 1999 Academic Press.

  10. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  11. DNA sequence analysis of X-ray induced Adh null mutations in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mahmoud, J.; Fossett, N.G.; Arbour-Reily, P.; McDaniel, M.; Tucker, A.; Chang, S.H.; Lee, W.R.

    1991-01-01

    The mutational spectrum for 28 X-ray induced mutations and 2 spontaneous mutations, previously determined by genetic and cytogenetic methods, consisted of 20 multilocus deficiencies (19 induced and 1 spontaneous) and 10 intragenic mutations (9 induced and 1 spontaneous). One of the X-ray induced intragenic mutations was lost, and another was determined to be a recombinant with the allele used in the recovery scheme. The DNA sequence of two X-ray induced intragenic mutations has been published. This paper reports the results of DNA sequence analysis of the remaining intragenic mutations and a summary of the X-ray induced mutational spectrum. The combination of DNA sequence analysis with genetic complementation analysis shows a continuous distribution in size of deletions rather than two different types of mutations consisting of deletions and 'point mutations'. Sequencing is shown to be essential for detecting intragenic deletions. Of particular importance for future studies is the observation that all of the intragenic deletions consist of a direct repeat adjacent to the breakpoint with one of the repeats deleted

  12. OGG1 Mutations and Risk of Female Breast Cancer: Meta-Analysis and Experimental Data

    Directory of Open Access Journals (Sweden)

    Kashif Ali

    2015-01-01

    Full Text Available In first part of this study association between OGG1 polymorphisms and breast cancer susceptibility was explored by meta-analysis. Second part of the study involved 925 subjects, used for mutational analysis of OGG1 gene using PCR-SSCP and sequencing. Fifteen mutations were observed, which included five intronic mutations, four splice site mutations, two 3′UTR mutations, three missense mutations, and a nonsense mutation. Significantly (pG and 3′UTR variant g.9798848G>A. Among intronic mutations, highest (~15 fold increase in breast cancer risk was associated with g.9793680G>A (p<0.009. Similarly ~14-fold increased risk was associated with Val159Gly (p<0.01, ~17-fold with Gly221Arg (p<0.005, and ~18-fold with Ser326Cys (p<0.004 in breast cancer patients compared with controls, whereas analysis of nonsense mutation showed that ~13-fold (p<0.01 increased breast cancer risk was associated with Trp375STOP in patients compared to controls. In conclusion, a significant association was observed between OGG1 germ line mutations and breast cancer risk. These findings provide evidence that OGG1 may prove to be a good candidate of better diagnosis, treatment, and prevention of breast cancer.

  13. Calreticulin Mutations in Bulgarian MPN Patients.

    Science.gov (United States)

    Pavlov, Ivan; Hadjiev, Evgueniy; Alaikov, Tzvetan; Spassova, Sylva; Stoimenov, Angel; Naumova, Elissaveta; Shivarov, Velizar; Ivanova, Milena

    2018-01-01

    Somatic mutations in JAK2, MPL and CALR are recurrently identified in most of the cases with Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). We applied four molecular genetic methods for identification of CALR exon 9 mutations, including high resolution melt (HRM) analysis, Sanger sequencing, semiconductor target genes sequencing and whole exome sequencing. A total of 78 patients with myeloid malignancies were included in the study. We identified 14 CALR exon 9 mutated cases out of 78 studied patients with myeloid malignancies. All mutated patients were diagnosed with MPN being either PMF (n = 7) or ET (n = 7). Nine cases had type 1 mutations and 5 cases had type 2 mutations. CALR exon 9, MPL exon 10 and JAK2 p. V617F were mutually exclusive. There were no statistically significant differences in the hematological parameters between the cases with CALR and JAK2 or MPL mutations. Notably, all four techniques were fully concordant in the detection of CALR mutations. This is one of the few reports on the CALR mutations frequency in South-eastern populations. Our study shows that the frequency and patterns of these mutations is identical to those in the patients' cohorts from Western countries. Besides we demonstrated the utility of four different methods for their detection.

  14. Mutation analysis of the CHK2 gene in breast carcinoma and other cancers

    International Nuclear Information System (INIS)

    Ingvarsson, Sigurdur; Sigbjornsdottir, Bjarnveig I; Huiping, Chen; Hafsteinsdottir, Sigridur H; Ragnarsson, Gisli; Barkardottir, Rosa B; Arason, Adalgeir; Egilsson, Valgardur; Bergthorsson, Jon TH

    2002-01-01

    Mutations in the CHK2 gene at chromosome 22q12.1 have been reported in families with Li-Fraumeni syndrome. Chk2 is an effector kinase that is activated in response to DNA damage and is involved in cell-cycle pathways and p53 pathways. We screened 139 breast tumors for loss of heterozygosity at chromosome 22q, using seven microsatellite markers, and screened 119 breast tumors with single-strand conformation polymorphism and DNA sequencing for mutations in the CHK2 gene. Seventy-four of 139 sporadic breast tumors (53%) show loss of heterozygosity with at least one marker. These samples and 45 tumors from individuals carrying the BRCA2 999del5 mutation were screened for mutations in the CHK2 gene. In addition to putative polymorphic regions in short mononucleotide repeats in a non-coding exon and intron 2, a germ line variant (T59K) in the first coding exon was detected. On screening 1172 cancer patients for the T59K sequence variant, it was detected in a total of four breast-cancer patients, two colon-cancer patients, one stomach-cancer patient and one ovary-cancer patient, but not in 452 healthy individuals. A tumor-specific 5' splice site mutation at site +3 in intron 8 (TTgt [a → c]atg) was also detected. We conclude that somatic CHK2 mutations are rare in breast cancer, but our results suggest a tumor suppressor function for CHK2 in a small proportion of breast tumors. Furthermore, our results suggest that the T59K CHK2 sequence variant is a low-penetrance allele with respect to tumor growth

  15. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    Energy Technology Data Exchange (ETDEWEB)

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R. [Ohio State Univ., Columbus, OH (United States); Moxley, R.T. [Univ. of Rochester Medical Center, NY (United States)

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  16. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1984-01-01

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references

  17. Prospects for cellular mutational assays in human populations

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  18. DHPLC-based mutation analysis of ENG and ALK-1 genes in HHT Italian population.

    Science.gov (United States)

    Lenato, Gennaro M; Lastella, Patrizia; Di Giacomo, Marilena C; Resta, Nicoletta; Suppressa, Patrizia; Pasculli, Giovanna; Sabbà, Carlo; Guanti, Ginevra

    2006-02-01

    Hereditary haemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome) is an autosomal dominant disorder characterized by localized angiodysplasia due to mutations in endoglin, ALK-1 gene, and a still unidentified locus. The lack of highly recurrent mutations, locus heterogeneity, and the presence of mutations in almost all coding exons of the two genes makes the screening for mutations time-consuming and costly. In the present study, we developed a DHPLC-based protocol for mutation detection in ALK1 and ENG genes through retrospective analysis of known sequence variants, 20 causative mutations and 11 polymorphisms, and a prospective analysis on 47 probands with unknown mutation. Overall DHPLC analysis identified the causative mutation in 61 out 66 DNA samples (92.4%). We found 31 different mutations in the ALK1 gene, of which 15 are novel, and 20, of which 12 are novel, in the ENG gene, thus providing for the first time the mutational spectrum in a cohort of Italian HHT patients. In addition, we characterized the splicing pattern of ALK1 gene in lymphoblastoid cells, both in normal controls and in two individuals carrying a mutation in the non-invariant -3 position of the acceptor splice site upstream exon 6 (c.626-3C>G). Functional essay demonstrated the existence, also in normal individuals, of a small proportion of ALK1 alternative splicing, due to exon 5 skipping, and the presence of further aberrant splicing isoforms in the individuals carrying the c.626-3C>G mutation. 2006 Wiley-Liss, Inc.

  19. Somatic Genomics and Clinical Features of Lung Adenocarcinoma: A Retrospective Study.

    Directory of Open Access Journals (Sweden)

    Jianxin Shi

    2016-12-01

    Full Text Available Lung adenocarcinoma (LUAD is the most common histologic subtype of lung cancer and has a high risk of distant metastasis at every disease stage. We aimed to characterize the genomic landscape of LUAD and identify mutation signatures associated with tumor progression.We performed an integrative genomic analysis, incorporating whole exome sequencing (WES, determination of DNA copy number and DNA methylation, and transcriptome sequencing for 101 LUAD samples from the Environment And Genetics in Lung cancer Etiology (EAGLE study. We detected driver genes by testing whether the nonsynonymous mutation rate was significantly higher than the background mutation rate and replicated our findings in public datasets with 724 samples. We performed subclonality analysis for mutations based on mutant allele data and copy number alteration data. We also tested the association between mutation signatures and clinical outcomes, including distant metastasis, survival, and tumor grade. We identified and replicated two novel candidate driver genes, POU class 4 homeobox 2 (POU4F2 (mutated in 9 [8.9%] samples and ZKSCAN1 (mutated in 6 [5.9%] samples, and characterized their major deleterious mutations. ZKSCAN1 was part of a mutually exclusive gene set that included the RTK/RAS/RAF pathway genes BRAF, EGFR, KRAS, MET, and NF1, indicating an important driver role for this gene. Moreover, we observed strong associations between methylation in specific genomic regions and somatic mutation patterns. In the tumor evolution analysis, four driver genes had a significantly lower fraction of subclonal mutations (FSM, including TP53 (p = 0.007, KEAP1 (p = 0.012, STK11 (p = 0.0076, and EGFR (p = 0.0078, suggesting a tumor initiation role for these genes. Subclonal mutations were significantly enriched in APOBEC-related signatures (p < 2.5×10-50. The total number of somatic mutations (p = 0.0039 and the fraction of transitions (p = 5.5×10-4 were associated with increased risk of

  20. BRCA1 and BRCA2 germline mutation analysis among Indian ...

    Indian Academy of Sciences (India)

    Prakash

    specific association between BRCA1 or BRCA2 mutations with cancer type was seen, ... Materials and methods ..... KS is a Wellcome Trust International Senior Research .... of BRCA1/2 associated breast cancer: a systematic qualitative.

  1. Multi-center analysis of glucocerebrosidase mutations in Parkinson disease

    Science.gov (United States)

    Sidransky, Ellen; Nalls, Michael A.; Aasly, Jan O.; Aharon-Peretz, Judith; Annesi, Grazia; Barbosa, Egberto Reis; Bar-Shira, Anat; Berg, Daniela; Bras, Jose; Brice, Alexis; Chen, Chiung-Mei; Clark, Lorraine N.; Condroyer, Christel; De Marco, Elvira Valeria; Dürr, Alexandra; Eblan, Michael J.; Fahn, Stanley; Farrer, Matthew; Fung, Hon-Chung; Gan-Or, Ziv; Gasser, Thomas; Gershoni-Baruch, Ruth; Giladi, Nir; Griffith, Alida; Gurevich, Tanya; Januario, Cristina; Kropp, Peter; Lang, Anthony E.; Lee-Chen, Guey-Jen; Lesage, Suzanne; Marder, Karen; Mata, Ignacio F.; Mirelman, Anat; Mitsui, Jun; Mizuta, Ikuko; Nicoletti, Giuseppe; Oliveira, Catarina; Ottman, Ruth; Orr-Urtreger, Avi; Pereira, Lygia V.; Quattrone, Aldo; Rogaeva, Ekaterina; Rolfs, Arndt; Rosenbaum, Hanna; Rozenberg, Roberto; Samii, Ali; Samaddar, Ted; Schulte, Claudia; Sharma, Manu; Singleton, Andrew; Spitz, Mariana; Tan, Eng-King; Tayebi, Nahid; Toda, Tatsushi; Troiano, André; Tsuji, Shoji; Wittstock, Matthias; Wolfsberg, Tyra G.; Wu, Yih-Ru; Zabetian, Cyrus P.; Zhao, Yi; Ziegler, Shira G.

    2010-01-01

    Background Recent studies indicate an increased frequency of mutations in the gene for Gaucher disease, glucocerebrosidase (GBA), among patients with Parkinson disease. An international collaborative study was conducted to ascertain the frequency of GBA mutations in ethnically diverse patients with Parkinson disease. Methods Sixteen centers participated, including five from the Americas, six from Europe, two from Israel and three from Asia. Each received a standard DNA panel to compare genotyping results. Genotypes and phenotypic data from patients and controls were analyzed using multivariate logistic regression models and the Mantel Haenszel procedure to estimate odds ratios (ORs) across studies. The sample included 5691 patients (780 Ashkenazi Jews) and 4898 controls (387 Ashkenazi Jews). Results All 16 centers could detect GBA mutations, L444P and N370S, and the two were found in 15.3% of Ashkenazi patients with Parkinson disease (ORs = 4.95 for L444P and 5.62 for N370S), and in 3.2% of non-Ashkenazi patients (ORs = 9.68 for L444P and 3.30 for N370S). GBA was sequenced in 1642 non-Ashkenazi subjects, yielding a frequency of 6.9% for all mutations, demonstrate that limited mutation screens miss half the mutant alleles. The presence of any GBA mutation was associated with an OR of 5.43 across studies. Clinically, although phenotypes varied, subjects with a GBA mutation presented earlier, and were more likely to have affected relatives and atypical manifestations. Conclusion Data collected from sixteen centers demonstrate that there is a strong association between GBA mutations and Parkinson disease. PMID:19846850

  2. Systematic Analysis of Splice-Site-Creating Mutations in Cancer.

    Science.gov (United States)

    Jayasinghe, Reyka G; Cao, Song; Gao, Qingsong; Wendl, Michael C; Vo, Nam Sy; Reynolds, Sheila M; Zhao, Yanyan; Climente-González, Héctor; Chai, Shengjie; Wang, Fang; Varghese, Rajees; Huang, Mo; Liang, Wen-Wei; Wyczalkowski, Matthew A; Sengupta, Sohini; Li, Zhi; Payne, Samuel H; Fenyö, David; Miner, Jeffrey H; Walter, Matthew J; Vincent, Benjamin; Eyras, Eduardo; Chen, Ken; Shmulevich, Ilya; Chen, Feng; Ding, Li

    2018-04-03

    For the past decade, cancer genomic studies have focused on mutations leading to splice-site disruption, overlooking those having splice-creating potential. Here, we applied a bioinformatic tool, MiSplice, for the large-scale discovery of splice-site-creating mutations (SCMs) across 8,656 TCGA tumors. We report 1,964 originally mis-annotated mutations having clear evidence of creating alternative splice junctions. TP53 and GATA3 have 26 and 18 SCMs, respectively, and ATRX has 5 from lower-grade gliomas. Mutations in 11 genes, including PARP1, BRCA1, and BAP1, were experimentally validated for splice-site-creating function. Notably, we found that neoantigens induced by SCMs are likely several folds more immunogenic compared to missense mutations, exemplified by the recurrent GATA3 SCM. Further, high expression of PD-1 and PD-L1 was observed in tumors with SCMs, suggesting candidates for immune blockade therapy. Our work highlights the importance of integrating DNA and RNA data for understanding the functional and the clinical implications of mutations in human diseases. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Detection of somatic mosaicism in DMD using computer-assisted laser densitometry

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, J.E.; Allingham-Hawkins, D.J.; MacKenzie, J. [Hospital for Sick Children, Toronto (Canada)] [and others

    1994-09-01

    Approximately two-thirds of Duchenne muscular dystrophy (DMD) patients have a deletion in the dystrophin gene located at Xp21.1. Two PCR-based multiplex systems have been developed which detect 98% of deletions in affected males. Diagnosis of carrier females requires densitometry of PCR products following gel electrophoresis to calculate dosage of specific exons. We have developed a system in which fluorescently labelled PCR products are analysed using a GENESCANNER automated fragment analyser (ABI). Dosage is determined using computer-assisted laser densitometry (CALD). Recently, we diagnosed somatic mosaicism in the mother of an affected boy using this method. PCR analysis showed that the patient had a deletion that included exons 47-51 of his dystrophin gene. CALD analysis on the patient`s 36-year-old mother revealed a 29-34% reduction in the intensity of the bands corresponding to the deleted region of the gene rather than the 50% reduction normally seen in carrier females. A skin biopsy was obtain and monoclonal fibroblast colonies were tested by CALD for the deletion. Four of the twenty colonies screened were found to be deleted while the remaining colonies had two intact copies of the gene. We conclude that this patient is a somatic mosaic for DMD and that the mutation was the result of a post-zygotic event. This is the only case of somatic mosaicism detected among 800 women from 400 DMD families tested using CALD in our laboratory. At least one other case of possible somatic mosaicism has been reported but not confirmed. Germinal mosaicism is thought to occur in approximately 10% of mothers of sporadic DMD patients. Our findings indicate that somatic mosaicism is a much rarer condition among DMD carriers, thus suggesting that mitotic mutations in the dystrophin gene are more likely to occur later in embryogenesis after differentiation of the germline.

  4. Clonal composition of human ovarian cancer based on copy number analysis reveals a reciprocal relation with oncogenic mutation status.

