WorldWideScience

Sample records for somatic cell genetic

  1. Influence of different dose irradiation on genetic effect in mice somatic and germ cells

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Molofej, V.P.; Mosseh, I.B.

    2007-01-01

    Comparison of clastogenic effects of different radiation doses in somatic and germ cells of one the same animals has been studied. Correlation analysis allows to extrapolate genetic effects from somatic cells to germ ones. This can be useful for human model elaboration. (authors)

  2. Genetic associations for pathogen-specific clinical mastitis and patterns of peaks in somatic cell count

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2003-01-01

    Genetic associations were estimated between pathogen-specific cases of clinical mastitis (CM), lactational average somatic cell score (LACSCS), and patterns of peaks in somatic cell count (SCC) which were based on deviations from the typical lactation curve for SCC. The dataset contained test-day

  3. Alternative Somatic Cell Count Traits as Mastitis Indicators for Genetic Selection

    NARCIS (Netherlands)

    Haas, de Y.; Ouweltjes, W.; Napel, ten J.; Windig, J.J.; Jong, de G.

    2008-01-01

    The aim of this study was to define alternative traits of somatic cell count (SCC) that can be used to decrease genetic susceptibility to clinical and subclinical mastitis (CM and SCM, respectively). Three kinds of SCC traits were evaluated: 1) lactation-averages of SCC, 2) traits derived from the

  4. Generation of Mouse Haploid Somatic Cells by Small Molecules for Genome-wide Genetic Screening

    Directory of Open Access Journals (Sweden)

    Zheng-Quan He

    2017-08-01

    Full Text Available The recent success of derivation of mammalian haploid embryonic stem cells (haESCs has provided a powerful tool for large-scale functional analysis of the mammalian genome. However, haESCs rapidly become diploidized after differentiation, posing challenges for genetic analysis. Here, we show that the spontaneous diploidization of haESCs happens in metaphase due to mitotic slippage. Diploidization can be suppressed by small-molecule-mediated inhibition of CDK1 and ROCK. Through ROCK inhibition, we can generate haploid somatic cells of all three germ layers from haESCs, including terminally differentiated neurons. Using piggyBac transposon-based insertional mutagenesis, we generated a haploid neural cell library harboring genome-wide mutations for genetic screening. As a proof of concept, we screened for Mn2+-mediated toxicity and identified the Park2 gene. Our findings expand the applications of mouse haploid cell technology to somatic cell types and may also shed light on the mechanisms of ploidy maintenance.

  5. Bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Ross, Pablo J; Cibelli, Jose B

    2010-01-01

    Somatic cell nuclear transfer (SCNT) is a technique by which the nucleus of a differentiated cell is introduced into an oocyte from which its genetic material has been removed by a process called enucleation. In mammals, the reconstructed embryo is artificially induced to initiate embryonic development (activation). The oocyte turns the somatic cell nucleus into an embryonic nucleus. This process is called nuclear reprogramming and involves an important change of cell fate, by which the somatic cell nucleus becomes capable of generating all the cell types required for the formation of a new individual, including extraembryonic tissues. Therefore, after transfer of a cloned embryo to a surrogate mother, an offspring genetically identical to the animal from which the somatic cells where isolated, is born. Cloning by nuclear transfer has potential applications in agriculture and biomedicine, but is limited by low efficiency. Cattle were the second mammalian species to be cloned after Dolly the sheep, and it is probably the most widely used species for SCNT experiments. This is, in part due to the high availability of bovine oocytes and the relatively higher efficiency levels usually obtained in cattle. Given the wide utilization of this species for cloning, several alternatives to this basic protocol can be found in the literature. Here we describe a basic protocol for bovine SCNT currently being used in our laboratory, which is amenable for the use of the nuclear transplantation technique for research or commercial purposes.

  6. Somatically acquired structural genetic differences

    DEFF Research Database (Denmark)

    Magaard Koldby, Kristina; Nygaard, Marianne; Christensen, Kaare

    2016-01-01

    Structural genetic variants like copy number variants (CNVs) comprise a large part of human genetic variation and may be inherited as well as somatically acquired. Recent studies have reported the presence of somatically acquired structural variants in the human genome and it has been suggested t...... with age.European Journal of Human Genetics advance online publication, 20 April 2016; doi:10.1038/ejhg.2016.34....

  7. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  8. Genetic parameters for production traits and somatic cell score of the ...

    African Journals Online (AJOL)

    Paula Bouwer

    2013-05-26

    May 26, 2013 ... of the other South African dairy breeds, based on the same model. ... Keywords: Genetic evaluation, genetic parameters, milk, protein, butterfat, somatic ... By means of performance measurements, the breeding values (genetic value) ... In comparison with the 63% of dairy cattle that are tested in other ICAR ...

  9. Dogs cloned from adult somatic cells.

    Science.gov (United States)

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  10. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  11. Genetic and somatic effects in animals maintained on tritiated water

    International Nuclear Information System (INIS)

    Carsten, A.L.; Brooks, A.; Commerford, S.L.; Cronkite, E.P.

    1981-01-01

    The possible genetic (dominant lethal mutations (DLM) and cytogenetic changes in the regenerating liver) and somatic (hematopoietic stem cell changes, growth and nonspecific life time shortening) effects in mice maintained on tritiated water (HTO) over two generations was investigated. Results to date are summarized

  12. Genetic relationships among linear type traits, milk yield, body weight, fertility and somatic cell count in primiparous dairy cows

    NARCIS (Netherlands)

    Berry, D.P.; Buckley, F.; Dillon, P.P.; Evans, R.D.; Veerkamp, R.F.

    2004-01-01

    Phenotypic and genetic (co)variances among type traits, milk yield, body weight, fertility and somatic cell count were estimated. The data analysed included 3,058 primiparous spring-calving Holstein-Friesian cows from 80 farms throughout the south of Ireland. Heritability estimates for the type

  13. Somatic and genetic effects

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on somatic and genetic effects of the 7th international congress of radiation research. They cover the following main topics: haematopoietic and immune systems, mechanisms of late effects in various tissues, endogenous and exogenous factors in radiation carcinogenesis, teratogenic effects, genetic effects, in vitro transformation, tumour induction in different tissues, carcinogenesis in incorporated tissues, cancer epidemology and risk assessment. refs.; figs.; tabs

  14. Advances in reprogramming somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Patel, Minal; Yang, Shuying

    2010-09-01

    Traditionally, nuclear reprogramming of cells has been performed by transferring somatic cell nuclei into oocytes, by combining somatic and pluripotent cells together through cell fusion and through genetic integration of factors through somatic cell chromatin. All of these techniques changes gene expression which further leads to a change in cell fate. Here we discuss recent advances in generating induced pluripotent stem cells, different reprogramming methods and clinical applications of iPS cells. Viral vectors have been used to transfer transcription factors (Oct4, Sox2, c-myc, Klf4, and nanog) to induce reprogramming of mouse fibroblasts, neural stem cells, neural progenitor cells, keratinocytes, B lymphocytes and meningeal membrane cells towards pluripotency. Human fibroblasts, neural cells, blood and keratinocytes have also been reprogrammed towards pluripotency. In this review we have discussed the use of viral vectors for reprogramming both animal and human stem cells. Currently, many studies are also involved in finding alternatives to using viral vectors carrying transcription factors for reprogramming cells. These include using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. Applications of these techniques have been discussed in detail including its advantages and disadvantages. Finally, current clinical applications of induced pluripotent stem cells and its limitations have also been reviewed. Thus, this review is a summary of current research advances in reprogramming cells into induced pluripotent stem cells.

  15. Somatic activating ARAF mutations in Langerhans cell histiocytosis

    NARCIS (Netherlands)

    Nelson, David S.; Quispel, Willemijn; Badalian-Very, Gayane; van Halteren, Astrid G. S.; van den Bos, Cor; Bovée, Judith V. M. G.; Tian, Sara Y.; van Hummelen, Paul; Ducar, Matthew; MacConaill, Laura E.; Egeler, R. Maarten; Rollins, Barrett J.

    2014-01-01

    The extracellular signal-regulated kinase (ERK) signaling pathway is activated in Langerhans cell histiocytosis (LCH) histiocytes, but only 60% of cases carry somatic activating mutations of BRAF. To identify other genetic causes of ERK pathway activation, we performed whole exome sequencing on

  16. [Product safety analysis of somatic cell cloned bovine].

    Science.gov (United States)

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  17. At the crossroads of fate - somatic cell lineage specification in the fetal gonad

    DEFF Research Database (Denmark)

    Rotgers, Emmi; Jørgensen, Anne; Yao, Humphrey Hung-Chang

    2018-01-01

    The reproductive endocrine systems are vastly different between male and female. This sexual dimorphism of endocrine milieu originates from sex-specific differentiation of the somatic cells in the gonads during fetal life. The majority of gonadal somatic cells arise from the adrenogonadal...... of the reproductive tracts. Impairment of lineage specification and function of gonadal somatic cells can lead to disorders of sexual development (DSDs) in humans. Human DSDs and processes for gonadal development have been successfully modelled using genetically modified mouse models. In this review, we focus...

  18. piggyBac transposon somatic mutagenesis with an activated reporter and tracker (PB-SMART for genetic screens in mice.

    Directory of Open Access Journals (Sweden)

    Sean F Landrette

    Full Text Available Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease.

  19. Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Ki-Eun Park

    2016-05-01

    Full Text Available The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT. By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.

  20. Monitoring Milk Somatic Cell Counts

    Directory of Open Access Journals (Sweden)

    Gheorghe Şteţca

    2014-11-01

    Full Text Available The presence of somatic cells in milk is a widely disputed issue in milk production sector. The somatic cell counts in raw milk are a marker for the specific cow diseases such as mastitis or swollen udder. The high level of somatic cells causes physical and chemical changes to milk composition and nutritional value, and as well to milk products. Also, the mastitic milk is not proper for human consumption due to its contribution to spreading of certain diseases and food poisoning. According to these effects, EU Regulations established the maximum threshold of admitted somatic cells in raw milk to 400000 cells / mL starting with 2014. The purpose of this study was carried out in order to examine the raw milk samples provided from small farms, industrial type farms and milk processing units. There are several ways to count somatic cells in milk but the reference accepted method is the microscopic method described by the SR EN ISO 13366-1/2008. Generally samples registered values in accordance with the admissible limit. By periodical monitoring of the somatic cell count, certain technological process issues are being avoided and consumer’s health ensured.

  1. Analysis of genetic stability at SSR loci during somatic embryogenesis in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Marum, Liliana; Rocheta, Margarida; Maroco, João; Oliveira, M Margarida; Miguel, Célia

    2009-04-01

    Somatic embryogenesis (SE) is a propagation tool of particular interest for accelerating the deployment of new high-performance planting stock in multivarietal forestry. However, genetic conformity in in vitro propagated plants should be assessed as early as possible, especially in long-living trees such as conifers. The main objective of this work was to study such conformity based on genetic stability at simple sequence repeat (SSR) loci during somatic embryogenesis in maritime pine (Pinus pinaster Ait.). Embryogenic cell lines (ECLs) subjected to tissue proliferation during 6, 14 or 22 months, as well as emblings regenerated from several ECLs, were analyzed. Genetic variation at seven SSR loci was detected in ECLs under proliferation conditions for all time points, and in 5 out of 52 emblings recovered from somatic embryos. Three of these five emblings showed an abnormal phenotype consisting mainly of plagiotropism and loss of apical dominance. Despite the variation found in somatic embryogenesis-derived plant material, no correlation was established between genetic stability at the analyzed loci and abnormal embling phenotype, present in 64% of the emblings. The use of microsatellites in this work was efficient for monitoring mutation events during the somatic embryogenesis in P. pinaster. These molecular markers should be useful in the implementation of new breeding and deployment strategies for improved trees using SE.

  2. Longitudinal Analysis of Somatic Cell Count for Joint Genetic Evaluation of Mastitis and Recovery Liability

    DEFF Research Database (Denmark)

    Welderufael, Berihu Gebremedhin; de Koning, D J; Janss, Luc

    Abstract Text: Better models of genetic evaluation for mastitis can be developed through longitudinal analysis of somatic cell count (SCC) which usually is used as a proxy for mastitis. Mastitis and recovery data with weekly observations of SCC were simulated for daughter groups of 60 and 240 per...... sire. Data were created to define cases: 1 if SCC was above a pre-specified boundary, else 0. A transition from below to above the boundary indicates probability to contract mastitis, and the other way indicates recovery. The MCMCglmm package was used to estimate breeding values. In the 60 daughters...

  3. Proceedings of the 15. Berzelius symposium on somatic and genetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Stigbrand, T.

    1989-01-01

    The symposium begins with a brush up on the physics of ionizing radiation and a background to the natural and man-made source of radiation to which we are exposed. The next section deals with the origin and nature of radiation-induced damage to DNA. The somatic effects of ionizing radiation span from DNA lesions to various effects on cell structure and cell function and effects on whole organs. The somatic effects are immediate as well as long-term, with mental impairment and an increased risk for carcinogenesis as consequences of main concern. The genetic effects of ionizing radiation can result in: infertility, spontaneous abortions, genetic diseases and malformations and increased risk for cancer. This leads over to the problems of risk estimation. Risk estimation which is mainly based on experimental data using animal models, human cell lines and epidemiological studies of exposed and unexposed populations

  4. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  5. Monitoring Genetic Stability in Quercus serrata Thunb. Somatic Embryogenesis Using RAPD Markers

    OpenAIRE

    Ramesh C., Thakur; Susumu, Goto; Katsuaki, Ishii; S. Mohan, Jain; Forestry and Forest Products Research Institute; Fukuoka Prefecture Forest Research and Extension Center; Forestry and Forest Products Research Institute; University of Helsinki

    1999-01-01

    Genetic stability of propagules regenerated via somatic embryogenesis is of paramount importance for its application to clonal forestry. Random amplified polymorphic DNA (RAPD) markers were used to determine the genetic stability in somatic embryogenesis of Quercus serrata Thunb. (Japanese white oak). Forty samples from an embryogenic line, consisting of regenerated plantlets, somatic embryos, and embryogenic calli, were examined using 54 decanucleotide primers. A total of 6520 clear reproduc...

  6. Analyses of genetic relationships between linear type traits, fat-to-protein ratio, milk production traits, and somatic cell count in first-parity Czech Holstein cows

    DEFF Research Database (Denmark)

    Zink, V; Zavadilová, L; Lassen, Jan

    2014-01-01

    . The number of animals for each linear type trait was 59 454, except for locomotion, for which 53 424 animals were recorded. The numbers of animals with records of milk production data were 43 992 for milk yield, fat percentage, protein percentage, and fat-to-protein percentage ratio and 43 978 for fat yield...... and protein yield. In total, 27 098 somatic cell score records were available. The strongest positive genetic correlation between production traits and linear type traits was estimated between udder width and fat yield (0.51 ± 0.04), while the strongest negative correlation estimated was between body......Genetic and phenotypic correlations between production traits, selected linear type traits, and somatic cell score were estimated. The results could be useful for breeding programs involving Czech Holstein dairy cows or other populations. A series of bivariate analyses was applied whereby (co...

  7. Genetic stability evaluation of quercus suber l. somatic embryogenesis by rapd analysis

    International Nuclear Information System (INIS)

    Fernandes, P.; Costa, A.; Rocha, A.C.C.; Santos, C.

    2011-01-01

    A reliable protocol for adult Quercus suber L. somatic embryogenesis (SE) was developed recently. To evaluate the potential use of this protocol in cork oak forest breeding programs, it is essential to guarantee somatic embryos/emblings genetic stability. Random Amplification of Polymorphic DNA (RAPD) is currently used to assess somaclonal variation providing information on genetic variability of the micropropagation process. In this work, SE was induced from adult trees by growing leaf explants on MS medium supplemented with 2,4-D and zeatin. Embling conversion took place on MS medium without growth regulators. DNA from donor tree, somatic embryos and emblings was used to assess genetic variability by RAPD fingerprinting. Fourteen primers produced 165 genetic loci with high quality and reproducibility. Despite somatic embryos originated some poor quality PCR-profiles, replicable and excellent fingerprints were obtained for both donor plant and embling. Results presented no differences among regenerated emblings and donor plant. Hence, the SE protocol used did not induce, up to moment, any genetic variability, confirming data previously obtained with other molecular/genetic techniques, supporting that this protocol may be used to provide true-to-type plants from important forestry species. (author)

  8. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  9. Behavioral Variability and Somatic Mosaicism: A Cytogenomic Hypothesis.

    Science.gov (United States)

    Vorsanova, Svetlana G; Zelenova, Maria A; Yurov, Yuri B; Iourov, Ivan Y

    2018-04-01

    Behavioral sciences are inseparably related to genetics. A variety of neurobehavioral phenotypes are suggested to result from genomic variations. However, the contribution of genetic factors to common behavioral disorders (i.e. autism, schizophrenia, intellectual disability) remains to be understood when an attempt to link behavioral variability to a specific genomic change is made. Probably, the least appreciated genetic mechanism of debilitating neurobehavioral disorders is somatic mosaicism or the occurrence of genetically diverse (neuronal) cells in an individual's brain. Somatic mosaicism is assumed to affect directly the brain being associated with specific behavioral patterns. As shown in studies of chromosome abnormalities (syndromes), genetic mosaicism is able to change dynamically the phenotype due to inconsistency of abnormal cell proportions. Here, we hypothesize that brain-specific postzygotic changes of mosaicism levels are able to modulate variability of behavioral phenotypes. More precisely, behavioral phenotype variability in individuals exhibiting somatic mosaicism might correlate with changes in the amount of genetically abnormal cells throughout the lifespan. If proven, the hypothesis can be used as a basis for therapeutic interventions through regulating levels of somatic mosaicism to increase functioning and to improve overall condition of individuals with behavioral problems.

  10. Genetic and somatic effects in animals maintained on tritiated water

    International Nuclear Information System (INIS)

    Carsten, A.L.; Commerford, S.L.; Cronkite, E.P.; Brooks, A.

    1982-01-01

    Somatic and genetic effects of the continuous ingestion of tritiated water (HTO) at concentrations of 0.3, 1.0 and 3.0 μCi/ml were investigated in mice of the Hale-Stoner-Brookhaven strain. At these levels, there was no measurable somatic effect. Although genetic effects as measured by dominant lethal mutation (DLM) assay indicated a significant effect (P>0.01) on the number of viable embryos and early deaths in the 3.0 μCi/ml HTO group and on the number of viable embryos in the 1.0 μCi/ml HTO group, no genetic effects were significantly noted in the 0.3 μCi/ml HTO group. Liver cytogenetic studies showed a significant increase in the number of abnormal cells in the 3.0 μCi/ml HTO group. A reduction in bone marrow stem cells, without an attendant reduction in total marrow cellularity, was noted in the 3.0 and 1.0 μCi/ml HTO groups. There was no significant difference in any of the DLM parameters between animals maintained on 3.0 μCi/ml of HTO and animals exposed to the equivalent 137 Cs gamma dose (22 hours/day exposure). Consideration of the relative amounts and biological half lives of tritium present in the nucleus as water, DNA and histone suggests that after transient exposure to tritiated water, nearly all significant radiation damage can be attributed to tritium present in the nucleus as water. These data suggest that hazards from tritium attendant with normal reactor operation should not at this time be considered as a deterrent to the further development of fission and/or fusion reactor technology. (Namekawa, K.)

  11. Genetic aspects of somatic cell count and udder health in the Italian Valle del Belice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.

    2012-01-01

    Mastitis is an inflammation of the udder, which leads to economic loss, mainly consisting of discarded milk, reduced milk production and quality, and increased health costs. Somatic cell count (SCC), and therefore somatic cell score (SCS), is widely used as indicator of mastitis. In this thesis,

  12. Genetic transformation of olive somatic embryos through ...

    African Journals Online (AJOL)

    Administrator

    2011-06-20

    Jun 20, 2011 ... 2Department of Biochemistry, National Center of Genetic Engineering and Biotechnology, Tehran, Iran. Accepted 9 March, 2011. Transformed olive plants were regenerated from inoculated somatic embryos with Agrobacterium tumefacience strain GV3101, which carries the plasmid pBI-P5CS containing ...

  13. Evaluation of porcine stem cells competence for somatic cell nuclear transfer and production of cloned animals

    DEFF Research Database (Denmark)

    Secher, Jan; Liu, Ying; Petkov, Stoyan

    2017-01-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than...... somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem...... cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl...

  14. Use of somatic cell banks in the conservation of wild felids.

    Science.gov (United States)

    Praxedes, Érika A; Borges, Alana A; Santos, Maria V O; Pereira, Alexsandra F

    2018-05-03

    The conservation of biological resources is an interesting strategy for the maintenance of biodiversity, especially for wild felids who are constantly threatened with extinction. For this purpose, cryopreservation techniques have been used for the long-term storage of gametes, embryos, gonadal tissues, and somatic cells and tissues. The establishment of these banks has been suggested as a practical approach to the preservation of species and, when done in tandem with assisted reproductive techniques, could provide the means for reproducing endangered species. Somatic cell banks have been shown remarkable for the conservation of genetic material of felids; by merely obtaining skin samples, it is possible to sample a large group of individuals without being limited by factors such as gender or age. Thus, techniques for somatic tissue recovery, cryopreservation, and in vitro culture of different wild felids have been developed, resulting in a viable method for the conservation of species. One of the most notable conservation programs for wild felines using somatic samples was the one carried out for the Iberian lynx, the most endangered feline in the world. Other wild felids have also been studied in other continents, such as the jaguar in South America. This review aims to present the technical progress achieved in the conservation of somatic cells and tissues in different wild felids, as well address the progress that has been achieved in a few species. © 2018 Wiley Periodicals, Inc.

  15. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    Science.gov (United States)

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  16. Genetic chimerism of Vitis vinifera cv. Chardonnay 96 is maintained through organogenesis but not somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Butterlin Gisèle

    2005-09-01

    Full Text Available Abstract Background Grapevine can be a periclinal chimera plant which is composed at least of two distinct cell layers (L1, L2. When the cell layers of this plant are separated by passage through somatic embryogenesis, regenerated plants could show distinct DNA profiles and a novel phenotype which proved different from that of the parent plant. Results Genetically Chardonnay clone 96 is a periclinal chimera plant in which is L1 and L2 cell layers are distinct. Plants obtained via organogenesis through meristematic bulks are shown to be composed of both cell layers. However, plants regenerated through somatic embryogenesis starting from anthers or nodal explants are composed only of L1 cells. These somaclones do not show phenotypic differences to the parental clone up to three years after regeneration. Interestingly, the only somaclone showing an atypical phenotype (asymmetric leave shows a genotypic modification. Conclusion These results suggest that the phenotype of Chardonnay 96 does not result from an interaction between the two distinct cell layers L1 and L2. If phenotype conformity is further confirmed, somatic embryogenesis will result in true-to-type somaclones of Chardonnay 96 and would be well suitable for gene transfer.

  17. Perspectives for induced pluripotent stem cell technology: new insights into human physiology involved in somatic mosaicism.

    Science.gov (United States)

    Nagata, Naoki; Yamanaka, Shinya

    2014-01-31

    Induced pluripotent stem cell technology makes in vitro reprogramming of somatic cells from individuals with various genetic backgrounds possible. By applying this technology, it is possible to produce pluripotent stem cells from biopsy samples of arbitrarily selected individuals with various genetic backgrounds and to subsequently maintain, expand, and stock these cells. From these induced pluripotent stem cells, target cells and tissues can be generated after certain differentiation processes. These target cells/tissues are expected to be useful in regenerative medicine, disease modeling, drug screening, toxicology testing, and proof-of-concept studies in drug development. Therefore, the number of publications concerning induced pluripotent stem cells has recently been increasing rapidly, demonstrating that this technology has begun to infiltrate many aspects of stem cell biology and medical applications. In this review, we discuss the perspectives of induced pluripotent stem cell technology for modeling human diseases. In particular, we focus on the cloning event occurring through the reprogramming process and its ability to let us analyze the development of complex disease-harboring somatic mosaicism.

  18. Method for somatic cell nuclear transfer in zebrafish.

    Science.gov (United States)

    Siripattarapravat, Kannika; Cibelli, Jose B

    2011-01-01

    Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we meticulously outline each step of the published protocol as well as preparations of equipments and reagents used in zebrafish SCNT. All describable detailed-tips are elaborated in texts and figures. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  20. Progress toward generating a ferret model of cystic fibrosis by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Engelhardt John F

    2003-11-01

    Full Text Available Abstract Mammalian cloning by nuclear transfer from somatic cells has created new opportunities to generate animal models of genetic diseases in species other than mice. Although genetic mouse models play a critical role in basic and applied research for numerous diseases, often mouse models do not adequately reproduce the human disease phenotype. Cystic fibrosis (CF is one such disease. Targeted ablation of the cystic fibrosis transmembrane conductance regulator (CFTR gene in mice does not adequately replicate spontaneous bacterial infections observed in the human CF lung. Hence, several laboratories are pursuing alternative animal models of CF in larger species such as the pig, sheep, rabbits, and ferrets. Our laboratory has focused on developing the ferret as a CF animal model. Over the past few years, we have investigated several experimental parameters required for gene targeting and nuclear transfer (NT cloning in the ferret using somatic cells. In this review, we will discuss our progress and the hurdles to NT cloning and gene-targeting that accompany efforts to generate animal models of genetic diseases in species such as the ferret.

  1. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  2. Recent advancements in cloning by somatic cell nuclear transfer

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  3. Transient acquisition of pluripotency during somatic cell transdifferentiation with iPSC reprogramming factors.

    Science.gov (United States)

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R; Greenleaf, William J; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H

    2015-07-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors. Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote lineage differentiation. Here we test this method using genetic lineage tracing for expression of endogenous Nanog and Oct4 and for X chromosome reactivation, as these events mark acquisition of pluripotency. We show that the vast majority of reprogrammed cardiomyocytes or neural stem cells obtained from mouse fibroblasts by OSKM-induced 'transdifferentiation' pass through a transient pluripotent state, and that their derivation is molecularly coupled to iPSC formation mechanisms. Our findings underscore the importance of defining trajectories during cell reprogramming by various methods.

  4. Cellular Mechanisms of Somatic Stem Cell Aging

    Science.gov (United States)

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  5. The Landscape of Somatic Genetic Alterations in Breast Cancers From ATM Germline Mutation Carriers.

    Science.gov (United States)

    Weigelt, Britta; Bi, Rui; Kumar, Rahul; Blecua, Pedro; Mandelker, Diana L; Geyer, Felipe C; Pareja, Fresia; James, Paul A; Couch, Fergus J; Eccles, Diana M; Blows, Fiona; Pharoah, Paul; Li, Anqi; Selenica, Pier; Lim, Raymond S; Jayakumaran, Gowtham; Waddell, Nic; Shen, Ronglai; Norton, Larry; Wen, Hannah Y; Powell, Simon N; Riaz, Nadeem; Robson, Mark E; Reis-Filho, Jorge S; Chenevix-Trench, Georgia

    2018-02-28

    Pathogenic germline variants in ataxia-telangiectasia mutated (ATM), a gene that plays a role in DNA damage response and cell cycle checkpoints, confer an increased breast cancer (BC) risk. Here, we investigated the phenotypic characteristics and landscape of somatic genetic alterations in 24 BCs from ATM germline mutation carriers by whole-exome and targeted sequencing. ATM-associated BCs were consistently hormone receptor positive and largely displayed minimal immune infiltrate. Although 79.2% of these tumors exhibited loss of heterozygosity of the ATM wild-type allele, none displayed high activity of mutational signature 3 associated with defective homologous recombination DNA (HRD) repair. No TP53 mutations were found in the ATM-associated BCs. Analysis of an independent data set confirmed that germline ATM variants and TP53 somatic mutations are mutually exclusive. Our findings indicate that ATM-associated BCs often harbor bi-allelic inactivation of ATM, are phenotypically distinct from BRCA1/2-associated BCs, lack HRD-related mutational signatures, and that TP53 and ATM genetic alterations are likely epistatic.

  6. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.; Li, Shan G.; Chen, Xue J.; Shi, Jian J.; Wu, Li; Liu, Ailian; Xu, Ping; Sheng, Hui Z.

    2006-01-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ES cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines

  7. Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.

    Science.gov (United States)

    Watanabe, Shinya; Nagai, Takashi

    2008-02-01

    Since the first somatic cell cloned calves were born in Japan in 1998, more than 500 cloned cattle have been produced by somatic cell nuclear transfer and many studies concerning cloned cattle and their offspring have been conducted in this country. However, most of the results have been published in Japanese; thus, the data produced in this country is not well utilized by researchers throughout the world. This article reviews the 65 reports produced by Japanese researchers (62 written in Japanese and 3 written in English), which employed 171 clones and 32 offspring, and categorizes them according to the following 7 categories: (1) genetic similarities and muzzle prints, (2) hematology and clinical chemistry findings, (3) pathology, (4) growth performance, (5) reproductive performance, (6) meat production performance and (7) milk production performance. No remarkable differences in health status or reproductive performance were found among conventionally bred cattle, somatic cell cloned cattle surviving to adulthood and offspring of somatic cell cloned cattle. Similarities in growth performance and meat quality were observed between nuclear donor cattle and their clones. The growth curves of the offspring resembled those of their full siblings.

  8. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  9. Unraveling the genetic architecture of environmental variance of somatic cell score using high-density single nucleotide polymorphism and cow data from experimental farms.

    Science.gov (United States)

    Mulder, H A; Crump, R E; Calus, M P L; Veerkamp, R F

    2013-01-01

    In recent years, it has been shown that not only is the phenotype under genetic control, but also the environmental variance. Very little, however, is known about the genetic architecture of environmental variance. The main objective of this study was to unravel the genetic architecture of the mean and environmental variance of somatic cell score (SCS) by identifying genome-wide associations for mean and environmental variance of SCS in dairy cows and by quantifying the accuracy of genome-wide breeding values. Somatic cell score was used because previous research has shown that the environmental variance of SCS is partly under genetic control and reduction of the variance of SCS by selection is desirable. In this study, we used 37,590 single nucleotide polymorphism (SNP) genotypes and 46,353 test-day records of 1,642 cows at experimental research farms in 4 countries in Europe. We used a genomic relationship matrix in a double hierarchical generalized linear model to estimate genome-wide breeding values and genetic parameters. The estimated mean and environmental variance per cow was used in a Bayesian multi-locus model to identify SNP associated with either the mean or the environmental variance of SCS. Based on the obtained accuracy of genome-wide breeding values, 985 and 541 independent chromosome segments affecting the mean and environmental variance of SCS, respectively, were identified. Using a genomic relationship matrix increased the accuracy of breeding values relative to using a pedigree relationship matrix. In total, 43 SNP were significantly associated with either the mean (22) or the environmental variance of SCS (21). The SNP with the highest Bayes factor was on chromosome 9 (Hapmap31053-BTA-111664) explaining approximately 3% of the genetic variance of the environmental variance of SCS. Other significant SNP explained less than 1% of the genetic variance. It can be concluded that fewer genomic regions affect the environmental variance of SCS than the

  10. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated

  11. Ecosensitivity and genetic polymorphism of somatic traits in the perinatal development of twins.

    Science.gov (United States)

    Waszak, Małgorzata; Cieślik, Krystyna; Skrzypczak-Zielińska, Marzena; Szalata, Marlena; Wielgus, Karolina; Kempiak, Joanna; Bręborowicz, Grzegorz; Słomski, Ryszard

    2016-04-01

    In view of criticism regarding the usefulness of heritability coefficients, the aim of this study was to analyze separately the information on genetic and environmental variability. Such an approach, based on the normalization of trait's variability for its value, is determined by the coefficients of genetic polymorphism (Pg) and ecosensitivity (De). The studied material included 1263 twin pairs of both sexes (among them 424 pairs of monozygotic twins and 839 pairs of dizygotic twins) born between the 22nd and 41st week of gestation. Variability of six somatic traits was analyzed. The zygosity of same-sex twins was determined based on the polymorphism of DNA from lymphocytes of the umbilical cord blood, obtained at birth. The coefficients of genetic polymorphism and ecosensitivity for analyzed traits of male and female twins born at various months of gestation were calculated. Our study revealed that a contribution of the genetic component predominated over that of the environmental component in determining the phenotypic variability of somatic traits of newborns from twin pregnancies. The genetically determined phenotypic variability in male twins was greater than in the females. The genetic polymorphism and ecosensitivity of somatic traits were relatively stable during the period of fetal ontogeny analyzed in this study. Only in the case of body weight, a slight increase in the genetic contribution of polygenes to the phenotypic variance could be observed with gestational age, along with a slight decrease in the influence of environmental factors. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Somatic and genetic effects of low-level radiation

    International Nuclear Information System (INIS)

    Upton, A.C.

    1974-01-01

    Although the biological effects of ionizing radiation are probably better known than those of any other physical or chemical agent in the environment, our information about such effects has come from observations at doses and dose rates which are orders of magnitude higher than natural background environmental radiation levels. Whether, therefore biological effects occur in response to such low levels can be estimated only by extrapolation, based on assumptions about the dose-effect relationship and the mechanisms of the effects in question. Present knowledge suggests the possibility that several types of biological effects may result from low-level irradiation. The induction of heritable genetic changes in germ cells and carcinogenic changes in somatic cells are considered to be the most important from the standpoint of their potential threat to health. On the basis of existing data, it is possible to make only tentative upper limit estimates of the risks of these effects at low doses. The estimates imply that the frequency of such effects attributable to exposure at natural background radiation levels would constitute only a small fraction of their natural incidence. 148 references

  13. Genetic relationship of lactation persistency with milk yield, somatic cell score, reproductive traits, and longevity in Slovak Holstein cattle

    OpenAIRE

    Strapáková, Eva; Candrák, Juraj; Strapák, Peter

    2016-01-01

    The objective of this study was to estimate the breeding values (BVs) of lactation persistency, the test day of milk yield, the somatic cell score, reproductive traits (calving interval, days open), longevity in Slovak Holstein dairy cattle. BVs were used for the detection of relationships among the persistency of lactation and other selected traits. Data for the estimation of BVs of milk production and somatic cell score were collected from 855 240 cows. BVs for reproductive t...

  14. File list: Pol.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.50.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  15. File list: Oth.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.50.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  16. File list: Oth.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.05.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  17. Protecting genomic integrity in somatic cells and embryonic stem cells

    International Nuclear Information System (INIS)

    Hong, Y.; Cervantes, R.B.; Tichy, E.; Tischfield, J.A.; Stambrook, P.J.

    2007-01-01

    Mutation frequencies at some loci in mammalian somatic cells in vivo approach 10 -4 . The majority of these events occur as a consequence of loss of heterozygosity (LOH) due to mitotic recombination. Such high levels of DNA damage in somatic cells, which can accumulate with age, will cause injury and, after a latency period, may lead to somatic disease and ultimately death. This high level of DNA damage is untenable for germ cells, and by extrapolation for embryonic stem (ES) cells, that must recreate the organism. ES cells cannot tolerate such a high frequency of damage since mutations will immediately impact the altered cell, and subsequently the entire organism. Most importantly, the mutations may be passed on to future generations. ES cells, therefore, must have robust mechanisms to protect the integrity of their genomes. We have examined two such mechanisms. Firstly, we have shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs). A second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population. Consistent with this hypothesis, ES cells lack a G1 checkpoint, and the two known signaling pathways that mediate the checkpoint are compromised. The checkpoint kinase, Chk2, which participates in both pathways is sequestered at centrosomes in ES cells and does not phosphorylate its substrates (i.e. p53 and Cdc25A) that must be modified to produce a G1 arrest. Ectopic expression of Chk2 does not rescue the p53-mediated pathway, but does restore the pathway mediated by Cdc25A. Wild type ES cells exposed to ionizing radiation do not accumulate in G1 but do so in S-phase and in G2. ES cells that ectopically express Chk2 undergo cell cycle arrest in G1 as well as G2, and appear to be protected from apoptosis

  18. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome.

    Science.gov (United States)

    Dowdell, Kennichi C; Niemela, Julie E; Price, Susan; Davis, Joie; Hornung, Ronald L; Oliveira, João Bosco; Puck, Jennifer M; Jaffe, Elaine S; Pittaluga, Stefania; Cohen, Jeffrey I; Fleisher, Thomas A; Rao, V Koneti

    2010-06-24

    Autoimmune lymphoproliferative syndrome (ALPS) is characterized by childhood onset of lymphadenopathy, hepatosplenomegaly, autoimmune cytopenias, elevated numbers of double-negative T (DNT) cells, and increased risk of lymphoma. Most cases of ALPS are associated with germline mutations of the FAS gene (type Ia), whereas some cases have been noted to have a somatic mutation of FAS primarily in their DNT cells. We sought to determine the proportion of patients with somatic FAS mutations among a group of our ALPS patients with no detectable germline mutation and to further characterize them. We found more than one-third (12 of 31) of the patients tested had somatic FAS mutations, primarily involving the intracellular domain of FAS resulting in loss of normal FAS signaling. Similar to ALPS type Ia patients, the somatic ALPS patients had increased DNT cell numbers and elevated levels of serum vitamin B(12), interleukin-10, and sFAS-L. These data support testing for somatic FAS mutations in DNT cells from ALPS patients with no detectable germline mutation and a similar clinical and laboratory phenotype to that of ALPS type Ia. These findings also highlight the potential role for somatic mutations in the pathogenesis of nonmalignant and/or autoimmune hematologic conditions in adults and children.

  19. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. File list: His.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.20.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  1. File list: His.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.50.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  2. File list: His.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.05.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  3. File list: His.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Gon.10.AllAg.Testicular_somatic_cells mm9 Histone Gonad Testicular somatic cell...s SRX591729,SRX591717 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  4. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    Science.gov (United States)

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  5. Relationship of milking rate to somatic cell count.

    Science.gov (United States)

    Brown, C A; Rischette, S J; Schultz, L H

    1986-03-01

    Information on milking rate, monthly bucket somatic cell counts, mastitis treatment, and milk production was obtained from 284 lactations of Holstein cows separated into three lactation groups. Significant correlations between somatic cell count (linear score) and other parameters included production in lactation 1 (-.185), production in lactation 2 (-.267), and percent 2-min milk in lactation 2 (.251). Somatic cell count tended to increase with maximum milking rate in all lactations, but correlations were not statistically significant. Twenty-nine percent of cows with milking rate measurements were treated for clinical mastitis. Treated cows in each lactation group produced less milk than untreated cows. In the second and third lactation groups, treated cows had a shorter total milking time and a higher percent 2-min milk than untreated cows, but differences were not statistically significant. Overall, the data support the concept that faster milking cows tend to have higher cell counts and more mastitis treatments, particularly beyond first lactation. However, the magnitude of the relationship was small.

  6. File list: Unc.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.50.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  7. File list: Unc.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.05.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  8. File list: Unc.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.20.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  9. File list: Unc.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Gon.10.AllAg.Testicular_somatic_cells mm9 Unclassified Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  10. File list: NoD.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.50.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  11. File list: NoD.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.05.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  12. File list: NoD.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.20.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somat...ic cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  13. File list: Pol.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.05.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  14. File list: Pol.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.20.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  15. File list: Pol.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Gon.10.AllAg.Testicular_somatic_cells mm9 RNA polymerase Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  16. File list: DNS.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.20.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  17. File list: Oth.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.20.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  18. File list: DNS.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.50.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  19. File list: Oth.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Gon.10.AllAg.Testicular_somatic_cells mm9 TFs and others Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  20. File list: DNS.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.05.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  1. File list: DNS.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Gon.10.AllAg.Testicular_somatic_cells mm9 DNase-seq Gonad Testicular somatic ce...lls http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  2. Somatic Embryogenesis: Still a Relevant Technique in Citrus Improvement.

    Science.gov (United States)

    Omar, Ahmad A; Dutt, Manjul; Gmitter, Frederick G; Grosser, Jude W

    2016-01-01

    The genus Citrus contains numerous fresh and processed fruit cultivars that are economically important worldwide. New cultivars are needed to battle industry threatening diseases and to create new marketing opportunities. Citrus improvement by conventional methods alone has many limitations that can be overcome by applications of emerging biotechnologies, generally requiring cell to plant regeneration. Many citrus genotypes are amenable to somatic embryogenesis, which became a key regeneration pathway in many experimental approaches to cultivar improvement. This chapter provides a brief history of plant somatic embryogenesis with focus on citrus, followed by a discussion of proven applications in biotechnology-facilitated citrus improvement techniques, such as somatic hybridization, somatic cybridization, genetic transformation, and the exploitation of somaclonal variation. Finally, two important new protocols that feature plant regeneration via somatic embryogenesis are provided: protoplast transformation and Agrobacterium-mediated transformation of embryogenic cell suspension cultures.

  3. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig

    Directory of Open Access Journals (Sweden)

    Richter Anne

    2012-11-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT is currently the most efficient and precise method to generate genetically tailored pig models for biomedical research. However, the efficiency of this approach is crucially dependent on the source of nuclear donor cells. In this study, we evaluate the potential of primary porcine kidney cells (PKCs as cell source for SCNT, including their proliferation capacity, transfection efficiency, and capacity to support full term development of SCNT embryos after additive gene transfer or homologous recombination. Results PKCs could be maintained in culture with stable karyotype for up to 71 passages, whereas porcine fetal fibroblasts (PFFs and porcine ear fibroblasts (PEFs could be hardly passaged more than 20 times. Compared with PFFs and PEFs, PKCs exhibited a higher proliferation rate and resulted in a 2-fold higher blastocyst rate after SCNT and in vitro cultivation. Among the four transfection methods tested with a GFP expression plasmid, best results were obtained with the NucleofectorTM technology, resulting in transfection efficiencies of 70% to 89% with high fluorescence intensity, low cytotoxicity, good cell proliferation, and almost no morphological signs of cell stress. Usage of genetically modified PKCs in SCNT resulted in approximately 150 piglets carrying at least one of 18 different transgenes. Several of those pigs originated from PKCs that underwent homologous recombination and antibiotic selection before SCNT. Conclusion The high proliferation capacity of PKCs facilitates the introduction of precise and complex genetic modifications in vitro. PKCs are thus a valuable cell source for the generation of porcine biomedical models by SCNT.

  4. File list: ALL.Gon.05.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.05.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591729,SRX591728,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.05.AllAg.Testicular_somatic_cells.bed ...

  5. File list: ALL.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.20.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  6. File list: ALL.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Gon.50.AllAg.Testicular_somatic_cells mm9 All antigens Gonad Testicular somatic... cells SRX591728,SRX591729,SRX591717,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  7. Genetic improvement of sweet potato through somatic embyrogenesis and in vitro induction of mutations

    Energy Technology Data Exchange (ETDEWEB)

    Sonnino, A; Thinh, N T; Santangelo, E; Mini, P [Centro Ricerche Energia, ENEA, Rome (Italy)

    1997-07-01

    Mutation breeding is a promising option for the genetic improvement of sweet potato. Callus induction, somatic embryogenesis and plant regeneration was investigated in twenty-two sweet potato varieties of different origin. Plant regeneration was found to depend on the genotype and composition of the induction medium. The regeneration through somatic embryogenesis induced morphological and physiological changes among the regenerated plants. The irradiation with 30 to 50 Gy of meristems before culture on induction medium inhibited somatic embryogenesis. A number of accessions were evaluated in field trials and showed wide differences in yield. (author). 6 refs, 6 tabs.

  8. Genetic improvement of sweet potato through somatic embyrogenesis and in vitro induction of mutations

    International Nuclear Information System (INIS)

    Sonnino, A.; Thinh, N.T.; Santangelo, E.; Mini, P.

    1997-01-01

    Mutation breeding is a promising option for the genetic improvement of sweet potato. Callus induction, somatic embryogenesis and plant regeneration was investigated in twenty-two sweet potato varieties of different origin. Plant regeneration was found to depend on the genotype and composition of the induction medium. The regeneration through somatic embryogenesis induced morphological and physiological changes among the regenerated plants. The irradiation with 30 to 50 Gy of meristems before culture on induction medium inhibited somatic embryogenesis. A number of accessions were evaluated in field trials and showed wide differences in yield. (author). 6 refs, 6 tabs

  9. Number and importance of somatic cells in goat’s milk

    Directory of Open Access Journals (Sweden)

    Lidija Kozačinski

    2001-04-01

    Full Text Available Goat’s milk samples were examined on mastitis using stable procedure (California-mastitis test. 427 of the examined milk samples (46.82% had positive reaction from 1 to 3 while other 485 samples (53.18% had negative reaction on the mastitis test, indicating that no illness of mammary gland occurred. Number of somatic cells, counted using “Fossomatic” counter, was 1.3x106/ml average. By comparing the results of mastitis-test evaluation (CMT with the number of somatic cells and findings of mastitis agents in milk showed that higher number of somatic cells is not the only indication of goat’s mammary gland illness. Mastitis-test is method that can exclude inflammation of goat’s mammary gland, but every positive reaction should be confirmed or eliminate with bacteriological examination. Based on the results of this research, it has been shown that the limit for somatic cells number in goat's milk can be over 1 000 000/ml.

  10. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  11. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  12. Somatic cell counts in bulk milk and their importance for milk processing

    Science.gov (United States)

    Savić, N. R.; Mikulec, D. P.; Radovanović, R. S.

    2017-09-01

    Bulk tank milk somatic cell counts are the indicator of the mammary gland health in the dairy herds and may be regarded as an indirect measure of milk quality. Elevated somatic cell counts are correlated with changes in milk composition The aim of this study was to assess the somatic cell counts that significantly affect the quality of milk and dairy products. We examined the somatic cell counts in bulk tank milk samples from 38 farms during the period of 6 months, from December to the May of the next year. The flow cytometry, Fossomatic was used for determination of somatic cell counts. In the same samples content of total proteins and lactose was determined by Milcoscan. Our results showed that average values for bulk tank milk samples were 273,605/ml from morning milking and 292,895/ml from evening milking. The average values for total proteins content from morning and evening milking are 3,31 and 3,34%, respectively. The average values for lactose content from morning and evening milking are 4,56 and 4,63%, respectively. The highest somatic cell count (516,000/ml) was detected in bulk tank milk sample from evening milk in the Winter and the lowest content of lactose was 4,46%. Our results showed that obtained values for bulk tank milk somatic cell counts did not significantly affected the content of total proteins and lactose.

  13. Somatic and genetic radiation exposure of the patient in digital subtraction angiography (DSA)

    International Nuclear Information System (INIS)

    Neufang, K.F.R.; Ewen, K.

    1986-01-01

    The somatic and genetic radiation exposure of patients undergoing Digital Subtraction Angiography (DSA) and traditional Film Arteriography (FA) of cranial, cervical, thoracic and abdominal vascular territories are compared. The radiation doses absorbed within the critical organs - red bone marrow, lung, thyroid gland and female breast - and in the gonads were measured using an anthropomorphic Alderson phantom. A Somatic Dose Index was calculated in order to estimate the somatic radiation risk. The somatic radiation exposure depends upon the location of the critical organs with respect to the entrance site of the x-ray beam, and can be reduced by an appropriate choice of the angiographic projection. Under this condition, the radiation exposure of the patient during DSA can be lower than during FA. For renal DSA an a.p. projection, the use of an abdominal compression device and careful caudal shielding of the field are advocated. (orig.)

  14. Genetic toxicity of dillapiol and spinosad larvicides in somatic cells of Drosophila melanogaster.

    Science.gov (United States)

    Aciole, Eliezer H Pires; Guimarães, Nilza N; Silva, Andre S; Amorim, Erima M; Nunomura, Sergio M; Garcia, Ana Cristina L; Cunha, Kênya S; Rohde, Claudia

    2014-04-01

    Higher rates of diseases transmitted from insects to humans led to the increased use of organophosphate insecticides, proven to be harmful to human health and the environment. New, more effective chemical formulations with minimum genetic toxicity effects have become the object of intense research. These formulations include larvicides derived from plant extracts such as dillapiol, a phenylpropanoid extracted from Piper aduncum, and from microorganisms such as spinosad, formed by spinosyns A and D derived from the Saccharopolyspora spinosa fermentation process. This study investigated the genotoxicity of dillapiol and spinosad, characterising and quantifying mutation events and chromosomal and/or mitotic recombination using the somatic mutation and recombination test (SMART) in wings of Drosophila melanogaster. Standard cross larvae (72 days old) were treated with different dillapiol and spinosad concentrations. Both compounds presented positive genetic toxicity, mainly as mitotic recombination events. Distilled water and doxorubicin were used as negative and positive controls respectively. Spinosad was 14 times more genotoxic than dillapiol, and the effect was found to be purely recombinogenic. However, more studies on the potential risks of insecticides such as spinosad and dillapiol are necessary, based on other experimental models and methodologies, to ensure safe use. © 2013 Society of Chemical Industry.

  15. File list: NoD.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Gon.10.AllAg.Testicular_somatic_cells mm9 No description Gonad Testicular somatic... cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  16. Buffalo milk: proteins electrophoretic profile and somatic cell count

    Directory of Open Access Journals (Sweden)

    S. Mattii

    2011-03-01

    Full Text Available Water buffalo milk differs from the cow’s milk for greater fat and protein content, very important features in cheese making. Proteins, casein and whey-proteins in particular, are the most important factors determining cheese yield. Several previous research discussed the rule of SCC in cow milk production (Varisco, 1999 and the close relationship existing between cow’s milk cheese yield and somatic cell count (Barbano, 2000. In particular the inverse correlation between cheese yields and somatic cells’content have been demonstrated. In Italy the regulation in force DPR 54/97 acknowledges what expressed in EEC 46/92 Directive (Tripodi, 1999 without fixing the limit threshold of somatic cells for buffalo’s milk....

  17. File list: InP.Gon.20.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.20.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.20.AllAg.Testicular_somatic_cells.bed ...

  18. File list: InP.Gon.50.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.50.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somatic... cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.50.AllAg.Testicular_somatic_cells.bed ...

  19. CYTOLOGICAL QUALITY OF GOAT MILK ON THE BASIS OF THE SOMATIC CELL COUNT

    Directory of Open Access Journals (Sweden)

    Henryka BERNACKA

    2007-07-01

    Full Text Available The aim of the present paper was to evaluate the cytological quality of goat milk based on the somatic cell count in respective months of lactation. Besides there was defined the effect of somatic cell on the milk production and chemical composition of milk. The research covered goats of color improved breed in the 2nd and 3rd lactation. Daily milk yield, chemical composition of milk and its somatic cell count were defined based on monthly morning and evening control milkings from both teats, following the A4 method applied in District Animal Evaluation Stations. The research indicated that the greater the somatic cell count in milk, the lower the daily milk yield, however the greater the somatic cell count, the greater the percentage content of fat and dry matter and the lower the content of lactose.

  20. Correlation and regression analyses of genetic effects for different types of cells in mammals under radiation and chemical treatment

    International Nuclear Information System (INIS)

    Slutskaya, N.G.; Mosseh, I.B.

    2006-01-01

    Data about genetic mutations under radiation and chemical treatment for different types of cells have been analyzed with correlation and regression analyses. Linear correlation between different genetic effects in sex cells and somatic cells have found. The results may be extrapolated on sex cells of human and mammals. (authors)

  1. Reprogramming to pluripotency can conceal somatic cell chromosomal instability.

    Directory of Open Access Journals (Sweden)

    Masakazu Hamada

    Full Text Available The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs in therapeutic applications is loss of genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but whether defects that cause whole-chromosome instability (W-CIN preclude reprogramming is unknown. Here we demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs in which chromosome missegregation is driven by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin in addition to iPSC lines is necessary for safe application of reprogramming technology.

  2. File list: InP.Gon.10.AllAg.Testicular_somatic_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Gon.10.AllAg.Testicular_somatic_cells mm9 Input control Gonad Testicular somati...c cells SRX591728,SRX591716 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Gon.10.AllAg.Testicular_somatic_cells.bed ...

  3. Cloning animals by somatic cell nuclear transfer – biological factors

    Science.gov (United States)

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-01-01

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle. PMID:14614770

  4. Nuclear reprogramming of somatic nucleus hybridized with embryonic stem cells by electrofusion.

    Science.gov (United States)

    Tada, Masako; Tada, Takashi

    2006-01-01

    Cell fusion is a powerful tool for understanding the molecular mechanisms of epigenetic reprogramming. In hybrid cells of somatic cells and pluripotential stem cells, including embryonic stem (ES) and embryonic germ cells, somatic nuclei acquire pluripotential competence. ES and embryonic germ cells retain intrinsic trans activity to induce epigenetic reprogramming. For generating hybrid cells, we have used the technique of electrofusion. Electrofusion is a highly effective, reproducible, and biomedically safe in vitro system. For successful cell fusion, two sequential steps of electric pulse stimulation are required for the alignment (pearl chain formation) of two different types of cells between electrodes in response to alternating current stimulation and for the fusion of cytoplasmic membranes by direct current stimulation. Optimal conditions for electrofusion with a pulse generator are introduced for ES and somatic cell fusion. Topics in the field of stem cell research include the successful production of cloned animals via the epigenetic reprogramming of somatic cells and contribution of spontaneous cell fusion to generating intrinsic plasticity of tissue stem cells. Cell fusion technology may make important contributions to the fields of epigenetic reprogramming and regenerative medicine.

  5. NF-κB activation impairs somatic cell reprogramming in ageing.

    Science.gov (United States)

    Soria-Valles, Clara; Osorio, Fernando G; Gutiérrez-Fernández, Ana; De Los Angeles, Alejandro; Bueno, Clara; Menéndez, Pablo; Martín-Subero, José I; Daley, George Q; Freije, José M P; López-Otín, Carlos

    2015-08-01

    Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor-Guillermo progeria syndrome and Hutchinson-Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.

  6. Somatically Acquired LINE-1 Insertions in Normal Esophagus Undergo Clonal Expansion in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Doucet-O'Hare, Tara T; Sharma, Reema; Rodić, Nemanja; Anders, Robert A; Burns, Kathleen H; Kazazian, Haig H

    2016-09-01

    Squamous cell carcinoma of the esophagus (SCC) is the most common form of esophageal cancer in the world and is typically diagnosed at an advanced stage when successful treatment is challenging. Understanding the mutational profile of this cancer may identify new treatment strategies. Because somatic retrotransposition has been shown in tumors of the gastrointestinal system, we focused on LINE-1 (L1) mobilization as a source of genetic instability in this cancer. We hypothesized that retrotransposition is ongoing in SCC patients. The expression of L1 encoded proteins is necessary for retrotransposition to occur; therefore, we evaluated the expression of L1 open reading frame 1 protein (ORF1p). Using immunohistochemistry, we detected ORF1p expression in all four SCC cases evaluated. Using L1-seq, we identified and validated 74 somatic insertions in eight tumors of the nine evaluated. Of these, 12 insertions appeared to be somatic, not genetically inherited, and sub-clonal (i.e., present in less than one copy per genome equivalent) in the adjacent normal esophagus (NE), while clonal in the tumor. Our results indicate that L1 retrotransposition is active in SCC of the esophagus and that insertion events are present in histologically NE that expands clonally in the subsequent tumor. © 2016 WILEY PERIODICALS, INC.

  7. Studies on cytological, physiological and genetic characteristics in somatic mutant strains of Sugi (Cryptomeria japonica D. Don)

    International Nuclear Information System (INIS)

    Maeta, T.; Somegou, M.; Nakahira, K.; Miyazaki, Y.; Kondo, T.

    1982-01-01

    From microscopic observation of the pollen of induced mutant strains in Sugi (Cryptomeria japonica D. Don), it was found that there were large differences in pollen fertility among the mutant strains, and that it deviated year to year from the mother plants. The large differences in frequency of sterile pollen among mutant strains depended on the genetic characteristics of each mutant strain. Higher frequencies of sterile pollen were observed at the terminal part of branchlets in some mutant strains, and this was considered to be induced by the lateness of flower-bud formation at low temperature conditions in late summer. Delayed formation and gibberellic acid treatment applied for flower induction resulted in low fertility and abnormality of pollen in mutant strains. Chromosome aberration in mutant strains was caused either by gamma irradiation or by some mutational events that responded to environmental conditions. In the former case, aberration might have been maintained for a long period through vegetative propagation. Some of the irregularities were due to mitotic cell division, because cells with micronuclei at the pacytene stage in pollen mother cells and with fragments at MI were observed. Somatic mutability of Kuma-sugi mutants after re-irradiation was investigated. From waxless mutants morphological somatic mutations, which have fat or stout stems and thick and short needles, were frequently produced, whereas from morphological mutants the lowest somatic mutation frequency was induced. In some mutant strains higher rooting ability than the mother plants was found, and the possibility of character improvement was pointed out. (author)

  8. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting.

    Science.gov (United States)

    Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin

    2018-03-01

    Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Screening for the Most Suitable Reference Genes for Gene Expression Studies in Equine Milk Somatic Cells.

    Directory of Open Access Journals (Sweden)

    Jakub Cieslak

    Full Text Available Apart from the well-known role of somatic cell count as a parameter reflecting the inflammatory status of the mammary gland, the composition of cells isolated from milk is considered as a valuable material for gene expression studies in mammals. Due to its unique composition, in recent years an increasing interest in mare's milk consumption has been observed. Thus, investigating the genetic background of horse's milk variability presents and interesting study model. Relying on 39 milk samples collected from mares representing three breeds (Polish Primitive Horse, Polish Cold-blooded Horse, Polish Warmblood Horse we aimed to investigate the utility of equine milk somatic cells as a source of mRNA and to screen the best reference genes for RT-qPCR using geNorm and NormFinder algorithms. The results showed that despite relatively low somatic cell counts in mare's milk, the amount and the quality of the extracted RNA are sufficient for gene expression studies. The analysis of the utility of 7 potential reference genes for RT-qPCR experiments for the normalization of equine milk somatic cells revealed some differences between the outcomes of the applied algorithms, although in both cases the KRT8 and TOP2B genes were pointed as the most stable. Analysis by geNorm showed that the combination of 4 reference genes (ACTB, GAPDH, TOP2B and KRT8 is required for apropriate RT-qPCR experiments normalization, whereas NormFinder algorithm pointed the combination of KRT8 and RPS9 genes as the most suitable. The trial study of the relative transcript abundance of the beta-casein gene with the use of various types and numbers of internal control genes confirmed once again that the selection of proper reference gene combinations is crucial for the final results of each real-time PCR experiment.

  10. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.

    Science.gov (United States)

    Yoshida, Keita; Hozumi, Akiko; Treen, Nicholas; Sakuma, Tetsushi; Yamamoto, Takashi; Shirae-Kurabayashi, Maki; Sasakura, Yasunori

    2017-03-15

    The ascidian Ciona intestinalis has a high regeneration capacity that enables the regeneration of artificially removed primordial germ cells (PGCs) from somatic cells. We utilized PGC regeneration to establish efficient methods of germ line mutagenesis with transcription activator-like effector nucleases (TALENs). When PGCs were artificially removed from animals in which a TALEN pair was expressed, somatic cells harboring mutations in the target gene were converted into germ cells, this germ cell population exhibited higher mutation rates than animals not subjected to PGC removal. PGC regeneration enables us to use TALEN expression vectors of specific somatic tissues for germ cell mutagenesis. Unexpectedly, cis elements for epidermis, neural tissue and muscle could be used for germ cell mutagenesis, indicating there are multiple sources of regenerated PGCs, suggesting a flexibility of differentiated Ciona somatic cells to regain totipotency. Sperm and eggs of a single hermaphroditic, PGC regenerated animal typically have different mutations, suggesting they arise from different cells. PGCs can be generated from somatic cells even though the maternal PGCs are not removed, suggesting that the PGC regeneration is not solely an artificial event but could have an endogenous function in Ciona. This study provides a technical innovation in the genome-editing methods, including easy establishment of mutant lines. Moreover, this study suggests cellular mechanisms and the potential evolutionary significance of PGC regeneration in Ciona. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  12. Somatic mosaicism of androgen receptor CAG repeats in colorectal carcinoma epithelial cells from men.

    Science.gov (United States)

    Di Fabio, Francesco; Alvarado, Carlos; Gologan, Adrian; Youssef, Emad; Voda, Linda; Mitmaker, Elliot; Beitel, Lenore K; Gordon, Philip H; Trifiro, Mark

    2009-06-01

    The X-linked human androgen receptor gene (AR) contains an exonic polymorphic trinucleotide CAG. The length of this encoded CAG tract inversely affects AR transcriptional activity. Colorectal carcinoma is known to express the androgen receptor, but data on somatic CAG repeat lengths variations in malignant and normal epithelial cells are still sporadic. Using laser capture microdissection (LCM), epithelial cells from colorectal carcinoma and normal-appearing mucosa were collected from the fresh tissue of eight consecutive male patients undergoing surgery (mean age, 70 y; range, 54-82). DNA isolated from each LCM sample underwent subsequent PCR and DNA sequencing to precisely determine AR CAG repeat lengths and the presence of microsatellite instability (MSI). Different AR CAG repeat lengths were observed in colorectal carcinoma (ranging from 0 to 36 CAG repeats), mainly in the form of multiple shorter repeat lengths. This genetic heterogeneity (somatic mosaicism) was also found in normal-appearing colorectal mucosa. Half of the carcinoma cases examined tended to have a higher number of AR CAG repeat lengths with a wider range of repeat size variation compared to normal mucosa. MSI carcinomas tended to have longer median AR CAG repeat lengths (n = 17) compared to microsatellite stable carcinomas (n = 14), although the difference was not significant (P = 0.31, Mann-Whitney test). Multiple unique somatic mutations of the AR CAG repeats occur in colorectal mucosa and in carcinoma, predominantly resulting in shorter alleles. Colorectal epithelial cells carrying AR alleles with shorter CAG repeat lengths may be more androgen-sensitive and therefore have a growth advantage.

  13. Molecular Evolution of Two Distinct dmrt1 Promoters for Germ and Somatic Cells in Vertebrate Gonads.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Musashijima, Masato; Wada, Mikako; Izutsu, Yumi; Kurakata, Erina; Park, Min Kyun; Takamatsu, Nobuhiko; Ito, Michihiko

    2017-03-01

    The transcription factor DMRT1 has important functions in two distinct processes, somatic-cell masculinization and germ-cell development in mammals. However, it is unknown whether the functions are conserved during evolution, and what mechanism underlies its expression in the two cell lineages. Our analysis of the Xenopus laevis and Silurana tropicalis dmrt1 genes indicated the presence of two distinct promoters: one upstream of the noncoding first exon (ncEx1), and one within the first intron. In contrast, only the ncEx1-upstream promoter was detected in the dmrt1 gene of the agnathan sand lamprey, which expressed dmrt1 exclusively in the germ cells. In X. laevis, the ncEx1- and exon 2-upstream promoters were predominantly used for germ-cell and somatic-cell transcription, respectively. Importantly, knockdown of the ncEx1-containing transcript led to reduced germ-cell numbers in X. laevis gonads. Intriguingly, two genetically female individuals carrying the knockdown construct developed testicles. Analysis of the reptilian leopard gecko dmrt1 revealed the absence of ncEx1. We propose that dmrt1 regulated germ-cell development in the vertebrate ancestor, then acquired another promoter in its first intron to regulate somatic-cell masculinization during gnathostome evolution. In the common ancestor of reptiles and mammals, only one promoter got function for both the two cell lineages, accompanied with the loss of ncEx1. In addition, we found a conserved noncoding sequence (CNS) in the dmrt1 5'-flanking regions only among amniote species, and two CNSs in the introns among most vertebrates except for agnathans. Finally, we discuss relationships between these CNSs and the promoters of dmrt1 during vertebrate evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Induction of plant somatic embryogenesis in liquid medium

    NARCIS (Netherlands)

    Kreuger, M.

    1996-01-01


    The large scale propagation of plants via somatic embryogenesis, has so far been difficult to achieve. In this thesis research is described leading to embryogenic cell lines that can be maintained for a long period, without loss of genetic stability. It is also described how embryogenic

  15. Cell Type-Specific Chromatin Signatures Underline Regulatory DNA Elements in Human Induced Pluripotent Stem Cells and Somatic Cells.

    Science.gov (United States)

    Zhao, Ming-Tao; Shao, Ning-Yi; Hu, Shijun; Ma, Ning; Srinivasan, Rajini; Jahanbani, Fereshteh; Lee, Jaecheol; Zhang, Sophia L; Snyder, Michael P; Wu, Joseph C

    2017-11-10

    Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31 + CD144 + ), cardiac progenitor cells (Sca-1 + ), fibroblasts (DDR2 + ), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering

  16. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    Science.gov (United States)

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Differential nuclear remodeling of mammalian somatic cells by Xenopus laevis oocyte and egg cytoplasm

    International Nuclear Information System (INIS)

    Alberio, Ramiro; Johnson, Andrew D.; Stick, Reimer; Campbell, Keith H.S.

    2005-01-01

    The mechanisms governing nuclear reprogramming have not been fully elucidated yet; however, recent studies show a universally conserved ability of both oocyte and egg components to reprogram gene expression in somatic cells. The activation of genes associated with pluripotency by oocyte/egg components may require the remodeling of nuclear structures, such that they can acquire the features of early embryos and pluripotent cells. Here, we report on the remodeling of the nuclear lamina of mammalian cells by Xenopus oocyte and egg extracts. Lamin A/C is removed from somatic cells incubated in oocyte and egg extracts in an active process that requires permeable nuclear pores. Removal of lamin A/C is specific, since B-type lamins are not changed, and it is not dependent on the incorporation Xenopus egg specific lamin III. Moreover, transcriptional activity is differentially regulated in somatic cells incubated in the extracts. Pol I and II transcriptions are maintained in cells in oocyte extracts; however, both activities are abolished in egg extracts. Our study shows that components of oocyte and egg extracts can modify the nuclear lamina of somatic cells and that this nuclear remodeling induces a structural change in the nucleus which may have implications for transcriptional activity. These experiments suggest that modifications in the nuclear lamina structure by the removal of somatic proteins and the incorporation of oocyte/egg components may contribute to the reprogramming of somatic cell nuclei and may define a characteristic configuration of pluripotent cells

  18. Germinal and somatic mutations in cancer

    International Nuclear Information System (INIS)

    Knudson, A.G. Jr.

    1977-01-01

    The role of germinal and somatic mutations in carcinogenesis leads to the conclusion that environmental carcinogens probably exert their effects via somatic mutations. Susceptibility to this process may itself be genetically determined, so we may deduce that two groups, one genetic and one non-genetic, are included in the 'environmental' class. Other individuals seem to acquire cancer even in the absence of such environmental agents, and these too may be classified into a genetic and a non-genetic group. It has been estimated that in industrial countries, the environmental groups include 70-80% of all cancer cases, but we are only beginning to know how to separate the genetic and non-genetic subgroups. The genetic subgroup of the 'non-environmental' group is very small, probably of the order of magnitude of 1-2% for cancer as a whole. The remainder, about 25%, comprises a non-genetic, non-environmental subgroup that seems to arise as a consequence of 'spontaneous' somatic mutations. The incidence of these 'background' cancers is what we should combat with preventive and therapeutic measures

  19. Interspecies somatic cell nucleus transfer with porcine oocytes as recipients: A novel bioassay system for assessing the competence of canine somatic cells to develop into embryos.

    Science.gov (United States)

    Sugimura, S; Narita, K; Yamashiro, H; Sugawara, A; Shoji, T; Terashita, Y; Nishimori, K; Konno, T; Yoshida, M; Sato, E

    2009-09-01

    Interspecies somatic cell nucleus transfer (iSCNT) could be a useful bioassay system for assessing the ability of mammalian somatic cells to develop into embryos. To examine this possibility, we performed canine iSCNT using porcine oocytes, allowed to mature in vitro, as recipients. Canine fibroblasts from the tail tips and dewclaws of a female poodle (Fp) and a male poodle (Mp) were used as donors. We demonstrated that the use of porcine oocytes induced blastocyst formation in the iSCNT embryos cultured in porcine zygote medium-3. In Fp and Mp, the rate of blastocyst formation from cleaved embryos (Fp: 6.3% vs. 22.4%; and Mp: 26.1% vs. 52.4%) and the number of cells at the blastocyst stage (Fp: 30.7 vs. 60.0; and Mp: 27.2 vs. 40.1) were higher in the embryos derived from dewclaw cells than in those derived from tail-tip cells (Ptip cells of Fp. Only blastocysts derived from dewclaw cells of Mp developed outgrowths. However, outgrowth formation was retrieved in the embryos derived from dewclaw cells of Fp by aggregation at the 4-cell stage. We inferred that iSCNT performed using porcine oocytes as recipients could represent a novel bioassay system for evaluating the developmental competence of canine somatic cells.

  20. Histology of somatic embryos of eurycoma longifolia (simaroubaceae): relevance in agrobacterium rhizogenes-mediated transformation

    International Nuclear Information System (INIS)

    Balakrishnan, B.; Rabiah, S.S.; Keng, C.L.