    Science.gov (United States)

    Sakai, Kazuko; Ukita, Masayo; Schmidt, Jeanette; Wu, Longyang; De Velasco, Marco A; Roter, Alan; Jevons, Luis; Nishio, Kazuto; Mandai, Masaki

    2017-10-01

    Intratumoral heterogeneity of cancer cells remains largely unexplored. Here we investigated the composition of ovarian cancer and its biological relevance. A whole-genome single nucleotide polymorphism array was applied to detect the clonal composition of 24 formalin-fixed, paraffin-embedded samples of human ovarian cancer. Genome-wide segmentation data consisting of the log2 ratio (log2R) and B allele frequency (BAF) were used to calculate an estimate of the clonal composition number (CC number) for each tumor. Somatic mutation profiles of cancer-related genes were also determined for the same 24 samples by next-generation sequencing. The CC number was estimated successfully for 23 of the 24 cancer samples. The mean ± SD value for the CC number was 1.7 ± 1.1 (range of 0-4). A somatic mutation in at least one gene was identified in 22 of the 24 ovarian cancer samples, with the mutations including those in the oncogenes KRAS (29.2%), PIK3CA (12.5%), BRAF (8.3%), FGFR2 (4.2%), and JAK2 (4.2%) as well as those in the tumor suppressor genes TP53 (54.2%), FBXW7 (8.3%), PTEN (4.2%), and RB1 (4.2%). Tumors with one or more oncogenic mutations had a significantly lower CC number than did those without such a mutation (1.0 ± 0.8 versus 2.3 ± 0.9, P = 0.0027), suggesting that cancers with driver oncogene mutations are less heterogeneous than those with other mutations. Our results thus reveal a reciprocal relation between oncogenic mutation status and clonal composition in ovarian cancer using the established method for the estimation of the CC number. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Meta-analysis of Neuroblastomas Reveals a Skewed ALK Mutation Spectrum in Tumors with MYCN Amplification

    NARCIS (Netherlands)

    de Brouwer, Sara; de Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M.; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; van Maerken, Tom; de Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H.; Schramm, Alexander; van den Broecke, Caroline; Vermeulen, Joëlle; van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib N.; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank

    2010-01-01

    Purpose: Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic

  6. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms.

    Science.gov (United States)

    Milosevic Feenstra, Jelena D; Nivarthi, Harini; Gisslinger, Heinz; Leroy, Emilie; Rumi, Elisa; Chachoua, Ilyas; Bagienski, Klaudia; Kubesova, Blanka; Pietra, Daniela; Gisslinger, Bettina; Milanesi, Chiara; Jäger, Roland; Chen, Doris; Berg, Tiina; Schalling, Martin; Schuster, Michael; Bock, Christoph; Constantinescu, Stefan N; Cazzola, Mario; Kralovics, Robert

    2016-01-21

    Essential thrombocythemia (ET) and primary myelofibrosis (PMF) are chronic diseases characterized by clonal hematopoiesis and hyperproliferation of terminally differentiated myeloid cells. The disease is driven by somatic mutations in exon 9 of CALR or exon 10 of MPL or JAK2-V617F in >90% of the cases, whereas the remaining cases are termed "triple negative." We aimed to identify the disease-causing mutations in the triple-negative cases of ET and PMF by applying whole-exome sequencing (WES) on paired tumor and control samples from 8 patients. We found evidence of clonal hematopoiesis in 5 of 8 studied cases based on clonality analysis and presence of somatic genetic aberrations. WES identified somatic mutations in 3 of 8 cases. We did not detect any novel recurrent somatic mutations. In 3 patients with clonal hematopoiesis analyzed by WES, we identified a somatic MPL-S204P, a germline MPL-V285E mutation, and a germline JAK2-G571S variant. We performed Sanger sequencing of the entire coding region of MPL in 62, and of JAK2 in 49 additional triple-negative cases of ET or PMF. New somatic (T119I, S204F, E230G, Y591D) and 1 germline (R321W) MPL mutation were detected. All of the identified MPL mutations were gain-of-function when analyzed in functional assays. JAK2 variants were identified in 5 of 57 triple-negative cases analyzed by WES and Sanger sequencing combined. We could demonstrate that JAK2-V625F and JAK2-F556V are gain-of-function mutations. Our results suggest that triple-negative cases of ET and PMF do not represent a homogenous disease entity. Cases with polyclonal hematopoiesis might represent hereditary disorders. © 2016 by The American Society of Hematology.

  7. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    Directory of Open Access Journals (Sweden)

    Fernández-Rodríguez Juana

    2012-03-01

    Full Text Available Abstract Background Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes in a set of controls (138 women and 146 men did not detect seven of them. Conclusions Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease.

  8. Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families

    International Nuclear Information System (INIS)

    Fernández-Rodríguez, Juana; Schindler, Detlev; Capellá, Gabriel; Brunet, Joan; Lázaro, Conxi; Pujana, Miguel Angel; Quiles, Francisco; Blanco, Ignacio; Teulé, Alex; Feliubadaló, Lídia; Valle, Jesús del; Salinas, Mónica; Izquierdo, Àngel; Darder, Esther

    2012-01-01

    Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease

  9. Mutational Analysis of Oculocutaneous Albinism: A Compact Review

    Science.gov (United States)

    Kamaraj, Balu

    2014-01-01

    Oculocutaneous albinism (OCA) is an autosomal recessive disorder caused by either complete lack of or a reduction of melanin biosynthesis in the melanocytes. The OCA1A is the most severe type with a complete lack of melanin production throughout life, while the milder forms OCA1B, OCA2, OCA3, and OCA4 show some pigment accumulation over time. Mutations in TYR, OCA2, TYRP1, and SLC45A2 are mainly responsible for causing oculocutaneous albinism. Recently, two new genes SLC24A5 and C10orf11 are identified that are responsible to cause OCA6 and OCA7, respectively. Also a locus has been mapped to the human chromosome 4q24 region which is responsible for genetic cause of OCA5. In this paper, we summarized the clinical and molecular features of OCA genes. Further, we reviewed the screening of pathological mutations of OCA genes and its molecular mechanism of the protein upon mutation by in silico approach. We also reviewed TYR (T373K, N371Y, M370T, and P313R), OCA2 (R305W), TYRP1 (R326H and R356Q) mutations and their structural consequences at molecular level. It is observed that the pathological genetic mutations and their structural and functional significance of OCA genes will aid in development of personalized medicine for albinism patients. PMID:25093188

  10. Simplifying the detection of MUTYH mutations by high resolution melting analysis

    International Nuclear Information System (INIS)

    López-Villar, Isabel; Martínez-López, Joaquín; Ayala, Rosa; Wesselink, Jan; Morillas, Juan Diego; López, Elena; Marín, José Carlos; Díaz-Tasende, José; González, Sara; Robles, Luis

    2010-01-01

    MUTYH-associated polyposis (MAP) is a disorder caused by bi-allelic germline MUTYH mutation, characterized by multiple colorectal adenomas. In order to identify mutations in MUTYH gene we applied High Resolution Melting (HRM) genotyping. HRM analysis is extensively employed as a scanning method for the detection of heterozygous mutations. Therefore, we applied HRM to show effectiveness in detecting homozygous mutations for these clinically important and frequent patients. In this study, we analyzed phenotype and genotype data from 82 patients, with multiple (>= 10) synchronous (19/82) or metachronous (63/82) adenomas and negative APC study (except one case). Analysis was performed by HRM-PCR and direct sequencing, in order to identify mutations in MUTYH exons 7, 12 and 13, where the most prevalent mutations are located. In monoallelic mutation carriers, we evaluated entire MUTYH gene in search of another possible alteration. HRM-PCR was performed with strict conditions in several rounds: the first one to discriminate the heteroduplex patterns and homoduplex patterns and the next ones, in order to refine and confirm parameters. The genotypes obtained were correlated to phenotypic features (number of adenomas (synchronous or metachronous), colorectal cancer (CRC) and family history). MUTYH germline mutations were found in 15.8% (13/82) of patients. The hot spots, Y179C (exon 7) and G396D (exon 13), were readily identified and other mutations were also detected. Each mutation had a reproducible melting profile by HRM, both heterozygous mutations and homozygous mutations. In our study of 82 patients, biallelic mutation is associated with being a carrier of ≥10 synchronous polyps (p = 0.05) and there is no association between biallelic mutation and CRC (p = 0.39) nor family history (p = 0.63). G338H non-pathogenic polymorphism (exon 12) was found in 23.1% (19/82) of patients. In all cases there was concordance between HRM (first and subsequent rounds) and sequencing

  11. Application of DNA chips in the analysis of gene mutation in HBV

    International Nuclear Information System (INIS)

    Wang Yongzhong; Ruan Lihua; Zhou Guoping; Wu Guoxiang; Chen Min

    2005-01-01

    Objective: To investigate the clinical applicability of DNA chips for analysis of gene mutation in HBV. Methods: Serum HBV DNA from 47 patients with viral hepatitis type B was amplified with PCR. Possible gene mutations were searched for in site 1896 of pre-C section, sites 1762,1764 of BCP section and sites 528, 552 of P section with DNA chip method based upon membrane coloration. Results: In the 32 patients without lamivudine treatment, the results were as follows: (1) 6 specimens with HBsAg + , HBeAg + , HBeAb - , no mutations observed. (2) 13 specimens with HBsAg + , HBeAg - , HBeAb + , mutations at site 1896, pre- C 4 cases, mutations at sites 1762,1764, BCP 11 cases. (3) 13 specimens with HBsAg + , HBeAg + , HBeAb + , mutations at site 1896 pre -C 4 cases, mutations at sites 1762,1764 BCP 13 cases. In the 15 patients after 48 weeks treatment with lamivudine but remained HBV DNA positive, mutations were observed at: site 1896 pre-C, 5 cases, sites 1762,1764 BCP, 6 cases, site 528 P section, 2 cases, site 552 P section, YVDD 4 cases, YIDD 7 cases. Conclusion: Mutations at sites 1896, 1762,1764 were more frequent in patients with HBeAb + and were related to the negative expression of HBeAg, Mutations at 1762,1764 BCP were closely related to the changes of HBeAg/HBeAb. P section mutations were only observed after lamivadine treatment and were related to resistance against the drug. DNA chip method based upon membrane coloration for detection of gene mutation was expedient and specific and worth popularization. (authors)

  12. BRAF, KIT, NRAS, GNAQ and GNA11 mutation analysis in cutaneous melanomas in Turkish population

    Directory of Open Access Journals (Sweden)

    Ismail Yilmaz

    2015-01-01

    Full Text Available Background: KIT and mitogen-activated protein kinase cascade are important for melanomagenesis. In the present study, we analyzed the frequency of BRAF, NRAS, KIT, GNAQ and GNA11 gene mutations and investigated their association with clinicopathological features of melanomas in Turkish population. Materials and Methods: Forty-seven primary cutaneous melanomas were included in our study. Sanger sequencing method was used for mutation analysis in all cases. Results: Mean age was 62.1 (29-101 years. Female:male ratio was 17:30. Among 47 melanomas, 14 (29.8% BRAF, 10 (21.3% NRAS, 4 (8.5% KIT and 1(2.1% GNAQ gene mutations were detected. Two of the KIT mutations were found in acral lentiginous melanoma (ALM. In the head and neck region, mutation frequency was significantly lower than in other locations (P = 0.035. The only GNAQ gene mutation (p.Q209L was detected in a melanoma arising from blue nevus located on the scalp. None of the melanomas harbored NRAS exon 2, KIT exon 13/17/18, GNAQ exon 4 and GNA11 exon 4/5 mutations. Overall mutation frequency did not show significant difference between metastatic (8/14, 57.1% and nonmetastatic (18/33, 54.5% patients. We did not observe any significant association between mutation status and gender or age of various patients. Conclusions: Our results support that BRAF and NRAS gene mutations are common in cutaneous melanomas. The activating mutations of KIT gene are rare and especially seen in ALM. GNAQ and GNA11 mutations are infrequent in cutaneous melanomas and may be associated only with melanomas arising from blue nevus.

  13. Somatization in Parkinson's Disease

    DEFF Research Database (Denmark)

    Carrozzino, Danilo; Bech, Per; Patierno, Chiara

    2017-01-01

    The current systematic review study is aimed at critically analyzing from a clinimetric viewpoint the clinical consequence of somatization in Parkinson's Disease (PD). By focusing on the International Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we...... consequence of such psychiatric symptom should be further evaluated by replacing the clinically inadequate diagnostic label of psychogenic parkinsonism with the psychosomatic concept of persistent somatization as conceived by the Diagnostic Criteria for Psychosomatic Research (DCPR)....

  14. Polymorphism and mutation analysis of genomic DNA on cancer

    International Nuclear Information System (INIS)

    Ohta, Tsutomu

    2003-01-01

    DNA repair is a universal process in living cells that maintains the structural integrity of chromosomal DNA molecules in face of damage. A deficiency in DNA damage repair is associated with an increased cancer risk by increasing a mutation frequency of cancer-related genes. Variation in DNA repair capacity may be genetically determined. Therefore, we searched single-nucleotide polymorphisms (SNPs) in major DNA repair genes. This led to the finding of 600 SNPs and mutations including many novel SNPs in Japanese population. Case-control studies to explore the contribution of the SNPs in DNA repair genes to the risk of lung cancer revealed that five SNPs are associated with lung carcinogenesis. One of these SNPs is found in RAD54L gene, which is involved in double-strand DNA repair. We analyzed and reported activities of Rad54L protein with SNP and mutations. (authors)

  15. [Analysis of gene mutation in a Chinese family with Norrie disease].

    Science.gov (United States)

    Zhang, Tian-xiao; Zhao, Xiu-li; Hua, Rui; Zhang, Jin-song; Zhang, Xue

    2012-09-01

    To detect the pathogenic mutation in a Chinese family with Norrie disease. Clinical diagnosis was based on familial history, clinical sign and B ultrasonic examination. Peripheral blood samples were obtained from all available members in a Chinese family with Norrie disease. Genomic DNA was extracted from lymphocytes by the standard SDS-proteinase K-phenol/chloroform method. Two coding exons and all intron-exon boundaries of the NDP gene were PCR amplified using three pairs of primers and subjected to automatic DNA sequence. The causative mutation was confirmed by restriction enzyme analysis and genotyping analysis in all members. Sequence analysis of NDP gene revealed a missense mutation c.220C > T (p.Arg74Cys) in the proband and his mother. Further mutation identification by restriction enzyme analysis and genotyping analysis showed that the proband was homozygote of this mutation. His mother and other four unaffected members (III3, IV4, III5 and II2) were carriers of this mutation. The mutant amino acid located in the C-terminal cystine knot-like domain, which was critical motif for the structure and function of NDP. A NDP missense mutation was identified in a Chinese family with Norrie disease.

  16. Life Course Pathways of Adversities Linking Adolescent Socioeconomic Circumstances and Functional Somatic Symptoms in Mid-Adulthood: A Path Analysis Study.

    Directory of Open Access Journals (Sweden)

    Frida Jonsson

    Full Text Available While research examining the health impact of early socioeconomic conditions suggests that effects may exist independently of or jointly with adult socioeconomic position, studies exploring other potential pathways are few. Following a chain of risk life course model, this prospective study seeks to examine whether pathways of occupational class as well as material and social adversities across the life course link socioeconomic disadvantage in adolescent to functional somatic symptoms in mid-adulthood. Applying path analysis, a multiple mediator model was assessed using prospective data collected during 26 years through the Northern Swedish Cohort. The sample contained 987 individuals residing in the municipality of Luleå, Sweden, who participated in questionnaire surveys at age 16, 21, 30 and 42. Socioeconomic conditions (high/low in adolescence (age 16 were operationalized using the occupation of the parents, while occupational class in adulthood (manual/non-manual was measured using the participant's own occupation at age 21 and 30. The adversity measurements were constructed as separate age specific parcels at age 21 and 30. Social adversity included items pertaining to stressful life events that could potentially harm salient relationships, while material adversity was operationalized using items concerning unfavorable financial and material circumstances. Functional somatic symptoms at age 42 was a summary measure of self-reported physical symptoms, palpitation and sleeping difficulties that had occurred during the last 12 months. An association between socioeconomic conditions at age 16 and functional somatic symptoms at age 42 (r = 0.068 which was partially explained by people's own occupational class at age 21 and then material as well as social adversity at age 30 was revealed. Rather than proposing a direct and independent health effect of the socioeconomic conditions of the family, the present study suggests that growing up in an

  17. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    Science.gov (United States)

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Expression analysis revealing destabilizing mutations in phosphomannomutase 2 deficiency (PMM2-CDG): expression analysis of PMM2-CDG mutations.

    Science.gov (United States)

    Vega, Ana Isabel; Pérez-Cerdá, Celia; Abia, David; Gámez, Alejandra; Briones, Paz; Artuch, Rafael; Desviat, Lourdes R; Ugarte, Magdalena; Pérez, Belén

    2011-08-01

    Deficiency of phosphomannomutase (PMM2, MIM#601785) is the most common congenital disorder of glycosylation. Herein we report the genetic analysis of 22 Spanish PMM2 deficient patients and the functional analysis of 14 nucleotide changes in a prokaryotic expression system in order to elucidate their molecular pathogenesis. PMM2 activity assay revealed the presence of six protein changes with no enzymatic activities (p.R123Q, p.R141H, p.F157S, p.P184T, p.F207S and p.D209G) and seven mild protein changes with residual activities ranging from 16 to 54% (p.L32R, p.V44A p.D65Y, p.P113L p.T118S, p.T237M and p.C241S) and also one variant change with normal activity (p.E197A). The results obtained from Western blot analysis, degradation time courses of 11 protein changes and structural analysis of the PMM2 protein, suggest that the loss-of-function of most mutant proteins is based on their increased susceptibility to degradation or aggregation compared to the wild type protein, considering PMM2 deficiency as a conformational disease. We have identified exclusively catalytic protein change (p.D209G), catalytic protein changes affecting protein stability (p.R123Q and p.R141H), two protein changes disrupting the dimer interface (p.P113L and p.T118S) and several misfolding changes (p.L32R, p.V44A, p.D65Y, p.F157S, p.P184T, p.F207S, p.T237M and p.C241S). Our current work opens a promising therapeutic option using pharmacological chaperones to revert the effect of the characterized misfolding mutations identified in a wide range of PMM2 deficient patients.