    2014-01-01

    Histological analysis conducted on somatic embryos of Eurycoma longifolia shows the developmental structures that are remarkably similar to seeds found in the wild. The primary components of a growing somatic embryo are its shoot and root apical meristems indicated by dense layers of rapidly growing cells. The increased understanding of In vitro culture systems and anatomical changes provide information into cellular processes that govern genetic transformation of E. longifolia with Agrobacterium rhizogenes. The presence of meristematic regions on cultured somatic embryos suggests that they are suitable for genetic transformation as genetic elements could be transported to these regions where growth and differentiation are centered. This allows the successful integration and expression of transferred DNA in the host organism, leading the way for an efficient A. rhizogenes-mediated transformation protocol. (author)

  1. Analysis of allelic expression patterns in clonal somatic cells by single-cell RNA-seq.

    Science.gov (United States)

    Reinius, Björn; Mold, Jeff E; Ramsköld, Daniel; Deng, Qiaolin; Johnsson, Per; Michaëlsson, Jakob; Frisén, Jonas; Sandberg, Rickard

    2016-11-01

    Cellular heterogeneity can emerge from the expression of only one parental allele. However, it has remained controversial whether, or to what degree, random monoallelic expression of autosomal genes (aRME) is mitotically inherited (clonal) or stochastic (dynamic) in somatic cells, particularly in vivo. Here we used allele-sensitive single-cell RNA-seq on clonal primary mouse fibroblasts and freshly isolated human CD8 + T cells to dissect clonal and dynamic monoallelic expression patterns. Dynamic aRME affected a considerable portion of the cells' transcriptomes, with levels dependent on the cells' transcriptional activity. Notably, clonal aRME was detected, but it was surprisingly scarce (aRME occurs transiently within individual cells, and patterns of aRME are thus primarily scattered throughout somatic cell populations rather than, as previously hypothesized, confined to patches of clonally related cells.

  2. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  3. Injection molded pinched flow fractionation device for enrichment of somatic cells in cow milk

    DEFF Research Database (Denmark)

    Jensen, Marie Pødenphant; Marie, Rodolphe; Olesen, Tom

    2014-01-01

    In this paper the continuous microfluidic separation technique pinched flow fractionation is applied to the enrichment of somatic cells from cow milk. Somatic cells were separated from the smallest fat particles and proteins thus better imaging and analysis of the cells can be achieved...

  4. Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish.

    Science.gov (United States)

    Leerberg, Dena M; Sano, Kaori; Draper, Bruce W

    2017-09-01

    The vertebrate ovary and testis develop from a sexually indifferent gonad. During early development of the organism, primordial germ cells (the gamete lineage) and somatic gonad cells coalesce and begin to undergo growth and morphogenesis to form this bipotential gonad. Although this aspect of development is requisite for a fertile adult, little is known about the genetic regulation of early gonadogenesis in any vertebrate. Here, we provide evidence that fibroblast growth factor (Fgf) signaling is required for the early growth phase of a vertebrate bipotential gonad. Based on mutational analysis in zebrafish, we show that the Fgf ligand 24 (Fgf24) is required for proliferation, differentiation, and morphogenesis of the early somatic gonad, and as a result, most fgf24 mutants are sterile as adults. Additionally, we describe the ultrastructural elements of the early zebrafish gonad and show that distinct somatic cell populations can be identified soon after the gonad forms. Specifically, we show that fgf24 is expressed in an epithelial population of early somatic gonad cells that surrounds an inner population of mesenchymal somatic gonad cells that are in direct contact with the germ cells, and that fgf24 is required for stratification of the somatic tissue. Furthermore, based on gene expression analysis, we find that differentiation of the inner mesenchymal somatic gonad cells into functional cell types in the larval and early juvenile-stage gonad is dependent on Fgf24 signaling. Finally, we argue that the role of Fgf24 in zebrafish is functionally analogous to the role of tetrapod FGF9 in early gonad development.

  5. Transient Acquisition of Pluripotency During Somatic Cell Transdifferentiation with iPSC Reprogramming Factors

    OpenAIRE

    Maza, Itay; Caspi, Inbal; Zviran, Asaf; Chomsky, Elad; Rais, Yoach; Viukov, Sergey; Geula, Shay; Buenrostro, Jason D.; Weinberger, Leehee; Krupalnik, Vladislav; Hanna, Suhair; Zerbib, Mirie; Dutton, James R.; Greenleaf, William J.; Massarwa, Rada

    2015-01-01

    Somatic cells can be transdifferentiated to other cell types without passing through a pluripotent state by ectopic expression of appropriate transcription factors 1,2 . Recent reports have proposed an alternative transdifferentiation method in which fibroblasts are directly converted to various mature somatic cell types by brief expression of the induced pluripotent stem cell (iPSC) reprogramming factors Oct4, Sox2, Klf4 and c-Myc (OSKM) followed by cell expansion in media that promote linea...

  6. A Comparative View on Human Somatic Cell Sources for iPSC Generation

    Directory of Open Access Journals (Sweden)

    Stefanie Raab

    2014-01-01

    Full Text Available The breakthrough of reprogramming human somatic cells was achieved in 2006 by the work of Yamanaka and Takahashi. From this point, fibroblasts are the most commonly used primary somatic cell type for the generation of induced pluripotent stem cells (iPSCs. Various characteristics of fibroblasts supported their utilization for the groundbreaking experiments of iPSC generation. One major advantage is the high availability of fibroblasts which can be easily isolated from skin biopsies. Furthermore, their cultivation, propagation, and cryoconservation properties are uncomplicated with respect to nutritional requirements and viability in culture. However, the required skin biopsy remains an invasive approach, representing a major drawback for using fibroblasts as the starting material. More and more studies appeared over the last years, describing the reprogramming of other human somatic cell types. Cells isolated from blood samples or urine, as well as more unexpected cell types, like pancreatic islet beta cells, synovial cells, or mesenchymal stromal cells from wisdom teeth, show promising characteristics for a reprogramming strategy. Here, we want to highlight the advantages of keratinocytes from human plucked hair as a widely usable, noninvasive harvesting method for primary material in comparison with other commonly used cell types.

  7. Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.

    Science.gov (United States)

    Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia

    2009-09-25

    An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.

  8. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Summary: Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. : Sung et al. demonstrate in a mouse model that telomeres of telomerase haplo-insufficient cells can be elongated by somatic cell nuclear transfer. Moreover, ntESCs derived from Terc+/− cells exhibit pluripotency evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency.

  9. Piwi Is Required to Limit Exhaustion of Aging Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Pedro Sousa-Victor

    2017-09-01

    Full Text Available Sophisticated mechanisms that preserve genome integrity are critical to ensure the maintenance of regenerative capacity while preventing transformation of somatic stem cells (SCs, yet little is known about mechanisms regulating genome maintenance in these cells. Here, we show that intestinal stem cells (ISCs induce the Argonaute family protein Piwi in response to JAK/STAT signaling during acute proliferative episodes. Piwi function is critical to ensure heterochromatin maintenance, suppress retrotransposon activation, and prevent DNA damage in homeostasis and under regenerative pressure. Accordingly, loss of Piwi results in the loss of actively dividing ISCs and their progenies by apoptosis. We further show that Piwi expression is sufficient to allay age-related retrotransposon expression, DNA damage, apoptosis, and mis-differentiation phenotypes in the ISC lineage, improving epithelial homeostasis. Our data identify a role for Piwi in the regulation of somatic SC function, and they highlight the importance of retrotransposon control in somatic SC maintenance.

  10. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  11. Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks.

    Science.gov (United States)

    Caplan, Z; Melilli, C; Barbano, D M

    2013-04-01

    The objective of experiment 1 was to determine if the extent of gravity separation of milk fat, bacteria, and somatic cells is influenced by the time and temperature of gravity separation or the level of contaminating bacteria present in the raw milk. The objective of experiment 2 was to determine if different temperatures of milk heat treatment affected the gravity separation of milk fat, bacteria, and somatic cells. In raw milk, fat, bacteria, and somatic cells rose to the top of columns during gravity separation. About 50 to 80% of the fat and bacteria were present in the top 8% of the milk after gravity separation of raw milk. Gravity separation for 7h at 12°C or for 22h at 4°C produced equivalent separation of fat, bacteria, and somatic cells. The completeness of gravity separation of fat was influenced by the level of bacteria in the milk before separation. Milk with a high bacterial count had less (about 50 to 55%) gravity separation of fat than milk with low bacteria count (about 80%) in 22h at 4°C. Gravity separation caused fat, bacteria, and somatic cells to rise to the top of columns for raw whole milk and high temperature, short-time pasteurized (72.6°C, 25s) whole milk. Pasteurization at ≥76.9°C for 25s prevented all 3 components from rising, possibly due to denaturation of native bovine immunoglobulins that normally associate with fat, bacteria, and somatic cells during gravity separation. Gravity separation can be used to produce reduced-fat milk with decreased bacterial and somatic cell counts, and may be a critical factor in the history of safe and unique traditional Italian hard cheeses produced from gravity-separated raw milk. A better understanding of the mechanism of this natural process could lead to the development of new nonthermal thermal technology (that does not involve heating the milk to high temperatures) to remove bacteria and spores from milk or other liquids. Copyright © 2013 American Dairy Science Association. Published by

  12. Analysis of mammary specific gene locus regulation in differentiated cells derived by somatic cell fusion

    International Nuclear Information System (INIS)

    Robinson, Claire; Kolb, Andreas F.

    2009-01-01

    The transcriptional regulation of a gene is best analysed in the context of its normal chromatin surroundings. However, most somatic cells, in contrast to embryonic stem cells, are refractory to accurate modification by homologous recombination. We show here that it is possible to introduce precise genomic modifications in ES cells and to analyse the phenotypic consequences in differentiated cells by using a combination of gene targeting, site-specific recombination and somatic cell fusion. To provide a proof of principle, we have analysed the regulation of the casein gene locus in mammary gland cells derived from modified murine ES cells by somatic cell fusion. A β-galactosidase reporter gene was inserted in place of the β-casein gene and the modified ES cells, which do not express the reporter gene, were fused with the mouse mammary gland cell line HC11. The resulting cell clones expressed the β-galactosidase gene to a similar extent and with similar hormone responsiveness as the endogenous gene. However, a reporter gene under the control of a minimal β-casein promoter (encompassing the two consensus STAT5 binding sites which mediate the hormone response of the casein genes) was unable to replicate expression levels or hormone responsiveness of the endogenous gene when inserted into the same site of the casein locus. As expected, these results implicate sequences other than the STAT5 sites in the regulation of the β-casein gene

  13. Repression of germline RNAi pathways in somatic cells by retinoblastoma pathway chromatin complexes.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Wu

    Full Text Available The retinoblastoma (Rb tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.

  14. The role of chromatin modifications in somatic embryogenesis in plants

    Directory of Open Access Journals (Sweden)

    Clelia eDe-la-Peña

    2015-08-01

    Full Text Available Somatic embryogenesis (SE is a powerful tool for plant genetic improvement, when used in combination with agricultural traditional techniques, and it is being used to understand the different processes that occur during the development of plant embryogenesis. SE onset depends on a complex network of interactions among plant growth regulators, mainly auxins and cytokinins, during the proembryogenic early stages, and ethylene, gibberellic and abscisic acids later in the development of the somatic embryos. These growth regulators control spatial and temporal regulation of multiple genes in order to initiate the change in the genetic program of the somatic cells, as well as the transition among embryo developmental stages. In recent years, epigenetic mechanisms have emerged as critical factors during SE. Some early reports indicate that auxins modify the levels of DNA methylation in embryogenic cells. The changes in DNA methylation patterns are associated with the regulation of several genes involved in SE, such as WUS, BBM1, LEC, and several others. In this review, we highlight the more recent discoveries in the role of epigenetic regulation of SE. In addition, we include a survey of novel approaches to the study of SE, and new opportunities to focus SE studies.

  15. Knockout of exogenous EGFP gene in porcine somatic cells using zinc-finger nucleases

    International Nuclear Information System (INIS)

    Watanabe, Masahito; Umeyama, Kazuhiro; Matsunari, Hitomi; Takayanagi, Shuko; Haruyama, Erika; Nakano, Kazuaki; Fujiwara, Tsukasa; Ikezawa, Yuka; Nakauchi, Hiromitsu

    2010-01-01

    Research highlights: → EGFP gene integrated in porcine somatic cells could be knocked out using the ZFN-KO system. → ZFNs induced targeted mutations in porcine primary cultured cells. → Complete absence of EGFP fluorescence was confirmed in ZFN-treated cells. -- Abstract: Zinc-finger nucleases (ZFNs) are expected as a powerful tool for generating gene knockouts in laboratory and domestic animals. Currently, it is unclear whether this technology can be utilized for knocking-out genes in pigs. Here, we investigated whether knockout (KO) events in which ZFNs recognize and cleave a target sequence occur in porcine primary cultured somatic cells that harbor the exogenous enhanced green fluorescent protein (EGFP) gene. ZFN-encoding mRNA designed to target the EGFP gene was introduced by electroporation into the cell. Using the Surveyor nuclease assay and flow cytometric analysis, we confirmed ZFN-induced cleavage of the target sequence and the disappearance of EGFP fluorescence expression in ZFN-treated cells. In addition, sequence analysis revealed that ZFN-induced mutations such as base substitution, deletion, or insertion were generated in the ZFN cleavage site of EGFP-expression negative cells that were cloned from ZFN-treated cells, thereby showing it was possible to disrupt (i.e., knock out) the function of the EGFP gene in porcine somatic cells. To our knowledge, this study provides the first evidence that the ZFN-KO system can be applied to pigs. These findings may open a new avenue to the creation of gene KO pigs using ZFN-treated cells and somatic cell nuclear transfer.

  16. Using induced pluripotent stem cells to explore genetic and epigenetic variation associated with Alzheimer's disease.

    Science.gov (United States)

    Imm, Jennifer; Kerrigan, Talitha L; Jeffries, Aaron; Lunnon, Katie

    2017-11-01

    It is thought that both genetic and epigenetic variation play a role in Alzheimer's disease initiation and progression. With the advent of somatic cell reprogramming into induced pluripotent stem cells it is now possible to generate patient-derived cells that are able to more accurately model and recapitulate disease. Furthermore, by combining this with recent advances in (epi)genome editing technologies, it is possible to begin to examine the functional consequence of previously nominated genetic variants and infer epigenetic causality from recently identified epigenetic variants. In this review, we explore the role of genetic and epigenetic variation in Alzheimer's disease and how the functional relevance of nominated loci can be investigated using induced pluripotent stem cells and (epi)genome editing techniques.

  17. Body-weight and chromosome aberrations induced by X-rays in somatic cells of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Marco, A. de; Belloni, M.P.

    1976-01-01

    Body-weight has been shown to influence the final expression of genetic damage by X-rays in Drosophila melanogaster. If larvae of Drosophila were raised up to the third instar in media containing different amounts of the same nutrient and in different conditions of crowding a positive correlation was observed between body-weight and frequency of chromosome aberrations induced by a given dose of X-rays in the somatic cells of their nerve ganglia. This effect, present in both sexes, is most plausibly attributed to a different capacity of big and small larvae for repairing radiation damage. (orig.) [de

  18. Pre-screening method for somatic cell contamination in human sperm epigenetic studies.

    Science.gov (United States)

    Jenkins, Timothy G; Liu, Lihua; Aston, Kenneth I; Carrell, Douglas T

    2018-04-01

    Sperm epigenetic profiles are frequently studied and are of great interest in many fields. One major technical concern when assessing these marks is the potential for somatic cell contamination. Because somatic cells have dramatically different epigenetic signatures, even small levels of contamination can result in significant problems in analysis and interpretation of data. In this study we evaluate an assay, which we designed to offer a reliable 'pre-screen' for somatic cell contamination that directly assesses the DNA being used in the study to determine tissue purity. In brief, we designed an inexpensive and simple assay that utilizes the strong differential methylation between sperm and somatic cells at four genomic loci to assess the general purity of samples prior to performing expensive and time intensive assays. The assay is able to reliably detect contamination qualitatively by running the sample on an agarose gel, or quantitatively with the use of a bioanalyzer. With this technique we have found that we can detect potentially contaminating signals in samples of many different types, including those from patients with poor sperm phenotypes (oligozoospermia, asthenozoospermia, and teratozoospermia). We also have found that the use of multiple sites to determine potential contamination is key, as some conditions (asthenozoospermia specifically) appear at one site to reflect a somatic-like profile, while at all other sites it appears to have very typical sperm DNA methylation signatures. Taken together, the use of the assay described herein was effective at identifying contamination and could be implemented in many labs to quickly and inexpensively pre-screen samples prior to performing far more expensive and labor intensive procedures. Additionally, the principles applied to the development of this assay could be easily adapted for the development of other assays to pre-screen different tissue/cell types or model organisms.

  19. Somatic (CSS and differential cell count (DCC during a lactation period in ass’milk

    Directory of Open Access Journals (Sweden)

    Paolo Polidori

    2010-01-01

    Full Text Available Hypoallergenic properties of ass’s milk protein fractions have been recently con- firmed, allowing ass’s milk to be considered as a valid substitute of the available hypoallergenic infant formulas. The objective of this study was to give a further contribution to the knowledge of ass’s milk safety and quality characteristics. A new procedure has been developed with a cytospin centrifuge in differential counts of milk somatic cells. Somatic cells count (SCC, differential somatic cells count (DCC and cultural examinations have been carried out in 62 milk samples collected from 11 asses at three different stages of lactation. Four major cells populations had been identified in ass’s milk too: lymphocytes (Ly, monocytes/macrophages (MA, polymorphonuclear neutrophils (PMNL, and epithelial cells (CE. The patterns of these cells have been discussed in comparison with cells found in dairy cows and ewes milk. In conclusion, a reproducible standard procedure has been developed to determine cell count of ass’s milk.

  20. Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics--recent achievements.

    Science.gov (United States)

    Samiec, M; Skrzyszowska, M

    2011-01-01

    Somatic cell cloning technology in mammals promotes the multiplication of productively-valuable genetically engineered individuals, and consequently allows also for standardization of transgenic farm animal-derived products, which, in the context of market requirements, will have growing significance. Gene farming is one of the most promising areas in modern biotechnology. The use of live bioreactors for the expression of human genes in the lactating mammary gland of transgenic animals seems to be the most cost-effective method for the production/processing of valuable recombinant therapeutic proteins. Among the transgenic farm livestock species used so far, cattle, goats, sheep, pigs and rabbits are useful candidates for the expression of tens to hundreds of grams of genetically-engineered proteins or xenogeneic biopreparations in the milk. At the beginning of the new millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on recombinant human proteins. The ever-growing demand for such pharmaceutical or nutriceutical proteins is an important driving force for the development of safe and large-scale production platforms. The aim of this paper is to present an overall survey of the state of the art in investigations which provide the current knowledge for deciphering the possibilities of practical application of the transgenic mammalian species generated by somatic cell cloning in biomedicine, the biopharmaceutical industry, human nutrition/dietetics and agriculture.

  1. Are we Genomic Mosaics? Variations of the Genome of Somatic Cells can Contribute to Diversify our Phenotypes.

    Science.gov (United States)

    Astolfi, P A; Salamini, F; Sgaramella, V

    2010-09-01

    Theoretical and experimental evidences support the hypothesis that the genomes and the epigenomes may be different in the somatic cells of complex organisms. In the genome, the differences range from single base substitutions to chromosome number; in the epigenome, they entail multiple postsynthetic modifications of the chromatin. Somatic genome variations (SGV) may accumulate during development in response both to genetic programs, which may differ from tissue to tissue, and to environmental stimuli, which are often undetected and generally irreproducible. SGV may jeopardize physiological cellular functions, but also create novel coding and regulatory sequences, to be exposed to intraorganismal Darwinian selection. Genomes acknowledged as comparatively poor in genes, such as humans', could thus increase their pristine informational endowment. A better understanding of SGV will contribute to basic issues such as the "nature vs nurture" dualism and the inheritance of acquired characters. On the applied side, they may explain the low yield of cloning via somatic cell nuclear transfer, provide clues to some of the problems associated with transdifferentiation, and interfere with individual DNA analysis. SGV may be unique in the different cells types and in the different developmental stages, and thus explain the several hundred gaps persisting in the human genomes "completed" so far. They may compound the variations associated to our epigenomes and make of each of us an "(epi)genomic" mosaic. An ensuing paradigm is the possibility that a single genome (the ephemeral one assembled at fertilization) has the capacity to generate several different brains in response to different environments.

  2. Flow-cytometric measurements of somatic cell mutations in Thorotrast patients

    International Nuclear Information System (INIS)

    Umeki, Shigeko; Kyoizumi, Seishi; Kusunoki, Yoichiro; Nakamura, Nori; Sasaki, Masao; Mori, Takesaburo; Ishikawa, Yuichi; Cologne, J.B.; Akiyama, Mitoshi.

    1992-10-01

    Exposure to ionizing radiation is a well-recognized risk factor for cancer development. Because ionizing radiation can induce mutations, an accurate way of measuring somatic mutation frequencies could be a useful tool for evaluating cancer risk. In the present study, we have examined in vivo somatic mutation frequencies at the erythrocyte glycophorin A and T-cell receptor loci in 18 Thorotrast patients. These persons have been continuously irradiated with alpha particles emitted from the internal deposition of thorium dioxide and thus have increased risks of certain malignant tumors. When compared with controls, the Thorotrast patients showed a significantly higher frequency of mutants at the lymphocyte T-cell receptor loci but not at the erythrocyte glycophorin A loci. (author)

  3. Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers.

    Science.gov (United States)

    Tao, Yu; Zheng, Weisheng; Jiang, Yonghua; Ding, Guitao; Hou, Xinfeng; Tang, Yitao; Li, Yueying; Gao, Shuai; Chang, Gang; Zhang, Xiaobai; Liu, Wenqiang; Kou, Xiaochen; Wang, Hong; Jiang, Cizhong; Gao, Shaorong

    2014-12-21

    Nucleosome organization determines the chromatin state, which in turn controls gene expression or silencing. Nucleosome remodeling occurs during somatic cell reprogramming, but it is still unclear to what degree the re-established nucleosome organization of induced pluripotent stem cells (iPSCs) resembles embryonic stem cells (ESCs), and whether the iPSCs inherit some residual gene expression from the parental fibroblast cells. We generated genome-wide nucleosome maps in mouse ESCs and in iPSCs reprogrammed from somatic cells belonging to three different germ layers using a secondary reprogramming system. Pairwise comparisons showed that the nucleosome organizations in the iPSCs, regardless of the iPSCs' tissue of origin, were nearly identical to the ESCs, but distinct from mouse embryonic fibroblasts (MEF). There is a canonical nucleosome arrangement of -1, nucleosome depletion region, +1, +2, +3, and so on nucleosomes around the transcription start sites of active genes whereas only a nucleosome occupies silent transcriptional units. Transcription factor binding sites possessed characteristic nucleosomal architecture, such that their access was governed by the rotational and translational settings of the nucleosome. Interestingly, the tissue-specific genes were highly expressed only in the parental somatic cells of the corresponding iPS cell line before reprogramming, but had a similar expression level in all the resultant iPSCs and ESCs. The re-established nucleosome landscape during nuclear reprogramming provides a conserved setting for accessibility of DNA sequences in mouse pluripotent stem cells. No persistent residual expression program or nucleosome positioning of the parental somatic cells that reflected their tissue of origin was passed on to the resulting mouse iPSCs.

  4. X-ray sensitivity of somatic cell hybrids

    International Nuclear Information System (INIS)

    Zampetti-Bosseler, F.; Heilporn, V.; Lievens, A.; Limbosch, S.

    1976-01-01

    Different somatic cell hybrids have been studied as a function of their x-ray survival and karyotypic properties. Hybrids between x-ray-sensitive mouse lymphoma cells and mouse fibroblasts, retaining a large proportion of both parental chromosomes, were much more resistant to irradiation than either of the parental cells. On the other hand, hybrids between sensitive mouse lymphoma cells and hamster fibroblasts which also retained a relatively high number of chromosomes from both parents had a sensitivity intermediate between the sensitivities of the parental cell lines. Finally, hybrids between mouse fibroblasts and hamster fibroblasts carrying at least one hamster genome and less than one mouse genome resembled the hamster parent with respect to survival capactity. The significance of these results is discussed

  5. Dose-effect relationships for malignancy in cells with different genetic characteristics

    International Nuclear Information System (INIS)

    Chadwick, K.H.; Leenhouts, H.P.

    1978-01-01

    By combining the proposals that malignancy behaves as a recessive genetic character, that a somatic mutation is an important step in the development of cancer, and that radiation-induced DNA double-strand breaks are the critical lesions which may lead to cell death, mutation and chromosomal aberrations, considerations can be made and equations derived for the incidence of malignancy in cells having different genotypes. Equations are derived for diploid carrier cells and tetraploid carrier cells, and are compared with data in literature on cell transformation. It is shown that some differences in experimental results could be due to the different genetic character of the cells used. The theoretical considerations are extended to the population which is considered to be constituted of 'carriers' and 'non-carriers' of the recessive malignant genotype. The possible influence of radiation on 'non-carriers' is discussed as are the implications of the presence of two groups within the population for the estimation of risk to low doses of radiation. (author)

  6. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  7. INFLUENCE OF SOMATIC CELL COUNT IN THE COMPOSITION OF GIROLANDO COW’S MILK IN TROPICAL ZONE

    Directory of Open Access Journals (Sweden)

    Vanessa Nunes Silva

    2016-08-01

    Full Text Available Bovine mastitis has been identified as the main disease affecting dairy cattle worldwide. Somatic Cell Count (SCC in milk is one of the most important indicators to evaluate the udder health of cows due to the high direct correlation with the mammary gland’s degree of infection. This study aimed to evaluate the different ranges of somatic cell count (SCC on the composition of bovine milk as well as finding a correlation between somatic cell count and body condition score on milk production and composition of this species. The experiment was conducted on a commercial farm located in São José de Mipibu, Rio Grande do Norte, Brazil. The same cows were milked mechanically, obtaining a milk production record for the period of December 2011 to May 2012. For this, 24 Girolando breed cows (3/4 and 7/8 were used, being 50% primiparous and 50% multiparous with average production 7.51 ± 2.58 kg day-1 and 10.98 ± 2.49 kg day-1, respectively. The cows were milked mechanically, obtaining a record of milk production over a period of five months, and milk samples were collected and sent for laboratory analysis. The levels of milk composition were evaluated. Lactose, non-fat solids and milk urea nitrogen were influenced by different intervals of somatic cell count of milk. In milk samples from primiparous and multiparous cows, positive correlations between somatic cell count and some components were found. As for body condition score, significant correlations were also found for milk production and composition. It was concluded the different levels of somatic cell count influenced the percentage of lactose, non-fat solids and milk urea nitrogen. Somatic cell count and body condition score also showed significant correlations with milk production and composition.

  8. Somatic cell count distributions during lactation predict clinical mastitis

    NARCIS (Netherlands)

    Green, M.J.; Green, L.E.; Schukken, Y.H.; Bradley, A.J.; Peeler, E.J.; Barkema, H.W.; Haas, de Y.; Collis, V.J.; Medley, G.F.

    2004-01-01

    This research investigated somatic cell count (SCC) records during lactation, with the purpose of identifying distribution characteristics (mean and measures of variation) that were most closely associated with clinical mastitis. Three separate data sets were used, one containing quarter SCC (n =

  9. Gastrointestinal stromal tumors, somatic mutations and candidate genetic risk variants.

    Directory of Open Access Journals (Sweden)

    Katie M O'Brien

    Full Text Available Gastrointestinal stromal tumors (GISTs are rare but treatable soft tissue sarcomas. Nearly all GISTs have somatic mutations in either the KIT or PDGFRA gene, but there are no known inherited genetic risk factors. We assessed the relationship between KIT/PDGFRA mutations and select deletions or single nucleotide polymorphisms (SNPs in 279 participants from a clinical trial of adjuvant imatinib mesylate. Given previous evidence that certain susceptibility loci and carcinogens are associated with characteristic mutations, or "signatures" in other cancers, we hypothesized that the characteristic somatic mutations in the KIT and PDGFRA genes in GIST tumors may similarly be mutational signatures that are causally linked to specific mutagens or susceptibility loci. As previous epidemiologic studies suggest environmental risk factors such as dioxin and radiation exposure may be linked to sarcomas, we chose 208 variants in 39 candidate genes related to DNA repair and dioxin metabolism or response. We calculated adjusted odds ratios (ORs and 95% confidence intervals (CIs for the association between each variant and 7 categories of tumor mutation using logistic regression. We also evaluated gene-level effects using the sequence kernel association test (SKAT. Although none of the association p-values were statistically significant after adjustment for multiple comparisons, SNPs in CYP1B1 were strongly associated with KIT exon 11 codon 557-8 deletions (OR = 1.9, 95% CI: 1.3-2.9 for rs2855658 and OR = 1.8, 95% CI: 1.2-2.7 for rs1056836 and wild type GISTs (OR = 2.7, 95% CI: 1.5-4.8 for rs1800440 and OR = 0.5, 95% CI: 0.3-0.9 for rs1056836. CYP1B1 was also associated with these mutations categories in the SKAT analysis (p = 0.002 and p = 0.003, respectively. Other potential risk variants included GSTM1, RAD23B and ERCC2. This preliminary analysis of inherited genetic risk factors for GIST offers some clues about the disease's genetic

  10. THE EFFECT OF BLOOD AND MILK SERUM ZINC CONCENTRATION ON MILK SOMATIC CELL COUNT IN DAIRY COWS

    Directory of Open Access Journals (Sweden)

    Ivana Davidov

    2016-11-01

    Full Text Available The objective of this study was to evaluate the effect of blood and milk zinc concentration on somatic cell count and occurrence of subclinical mastitis cases. The study was performed on thirty Holstein cows approximate same body weight, ages 3 to 5 years, with equally milk production. Blood samples were taken after the morning milking from the caudal vein and milk from all four quarters was taken before morning milking. All samples of blood and milk were taken to determined zinc, using inductively coupled plasma mass spectrometry. 37.67% (11/30 cows have blood serum zinc concentration below 7µmol/l, and 63.33% or 19/30 cows have blood serum zinc concentration higher then 13µmol/l. Also 30% (9/30 cows have somatic cell count lower then 400.000/ml which indicate absence of subclinical mastitis, but 70% (21/30 cows have somatic cell count higher then 400.000/ml which indicate subclinical mastitis. Results indicate that cows with level of zinc in blood serum higher then 13 µmol/l have lower somatic cell count. Cows with lower zinc blood serum concentration then 7 µmol/l have high somatic cell count and high incidence of subclinical mastitis. According to results in this research there is no significant effect of milk serum zinc concentration on somatic cell count in dairy cows.

  11. Amniotic Fluid Stem Cells: A Novel Source for Modeling of Human Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Ivana Antonucci

    2016-04-01

    Full Text Available In recent years, great interest has been devoted to the use of Induced Pluripotent Stem cells (iPS for modeling of human genetic diseases, due to the possibility of reprogramming somatic cells of affected patients into pluripotent cells, enabling differentiation into several cell types, and allowing investigations into the molecular mechanisms of the disease. However, the protocol of iPS generation still suffers from technical limitations, showing low efficiency, being expensive and time consuming. Amniotic Fluid Stem cells (AFS represent a potential alternative novel source of stem cells for modeling of human genetic diseases. In fact, by means of prenatal diagnosis, a number of fetuses affected by chromosomal or Mendelian diseases can be identified, and the amniotic fluid collected for genetic testing can be used, after diagnosis, for the isolation, culture and differentiation of AFS cells. This can provide a useful stem cell model for the investigation of the molecular basis of the diagnosed disease without the necessity of producing iPS, since AFS cells show some features of pluripotency and are able to differentiate in cells derived from all three germ layers “in vitro”. In this article, we describe the potential benefits provided by using AFS cells in the modeling of human genetic diseases.

  12. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    International Nuclear Information System (INIS)

    Yue, Xiao-shan; Fujishiro, Masako; Toyoda, Masashi; Akaike, Toshihiro; Ito, Yoshihiro

    2010-01-01

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  13. Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating virus of Japan envelope (HVJ-E)

    Energy Technology Data Exchange (ETDEWEB)

    Yue, Xiao-shan [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Fujishiro, Masako [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Toyoda, Masashi [Department of Reproductive Biology, National Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan); Ito, Yoshihiro, E-mail: y-ito@riken.jp [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Department of Biomolecular Engineering, Graduate School of Bioscience and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama-shi, Kanagawa 226-8501 (Japan)

    2010-04-16

    In this research, hemagglutinating virus of Japan envelope (HVJ-E) was used to reprogram somatic cells by fusion with mouse embryonic stem (ES) cells. Neomycin-resistant mouse embryonic fibroblasts (MEFs) were used as somatic cells. Nanog-overexpressing puromycin-resistant EB3 cells were used as mouse ES cells. These two cells were fused by exposing to HVJ-E and the generated fusion cells were selected by puromycin and G418 to get the stable fusion cell line. The fusion cells form colonies in feeder-free culture system. Microsatellite analysis of the fusion cells showed that they possessed genes from both ES cells and fibroblasts. The fusion cells were tetraploid, had alkali phosphatase activity, and expressed stem cell marker genes such as Pou5f1, Nanog, and Sox2, but not the fibroblast cell marker genes such as Col1a1 and Col1a2. The pluripotency of fusion cells was confirmed by their expression of marker genes for all the three germ layers after differentiation induction, and by their ability to form teratoma which contained all the three primary layers. Our results show that HVJ-E can be used as a fusion reagent for reprogramming of somatic cells.

  14. The Somatic Genomic Landscape of Chromophobe Renal Cell Carcinoma

    NARCIS (Netherlands)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-01-01

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared

  15. Antigen receptors and somatic hypermutation in B-cell chronic lymphocytic leukemia with Richter's transformation

    NARCIS (Netherlands)

    Smit, Laura A.; van Maldegem, Febe; Langerak, Anton W.; van der Schoot, C. Ellen; de Wit, Mireille J.; Bea, Silvia; Campo, Elias; Bende, Richard J.; van Noesel, Carel J. M.

    2006-01-01

    BACKGROUND AND OBJECTIVES: Activation-induced cytidine deaminase is essential for somatic hypermutation and class switch recombination of the immunoglobulin genes in B cells. It has been proposed that aberrant targeting of the somatic hypermutation machinery is instrumental in initiation and

  16. STUDY REGARDING THE CORELATION BETWEEN SOMATIC CELLS COUNT AND MAJOR CHEMICAL COMPOUNDS IN RAW MILK

    Directory of Open Access Journals (Sweden)

    S. ACATINCĂI

    2008-10-01

    Full Text Available This study approaches the dynamic of somatic cells number and chemical composition of milk during 13 months of control. The study also investigates the correlations between the number of somatic cells and some chemical parameters in milk. Studies were carried out on Romanian Black and White cows between March 2005 and March 2006 at the Didactical farm of the Banat University of Agricultural Sciences Timisoara. As quality indicator, the number of somatic cells has different values among the controls. Average values for the 13 months of control, with the exception of three controls, were below maximum limit admitted from 1th of January 2007 (600000 SCC/ml milk. There weren’t any significant differences for SCC between the two seasons. Chemical parameters in milk varied in close limits and the differences were not significant, with one exception for fat percent. Fat percent is higher (p<0.05 in the cold season 3.87% compared with 3.55% during the warm season. Somatic cells number is weak correlated with lactose and strong correlated with proteins.