  19. Functional Analysis of In-frame Indel ARID1A Mutations Reveals New Regulatory Mechanisms of Its Tumor Suppressor Functions

    Directory of Open Access Journals (Sweden)

    Bin Guan

    2012-10-01

    Full Text Available AT-rich interactive domain 1A (ARID1A has emerged as a new tumor suppressor in which frequent somatic mutations have been identified in several types of human cancers. Although most ARID1A somatic mutations are frame-shift or nonsense mutations that contribute to mRNA decay and loss of protein expression, 5% of ARID1A mutations are in-frame insertions or deletions (indels that involve only a small stretch of peptides. Naturally occurring in-frame indel mutations provide unique and useful models to explore the biology and regulatory role of ARID1A. In this study, we analyzed indel mutations identified in gynecological cancers to determine how these mutations affect the tumor suppressor function of ARID1A. Our results demonstrate that all in-frame mutants analyzed lost their ability to inhibit cellular proliferation or activate transcription of CDKN1A, which encodes p21, a downstream effector of ARID1A. We also showed that ARID1A is a nucleocytoplasmic protein whose stability depends on its subcellular localization. Nuclear ARID1A is less stable than cytoplasmic ARID1A because ARID1A is rapidly degraded by the ubiquitin-proteasome system in the nucleus. In-frame deletions affecting the consensus nuclear export signal reduce steady-state protein levels of ARID1A. This defect in nuclear exportation leads to nuclear retention and subsequent degradation. Our findings delineate a mechanism underlying the regulation of ARID1A subcellular distribution and protein stability and suggest that targeting the nuclear ubiquitin-proteasome system can increase the amount of the ARID1A protein in the nucleus and restore its tumor suppressor functions.

  20. Mutational analysis in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD): Identification of five mutations in the PKD1 gene.

    Science.gov (United States)

    Abdelwahed, Mayssa; Hilbert, Pascale; Ahmed, Asma; Mahfoudh, Hichem; Bouomrani, Salem; Dey, Mouna; Hachicha, Jamil; Kamoun, Hassen; Keskes-Ammar, Leila; Belguith, Neïla

    2018-05-31

    Autosomal Dominant Polycystic Kidney Disease (ADPKD), the most frequent genetic disorder of the kidneys, is characterized by a typical presenting symptoms include cysts development in different organs and a non-cysts manifestations. ADPKD is caused by mutations in PKD1 or PKD2 genes. In this study, we aimed to search for molecular causative defects among PKD1 and PKD2 genes. Eighteen patients were diagnosed based on renal ultrasonography and renal/extra-renal manifestations. Then, Sanger sequencing was performed for PKD1 and PKD2 genes. Multiplex Ligation dependent Probe Amplification method (MLPA) methods was performed for both PKD genes. Mutational analysis of the PKD2 gene revealed the absence of variants and no deletions or duplications of both PKD genes were detected. But three novels mutations i.e. p.S463C exon 7; c. c.11156+2T>C IVS38 and c.8161-1G>A IVS22 and two previously reported c.1522T>C exon 7 and c.412C>T exon 4 mutations in the PKD1 gene were detected. Bioinformatics tools predicted that the novel variants have a pathogenic effects on splicing machinery, pre-mRNA secondary structure and stability and protein stability. Our results highlighted molecular features of Tunisian patients with ADPKD and revealed novel variations that can be utilized in clinical diagnosis and in the evaluation of living kidney donor. To the best of our knowledge, this is the first report of Autosomal Polycystic Kidney Disease in Tunisia. Copyright © 2017. Published by Elsevier B.V.

  1. Intragenic haplotype analysis of common HFE mutations in the ...

    Indian Academy of Sciences (India)

    mutation <100 generations ago in the Celtic populations of mainland Europe, with a ... 0.9–5.8%, evidencing regional differences in distribution across the ..... and H63D alleles in the HFE gene among various Jewish ethnic groups in Israel: a ...

  2. DETECTION OF K-RAS AND P53 MUTATIONS IN SPUTUM SAMPLES OF LUNG CANCER PATIENTS USING LASER CAPTURE MICRODISSECTION MICROSCOPE AND MUTATION ANALYSIS

    Science.gov (United States)

    Detection of K-ras and p53 Mutations in Sputum Samples of Lung Cancer Patients Using Laser Capture Microdissection Microscope and Mutation AnalysisPhouthone Keohavong a,*, Wei-Min Gao a, Kui-Cheng Zheng a, Hussam Mady b, Qing Lan c, Mona Melhem b, and Judy Mumford d.<...

  3. A novel genetic tool for clonal analysis of fourth chromosome mutations

    OpenAIRE

    Sousa-Neves, Rui; Schinaman, Joseph M.

    2012-01-01

    The fourth chromosome of Drosophila remains one of the most intractable regions of the fly genome to genetic analysis. The main difficulty posed to the genetic analyses of mutations on this chromosome arises from the fact that it does not undergo meiotic recombination, which makes recombination mapping impossible, and also prevents clonal analysis of mutations, a technique which relies on recombination to introduce the prerequisite recessive markers and FLP-recombinase recognition targets (FR...

  4. Splicing Analysis of Exonic OCRL Mutations Causing Lowe Syndrome or Dent-2 Disease

    Directory of Open Access Journals (Sweden)

    Lorena Suarez-Artiles

    2018-01-01

    Full Text Available Mutations in the OCRL gene are associated with both Lowe syndrome and Dent-2 disease. Patients with Lowe syndrome present congenital cataracts, mental disabilities and a renal proximal tubulopathy, whereas patients with Dent-2 disease exhibit similar proximal tubule dysfunction but only mild, or no additional clinical defects. It is not yet understood why some OCRL mutations cause the phenotype of Lowe syndrome, while others develop the milder phenotype of Dent-2 disease. Our goal was to gain new insights into the consequences of OCRL exonic mutations on pre-mRNA splicing. Using predictive bioinformatics tools, we selected thirteen missense mutations and one synonymous mutation based on their potential effects on splicing regulatory elements or splice sites. These mutations were analyzed in a minigene splicing assay. Results of the RNA analysis showed that three presumed missense mutations caused alterations in pre-mRNA splicing. Mutation c.741G>T; p.(Trp247Cys generated splicing silencer sequences and disrupted splicing enhancer motifs that resulted in skipping of exon 9, while mutations c.2581G>A; p.(Ala861Thr and c.2581G>C; p.(Ala861Pro abolished a 5′ splice site leading to skipping of exon 23. Mutation c.741G>T represents the first OCRL exonic variant outside the conserved splice site dinucleotides that results in alteration of pre-mRNA splicing. Our results highlight the importance of evaluating the effects of OCRL exonic mutations at the mRNA level.

  5. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing

    Directory of Open Access Journals (Sweden)

    Tianhong Su

    2018-03-01

    Full Text Available Mitochondrial DNA (mtDNA mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.

  6. Computational analysis of histidine mutations on the structural stability of human tyrosinases leading to albinism insurgence.

    Science.gov (United States)

    Hassan, Mubashir; Abbas, Qamar; Raza, Hussain; Moustafa, Ahmed A; Seo, Sung-Yum

    2017-07-25

    Misfolding and structural alteration in proteins lead to serious malfunctions and cause various diseases in humans. Mutations at the active binding site in tyrosinase impair structural stability and cause lethal albinism by abolishing copper binding. To evaluate the histidine mutational effect, all mutated structures were built using homology modelling. The protein sequence was retrieved from the UniProt database, and 3D models of original and mutated human tyrosinase sequences were predicted by changing the residual positions within the target sequence separately. Structural and mutational analyses were performed to interpret the significance of mutated residues (N 180 , R 202 , Q 202 , R 211 , Y 363 , R 367 , Y 367 and D 390 ) at the active binding site of tyrosinases. CSpritz analysis depicted that 23.25% residues actively participate in the instability of tyrosinase. The accuracy of predicted models was confirmed through online servers ProSA-web, ERRAT score and VERIFY 3D values. The theoretical pI and GRAVY generated results also showed the accuracy of the predicted models. The CCA negative correlation results depicted that the replacement of mutated residues at His within the active binding site disturbs the structural stability of tyrosinases. The predicted CCA scores of Tyr 367 (-0.079) and Q/R 202 (0.032) revealed that both mutations have more potential to disturb the structural stability. MD simulation analyses of all predicted models justified that Gln 202 , Arg 202 , Tyr 367 and D 390 replacement made the protein structures more susceptible to destabilization. Mutational results showed that the replacement of His with Q/R 202 and Y/R 363 has a lethal effect and may cause melanin associated diseases such as OCA1. Taken together, our computational analysis depicts that the mutated residues such as Q/R 202 and Y/R 363 actively participate in instability and misfolding of tyrosinases, which may govern OCA1 through disturbing the melanin biosynthetic pathway.

  7. Mutation analysis of the STRA6 gene in isolated and non-isolated anophthalmia/microphthalmia.

    Science.gov (United States)

    Chassaing, N; Ragge, N; Kariminejad, A; Buffet, A; Ghaderi-Sohi, S; Martinovic, J; Calvas, P

    2013-03-01

    PDAC syndrome [Pulmonary hypoplasia/agenesis, Diaphragmatic hernia/eventration, Anophthalmia/microphthalmia (A/M) and Cardiac Defect] is a condition associated with recessive mutations in the STRA6 gene in some of these patients. Recently, cases with isolated anophthalmia have been associated with STRA6 mutations. To determine the minimal findings associated with STRA6 mutations, we performed mutation analysis of the STRA6 gene in 28 cases with anophthalmia. In 7 of the cases the anophthalmia was isolated, in 14 cases it was associated with one of the major features included in PDAC and 7 had other abnormalities. Mutations were identified in two individuals: one with bilateral anophthalmia and some features included in PDAC, who was a compound heterozygote for a missense mutation and a large intragenic deletion, and the second case with all the major features of PDAC and who had a homozygous splicing mutation. This study suggests that STRA6 mutations are more likely to be identified in individuals with A/M and other abnormalities included in the PDAC spectrum, rather than in isolated A/M cases. © 2012 John Wiley & Sons A/S.

  8. Whole exome analysis identifies frequent CNGA1 mutations in Japanese population with autosomal recessive retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Satoshi Katagiri

    Full Text Available OBJECTIVE: The purpose of this study was to investigate frequent disease-causing gene mutations in autosomal recessive retinitis pigmentosa (arRP in the Japanese population. METHODS: In total, 99 Japanese patients with non-syndromic and unrelated arRP or sporadic RP (spRP were recruited in this study and ophthalmic examinations were conducted for the diagnosis of RP. Among these patients, whole exome sequencing analysis of 30 RP patients and direct sequencing screening of all CNGA1 exons of the other 69 RP patients were performed. RESULTS: Whole exome sequencing of 30 arRP/spRP patients identified disease-causing gene mutations of CNGA1 (four patients, EYS (three patients and SAG (one patient in eight patients and potential disease-causing gene variants of USH2A (two patients, EYS (one patient, TULP1 (one patient and C2orf71 (one patient in five patients. Screening of an additional 69 arRP/spRP patients for the CNGA1 gene mutation revealed one patient with a homozygous mutation. CONCLUSIONS: This is the first identification of CNGA1 mutations in arRP Japanese patients. The frequency of CNGA1 gene mutation was 5.1% (5/99 patients. CNGA1 mutations are one of the most frequent arRP-causing mutations in Japanese patients.

  9. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    Science.gov (United States)

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  10. Hypochondriasis and somatization.

    Science.gov (United States)

    Kellner, R

    1987-11-20

    Between 60% and 80% of healthy individuals experience somatic symptoms in any one week. About 10% to 20% of a random sample of people worry intermittently about illness. A substantial proportion of patients present physicians with somatic complaints for which no organic cause can be found. Patients who are hypochondriacal do not understand the benign nature of functional somatic symptoms and interpret these as evidence of disease. Hypochondriacal concerns range from common short-lived worries to persistent and distressing fears or convictions of having a disease. Hypochondriasis can be secondary to other psychiatric disorders (eg, melancholia or panic disorder), and hypochondriacal attitudes remit when the primary disorder is successfully treated. Patients with primary hypochondriasis are also anxious or depressed, but the fear of disease, or the false belief of having a disease, persists and is the most important feature of their psychopathology. There are substantial differences among hypochondriacal patients in their personalities and psychopathologies. Psychotherapy as well as psychotropic drugs are effective in the treatment of functional somatic symptoms. There are no adequate controlled studies on the value of psychotherapy in hypochondriasis; the recommended guidelines are based on uncontrolled studies of hypochondriasis and on controlled studies of the psychotherapy in similar disorders. The prognosis of functional somatic symptoms as well as that of hypochondriasis is good in a substantial proportion of patients.

  11. CFTR mutation analysis and haplotype associations in CF patients☆

    OpenAIRE

    Cordovado, S.K.; Hendrix, M.; Greene, C.N.; Mochal, S.; Earley, M.C.; Farrell, P.M.; Kharrazi, M.; Hannon, W.H.; Mueller, P.W.

    2011-01-01

    Most newborn screening (NBS) laboratories use second-tier molecular tests for cystic fibrosis (CF) using dried blood spots (DBS). The Centers for Disease Control and Prevention’s NBS Quality Assurance Program offers proficiency testing (PT) in DBS for CF transmembrane conductance regulator (CFTR) gene mutation detection. Extensive molecular characterization on 76 CF patients, family members or screen positive newborns was performed for quality assurance. The coding, regulatory regions and por...

  12. Role of BRAFV600E Mutation Analysis for Thyroid Nodules Classified as Indeterminate on Ultrasonography

    International Nuclear Information System (INIS)

    Nam, Sang Yu; Shin, Jung Hee; Han, Boo Kyung; Ko, Eun Young; Kang, Seok Seon; Hahn, Soo Yeon; Hwang, Ji Young; Nam, Mee Young; Kim, Jong Won; Chung, Jae Hoon

    2010-01-01

    We aimed to evaluate a possible role for BRAFV600E mutation analysis of aspiration specimens in the work up of thyroid nodules classified as indeterminate on US. A total of 122 nodules from 122 patients were prospectively classified as indeterminate nodules based on US findings. US-guided fine needle aspiration (FNA) was done for all 122 nodules. The presence of a BRAFV600E mutation in FNA specimens was determined by allele-specific PCR. US-indeterminate nodules were confirmed as malignant in 20.5% (25/122) of cases and benign in 76.2% (93/122) after FNA or surgery. A few (3.3% (4/122), remained indeterminate. A BRAFV600E mutation was identified in 14.8% (18/122) of US indeterminate nodules. Of those 18 nodules, three were benign and 13 were malignant after the initial FNA. One (0.8%, 1/122) with an initially benign cytology and a BRAFV600E mutation was confirmed to be malignant after surgery. The remaining two benign nodules with a mutation were not followed-up. All 9 initial FNA-nondiagnostic nodules were mutation negative but 2 (11.8%) of 17 indeterminate nodules on initial FNAs were mutation positive. BRAFV600E mutation analysis prevents false negative cytology for only 0.8% of cases and reduces ambiguous diagnoses for 1.6% of all US-indeterminate thyroid nodules. Therefore, adding BRAFV600E mutation analysis to FNA for US-indeterminate nodules is of limited usefulness

  13. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    Science.gov (United States)

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Barišić, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ayşe; Topaloğlu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  14. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray.

    Science.gov (United States)

    Ávila-Fernández, Almudena; Cantalapiedra, Diego; Aller, Elena; Vallespín, Elena; Aguirre-Lambán, Jana; Blanco-Kelly, Fiona; Corton, M; Riveiro-Álvarez, Rosa; Allikmets, Rando; Trujillo-Tiebas, María José; Millán, José M; Cremers, Frans P M; Ayuso, Carmen

    2010-12-03

    Retinitis pigmentosa (RP) is a genetically heterogeneous disorder characterized by progressive loss of vision. The aim of this study was to identify the causative mutations in 272 Spanish families using a genotyping microarray. 272 unrelated Spanish families, 107 with autosomal recessive RP (arRP) and 165 with sporadic RP (sRP), were studied using the APEX genotyping microarray. The families were also classified by clinical criteria: 86 juveniles and 186 typical RP families. Haplotype and sequence analysis were performed to identify the second mutated allele. At least one-gene variant was found in 14% and 16% of the juvenile and typical RP groups respectively. Further study identified four new mutations, providing both causative changes in 11% of the families. Retinol Dehydrogenase 12 (RDH12) was the most frequently mutated gene in the juvenile RP group, and Usher Syndrome 2A (USH2A) and Ceramide Kinase-Like (CERKL) were the most frequently mutated genes in the typical RP group. The only variant found in CERKL was p.Arg257Stop, the most frequent mutation. The genotyping microarray combined with segregation and sequence analysis allowed us to identify the causative mutations in 11% of the families. Due to the low number of characterized families, this approach should be used in tandem with other techniques.

  15. University of Texas MD Anderson Cancer Center: High-Throughput Screening Identifying Driving Mutations in Endometrial Cancer | Office of Cancer Genomics

    Science.gov (United States)

    Recent advances in next-generation sequencing technology have enabled the unprecedented characterization of a full spectrum of somatic alterations in cancer genomes. Given the large numbers of somatic mutations typically detected by this approach, a key challenge in the downstream analysis is to distinguish “drivers” that functionally contribute to tumorigenesis from “passengers” that occur as the consequence of genomic instability.

  16. Analysis of chlorophyll mutations induced by γ-rays in barley (hordeum vulgare)

    International Nuclear Information System (INIS)

    Wang Cailian; Shen Mei; Xu Gang; Zhao Kongnan; Chen Qiufang

    1991-06-01

    Thirty varieties of dormant barley seeds were irradiated with 137 Cs γ-rays. Dose-effect relations of chlorophyll mutation frequency in M 2 seedling and differences resulting from cultured types or radiosensitive types were investigated. Experimental results show that the relations between chlorophyll mutation frequency and doses can be fitted by a linear regression equation Y = A + BX. According to analysis of covariance, there is no considerable difference in various cultured types, but the difference of five different radiosensitive types is remarkable. The sensitive and intermediate types need much lower doses than other types to induce maximum chlorophyll mutation

  17. Cumulative BRCA mutation analysis in the Greek population confirms that homogenous ethnic background facilitates genetic testing.

    Science.gov (United States)

    Tsigginou, Alexandra; Vlachopoulos, Fotios; Arzimanoglou, Iordanis; Zagouri, Flora; Dimitrakakis, Constantine

    2015-01-01

    Screening for BRCA 1 and BRCA 2 mutations has long moved from the research lab to the clinic as a routine clinical genetic testing. BRCA molecular alteration pattern varies among ethnic groups which makes it already a less straightforward process to select the appropriate mutations for routine genetic testing on the basis of known clinical significance. The present report comprises an in depth literature review of the so far reported BRCA 1 and BRCA 2 molecular alterations in Greek families. Our analysis of Greek cumulative BRCA 1 and 2 molecular data, produced by several independent groups, confirmed that six recurrent deleterious mutations account for almost 60 % and 70 % of all BRCA 1 and 2 and BRCA 1 mutations, respectively. As a result, it makes more sense to perform BRCA mutation analysis in the clinic in two sequential steps, first conventional analysis for the six most prevalent pathogenic mutations and if none identified, a second step of New Generation Sequencing-based whole genome or whole exome sequencing would follow. Our suggested approach would enable more clinically meaningful, considerably easier and less expensive BRCA analysis in the Greek population which is considered homogenous.

  18. Parental somatic mosaicism is underrecognized and influences recurrence risk of genomic disorders

    NARCIS (Netherlands)

    Campbell, I.M.; Yuan, B.; Robberecht, C.; Pfundt, R.P.; Szafranski, P.; McEntagart, M.E.; Nagamani, S.C.; Erez, A.; Bartnik, M.; Wisniowiecka-Kowalnik, B.; Plunkett, K.S.; Pursley, A.N.; Kang, S.H.; Bi, W.; Lalani, S.R.; Bacino, C.A.; Vast, M.; Marks, K.; Patton, M.; Olofsson, P.; Patel, A.; Veltman, J.A.; Cheung, S.W.; Shaw, C.A.; Vissers, L.E.L.M.; Vermeesch, J.R.; Lupski, J.R.; Stankiewicz, P.

    2014-01-01

    New human mutations are thought to originate in germ cells, thus making a recurrence of the same mutation in a sibling exceedingly rare. However, increasing sensitivity of genomic technologies has anecdotally revealed mosaicism for mutations in somatic tissues of apparently healthy parents. Such

  19. Meta-analysis of neuroblastomas reveals a skewed ALK mutation spectrum in tumors with MYCN amplification.

    Science.gov (United States)

    De Brouwer, Sara; De Preter, Katleen; Kumps, Candy; Zabrocki, Piotr; Porcu, Michaël; Westerhout, Ellen M; Lakeman, Arjan; Vandesompele, Jo; Hoebeeck, Jasmien; Van Maerken, Tom; De Paepe, Anne; Laureys, Geneviève; Schulte, Johannes H; Schramm, Alexander; Van Den Broecke, Caroline; Vermeulen, Joëlle; Van Roy, Nadine; Beiske, Klaus; Renard, Marleen; Noguera, Rosa; Delattre, Olivier; Janoueix-Lerosey, Isabelle; Kogner, Per; Martinsson, Tommy; Nakagawara, Akira; Ohira, Miki; Caron, Huib; Eggert, Angelika; Cools, Jan; Versteeg, Rogier; Speleman, Frank

    2010-09-01

    Activating mutations of the anaplastic lymphoma kinase (ALK) were recently described in neuroblastoma. We carried out a meta-analysis of 709 neuroblastoma tumors to determine their frequency and mutation spectrum in relation to genomic and clinical parameters, and studied the prognostic significance of ALK copy number and expression. The frequency and type of ALK mutations, copy number gain, and expression were analyzed in a new series of 254 neuroblastoma tumors. Data from 455 published cases were used for further in-depth analysis. ALK mutations were present in 6.9% of 709 investigated tumors, and mutations were found in similar frequencies in favorable [International Neuroblastoma Staging System (INSS) 1, 2, and 4S; 5.7%] and unfavorable (INSS 3 and 4; 7.5%) neuroblastomas (P = 0.087). Two hotspot mutations, at positions R1275 and F1174, were observed (49% and 34.7% of the mutated cases, respectively). Interestingly, the F1174 mutations occurred in a high proportion of MYCN-amplified cases (P = 0.001), and this combined occurrence was associated with a particular poor outcome, suggesting a positive cooperative effect between both aberrations. Furthermore, the F1174L mutant was characterized by a higher degree of autophosphorylation and a more potent transforming capacity as compared with the R1275Q mutant. Chromosome 2p gains, including the ALK locus (91.8%), were associated with a significantly increased ALK expression, which was also correlated with poor survival. ALK mutations occur in equal frequencies across all genomic subtypes, but F1174L mutants are observed in a higher frequency of MYCN-amplified tumors and show increased transforming capacity as compared with the R1275Q mutants.

  20. Hot spot mutations in Finnish non-small cell lung cancers.

    Science.gov (United States)

    Mäki-Nevala, Satu; Sarhadi, Virinder Kaur; Rönty, Mikko; Kettunen, Eeva; Husgafvel-Pursiainen, Kirsti; Wolff, Henrik; Knuuttila, Aija; Knuutila, Sakari

    2016-09-01

    Non-small cell lung cancer (NSCLC) is a common cancer with a poor prognosis. The aim of this study was to screen Finnish NSCLC tumor samples for common cancer-related mutations by targeted next generation sequencing and to determine their concurrences and associations with clinical features. Sequencing libraries were prepared from DNA isolated from formalin-fixed, paraffin-embedded tumor material of 425 patients using the AmpliSeq Colon and Lung panel covering mutational hot spot regions of 22 cancer genes. Sequencing was performed with the Ion Torrent Personal Genome Machine (PGM). Data analysis of the hot spot mutations revealed mutations in 77% of the patients, with 7% having 3 or more mutations reported in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Two of the most frequently mutated genes were TP53 (46%) and KRAS (25%). KRAS codon 12 mutations were the most recurrently occurring mutations. EGFR mutations were significantly associated with adenocarcinoma, female gender and never/light-smoking history; CTNNB1 mutations with light ex-smokers, PIK3CA and TP53 mutations with squamous cell carcinoma, and KRAS with adenocarcinoma. TP53 mutations were most prevalent in current smokers and ERBB2, ERBB4, PIK3CA, NRAS, NOTCH1, FBWX7, PTEN and STK11 mutations occurred exclusively in a group of ever-smokers, however the association was not statistically significant. No mutation was found that associated with asbestos exposure. Finnish NSCLC patients have a similar mutation profile as other Western patients, however with a higher frequency of BRAF mutations but a lower frequency of STK11 and ERBB2 mutations. Moreover, TP53 mutations occurred frequently with other gene mutations, most commonly with KRAS, MET, EGFR and PIK3CA mutations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Mutational Analysis of PTPN11 Gene in Taiwanese Children with Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Chia-Sui Hung

    2007-01-01

    Full Text Available Noonan syndrome (NS is an autosomal dominant disorder presenting with characteristic facies, short stature, skeletal anomalies, and congenital heart defects. Mutations in protein-tyrosine phosphatase, nonreceptor-type 11 (PTPN11, encoding SHP-2, account for 33-50% of NS. This study screened for mutations in the PTPN11 gene in 34 Taiwanese patients with NS. Mutation analysis of the 15 coding exons and exon/intron boundaries was performed by polymerase chain reaction and direct sequencing of the PTPN11 gene. We identified 10 different missense mutations in 13 (38% patients, including a novel missense mutation (855T > G, F285L. These mutations were clustered in exon 3 (n = 6 encoding the N-SH2 domain, exon 4 (n = 2 encoding the C-SH2 domain, and in exons 8 (n = 2 and 13 (n = 3 encoding the PTP domain. In conclusion, this study provides further support that PTPN11 mutations are responsible for Noonan syndrome in Taiwanese patients. [J Formos Med Assoc 2007;106(2:169-172

  2. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    Science.gov (United States)

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  3. Clinical profile and mutation analysis of xeroderma pigmentosum in Indian patients.

    Science.gov (United States)

    Tamhankar, Parag M; Iyer, Shruti V; Ravindran, Shyla; Gupta, Neerja; Kabra, Madhulika; Nayak, Chitra; Kura, Mahendra; Sanghavi, Swapnil; Joshi, Rajesh; Chennuri, Vasundhara Sridhar; Khopkar, Uday

    2015-01-01

    Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder characterized by cutaneous and ocular photosensitivity and an increased risk of developing cutaneous neoplasms. Progressive neurological abnormalities develop in a quarter of XP patients. To study the clinical profile and perform a mutation analysis in Indian patients with xeroderma pigmentosum. Ten families with 13 patients with XP were referred to our clinic over 2 years. The genes XPA, XPB and XPC were sequentially analyzed till a pathogenic mutation was identified. Homozygous mutations in the XPA gene were seen in patients with moderate to severe mental retardation (6/10 families) but not in those without neurological features. Two unrelated families with a common family name and belonging to the same community from Maharashtra were found to have an identical mutation in the XPA gene, namely c.335_338delTTATinsCATAAGAAA (p.F112SfsX2). Testing of the XPC gene in two families with four affected children led to the identification of the novel mutations c.1243C>T or p.R415X and c.1677C>A or p.Y559X. In two families, mutations could not be identified in XPA, XPB and XPC genes. The sample size is small. Indian patients who have neurological abnormalities associated with XP should be screened for mutations in the XPA gene.

  4. Mutation analysis with random DNA identifiers (MARDI) catalogs Pig-a mutations in heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats.

    Science.gov (United States)

    Revollo, Javier R; Crabtree, Nathaniel M; Pearce, Mason G; Pacheco-Martinez, M Monserrat; Dobrovolsky, Vasily N

    2016-03-01

    Identification of mutations induced by xenotoxins is a common task in the field of genetic toxicology. Mutations are often detected by clonally expanding potential mutant cells and genotyping each viable clone by Sanger sequencing. Such a "clone-by-clone" approach requires significant time and effort, and sometimes is even impossible to implement. Alternative techniques for efficient mutation identification would greatly benefit both basic and regulatory genetic toxicology research. Here, we report the development of Mutation Analysis with Random DNA Identifiers (MARDI), a novel high-fidelity Next Generation Sequencing (NGS) approach that circumvents clonal expansion and directly catalogs mutations in pools of mutant cells. MARDI uses oligonucleotides carrying Random DNA Identifiers (RDIs) to tag progenitor DNA molecules before PCR amplification, enabling clustering of descendant DNA molecules and eliminating NGS- and PCR-induced sequencing artifacts. When applied to the Pig-a cDNA analysis of heterogeneous pools of CD48-deficient T cells derived from DMBA-treated rats, MARDI detected nearly all Pig-a mutations that were previously identified by conventional clone-by-clone analysis and discovered many additional ones consistent with DMBA exposure: mostly A to T transversions, with the mutated A located on the non-transcribed DNA strand. © 2015 Wiley Periodicals, Inc.

  5. The impact of economic recession on the association between youth unemployment and functional somatic symptoms in adulthood: a difference-in-difference analysis from Sweden.

    Science.gov (United States)

    Brydsten, Anna; Hammarström, Anne; San Sebastian, Miguel

    2016-03-05

    The impact of macroeconomic conditions on health has been extensively explored, as well as the relationship between individual unemployment and health. There are, however, few studies taking both aspects into account and even fewer studies looking at the relationship in a life course perspective. In this study the aim was to assess the role of macroeconomic conditions, such as national unemployment level, for the long-term relationship between individual unemployment and functional somatic symptoms (FSS), by analysing data from two longitudinal cohorts representing different periods of unemployment level in Sweden. A difference-in-difference (DiD) analysis was applied, looking at the difference over time between recession and pre-recession periods for unemployed youths (age 21 to 25) on FSS in adulthood. FSS was constructed as an index of ten self-reported items of somatic ill-health. Covariates for socioeconomics, previous health status and social environment were included. An association was found in the difference of adult FSS between unemployed and employed youths in the pre-recession and recession periods, remaining in the adjusted model for the pre-recession period. The DiD analysis between unemployed youths showed that men had significantly lower adult FSS during the recession compared to men in the pre-recession time. Adulthood FSS showed to be significantly lower among unemployed youths, in particular among men, during recession compared to pre-recession times. Since this is a fairly unexplored research field, more research is needed to explore the role of macroeconomic conditions for various health outcomes, long-term implications and gender differences.

  6. The first USH2A mutation analysis of Japanese autosomal recessive retinitis pigmentosa patients: a totally different mutation profile with the lack of frequent mutations found in Caucasian patients.

    Science.gov (United States)

    Zhao, Yang; Hosono, Katsuhiro; Suto, Kimiko; Ishigami, Chie; Arai, Yuuki; Hikoya, Akiko; Hirami, Yasuhiko; Ohtsubo, Masafumi; Ueno, Shinji; Terasaki, Hiroko; Sato, Miho; Nakanishi, Hiroshi; Endo, Shiori; Mizuta, Kunihiro; Mineta, Hiroyuki; Kondo, Mineo; Takahashi, Masayo; Minoshima, Shinsei; Hotta, Yoshihiro

    2014-09-01

    Retinitis pigmentosa (RP) is a highly heterogeneous genetic disease. The USH2A gene, which accounts for approximately 74-90% of Usher syndrome type 2 (USH2) cases, is also one of the major autosomal recessive RP (arRP) causative genes among Caucasian populations. To identify disease-causing USH2A gene mutations in Japanese RP patients, all 73 exons were screened for mutations by direct sequencing. In total, 100 unrelated Japanese RP patients with no systemic manifestations were identified, excluding families with obvious autosomal dominant inheritance. Of these 100 patients, 82 were included in this present study after 18 RP patients with very likely pathogenic EYS (eyes shut homolog) mutations were excluded. The mutation analysis of the USH2A revealed five very likely pathogenic mutations in four patients. A patient had only one very likely pathogenic mutation and the others had two of them. Caucasian frequent mutations p.C759F in arRP and p.E767fs in USH2 were not found. All the four patients exhibited typical clinical features of RP. The observed prevalence of USH2A gene mutations was approximately 4% among Japanese arRP patients, and the profile of the USH2A gene mutations differed largely between Japanese patients and previously reported Caucasian populations.

  7. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  8. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders.

    Science.gov (United States)

    Damm, Frederik; Chesnais, Virginie; Nagata, Yasunobu; Yoshida, Kenichi; Scourzic, Laurianne; Okuno, Yusuke; Itzykson, Raphael; Sanada, Masashi; Shiraishi, Yuichi; Gelsi-Boyer, Véronique; Renneville, Aline; Miyano, Satoru; Mori, Hiraku; Shih, Lee-Yung; Park, Sophie; Dreyfus, François; Guerci-Bresler, Agnes; Solary, Eric; Rose, Christian; Cheze, Stéphane; Prébet, Thomas; Vey, Norbert; Legentil, Marion; Duffourd, Yannis; de Botton, Stéphane; Preudhomme, Claude; Birnbaum, Daniel; Bernard, Olivier A; Ogawa, Seishi; Fontenay, Michaela; Kosmider, Olivier

    2013-10-31

    Patients with low-risk myelodysplastic syndromes (MDS) that rapidly progress to acute myeloid leukemia (AML) remain a challenge in disease management. Using whole-exome sequencing of an MDS patient, we identified a somatic mutation in the BCOR gene also mutated in AML. Sequencing of BCOR and related BCORL1 genes in a cohort of 354 MDS patients identified 4.2% and 0.8% of mutations respectively. BCOR mutations were associated with RUNX1 (P = .002) and DNMT3A mutations (P = .015). BCOR is also mutated in chronic myelomonocytic leukemia patients (7.4%) and BCORL1 in AML patients with myelodysplasia-related changes (9.1%). Using deep sequencing, we show that BCOR mutations arise after mutations affecting genes involved in splicing machinery or epigenetic regulation. In univariate analysis, BCOR mutations were associated with poor prognosis in MDS (overall survival [OS]: P = .013; cumulative incidence of AML transformation: P = .005). Multivariate analysis including age, International Prognostic Scoring System, transfusion dependency, and mutational status confirmed a significant inferior OS to patients with a BCOR mutation (hazard ratio, 3.3; 95% confidence interval, 1.4-8.1; P = .008). These data suggest that BCOR mutations define the clinical course rather than disease initiation. Despite infrequent mutations, BCOR analyses should be considered in risk stratification.