  17. Breeding value estimation for somatic cell score in South African ...

    African Journals Online (AJOL)

    Breeding value estimation for somatic cell score in South African dairy cattle. ... are not unity, the RM-model estimates more competitive variances and requires ... are therefore recommended for breeding value estimation on a national basis.

  18. A matter of identity — Phenotype and differentiation potential of human somatic stem cells

    Directory of Open Access Journals (Sweden)

    S.E.P. New

    2015-07-01

    Full Text Available Human somatic stem cells with neural differentiation potential can be valuable for developing cell-based therapies, including treatment of birth-related defects, while avoiding issues associated with cell reprogramming. Precisely defining the “identity” and differentiation potential of somatic stem cells from different sources, has proven difficult, given differences in sets of specific markers, protocols used and lack of side-by-side characterization of these cells in different studies. Therefore, we set to compare expression of mesenchymal and neural markers in human umbilical cord-derived mesenchymal stem cells (UC-MSCs, pediatric adipose-derived stem cells (p-ADSCs in parallel with human neural stem cells (NSCs. We show that UC-MSCs at a basal level express mesenchymal and so-called “neural” markers, similar to that we previously reported for the p-ADSCs. All somatic stem cell populations studied, independently from tissue and patient of origin, displayed a remarkably similar expression of surface markers, with the main difference being the restricted expression of CD133 and CD34 to NSCs. Expression of certain surface and neural markers was affected by the expansion medium used. As predicted, UC-MSCs and p-ADSCs demonstrated tri-mesenchymal lineage differentiation potential, though p-ADSCs display superior chondrogenic differentiation capability. UC-MSCs and p-ADSCs responded also to neurogenic induction by up-regulating neuronal markers, but crucially they appeared morphologically immature when compared with differentiated NSCs. This highlights the need for further investigation into the use of these cells for neural therapies. Crucially, this study demonstrates the lack of simple means to distinguish between different cell types and the effect of culture conditions on their phenotype, and indicates that a more extensive set of markers should be used for somatic stem cell characterization, especially when developing therapeutic

  19. Effects of somatic cell count in subclinical mastitis on raw milk quality in dairy farms of Khuzestan province

    Directory of Open Access Journals (Sweden)

    mohammad Hossieni nejad

    2016-01-01

    Full Text Available Mastitis is an infectious disease that is spread in livestock and can cause cattle mortality. Generally a cow with mastitis has a 15 per cent decrease in milk production. In addition, losses from changes in some components of milk should also be considered. Any change in milk properties can be severe hazard for milk producers, dairy factories and consumers. In this study, the effect of somatic cell count on row milk quality of cows affected by subclinical mastitis was studied. For this purpose 240 milk samples were collected from dairy farms with subclinical mastitis (traditional and industrial of Khuzestan province in 2014 and their somatic cell count, protein and lipid contact and acidity determined. The mean±SD for somatic cells, acidity, protein and fat were 3.20×105±1.37×105 SCC/ml, 14.50±0.62 D°, 3.12±0.06% and 3.23±0.14% respectively. After statistical analysis, reverse correlation were found between somatic cell count with milk fat and protein. However, direct correlation was observed between range of milk fat and protein (p>0.01. Furthermore the results indicated that the range of acidity in spring and winter, protein and fat in winter and somatic cell in summer and autumn were more than the other seasons. According to statistical analysis, protein percent of milk samples in industrial farms were higher than traditional farms although the range of somatic cells was higher for traditional milk samples ‏p>0.05 According to the result, it seems that the somatic cell count of milk influences raw milk fat and protein content and acidity.

  20. Direct reprogramming of somatic cells into neural stem cells or neurons for neurological disorders.

    Science.gov (United States)

    Hou, Shaoping; Lu, Paul

    2016-01-01

    Direct reprogramming of somatic cells into neurons or neural stem cells is one of the most important frontier fields in current neuroscience research. Without undergoing the pluripotency stage, induced neurons or induced neural stem cells are a safer and timelier manner resource in comparison to those derived from induced pluripotent stem cells. In this prospective, we review the recent advances in generation of induced neurons and induced neural stem cells in vitro and in vivo and their potential treatments of neurological disorders.

  1. Bioengineering a non-genotoxic vector for genetic modification of mesenchymal stem cells.

    Science.gov (United States)

    Chen, Xuguang; Nomani, Alireza; Patel, Niket; Nouri, Faranak S; Hatefi, Arash

    2018-01-01

    Vectors used for stem cell transfection must be non-genotoxic, in addition to possessing high efficiency, because they could potentially transform normal stem cells into cancer-initiating cells. The objective of this research was to bioengineer an efficient vector that can be used for genetic modification of stem cells without any negative somatic or genetic impact. Two types of multifunctional vectors, namely targeted and non-targeted were genetically engineered and purified from E. coli. The targeted vectors were designed to enter stem cells via overexpressed receptors. The non-targeted vectors were equipped with MPG and Pep1 cell penetrating peptides. A series of commercial synthetic non-viral vectors and an adenoviral vector were used as controls. All vectors were evaluated for their efficiency and impact on metabolic activity, cell membrane integrity, chromosomal aberrations (micronuclei formation), gene dysregulation, and differentiation ability of stem cells. The results of this study showed that the bioengineered vector utilizing VEGFR-1 receptors for cellular entry could transfect mesenchymal stem cells with high efficiency without inducing genotoxicity, negative impact on gene function, or ability to differentiate. Overall, the vectors that utilized receptors as ports for cellular entry (viral and non-viral) showed considerably better somato- and genosafety profiles in comparison to those that entered through electrostatic interaction with cellular membrane. The genetically engineered vector in this study demonstrated that it can be safely and efficiently used to genetically modify stem cells with potential applications in tissue engineering and cancer therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Optimization of somatic embryogenesis procedure for commercial ...

    African Journals Online (AJOL)

    The first objective of this study was to assess and optimize somatic embryo production in a genetically diverse range of cacao genotypes. The primary and secondary somatic embryogenesis response of eight promising cacao clones and a positive control was evaluated using modified versions of standard protocols.

  3. Somatic cell nuclear transfer in its first and the second decade: sussesses, setbacks, paradoxes and perspectives

    DEFF Research Database (Denmark)

    Vajta, Gabor

    2007-01-01

    The present review gives a subjective outline of the past and future of somatic cell nuclear trensfer (SCNT). The first decade was full of contradictions: amazing successes were followed by frustrating fiascos. Although the possibility of reversing somatic cell differentiation completely is a more...

  4. Boron-Mediated Plant Somatic Embryogenesis: A Provocative Model

    Directory of Open Access Journals (Sweden)

    Dhananjay K. Pandey

    2012-01-01

    Full Text Available A central question in plant regeneration biology concerns the primary driving forces invoking the acquisition of somatic embryogenesis. Recently, the role of micronutrient boron (B in the initiation and perpetuation of embryogenesis has drawn considerable attention within the scientific community. This interest may be due in part to the bewildering observation that the system-wide induction of embryogenic potential significantly varied in response to a minimal to optimal supply of B (minimal ≤ 0.1 mM, optimal = 0.1 mM. At the cellular level, certain channel proteins and cell wall-related proteins important for the induction of embryogenesis have been shown to be transcriptionally upregulated in response to minimal B supply suggesting the vital role of B in the induction of embryogenesis. At the molecular level, minimal to no B supply increased the endogenous level of auxin, which subsequently influenced the auxin-inducible somatic embryogenesis receptor kinases, suggesting the role of B in the induction of embryogenesis. Also, minimal B concentration may “turn on” other genetic and/or cellular transfactors reported earlier to be essential for cell-restructuring and induction of embryogenesis. In this paper, both the direct and indirect roles of B in the induction of somatic embryogenesis are highlighted and suggested for future validation.

  5. The Epigenetic Reprogramming Roadmap in Generation of iPSCs from Somatic Cells

    DEFF Research Database (Denmark)

    Brix, Jacob; Zhou, Yan; Luo, Yonglun

    2015-01-01

    Reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) is a comprehensive epigenetic process involving genome-wide modifications of histones and DNA methylation. This process is often incomplete, which subsequently affects iPSC reprograming, pluripotency, and differentiation cap...

  6. 40 CFR 798.5300 - Detection of gene mutations in somatic cells in culture.

    Science.gov (United States)

    2010-07-01

    ... cells in culture. 798.5300 Section 798.5300 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....5300 Detection of gene mutations in somatic cells in culture. (a) Purpose. Mammalian cell culture... selected by resistance to ouabain. (2) Description. Cells in suspension or monolayer culture are exposed to...

  7. Somatic cell and molecular genetics approach to DNA repair and mutagenesis

    International Nuclear Information System (INIS)

    Thompson, L.H.

    1985-01-01

    In the CHO cell line, UV-sensitive mutants representing five genetic complementation groups have been identified. Mutants from each of these groups were shown to be defective in performing the incision step of repair after exposure to UV. The large number of complementation groups of xeroderma pigmentosa mutations has raised the question whether these groups all correspond to single gene loci. The same issue applies to the 5 groups of UV-sensitive CHO mutants. One approach toward answering this question is to localize in the human karyotype the genes that complement the defects in the CHO mutants. Thus, by making CHO/human cell hybrids under the appropriate selective conditions, we have begun to map each of the complementing human genes. The mutation in strain UV20 (Group 2) was complemented by human chromosome 19. Preliminary evidence suggests that UV5 may also be complemented by human chromosome 19 while each of the other 3 groups involves a different human chromosome. Somewhat surprisingly, mutant EM9 is also complemented by a gene on chromosome 19

  8. The somatically significant dose, SSD, and analog of the GSD, the genetically significant dose

    International Nuclear Information System (INIS)

    Beentjes, L.B.; Duijsings, J.H.

    1992-01-01

    The medical applications of radiation comprise three main fields namely: Diagnostic Radiology, Radiotherapy and Nuclear Medicine. With the new weighting factors of ICRP (IC91a) the effective dose due to medical applications can be established. I is common to separate the effective dose into the genetic part and the somatic part, SED. In dealing with gonad doses it is important to account for the age of the person at the time of exposure as this will influence the number of children still to be expected from that person. The resulting dose will then be called the genetically significant dose, GSD. In a similar fashion this age factor will be important in considering the chance of tumor induction. The age of patients differs considerably from the average age of the general population. This age difference has to be accounted for if a comparison is to be made with other sources of radiation. This justifies establishing a somatically significant dose, SSD. The reduction of the SED value to a SSD for the medical field due to this phenomenon is .6 for diagnostic radiology, .5 for nuclear medicine and .3 for radiotherapy. Also the extension to more organs at risk, which result in a larger number of weighting factors published by ICRP (IC91a) tends to lower the calculated effective doses. (author)

  9. A stochastic model of epigenetic dynamics in somatic cell reprogramming

    Directory of Open Access Journals (Sweden)

    Max eFloettmann

    2012-06-01

    Full Text Available Somatic cell reprogramming has dramatically changed stem cell research inrecent years. The high pace of new findings in the field and an ever increasingamount of data from new high throughput techniques make it challengingto isolate core principles of the process. In order to analyze suchmechanisms, we developed an abstract mechanistic model of a subset of theknown regulatory processes during cell differentiation and production of inducedpluripotent stem cells. This probabilistic Boolean network describesthe interplay between gene expression, chromatin modifications and DNAmethylation. The model incorporates recent findings in epigenetics and reproducesexperimentally observed reprogramming efficiencies and changes inmethylation and chromatin remodeling. It enables us to investigate in detail,how the temporal progression of the process is regulated. It also explicitlyincludes the transduction of factors using viral vectors and their silencing inreprogrammed cells, since this is still a standard procedure in somatic cellreprogramming. Based on the model we calculate an epigenetic landscape.Simulation results show good reproduction of experimental observations duringreprogramming, despite the simple stucture of the model. An extensiveanalysis and introduced variations hint towards possible optimizations of theprocess, that could push the technique closer to clinical applications. Fasterchanges in DNA methylation increase the speed of reprogramming at theexpense of efficiency, while accelerated chromatin modifications moderatelyimprove efficiency.

  10. Environmental modulation of somatic mutations: nature of interactions. Final report, 1 June 1974--31 May 1977

    International Nuclear Information System (INIS)

    Mericle, L.W.

    1977-05-01

    Research on this project has had as a major goal a combined ecologic-genetic investigation of somatic mutations in order to evaluate the impacts of certain changing environmental parameters. The ultimate aim, to better understand how such environmental-mutation interactions operate and to assure the information obtained be extrapolatable to conditions and events in nature. Higher plants delineate reproductive tissues late in development from meristematic, somatic tissues. Moreover, the prevailing method of reproduction may be without sexual fusion of gametes and/or wholly asexual (vegetative). Therefore, somatic mutations can have as far-reaching genetic significance for a plant population as when germ cells, themselves, are directly affected. Our data show diurnal temperature differences (DTD) of greater than or equal to 22.2 C-degrees to be very effective mutagenic agents in the Tradescantia somatic mutation system. Further, these ranges of DTD were found to occur often in important seed production areas. A DTD of 22.2 in magnitude can increase mutations 10-fold. And, durations short as 1-day can induce significant increases in mutation rate. Whether interaction of 22.2 DTD with low-level radiation (800 mR/day) is synergistic or attenuative is still debatable. We believe, however, that spontaneous, and 22.2 DTD induced, mutations occur mainly via the genetic mechanism of somatic crossing-over; mutations from acute ionizing radiation (e.g., 30-60 R γ) via chromosome breakage, producing micronuclei. Requirements for maximizing the Discriminatory Response Capability (DRC) in the Tradescantia somatic mutation system are set forth

  11. Review of somatic cell nuclear transfer in pig | Muenthaisong ...

    African Journals Online (AJOL)

    It is now more than 8 years, since the first cloned pig from nuclear transfer was reported. Success of somatic cell nuclear transfer (SCNT) in pig is still low compared to that in bovine. Embryonic and neonatal abnormalities of cloned piglets are probably a result of incorrect or incomplete reprogramming of the transferred ...

  12. Genetic parameters for somatic cell score according to udder infection status in Valle del Belice dairy sheep and impact of imperfect diagnosis of infection.

    NARCIS (Netherlands)

    Riggio, V.; Portolano, B.; Bovenhuis, H.; Scatassa, S.; Bishop, S.C.

    2010-01-01

    Background Somatic cell score (SCS) has been promoted as a selection criterion to improve mastitis resistance. However, SCS from healthy and infected animals may be considered as separate traits. Moreover, imperfect sensitivity and specificity could influence animals' classification and impact on

  13. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    xz

    2015-04-29

    Apr 29, 2015 ... the standard method to determine the quality of raw milk. (Ribas, 1999). Magalhães .... somatic cell score (SCS) resulted in an increase in the protein concentration of .... Yield of Dairy Herds]. C. E. Martins, C. N. Costa, J. R. F..

  14. Multicellularity makes somatic differentiation evolutionarily stable

    Science.gov (United States)

    Wahl, Mary E.; Murray, Andrew W.

    2016-01-01

    Many multicellular organisms produce two cell lineages: germ cells, whose descendants produce the next generation, and somatic cells, which support, protect, and disperse the germ cells. This germ-soma demarcation has evolved independently in dozens of multicellular taxa but is absent in unicellular species. A common explanation holds that in these organisms, inefficient intercellular nutrient exchange compels the fitness cost of producing nonreproductive somatic cells to outweigh any potential benefits. We propose instead that the absence of unicellular, soma-producing populations reflects their susceptibility to invasion by nondifferentiating mutants that ultimately eradicate the soma-producing lineage. We argue that multicellularity can prevent the victory of such mutants by giving germ cells preferential access to the benefits conferred by somatic cells. The absence of natural unicellular, soma-producing species previously prevented these hypotheses from being directly tested in vivo: to overcome this obstacle, we engineered strains of the budding yeast Saccharomyces cerevisiae that differ only in the presence or absence of multicellularity and somatic differentiation, permitting direct comparisons between organisms with different lifestyles. Our strains implement the essential features of irreversible conversion from germ line to soma, reproductive division of labor, and clonal multicellularity while maintaining sufficient generality to permit broad extension of our conclusions. Our somatic cells can provide fitness benefits that exceed the reproductive costs of their production, even in unicellular strains. We find that nondifferentiating mutants overtake unicellular populations but are outcompeted by multicellular, soma-producing strains, suggesting that multicellularity confers evolutionary stability to somatic differentiation. PMID:27402737

  15. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  16. Somatic cell genotoxicity at the glycophorin A locus in humans

    International Nuclear Information System (INIS)

    Jensen, R.H.; Grant, S.G.; Langlois, R.G.; Bigbee, W.L.

    1990-01-01

    We have developed an assay for detecting variant erythrocytes that occur as a result of in vivo allele loss at the glycophorin A (GPA) locus on chromosome 4 in humans. This gene codes for an erythroid- specific cell surface glycoprotein, and with our assay we are able to detect rare variant erythrocytes that have lost expression of one of the two GPA alleles. Two distinctly different variant cell types are detected with this assay. One variant cell type (called N OE) is hemizygous. Our assay also detects homozygous variant erythrocytes that have lost expression of the GPA(M) allele and express the GPA(N) allele at twice the heterozygous level. The results of this assay are an enumeration of the frequency of N OE and NN variant cell types for each individual analyzed. These variant cell frequencies provide a measure of the amount of somatic cell genotoxicity that has occurred at the GPA locus. Such genotoxicity could be the result of (1) reactions of toxic chemicals to which the individual has been exposed, or (2) high energy radiation effects on erythroid precursor cells, or (3) errors in DNA replication or repair in these cells of the bone marrow. Thus, the GPA-based variant cell frequency can serve as a biodosimeter that indicates the amount of genotoxic exposure each individual has received. Because two very different kinds of variant cells are enumerated, different kinds of genotoxicity should be distinguishable. Results of the GPA somatic genotoxicity assay may also provide valuable information for cancer-risk estimation on each individual. 16 refs

  17. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland

    Directory of Open Access Journals (Sweden)

    Meredith Brian K

    2012-03-01

    Full Text Available Abstract Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems. This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input. Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework

  18. Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland

    Science.gov (United States)

    2012-01-01

    Background Contemporary dairy breeding goals have broadened to include, along with milk production traits, a number of non-production-related traits in an effort to improve the overall functionality of the dairy cow. Increased indirect selection for resistance to mastitis, one of the most important production-related diseases in the dairy sector, via selection for reduced somatic cell count has been part of these broadened goals. A number of genome-wide association studies have identified genetic variants associated with milk production traits and mastitis resistance, however the majority of these studies have been based on animals which were predominantly kept in confinement and fed a concentrate-based diet (i.e. high-input production systems). This genome-wide association study aims to detect associations using genotypic and phenotypic data from Irish Holstein-Friesian cattle fed predominantly grazed grass in a pasture-based production system (low-input). Results Significant associations were detected for milk yield, fat yield, protein yield, fat percentage, protein percentage and somatic cell score using separate single-locus, frequentist and multi-locus, Bayesian approaches. These associations were detected using two separate populations of Holstein-Friesian sires and cows. In total, 1,529 and 37 associations were detected in the sires using a single SNP regression and a Bayesian method, respectively. There were 103 associations in common between the sires and cows across all the traits. As well as detecting associations within known QTL regions, a number of novel associations were detected; the most notable of these was a region of chromosome 13 associated with milk yield in the population of Holstein-Friesian sires. Conclusions A total of 276 of novel SNPs were detected in the sires using a single SNP regression approach. Although obvious candidate genes may not be initially forthcoming, this study provides a preliminary framework upon which to identify the

  19. Effects of herd management practices on somatic cell counts in an arid climate

    Directory of Open Access Journals (Sweden)

    Ali Sadeghi-Sefidmazgi

    2014-09-01

    Full Text Available The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran were analyzed. Average lactation SCC (cells × 1,000 was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lactation SCC were determined separately using mixed linear models in the MIXED procedure with average lactation somatic cell score (SCS included as the dependent variable. Some of the management practices associated with low average lactation SCS included sawdust combined with sand bedding, using automatic cup removers, disinfection of the teats by dipping into disinfectant, using washable towels for teat cleaning, free-stall barns, wet disposable tissue for udder washing, wearing gloves during milking and the use of humidifiers and shade. Lower-production herds and larger-size herds had lower average lactation somatic cell counts. Most herd management practices associated with average lactation SCC in dairy herds in the arid region of Isfahan are in agreement with most previous studies. However, different results are found for use of humidifier, bedding materials and herd size.

  20. Role of ooplasm in nuclear and nucleolar remodeling of intergeneric somatic cell nuclear transfer embryos during the first cell cycle

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, Frantisek; Petrovicova, Ida

    2011-01-01

    Initially, development of the zygote is under control of the oocyte ooplasm. However, it is presently unknown if and to what extent is the ooplasm able to interact with a transferred somatic cell from another species in the context of interspecies somatic cell nuclear transfer (SCNT). Here, one-c...... in sequence-specific interactions between the ooplasm and chromatin of another genus. In conclusion, the results demonstrate a possible reason why the intergeneric SCNT embryos never reached the full term....

  1. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  2. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    Science.gov (United States)

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  3. Expression and Function of Cell Wall-Bound Cationic Peroxidase in Asparagus Somatic Embryogenesis

    Science.gov (United States)

    Takeda, Hiroyuki; Kotake, Toshihisa; Nakagawa, Naoki; Sakurai, Naoki; Nevins, Donald J.

    2003-01-01

    Cultured asparagus (Asparagus officinalis L. cv Y6) cells induced to regenerate into whole plants through somatic embryogenesis secreted a 38-kD protein into cell walls. The full-length cDNA sequence of this protein (Asparagus officinalis peroxidase 1 [AoPOX1]) determined by reverse transcriptase-polymerase chain reaction showed similarity with plant peroxidases. AoPOX1 transcripts were particularly abundant during early somatic embryogenesis. To evaluate the in vivo function of AoPOX1 protein, purified recombinant AoPOX1 protein was reacted with a series of phenolic substrates. The AoPOX1 protein was effective in the metabolism of feruloyl (o-methoxyphenol)-substituted substrates, including coniferyl alcohol. The reaction product of coniferyl alcohol was fractionated and subjected to gas chromatography-mass spectrometry analysis and 1H-nuclear magnetic resonance analysis, indicating that the oxidation product of coniferyl alcohol in the presence of AoPOX1 was dehydrodiconiferyl alcohol. The concentration of dehydrodiconiferyl alcohol in the cultured medium of the somatic embryos was in the range of 10−8 m. Functions of the AoPOX1 protein in the cell differentiation are discussed. PMID:12692335

  4. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  5. Economic cost of increased somatic cell count in South African dairy ...

    African Journals Online (AJOL)

    cuthbert

    2014-06-24

    Jun 24, 2014 ... Relative economic values, standardized to the value of protein, were ... as somatic cell count (SCC), is the most widely used measure of raw milk quality. .... Milk (l). Fat (kg). Protein (kg). Calving interval (days). Live weight (kg).

  6. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    DEFF Research Database (Denmark)

    Su, Ying; Subedee, Ashim; Bloushtain-Qimron, Noga

    2015-01-01

    Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrate...

  7. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine.

    Science.gov (United States)

    Burridge, Paul W; Sharma, Arun; Wu, Joseph C

    2015-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine.

  8. Somatic stem cell differentiation is regulated by PI3K/Tor signaling in response to local cues.

    Science.gov (United States)

    Amoyel, Marc; Hillion, Kenzo-Hugo; Margolis, Shally R; Bach, Erika A

    2016-11-01

    Stem cells reside in niches that provide signals to maintain self-renewal, and differentiation is viewed as a passive process that depends on loss of access to these signals. Here, we demonstrate that the differentiation of somatic cyst stem cells (CySCs) in the Drosophila testis is actively promoted by PI3K/Tor signaling, as CySCs lacking PI3K/Tor activity cannot differentiate properly. We find that an insulin peptide produced by somatic cells immediately outside of the stem cell niche acts locally to promote somatic differentiation through Insulin-like receptor (InR) activation. These results indicate that there is a local 'differentiation' niche that upregulates PI3K/Tor signaling in the early daughters of CySCs. Finally, we demonstrate that CySCs secrete the Dilp-binding protein ImpL2, the Drosophila homolog of IGFBP7, into the stem cell niche, which blocks InR activation in CySCs. Thus, we show that somatic cell differentiation is controlled by PI3K/Tor signaling downstream of InR and that the local production of positive and negative InR signals regulates the differentiation niche. These results support a model in which leaving the stem cell niche and initiating differentiation are actively induced by signaling. © 2016. Published by The Company of Biologists Ltd.

  9. Chemically Induced Reprogramming of Somatic Cells to Pluripotent Stem Cells and Neural Cells.

    Science.gov (United States)

    Biswas, Dhruba; Jiang, Peng

    2016-02-06

    The ability to generate transplantable neural cells in a large quantity in the laboratory is a critical step in the field of developing stem cell regenerative medicine for neural repair. During the last few years, groundbreaking studies have shown that cell fate of adult somatic cells can be reprogrammed through lineage specific expression of transcription factors (TFs)-and defined culture conditions. This key concept has been used to identify a number of potent small molecules that could enhance the efficiency of reprogramming with TFs. Recently, a growing number of studies have shown that small molecules targeting specific epigenetic and signaling pathways can replace all of the reprogramming TFs. Here, we provide a detailed review of the studies reporting the generation of chemically induced pluripotent stem cells (ciPSCs), neural stem cells (ciNSCs), and neurons (ciN). We also discuss the main mechanisms of actions and the pathways that the small molecules regulate during chemical reprogramming.

  10. Effect of the somatic cell count on physicochemical components of ...

    African Journals Online (AJOL)

    ... of the School of Veterinary Medicine and Animal Science of the Federal University of Goiás (Escola de Veterinária e Zootecnia da Universidade Federal de Goiás). Protein, fat, lactose, casein, urea, defatted dry extract and somatic cell counts (SCC) were analyzed. A completely randomized experimental design was used.

  11. Potential role of centrioles in determining the morphogenetic status of animal somatic cells.

    Science.gov (United States)

    Tkemaladze, J; Chichinadze, K

    2005-05-01

    Irreversible differentiation (change of morphogenetic status) and programmed death (apoptosis) are observed only in somatic cells. Cell division is the only way by which the morphogenetic status of the offspring cells may be modified. It is known that there is a fixed limit to the number of possible cell divisions, the so-called 'Hayflick limit'. Existing links between cell division, differentiation and apoptosis make it possible to conclude that all these processes could be controlled by a single self-reproducing structure. Potential candidates for this replicable structure in a somatic cell are chromosomes, mitochondria (both contain DNA), and centrioles. Centrioles (diplosome) are the most likely unit that can fully regulate the processes of irreversible differentiation, determination and modification of the morphogenetic status. It may contain differently encoded RNA molecules stacked in a definite order. During mitosis, these RNA molecules are released one by one into the cytoplasm. In the presence of reverse transcriptase and endonuclease, RNA can be embedded in nuclear DNA. This process presumably changes the status of repressed and potentially active genes and, subsequently, the morphogenetic status of a cell.

  12. Associations between pathogen-specific clinical mastitis and somatic cell count patterns

    NARCIS (Netherlands)

    Haas, de Y.; Veerkamp, R.F.; Barkema, H.W.; Gröhn, Y.T.; Schukken, Y.H.

    2004-01-01

    Associations were estimated between pathogen-specific cases of clinical mastitis (CM) and somatic cell count (SCC) patterns based on deviations from the typical curve for SCC during lactation and compared with associations between pathogen-specific CM and lactation average SCC. Data from 274 Dutch

  13. Impact of Somatic Mutations in the D-Loop of Mitochondrial DNA on the Survival of Oral Squamous Cell Carcinoma Patients

    Science.gov (United States)

    Lin, Jin-Ching; Wang, Chen-Chi; Jiang, Rong-San; Wang, Wen-Yi; Liu, Shih-An

    2015-01-01

    Objectives The aim of this study was to investigate somatic mutations in the D-loop of mitochondrial DNA (mtDNA) and their impact on survival in oral squamous cell carcinoma patients. Materials and Methods Surgical specimen confirmed by pathological examination and corresponding non-cancerous tissues were collected from 120 oral squamous cell carcinoma patients. The sequence in the D-loop of mtDNA from non-cancerous tissues was compared with that from paired cancer samples and any sequence differences were recognized as somatic mutations. Results Somatic mutations in the D-loop of mtDNA were identified in 75 (62.5%) oral squamous cell carcinoma patients and most of them occurred in the poly-C tract. Although there were no significant differences in demographic and tumor-related features between participants with and without somatic mutation, the mutation group had a better survival rate (5 year disease-specific survival rate: 64.0% vs. 43.0%, P = 0.0266). Conclusion Somatic mutation in D-loop of mtDNA was associated with a better survival in oral squamous cell carcinoma patients. PMID:25906372

  14. Label-Free Quantitative Proteomics of Embryogenic and Non-Embryogenic Callus during Sugarcane Somatic Embryogenesis.

    Directory of Open Access Journals (Sweden)

    Angelo Schuabb Heringer

    Full Text Available The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E and non-embryogenic (NE callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1 of activated charcoal (AC. Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1 AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project, including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.

  15. Somatic embryogenesis in cell cultures of Glycine species.

    Science.gov (United States)

    Gamborg, O L; Davis, B P; Stahlhut, R W

    1983-08-01

    This report describes the development of procedures for the production of somatic embryos in cell cultures of Glycine species including soybean. The conditions for callus induction and initiation of rapidly growing cell suspension cultures were defined. Methods for inducing embryogenesis were tested on 16 lines of several Glycine species and cultivars of soybean. The SB-26 Culture of a G. soja gave the best results and was used in the experiments. Embryogenesis required the presence of picloram or 2,4-D. AMO 1618, CCC, PP-333 and Ancymidol enhanced the embryogenesis frequency. Plants of the G. soja (SB-26) were grown to maturity from seed-derived shoot tips. Characteristics of the plants are discussed.

  16. The Influence of Interspecies Somatic Cell Nuclear Transfer on Epigenetic Enzymes Transcription in Early Embryos

    DEFF Research Database (Denmark)

    Morovic, Martin; Murin, Matej; Strejcek, Frantisek

    2016-01-01

    in oocytes and early embryos of several species including bovine and porcine zygotes is species-dependent process and the incomplete DNA methylation correlates with the nuclear transfer failure rate in mammals. In this study the transcription of DNA methyltransferase 1 and 3a (DNMT1, DNMT3a) genes in early......One of the main reason for the incorrect development of embryos derived from somatic cell nuclear transfer is caused by insufficient demethylation of injected somatic chromatin to a state comparable with an early embryonic nucleus. It is already known that the epigenetic enzymes transcription....... In spite of the detection of ooplasmic DNA methyltransferases, the somatic genes for DNMT1 and DNMT3a enzymes were not expressed and the development of intergeneric embryos stopped at the 4-cell stage. Our results indicate that the epigenetic reprogramming during early mammalian development is strongly...

  17. Simplification of Bovine Somatic Cell Nuclear Transfer by Application of a Zona-Free Manipulation Technique

    DEFF Research Database (Denmark)

    Booth, Paul J; Tan, Shijian; Reipurth, Rikke

    2001-01-01

    Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods. The techni......Contemporary nuclear transfer techniques often require the involvement of skilled personnel and extended periods of micromanipulation. Here, we present details of the development of a nuclear transfer technique for somatic cells that is both simpler and faster than traditional methods....... The technique comprises the bisection of zona-free oocytes and the reconstruction of embryos comprising two half cytoplasts and a somatic cell by adherence using phytohaemagglutinin-P (PHA) followed by an electropulse and subsequent culture in microwells (termed WOWs--well of the well). The development......-intact zygotes were not different in either blastocyst yield (44.6 +/- 2.4% versus 51.8 +/- 13.5% [mean +/- SEM]) or quality (126.3 +/- 48.4 versus 119.9 +/- 32.6 total cells), and exposure of zygotes to PHA-P did not reduce blastocyst yields compared to vehicle control (40.8 +/- 11.6% versus 47.1 +/- 20...

  18. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Andrew D. Renault

    2012-08-01

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  19. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster.

    Science.gov (United States)

    Renault, Andrew D

    2012-10-15

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  20. [Effect of TSA and VPA treatment on long-tailed macaque (Macaca fascicularis)-pig interspecies somatic cell nuclear transfer].

    Science.gov (United States)

    Qin, Zu-Xing; Huang, Gao-Bo; Luo, Jun; Ning, Shu-Fang; Lu, Sheng-Sheng; Lu, Ke-Huan

    2012-03-01

    Long-tailed macaque-pig interspecies somatic cell nuclear transfer (iSCNT) is beneficial to yield embryonic stem cells from iSCNT embryos with similar genetic background as human, which can be used as materials for medical and basic research. The primary objective of this study was to investigate the effects of concentrations and treatment duration of two histone deacetylase inhibitors-Trichostatin A (TSA) and Valproic acid (VPA) and two different embryo culture media (PZM-3 and HECM-10) on the in vitro development of iSCNT embryos. The results suggested that when PZM-3 was used as the embryo culture medium, the blastocyst rate of 10 nmol/L TSA treatment for 48 h was significantly higher than the control group (22.78% vs 9.86%, PTSA treatment could enhance the in vitro developmental potential of long-tailed macaque-pig iSCNT embryos.

  1. Plasma α-tocopherol content and its relationship with milk somatic cells count in Italian commercial herds.

    Directory of Open Access Journals (Sweden)

    Adriano Pilotto

    2015-07-01

    We did not observe a correlation between plasmatic vitamin E and somatic cell score, and this can be explained by the low level of somatic cell score (averages 1.64 and 1.26. The lowest value of vitamin E was observed at parturition (1.64 µg/ml and 1.95 µg/ml. A significant (P<0.01 negative (-20% correlation was observed between NEFA serum content and α-tocopherol plasma concentration. Serum selenium content was positively correlated (+42%, P<0.0001 to zinc concentration. Grouping cows on the basis of their plasma α-tocopherol content higher or lower than 3 μg/mL at dry off, SCS at 30 and 60 DIM tended to be higher in lactating animals with lower content of α-tocopherol (1.12 vs. 1.72, P=0.18 at 30d; 0.92 vs. 1.72, P=0.07 at 60d. However, plasma α-tocopherol content at dry off could be usefully correlated with somatic cell count in fresh cows.