  9. Identification of five novel FBN1 mutations by non-radioactive single-strand conformation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.; Qian, C.; Comeau, K.; Francke, U. [Stanford Univ. Medical Center, Stanford, CA (United States)

    1994-09-01

    Marfan syndrome (MFS), one of the most common genetic disorders of connective tissue, is characterized by variable manifestations in skeletal, cardiovascular and ocular systems. Mutations in the fibrillin gene on chromosome 15 (FBN1) have been shown to cause MFS. To examine the relationship between FBN1 gene mutations, fibrillin protein function and MFS phenotypes, we screened for alternations in the fibrillin coding sequence in fibroblast derived cDNA from MFS patients. To date, abnormally migrating bands in more than 20 unrelated MFS patients have been identified by using non-radioactive single-strand conformation analysis and silver staining. Five altered bands have been directly sequenced. Two missense mutations and three splice site mutations have been identified. Both missense mutations substitute another amino acid for a cysteine residue (C1402W and C1672R) in EGF-like motifs of the fibrillin polypeptide chain. The two splice site mutations are at nucleotide positions 6994+1 (G{yields}A), and 7205-2 (A{yields}G) and result in in-frame skipping of exon 56 and 58, respectively. Skipping of exon 56 occurs in 50% of mutant transcripts. Use of a cryptic splice site 51 bp upstream of the normal donor site results in half of the mutant transcripts containing part of exon 56. Both products contain in-frame deletions. Another splice site mutation, identified by exon screening from patient genomic DNA using intron primers, is at nucleotide position 2293+2 (T{yields}A), but the predicted exon skipping has not been detected at the RT-PCR level. This may be due to instability of the mutant transcript. Including the mutations reported here, a total of 8 out of 36 published FBN1 gene mutations involve exon skipping. It may be inferred that FBN1 exon skipping plays an important pathogenic role in MFS.

  10. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    Science.gov (United States)

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  11. Sequence analysis of tyrosinase gene in ocular and oculocutaneous albinism patients: introducing three novel mutations.

    Science.gov (United States)

    Khordadpoor-Deilamani, Faravareh; Akbari, Mohammad Taghi; Karimipoor, Morteza; Javadi, Gholamreza

    2015-01-01

    Albinism is a heterogeneous genetic disorder of melanin synthesis that results in hypopigmented eyes (in patients with ocular albinism) or hair, skin, and eyes (in individuals with oculocutaneous albinism). It is associated with decreased visual acuity, nystagmus, strabismus, and photophobia. The tyrosinase gene is known to be involved in both oculocutaneous albinism and autosomal recessive ocular albinism. In this study, we aimed to screen the mutations in the TYR gene in the nonsyndromic OCA and autosomal recessive ocular albinism patients from Iran. The tyrosinase gene was examined in 23 unrelated patients with autosomal recessive ocular albinism or nonsyndromic OCA using DNA sequencing and bioinformatics analysis. TYR gene mutations were identified in 14 (app. 60%) albinism patients. We found 10 mutations, 3 of which were novel. No mutation was found in our ocular albinism patients, but one of them was heterozygous for the p.R402Q polymorphism.

  12. Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy

    DEFF Research Database (Denmark)

    Christensen, A H; Andersen, C B; Tybjærg-Hansen, A

    2011-01-01

    Christensen AH, Andersen CB, Tybjærg-Hansen A, Haunso S, Svendsen JH. Mutation analysis and evaluation of the cardiac localization of TMEM43 in arrhythmogenic right ventricular cardiomyopathy. A single report has associated mutations in TMEM43 (LUMA) with a distinctive form of arrhythmogenic right...... with anti-TMEM43, anti-plakoglobin, anti-plakophilin-2, anti-connexin-43, and anti-emerin antibodies was performed on myocardium from TMEM43-positive patients (n = 3) and healthy controls (n = 3). The genetic screening identified heterozygous variants in two families: one reported mutation (c.1073C> T......; in two related patients) and one novel variant (c.705+ 7G> A; in one patient) of unknown significance. All three patients fulfilled Task Force criteria and did not carry mutations in any other ARVC-related gene. Immunostaining with TMEM43 antibody showed intense staining of the sarcolemma. The signal...

  13. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    Science.gov (United States)

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  14. NMD Microarray Analysis for Rapid Genome-Wide Screen of Mutated Genes in Cancer

    Directory of Open Access Journals (Sweden)

    Maija Wolf

    2005-01-01

    Full Text Available Gene mutations play a critical role in cancer development and progression, and their identification offers possibilities for accurate diagnostics and therapeutic targeting. Finding genes undergoing mutations is challenging and slow, even in the post-genomic era. A new approach was recently developed by Noensie and Dietz to prioritize and focus the search, making use of nonsense-mediated mRNA decay (NMD inhibition and microarray analysis (NMD microarrays in the identification of transcripts containing nonsense mutations. We combined NMD microarrays with array-based CGH (comparative genomic hybridization in order to identify inactivation of tumor suppressor genes in cancer. Such a “mutatomics” screening of prostate cancer cell lines led to the identification of inactivating mutations in the EPHB2 gene. Up to 8% of metastatic uncultured prostate cancers also showed mutations of this gene whose loss of function may confer loss of tissue architecture. NMD microarray analysis could turn out to be a powerful research method to identify novel mutated genes in cancer cell lines, providing targets that could then be further investigated for their clinical relevance and therapeutic potential.

  15. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by appl...... of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8.......Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of h......CG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls...

  16. VLCAD deficiency: Pitfalls in newborn screening and confirmation of diagnosis by mutation analysis

    DEFF Research Database (Denmark)

    Boneh, A; Andresen, Brage Storstein; Gregersen, Niels

    2006-01-01

    samples taken at age 48-72 h were diagnostic whereas repeat samples at an older age were normal in 4/6 babies. Urine analysis was normal in 5/5. We conclude that the timing of blood sampling for newborn screening is important and that it is important to perform mutation analysis to avoid false......-negative diagnoses of VLCADD in asymptomatic newborn babies. In view of the emerging genotype-phenotype correlation in this disorder, the information derived from mutational analysis can be helpful in designing the appropriate follow-up and therapeutic regime for these patients....

  17. Recurrent Somatic Structural Variations Contribute to Tumorigenesis in Pediatric Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Xiang Chen

    2014-04-01

    Full Text Available Pediatric osteosarcoma is characterized by multiple somatic chromosomal lesions, including structural variations (SVs and copy number alterations (CNAs. To define the landscape of somatic mutations in pediatric osteosarcoma, we performed whole-genome sequencing of DNA from 20 osteosarcoma tumor samples and matched normal tissue in a discovery cohort, as well as 14 samples in a validation cohort. Single-nucleotide variations (SNVs exhibited a pattern of localized hypermutation called kataegis in 50% of the tumors. We identified p53 pathway lesions in all tumors in the discovery cohort, nine of which were translocations in the first intron of the TP53 gene. Beyond TP53, the RB1, ATRX, and DLG2 genes showed recurrent somatic alterations in 29%–53% of the tumors. These data highlight the power of whole-genome sequencing for identifying recurrent somatic alterations in cancer genomes that may be missed using other methods.

  18. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Cossu-Rocca

    Full Text Available Triple Negative Breast Cancer (TNBC accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data.PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components.PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC.Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  19. Analysis of PIK3CA Mutations and Activation Pathways in Triple Negative Breast Cancer.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Orrù, Sandra; Muroni, Maria Rosaria; Sanges, Francesca; Sotgiu, Giovanni; Ena, Sara; Pira, Giovanna; Murgia, Luciano; Manca, Alessandra; Uras, Maria Gabriela; Sarobba, Maria Giuseppina; Urru, Silvana; De Miglio, Maria Rosaria

    2015-01-01

    Triple Negative Breast Cancer (TNBC) accounts for 12-24% of all breast carcinomas, and shows worse prognosis compared to other breast cancer subtypes. Molecular studies demonstrated that TNBCs are a heterogeneous group of tumors with different clinical and pathologic features, prognosis, genetic-molecular alterations and treatment responsivity. The PI3K/AKT is a major pathway involved in the regulation of cell survival and proliferation, and is the most frequently altered pathway in breast cancer, apparently with different biologic impact on specific cancer subtypes. The most common genetic abnormality is represented by PIK3CA gene activating mutations, with an overall frequency of 20-40%. The aims of our study were to investigate PIK3CA gene mutations on a large series of TNBC, to perform a wider analysis on genetic alterations involving PI3K/AKT and BRAF/RAS/MAPK pathways and to correlate the results with clinical-pathologic data. PIK3CA mutation analysis was performed by using cobas® PIK3CA Mutation Test. EGFR, AKT1, BRAF, and KRAS genes were analyzed by sequencing. Immunohistochemistry was carried out to identify PTEN loss and to investigate for PI3K/AKT pathways components. PIK3CA mutations were detected in 23.7% of TNBC, whereas no mutations were identified in EGFR, AKT1, BRAF, and KRAS genes. Moreover, we observed PTEN loss in 11.3% of tumors. Deregulation of PI3K/AKT pathways was revealed by consistent activation of pAKT and p-p44/42 MAPK in all PIK3CA mutated TNBC. Our data shows that PIK3CA mutations and PI3K/AKT pathway activation are common events in TNBC. A deeper investigation on specific TNBC genomic abnormalities might be helpful in order to select patients who would benefit from current targeted therapy strategies.

  20. Mutation analysis of inhibitory guanine nucleotide binding protein alpha (GNAI) loci in young and familial pituitary adenomas.

    Science.gov (United States)

    Demir, Hande; Donner, Iikki; Kivipelto, Leena; Kuismin, Outi; Schalin-Jäntti, Camilla; De Menis, Ernesto; Karhu, Auli

    2014-01-01

    Pituitary adenomas are neoplasms of the anterior pituitary lobe and account for 15-20% of all intracranial tumors. Although most pituitary tumors are benign they can cause severe symptoms related to tumor size as well as hypopituitarism and/or hypersecretion of one or more pituitary hormones. Most pituitary adenomas are sporadic, but it has been estimated that 5% of patients have a familial background. Germline mutations of the tumor suppressor gene aryl hydrocarbon receptor-interacting protein (AIP) predispose to hereditary pituitary neoplasia. Recently, it has been demonstrated that AIP mutations predispose to pituitary tumorigenesis through defective inhibitory GTP binding protein (Gαi) signaling. This finding prompted us to examine whether germline loss-of-function mutations in inhibitory guanine nucleotide (GTP) binding protein alpha (GNAI) loci are involved in genetic predisposition of pituitary tumors. To our knowledge, this is the first time GNAI genes are sequenced in order to examine the occurrence of inactivating germline mutations. Thus far, only somatic gain-of-function hot-spot mutations have been studied in these loci. Here, we have analyzed the coding regions of GNAI1, GNAI2, and GNAI3 in a set of young sporadic somatotropinoma patients (n = 32; mean age of diagnosis 32 years) and familial index cases (n = 14), thus in patients with a disease phenotype similar to that observed in AIP mutation carriers. In addition, expression of Gαi proteins was studied in human growth hormone (GH), prolactin (PRL), adrenocorticotropic hormone (ACTH)-secreting and non-functional pituitary tumors. No pathogenic germline mutations affecting the Gαi proteins were detected. The result suggests that loss-of-function mutations of GNAI loci are rare or nonexistent in familial pituitary adenomas.

  1. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines

    DEFF Research Database (Denmark)

    Liu, Ying; Bodmer, Walter F

    2006-01-01

    A comprehensive analysis of the TP53 gene and its protein status was carried out on a panel of 56 colorectal cancer cell lines. This analysis was based on a combination of denaturing HPLC mutation screening of all exons of the p53 gene, sequencing the cDNA, and assessing the function of the p53 p...

  2. Genetic and somatic effects in animals maintained on tritiated water

    International Nuclear Information System (INIS)

    Carsten, A.L.; Brooks, A.; Commerford, S.L.; Cronkite, E.P.

    1981-01-01

    The possible genetic (dominant lethal mutations (DLM) and cytogenetic changes in the regenerating liver) and somatic (hematopoietic stem cell changes, growth and nonspecific life time shortening) effects in mice maintained on tritiated water (HTO) over two generations was investigated. Results to date are summarized

  3. The functional importance of disease-associated mutation

    Directory of Open Access Journals (Sweden)

    Klein Teri E

    2002-09-01

    Full Text Available Abstract Background For many years, scientists believed that point mutations in genes are the genetic switches for somatic and inherited diseases such as cystic fibrosis, phenylketonuria and cancer. Some of these mutations likely alter a protein's function in a manner that is deleterious, and they should occur in functionally important regions of the protein products of genes. Here we show that disease-associated mutations occur in regions of genes that are conserved, and can identify likely disease-causing mutations. Results To show this, we have determined conservation patterns for 6185 non-synonymous and heritable disease-associated mutations in 231 genes. We define a parameter, the conservation ratio, as the ratio of average negative entropy of analyzable positions with reported mutations to that of every analyzable position in the gene sequence. We found that 84.0% of the 231 genes have conservation ratios less than one. 139 genes had eleven or more analyzable mutations and 88.0% of those had conservation ratios less than one. Conclusions These results indicate that phylogenetic information is a powerful tool for the study of disease-associated mutations. Our alignments and analysis has been made available as part of the database at http://cancer.stanford.edu/mut-paper/. Within this dataset, each position is annotated with the analysis, so the most likely disease-causing mutations can be identified.

  4. Haploid rice plants in mutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S [Institute of Radiation Breeding, Ministry of Agriculture and Forestry, Ohmiya, Ibaraki-ken (Japan)

    1970-03-01

    Studies were made on chlorophyll-deficient sectors and diploid-like sectors in haploid rice plants exposed to chronic gamma irradiation, and on germinal mutations in diploid strains derived from the haploid plants. The induction and elimination of somatic mutations in haploid plants and the occurrence of drastic germinal mutations in diploid strains from haploid plants are discussed. (author)

  5. Determination of abscisic acid and its glucosyl ester in embryogenic callus cultures of Vitis vinifera in relation to the maturation of somatic embryos using a new liquid chromatography-ELISA analysis method.

    Science.gov (United States)

    Prado, María Jesús; Largo, Asier; Domínguez, Cristina; González, María Victoria; Rey, Manuel; Centeno, María Luz

    2014-06-15

    The levels of abscisic acid (ABA), its conjugate ABA-GE, and IAA were determined in embryogenic calli of Vitis vinifera L. (cv. Mencía) cultured in DM1 differentiation medium, to relate them to the maturation process of somatic embryos. To achieve this goal, we developed an analytical method that included two steps of solid-phase extraction, chromatographic separation by HPLC, ABA-GE hydrolysis, and sensitive ELISA quantification. Because the ABA immunoassay was based on new polyclonal antibodies raised against a C4'-ABA conjugate, the assay was characterized (detection limit, midrange, measure range, and cross-reaction) and validated by a comparison of the ABA data obtained with this ELISA procedure and with a physicochemical method (LC-ESI-MS/MS). Radioactive-labeled internal standards were initially added to callus extracts to correct the losses of plant hormones, and thus assure the accuracy of the measurements. The endogenous concentration of ABA in the embryogenic callus cultured in DM1 medium was doubled at the fifth week of culture, concurring with the maturation process of somatic embryos, as indicated by the accumulation of carbohydrates observed through histological analysis. The ABA-GE content was higher than ABA, decreasing at 21 days of culture in DM1 medium but increasing thereafter. The data suggest the involvement of the synthesis and conjugation of ABA in the final stages of development in grapevine somatic embryos from embryogenic callus. IAA levels were low, suggesting that auxin plays no significant role during the maturation of somatic embryos. In addition, the lower ABA levels in calli cultured in DM differentiation medium with PGRs, a medium presenting high precocious germination and deficiencies in somatic embryo development indicate that an increase in ABA content during the development of somatic embryos in grapevine is necessary for their correct maturation. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Analysis of mutations in the entire coding sequence of the factor VIII gene

    Energy Technology Data Exchange (ETDEWEB)

    Bidichadani, S.I.; Lanyon, W.G.; Connor, J.M. [Glascow Univ. (United Kingdom)] [and others

    1994-09-01

    Hemophilia A is a common X-linked recessive disorder of bleeding caused by deleterious mutations in the gene for clotting factor VIII. The large size of the factor VIII gene, the high frequency of de novo mutations and its tissue-specific expression complicate the detection of mutations. We have used a combination of RT-PCR of ectopic factor VIII transcripts and genomic DNA-PCRs to amplify the entire essential sequence of the factor VIII gene. This is followed by chemical mismatch cleavage analysis and direct sequencing in order to facilitate a comprehensive search for mutations. We describe the characterization of nine potentially pathogenic mutations, six of which are novel. In each case, a correlation of the genotype with the observed phenotype is presented. In order to evaluate the pathogenicity of the five missense mutations detected, we have analyzed them for evolutionary sequence conservation and for their involvement of sequence motifs catalogued in the PROSITE database of protein sites and patterns.

  7. Clinical analysis of PMS2: mutation detection and avoidance of pseudogenes.

    Science.gov (United States)

    Vaughn, Cecily P; Robles, Jorge; Swensen, Jeffrey J; Miller, Christine E; Lyon, Elaine; Mao, Rong; Bayrak-Toydemir, Pinar; Samowitz, Wade S

    2010-05-01

    Germline mutation detection in PMS2, one of four mismatch repair genes associated with Lynch syndrome, is greatly complicated by the presence of numerous pseudogenes. We used a modification of a long-range PCR method to evaluate PMS2 in 145 clinical samples. This modification avoids potential interference from the pseudogene PMS2CL by utilizing a long-range product spanning exons 11-15, with the forward primer anchored in exon 10, an exon not shared by PMS2CL. Large deletions were identified by MLPA. Pathogenic PMS2 mutations were identified in 22 of 59 patients whose tumors showed isolated loss of PMS2 by immunohistochemistry (IHC), the IHC profile most commonly associated with a germline PMS2 mutation. Three additional patients with pathogenic mutations were identified from 53 samples without IHC data. Thirty-seven percent of the identified mutations were large deletions encompassing one or more exons. In 27 patients whose tumors showed absence of either another protein or combination of proteins, no pathogenic mutations were identified. We conclude that modified long-range PCR can be used to preferentially amplify the PMS2 gene and avoid pseudogene interference, thus providing a clinically useful germline analysis of PMS2. Our data also support the use of IHC screening to direct germline testing of PMS2. (c) 2010 Wiley-Liss, Inc.

  8. Mutation analysis of GJB2 gene and prenatal diagnosis in a non-syndromic deafness family

    Directory of Open Access Journals (Sweden)

    Xiao-hua CHEN

    2014-08-01

    Full Text Available Objective To identify the pathogenic gene in a non-syndromic deafness family, provide an accurate genetic consultation and early intervention for deaf family to reduce the incidence of congenital deafness. Methods Mutation analysis was carried out by polymerase chain reaction followed by DNA sequencing of coding region of GJB2 gene. The fetal DNA was extracted from the amniotic fluid cells by amniocentesis at 20 weeks during pregnancy. The genotype of the fetus was characterized for predicting the status of hearing. Results Complex heterozygous mutations 235delC and 176-191del16bp were detected in the proband of the family, heterozygous mutation 176-191del16bp was detected in the father, and 235delC was detected in the mother. Fetus carried 235delC heterozygous mutation inherited from his mother. Conclusions The proband's hearing loss is resulted from the complex heterozygous mutations 235delC and 176-191del16bp in GJB2 gene. Fetus is a heterozygous mutation 235delC carrier. Prenatal diagnosis for deafness assisted by genetic test can provide efficient guidance about offspring's hearing condition, and prevent another deaf-mute member from birth. DOI: 10.11855/j.issn.0577-7402.2014.07.09

  9. Multiplex fluorescence melting curve analysis for mutation detection with dual-labeled, self-quenched probes.

    Directory of Open Access Journals (Sweden)

    Qiuying Huang

    2011-04-01

    Full Text Available Probe-based fluorescence melting curve analysis (FMCA is a powerful tool for mutation detection based on melting temperature generated by thermal denaturation of the probe-target hybrid. Nevertheless, the color multiplexing, probe design, and cross-platform compatibility remain to be limited by using existing probe chemistries. We hereby explored two dual-labeled, self-quenched probes, TaqMan and shared-stem molecular beacons, in their ability to conduct FMCA. Both probes could be directly used for FMCA and readily integrated with closed-tube amplicon hybridization under asymmetric PCR conditions. Improved flexibility of FMCA by using these probes was illustrated in three representative applications of FMCA: mutation scanning, mutation identification and mutation genotyping, all of which achieved improved color-multiplexing with easy probe design and versatile probe combination and all were validated with a large number of real clinical samples. The universal cross-platform compatibility of these probes-based FMCA was also demonstrated by a 4-color mutation genotyping assay performed on five different real-time PCR instruments. The dual-labeled, self-quenched probes offered unprecedented combined advantage of enhanced multiplexing, improved flexibility in probe design, and expanded cross-platform compatibility, which would substantially improve FMCA in mutation detection of various applications.

  10. Preimplantation genetic diagnosis for mitochondrial DNA mutations: analysis of one blastomere suffices.

    Science.gov (United States)

    Sallevelt, Suzanne C E H; Dreesen, Joseph C F M; Coonen, Edith; Paulussen, Aimee D C; Hellebrekers, Debby M E I; de Die-Smulders, Christine E M; Smeets, Hubert J M; Lindsey, Patrick

    2017-10-01

    Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Survival analysis of cancer risk reduction strategies for BRCA1/2 mutation carriers.

    Science.gov (United States)

    Kurian, Allison W; Sigal, Bronislava M; Plevritis, Sylvia K

    2010-01-10

    Women with BRCA1/2 mutations inherit high risks of breast and ovarian cancer; options to reduce cancer mortality include prophylactic surgery or breast screening, but their efficacy has never been empirically compared. We used decision analysis to simulate risk-reducing strategies in BRCA1/2 mutation carriers and to compare resulting survival probability and causes of death. We developed a Monte Carlo model of breast screening with annual mammography plus magnetic resonance imaging (MRI) from ages 25 to 69 years, prophylactic mastectomy (PM) at various ages, and/or prophylactic oophorectomy (PO) at ages 40 or 50 years in 25-year-old BRCA1/2 mutation carriers. With no intervention, survival probability by age 70 is 53% for BRCA1 and 71% for BRCA2 mutation carriers. The most effective single intervention for BRCA1 mutation carriers is PO at age 40, yielding a 15% absolute survival gain; for BRCA2 mutation carriers, the most effective single intervention is PM, yielding a 7% survival gain if performed at age 40 years. The combination of PM and PO at age 40 improves survival more than any single intervention, yielding 24% survival gain for BRCA1 and 11% for BRCA2 mutation carriers. PM at age 25 instead of age 40 offers minimal incremental benefit (1% to 2%); substituting screening for PM yields a similarly minimal decrement in survival (2% to 3%). Although PM at age 25 plus PO at age 40 years maximizes survival probability, substituting mammography plus MRI screening for PM seems to offer comparable survival. These results may guide women with BRCA1/2 mutations in their choices between prophylactic surgery and breast screening.

  12. Limited diagnostic value of enzyme analysis in patients with mitochondrial tRNA mutations

    DEFF Research Database (Denmark)

    Wibrand, Flemming; Jeppesen, Tina Dysgaard; Frederiksen, Anja L

    2010-01-01

    We evaluated the diagnostic value of respiratory chain (RC) enzyme analysis of muscle in adult patients with mitochondrial myopathy (MM). RC enzyme activity was measured in muscle biopsies from 39 patients who carry either the 3243A>G mutation, other tRNA point mutations, or single, large......, respectively, in these three groups. The results indicate that RC enzyme analysis in muscle is not a sensitive test for MM in adults. In these patients, abnormal muscle histochemistry appears to be a better predictor ofMM....

  13. Diagnostic and therapeutic implications of genetic heterogeneity in myeloid neoplasms uncovered by comprehensive mutational analysis

    Directory of Open Access Journals (Sweden)

    Sarah M. Choi

    2017-01-01

    Full Text Available While growing use of comprehensive mutational analysis has led to the discovery of innumerable genetic alterations associated with various myeloid neoplasms, the under-recognized phenomenon of genetic heterogeneity within such neoplasms creates a potential for diagnostic confusion. Here, we describe two cases where expanded mutational testing led to amendment of an initial diagnosis of chronic myelogenous leukemia with subsequent altered treatment of each patient. We demonstrate the power of comprehensive testing in ensuring appropriate classification of genetically heterogeneous neoplasms, and emphasize thoughtful analysis of molecular and genetic data as an essential component of diagnosis and management.

  14. Structural analysis of thermostabilizing mutations of cocaine esterase

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Diwahar; Nance, Mark R.; Gao, Daquan; Ko, Mei-Chuan; Macdonald, Joanne; Tamburi, Patricia; Yoon, Dan; Landry, Donald M.; Woods, James H.; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K. (Michigan); (Columbia); (Kentucky)

    2010-09-03

    Cocaine is considered to be the most addictive of all substances of abuse and mediates its effects by inhibiting monoamine transporters, primarily the dopamine transporters. There are currently no small molecules that can be used to combat its toxic and addictive properties, in part because of the difficulty of developing compounds that inhibit cocaine binding without having intrinsic effects on dopamine transport. Most of the effective cocaine inhibitors also display addictive properties. We have recently reported the use of cocaine esterase (CocE) to accelerate the removal of systemic cocaine and to prevent cocaine-induced lethality. However, wild-type CocE is relatively unstable at physiological temperatures ({tau}{sub 1/2} {approx} 13 min at 37 C), presenting challenges for its development as a viable therapeutic agent. We applied computational approaches to predict mutations to stabilize CocE and showed that several of these have increased stability both in vitro and in vivo, with the most efficacious mutant (T172R/G173Q) extending half-life up to 370 min. Here we present novel X-ray crystallographic data on these mutants that provide a plausible model for the observed enhanced stability. We also more extensively characterize the previously reported variants and report on a new stabilizing mutant, L169K. The improved stability of these engineered CocE enzymes will have a profound influence on the use of this protein to combat cocaine-induced toxicity and addiction in humans.

  15. Somatic and genetic effects

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on somatic and genetic effects of the 7th international congress of radiation research. They cover the following main topics: haematopoietic and immune systems, mechanisms of late effects in various tissues, endogenous and exogenous factors in radiation carcinogenesis, teratogenic effects, genetic effects, in vitro transformation, tumour induction in different tissues, carcinogenesis in incorporated tissues, cancer epidemology and risk assessment. refs.; figs.; tabs

  16. Prevalence and clinical significance of mediator complex subunit 12 mutations in 362 Han Chinese samples with uterine leiomyoma.

    Science.gov (United States)

    Wu, Juan; Zou, Yang; Luo, Yong; Guo, Jiu-Bai; Liu, Fa-Ying; Zhou, Jiang-Yan; Zhang, Zi-Yu; Wan, Lei; Huang, Ou-Ping

    2017-07-01

    Uterine leiomyomas (ULs) are the most common gynecological benign tumors originating from the myometrium. Prevalent mutations in the mediator complex subunit 12 (MED12) gene have been identified in ULs, and functional evidence has revealed that these mutations may promote the development of ULs. However, whether MED12 mutations are associated with certain clinical characteristics in ULs remains largely unknown. In the present study, the potential mutations of MED12 and its paralogous gene, mediator complex subunit 12-like (MED12L), were screened in 362 UL tumors from Han Chinese patients. A total of 158 out of 362 UL tumors (43.6%) were identified as harboring MED12 somatic mutations, and the majority of these mutations were restricted to the 44th residue. MED12 mutations were also observed in 2 out of 145 (1.4%) adjacent control myometrium. Furthermore, the mutation spectrum of MED12 in the concurrent leiomyomas was noticeably different. Correlation analysis of MED12 mutations with the available clinical features indicated that patients with mutated MED12 tended to have smaller cervical diameters. By contrast, no MED12L mutation was identified in the present samples. In summary, the present study demonstrated the presence of prevalent MED12 somatic mutations in UL samples, and the MED12 mutation was associated with smaller cervical diameters. The low mutation frequency of MED12 in adjacent control myometrium indicated that MED12 mutation may be an early event in the pathogenesis of ULs. Furthermore, MED12 mutation status in concurrent tumors from multiple leiomyomas supported several prior observations that the majority of these tumors arose independently.

  17. Proteomic analysis of stipe explants reveals differentially expressed proteins involved in early direct somatic embryogenesis of the tree fern Cyathea delgadii Sternb.

    Science.gov (United States)

    Domżalska, Lucyna; Kędracka-Krok, Sylwia; Jankowska, Urszula; Grzyb, Małgorzata; Sobczak, Mirosław; Rybczyński, Jan J; Mikuła, Anna

    2017-05-01

    Using cyto-morphological analysis of somatic embryogenesis (SE) in the tree fern Cyathea delgadii as a guide, we performed a comparative proteomic analysis in stipe explants undergoing direct SE. Plant material was cultured on hormone-free medium supplemented with 2% sucrose. Phenol extracted proteins were separated using two-dimensional gel electrophoresis (2-DE) and mass spectrometry was performed for protein identification. A total number of 114 differentially regulated proteins was identified during early SE, i.e. when the first cell divisions started and several-cell pro-embryos were formed. Proteins were assigned to seven functional categories: carbohydrate metabolism, protein metabolism, cell organization, defense and stress responses, amino acid metabolism, purine metabolism, and fatty acid metabolism. Carbohydrate and protein metabolism were found to be the most sensitive SE functions with the greatest number of alterations in the intensity of spots in gel. Differences, especially in non-enzymatic and structural protein abundance, are indicative for cell organization, including cytoskeleton rearrangement and changes in cell wall components. The highest induced changes concern those enzymes related to fatty acid metabolism. Global analysis of the proteome reveals several proteins that can represent markers for the first 16days of SE induction and expression in fern. The findings of this research improve the understanding of molecular processes involved in direct SE in C. delgadii. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Use of Light Microscopy for Detection of Somatic Embryos

    African Journals Online (AJOL)

    usuario

    2014-02-05

    Feb 5, 2014 ... 2,4-D. After four weeks of culture of explants on the callus induction medium, globular structures were obtained. At the end of 20 days in maturation medium, somatic embryos were observed. Histological analysis showed somatic embryos with caulinar and root apex, protodermal tissue, and the vascular ...

  19. Re-analysis of radiation-induced specific locus mutations in the mouse

    International Nuclear Information System (INIS)

    Abrahamson, S.; Wolff, S.

    1976-01-01

    It is stated that a re-analysis of published data on mouse mutation rates induced by x-and gamma rays suggests that the kinetics of induction can be analysed by fitting that data to a parabolic curve. This is interpreted to mean that a substantial proportion of the induced mutations results from gross chromosomal changes such as deletions, some of which are one-track and some of which are two-track. This analysis is based on the assumption that the shape of the dose curve, which in the female is concave upward, reflects the manner in which the mutations are induced rather than representing a one-track (linear) curve whose shape has been modified by differential repair. (author)

  20. Amino-Acid Network Clique Analysis of Protein Mutation Non-Additive Effects: A Case Study of Lysozme

    Directory of Open Access Journals (Sweden)

    Dengming Ming

    2018-05-01

    Full Text Available Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k-cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.

  1. KIT D816V mutation-positive cell fractions in lesional skin biopsies from adults with systemic mastocytosis

    DEFF Research Database (Denmark)

    Kielsgaard Kristensen, Thomas; Broesby-Olsen, Sigurd; Vestergaard, Hanne

    2013-01-01

    Most adults with systemic mastocytosis (SM) carry the somatic KIT D816V mutation, but the occurrence of the mutation in lesional skin remains to be characterized.......Most adults with systemic mastocytosis (SM) carry the somatic KIT D816V mutation, but the occurrence of the mutation in lesional skin remains to be characterized....

  2. Timing of the uv mutagenesis in yeast: a pedigree analysis of induced recessive mutation

    International Nuclear Information System (INIS)

    James, A.P.; Kilbey, B.J.

    1977-01-01

    The mechanism of uv-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61% at survival levels of 90 and 77%, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective

  3. The timing of UV mutagenesis in yeast: a pedigree analysis of induced recessive mutation.

    Science.gov (United States)

    James, A P; Kilbey, B J

    1977-10-01

    The mechanism of UV-induced mutation in eukaryotes was studied in individual yeast cells by a procedure that combined pedigree analysis and tetrad analysis. The technique involved the induction of recessive lethals and semilethals in G1 diploid cells. Induced frequencies were 25 and 61 percent at survival levels of 90 and 77 percent, respectively. No evidence of gross chromosome aberrations was detected. Recessive mutations that affect only one strand or that affect both strands of the DNA molecule are induced much at random among a population of cells, and both types can occur within the same cell. However, the data confirm that two-strand mutations are in the majority after a low level of irradiation. The simplest explanation involves a mechanism whereby most mutations are fixed in both strands prior to the first round of post-irradiation DNA replication. The recessive mutational consequences of irradiation are exhausted at the conclusion of the first post-irradiation cell division, although dominant-lethal sectoring continues at a high level through the second post-irradiation division. It is concluded that pyrimidine dimers that persist to the second round of DNA replication are rare or ineffective.

  4. Analysis of gene mutations in children with cholestasis of undefined etiology.

    Science.gov (United States)

    Matte, Ursula; Mourya, Reena; Miethke, Alexander; Liu, Cong; Kauffmann, Gregory; Moyer, Katie; Zhang, Kejian; Bezerra, Jorge A

    2010-10-01

    The discovery of genetic mutations in children with inherited syndromes of intrahepatic cholestasis allows for diagnostic specificity despite similar clinical phenotypes. Here, we aimed to determine whether mutation screening of target genes could assign a molecular diagnosis in children with idiopathic cholestasis. DNA samples were obtained from 51 subjects with cholestasis of undefined etiology and surveyed for mutations in the genes SERPINA1, JAG1, ATP8B1, ABCB11, and ABCB4 by a high-throughput gene chip. Then, the sequence readouts for all 5 genes were analyzed for mutations and correlated with clinical phenotypes. Healthy subjects served as controls. Sequence analysis of the genes identified 14 (or 27%) subjects with missense, nonsense, deletion, and splice site variants associated with disease phenotypes based on the type of mutation and/or biallelic involvement in the JAG1, ATP8B1, ABCB11, or ABCB4 genes. These patients had no syndromic features and could not be differentiated by biochemical markers or histopathology. Among the remaining subjects, 10 (or ∼20%) had sequence variants in ATP8B1 or ABCB11 that involved only 1 allele, 8 had variants not likely to be associated with disease phenotypes, and 19 had no variants that changed amino acid composition. Gene sequence analysis assigned a molecular diagnosis in 27% of subjects with idiopathic cholestasis based on the presence of variants likely to cause disease phenotypes.