  2. Transcriptional reprogramming of gene expression in bovine somatic cell chromatin transfer embryos

    Directory of Open Access Journals (Sweden)

    Page Grier P

    2009-04-01

    Full Text Available Abstract Background Successful reprogramming of a somatic genome to produce a healthy clone by somatic cells nuclear transfer (SCNT is a rare event and the mechanisms involved in this process are poorly defined. When serial or successive rounds of cloning are performed, blastocyst and full term development rates decline even further with the increasing rounds of cloning. Identifying the "cumulative errors" could reveal the epigenetic reprogramming blocks in animal cloning. Results Bovine clones from up to four generations of successive cloning were produced by chromatin transfer (CT. Using Affymetrix bovine microarrays we determined that the transcriptomes of blastocysts derived from the first and the fourth rounds of cloning (CT1 and CT4 respectively have undergone an extensive reprogramming and were more similar to blastocysts derived from in vitro fertilization (IVF than to the donor cells used for the first and the fourth rounds of chromatin transfer (DC1 and DC4 respectively. However a set of transcripts in the cloned embryos showed a misregulated pattern when compared to IVF embryos. Among the genes consistently upregulated in both CT groups compared to the IVF embryos were genes involved in regulation of cytoskeleton and cell shape. Among the genes consistently upregulated in IVF embryos compared to both CT groups were genes involved in chromatin remodelling and stress coping. Conclusion The present study provides a data set that could contribute in our understanding of epigenetic errors in somatic cell chromatin transfer. Identifying "cumulative errors" after serial cloning could reveal some of the epigenetic reprogramming blocks shedding light on the reprogramming process, important for both basic and applied research.

  3. Sex-reversed somatic cell cloning in the mouse.

    Science.gov (United States)

    Inoue, Kimiko; Ogonuki, Narumi; Mekada, Kazuyuki; Yoshiki, Atsushi; Sado, Takashi; Ogura, Atsuo

    2009-10-01

    Somatic cell nuclear transfer has many potential applications in the fields of basic and applied sciences. However, it has a disadvantage that can never be overcome technically-the inflexibility of the sex of the offspring. Here, we report an accidental birth of a female mouse following nuclear transfer using an immature Sertoli cell. We produced a batch of 27 clones in a nuclear transfer experiment using Sertoli cells collected from neonatal male mice. Among them, one pup was female. This "male-derived female" clone grew into a normal adult and produced offspring by natural mating with a littermate. Chromosomal analysis revealed that the female clone had a 39,X karyotype, indicating that the Y chromosome had been deleted in the donor cell or at some early step during nuclear transfer. This finding suggests the possibility of resuming sexual reproduction after a single male is cloned, which should be especially useful for reviving extinct or endangered species.

  4. Tumor progression: chance and necessity in Darwinian and Lamarckian somatic (mutationless) evolution.

    Science.gov (United States)

    Huang, Sui

    2012-09-01

    Current investigation of cancer progression towards increasing malignancy focuses on the molecular pathways that produce the various cancerous traits of cells. Their acquisition is explained by the somatic mutation theory: tumor progression is the result of a neo-Darwinian evolution in the tissue. Herein cells are the units of selection. Random genetic mutations permanently affecting these pathways create malignant cell phenotypes that are selected for in the disturbed tissue. However, could it be that the capacity of the genome and its gene regulatory network to generate the vast diversity of cell types during development, i.e., to produce inheritable phenotypic changes without mutations, is harnessed by tumorigenesis to propel a directional change towards malignancy? Here we take an encompassing perspective, transcending the orthodoxy of molecular carcinogenesis and review mechanisms of somatic evolution beyond the Neo-Darwinian scheme. We discuss the central concept of "cancer attractors" - the hidden stable states of gene regulatory networks normally not occupied by cells. Noise-induced transitions into such attractors provide a source for randomness (chance) and regulatory constraints (necessity) in the acquisition of novel expression profiles that can be inherited across cell divisions, and hence, can be selected for. But attractors can also be reached in response to environmental signals - thus offering the possibility for inheriting acquired traits that can also be selected for. Therefore, we face the possibility of non-genetic (mutation-independent) equivalents to both Darwinian and Lamarckian evolution which may jointly explain the arrow of change pointing toward increasing malignancy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. DNA methylation in porcine preimplantation embryos developed in vivo and produced by in vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  6. DNA methylation in porcine preimplantation embryos developed in-vivo or produced by in-vitro fertilization, parthenogenetic activation and somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Deshmukh, Rahul Shahaji; Østrup, Olga; Østrup, Esben

    2011-01-01

    DNA demethylation and remethylation are crucial for reprogramming of the differentiated parental/somatic genome in the recipient ooplasm upon somatic cell nuclear transfer. Here, we analyzed the DNA methylation dynamics during porcine preimplantation development. Porcine in vivo developed (IV......), in vitro fertilized (IVF), somatic cell nuclear transfer (SCNT) and parthenogenetically activated (PA) embryos were evaluated for DNA methylation quantification at different developmental stages. Fertilized (IV and IVF) one-cell stages lacked a substantial active demethylation of the paternal genome...

  7. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells.

    Science.gov (United States)

    Shipony, Zohar; Mukamel, Zohar; Cohen, Netta Mendelson; Landan, Gilad; Chomsky, Elad; Zeliger, Shlomit Reich; Fried, Yael Chagit; Ainbinder, Elena; Friedman, Nir; Tanay, Amos

    2014-09-04

    Stable maintenance of gene regulatory programs is essential for normal function in multicellular organisms. Epigenetic mechanisms, and DNA methylation in particular, are hypothesized to facilitate such maintenance by creating cellular memory that can be written during embryonic development and then guide cell-type-specific gene expression. Here we develop new methods for quantitative inference of DNA methylation turnover rates, and show that human embryonic stem cells preserve their epigenetic state by balancing antagonistic processes that add and remove methylation marks rather than by copying epigenetic information from mother to daughter cells. In contrast, somatic cells transmit considerable epigenetic information to progenies. Paradoxically, the persistence of the somatic epigenome makes it more vulnerable to noise, since random epimutations can accumulate to massively perturb the epigenomic ground state. The rate of epigenetic perturbation depends on the genomic context, and, in particular, DNA methylation loss is coupled to late DNA replication dynamics. Epigenetic perturbation is not observed in the pluripotent state, because the rapid turnover-based equilibrium continuously reinforces the canonical state. This dynamic epigenetic equilibrium also explains how the epigenome can be reprogrammed quickly and to near perfection after induced pluripotency.

  8. Single cell analysis demonstrating somatic mosaicism involving 11p in a patient with paternal isodisomy and Beckwith-Wiedemann Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, F.Z.; McCaskill, C.; Subramanian, S. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Beckwith-Wiedemann Syndrome (BWS) is characterized by numerous growth abnormalities including exomphalos, macroglossia, gigantism, and hemihypertrophy or hemihyperplasia. The {open_quotes}BWS gene{close_quotes} appears to be maternally repressed and is suspected to function as a growth factor or regulator of somatic growth, since activation of this gene through a variety of mechanisms appears to result in somatic overgrowth and tumor development. Mosaic paternal isodisomy of 11p has been observed previously by others in patients with BWS by Southern blot analysis of genomic DNA. The interpretation of these results was primarily based on the intensities of the hybridization signals for the different alleles. In our study, we demonstrate somatic mosaicism directly through PCR and single cell analysis. Peripheral blood was obtained from a patient with BWS and initial genomic DNA analysis by PCR was suggestive of somatic mosaicism for paternal isodisomy of 11p. Through micromanipulation, single cells were isolated and subjected to primer extention preamplification. Locus-specific microsatellite marker analyses by PCR were performed to determine the chromosome 11 origins in the preamplified individual cells. Two populations of cells were detected, a population of cells with normal biparental inheritance and a population of cells with paternal isodisomy of 11p and biparental disomy of 11q. Using the powerful approach of single cell analysis, the detected somatic mosaicism provides evidence for a mitotic recombinational event that has resulted in loss of the maternal 11p region and gain of a second copy of paternal 11p in some cells. The direct demonstration of mosaicism may explain the variable phenotypes and hemihypertrophy often observed in BWS.

  9. Development of buffalo (Bubalus bubalis embryonic stem cell lines from somatic cell nuclear transferred blastocysts

    Directory of Open Access Journals (Sweden)

    Syed Mohmad Shah

    2015-11-01

    Full Text Available We developed buffalo embryonic stem cell lines from somatic cell nuclear transfer derived blastocysts, produced by hand-guided cloning technique. The inner cell mass of the blastocyst was cut mechanically using a Microblade and cultured onto feeder cells in buffalo embryonic stem (ES cell culture medium at 38 °C in a 5% CO2 incubator. The stem cell colonies were characterized for alkaline phosphatase activity, karyotype, pluripotency and self-renewal markers like OCT4, NANOG, SOX2, c-Myc, FOXD3, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 and CD90. The cell lines also possessed the capability to differentiate across all the three germ layers under spontaneous differentiation conditions.

  10. Total bacterial count and somatic cell count in refrigerated raw milk stored in communal tanks

    Directory of Open Access Journals (Sweden)

    Edmar da Costa Alves

    2014-09-01

    Full Text Available The current industry demand for dairy products with extended shelf life has resulted in new challenges for milk quality maintenance. The processing of milk with high bacterial counts compromises the quality and performance of industrial products. The study aimed to evaluate the total bacteria counts (TBC and somatic cell count (SCC in 768 samples of refrigerated raw milk, from 32 communal tanks. Samples were collected in the first quarter of 2010, 2011, 2012 and 2013 and analyzed by the Laboratory of Milk Quality - LQL. Results showed that 62.5%, 37.5%, 15.6% and 27.1% of the means for TBC in 2010, 2011, 2012 and 2013, respectively, were above the values established by legislation. However, we observed a significant reduction in the levels of total bacterial count (TBC in the studied periods. For somatic cell count, 100% of the means indicated values below 600.000 cells/mL, complying with the actual Brazilian legislation. The values found for the somatic cell count suggests the adoption of effective measures for the sanitary control of the herd. However, the results must be considered with caution as it highlights the need for quality improvements of the raw material until it achieves reliable results effectively.

  11. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  12. The economic value of somatic cell count in South African Holstein ...

    African Journals Online (AJOL)

    Somatic cell count (SCC) is of economic importance in dairy production as it directly influences the revenue from the sale of milk. The current study was carried out to determine the economic value of SCC in South African Holstein and Jersey cattle, in order to establish its relative emphasis in breeding objectives. Bulk-tank ...

  13. Hierarchical Oct4 Binding in Concert with Primed Epigenetic Rearrangements during Somatic Cell Reprogramming

    Directory of Open Access Journals (Sweden)

    Jun Chen

    2016-02-01

    Full Text Available The core pluripotency factor Oct4 plays key roles in somatic cell reprogramming through transcriptional control. Here, we profile Oct4 occupancy, epigenetic changes, and gene expression in reprogramming. We find that Oct4 binds in a hierarchical manner to target sites with primed epigenetic modifications. Oct4 binding is temporally continuous and seldom switches between bound and unbound. Oct4 occupancy in most of promoters is maintained throughout the entire reprogramming process. In contrast, somatic cell-specific enhancers are silenced in the early and intermediate stages, whereas stem cell-specific enhancers are activated in the late stage in parallel with cell fate transition. Both epigenetic remodeling and Oct4 binding contribute to the hyperdynamic enhancer signature transitions. The hierarchical Oct4 bindings are associated with distinct functional themes at different stages. Collectively, our results provide a comprehensive molecular roadmap of Oct4 binding in concert with epigenetic rearrangements and rich resources for future reprogramming studies.

  14. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome

    International Nuclear Information System (INIS)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-01-01

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the 'Hayflick limit'. However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to 'passage' a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the 'passage' of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels

  15. Somatic cell nuclear transfer: infinite reproduction of a unique diploid genome.

    Science.gov (United States)

    Kishigami, Satoshi; Wakayama, Sayaka; Hosoi, Yoshihiko; Iritani, Akira; Wakayama, Teruhiko

    2008-06-10

    In mammals, a diploid genome of an individual following fertilization of an egg and a spermatozoon is unique and irreproducible. This implies that the generated unique diploid genome is doomed with the individual ending. Even as cultured cells from the individual, they cannot normally proliferate in perpetuity because of the "Hayflick limit". However, Dolly, the sheep cloned from an adult mammary gland cell, changes this scenario. Somatic cell nuclear transfer (SCNT) enables us to produce offspring without germ cells, that is, to "passage" a unique diploid genome. Animal cloning has also proven to be a powerful research tool for reprogramming in many mammals, notably mouse and cow. The mechanism underlying reprogramming, however, remains largely unknown and, animal cloning has been inefficient as a result. More momentously, in addition to abortion and fetal mortality, some cloned animals display possible premature aging phenotypes including early death and short telomere lengths. Under these inauspicious conditions, is it really possible for SCNT to preserve a diploid genome? Delightfully, in mouse and recently in primate, using SCNT we can produce nuclear transfer ES cells (ntES) more efficiently, which can preserve the eternal lifespan for the "passage" of a unique diploid genome. Further, new somatic cloning technique using histone-deacetylase inhibitors has been developed which can significantly increase the previous cloning rates two to six times. Here, we introduce SCNT and its value as a preservation tool for a diploid genome while reviewing aging of cloned animals on cellular and individual levels.

  16. mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging.

    Science.gov (United States)

    Menendez, Javier A; Vellon, Luciano; Oliveras-Ferraros, Cristina; Cufí, Sílvia; Vazquez-Martin, Alejandro

    2011-11-01

    Molecular controllers of the number and function of tissue stem cells may share common regulatory pathways for the nuclear reprogramming of somatic cells to become induced Pluripotent Stem Cells (iPSCs). If this hypothesis is true, testing the ability of longevity-promoting chemicals to improve reprogramming efficiency may provide a proof-of-concept validation tool for pivotal housekeeping pathways that limit the numerical and/or functional decline of adult stem cells. Reprogramming is a slow, stochastic process due to the complex and apparently unrelated cellular processes that are involved. First, forced expression of the Yamanaka cocktail of stemness factors, OSKM, is a stressful process that activates apoptosis and cellular senescence, which are the two primary barriers to cancer development and somatic reprogramming. Second, the a priori energetic infrastructure of somatic cells appears to be a crucial stochastic feature for optimal successful routing to pluripotency. If longevity-promoting compounds can ablate the drivers and effectors of cellular senescence while concurrently enhancing a bioenergetic shift from somatic oxidative mitochondria toward an alternative ATP-generating glycolytic metabotype, they could maximize the efficiency of somatic reprogramming to pluripotency. Support for this hypothesis is evidenced by recent findings that well-characterized mTOR inhibitors and autophagy activators (e.g., PP242, rapamycin and resveratrol) notably improve the speed and efficiency of iPSC generation. This article reviews the existing research evidence that the most established mTOR inhibitors can notably decelerate the cellular senescence that is imposed by DNA damage-like responses, which are somewhat equivalent to the responses caused by reprogramming factors. These data suggest that fine-tuning mTOR signaling can impact mitochondrial dynamics to segregate mitochondria that are destined for clearance through autophagy, which results in the loss of

  17. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba.

    Science.gov (United States)

    Chen, Y; Zhang, L; Zhou, Y; Geng, Y; Chen, Z

    2000-07-20

    Germinated seeds of Vicia faba were treated in caffeine solutions of different concentration for different durations to establish the inducing system of somatic meiosis-like reduction. The highest frequency of somatic meiosis-like reduction could reach up to 54.0% by treating the root tips in 70 mmol/l caffeine solution for 2 h and restoring for 24 h. Two types of somatic meiosis-like reduction were observed. One was reductional grouping, in which the chromosomes in a cell usually separated into two groups, and the role of spindle fibers did not show. The other type was somatic meiosis, which was analogous to meiosis presenting in gametogenesis, and chromosome pairing and chiasmata were visualized.

  18. Somatic Embryogenesis Induction and Plant Regeneration in Strawberry Tree (Arbutus unedo L.).

    Science.gov (United States)

    Martins, João F; Correia, Sandra I; Canhoto, Jorge M

    2016-01-01

    Somatic embryogenesis is a powerful tool both for cloning and studies of genetic transformation and embryo development. Most protocols for somatic embryogenesis induction start from zygotic embryos or embryonic-derived tissues which do not allow the propagation of elite trees. In the present study, a reliable protocol for somatic embryogenesis induction from adult trees of strawberry tree is described. Leaves from in vitro proliferating shoots were used to induce somatic embryo formation on a medium containing an auxin and a cytokinin. Somatic embryos germinated in a plant growth regulator-free medium.

  19. The uranyl influence on a mutation process in germ and somatic cells of mice

    International Nuclear Information System (INIS)

    Kostrova, L.N.; Mosseh, I.B.; Molofej, V.P.

    2008-01-01

    The mutagenic effect of uranyl was revealed by the chromosome rearrangement test in germ and somatic cells of mice. The effect value depended on duration of substance administration into organism. (authors)

  20. Effect of temperament on milk production, somatic cell count, chemical composition and physical properties in Lacaune dairy sheep breed

    Directory of Open Access Journals (Sweden)

    Gábor Tóth

    2017-01-01

    Full Text Available Effect of temperament on milk yield, lactation length, physico-chemical properties and somatic cell count of Lacaune ewes were evaluated. The investigation was carried out at a sheep farm in the county of Győr-Moson-Sopron. The temperament of 106 Lacaune ewes was measured by the temperament 5-point-scale test (1=very nervous, 5=very quiet during milking. Furthermore, 42 ewes were randomly selected from a herd of 106 animals for the analysis of milk composition (fat, protein and lactose, pH, electrical conductivity as well as somatic cell count. It was found that the temperament had a significant effect on lactation length and lactation milk production, lactose, electrical conductivity and somatic cell count. Calm ewes had significantly longer lactation (4 score: 220.7 day; 5 score: 201.4 day as well as higher milk production (4 score: 207.9 kg; 5 score: 193.3 kg compared to more temperamental animals (2+3 scores: 166.5 day and 135.5 kg; P<0.05. The content of lactose was significantly lower (4.32 in the more temperamental group, while electrical conductivity was higher (4.81 mS cm-1 compared to calmer animals (4.69 % and 4.16 mS cm-1. Additionally, significant differences were found in milk somatic cell count among the temperament categories. Calmer ewes had a lower somatic cell count in milk (5.17 log cm-3 than more temperamental ones (5.67 log cm-3; P<0.05.

  1. Selfish cells in altruistic cell society - a theoretical oncology.

    Science.gov (United States)

    Chigira, M

    1993-09-01

    In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite

  2. Genetic Correction of Stem Cells in the Treatment of Inherited Diseases and Focus on Xeroderma Pigmentosum

    Directory of Open Access Journals (Sweden)

    Françoise Bernerd

    2013-10-01

    Full Text Available Somatic stem cells ensure tissue renewal along life and healing of injuries. Their safe isolation, genetic manipulation ex vivo and reinfusion in patients suffering from life threatening immune deficiencies (for example, severe combined immunodeficiency (SCID have demonstrated the efficacy of ex vivo gene therapy. Similarly, adult epidermal stem cells have the capacity to renew epidermis, the fully differentiated, protective envelope of our body. Stable skin replacement of severely burned patients have proven life saving. Xeroderma pigmentosum (XP is a devastating disease due to severe defects in the repair of mutagenic DNA lesions introduced upon exposure to solar radiations. Most patients die from the consequences of budding hundreds of skin cancers in the absence of photoprotection. We have developed a safe procedure of genetic correction of epidermal stem cells isolated from XP patients. Preclinical and safety assessments indicate successful correction of XP epidermal stem cells in the long term and their capacity to regenerate a normal skin with full capacities of DNA repair.

  3. Genetic Correction of Stem Cells in the Treatment of Inherited Diseases and Focus on Xeroderma Pigmentosum

    Science.gov (United States)

    Rouanet, Sophie; Warrick, Emilie; Gache, Yannick; Scarzello, Sabine; Avril, Marie-Françoise; Bernerd, Françoise; Magnaldo, Thierry

    2013-01-01

    Somatic stem cells ensure tissue renewal along life and healing of injuries. Their safe isolation, genetic manipulation ex vivo and reinfusion in patients suffering from life threatening immune deficiencies (for example, severe combined immunodeficiency (SCID)) have demonstrated the efficacy of ex vivo gene therapy. Similarly, adult epidermal stem cells have the capacity to renew epidermis, the fully differentiated, protective envelope of our body. Stable skin replacement of severely burned patients have proven life saving. Xeroderma pigmentosum (XP) is a devastating disease due to severe defects in the repair of mutagenic DNA lesions introduced upon exposure to solar radiations. Most patients die from the consequences of budding hundreds of skin cancers in the absence of photoprotection. We have developed a safe procedure of genetic correction of epidermal stem cells isolated from XP patients. Preclinical and safety assessments indicate successful correction of XP epidermal stem cells in the long term and their capacity to regenerate a normal skin with full capacities of DNA repair. PMID:24113582

  4. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  5. Genetic Analysis of Microglandular Adenosis and Acinic Cell Carcinomas of the Breast Provides Evidence for the Existence of a Low-grade Triple-Negative Breast Neoplasia Family

    Science.gov (United States)

    Geyer, Felipe C; Berman, Samuel H.; Marchiò, Caterina; Burke, Kathleen A; Guerini-Rocco, Elena; Piscuoglio, Salvatore; Ng, Charlotte K Y; Pareja, Fresia; Wen, Hannah Y; Hodi, Zoltan; Schnitt, Stuart J; Rakha, Emad A; Ellis, Ian O; Norton, Larry; Weigelt, Britta; Reis-Filho, Jorge S

    2016-01-01

    Acinic cell carcinoma is an indolent form of invasive breast cancer, whereas microglandular adenosis has been shown to be a neoplastic proliferation. Both entities display a triple-negative phenotype, and may give rise to and display somatic genomic alterations typical of high-grade triple-negative breast cancers. Here we report on a comparison of previously published data on eight carcinoma-associated microglandular adenosis and eight acinic cell carcinomas subjected to targeted massively parallel sequencing targeting all exons of 236 genes recurrently mutated in breast cancer and/or DNA repair-related. Somatic mutations, insertions/deletions and copy number alterations were detected using state-of-the-art bioinformatic algorithms. All cases were of triple-negative phenotype. A median of 4.5 (1–13) and 4.0 (1–7) non-synonymous somatic mutations per carcinoma-associated microglandular adenosis and acinic cell carcinoma were identified, respectively. TP53 was the sole highly recurrently mutated gene (75% in microglandular adenosis versus 88% in acinic cell carcinomas), and TP53 mutations were consistently coupled with loss of heterozygosity of the wild-type allele. Additional somatic mutations shared by both groups included those in BRCA1, PIK3CA and INPP4B. Recurrent (n=2) somatic mutations restricted to microglandular adenosis or acinic cell carcinomas included those affecting PTEN and MED12, or ERBB4, respectively. No significant differences in the repertoire of somatic mutations were detected between microglandular adenosis and acinic cell carcinomas, and between this group of lesions and 77 triple-negative carcinomas from The Cancer Genome Atlas. Microglandular adenosis and acinic cell carcinomas, however, were genetically distinct from estrogen receptor-positive and/or HER2-positive breast cancers from The Cancer Genome Atlas. Our findings support the contention that microglandular adenosis and acinic cell carcinoma are part of the same spectrum of lesions

  6. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells.

    Science.gov (United States)

    Hu, Chenxia; Li, Lanjuan

    2016-01-01

    Induced pluripotent stem cells (iPSCs) paved the way for research fields including cell therapy, drug screening, disease modeling and the mechanism of embryonic development. Although iPSC technology has been improved by various delivery systems, direct transduction and small molecule regulation, low reprogramming efficiency and genomic modification steps still inhibit its clinical use. Improvements in current vectors and the exploration of novel vectors are required to balance efficiency and genomic modification for reprogramming. Herein, we set out a comprehensive analysis of current reprogramming systems for the generation of iPSCs from somatic cells. By clarifying advantages and disadvantages of the current reprogramming systems, we are striding toward an effective route to generate clinical grade iPSCs.

  7. High in vitro development after somatic cell nuclear transfer and trichostatin A treatment of reconstructed porcine embryos

    DEFF Research Database (Denmark)

    Li, J.; Østrup, Olga; Villemoes, Klaus

    2008-01-01

    Abnormal epigenetic modification is supposed to be one of factors accounting for inefficient reprogramming of the donor cell nuclei in ooplasm after somatic cell nuclear transfer (SCNT). Trichostatin A (TSA) is an inhibitor of histone deacetylase, potentially enhancing cloning efficiency. The aim...... transferred to 2 recipients resulting in one pregnancy and birth of one live and five dead piglets. Our data demonstrate that TSA treatment after HMC in pigs may affect reprogramming of the somatic genome resulting in higher in vitro embryo development, and enable full-term in vivo development....

  8. Dynamics of genetic processes in chronically irradiated populations of small mammals

    International Nuclear Information System (INIS)

    Ryabokon', N.I.; Goncharova, R.I.; Smolich, I.I.; Kapitanova, N.P.; Nikitchenko, N.V.

    2000-01-01

    The distinctive features of dynamics of mutagenesis in mammalian populations under chronic low-intensive irradiation were first revealed. The main of them is gradual increase in mutability in somatic cells and embryonal lethality during series of irradiated generations of animals (bank vole - Clethrionomys glareolus). The data obtained strongly suggest that there are oppositely directed processes in natural populations after irradiation of more than 20 generations of animals: on the one hand, accumulation of mutations (genetic load of populations) and pre-mutation events which increase genome instability of germ and somatic cells in consecutive generations of animals, and on the other, formation of genetic radio adaptation through better functioning protection systems. In this period of micro evolution in chronically irradiated populations, the frequencies of genetic damages could be higher if the radiation adaptation doesn't form. (authors)

  9. Associations between somatic cell count patterns and the incidence of clinical mastitis

    NARCIS (Netherlands)

    Haas, de Y.; Barkema, H.W.; Schukken, Y.H.; Veerkamp, R.F.

    2005-01-01

    Associations between clinical mastitis (CM) and the proportional distribution of patterns in somatic cell count (SCC) on a herd level were determined in this study. Data on CM and SCC over a 12-month period from 274 Dutch herds were used. The dataset contained parts of 29,719 lactations from 22,955

  10. Characterization of somatic embryo attached structures in Feijoa sellowiana Berg. (Myrtaceae).

    Science.gov (United States)

    Correia, Sandra M; Canhoto, Jorge M

    2010-06-01

    The presence of an attached organ to somatic embryos of angiosperms connecting the embryo to the supporting tissue has been a subject of controversy. This study shows that 67% of the morphologically normal somatic embryos of Feijoa sellowiana possess this type of organ and that its formation was not affected by culture media composition. Histological and ultrastructural analysis indicated that the attached structures of somatic embryos displayed a great morphological diversity ranging from a few cells to massive and columnar structures. This contrast with the simple suspensors observed in zygotic embryos which were only formed by five cells. As well as the suspensor of zygotic embryos, somatic embryo attached structures undergo a process of degeneration in later stages of embryo development. Other characteristic shared by zygotic suspensors and somatic embryo attached structures was the presence of thick cell walls surrounding the cells. Elongated thin filaments were often associated with the structures attached to somatic embryos, whereas in other cases, tubular cells containing starch grains connected the embryo to the supporting tissue. These characteristics associated with the presence of plasmodesmata in the cells of the attached structures seem to indicate a role on embryo nutrition. However, cell proliferation in the attached structures resulting into new somatic embryos may also suggest a more complex relationship between the embryo and the structures connecting it to the supporting tissue.

  11. In vitro and in vivo genotoxic effects of somatic cell nuclear transfer cloned cattle meat.

    Science.gov (United States)

    Lee, Nam-Jin; Yang, Byoung-Chul; Jung, Yu-Ri; Lee, Jung-Won; Im, Gi-Sun; Seong, Hwan-Hoo; Park, Jin-Ki; Kang, Jong-Koo; Hwang, Seongsoo

    2011-09-01

    Although the nutritional composition and health status after consumption of the meat and milk derived from both conventionally bred (normal) and somatic cell nuclear transferred (cloned) animals and their progeny are not different, little is known about their food safeties like genetic toxicity. This study is performed to examine both in vitro (bacterial mutation and chromosome aberration) and in vivo (micronucleus) genotoxicity studies of cloned cattle meat. The concentrations of both normal and cloned cattle meat extracts (0-10×) were tested to five strains of bacteria (Salmonella typhimurium: TA98, TA100, TA1535, and TA1537; Escherichia coli: WP2uvrA) for bacterial mutation and to Chinese hamster lung (CHL/IU) cells for chromosome aberration, respectively. For micronucleus test, ICR mice were divided into five dietary groups: commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) normal cattle meat, and pellets containing 5% (C-5) and 10% (C-10) cloned cattle meat. No test substance-related genotoxicity was noted in the five bacterial strains, CHL/IU cells, or mouse bone marrow cells, suggesting that the cloned cattle meat potentially may be safe in terms of mutagenic hazards. Thus, it can be postulated that the cloned cattle meat do not induce any harmful genotoxic effects in vitro and in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Genetic engineering including superseding microinjection: new ways to make GM pigs.

    Science.gov (United States)

    Galli, Cesare; Perota, Andrea; Brunetti, Dario; Lagutina, Irina; Lazzari, Giovanna; Lucchini, Franco

    2010-01-01

    Techniques for genetic engineering of swine are providing genetically modified animals of importance for the field of xenotransplantation, animal models for human diseases and for a variety of research applications. Many of these modifications have been directed toward avoiding naturally existing cellular and antibody responses to species-specific antigens. A number of techniques are today available to engineering the genome of mammals, these range from the well established less efficient method of DNA microinjection into the zygote, the use of viral vectors, to the more recent use of somatic cell nuclear transfer. The use of enzymatic engineering that are being developed now will refine the precision of the genetic modification combined with the use of new vectors like transposons. The use of somatic cell nuclear transfer is currently the most efficient way to generate genetically modified pigs. The development of enzymatic engineering with zinc-finger nucleases, recombinases and transposons will revolutionize the field. Nevertheless, genetic engineering in large domesticated animals will remain a challenging task. Recent improvements in several fields of cell and molecular biology offer new promises and opportunities toward an easier, cost-effective and efficient generation of transgenic pigs. © 2010 John Wiley & Sons A/S.

  13. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds

    NARCIS (Netherlands)

    Shook, G.E.; Kirk, R.L.B.; Welcome, Frank L.; Schukken, Y.H.; Ruegg, P.L.

    2017-01-01

    We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to

  14. Relationship between intramammary infection prevalence and somatic cell score in commercial dairy herds

    NARCIS (Netherlands)

    Shook, G. E.; Kirk, R. L.Bamber; Welcome, Frank L.; Schukken, Y. H.; Ruegg, P. L.

    2017-01-01

    We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to 2004.

  15. Somatic embryogenesis in ferns: a new experimental system.

    Science.gov (United States)

    Mikuła, Anna; Pożoga, Mariusz; Tomiczak, Karolina; Rybczyński, Jan J

    2015-05-01

    Somatic embryogenesis has never been reported in ferns. The study showed that it is much easier to evoke the acquisition and expression of embryogenic competence in ferns than in spermatophytes. We discovered that the tree fern Cyathea delgadii offers an effective model for the reproducible and rapid formation of somatic embryos on hormone-free medium. Our study provides cyto-morphological evidence for the single cell origin and development of somatic embryos. Somatic embryogenesis (SE) in both primary and secondary explants was induced on half-strength micro- and macro-nutrients Murashige and Skoog medium without the application of exogenous plant growth regulators, in darkness. The early stage of SE was characterized by sequential perpendicular cell divisions of an individual epidermal cell of etiolated stipe explant. These resulted in the formation of a linear pro-embryo. Later their development resembled that of the zygotic embryo. We defined three morphogenetic stages of fern somatic embryo development: linear, early and late embryonic leaf stage. The transition from somatic embryo to juvenile sporophyte was quick and proceeded without interruption caused by dormancy. Following 9 weeks of culture the efficiency of somatic embryogenesis reached 12-13 embryos per responding explant. Spontaneous formation of somatic embryos and callus production, which improved the effectiveness of the process sevenfold in 10-month-long culture, occurred without subculturing. The tendency for C. delgadii to propagate by SE in vitro makes this species an excellent model for studies relating to asexual embryogenesis and the endogenous hormonal regulation of that process and opens new avenues of experimentation.

  16. Role of chromosome stability and telomere length in the production of viable cell lines for somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Betts Dean H

    2006-08-01

    Full Text Available Abstract Background Somatic cell nuclear transfer (SCNT provides an appealing alternative for the preservation of genetic material in non-domestic and endangered species. An important prerequisite for successful SCNT is the availability of good quality donor cells, as normal embryo development is dependent upon proper reprogramming of the donor genome so that embryonic genes can be appropriately expressed. The characteristics of donor cell lines and their ability to produce embryos by SCNT were evaluated by testing the effects of tissue sample collection (DART biopsy, PUNCH biopsy, post-mortem EAR sample and culture initiation (explant, collagenase digestion techniques. Results Differences in initial sample size based on sample collection technique had an effect on the amount of time necessary for achieving primary confluence and the number of population doublings (PDL produced. Thus, DART and PUNCH biopsies resulted in cultures with decreased lifespans (50 PDL and chromosomally stable (>70% normal cells at 20 PDL cultures produced by post-mortem EAR samples. Chromosome stability was influenced by sample collection technique and was dependent upon the culture's initial telomere length and its rate of shortening over cell passages. Following SCNT, short-lived cultures resulted in significantly lower blastocyst development (≤ 0.9% compared to highly proliferative cultures (11.8%. Chromosome stability and sample collection technique were significant factors in determining blastocyst development outcome. Conclusion These data demonstrate the influence of culture establishment techniques on cell culture characteristics, including the viability, longevity and normality of cells. The identification of a quantifiable marker associated with SCNT embryo developmental potential, chromosome stability, provides a means by which cell culture conditions can be monitored and improved.

  17. Local Actions of Melatonin in Somatic Cells of the Testis.

    Science.gov (United States)

    Frungieri, Mónica Beatriz; Calandra, Ricardo Saúl; Rossi, Soledad Paola

    2017-05-31

    The pineal hormone melatonin regulates testicular function through the hypothalamic-adenohypophyseal axis. In addition, direct actions of melatonin in somatic cells of the testis have been described. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular growth, proliferation, energy metabolism and the oxidation state, and consequently may regulate spermatogenesis. These data pinpoint melatonin as a key player in the regulation of testicular physiology (i.e., steroidogenesis, spermatogenesis) mostly in seasonal breeders. In patients with idiopathic infertility, melatonin exerts anti-proliferative and anti-inflammatory effects on testicular macrophages, and provides protective effects against oxidative stress in testicular mast cells. Consequently, melatonin is also involved in the modulation of inflammatory and oxidant/anti-oxidant states in testicular pathology. Overall, the literature data indicate that melatonin has important effects on testicular function and male reproduction.

  18. Genetic and Epigenetic Alterations of Brassica nigra Introgression Lines from Somatic Hybridization: A Resource for Cauliflower Improvement.

    Science.gov (United States)

    Wang, Gui-Xiang; Lv, Jing; Zhang, Jie; Han, Shuo; Zong, Mei; Guo, Ning; Zeng, Xing-Ying; Zhang, Yue-Yun; Wang, You-Ping; Liu, Fan

    2016-01-01

    Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower "Korso" (Brassica oleracea var. botrytis, 2n = 18, CC genome) and black mustard "G1/1" (Brassica nigra, 2n = 16, BB genome). However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs) were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits) and physiological (black rot/club root resistance) characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from "Korso." Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms) analysis identified the presence of "G1/1" DNA segments (average 7.5%). Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1%) was higher than presence of novel bands (1.4%), and the presence of fragments specific to Brassica carinata (BBCC 2n = 34) were common (average 15.5%). Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4%) was more frequent than hypomethylation (4.8%). Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  19. Deterministic direct reprogramming of somatic cells to pluripotency.

    Science.gov (United States)

    Rais, Yoach; Zviran, Asaf; Geula, Shay; Gafni, Ohad; Chomsky, Elad; Viukov, Sergey; Mansour, Abed AlFatah; Caspi, Inbal; Krupalnik, Vladislav; Zerbib, Mirie; Maza, Itay; Mor, Nofar; Baran, Dror; Weinberger, Leehee; Jaitin, Diego A; Lara-Astiaso, David; Blecher-Gonen, Ronnie; Shipony, Zohar; Mukamel, Zohar; Hagai, Tzachi; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Tanay, Amos; Amit, Ido; Novershtern, Noa; Hanna, Jacob H

    2013-10-03

    Somatic cells can be inefficiently and stochastically reprogrammed into induced pluripotent stem (iPS) cells by exogenous expression of Oct4 (also called Pou5f1), Sox2, Klf4 and Myc (hereafter referred to as OSKM). The nature of the predominant rate-limiting barrier(s) preventing the majority of cells to successfully and synchronously reprogram remains to be defined. Here we show that depleting Mbd3, a core member of the Mbd3/NuRD (nucleosome remodelling and deacetylation) repressor complex, together with OSKM transduction and reprogramming in naive pluripotency promoting conditions, result in deterministic and synchronized iPS cell reprogramming (near 100% efficiency within seven days from mouse and human cells). Our findings uncover a dichotomous molecular function for the reprogramming factors, serving to reactivate endogenous pluripotency networks while simultaneously directly recruiting the Mbd3/NuRD repressor complex that potently restrains the reactivation of OSKM downstream target genes. Subsequently, the latter interactions, which are largely depleted during early pre-implantation development in vivo, lead to a stochastic and protracted reprogramming trajectory towards pluripotency in vitro. The deterministic reprogramming approach devised here offers a novel platform for the dissection of molecular dynamics leading to establishing pluripotency at unprecedented flexibility and resolution.

  20. Effects of herd management practices on somatic cell counts in an arid climate

    OpenAIRE

    Ali Sadeghi-Sefidmazgi; Farahnaz Rayatdoost-Baghal

    2014-01-01

    The objective of this study was to evaluate associations between average lactation somatic cell counts (SCC) and herd management practices in an arid climate. A total of 38,530 average lactation SCC records for 10,216 Holstein cows gathered on 25 dairy farms from January 2009 to October 2012 in Isfahan (Iran) were analyzed. Average lactation SCC (cells × 1,000) was 250.79 ranging from 90.31 to 483.23 cells/mL across investigated farms. Herd-level management factors associated with average lac...

  1. Influences of somatic donor cell sex on and embryo development following somatic cell nuclear transfer in pigs

    Directory of Open Access Journals (Sweden)

    Jae-Gyu Yoo

    2017-04-01

    Full Text Available Objective The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture (143.8±10.5 to 159.2±14.8 was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT groups (31.4±8.3 to 33.4±11.1. After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05 between sexes. Conclusion The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

  2. Genetic signatures from amplification profiles characterize DNA mutation in somatic and radiation-induced sports of chrysanthemum

    International Nuclear Information System (INIS)

    Trigiano, R.N.; Scott, M.C.; Caetano-Anolles, G.

    1998-01-01

    The chrysanthemum (Dendranthema grandiflora Tzvelev.) cultivars 'Dark Charm', 'Salmon Charm', 'Coral Charm' and 'Dark Bronze Charm' are either radiation-induced mutants or spontaneous sports of 'Charm' and constitute a family or series of plants that primarily differ in flower color. These cultivars, which were difficult to differentiate genetically by DNA amplification fingerprinting (DAF), were easily identified by using arbitrary signatures from amplification profiles (ASAP). Genomic DNA was first amplified with three standard octamer arbitrary primers, all of which produced monomorphic profiles. Products from each of these DNA fingerprints were subsequently reamplified using four minihairpin decamer primers. The 12 primer combinations produced signatures containing approximately 37% polymorphic character loci, which were used to estimate genetic relationships between cultivars. Forty-six (32%) unique amplification products were associated with individual cultivars. The number of ASAP polymorphisms detected provided an estimate of the mutation rate in the mutant cultivars, ranging from 0.03% to 1.6% of nucleotide changes within an average of 18 kb of arbitrary amplified DAF sequence. The ASAP technique permits the clear genetic identification of somatic mutants and radiation-induced sports that are genetically highly homogeneous and should facilitate marker assisted breeding and protection of plant breeders rights of varieties or cultivars

  3. Cigarette smoking during early pregnancy reduces the number of embryonic germ and somatic cells

    DEFF Research Database (Denmark)

    Mamsen, Linn; Lutterodt, M C; Andersen, Elisabeth Anne Wreford

    2010-01-01

    BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first-trimeste......BACKGROUND: Cigarette smoking during pregnancy is associated with negative reproductive consequences for male fetuses in adult life such as reduced testicular volume and sperm concentration. The present study evaluates the number of germ and somatic cells present in human embryonic first......-trimester gonads in relation to maternal smoking. METHODS: The study includes 24 human first-trimester testes, aged 37-68 days post-conception, obtained from women undergoing legal termination of pregnancy. A questionnaire was used to obtain information about smoking and drinking habits during pregnancy. Validated...... confounders such as alcohol and coffee consumption (P = 0.002). The number of germ cells in embryonic gonads, irrespective of gender, was also significantly reduced by 41% (95% CI 58-19%, P = 0.001) in exposed versus non-exposed embryonic gonads. CONCLUSIONS: Prenatal exposure to maternal cigarette smoke...

  4. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts.

    Directory of Open Access Journals (Sweden)

    Natalie Saini

    2016-10-01

    Full Text Available Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration: ClinicalTrials.gov NCT01087307.

  5. New insights into how genetic disorders arise

    International Nuclear Information System (INIS)

    Unrau, P.

    1992-01-01

    One questionable assumption in genetic risk assessment is that all members of the population are equally at risk to the causative agent. The invalidity of this assumption can be demonstrated by considering data on the range of sensitivity to ionizing radiation of lymphoblastoid cell lines derived from various normal members of the population or from various disease groups associated with extreme radiosensitivity. Some 'normal' cell lines are as sensitive as those from the disease groups. A certain proportion of the normal population may be heterozygotic for many of the genes that lead to radiosensitivity. There are many cancer-facilitating genes in the population. These are made homozygotic by somatic mechanisms, or by breeding patterns. Mechanisms at the DNA level that lead to homozygosity change the risk within tissues and thus individuals. We need to measure heterozygosity, breeding effects, and molecular mechanisms to determine the causes of genetic and somatic risk. (L.L.)

  6. Impeding Xist expression from the active X chromosome improves mouse somatic cell nuclear transfer

    NARCIS (Netherlands)

    Inoue, K.; Kohda, T.; Sugimoto, M.; Sado, T.; Ogonuki, N.; Matoba, S.; Shiura, H.; Ikeda, R.; Mochida, K.; Fujii, T.; Sawai, K.; Otte, A.P.; Tian, X.C.; Yang, X.; Ishino, F.; Abe, K.; Ogura, A.

    2010-01-01

    Cloning mammals by means of somatic cell nuclear transfer (SCNT) is highly inefficient because of erroneous reprogramming of the donor genome. Reprogramming errors appear to arise randomly, but the nature of nonrandom, SCNT-specific errors remains elusive. We found that Xist, a noncoding RNA that

  7. Somatic PI3K activity regulates transition to the spermatocyte stages ...

    Indian Academy of Sciences (India)

    Spermatogenesis, involving multiple transit amplification divisions and meiosis, occurs within an enclosure formed bytwo somatic cells. As the cohort of germline cells divide and grow, the surface areas of the somatic cells expandmaintaining a tight encapsulation throughout the developmental period. Correlation between ...

  8. In vivo somatic mutation systems in the mouse

    International Nuclear Information System (INIS)

    Russell, L.B.

    1979-01-01

    In an effort to meet the need for a fast and cheap in vivo prescreen for inherited mammalian point mutations, a somatic forward-mutation method, originally developed in an x-ray experiment, has more recently been tested in work with chemical mutagens. The method makes use of coat-color mutations because the gene product is usually locally expressed, mosaics can be detected with minimal effort, and opportunities for making comparison with induction of germinal point mutations are greatest.--Following treatment of embryos that are heterozygous at specific coat-color loci, various induced genetic changes can result in expression of the recessive (RS) in clones derived from mutant melanocyte precursor cells. However, other events, such as decrease in the number of precursor cells, or disturbed differentiation, can also result in spots, which with careful classification can usually be distinguished from RS's on the basis of their location and color. When this is done, the relative RS frequencies for a series of compounds at least roughly parallel the relative spermatogonial mutation rates. The fact that easily measurable (though low) RS rates are obtained with compounds that have yielded negative results in spermatogonial tests is not surprising in view of the fact that RS's can be caused by several mechanisms besides point mutation.--In spite of the parallelism observed in one laboratory, the usefulness of the in vivo somatic mutation method as a prescreen could come to be doubted because of major discrepancies between results of similar experiments at different laboratories. However, It appears probable that at least some of these discrepancies are due to failure to discriminate between spots that probably resulted from melanocyte insufficiency and spots that resulted from expression of the recessive.--Reverse somatic mutation systems can potentially avoid some of the pitfalls of forward mutation systems. Such system are still in developmental stages

  9. Genetic and epigenetic alterations of Brassica nigra introgression lines from somatic hybridization: a resource for cauliflower improvement

    Directory of Open Access Journals (Sweden)

    Guixiang Wang

    2016-08-01

    Full Text Available Broad phenotypic variations were obtained previously in derivatives from the asymmetric somatic hybridization of cauliflower ‘Korso’ (Brassica oleracea var. botrytis, 2n = 18, CC genome and black mustard ‘G1/1’ (Brassica nigra, 2n = 16, BB genome. However, the mechanisms underlying these variations were unknown. In this study, 28 putative introgression lines (ILs were pre-selected according to a series of morphological (leaf shape and color, plant height and branching, curd features, and flower traits and physiological (black rot/club root resistance characters. Multi-color fluorescence in situ hybridization revealed that these plants contained 18 chromosomes derived from ‘Korso’. Molecular marker (65 simple sequence repeats and 77 amplified fragment length polymorphisms analysis identified the presence of ‘G1/1’ DNA segments (average 7.5%. Additionally, DNA profiling revealed many genetic and epigenetic differences among the ILs, including sequence alterations, deletions, and variation in patterns of cytosine methylation. The frequency of fragments lost (5.1% was significantly higher than presence of novel bands (1.4%, and the presence of fragments specific to B. carinata (BBCC 2n = 34 were common (average 15.5%. Methylation-sensitive amplified polymorphism analysis indicated that methylation changes were common and that hypermethylation (12.4% was more frequent than hypomethylation (4.8%. Our results suggested that asymmetric somatic hybridization and alien DNA introgression induced genetic and epigenetic alterations. Thus, these ILs represent an important, novel germplasm resource for cauliflower improvement that can be mined for diverse traits of interest to breeders and researchers.

  10. Genetic Parameters and Trends of Somatic Cell Score and Udder ...

    African Journals Online (AJOL)

    Dube

    mastitis resistance in view of its medium to high genetic correlation with and its ... Selection in South African Holstein cattle has been mostly on milk yield, ... Lactations less than 150 days and greater than 305 days were also not included as they are ... X – indicates factor included; HYSC – herd, year, season of classification, ...

  11. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  12. Genetic relationships between detailed reproductive traits and performance traits in Holstein-Friesian dairy cattle.

    Science.gov (United States)

    Carthy, T R; Ryan, D P; Fitzgerald, A M; Evans, R D; Berry, D P

    2016-02-01

    The objective of the study was to estimate the genetic relationships between detailed reproductive traits derived from ultrasound examination of the reproductive tract and a range of performance traits in Holstein-Friesian dairy cows. The performance traits investigated included calving performance, milk production, somatic cell score (i.e., logarithm transformation of somatic cell count), carcass traits, and body-related linear type traits. Detailed reproductive traits included (1) resumed cyclicity at the time of examination, (2) multiple ovulations, (3) early ovulation, (4) heat detection, (5) ovarian cystic structures, (6) embryo loss, and (7) uterine score, measured on a 1 (little or no fluid with normal tone) to 4 (large quantity of fluid with a flaccid tone) scale, based on the tone of the uterine wall and the quantity of fluid present in the uterus. (Co)variance components were estimated using a repeatability animal linear mixed model. Genetic merit for greater milk, fat, and protein yield was associated with a reduced ability to resume cyclicity postpartum (genetic correlations ranged from -0.25 to -0.15). Higher genetic merit for milk yield was also associated with a greater genetic susceptibility to multiple ovulations. Genetic predisposition to elevated somatic cell score was associated with a decreased likelihood of cyclicity postpartum (genetic correlation of -0.32) and a greater risk of both multiple ovulations (genetic correlation of 0.25) and embryo loss (genetic correlation of 0.32). Greater body condition score was genetically associated with an increased likelihood of resumption of cyclicity postpartum (genetic correlation of 0.52). Genetically heavier, fatter carcasses with better conformation were also associated with an increased likelihood of resumed cyclicity by the time of examination (genetic correlations ranged from 0.24 to 0.41). Genetically heavier carcasses were associated with an inferior uterine score as well as a greater

  13. Cryopreservation of Arachis pintoi (leguminosae) somatic embryos.

    Science.gov (United States)

    Rey, H Y; Faloci, M; Medina, R; Dolce, N; Engelmann, F; Mroginski, L

    2013-01-01

    In this study, we successfully cryopreserved cotyledonary somatic embryos of diploid and triploid Arachis pintoi cytotypes using the encapsulation-dehydration technique. The highest survival rates were obtained when somatic embryos were encapsulated in calcium alginate beads and precultured in agitated (80 rpm) liquid establishment medium (EM) with daily increasing sucrose concentration (0.50, 0.75, and 1.0 M). The encapsulated somatic embryos were then dehydrated with silica gel for 5 h to 20% moisture content (fresh weight basis) and cooled either rapidly (direct immersion in liquid nitrogen, LN) or slowly (1 degree C per min from 25 degree C to -30 degree C followed by immersion in LN). Beads were kept in LN for a minimum of 1 h and then were rapidly rewarmed in a 30 degree C water-bath for 2 min. Finally, encapsulated somatic embryos were post-cultured in agitated (80 rpm) liquid EM with daily decreasing sucrose concentration (0.75 and 0.5 M) and transferred to solidified EM. Using this protocol, we obtained 26% and 30% plant regeneration from cryopreserved somatic embryos of diploid and triploid cytotypes. No morphological abnormalities were observed in any of the plants regenerated from cryopreserved embryos and their genetic stability was confirmed with 10 isozyme systems and nine RAPD profiles.

  14. Extracellular matrix of dental pulp stem cells: Applications in pulp tissue engineering using somatic MSCs

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2014-01-01

    Full Text Available Dental Caries affects approximately 90% of the world’s population. At present, the clinical treatment for dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality. Tissue engineering can potentially solve this problem by enabling regeneration of a functional pulp tissue. Dental pulp stem cells (DPSCs have been shown to be an excellent source for pulp regeneration. However, limited availability of these cells hinders its potential for clinical translation. We have investigated the possibility of using somatic mesenchymal stem cells from other sources for dental pulp tissue regeneration using a biomimetic dental pulp extracellular matrix (ECM incorporated scaffold. Human periodontal ligament stem cells (PDLSCs and human bone marrow stromal cells (HMSCs were investigated for their ability to differentiate towards an odontogenic lineage. In vitro real-time PCR results coupled with histological and immunohistochemical examination of the explanted tissues confirmed the ability of PDLSCs and HMSCs to form a vascularized pulp-like tissue. These findings indicate that the dental pulp stem derived ECM scaffold stimulated odontogenic differentiation of PDLSCs and HMSCs without the need for exogenous addition of growth and differentiation factors. This study represents a translational perspective toward possible therapeutic application of using a combination of somatic stem cells and extracellular matrix for pulp regeneration.

  15. Keith's MAGIC: Cloning and the Cell Cycle.

    Science.gov (United States)

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  16. Visualization portal for genetic variation (VizGVar): a tool for interactive visualization of SNPs and somatic mutations in exons, genes and protein domains.

    Science.gov (United States)

    Solano-Román, Antonio; Alfaro-Arias, Verónica; Cruz-Castillo, Carlos; Orozco-Solano, Allan

    2018-03-15

    VizGVar was designed to meet the growing need of the research community for improved genomic and proteomic data viewers that benefit from better information visualization. We implemented a new information architecture and applied user centered design principles to provide a new improved way of visualizing genetic information and protein data related to human disease. VizGVar connects the entire database of Ensembl protein motifs, domains, genes and exons with annotated SNPs and somatic variations from PharmGKB and COSMIC. VizGVar precisely represents genetic variations and their respective location by colored curves to designate different types of variations. The structured hierarchy of biological data is reflected in aggregated patterns through different levels, integrating several layers of information at once. VizGVar provides a new interactive, web-based JavaScript visualization of somatic mutations and protein variation, enabling fast and easy discovery of clinically relevant variation patterns. VizGVar is accessible at http://vizport.io/vizgvar; http://vizport.io/vizgvar/doc/. asolano@broadinstitute.org or allan.orozcosolano@ucr.ac.cr.

  17. Proliferation of germ cells and somatic cells in first trimester human embryonic gonads as indicated by S and S+G2+M phase fractions

    DEFF Research Database (Denmark)

    Sørensen, Kristina Pilekær; Lutterodt, Melissa Catherine R; Mamsen, Linn S

    2011-01-01

    The number of germ cells and somatic cells in human embryonic and foetal gonads has previously been estimated by stereological methods, which are time- and labour-consuming with little information concerning cell proliferation. Here, we studied whether flow cytometry could be applied as an easier...

  18. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  19. Remodeling of ribosomal genes in somatic cells by Xenopus egg extract

    Energy Technology Data Exchange (ETDEWEB)

    Ostrup, Olga, E-mail: osvarcova@gmail.com [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway); Hyttel, Poul; Klaerke, Dan A. [Institute of Basic Animal and Veterinary Sciences, Faculty of Life Sciences, University of Copenhagen, Frederiksberg C (Denmark); Collas, Philippe, E-mail: philc@medisin.uio.no [Stem Cell Epigenetics Laboratory, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo (Norway); Norwegian Center for Stem Cell Research, Oslo (Norway)

    2011-09-02

    Highlights: {yields} Xenopus egg extract remodels nuclei and alter cell growth characteristics. {yields} Ribosomal genes are reprogrammed within 6 h after extract exposure. {yields} rDNA reprogramming involves promoter targeting of SNF2H remodeling complex. {yields} Xenopus egg extract does not initiate stress-related response in somatic cells. {yields} Aza-cytidine elicits a stress-induced response in reprogrammed cells. -- Abstract: Extracts from Xenopus eggs can reprogram gene expression in somatic nuclei, however little is known about the earliest processes associated with the switch in the transcriptional program. We show here that an early reprogramming event is the remodeling of ribosomal chromatin and gene expression. This occurs within hours of extract treatment and is distinct from a stress response. Egg extract elicits remodeling of the nuclear envelope, chromatin and nucleolus. Nucleolar remodeling involves a rapid and stable decrease in ribosomal gene transcription, and promoter targeting of the nucleolar remodeling complex component SNF2H without affecting occupancy of the transcription factor UBF and the stress silencers SUV39H1 and SIRT1. During this process, nucleolar localization of UBF and SIRT1 is not altered. On contrary, azacytidine pre-treatment has an adverse effect on rDNA remodeling induced by extract and elicits a stress-type nuclear response. Thus, an early event of Xenopus egg extract-mediated nuclear reprogramming is the remodeling of ribosomal genes involving nucleolar remodeling complex. Condition-specific and rapid silencing of ribosomal genes may serve as a sensitive marker for evaluation of various reprogramming methods.

  20. Somatic point mutation calling in low cellularity tumors.

    Directory of Open Access Journals (Sweden)

    Karin S Kassahn

    Full Text Available Somatic mutation calling from next-generation sequencing data remains a challenge due to the difficulties of distinguishing true somatic events from artifacts arising from PCR, sequencing errors or mis-mapping. Tumor cellularity or purity, sub-clonality and copy number changes also confound the identification of true somatic events against a background of germline variants. We have developed a heuristic strategy and software (http://www.qcmg.org/bioinformatics/qsnp/ for somatic mutation calling in samples with low tumor content and we show the superior sensitivity and precision of our approach using a previously sequenced cell line, a series of tumor/normal admixtures, and 3,253 putative somatic SNVs verified on an orthogonal platform.

  1. Generation and genetic modification of induced pluripotent stem cells.

    Science.gov (United States)

    Schambach, Axel; Cantz, Tobias; Baum, Christopher; Cathomen, Toni

    2010-07-01

    The generation of induced pluripotent stem cells (iPSCs) enabled by exogenous expression of the canonical Oct4, Sox2, Klf4 and c-Myc reprogramming factors has opened new ways to create patient- or disease-specific pluripotent cells. iPSCs represent an almost inexhaustible source of cells for targeted differentiation into somatic effector cells and hence are likely to be invaluable for therapeutic applications and disease-related research. After an introduction on the biology of reprogramming we cover emerging technological advances, including new reprogramming approaches, small-molecule compounds and tailored genetic modification, and give an outlook towards potential clinical applications of iPSCs. Although this field is progressing rapidly, reprogramming is still an inefficient process. The reader will learn about innovative tools to generate patient-specific iPSCs and how to modify these established lines in a safe way. Ideally, the disease-causing mutation is edited directly in the genome using novel technologies based on artificial nucleases, such as zinc-finger nucleases. Human iPSCs create fascinating options with regard to disease modeling, drug testing, developmental studies and therapeutic applications. However, important hurdles have to be taken and more efficient protocols to be established to achieve the ambitious goal of bringing iPSCs into clinical use.

  2. Parental Criticism is an Environmental Influence on Adolescent Somatic Symptoms

    Science.gov (United States)

    Horwitz, BN; Marceau, K; Narusyte, J; Ganiban, J; Spotts, EL; Reiss, D; Lichtenstein, P; Neiderhiser, JM

    2015-01-01

    Previous studies have suggested that parental criticism leads to more somatic symptoms in adolescent children. Yet this research has not assessed the direction of causation or whether genetic and/or environmental influences explain the association between parental criticism and adolescent somatic symptoms. As such, it is impossible to understand the mechanisms that underlie this association. The current study uses the Extended Children of Twins design to examine whether parents’ genes, adolescents’ genes, and/or environmental factors explain the relationship between parental criticism and adolescent somatic symptoms. Participants came from two twin samples, including the Twin and Offspring Study in Sweden (N = 868 pairs of adult twins and each twin’s adolescent child) and from the Twin Study of Child and Adolescent Development (N = 690 pairs of twin children and their parents). Findings showed that environmental influences account for the association between parental criticism and adolescent somatic symptoms. This suggests that parents’ critical behaviors exert a direct environmental effect on somatic symptoms in adolescent children. Results support the use of intervention programs focused on parental criticism to help reduce adolescents’ somatic symptoms. PMID:25844495

  3. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  4. Somatic Embryogenesis in Peach-Palm (Bactris gasipaes) Using Different Explant Sources.

    Science.gov (United States)

    Steinmacher, Douglas A; Heringer, Angelo Schuabb; Jiménez, Víctor M; Quoirin, Marguerite G G; Guerra, Miguel P

    2016-01-01

    Peach palm (Bactris gasipaes Kunth) is a member of the family Arecaceae and is a multipurpose but underutilized species. Nowadays, fruit production for subsistence and local markets, and heart-of-palm production for local, national, and international markets are the most important uses of this plant. Conventional breeding programs in peach palm are long-term efforts due to the prolonged generation time, large plant size, difficulties with controlled pollination and other factors. Although it is a caespitose palm, its propagation is currently based on seeds, as off-shoots are difficult to root. Hence, tissue culture techniques are considered to be the most likely strategy for efficient clonal plantlet regeneration of this species. Among various techniques, somatic embryogenesis offers the advantages of potential automated large-scale production and putative genetic stability of the regenerated plantlets. The induction of somatic embryogenesis in peach palm can be achieved by using different explant sources including zygotic embryos, immature inflorescences and thin cell layers from the young leaves and shoot meristems. The choice of a particular explant depends on whether clonal propagation is desired or not, as well as on the plant conditions and availability of explants. Protocols to induce and express somatic embryogenesis from different peach palm explants, up to acclimatization of plantlets, are described in this chapter.

  5. The Drosophila BCL6 homolog Ken and Barbie promotes somatic stem cell self-renewal in the testis niche.

    Science.gov (United States)

    Issigonis, Melanie; Matunis, Erika

    2012-08-15

    Stem cells sustain tissue regeneration by their remarkable ability to replenish the stem cell pool and to generate differentiating progeny. Signals from local microenvironments, or niches, control stem cell behavior. In the Drosophila testis, a group of somatic support cells called the hub creates a stem cell niche by locally activating the Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway in two adjacent types of stem cells: germline stem cells (GSCs) and somatic cyst stem cells (CySCs). Here, we find that ken and barbie (ken) is autonomously required for the self-renewal of CySCs but not GSCs. Furthermore, Ken misexpression in the CySC lineage induces the cell-autonomous self-renewal of somatic cells as well as the nonautonomous self-renewal of germ cells outside the niche. Thus, Ken, like Stat92E and its targets ZFH1 (Leatherman and Dinardo, 2008) and Chinmo (Flaherty et al., 2010), is necessary and sufficient for CySC renewal. However, ken is not a JAK-STAT target in the testis, but instead acts in parallel to Stat92E to ensure CySC self-renewal. Ken represses a subset of Stat92E targets in the embryo (Arbouzova et al., 2006) suggesting that Ken maintains CySCs by repressing differentiation factors. In support of this hypothesis, we find that the global JAK-STAT inhibitor Protein tyrosine phosphatase 61F (Ptp61F) is a JAK-STAT target in the testis that is repressed by Ken. Together, our work demonstrates that Ken has an important role in the inhibition of CySC differentiation. Studies of ken may inform our understanding of its vertebrate orthologue B-Cell Lymphoma 6 (BCL6) and how misregulation of this oncogene leads to human lymphomas. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Direct Measurements of Human Colon Crypt Stem Cell Niche Genetic Fidelity: The Role of Chance in Non-Darwinian Mutation Selection

    Directory of Open Access Journals (Sweden)

    Haeyoun eKang

    2013-10-01

    Full Text Available Perfect human stem cell genetic fidelity would prevent aging and cancer. However, perfection would be difficult to achieve, and aging is universal and cancers common. A hypothesis is that because mutations are inevitable over a human lifetime, downstream mechanisms have evolved to manage the deleterious effects of beneficial and lethal mutations. In the colon, a crypt stem cell architecture reduces the number of mitotic cells at risk for mutation accumulation, and multiple niche stem cells ensure that a lethal mutation within any single stem cell does not lead to crypt death. In addition, the architecture of the colon crypt stem cell niche may harness probability or chance to randomly discard many beneficial mutations that might lead to cancer. An analysis of somatic chromosome copy number alterations (CNAs reveals a lack of perfect fidelity in individual normal human crypts, with age-related increases and higher frequencies in ulcerative colitis, a proliferative, inflammatory disease. The age-related increase in somatic CNAs appears consistent with relatively normal replication error and cell division rates. Surprisingly, and similar to point mutations in cancer genomes, the types of crypt mutations were more consistent with random fixation rather than selection. In theory, a simple non-Darwinian way to nullify selection is to reduce the size of the reproducing population. Fates are more determined by chance rather than selection in very small populations, and therefore selection may be minimized within small crypt niches. The desired effect is that many beneficial mutations that might lead to cancer are randomly lost by drift rather than fixed by selection. The subdivision of the colon into multiple very small stem cell niches may trade Darwinian evolution for non-Darwinian somatic cell evolution, capitulating to aging but reducing cancer risks.

  7. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh; Saleh, Syed Shayon; Kashef-Haghighi, Dorna; Khavari, David; Newburger, Daniel E.; West, Robert B.; Sidow, Arend; Batzoglou, Serafim

    2013-01-01

    multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple

  8. DOT1L inhibitor improves early development of porcine somatic cell nuclear transfer embryos

    DEFF Research Database (Denmark)

    Tao, Jia; Zhang, Yu; Zuo, Xiaoyuan

    2017-01-01

    Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological...... inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mouse induced pluripotent stem cells. However, the roles of DOT1L in porcine nuclear transfer-mediated cellular reprogramming are not yet known. Here we showed that DOT1L inhibition via 0.5 nM EPZ treatment...

  9. Molecular characterization of circulating colorectal tumor cells defines genetic signatures for individualized cancer care

    Science.gov (United States)

    Kong, Say Li; Liu, Xingliang; Suhaimi, Nur-Afidah Mohamed; Koh, Kenneth Jia Hao; Hu, Min; Lee, Daniel Yoke San; Cima, Igor; Phyo, Wai Min; Lee, Esther Xing Wei; Tai, Joyce A.; Foong, Yu Miin; Vo, Jess Honganh; Koh, Poh Koon; Zhang, Tong; Ying, Jackie Y.; Lim, Bing; Tan, Min-Han; Hillmer, Axel M.

    2017-01-01

    Studies on circulating tumor cells (CTCs) have largely focused on platform development and CTC enumeration rather than on the genomic characterization of CTCs. To address this, we performed targeted sequencing of CTCs of colorectal cancer patients and compared the mutations with the matched primary tumors. We collected preoperative blood and matched primary tumor samples from 48 colorectal cancer patients. CTCs were isolated using a label-free microfiltration device on a silicon microsieve. Upon whole genome amplification, we performed amplicon-based targeted sequencing on a panel of 39 druggable and frequently mutated genes on both CTCs and fresh-frozen tumor samples. We developed an analysis pipeline to minimize false-positive detection of somatic mutations in amplified DNA. In 60% of the CTC-enriched blood samples, we detected primary tumor matching mutations. We found a significant positive correlation between the allele frequencies of somatic mutations detected in CTCs and abnormal CEA serum level. Strikingly, we found driver mutations and amplifications in cancer and druggable genes such as APC, KRAS, TP53, ERBB3, FBXW7 and ERBB2. In addition, we found that CTCs carried mutation signatures that resembled the signatures of their primary tumors. Cumulatively, our study defined genetic signatures and somatic mutation frequency of colorectal CTCs. The identification of druggable mutations in CTCs of preoperative colorectal cancer patients could lead to more timely and focused therapeutic interventions. PMID:28978093

  10. Cellular and molecular changes associated with somatic embryogenesis induction in Agave tequilana.

    Science.gov (United States)

    Portillo, L; Olmedilla, A; Santacruz-Ruvalcaba, F

    2012-10-01

    In spite of the importance of somatic embryogenesis for basic research in plant embryology as well as for crop improvement and plant propagation, it is still unclear which mechanisms and cell signals are involved in acquiring embryogenic competence by a somatic cell. The aim of this work was to study cellular and molecular changes involved in the induction stage in calli of Agave tequilana Weber cultivar azul in order to gain more information on the initial stages of somatic embryogenesis in this species. Cytochemical and immunocytochemical techniques were used to identify differences between embryogenic and non-embryogenic cells from several genotypes. Presence of granular structures was detected after somatic embryogenesis induction in embryogenic cells; composition of these structures as well as changes in protein and polysaccharide distribution was studied using Coomassie brilliant blue and Periodic Acid-Schiff stains. Distribution of arabinogalactan proteins (AGPs) and pectins was investigated in embryogenic and non-embryogenic cells by immunolabelling using anti-AGP monoclonal antibodies (JIM4, JIM8 and JIM13) as well as an anti-methyl-esterified pectin-antibody (JIM7), in order to evaluate major modifications in cell wall composition in the initial stages of somatic embryogenesis. Our observations pointed out that induction of somatic embryogenesis produced accumulation of proteins and polysaccharides in embryogenic cells. Presence of JIM8, JIM13 and JIM7 epitopes were detected exclusively in embryogenic cells, which supports the idea that specific changes in cell wall are involved in the acquisition of embryogenic competence of A. tequilana.

  11. Study of genetic effects in somatic cells of children living on the contaminated territories in Belarus

    International Nuclear Information System (INIS)

    Mikhalevich, L.S.

    1998-01-01

    The general conclusion of our study is the seriousness of discovered genetic disturbances in the examined children in Bragin town and other settlements in the Bragin district of the Gomel region. The results of seven-year monitoring of children with use of in vivo micronucleus analysis of lymphocytes have shown that the highest level of mutation was found in the children born before the Chernobyl catastrophe. Consequently, the principle of radiation protection according to the level of average annual radiation dose is not acceptable to protect the children in the Bragin district because it does not take into account the total radiation dose since 1986 which conditions the radiation consequences for children health. The analysis of the results of 1988-1994 indicates that, under the chronic action of ionizing radiation, complicated interactions between mutation pressure and selective process against cells with genetic injuries have been taking place in lymphocyte populations of the children in the Bragin district. Substantial differences between the examined children and the control were found in the level of mutations registered n peripheral blood lymphocytes both in vivo and ex vivo. The micronuclei level in lymphocyte populations in vivo did not decrease during 1988-1994. On the contrary , it increased approximately one order, whereas one mitotic division ex vivo in cell culture indicated substantial changes in different trends. The cells with gene mutations capable to continue their life activity, apparently, undergo the selection in minus-trend to some extent but, probably, also contribute to the plus-trend selection both in vivo and ex vivo. As a result, in the last years we observe in ex vivo examination the high level of gene mutations against the background of relatively low level of chromosomal injuries. (J.P.N.)

  12. Low somatic cell count : a risk factor for subsequent clinical mastitis in a dairy herd

    NARCIS (Netherlands)

    Suriyasathaporn, W.; Schukken, Y.H.; Nielen, M.; Brand, A.

    2000-01-01

    A case-control study was conducted to evaluate factors measured at the udder inflammation-free state as risk factors for subsequent clinical mastitis. The factors including somatic cell count (SCC), body condition score, milk yield, percentages of milk fat and milk protein, and diseases were

  13. Cancer treatment in childhood and testicular function: the importance of the somatic environment

    Science.gov (United States)

    Stukenborg, Jan-Bernd; Jahnukainen, Kirsi; Hutka, Marsida

    2018-01-01

    Testicular function and future fertility may be affected by cancer treatment during childhood. Whilst survival of the germ (stem) cells is critical for ensuring the potential for fertility in these patients, the somatic cell populations also play a crucial role in providing a suitable environment to support germ cell maintenance and subsequent development. Regulation of the spermatogonial germ-stem cell niche involves many signalling pathways with hormonal influence from the hypothalamo-pituitary-gonadal axis. In this review, we describe the somatic cell populations that comprise the testicular germ-stem cell niche in humans and how they may be affected by cancer treatment during childhood. We also discuss the experimental models that may be utilized to manipulate the somatic environment and report the results of studies that investigate the potential role of somatic cells in the protection of the germ cells in the testis from cancer treatment. PMID:29351905

  14. Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora.