  5. RFLP analysis of rice semi-dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Zhuang Chuxiong; Hu Weimin; Mei Mantong

    1997-01-01

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi-dwarf mutants induced by high energy argon ion radiation, Ar-10, and Xiang-Ar-1, were examined with restriction fragment length polymorphism (RFLP) analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes. Among the markers screened, 9 detected polymorphism were between Bianpizhen and Ar-10, and 11 detected polymorphism were between Xiangzhan and Xiang-Ar-1. Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5.15% and 6.39% for Ar-10 and Xiang-Ar-1 respectively. These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation. Genetic analysis and gene tagging of semi-dwarf mutation in one of the mutant line, Ar-10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4

  6. RFLP Analysis of rice semi dwarf mutation induced by high energy argon ion radiation

    International Nuclear Information System (INIS)

    Zhuang Chuxiong; Hu Weimin; Mei Mantong

    1997-01-01

    Two Indica rice varieties, Bianpizhan and Xiangzhan, and their semi dwarf mutants induced by high energy argon ion radiation, Ar 10, and Xiang Ar 1, were examined with restriction fragment length polymorphism(RFLP)analysis by using 97 rice single copy genomic clones mapped on 12 chromosomes of molecular genetic map, combined with 5 restriction enzymes.Among the markers screened, 9 detected polymorphism were between Bianpizhan and Ar 10, and 11 detected polymorphism were between Xiangzhan and Xiang Ar 1.Moreover, two or more restriction enzymes could generate RFLP patterns when screened with a given marker for several polymorphic markers. Based on the polymorphic allelic loci, the mutation frequencies were estimated as 5 15% and 6 39% for Ar 10 and Xiang Ar 1 respectively.These results suggested that the nature of mutation on the DNA level was probably large genetic changes rather than point mutation.Genetic analysis and gene tagging of semi dwarf mutation in one of the mutant line, Ar 10, indicated that this mutation was controlled by a major recessive gene, which was preliminary located on chromosome 4. (author)

  7. Analysis of the BRAFV600E mutation in 19 cases of Langerhans cell histiocytosis in Japan.

    Science.gov (United States)

    Sasaki, Yuya; Guo, Ying; Arakawa, Fumiko; Miyoshi, Hiroaki; Yoshida, Noriaki; Koga, Yuhki; Nakashima, Kazutaka; Kurita, Daisuke; Niino, Daisuke; Seto, Masao; Ohshima, Koichi

    2017-09-01

    Langerhans cell histiocytosis (LCH) is a rare disease characterized by clonal proliferation of CD1a- and CD207 (langerin)-positive dendritic cells. Mutated BRAF (p.V600E) is observed in histiocyte-related diseases and dendritic cell-related diseases, including LCH. BRAFV600E is observed in some LCH cases and is thought to be involved in maintaining MAPK activation. We retrospectively analyzed BRAFV600E in 19 patients diagnosed with LCH. In our study, direct sequencing for exon 15, a mutation hotspot, demonstrated that 4 out of the 19 patients (21%) harbored a GTG > GAG (valine > glutamic acid) base substitution, which encodes BRAFV600E. The clinical impact of BRAFV600E in such diseases is unclear. The frequency of BRAFV600E in our LCH patients from Japan was lower than that reported in the United States and in Germany. However, reports from Asia tend to show a lower rate of the BRAFV600E mutation. These results imply the possibility of different genetic backgrounds in the pathogenesis of LCH across various ethnicities. We also performed an immunohistochemical analysis to detect BRAFV600E using the mutation-specific monoclonal antibody. However, immunohistochemical analysis failed to detect any mutated protein in any of the 4 BRAFV600E-positive cases. This implies that at present, BRAFV600E should be assessed by direct sequencing. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Mutation analysis of the WFS1 gene in seven Danish Wolfram syndrome families; four new mutations identified

    DEFF Research Database (Denmark)

    Hansen, Lars; Eiberg, Hans Rudolf Lytchoff; Barrett, Timothy

    2005-01-01

    loss (LFSNHL). WFS1 variants were identified in eight subjects from seven families with WS, leading to the identification of four novel mutations, Q194X (nonsense), H313Y (missense), L313fsX360 (duplication frame shift) and F883fsX951 (deletion frame shift), and four previously reported mutations, A133...

  9. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    Science.gov (United States)

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  10. Mutation analysis for DJ-1 in sporadic and familial parkinsonism: screening strategy in parkinsonism.

    Science.gov (United States)

    Tomiyama, Hiroyuki; Li, Yuanzhe; Yoshino, Hiroyo; Mizuno, Yoshikuni; Kubo, Shin-Ichiro; Toda, Tatsushi; Hattori, Nobutaka

    2009-05-22

    DJ-1 mutations cause autosomal recessive parkinsonism (ARP). Although some reports of DJ-1 mutations have been published, there is lack of information on the prevalence of these mutations in large-scale studies of both familial and sporadic parkinsonism. In this genetic screening study, we analyzed the distribution and frequency of DJ-1 mutations by direct nucleotide sequencing of coding exons and exon-intron boundaries of DJ-1, in 386 parkin-negative parkinsonism patients (371 index cases: 67 probands of autosomal recessive parkinsonism families, 90 probands of autosomal dominant parkinsonism families, 201 patients with sporadic parkinsonism, and 13 with unknown family histories) from 12 countries (Japan 283, China 27, Taiwan 22, Korea 22, Israel 16, Turkey 5, Philippines 2, Bulgaria 2, Greece 2, Tunisia 1, USA 2, Ukraine 1, unknown 1). None had causative mutation in DJ-1, suggesting DJ-1 mutation is very rare among patients with familial and sporadic parkinsonism from Asian countries and those with other ethnic background. This is in contrast to the higher frequencies and worldwide distribution of parkin- and PINK1-related parkinsonism in ARP and sporadic parkinsonism. Thus, after obtaining clinical information, screening for mutations in (1) parkin, (2) PINK1, (3) DJ-1, (4) ATP13A2 should be conducted in that order, in ARP and sporadic parkinsonism, based on their reported frequencies. In addition, haplotype analysis should be employed to check for homozygosity of 1p36, which harbors a cluster of causative genes for ARP such as DJ-1, PINK1 and ATP13A2 in ARP and sporadic parkinsonism, especially in parkinsonism with consanguinity.

  11. Targeted next-generation sequencing analysis identifies novel mutations in families with severe familial exudative vitreoretinopathy

    Science.gov (United States)

    Huang, Xiao-Yan; Zhuang, Hong; Wu, Ji-Hong; Li, Jian-Kang; Hu, Fang-Yuan; Zheng, Yu; Tellier, Laurent Christian Asker M.; Zhang, Sheng-Hai; Gao, Feng-Juan; Zhang, Jian-Guo

    2017-01-01

    Purpose Familial exudative vitreoretinopathy (FEVR) is a genetically and clinically heterogeneous disease, characterized by failure of vascular development of the peripheral retina. The symptoms of FEVR vary widely among patients in the same family, and even between the two eyes of a given patient. This study was designed to identify the genetic defect in a patient cohort of ten Chinese families with a definitive diagnosis of FEVR. Methods To identify the causative gene, next-generation sequencing (NGS)-based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members by using Sanger sequencing and quantitative real-time PCR (QPCR). Results Of the cohort of ten FEVR families, six pathogenic variants were identified, including four novel and two known heterozygous mutations. Of the variants identified, four were missense variants, and two were novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del]. The two novel heterozygous deletion mutations were not observed in the control subjects and could give rise to a relatively severe FEVR phenotype, which could be explained by the protein function prediction. Conclusions We identified two novel heterozygous deletion mutations [LRP5, c.4053 DelC (p.Ile1351IlefsX88); TSPAN12, EX8Del] using targeted NGS as a causative mutation for FEVR. These genetic deletion variations exhibit a severe form of FEVR, with tractional retinal detachments compared with other known point mutations. The data further enrich the mutation spectrum of FEVR and enhance our understanding of genotype–phenotype correlations to provide useful information for disease diagnosis, prognosis, and effective genetic counseling. PMID:28867931

  12. Mutation and polymorphism analysis of the human homogentisate 1, 2-dioxygenase gene in alkaptonuria patients.

    Science.gov (United States)

    Beltrán-Valero de Bernabé, D; Granadino, B; Chiarelli, I; Porfirio, B; Mayatepek, E; Aquaron, R; Moore, M M; Festen, J J; Sanmartí, R; Peñalva, M A; de Córdoba, S R

    1998-01-01

    Alkaptonuria (AKU), a rare hereditary disorder of phenylalanine and tyrosine catabolism, was the first disease to be interpreted as an inborn error of metabolism. AKU patients are deficient for homogentisate 1,2 dioxygenase (HGO); this deficiency causes homogentisic aciduria, ochronosis, and arthritis. We cloned the human HGO gene and characterized two loss-of-function mutations, P230S and V300G, in the HGO gene in AKU patients. Here we report haplotype and mutational analysis of the HGO gene in 29 novel AKU chromosomes. We identified 12 novel mutations: 8 (E42A, W97G, D153G, S189I, I216T, R225H, F227S, and M368V) missense mutations that result in amino acid substitutions at positions conserved in HGO in different species, 1 (F10fs) frameshift mutation, 2 intronic mutations (IVS9-56G-->A, IVS9-17G-->A), and 1 splice-site mutation (IVS5+1G-->T). We also report characterization of five polymorphic sites in HGO and describe the haplotypic associations of alleles at these sites in normal and AKU chromosomes. One of these sites, HGO-3, is a variable dinucleotide repeat; IVS2+35T/A, IVS5+25T/C, and IVS6+46C/A are intronic sites at which single nucleotide substitutions (dimorphisms) have been detected; and c407T/A is a relatively frequent nucleotide substitution in the coding sequence, exon 4, resulting in an amino acid change (H80Q). These data provide insight into the origin and evolution of the various AKU alleles. PMID:9529363

  13. Mutational analysis of the cell cycle inhibitor Kip1/p27 in childhood leukemia.

    Science.gov (United States)

    Markaki, E-A; Stiakaki, E; Zafiropoulos, A; Arvanitis, D A; Katzilakis, N; Dimitriou, H; Spandidos, D A; Kalmanti, M

    2006-07-01

    Cyclin-dependent kinases (CDKs) and cyclins, their regulatory subunits, govern cell-cycle progression in eukaryotic cells. Kip1/p27 is the main cyclin-dependent kinase inhibitor, which arrests cell division inhibiting G1-S transition. Kip1/p27 seems to play a critical role in the pathogenesis of several human malignancies and its lower expression has been shown to correlate with a poor prognosis in adult solid tumors. Bone marrow blasts from 49 children with leukemia, 37 acute lymphoblastic leukemia (ALL), and 12 acute myeloid leukemia (AML) were studied. Exon 3 of Kip1/p27 was amplified using the polymerase chain reaction technique (PCR). Single strand conformational polymorphism and heterodouplex analysis were performed to detect DNA sequence with altered conformations and were subsequently sequenced to document mutations. Mutations in Kip1/p27 gene were detected in 2 out of 3 T-ALL, 6 out of 12 AML patients, and only 1 out of 34 B lineage ALL cases. Although the patient groups are small, a highly significant relation of the mutation status with the type of leukemia (P = 0.0037) and the risk group according to treatment protocols (P = 0.00021) was estimated. A statistically significant difference in the white blood count was observed (P = 0.019) between the mutated and non-mutated patient groups although no statistically significant association of the mutation status with the hemoglobin and platelets values, karyotype, age, sex, disease progression, and outcome was determined. Based upon these results, the Kip1/p27 mutations should be considered for further prospective testing as an additional parameter for risk stratification and treatment of childhood leukemia. Copyright 2006 Wiley-Liss, Inc.

  14. Mutation analysis of the negative regulator cyclin G2 in gastric cancer

    African Journals Online (AJOL)

    Cyclin G2 is an unconventional cyclin which might have a potential negative role in carcinogenesis. In this study, the effect of cyclin G2 overexpression on gastric cell proliferation and expression levels of cyclin G2 in normal gastric cells and gastric cancer cells were investigated. Moreover, mutation analysis was performed ...

  15. USH2A mutation analysis in 70 Dutch families with Usher syndrome type II.

    NARCIS (Netherlands)

    Pennings, R.J.E.; Brinke, H. te; Weston, M.D.; Claassen, A.M.W.; Orten, D.J.; Weekamp, H.; Aarem, A. van; Huygen, P.L.M.; Deutman, A.F.; Hoefsloot, L.H.; Cremers, F.P.M.; Cremers, C.W.R.J.; Kimberling, W.J.; Kremer, J.M.J.

    2004-01-01

    Usher syndrome type II (USH2) is characterised by moderate to severe high-frequency hearing impairment, progressive visual loss due to retinitis pigmentosa and intact vestibular responses. Three loci are known for USH2, however, only the gene for USH2a (USH2A) has been identified. Mutation analysis

  16. Mutational analysis of the genome-linked protein of cowpea mosaic virus

    NARCIS (Netherlands)

    Carette, J.E.; Kujawa, A.; Gühl, K.; Verver, J.; Wellink, J.; Kammen, van A.

    2001-01-01

    In this study we have performed a mutational analysis of the cowpea mosaic comovirus (CPMV) genome-linked protein VPg to discern the structural requirements necessary for proper functioning of VPg. Either changing the serine residue linking VPg to RNA at a tyrosine or a threonine or changing the

  17. CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-1-METHIONINE: ARSENIC (III) METHYLTRANSFERASE

    Science.gov (United States)

    CLONING, EXPRESSION, AND MUTATIONAL ANALYSIS OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASEStephen B. Waters, Ph.D., Miroslav Styblo, Ph.D., Melinda A. Beck, Ph.D., University of North Carolina at Chapel Hill; David J. Thomas, Ph.D., U.S. Environmental...

  18. Linkage studies and mutation analysis of the PDEB gene in 23 families with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Riess, O; Weber, B; Nørremølle, Anne

    1992-01-01

    as to whether mutations in the human PDEB gene might cause LCA. We have previously cloned and characterized the human homologue of the mouse Pdeb gene and have mapped it to chromosome 4p16.3. In this study, a total of 23 LCA families of various ethnic backgrounds have been investigated. Linkage analysis using...

  19. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    Science.gov (United States)

    Ghiotto, Fabio; Marcatili, Paolo; Tenca, Claudya; Calevo, Maria Grazia; Yan, Xiao-Jie; Albesiano, Emilia; Bagnara, Davide; Colombo, Monica; Cutrona, Giovanna; Chu, Charles C; Morabito, Fortunato; Bruno, Silvia; Ferrarini, Manlio; Tramontano, Anna; Fais, Franco; Chiorazzi, Nicholas

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV–diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation. PMID:21785810

  20. Mutation Pattern of Paired Immunoglobulin Heavy and Light Variable Domains in Chronic Lymphocytic Leukemia B Cells

    KAUST Repository

    Ghiotto, Fabio; Marcatili, Paolo

    2011-01-01

    B-cell chronic lymphocytic leukemia (CLL) patients display leukemic clones bearing either germline or somatically mutated immunoglobulin heavy variable (IGHV ) genes. Most information on CLL immunoglobulins (Igs), such as the definition of stereotyped B-cell receptors (BCRs), was derived from germline unmutated Igs. In particular, detailed studies on the distribution and nature of mutations in paired heavy- and light-chain domains of CLL clones bearing mutated Igs are lacking. To address the somatic hyper-mutation dynamics of CLL Igs, we analyzed the mutation pattern of paired IGHV-diversity-joining (IGHV-D-J ) and immunoglobulin kappa/lambda variable-joining (IGK/LV-J ) rearrangements of 193 leukemic clones that displayed ≥ 2% mutations in at least one of the two immunoglobulin variable (IGV ) genes (IGHV and/or IGK/LV ). The relationship between the mutation frequency in IGHV and IGK/LV complementarity determining regions (CDRs) and framework regions (FRs) was evaluated by correlation analysis. Replacement (R) mutation frequency within IGK/LV chain CDRs correlated significantly with mutation frequency of paired IGHV CDRs in λ but not κ isotype CLL clones. CDRs of IGKV-J rearrangements displayed a lower percentage of R mutations than IGHVs. The frequency/pattern of mutations in kappa CLL Igs differed also from that in κ-expressing normal B cells described in the literature. Instead, the mutation frequency within the FRs of IGHV and either IGKV or IGLV was correlated. Notably, the amount of diversity introduced by replaced amino acids was comparable between IGHVs and IGKVs. The data indicate a different mutation pattern between κ and λ isotype CLL clones and suggest an antigenic selection that, in κ samples, operates against CDR variation.

  1. Caring Mental Patients Sharing the Same Rooms with Somatic Patients in General and Referral Hospitals in Rwanda: Analysis of Disadvantages and Advantages.

    Science.gov (United States)

    Gitimbwa, Siméon Sebatukura

    2014-01-01

    Hospitalizing mental patients in the same rooms with somatic patients is one of the consequences of the decentralization of mental health units in all hospitals of Rwanda. There is a necessity to discover and to analyze advantages and disadvantages of this practice. Mental health staffs of 31 general and referral hospitals have been interviewed on questions about disadvantages and advantages to hospitalize mental patients together with somatic patients. Results show these disadvantages: a therapeutic environment not appropriate or a lack of harmony in the rooms (58.1% of respondents); a lack of bodily safety for somatic patients (51.6%); a lack of safety on the properties of somatic patients (45.2%); a lack of psychological wellbeing of somatic patients (29%); a lack of safety for mental patients (29%). About the main advantages, 100% of respondents pointed out the treatment of mental patients followed even during the week-end and the break time by the guard nurses doing the ward round visit or the guard; 72.2% said it prevents discrimination, because mental patient feel that he is a patient like others; 50% said it prevents stigmatization (to avoid for example, the expression "he is mad"); 16.7% said that mental patients receive help from somatic patients.

  2. New insights into thyroglobulin gene: molecular analysis of seven novel mutations associated with goiter and hypothyroidism.