    Science.gov (United States)

    Power, J B; Berry, S F; Chapman, J V; Cocking, E C

    1980-01-01

    Somatic hybrid plants were regenerated following the fusion of leaf mesophyll protoplasts of P. parodii with those isolated from a nuclear-albino mutant of P. parviflora. Attempts at sexual hybridization of these two species repeatedly failed thus confirming their previously established cross-incompatibility. Selection of somatic hybrid plants was possible since protoplasts of P. parodii would not develop beyond the cell colony stage, whilst those of the somatic hybrid and albino P. parviflora produced calluses. Green somatic hybrid calluses were visible against a background of albino cells/calluses, and upon transfer to regeneration media gave rise to shoots. Shoots and the resultant flowering plants were confirmed as somatic hybrids based on their growth habit, floral pigmentation and morphology, leaf hair structure, chromosome number and Fraction 1 protein profiles. The relevance of such hybrid material for the development of new, and extensively modified cultivars, is discussed.

  15. Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study.

    Science.gov (United States)

    de Almeida, Marcilio; de Almeida, Cristina Vieira; Mendes Graner, Erika; Ebling Brondani, Gilvano; Fiori de Abreu-Tarazi, Monita

    2012-08-01

    The direct induction of adventitious buds and somatic embryos from explants is a morphogenetic process that is under the influence of exogenous plant growth regulators and its interactions with endogenous phytohormones. We performed an in vitro histological analysis in peach palm (Bactris gasipaes Kunth) shoot apexes and determined that the positioning of competent cells and their interaction with neighboring cells, under the influence of combinations of exogenously applied growth regulators (NAA/BAP and NAA/TDZ), allows the pre-procambial cells (PPCs) to act in different morphogenic pathways to establish niche competent cells. It is likely that there has been a habituation phenomenon during the regeneration and development of the microplants. This includes promoting the tillering of primary or secondary buds due to culturing in the absence of NAA/BAP or NAA/TDZ after a period in the presence of these growth regulators. Histological analyses determined that the adventitious roots were derived from the dedifferentiation of the parenchymal cells located in the basal region of the adventitious buds, with the establishment of rooting pole, due to an auxin gradient. Furthermore, histological and histochemical analyses allowed us to characterize how the PPCs provide niches for multipotent, pluripotent and totipotent stem-like cells for vascular differentiation, organogenesis and somatic embryogenesis in the peach palm. The histological and histochemical analyses also allowed us to detect the unicellular or multicellular origin of somatic embryogenesis. Therefore, our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to potential niche establishment, depending on the positioning of the competent cells and their interaction with neighboring cells. Our results indicate that the use of growth regulators in microplants can lead to habituation and to different morphogenic pathways leading to

  16. Fanca deficiency reduces A/T transitions in somatic hypermutation and alters class switch recombination junctions in mouse B cells.

    Science.gov (United States)

    Nguyen, Thuy Vy; Riou, Lydia; Aoufouchi, Saïd; Rosselli, Filippo

    2014-06-02

    Fanconi anemia is a rare genetic disorder that can lead to bone marrow failure, congenital abnormalities, and increased risk for leukemia and cancer. Cells with loss-of-function mutations in the FANC pathway are characterized by chromosome fragility, altered mutability, and abnormal regulation of the nonhomologous end-joining (NHEJ) pathway. Somatic hypermutation (SHM) and immunoglobulin (Ig) class switch recombination (CSR) enable B cells to produce high-affinity antibodies of various isotypes. Both processes are initiated after the generation of dG:dU mismatches by activation-induced cytidine deaminase. Whereas SHM involves an error-prone repair process that introduces novel point mutations into the Ig gene, the mismatches generated during CSR are processed to create double-stranded breaks (DSBs) in DNA, which are then repaired by the NHEJ pathway. As several lines of evidence suggest a possible role for the FANC pathway in SHM and CSR, we analyzed both processes in B cells derived from Fanca(-/-) mice. Here we show that Fanca is required for the induction of transition mutations at A/T residues during SHM and that despite globally normal CSR function in splenic B cells, Fanca is required during CSR to stabilize duplexes between pairs of short microhomology regions, thereby impeding short-range recombination downstream of DSB formation. © 2014 Nguyen et al.

  17. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  18. Plant regeneration of Michelia champaca L., through somatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-03

    May 3, 2010 ... as a basic material for perfume, cosmetic, and medicine. The development of an ... Plant regeneration systems of M. champaca through somatic ... The embryogenic cells proliferated and formed somatic embryos (30%) after four to six .... by using MS excel program and Duncan's new multiple range test.

  19. Automatic detection of clinical mastitis is improved by in-line monitoring of somatic cell count

    NARCIS (Netherlands)

    Kamphuis, C.; Sherlock, R.; Jago, J.; Mein, G.; Hogeveen, H.

    2008-01-01

    This study explored the potential value of in-line composite somatic cell count (ISCC) sensing as a sole criterion or in combination with quarter-based electrical conductivity (EC) of milk, for automatic detection of clinical mastitis (CM) during automatic milking. Data generated from a New Zealand

  20. In vitro regeneration of some Iranian alfalfa (Medicago sativa L. genotypes via somatic embryogenesis

    Directory of Open Access Journals (Sweden)

    Majid Shokrpour

    2014-12-01

    Full Text Available An effective in vitro regeneration system is one of the prerequisites for genetic manipulation of alfalfa (Medicago sativa L. varieties and genotypes. In this research, somatic embryogenesis of four alfalfa genotypes, 6-18 (synthetic, 4-14 (Kara Yonje- Karakozlu, 3-27 (Kara Yonje Maraghe and y-6 (Regen-SY, were investigated using leaf and petiole explants. Formation of callus and somatic embryogenesis was significantly influenced by the explant type and interaction of genotype and culture medium. Petiole explants of genotype 4-14 produced the highest yield of callus (0.406 gr fresh weight of callus. Percentage of somatic embryogenesis and the number of embryos per callus in petiole explants of genotype 4-14 was higher than those of other genotypes and explants. In genotype 6-18, the highest percentage of somatic embryogenesis was achieved on MS medium containing 5 mg/L 2,4-D and 2 mg/L kinetin. There was no significant differences between genotypes and explants in terms of embryo conversion to plantlet, and on average, 58% of somatic embryos converted to plantlet on MS medium. The petiole explants of genotype 6-18 did not exhibit somatic embryogenesis response in medium containing low ratio of 2,4-D:Kinetin (5 mg/L 2,4-D and 2 mg/L kinetin. While, these explants showed somatic embryogenesis in higher ratio of 2,4-D:Kinetin (5:1. The plantlet conversion efficiency of somatic embryos produced through this study was relatively higher and therefore, the method presented in this study could be used in alfalfa genetic manipulation and molecular studies.

  1. Blood count and number of somatic cells in milk of cows infected with Coxiella burnetii

    Directory of Open Access Journals (Sweden)

    Radinović Miodrag

    2011-01-01

    Full Text Available The objective of the work was to examine the intensity of the local immune response of the mammary gland and the changes in the differential blood count of chronically infected cows. An experiment was performed on a group of cows with Q fever serologically proven using the ELISA test (IDEXX. Based on the ELISA test results, an experimental group of ten infected cows was formed. Blood was sampled from the experimental cows, and cumulative milk samples were taken. The number of erythrocytes was determined spectrophotometrically, and the number of leucocytes using the method according to Bürker - Türk. The blood analysis established an increased number of erythrocytes, while the number of leucocytes was within the limits of physiological values. The milk samples were used for the determination of the number of somatic cells using flow cytometric measurements. The processing of the milk samples established an average number of somatic cells of 853.000 /mL milk.

  2. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Directory of Open Access Journals (Sweden)

    Lin Yuan

    2014-11-01

    Full Text Available Cloned pigs generated by somatic cell nuclear transfer (SCNT show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP. q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos.

  3. Aberrant Expression of Xist in Aborted Porcine Fetuses Derived from Somatic Cell Nuclear Transfer Embryos

    Science.gov (United States)

    Yuan, Lin; Wang, Anfeng; Yao, Chaogang; Huang, Yongye; Duan, Feifei; Lv, Qinyan; Wang, Dongxu; Ouyang, Hongsheng; Li, Zhanjun; Lai, Liangxue

    2014-01-01

    Cloned pigs generated by somatic cell nuclear transfer (SCNT) show a greater ratio of early abortion during mid-gestation than normal controls. X-linked genes have been demonstrated to be important for the development of cloned embryos. To determine the relationship between the expression of X-linked genes and abortion of cloned porcine fetuses, the expression of X-linked genes were investigated by quantitative real-time polymerase chain reaction (q-PCR) and the methylation status of Xist DMR was performed by bisulfate-specific PCR (BSP). q-PCR analysis indicated that there was aberrant expression of X-linked genes, especially the upregulated expression of Xist in both female and male aborted fetuses compared to control fetuses. Results of BSP suggested that hypomethylation of Xist occurred in aborted fetuses, whether male or female. These results suggest that the abnormal expression of Xist may be associated with the abortion of fetuses derived from somatic cell nuclear transfer embryos. PMID:25429426

  4. Assignment of adenosine deaminase complexing protein (ADCP) gene(s) to human chromosome 2 in rodent-human somatic cell hybrids.

    Science.gov (United States)

    Herbschleb-Voogt, E; Grzeschik, K H; Pearson, P L; Meera Khan, P

    1981-01-01

    The experiments reported in this paper indicate that the expression of human adenosine deaminase complexing protein (ADCP) in the human-rodent somatic cell hybrids is influenced by the state of confluency of the cells and the background rodent genome. Thus, the complement of the L-cell derived A9 or B82 mouse parent apparently prevents the expression of human ADCP in the interspecific somatic cell hybrids. In the a3, E36, or RAG hybrids the human ADCP expression was not prevented by the rodent genome and was found to be proportional to the degree of confluency of the cell in the culture as in the case of primary human fibroblasts. An analysis of human chromosomes, chromosome specific enzyme markers, and ADCP in a panel of rodent-human somatic cell hybrids optimally maintained and harvested at full confluency has shown that the expression of human ADCP in the mouse (RAG)-human as well as in the hamster (E36 or a3)-human hybrids is determined by a gene(s) in human chromosome 2 and that neither chromosome 6 nor any other of the chromosomes of man carry any gene(s) involved in the formation of human ADCP at least in the Chinese hamster-human hybrids. A series of rodent-human hybrid clones exhibiting a mitotic separation of IDH1 and MDH1 indicated that ADCP is most probably situated between corresponding loci in human chromosome 2.

  5. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia

    OpenAIRE

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W.; Papadopoulos, Nickolas; Malek, Sami N.

    2011-01-01

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell...

  6. Genetic and somatic radiation doses in radiotherapy of inflammatory and degenerative diseases of bones, joints and soft parts

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, M.; Keinert, K.; Schumann, E. (Medizinische Akademie, Erfurt (German Democratic Republic). Radiologische Klinik)

    1983-01-01

    Dose measurements were performed in several body regions of patients suffering from inflammatory degenerative diseases (humeral epicondylitis, humeroscapular periarthritis, gonarthrosis, axillary hidradenitis, rheumatoid arthritis, coxarthrosis, parotitis). The problem of the radiation induction of neoplasms is predominant concerning somatic as well as genetic risk, discussed by example of the most frequently occurring organ cancer. Compared to the rate of breast cancer in the highly developed industrial states (5,000 to 6,000 cancers/100,000 women) the 'radiation induction' calculated according to a mathematical model of ICRP 26 (1.25 cases of death for breast cancers/100,000 women following for example irradiation of epicondylitis) is behind several powers of ten and not demonstrable. The genetic radiation exposure is also low. Derived from the measurements it is wrong to give up reliable and approved indications of radiotherapy of non-malignant diseases because of unfounded radiophobia.

  7. DNA methylation patterns in tissues from mid-gestation bovine foetuses produced by somatic cell nuclear transfer show subtle abnormalities in nuclear reprogramming

    OpenAIRE

    Lee Rita SF; Couldrey Christine

    2010-01-01

    Abstract Background Cloning of cattle by somatic cell nuclear transfer (SCNT) is associated with a high incidence of pregnancy failure characterized by abnormal placental and foetal development. These abnormalities are thought to be due, in part, to incomplete re-setting of the epigenetic state of DNA in the donor somatic cell nucleus to a state that is capable of driving embryonic and foetal development to completion. Here, we tested the hypothesis that DNA methylation patterns were not appr...

  8. Activities of indigenous proteolytic enzymes in caprine milk of different somatic cell counts.

    Science.gov (United States)

    Albenzio, M; Santillo, A; Kelly, A L; Caroprese, M; Marino, R; Sevi, A

    2015-11-01

    Individual caprine milk with different somatic cell counts (SCC) were studied with the aim of investigating the percentage distribution of leukocyte cell types and the activities of indigenous proteolytic enzymes; proteolysis of casein was also studied in relation to cell type following recovery from milk. The experiment was conducted on 5 intensively managed dairy flocks of Garganica goats; on the basis of SCC, the experimental groups were denoted low (L-SCC; 1,501,000 cells/mL) SCC. Leukocyte distribution differed between groups; polymorphonuclear neutrophilic leukocytes were higher in M-SCC and H-SCC milk samples, the percentage macrophages was the highest in H-SCC, and levels of nonviable cells significantly decreased with increasing SCC. Activities of all the main proteolytic enzymes were affected by SCC; plasmin activity was the highest in H-SCC milk and the lowest in L-SCC, and elastase and cathepsin D activities were the highest in M-SCC. Somatic cell count influenced casein hydrolysis patterns, with less intact α- and β-casein in H-SCC milk. Higher levels of low electrophoretic mobility peptides were detected in sodium caseinate incubated with leukocytes isolated from L-SCC milk, independent of cell type, whereas among cells recovered from M-SCC milk, macrophages yielded the highest levels of low electrophoretic mobility peptides from sodium caseinate. The level of high electrophoretic mobility peptides was higher in sodium caseinate incubated with polymorphonuclear neutrophilic leukocytes and macrophages isolated from M-SCC, whereas the same fraction of peptides was always the highest, independent of leukocyte type, for cells recovered from H-SCC milk. In caprine milk, a level of 700,000 cells/mL represented the threshold for changes in leukocyte distribution, which is presumably related to the immune status of the mammary gland. Differences in the profile of indigenous lysosomal proteolytic enzymes in caprine milk may influence the integrity of casein

  9. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Domenico Iuso

    Full Text Available The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT. Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  10. Genomic stability of lyophilized sheep somatic cells before and after nuclear transfer.

    Science.gov (United States)

    Iuso, Domenico; Czernik, Marta; Di Egidio, Fiorella; Sampino, Silvestre; Zacchini, Federica; Bochenek, Michal; Smorag, Zdzislaw; Modlinski, Jacek A; Ptak, Grazyna; Loi, Pasqualino

    2013-01-01

    The unprecedented decline of biodiversity worldwide is urging scientists to collect and store biological material from seriously threatened animals, including large mammals. Lyophilization is being explored as a low-cost system for storage in bio-banks of cells that might be used to expand or restore endangered or extinct species through the procedure of Somatic Cell Nuclear Transfer (SCNT). Here we report that the genome is intact in about 60% of lyophylized sheep lymphocytes, whereas DNA damage occurs randomly in the remaining 40%. Remarkably, lyophilized nuclei injected into enucleated oocytes are repaired by a robust DNA repairing activity of the oocytes, and show normal developmental competence. Cloned embryos derived from lyophylized cells exhibited chromosome and cellular composition comparable to those of embryos derived from fresh donor cells. These findings support the feasibility of lyophylization as a storage procedure of mammalian cells to be used for SCNT.

  11. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    Science.gov (United States)

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  12. High frequency induction of somatic embryos and plantlet ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... plant, Hygrophila spinosa through direct somatic embryogenesis from nodal explants excised from 4 week old ... medicinal purposes further curbs propagation via seed. Plant tissue ... buted a great deal of information for the genetic, morpho- ..... analysis of peroxidase in cultured lettuce (Lactuca sativa L.).

  13. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  14. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    I-Ping Chen

    2014-12-01

    Full Text Available More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.

  15. A quantitative system for discriminating induced pluripotent stem cells, embryonic stem cells and somatic cells.

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    Full Text Available Induced pluripotent stem cells (iPSCs derived from somatic cells (SCs and embryonic stem cells (ESCs provide promising resources for regenerative medicine and medical research, leading to a daily identification of new cell lines. However, an efficient system to discriminate the different types of cell lines is lacking. Here, we develop a quantitative system to discriminate the three cell types, iPSCs, ESCs, and SCs. The system consists of DNA-methylation biomarkers and mathematical models, including an artificial neural network and support vector machines. All biomarkers were unbiasedly selected by calculating an eigengene score derived from analysis of genome-wide DNA methylations. With 30 biomarkers, or even with as few as 3 top biomarkers, this system can discriminate SCs from pluripotent cells (PCs, including ESCs and iPSCs with almost 100% accuracy. With approximately 100 biomarkers, the system can distinguish ESCs from iPSCs with an accuracy of 95%. This robust system performs precisely with raw data without normalization as well as with converted data in which the continuous methylation levels are accounted. Strikingly, this system can even accurately predict new samples generated from different microarray platforms and the next-generation sequencing. The subtypes of cells, such as female and male iPSCs and fetal and adult SCs, can also be discriminated with this method. Thus, this novel quantitative system works as an accurate framework for discriminating the three cell types, iPSCs, ESCs, and SCs. This strategy also supports the notion that DNA-methylation generally varies among the three cell types.

  16. Specific genetic modifications of domestic animals by gene targeting and animal cloning

    Directory of Open Access Journals (Sweden)

    Zhou Jiangfeng

    2003-11-01

    Full Text Available Abstract The technology of gene targeting through homologous recombination has been extremely useful for elucidating gene functions in mice. The application of this technology was thought impossible in the large livestock species until the successful creation of the first mammalian clone "Dolly" the sheep. The combination of the technologies for gene targeting of somatic cells with those of animal cloning made it possible to introduce specific genetic mutations into domestic animals. In this review, the principles of gene targeting in somatic cells and the challenges of nuclear transfer using gene-targeted cells are discussed. The relevance of gene targeting in domestic animals for applications in bio-medicine and agriculture are also examined.

  17. The historical role of species from the Solanaceae plant family in genetic research.

    Science.gov (United States)

    Gebhardt, Christiane

    2016-12-01

    This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.

  18. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods...

  19. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells.

    Science.gov (United States)

    Tang, Zi-Hua; Chen, Jia-Rong; Zheng, Jing; Shi, Hao-Song; Ding, Jie; Qian, Xiao-Dan; Zhang, Cui; Chen, Jian-Ling; Wang, Cui-Cui; Li, Liang; Chen, Jun-Zhen; Yin, Shan-Kai; Huang, Tao-Sheng; Chen, Ping; Guan, Min-Xin; Wang, Jin-Fu

    2016-05-01

    The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs. ©AlphaMed Press.

  20. Effect of Cryopreservation and Post-Cryopreservation Somatic Embryogenesis on the Epigenetic Fidelity of Cocoa (Theobroma cacao L.).

    Science.gov (United States)

    Adu-Gyamfi, Raphael; Wetten, Andy; Marcelino Rodríguez López, Carlos

    2016-01-01

    While cocoa plants regenerated from cryopreserved somatic embryos can demonstrate high levels of phenotypic variability, little is known about the sources of the observed variability. Previous studies have shown that the encapsulation-dehydration cryopreservation methodology imposes no significant extra mutational load since embryos carrying high levels of genetic variability are selected against during protracted culture. Also, the use of secondary rather than primary somatic embryos has been shown to further reduce the incidence of genetic somaclonal variation. Here, the effect of in vitro conservation, cryopreservation and post-cryopreservation generation of somatic embryos on the appearance of epigenetic somaclonal variation were comparatively assessed. To achieve this we compared the epigenetic profiles, generated using Methylation Sensitive Amplified Polymorphisms, of leaves collected from the ortet tree and from cocoa somatic embryos derived from three in vitro conditions: somatic embryos, somatic embryos cryopreserved in liquid nitrogen and somatic embryos generated from cryoproserved somatic embryos. Somatic embryos accumulated epigenetic changes but these were less extensive than in those regenerated after storage in LN. Furthermore, the passage of cryopreserved embryos through another embryogenic stage led to further increase in variation. Interestingly, this detected variability appears to be in some measure reversible. The outcome of this study indicates that the cryopreservation induced phenotypic variability could be, at least partially, due to DNA methylation changes. Phenotypic variability observed in cryostored cocoa somatic-embryos is epigenetic in nature. This variability is partially reversible, not stochastic in nature but a directed response to the in-vitro culture and cryopreservation.

  1. Cumulus-specific genes are transcriptionally silent following somatic cell nuclear transfer in a mouse model*

    OpenAIRE

    Tong, Guo-qing; Heng, Boon-chin; Ng, Soon-chye

    2007-01-01

    This study investigated whether four cumulus-specific genes: follicular stimulating hormone receptor (FSHr), hyaluronan synthase 2 (Has2), prostaglandin synthase 2 (Ptgs2) and steroidogenic acute regulator protein (Star), were correctly reprogrammed to be transcriptionally silent following somatic cell nuclear transfer (SCNT) in a murine model. Cumulus cells of C57×CBA F1 female mouse were injected into enucleated oocytes, followed by activation in 10 µmol/L strontium chloride for 5 h and sub...

  2. Somatic embryogenesis, scanning electron microscopy, histology and biochemical analysis at different developing stages of embryogenesis in six date palm (Phoenix dactylifera L.) cultivars.

    Science.gov (United States)

    Aslam, Junaid; Khan, Saeed Ahmad; Cheruth, Abdul Jaleel; Mujib, Abdul; Sharma, Maheshwar Pershad; Srivastava, Prem Shanker

    2011-10-01

    An efficient somatic embryogenesis system has been established in six date palm (Phoenix dactylifera L.) cultivars (Barhee, Zardai, Khalasah, Muzati, Shishi and Zart). Somatic embryogenesis (SE) was growth regulators and cultivars dependent. Friable embryogenic callus was induced from excised shoot tips on MS medium supplemented with various auxins particularly 2,4-dichlorophenoxyacetic acid (2,4-D, 1.5 mg 1(-l)). Suspension culture increased embryogenesis potentiality. Only a-naphthaleneacetic acid (NAA, 0.5 mg 1(-1)) produced somatic embryos in culture. Somatic embryos germinated and converted into plantlets in N(6)-benzyladenine (BAP, 0.75 mg 1(-l)) added medium following a treatment with thidiazuron (TDZ, 1.0 mg 1(-l)) for maturation. Scanning electron microscopy showed early stages of somatic embryo particularly, globular types, and was in masses. Different developing stages of embryogenesis (heart, torpedo and cotyledonary) were observed under histological preparation of embryogenic callus. Biochemical screening at various stages of somatic embryogenesis (embryogenic callus, somatic embryos, matured, germinated embryos and converted plantlets) of date palm cultivars has been conducted and discussed in detail. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as a good source of alternative propagation. Genetic modification to the embryo precursor cell may improve the fruit quality and yield further.

  3. Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br.

    Science.gov (United States)

    Wang, Y-H; Bhalla, P L

    2004-01-01

    Somatic embryogenesis from leaf explants of Scaevola aemula R. Br. was achieved. Somatic embryos were induced from explants cultured on MS medium supplemented with 0.2 mg/ 2,4-dichlorophenoxyacetic acid and 0.2-0.5 mg/l 6-benzylaminopurine (BAP). Various developmental stages of somatic embryos were found on this medium-from globular embryos to germinated embryos. The transfer of globular embryos to MS medium containing 0.5 mg/l BAP resulted in a high frequency of shoot regeneration. Leaf explants cultured on MS medium containing different combinations of BAP and alpha-naphthaleneacetic acid formed adventitious shoots and roots. Histological examination confirmed the process of somatic embryogenesis. Induction of somatic embryogenesis in Scaevola provides a system for studying embryogenesis in Australian native plants and will facilitate the improvement of these plants using genetic transformation techniques.

  4. Transcription factor Oct1 is a somatic and cancer stem cell determinant.

    Directory of Open Access Journals (Sweden)

    Jessica Maddox

    Full Text Available Defining master transcription factors governing somatic and cancer stem cell identity is an important goal. Here we show that the Oct4 paralog Oct1, a transcription factor implicated in stress responses, metabolic control, and poised transcription states, regulates normal and pathologic stem cell function. Oct1(HI cells in the colon and small intestine co-express known stem cell markers. In primary malignant tissue, high Oct1 protein but not mRNA levels strongly correlate with the frequency of CD24(LOCD44(HI cancer-initiating cells. Reducing Oct1 expression via RNAi reduces the proportion of ALDH(HI and dye efflux(HI cells, and increasing Oct1 increases the proportion of ALDH(HI cells. Normal ALDH(HI cells harbor elevated Oct1 protein but not mRNA levels. Functionally, we show that Oct1 promotes tumor engraftment frequency and promotes hematopoietic stem cell engraftment potential in competitive and serial transplants. In addition to previously described Oct1 transcriptional targets, we identify four Oct1 targets associated with the stem cell phenotype. Cumulatively, the data indicate that Oct1 regulates normal and cancer stem cell function.

  5. Synchronous Onset of Breast and Pancreatic Cancers: Results of Germline and Somatic Genetic Analysis

    Directory of Open Access Journals (Sweden)

    Michael Castro

    2016-07-01

    Full Text Available Background: Synchronous cancers have occasionally been detected at initial diagnosis among patients with breast and ovarian cancer. However, simultaneous coexistence and diagnosis of breast and pancreas cancer has not previously been reported. Case Report: Paternal transmission of a germline BRCA2 mutation to a patient who was diagnosed at age 40 with locally advanced breast and pancreas cancer is presented. Somatic genomic analysis of both cancers with next-generation DNA sequencing confirmed the germline result and reported a variety of variants of unknown significance alterations, of which two were present in both the breast and pancreas cancers. Discussion: The possibility that genomic alterations could have been responsible for modulating the phenotypic or clinical expression of this rare presentation is considered. The authors call attention to the practice of privatizing the clinicogenetic information gained from genetic testing and call for health policy that will facilitate sharing in order to advance the outcomes of patients diagnosed with hereditary cancers.

  6. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for d...

  7. Isolation, culture and characterisation of somatic cells derived from semen and milk of endangered sheep and eland antelope.

    Science.gov (United States)

    Nel-Themaat, L; Gómez, M C; Damiani, P; Wirtu, G; Dresser, B L; Bondioli, K R; Lyons, L A; Pope, C E; Godke, R A

    2007-01-01

    Semen and milk are potential sources of somatic cells for genome banks. In the present study, we cultured and characterised cells from: (1) cooled sheep milk; (2) fresh, cooled and frozen-thawed semen from Gulf Coast native (GCN) sheep (Ovis aries); and (3) fresh eland (Taurotragus oryx) semen. Cells attached to the culture surface from fresh (29%), cooled (43%) and slow-frozen (1 degrees C/min; 14%) ram semen, whereas no attachment occurred in the fast-frozen (10 degrees C/min) group. Proliferation occurred in fresh (50%) and cooled (100%) groups, but no cells proliferated after passage 1 (P1). Eland semen yielded cell lines (100%) that were cryopreserved at P1. In samples from GCN and cross-bred milk, cell attachment (83% and 95%, respectively) and proliferation (60% and 37%, respectively) were observed. Immunocytochemical detection of cytokeratin indicated an epithelial origin of semen-derived cells, whereas milk yielded either fibroblasts, epithelial or a mixture of cell types. Deoxyribonucleic acid microsatellite analysis using cattle-derived markers confirmed that eland cells were from the semen donor. Eland epithelial cells were transferred into eland oocytes and 12 (71%), six (35%) and two (12%) embryos cleaved and developed to morulae or blastocyst stages, respectively. In conclusion, we have developed a technique for obtaining somatic cells from semen. We have also demonstrated that semen-derived cells can serve as karyoplast donors for nuclear transfer.

  8. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    Science.gov (United States)

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  9. Cortisol and somatization.

    Science.gov (United States)

    Rief, W; Auer, C

    2000-05-01

    Somatization symptoms are frequently associated with depression, anxiety, and feelings of distress. These features interact with the activity of the HPA-axis. Therefore we investigated relationships between somatization symptoms and cortisol. Seventy-seven participants were classified into three groups: somatization syndrome (at least eight physical symptoms from the DSM-IV somatization disorder list), somatization syndrome combined with major depression, and healthy controls. The following data were collected: salivary cortisol at three time points (morning, afternoon, evening), nighttime urinary cortisol, serum cortisol after the dexamethasone suppression test (DST), and psychological variables such as depression, anxiety, somatization, and hypochondriasis. Salivary cortisol showed typical diurnal variations. However, the groups did not differ on any of the cortisol variables. A possible explanation may be counteracting effects of somatization and depression. Exploratory correlational analyses revealed that associations between cortisol and psychopathological variables were time-dependent. DST results correlated with psychological aspects of somatization, but not with the number of somatoform symptoms per se.

  10. The somatic genomic landscape of chromophobe renal cell carcinoma.

    Science.gov (United States)

    Davis, Caleb F; Ricketts, Christopher J; Wang, Min; Yang, Lixing; Cherniack, Andrew D; Shen, Hui; Buhay, Christian; Kang, Hyojin; Kim, Sang Cheol; Fahey, Catherine C; Hacker, Kathryn E; Bhanot, Gyan; Gordenin, Dmitry A; Chu, Andy; Gunaratne, Preethi H; Biehl, Michael; Seth, Sahil; Kaipparettu, Benny A; Bristow, Christopher A; Donehower, Lawrence A; Wallen, Eric M; Smith, Angela B; Tickoo, Satish K; Tamboli, Pheroze; Reuter, Victor; Schmidt, Laura S; Hsieh, James J; Choueiri, Toni K; Hakimi, A Ari; Chin, Lynda; Meyerson, Matthew; Kucherlapati, Raju; Park, Woong-Yang; Robertson, A Gordon; Laird, Peter W; Henske, Elizabeth P; Kwiatkowski, David J; Park, Peter J; Morgan, Margaret; Shuch, Brian; Muzny, Donna; Wheeler, David A; Linehan, W Marston; Gibbs, Richard A; Rathmell, W Kimryn; Creighton, Chad J

    2014-09-08

    We describe the landscape of somatic genomic alterations of 66 chromophobe renal cell carcinomas (ChRCCs) on the basis of multidimensional and comprehensive characterization, including mtDNA and whole-genome sequencing. The result is consistent that ChRCC originates from the distal nephron compared with other kidney cancers with more proximal origins. Combined mtDNA and gene expression analysis implicates changes in mitochondrial function as a component of the disease biology, while suggesting alternative roles for mtDNA mutations in cancers relying on oxidative phosphorylation. Genomic rearrangements lead to recurrent structural breakpoints within TERT promoter region, which correlates with highly elevated TERT expression and manifestation of kataegis, representing a mechanism of TERT upregulation in cancer distinct from previously observed amplifications and point mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia

    NARCIS (Netherlands)

    Irving, J.A.; Enshaei, A.; Parker, C.A.; Sutton, R.; Kuiper, R.P.; Erhorn, A.; Minto, L.; Venn, N.C.; Law, T.; Yu, J.; Schwab, C.; Davies, R.; Matheson, E.; Davies, A.; Sonneveld, E.; Boer, M.L. Den; Love, S.B.; Harrison, C.J.; Hoogerbrugge, P.M.; Revesz, T.; Saha, V.; Moorman, A.V.

    2016-01-01

    Somatic genetic abnormalities are initiators and drivers of disease and have proven clinical utility at initial diagnosis. However, the genetic landscape and its clinical utility at relapse are less well understood and have not been studied comprehensively. We analyzed cytogenetic data from 427

  12. Integration of genetic and clinical risk factors improves prognostication in relapsed childhood B-cell precursor acute lymphoblastic leukemia

    NARCIS (Netherlands)

    J. Irving (Julie); A. Enshaei; Parker, C.A. (Catriona A.); R. Sutton; R. Kuiper (Ruud); Erhorn, A. (Amy); L. Minto (L.); N. Venn; T. Law (T.); Yu, J. (Jiangyan); C. Schwab (Claire); Davies, R. (Rosanna); Matheson, E. (Elizabeth); Davies, A. (Alysia); E. Sonneveld (Edwin); M.L. den Boer (Monique); Love, S.B. (Sharon B.); C.J. Harrison (Christine); P.M. Hoogerbrugge (Peter); T. Revesz (Tamas); V. Saha (Vaskar); A.V. Moorman (Anthony)

    2016-01-01

    textabstractSomatic genetic abnormalities are initiators and drivers of disease and have proven clinical utility at initial diagnosis. However, the genetic landscape and its clinical utility at relapse are less well understood and have not been studied comprehensively. We analyzed cytogenetic data

  13. BC-Box Motif-Mediated Neuronal Differentiation of Somatic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hiroshi Kanno

    2018-02-01

    Full Text Available Von Hippel-Lindau tumor suppressor protein (pVHL functions to induce neuronal differentiation of neural stem/progenitor cells (NSCs and skin-derived precursors (SKPs. Here we identified a neuronal differentiation domain (NDD in pVHL. Neuronal differentiation of SKPs was induced by intracellular delivery of a peptide composed of the amino-acid sequences encoded by the NDD. Neuronal differentiation mediated by the NDD was caused by the binding between it and elongin C followed by Janus kinase-2 (JAK2 ubiquitination of JAK2 and inhibition of the JAK2/the signal transducer and activator of transcription-3(STAT3 pathway. The NDD in pVHL contained the BC-box motif ((A,P,S,TLXXX (A,C XXX(A,I,L,V corresponding to the binding site of elongin C. Therefore, we proposed that other BC-box proteins might also contain an NDD; and subsequently also identified in them an NDD containing the amino-acid sequence encoded by the BC-box motif in BC-box proteins. Furthermore, we showed that different NDD peptide-delivered cells differentiated into different kinds of neuron-like cells. That is, dopaminergic neuron-like cells, cholinergic neuron-like cells, GABAnergic neuron-like cells or rhodopsin-positive neuron-like cells were induced by different NDD peptides. These novel findings might contribute to the development of a new method for promoting neuronal differentiation and shed further light on the mechanism of neuronal differentiation of somatic stem cells.