    Science.gov (United States)

    Citterio, Cintia E; Machiavelli, Gloria A; Miras, Mirta B; Gruñeiro-Papendieck, Laura; Lachlan, Katherine; Sobrero, Gabriela; Chiesa, Ana; Walker, Joanna; Muñoz, Liliana; Testa, Graciela; Belforte, Fiorella S; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2013-01-30

    The thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene. We report 13 patients from seven unrelated families with goiter, hypothyroidism and low levels of serum TG. All patients underwent clinical, biochemical and imaging evaluation. Single-strand conformation polymorphism (SSCP) analysis, endonuclease restriction analysis, sequencing of DNA, genotyping, population screening, and bioinformatics studies were performed. Molecular analyses revealed seven novel inactivating TG mutations: c.378C>A [p.Y107X], c.2359C>T [p.R768X], c.2736delG [p.R893fsX946], c.3842G>A [p.C1262Y], c.5466delA [p.K1803fsX1833], c.6000C>G [p.C1981W] and c.6605C>G [p.P2183R] and three previously reported mutations: c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.7006C>T [p.R2317X]. Six patients from two families were homozygous for p.R277X mutation, four were compound heterozygous mutations (p.Y107X/p.C1262Y, p.R893fsX946/p.A2215D, p.K1803fsX1832/p.R2317X), one carried three identified mutations (p.R277X/p.C1981W-p.P2183R) together with a hypothetical micro deletion and the remaining two siblings from another family with typical phenotype had a single p.R768X mutated allele. In conclusion, our results confirm the genetic heterogeneity of TG defects and the pathophysiological importance of altered TG folding as a consequency of truncated TG proteins and missense mutations located in ACHE-like domain or that replace cysteine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  3. Mutation Analysis of Consanguineous Moroccan Patients with Parkinson’s Disease Combining Microarray and Gene Panel

    Directory of Open Access Journals (Sweden)

    Ahmed Bouhouche

    2017-10-01

    Full Text Available During the last two decades, 15 different genes have been reported to be responsible for the monogenic form of Parkinson’s disease (PD, representing a worldwide frequency of 5–10%. Among them, 10 genes have been associated with autosomal recessive PD, with PRKN and PINK1 being the most frequent. In a cohort of 145 unrelated Moroccan PD patients enrolled since 2013, 19 patients were born from a consanguineous marriage, of which 15 were isolated cases and 4 familial. One patient was homozygous for the common LRRK2 G2019S mutation and the 18 others who did not carry this mutation were screened for exon rearrangements in the PRKN gene using Affymetrix Cytoscan HD microarray. Two patients were determined homozygous for PRKN exon-deletions, while another patient presented with compound heterozygous inheritance (3/18, 17%. Two other patients showed a region of homozygosity covering the 1p36.12 locus and were sequenced for the candidate PINK1 gene, which revealed two homozygous point mutations: the known Q456X mutation in exon 7 and a novel L539F variation in exon 8. The 13 remaining patients were subjected to next-generation sequencing (NGS that targeted a panel of 22 PD-causing genes and overlapping phenotypes. NGS data showed that two unrelated consanguineous patients with juvenile-onset PD (12 and 13 years carried the same homozygous stop mutation W258X in the ATP13A2 gene, possibly resulting from a founder effect; and one patient with late onset (76 years carried a novel heterozygous frameshift mutation in SYNJ1. Clinical analysis showed that patients with the ATP13A2 mutation developed juvenile-onset PD with a severe phenotype, whereas patients having either PRKN or PINK1 mutations displayed early-onset PD with a relatively mild phenotype. By identifying pathogenic mutations in 45% (8/18 of our consanguineous Moroccan PD series, we demonstrate that the combination of chromosomal microarray analysis and NGS is a powerful approach to

  4. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2

    Science.gov (United States)

    Haraldsdottir, Sigurdis; Rafnar, Thorunn; Frankel, Wendy L.; Einarsdottir, Sylvia; Sigurdsson, Asgeir; Hampel, Heather; Snaebjornsson, Petur; Masson, Gisli; Weng, Daniel; Arngrimsson, Reynir; Kehr, Birte; Yilmaz, Ahmet; Haraldsson, Stefan; Sulem, Patrick; Stefansson, Tryggvi; Shields, Peter G.; Sigurdsson, Fridbjorn; Bekaii-Saab, Tanios; Moller, Pall H.; Steinarsdottir, Margret; Alexiusdottir, Kristin; Hitchins, Megan; Pritchard, Colin C.; de la Chapelle, Albert; Jonasson, Jon G.; Goldberg, Richard M.; Stefansson, Kari

    2017-01-01

    Lynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000–2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations. PMID:28466842

  5. Comprehensive population-wide analysis of Lynch syndrome in Iceland reveals founder mutations in MSH6 and PMS2.

    Science.gov (United States)

    Haraldsdottir, Sigurdis; Rafnar, Thorunn; Frankel, Wendy L; Einarsdottir, Sylvia; Sigurdsson, Asgeir; Hampel, Heather; Snaebjornsson, Petur; Masson, Gisli; Weng, Daniel; Arngrimsson, Reynir; Kehr, Birte; Yilmaz, Ahmet; Haraldsson, Stefan; Sulem, Patrick; Stefansson, Tryggvi; Shields, Peter G; Sigurdsson, Fridbjorn; Bekaii-Saab, Tanios; Moller, Pall H; Steinarsdottir, Margret; Alexiusdottir, Kristin; Hitchins, Megan; Pritchard, Colin C; de la Chapelle, Albert; Jonasson, Jon G; Goldberg, Richard M; Stefansson, Kari

    2017-05-03

    Lynch syndrome, caused by germline mutations in the mismatch repair genes, is associated with increased cancer risk. Here using a large whole-genome sequencing data bank, cancer registry and colorectal tumour bank we determine the prevalence of Lynch syndrome, associated cancer risks and pathogenicity of several variants in the Icelandic population. We use colorectal cancer samples from 1,182 patients diagnosed between 2000-2009. One-hundred and thirty-two (11.2%) tumours are mismatch repair deficient per immunohistochemistry. Twenty-one (1.8%) have Lynch syndrome while 106 (9.0%) have somatic hypermethylation or mutations in the mismatch repair genes. The population prevalence of Lynch syndrome is 0.442%. We discover a translocation disrupting MLH1 and three mutations in MSH6 and PMS2 that increase endometrial, colorectal, brain and ovarian cancer risk. We find thirteen mismatch repair variants of uncertain significance that are not associated with cancer risk. We find that founder mutations in MSH6 and PMS2 prevail in Iceland unlike most other populations.

  6. Molecular analysis of formaldehyde-induced mutations in human lymphoblasts and E. coli

    International Nuclear Information System (INIS)

    Crosby, R.M.; Richardson, K.K.; Craft, T.R.; Benforado, K.B.; Liber, H.L.; Skopek, T.R.

    1988-01-01

    The molecular nature of formaldehyde (HCHO)-induced mutations was studied in both human lymphoblasts and E. coli. Thirty HPRT - human lymphoblast colonies induced by eight repetitive 150 μM HCHO treatments were characterized by Southern blot analysis. Fourteen of these mutants (47%) had visible deletions of some or all of the X-linked HPRT bands, indicating that HCHO can induce large losses of DNA in human lymphoblasts. In E. coli., DNA alterations induced by HCHO were characterized with use of the xanthine guanine phosphoribosyl transferase (gpt) gene as the genetic target. Exposure of E. coli to 4 mM HCHO for 1 hr induced large insertions (41%), large deletions (18%), and point mutations (41%). Dideoxy DNA sequencing revealed that most of the point mutations were transversions at GC base pairs. In contrast, exposure of E. coli to 40 mM HCHO for 1 hr produced 92% point mutations, 62% of which were transitions at a single AT base pair in the gene. Therefore, HCHO is capable of producing different genetic alterations in E. coli at different concentrations, suggesting fundamental differences in the mutagenic mechanisms operating at the two concentrations used. Naked pSV2gpt plasmid DNA was exposed to 3.3 or 10 mM HCHO and transformed into E. coli. Most of the resulting mutations were frameshifts, again suggesting a different mutagenic mechanism

  7. [Analysis of H63D mutation in hemochromatosis (HFE) gene in populations of central Eurasia].

    Science.gov (United States)

    Khusainova, R I; Khusnutdinova, N N; Litvinov, S S; Khusnutdinova, E K

    2013-02-01

    An analysis of the frequency of H63D (c. 187C>G) mutations in the HFEgene in 19 populations from Central Eurasia demonstrated that the distribution of the mutation in the region of interest was not uniform and that there were the areas of H63D accumulation. The investigation of three polymorphic variants, c.340+4T>C (rs2071303, IVS2(+4)T>C), c.893-44T>C (rs1800708, IVS4(-44)T>C), and c.1007-47G>A (rs1572982, IVS5(-47)A>G), in the HFE gene in individuals homozygous for H63D mutations in the HFE gene revealed the linkage of H63D with three haplotypes, *CTA, *TG, and *TTA. These findings indicated the partial spread of the mutation in Central Eurasia from Western Europe, as well as the possible repeated appearance of the mutation on the territory on interest.

  8. Screening of mutations affecting protein stability and dynamics of FGFR1—A simulation analysis

    Directory of Open Access Journals (Sweden)

    C. George Priya Doss

    2012-12-01

    Full Text Available Single amino acid substitutions in Fibroblast Growth Factor Receptor 1 (FGFR1 destabilize protein and have been implicated in several genetic disorders like various forms of cancer, Kallamann syndrome, Pfeiffer syndrome, Jackson Weiss syndrome, etc. In order to gain functional insight into mutation caused by amino acid substitution to protein function and expression, special emphasis was laid on molecular dynamics simulation techniques in combination with in silico tools such as SIFT, PolyPhen 2.0, I-Mutant 3.0 and SNAP. It has been estimated that 68% nsSNPs were predicted to be deleterious by I-Mutant, slightly higher than SIFT (37%, PolyPhen 2.0 (61% and SNAP (58%. From the observed results, P722S mutation was found to be most deleterious by comparing results of all in silico tools. By molecular dynamics approach, we have shown that P722S mutation leads to increase in flexibility, and deviated more from the native structure which was supported by the decrease in the number of hydrogen bonds. In addition, biophysical analysis revealed a clear insight of stability loss due to P722S mutation in FGFR1 protein. Majority of mutations predicted by these in silico tools were in good concordance with the experimental results.

  9. Prognostic Value of RUNX1 Mutations in AML: A Meta-Analysis

    Science.gov (United States)

    Jalili, Mahdi; Yaghmaie, Marjan; Ahmadvand, Mohammad; Alimoghaddam, Kamran; Mousavi, Seyed Asadollah; Vaezi, Mohammad; Ghavamzadeh, Ardeshir

    2018-02-26

    The RUNX1 (AML1) gene is a relatively infrequent mutational target in cases of acute myeloid leukemia (AML). Previous work indicated that RUNX1 mutations can have pathological and prognostic implications. To evaluate prognostic value, we conducted a meta-analysis of 4 previous published works with data for survival according to RUNX1 mutation status. Pooled hazard ratios for overall survival and disease-free survival were 1.55 (95% confidence interval (CI) = 1.11–2.15; p-value = 0.01) and 1.76 (95% CI = 1.24–2.52; p-value = 0.002), respectively, for cases positive for RUNX1 mutations. This evidence supports clinical implications of RUNX1 mutations in the development and progression of AML cases and points to the possibility of a distinct category within the newer WHO classification. Though it must be kept in mind that the present work was based on data extracted from observational studies, the findings suggest that the RUNX1 status can contribute to risk-stratification and decision-making in management of AML. Creative Commons Attribution License

  10. Systematic Analysis Reveals that Cancer Mutations Converge on Deregulated Metabolism of Arachidonate and Xenobiotics

    Directory of Open Access Journals (Sweden)

    Francesco Gatto

    2016-07-01

    Full Text Available Mutations are the basis of the clonal evolution of most cancers. Nevertheless, a systematic analysis of whether mutations are selected in cancer because they lead to the deregulation of specific biological processes independent of the type of cancer is still lacking. In this study, we correlated the genome and transcriptome of 1,082 tumors. We found that nine commonly mutated genes correlated with substantial changes in gene expression, which primarily converged on metabolism. Further network analyses circumscribed the convergence to a network of reactions, termed AraX, that involves the glutathione- and oxygen-mediated metabolism of arachidonic acid and xenobiotics. In an independent cohort of 4,462 samples, all nine mutated genes were consistently correlated with the deregulation of AraX. Among all of the metabolic pathways, AraX deregulation represented the strongest predictor of patient survival. These findings suggest that oncogenic mutations drive a selection process that converges on the deregulation of the AraX network.

  11. Genetic mutation analysis of human gastric adenocarcinomas using ion torrent sequencing platform.

    Directory of Open Access Journals (Sweden)

    Zhi Xu

    Full Text Available Gastric cancer is the one of the major causes of cancer-related death, especially in Asia. Gastric adenocarcinoma, the most common type of gastric cancer, is heterogeneous and its incidence and cause varies widely with geographical regions, gender, ethnicity, and diet. Since unique mutations have been observed in individual human cancer samples, identification and characterization of the molecular alterations underlying individual gastric adenocarcinomas is a critical step for developing more effective, personalized therapies. Until recently, identifying genetic mutations on an individual basis by DNA sequencing remained a daunting task. Recent advances in new next-generation DNA sequencing technologies, such as the semiconductor-based Ion Torrent sequencing platform, makes DNA sequencing cheaper, faster, and more reliable. In this study, we aim to identify genetic mutations in the genes which are targeted by drugs in clinical use or are under development in individual human gastric adenocarcinoma samples using Ion Torrent sequencing. We sequenced 737 loci from 45 cancer-related genes in 238 human gastric adenocarcinoma samples using the Ion Torrent Ampliseq Cancer Panel. The sequencing analysis revealed a high occurrence of mutations along the TP53 locus (9.7% in our sample set. Thus, this study indicates the utility of a cost and time efficient tool such as Ion Torrent sequencing to screen cancer mutations for the development of personalized cancer therapy.

  12. [Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].

    Science.gov (United States)

    Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen

    2015-08-01

    To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.

  13. Identification of Missense Mutation (I12T in the BSND Gene and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Hina Iqbal

    2011-01-01

    Full Text Available Nonsyndromic hearing loss is a paradigm of genetic heterogeneity with 85 loci and 39 nuclear disease genes reported so far. Mutations of BSND have been shown to cause Bartter syndrome type IV, characterized by significant renal abnormalities and deafness and nonsyndromic nearing loss. We studied a Pakistani consanguineous family. Clinical examinations of affected individuals did not reveal the presence of any associated signs, which are hallmarks of the Bartter syndrome type IV. Linkage analysis identified an area of 18.36 Mb shared by all affected individuals between markers D1S2706 and D1S1596. A maximum two-point LOD score of 2.55 with markers D1S2700 and multipoint LOD score of 3.42 with marker D1S1661 were obtained. BSND mutation, that is, p.I12T, cosegregated in all extant members of our pedigree. BSND mutations can cause nonsyndromic hearing loss, and it is a second report for this mutation. The respected protein, that is, BSND, was first modeled, and then, the identified mutation was further analyzed by using different bioinformatics tools; finally, this protein and its mutant was docked with CLCNKB and REN, interactions of BSND, respectively.

  14. Molecular genetic mutation analysis in Menkes-disease with prenatal diagnosis

    DEFF Research Database (Denmark)

    László, Aranka; Endreffy, Emoke; Tümer, Zeynep

    2010-01-01

    Menkes disease (MD) is an X-linked recessive multisystemic lethal, heredodegenerative disorder. Progressive neurodegeneration and connective tissue disturbances with microscopically kinky hair are the main symptoms. Molecular genetic mutation analysis was made at a Hungarian male infant suffering...... from MD and prenatal diagnosis was done in this MD loaded family. METHOD: The 12th exon of ATP7A gene has been analyzed by dideoxy-finger printing (DDF), polymerase chain reaction (PCR), direct sequencing of exon 12. The specific mutation was screened from chorionic villi of the maternal aunt at the 14......th gestational week. RESULTS: In the exon 12th a basic pair substitution with Arg 844 His change was detected leading to very severe fatal missense mutation....

  15. Mutations in the thyrotropin receptor signal transduction pathway in the hyperfunctioning thyroid nodules from multinodular goiters: a study in the Turkish population.

    Science.gov (United States)

    Gozu, Hulya; Avsar, Melike; Bircan, Rifat; Sahin, Serap; Deyneli, Oguzhan; Cirakoglu, Beyazit; Akalin, Sema

    2005-10-01

    Many studies have been carried out to determine G(s) alpha and TSHR mutations in autonomously functioning thyroid nodules. Variable prevalences for somatic constitutively activating TSHR mutations in hot nodules have been reported. Moreover, the increased prevalence of toxic multinodular goiters in iodine-deficient regions is well known. In Turkey, a country with high incidence rates of goiter due to iodine deficiency, the frequency of mutations in the thyrotropin receptor signal transduction pathway has not been evaluated up to now. In the present study, a part of the genes of the TSHR, G(s)alpha and the catalytic subunit of the PKA were checked for activating mutations. Thirty-five patients who underwent thyroidectomy for multinodular goiters were examined. Genomic DNAs were extracted from 58 hyperactive nodular specimens and surrounding normal thyroid tissues. Mutation screening was done by single-strand conformational polymorphism (SSCP) analysis. In those cases where a mutation was detected, the localization of the mutation was determined by automatic DNA sequencing. No G(s)alpha or PKA mutations were detected, whereas ten mutations (17%) were identified in the TSHR gene. All mutations were somatic and heterozygotic. In conclusion, the frequency of mutatio