  14. Area program in population genetics. Final report, November 1, 1975-August 31, 1982

    International Nuclear Information System (INIS)

    Chu, E.H.Y.; Gershowitz, H.; Meisler, M.H.; Mohrenweiser, H.W.; Neel, J.V.; Rothman, E.D.; Sing, C.S.

    1982-01-01

    Research results are summarized for the following task areas: (1) Amerindian mutation rates; (2) pilot study of monitoring populations for the frequency of mutation; (3) interdigitation with the biochemical genetics study of the Radiation Effects Research Foundation (Hiroshima, Japan); (4) intraindividual variation in erythrocyte blood group antigens as indicators of somatic mutation; (5) in vitro studies of somatic cell mutation rates; (6) development of approaches to the study of mutation rates; and (7) statistical problems associated with the study of mutation and selection

  15. The mechanism of gene targeting in human somatic cells.

    Directory of Open Access Journals (Sweden)

    Yinan Kan

    2014-04-01

    Full Text Available Gene targeting in human somatic cells is of importance because it can be used to either delineate the loss-of-function phenotype of a gene or correct a mutated gene back to wild-type. Both of these outcomes require a form of DNA double-strand break (DSB repair known as homologous recombination (HR. The mechanism of HR leading to gene targeting, however, is not well understood in human cells. Here, we demonstrate that a two-end, ends-out HR intermediate is valid for human gene targeting. Furthermore, the resolution step of this intermediate occurs via the classic DSB repair model of HR while synthesis-dependent strand annealing and Holliday Junction dissolution are, at best, minor pathways. Moreover, and in contrast to other systems, the positions of Holliday Junction resolution are evenly distributed along the homology arms of the targeting vector. Most unexpectedly, we demonstrate that when a meganuclease is used to introduce a chromosomal DSB to augment gene targeting, the mechanism of gene targeting is inverted to an ends-in process. Finally, we demonstrate that the anti-recombination activity of mismatch repair is a significant impediment to gene targeting. These observations significantly advance our understanding of HR and gene targeting in human cells.

  16. Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.

    Science.gov (United States)

    Lim, Weng Khong; Ong, Choon Kiat; Tan, Jing; Thike, Aye Aye; Ng, Cedric Chuan Young; Rajasegaran, Vikneswari; Myint, Swe Swe; Nagarajan, Sanjanaa; Nasir, Nur Diyana Md; McPherson, John R; Cutcutache, Ioana; Poore, Gregory; Tay, Su Ting; Ooi, Wei Siong; Tan, Veronique Kiak Mien; Hartman, Mikael; Ong, Kong Wee; Tan, Benita K T; Rozen, Steven G; Tan, Puay Hoon; Tan, Patrick; Teh, Bin Tean

    2014-08-01

    Fibroadenomas are the most common breast tumors in women under 30 (refs. 1,2). Exome sequencing of eight fibroadenomas with matching whole-blood samples revealed recurrent somatic mutations solely in MED12, which encodes a Mediator complex subunit. Targeted sequencing of an additional 90 fibroadenomas confirmed highly frequent MED12 exon 2 mutations (58/98, 59%) that are probably somatic, with 71% of mutations occurring in codon 44. Using laser capture microdissection, we show that MED12 fibroadenoma mutations are present in stromal but not epithelial mammary cells. Expression profiling of MED12-mutated and wild-type fibroadenomas revealed that MED12 mutations are associated with dysregulated estrogen signaling and extracellular matrix organization. The fibroadenoma MED12 mutation spectrum is nearly identical to that of previously reported MED12 lesions in uterine leiomyoma but not those of other tumors. Benign tumors of the breast and uterus, both of which are key target tissues of estrogen, may thus share a common genetic basis underpinned by highly frequent and specific MED12 mutations.

  17. Rat primary embryo fibroblast cells suppress transformation by the E6 and E7 genes of human papillomavirus type 16 in somatic hybrid cells.

    OpenAIRE

    Miyasaka, M; Takami, Y; Inoue, H; Hakura, A

    1991-01-01

    The E6 and E7 genes of human papillomavirus type 16 (HPV-16) transform established lines of rat cells but not rat cells in primary culture irrespective of the expression of the two genes. The reason for this difference between the susceptibilities of cell lines and primary cells was examined by using hybrid cells obtained by somatic cell fusion of rat cell lines transformed by the E6 and E7 genes of HPV-16 and freshly isolated rat embryo fibroblast cells. In these hybrid cells, transformed ph...

  18. Prospect of Induced Pluripotent Stem Cell Genetic Repair to Cure Genetic Diseases

    Directory of Open Access Journals (Sweden)

    Jeanne Adiwinata Pawitan

    2012-01-01

    Full Text Available In genetic diseases, where the cells are already damaged, the damaged cells can be replaced by new normal cells, which can be differentiated from iPSC. To avoid immune rejection, iPSC from the patient’s own cell can be developed. However, iPSC from the patients’s cell harbors the same genetic aberration. Therefore, before differentiating the iPSCs into required cells, genetic repair should be done. This review discusses the various technologies to repair the genetic aberration in patient-derived iPSC, or to prevent the genetic aberration to cause further damage in the iPSC-derived cells, such as Zn finger and TALE nuclease genetic editing, RNA interference technology, exon skipping, and gene transfer method. In addition, the challenges in using the iPSC and the strategies to manage the hurdles are addressed.

  19. Genetic risk variants in the CDKN2A/B, RTEL1 and EGFR genes are associated with somatic biomarkers in glioma.

    Science.gov (United States)

    Ghasimi, Soma; Wibom, Carl; Dahlin, Anna M; Brännström, Thomas; Golovleva, Irina; Andersson, Ulrika; Melin, Beatrice

    2016-05-01

    During the last years, genome wide association studies have discovered common germline genetic variants associated with specific glioma subtypes. We aimed to study the association between these germline risk variants and tumor phenotypes, including copy number aberrations and protein expression. A total of 91 glioma patients were included. Thirteen well known genetic risk variants in TERT, EGFR, CCDC26, CDKN2A, CDKN2B, PHLDB1, TP53, and RTEL1 were selected for investigation of possible correlations with the glioma somatic markers: EGFR amplification, 1p/19q codeletion and protein expression of p53, Ki-67, and mutated IDH1. The CDKN2A/B risk variant, rs4977756, and the CDKN2B risk variant, rs1412829 were inversely associated (p = 0.049 and p = 0.002, respectively) with absence of a mutated IDH1, i.e., the majority of patients homozygous for the risk allele showed no or low expression of mutated IDH1. The RTEL1 risk variant, rs6010620 was associated (p = 0.013) with not having 1p/19q codeletion, i.e., the majority of patients homozygous for the risk allele did not show 1p/19q codeletion. In addition, the EGFR risk variant rs17172430 and the CDKN2B risk variant rs1412829, both showed a trend for association (p = 0.055 and p = 0.051, respectively) with increased EGFR copy number, i.e., the majority of patients homozygote for the risk alleles showed chromosomal gain or amplification of EGFR. Our findings indicate that CDKN2A/B risk genotypes are associated with primary glioblastoma without IDH mutation, and that there is an inverse association between RTEL1 risk genotypes and 1p/19q codeletion, suggesting that these genetic variants have a molecular impact on the genesis of high graded brain tumors. Further experimental studies are needed to delineate the functional mechanism of the association between genotype and somatic genetic aberrations.

  20. Somatic mosaicism in families with hemophilia B: 11% of germline mutations originate within a few cell divisions post-fertilization

    Energy Technology Data Exchange (ETDEWEB)

    Knoell, A.; Ketterling, R.P.; Vielhaber, E. [Mayo Clinic/Foundation, Rochester, MN (United States)] [and others

    1994-09-01

    Previous molecular estimates of mosaicism in the dystrophin and other genes generally have focused on the transmission of the mutated allele to two or more children by an individual without the mutation in leukocyte DNA. We have analyzed 414 families with hemophilia B by direct genomic sequencing and haplotype analysis, and have deduced the origin of mutation in 56 families. There was no origin individual who transmitted a mutant allele to more than one child. However, somatic mosaicism was detected by sequence analysis of four origin individuals (3{female} and 1{male}). The sensitivity of this analysis is typically one part in ten. In one additional female who had close to a 50:50 ratio of mutant to normal alleles, three of four noncarrier daughters inherited the haplotype associated with the mutant allele. This highlights a caveat in molecular analysis: a presumptive carrier in a family with sporadic disease does not necessarily have a 50% probability of transmitting the mutant allele to her offspring. After eliminating those families in which mosaicism could not be detected because of a total gene deletion or absence of DNA from a deduced origin individual, 5 of 43 origin individuals exhibited somatic mosaicism at a level that reflects a mutation within the first few cell divisions after fertilization. In one patient, analysis of cervical scrapings and buccal mucosa confirm the generalized distribution of somatic mutation. Are the first few cell divisions post-fertilization highly mutagenic, or do mutations at later divisions also give rise to somatic mosaicism? To address this question, DNA from origin individuals are being analyzed to detect somatic mosaicism at a sensitivity of 1:1000. Single nucleotide primer extension (SNuPE) has been utilized in eight families to date and no mosaicism has been detected. When the remaining 30 samples are analyzed, it will be possible to compare the frequency of somatic mosaicism at 0.1-10% with that of {ge}10%.

  1. Cytogenetic effects of leachates from tannery solid waste on the somatic cells of Vicia faba.

    Science.gov (United States)

    Chandra, Saurabh; Chauhan, L K S; Pande, P N; Gupta, S K

    2004-04-01

    The contamination of surface- and groundwater by the leaching of solid wastes generated by industrial activities as a result of water runoff and rainfall is a matter of great concern. The leachates from tannery solid waste (TSW), a major environmental pollutant, were examined for their possible genotoxic effects on the somatic cells of Vicia faba. Leachates were prepared from solid wastes procured from leather-tanning industrial sites, and V. faba seedlings were exposed to three test concentrations, 2.5%, 5%, and 10%, through soil and aqueous media for 5 days. The root tips examined for cytogenetic damage revealed that leachate of TSW significantly inhibited the mitotic index and induced significantly frequent chromosomal and mitotic aberrations (CA/MA) in a dose-dependent manner. The chemical analysis of TSW samples revealed that the chief constituents were chromium and nickel, which may cause genetic abnormalities. The frequency of aberrations was found to be higher in the root meristematic cells of Vicia faba exposed through the aqueous medium than those exposed through the soil medium. The results of the present study indicated that contamination of potable water bodies by leachates of TSW may cause genotoxicity. For the biomonitoring of complex mixtures of toxicants with the V. faba bioassay, the use of the aqueous medium seems to be a more promising method than the use of the soil medium. Copyright 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 129-133, 2004.

  2. Novel technologies using radiation and somatic embryogenesis for Kenaf improvement

    International Nuclear Information System (INIS)

    Rusli Ibrahim; Siti Mariam Mohd Nahar; Siti Hajar Mohd Nahar; Abdul Rahim Harun; Azhar Mohamad; Sobri Hussein

    2010-01-01

    Full text: Kenaf (Hibiscus cannabinus L.) is a plant in the Malvaceae family, similar to roselle (Hibiscus sabdariffa), cotton (Gossypium hirsutum L.) and okra (Abelmoschus esculentus), holds a promising potential in the Malaysian bio composite industry. Its long fibres are suitable in the process of making a number of products such as pulp and paper, fibre and particle boards, as well as fibre reinforced plastic components and chemical absorbent. Most varieties of kenaf are photo period sensitive and vegetative growth increases until the daylight period becomes less than 12 h 30 min. flowering is then initiated and the vegetative growth rate declines. At present, most of the varieties planted by the farmers produced very low yield, between 3-5 tons/ha. The aim of this research proposal is to study the potential of using nuclear technique with the use radiation in combination with biotechnology to induce genetic variability in kenaf using somatic embryogenesis. Since mutation is a single cell event, irradiation of cell cultures such as somatic embryos will induce high rate of mutation for selection of desired traits. One of the main objectives of the project was to establish an efficient and productive regeneration system for intact plants from somatic embryos obtained from the original mother plant varieties: G4, V36 dan G393. Once regeneration protocol has been optimized, somatic embryos were irradiated using both acute (high dose rate) and chronic (lower dose rate) gamma irradiation with effective doses (2-3 doses). It takes between 4-5 months to reach maximum height of 4-6 meters from seed propagated plants before they can be harvested. With the use of in vitro mutagenesis, screening and selection of new mutant lines with traits of interest can be achieved within a short period of time (3-5 years). Field evaluations were carried out in collaboration with National Kenaf and Tobacco Board (NKTB) and Kelantan Biotech Corporation Sdn. Bhd. targeted for desired

  3. Efficient somatic embryo production of Limau madu ( Citrus ...

    African Journals Online (AJOL)

    Effects of N6-benzylaminopurine (BAP) concentration, initial cell density and carbon sources and concentrations for producing cell suspension and somatic embryos of Limau madu (Citrus suhuiensis Hort. ex Tanaka) were investigated using cell suspension culture. Cells were first inoculated into Murashige and Skoog (MS) ...

  4. POLE somatic mutations in advanced colorectal cancer.

    Science.gov (United States)

    Guerra, Joana; Pinto, Carla; Pinto, Diana; Pinheiro, Manuela; Silva, Romina; Peixoto, Ana; Rocha, Patrícia; Veiga, Isabel; Santos, Catarina; Santos, Rui; Cabreira, Verónica; Lopes, Paula; Henrique, Rui; Teixeira, Manuel R

    2017-12-01

    Despite all the knowledge already gathered, the picture of somatic genetic changes in colorectal tumorigenesis is far from complete. Recently, germline and somatic mutations in the exonuclease domain of polymerase epsilon, catalytic subunit (POLE) gene have been reported in a small subset of microsatellite-stable and hypermutated colorectal carcinomas (CRCs), affecting the proofreading activity of the enzyme and leading to misincorporation of bases during DNA replication. To evaluate the role of POLE mutations in colorectal carcinogenesis, namely in advanced CRC, we searched for somatic mutations by Sanger sequencing in tumor DNA samples from 307 cases. Microsatellite instability and mutation analyses of a panel of oncogenes were performed in the tumors harboring POLE mutations. Three heterozygous mutations were found in two tumors, the c.857C>G, p.Pro286Arg, the c.901G>A, p.Asp301Asn, and the c.1376C>T, p.Ser459Phe. Of the POLE-mutated CRCs, one tumor was microsatellite-stable and the other had low microsatellite instability, whereas KRAS and PIK3CA mutations were found in one tumor each. We conclude that POLE somatic mutations exist but are rare in advanced CRC, with further larger studies being necessary to evaluate its biological and clinical implications. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  5. Characterization of Tetraploid Somatic Cell Nuclear Transfer-Derived Human Embryonic Stem Cells.

    Science.gov (United States)

    Shin, Dong-Hyuk; Lee, Jeoung-Eun; Eum, Jin Hee; Chung, Young Gie; Lee, Hoon Taek; Lee, Dong Ryul

    2017-12-01

    Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and examined whether it could be available as a research model for the polyploidy cells existed in the human tissues. Two tetraploid hESC lines were artificially acquired by reintroduction of remained 1st polar body during the establishment of SCNT-hESC using MII oocytes obtained from female donors and dermal fibroblasts (DFB) from a 35-year-old adult male. These tetraploid SCNT-hESC lines (CHA-NT1 and CHA-NT3) were identified by the cytogenetic genotyping (91, XXXY,-6, t[2:6] / 92,XXXY,-12,+20) and have shown of indefinite proliferation, but slow speed when compared to euploid SCNT-hESCs. Using the eight Short Tendem Repeat (STR) markers, it was confirmed that both CHA-NT1 and CHA-NT3 lines contain both nuclear and oocyte donor genotypes. These hESCs expressed pluripotency markers and their embryoid bodies (EB) also expressed markers of the three embryonic germ layers and formed teratoma after transplantation into immune deficient mice. This study showed that tetraploidy does not affect the activities of proliferation and differentiation in SCNT-hESC. Therefore, tetraploid hESC lines established after SCNT procedure could be differentiated into various types of cells and could be an useful model for the study of the polyploidy cells in the tissues.

  6. Somatic APC mosaicism and oligogenic inheritance in genetically unsolved colorectal adenomatous polyposis patients.

    Science.gov (United States)

    Ciavarella, Michele; Miccoli, Sara; Prossomariti, Anna; Pippucci, Tommaso; Bonora, Elena; Buscherini, Francesco; Palombo, Flavia; Zuntini, Roberta; Balbi, Tiziana; Ceccarelli, Claudio; Bazzoli, Franco; Ricciardiello, Luigi; Turchetti, Daniela; Piazzi, Giulia

    2018-03-01

    Germline variants in the APC gene cause familial adenomatous polyposis. Inherited variants in MutYH, POLE, POLD1, NTHL1, and MSH3 genes and somatic APC mosaicism have been reported as alternative causes of polyposis. However, ~30-50% of cases of polyposis remain genetically unsolved. Thus, the aim of this study was to investigate the genetic causes of unexplained adenomatous polyposis. Eight sporadic cases with >20 adenomatous polyps by 35 years of age or >50 adenomatous polyps by 55 years of age, and no causative germline variants in APC and/or MutYH, were enrolled from a cohort of 56 subjects with adenomatous colorectal polyposis. APC gene mosaicism was investigated on DNA from colonic adenomas by Sanger sequencing or Whole Exome Sequencing (WES). Mosaicism extension to other tissues (peripheral blood, saliva, hair follicles) was evaluated using Sanger sequencing and/or digital PCR. APC second hit was investigated in adenomas from mosaic patients. WES was performed on DNA from peripheral blood to identify additional polyposis candidate variants. We identified APC mosaicism in 50% of patients. In three cases mosaicism was restricted to the colon, while in one it also extended to the duodenum and saliva. One patient without APC mosaicism, carrying an APC in-frame deletion of uncertain significance, was found to harbor rare germline variants in OGG1, POLQ, and EXO1 genes. In conclusion, our restrictive selection criteria improved the detection of mosaic APC patients. In addition, we showed for the first time that an oligogenic inheritance of rare variants might have a cooperative role in sporadic colorectal polyposis onset.

  7. How effects of chemicals might differ from those of radiations in giving rise to genetic ill-health in man

    International Nuclear Information System (INIS)

    Evans, H.J.

    1980-01-01

    Possible differences between the effects of the two groups of agents are considered. Two types of genetic damage are discussed. The first type involves mutational changes induced in germ cells or germ cell precursors which are then transmitted to the products of conception and to any resultant offspring and their descendants. The second kind is that damage sustained by the genome in somatic cells which is transmitted to daughter cells. Such somatic mutations are not heritable in the familiar sense, but they are transmitted to descendant cells within the body. It is concluded that a greater heterogeneity is expected in mutagenic response to chemical mutagens than to radiations in human populations, that the spectrum of mutations following chemical exposure may be quite different from that following radiation exposure, and that for many chemical agents, and in contrast to ionising radiations, one might expect a greater burden of genetic ill-health due to increased frequencies of mildly deleterious recessive and polygenic mutations. (Auth.)

  8. Patterns of somatic alterations between matched primary and metastatic colorectal tumors characterized by whole-genome sequencing.

    Science.gov (United States)

    Xie, Tao; Cho, Yong Beom; Wang, Kai; Huang, Donghui; Hong, Hye Kyung; Choi, Yoon-La; Ko, Young Hyeh; Nam, Do-Hyun; Jin, Juyoun; Yang, Heekyoung; Fernandez, Julio; Deng, Shibing; Rejto, Paul A; Lee, Woo Yong; Mao, Mao

    2014-10-01

    Colorectal cancer (CRC) patients have poor prognosis after formation of distant metastasis. Understanding the molecular mechanisms by which genetic changes facilitate metastasis is critical for the development of targeted therapeutic strategies aimed at controlling disease progression while minimizing toxic side effects. A comprehensive portrait of somatic alterations in CRC and the changes between primary and metastatic tumors has yet to be developed. We performed whole genome sequencing of two primary CRC tumors and their matched liver metastases. By comparing to matched germline DNA, we catalogued somatic alterations at multiple scales, including single nucleotide variations, small insertions and deletions, copy number aberrations and structural variations in both the primary and matched metastasis. We found that the majority of these somatic alterations are present in both sites. Despite the overall similarity, several de novo alterations in the metastases were predicted to be deleterious, in genes including FBXW7, DCLK1 and FAT2, which might contribute to the initiation and progression of distant metastasis. Through careful examination of the mutation prevalence among tumor cells at each site, we also proposed distinct clonal evolution patterns between primary and metastatic tumors in the two cases. These results suggest that somatic alterations may play an important role in driving the development of colorectal cancer metastasis and present challenges and opportunities when considering the choice of treatment. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Clinical and genetic aspects of testicular germ cell tumours

    Directory of Open Access Journals (Sweden)

    Holzik Martijn

    2008-02-01

    Full Text Available Abstract In this paper we review clinical and genetic aspects of testicular germ cell tumours (TGCTs. TGCT is the most common type of malignant disorder in men aged 15-40 years. Its incidence has increased sharply in recent years. Fortunately, survival of patients with TGCT has improved enormously, which can chiefly be attributed to the cisplatin-based polychemotherapy that was introduced in the nineteen eighties to treat patients with metastasized TGCT. In addition, new strategies have been developed in the surgical approach to metastasized/non-metastasized TGCT and alterations have been made to the radiotherapy technique and radiation dose for seminoma. Family history of TGCT is among the strongest risk factors for this tumour type. Although this fact and others suggest the existence of genetic predisposition to develop TGCT, no germline mutations conferring high risk of developing TGCT have been identified so far. A small deletion, referred to as gr/gr, identified on the Y chromosome is probably associated with only a modest increase in TGCT risk, and linkage of familial TGCT to the Xq27 region has not been confirmed yet. Whether highly penetrant TGCT-predisposing mutations truly exist or familial clustering of TGCT can be explained by combinations of weak predispositions, shared in utero or postnatal risks factors and coincidental somatic mutations is an intriguing puzzle, still waiting to be solved.

  10. Clinical and genetic aspects of testicular germ cell tumours.

    Science.gov (United States)

    Lutke Holzik, Martijn F; Sijmons, Rolf H; Hoekstra-Weebers, Josette Ehm; Sleijfer, Dirk T; Hoekstra, Harald J

    2008-02-15

    In this paper we review clinical and genetic aspects of testicular germ cell tumours (TGCTs). TGCT is the most common type of malignant disorder in men aged 1540 years. Its incidence has increased sharply in recent years. Fortunately, survival of patients with TGCT has improved enormously, which can chiefly be attributed to the cisplatin-based polychemotherapy that was introduced in the nineteen eighties to treat patients with metastasized TGCT. In addition, new strategies have been developed in the surgical approach to metastasized/non-metastasized TGCT and alterations have been made to the radiotherapy technique and radiation dose for seminoma. Family history of TGCT is among the strongest risk factors for this tumour type. Although this fact and others suggest the existence of genetic predisposition to develop TGCT, no germline mutations conferring high risk of developing TGCT have been identified so far. A small deletion, referred to as gr/gr, identified on the Y chromosome is probably associated with only a modest increase in TGCT risk, and linkage of familial TGCT to the Xq27 region has not been confirmed yet. Whether highly penetrant TGCT-predisposing mutations truly exist or familial clustering of TGCT can be explained by combinations of weak predispositions, shared in utero or postnatal risks factors and coincidental somatic mutations is an intriguing puzzle, still waiting to be solved.

  11. Somatic Expression of Psychological Problems (Somatization: Examination with Structural Equation Model

    Directory of Open Access Journals (Sweden)

    Tugba Seda Çolak

    2014-09-01

    Full Text Available The main purpose of the research is to define which psychological symptoms (somatization, depression, obsessive ‐ compulsive, hostility, interpersonal sensitivity, anxiety, phobic anxiety, paranoid ideation and psychoticism cause somatic reactions at most. Total effect of these psychological symptoms on somatic symptoms had been investigated. Study was carried out with structural equation model to research the relation between the psychological symptoms and somatization. The main material of the research is formed by the data obtained from 492 people. SCL‐90‐R scale was used in order to obtain the data. As a result of the structural equation analysis, it has been found that 1Psychoticism, phobic anxiety, and paranoid ideation do not predict somatic symptoms.2There is a negative relation between interpersonal sensitivity level mand somatic reactions.3Anxiety symptoms had been found as causative to occur the highest level of somatic reactions.

  12. Effects of diurnal temperature difference and gamma radiation on the frequency of somatic cell mutations in the stamen hairs

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, Won Rok; Kim, Jae Sung; Shin, Hae Shick; Lee, Jeong Joo

    1998-01-01

    This study deals with the effects of diurnal temperature difference (DTD) on somatic cell mutation frequencies in Tradescantia stamen hairs irradiated with radiation. Potted plants of Tradescantia 4430 were irradiated with 0.3, 0.5, 1.0 and 2.0 Gy of gamma radiation. The irradiated plants were maintained under two different experimental conditions; at constant temperature of 20 degree C (DTD0) and at 28 degree C for 14-h day and 8 degree C for 10-h night (DTD20). The somatic cell mutation rate in 0.5 Gy irradiated group showed a big increase on the 6th day and reached a maximum value on the 10th day after irradiation while the rate in the experimental group under the condition of DTD20 started to increase on the 8th day and got to a maximal value on the 14th day postirradiation. In both of the two experiments, the dose-response relationships were clearly linear. The slope of the DTD20 dose-response curve was much steeper than that of the DTD0 one. In conclusion, a great DTD, as one of environmental stresses, enhanced the effectiveness of radiation in the induction of somatic cell mutations and caused a shift of the peak interval of radiation-induced mutations in Tradescantia stamen hairs

  13. Somatic embryogenesis in plantain cultivar 'FHIA - 25' (AAB from meristem tips

    Directory of Open Access Journals (Sweden)

    Dayana Rodríguez González

    2015-07-01

    Full Text Available Plantain cultivar 'FHIA – 25' (AAB shows high yielding qualities and high resistance to Black Sigatoka disease, but its sugar content in the fruit is low, so a regeneration method at cell level is necessary, such as somatic embryogenesis supported by biotechnological tools to improve fruit quality. This work was performed with the aim of establishing a plant regeneration method via somatic embryogenesis using initial explants of shoot apices from axillary buds in liquid culture medium. Homogenous embryogenic cell suspensions were obtained from mentioned explants. The highest cellular multiplication rates were achieved at 3,0% density. The incubation of somatic embryos during 30 days in the maturation culture medium permitted to increase germination. During the acclimatization stage, plants regenerated from somatic embryos, as well as plants from organogenesis, showed a high survival percentage (98 and 97 respectively, without somaclonal variation.

  14. Survey on the frequency of somatic mutations in A-bomb survivors

    International Nuclear Information System (INIS)

    Akiyama, Mitoshi

    1992-01-01

    Several methods have recently been established for quantitatively detecting somatic cell mutations on a specific locus using human blood cells. These methods have enabled the biological estimation of A-bomb radiation doses in surveys on somatic cell mutations. This paper outlines HPRT, GPA, and TCR assays used to measure somatic cell mutations, focusing on the outcome in A-bomb survivors. HPRT assay is based on colony formation with interleukin-2. The frequency of HPRT mutant cells was significantly increased with advancing age in A-bomb survivors and was positively correlated with the frequency of chromosomal aberrations in lymphocytes. There was also a significantly positive correlation between HPRT mutant cell frequencies and DS86 estimated doses, although the slope was slow. In GPA assay, flow cytometric measurements of fluorescence-labeled erythrocytes are used to detect somatic cell mutations. There was a positive correlation between GPA mutant cell frequencies and age in A-bomb survivors. The GPA mutant cell frequencies showed much more positive correlation with lymphocyte chromosomal aberration frequencies than the HPRT mutant cell frequencies. When anti-CD3 antibody and anti-CD4 antibody are labeled with different fluorescences and are analyzed by using flow cytometry, TCR mutant cells having CD3 - 4 + can be detected. When the frequency of TCR mutant cells was examined in 342 A-bomb survivors, it did not correlate with radiation doses. This implies that TCR assay may be unadequate for biological estimation of A-bomb radiation doses throughout a lifetime of A-bomb survivors, because TCR mutant cells seems to be unable to live for a long time due to national selection. (N.K.)

  15. Diphtheria toxin resistance in human lymphocytes and lymphoblasts in the in vivo somatic cell mutation test

    International Nuclear Information System (INIS)

    Tomkins, D.J.; Wei, L.; Laurie, K.E.

    1985-01-01

    It has been shown that circulating peripheral blood lymphocytes can be used for the enumeration of 6-thioguanine-resistant cells that presumably arise by mutation in vivo. This somatic cell mutation test has been studied in lymphocytes from human populations exposed to known mutagens and/or carcinogens. The sensitivity of the test could be further enhanced by including other gene markers, since there is evidence for locus-specific differences in response to mutagens. Resistance to diphtheria toxin (Dip/sup r/) seemed like a potential marker to incorporate into the test because the mutation acts codominantly, can readily be selected in human diploid fibroblasts and Chinese hamster cells with no evidence for cell density or cross-feeding effects, and can be assayed for in nondividing cells by measuring protein synthesis inhibition. Blood samples were collected from seven individuals, and fresh, cryopreserved, or Epstein-Barr virus (EBV)-transformed lymphocytes were tested for continued DNA synthesis ( 3 H-thymidine, autoradiography) or protein synthesis ( 35 S-methionine, scintillation counting). Both fresh and cryopreserved lymphocytes, stimulated to divide with phytohemagglutinin (PHA), continued to synthesize DNA in the presence of high doses of diphtheria toxin (DT). Similarly, both dividing (PHA-stimulated) and nondividing fresh lymphocytes carried on significant levels of protein synthesis even 68 hr after exposure to 100 flocculating units (LF)/ml DT. The results suggest that human T and B lymphocytes may not be as sensitive to DT protein synthesis inhibition as human fibroblast and Chinese hamster cells. For this reason, Dip/sup r/ may not be a suitable marker for the somatic cell mutation test

  16. Somatic perception, cultural differences and immigration: results from administration of the Modified Somatic Perception Questionnaire (MSPQ to a sample of immigrants

    Directory of Open Access Journals (Sweden)

    Bragazzi NL

    2014-06-01

    Full Text Available Nicola Luigi Bragazzi, Giovanni Del Puente, Werner Maria NattaDepartment of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, ItalyAbstract: The number of immigrants in Italy has doubled every 10 years from 1972 and Genoa hosts two large communities of immigrants from South America and Africa. We investigated differences in the somatic perception between immigrants and Italians and between South Americans and Africans living in the city of Genoa. During a 7 month period, an anonymous questionnaire asking for sociodemographic information and the Modified Somatic Perception Questionnaire (MSPQ were administered to all immigrants accessing an outpatient clinic or the general practitioners offices. MSPQ mean scores were significantly higher in immigrant patients than in Italian patients, after adjusting for sex and age differences. We found no differences between South Americans and Africans in MSPQ score. The tendency to express discomfort through physical symptoms appears to be related to being a foreigner who arrived in Italy through a migratory trip and also to being a person who comes from a cultural context that is very different from the one of developed countries.Keywords: immigrants, Modified Somatic Perception Questionnaire (MSPQ, somatization, transcultural psychiatry

  17. Genetic effects of ionizing radiation and repair processes

    International Nuclear Information System (INIS)

    Tuschl, H.

    1986-11-01

    Since DNA (=desoxyribonucleic acid) is the largest molecule within the cell it is the most important target for direct and indirect radiation effects. Within DNA the total genetic information is stored, thus damage to DNA in germ cells causes genetic disorders and damage in somatic cells is implicated in cancer and immunodeficiences. Alterations of DNA structure are not only due to ionizing radiation effects, but also to spontaneous DNA modifications and damage from interactions with environmental ultraviolet light and chemical agents. To maintain its genetic integrity, each organism had to develop different repair systems able to recognize and remove DNA damage. Repeated exposure to a DNA damaging agent can even lead to adaptation processes and increased resistance to the same agent. At normal function of repair systems it can be assumed that the capacity of those systems is adequate to scope with the effects of low radiation doses. (Author)

  18. Life history and spatial determinants of somatic growth dynamics in Komodo dragon populations

    OpenAIRE

    Laver, Rj; Purwandana, D; Ariefiandy, A; Imansyah, J; Forsyth, D; Ciofi, C; Jessop, Ts

    2012-01-01

    Somatic growth patterns represent a major component of organismal fitness and may vary among sexes and populations due to genetic and environmental processes leading to profound differences in life-history and demography. This study considered the ontogenic, sex-specific and spatial dynamics of somatic growth patterns in ten populations of the world's largest lizard the Komodo dragon (Varanus komodoensis). The growth of 400 individual Komodo dragons was measured in a capture-mark-recapture st...

  19. Anatomy of somatic embryogenesis in Carica papaya L.

    Directory of Open Access Journals (Sweden)

    Juliana A. Fernando

    2001-09-01

    Full Text Available Mature zygotic embryos of Carica papaya L. ‘Sunrise Solo’ were used as explants for embryogenesis induction. The explants were inoculated on Murashige and Skoog culture medium supplemented with 2 mg.L-1 2,4-dichlorophenoxyacetic acid and incubated in darkness at 25+2°C. Histological analysis of callogenesis and somatic embryogenesis indicated occurrence of direct and indirect somatic embryogenesis development. Direct somatic embryo formation was observed from hypocotyledonary epidermic cells only from explant 18 days after inoculation. Somatic embryos formed indirectly were originated from embryogenic superficial cells of pre-embryonic complexes located on peripherical and on internal cell layers of callus 49 days after inoculation. Diverse morphological differences including disformed embryos were observed among the somatic embryos.Embriões zigóticos maduros de Carica papaya L. ‘Sunrise Solo’ foram utilizados como explantes para indução da embriogênese. Estes explantes foram inoculados em meio de cultura de Murashige & Skoog suplementado com 2,0 mg.L-1 de 2,4 ácido diclorofenoxiacético (2,4-D e mantidos no escuro em câmara de crescimento à temperatura de 21°C por período de tempo variável. Através da análise histológica foi possível verificar que os primeiros embriões somáticos formaram-se diretamente a partir de células únicas da epiderme hipocotiledonar do explante após o 18º dia de cultura. Porém, os demais embriões somáticos originaram-se indiretamente a partir de células superficiais de complexos pré-embriônicos presentes nas camadas periféricas e internas do calo após o 49º dia de cultura. Foram detectadas algumas diferenças morfológicas entre os embriões somáticos obtidos.

  20. An Epigenetic Modifier Results in Improved In Vitro Blastocyst production after Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Zhang, Yunhai; Li, Juan; Villemoes, Klaus

    2007-01-01

    The present study was designed to examine the effect of trichostatin A (TSA), an inhibitor of histone deacetylase, on development of porcine cloned embryos. Our results showed that treatment of cloned embryos derived from sow oocytes with 50 nM TSA for up to 24 h after the onset of activation cou...... were tested, and for all cell lines an enhancement in blastocyst development compared to their corresponding control was observed. Our data demonstrate that TSA treatment after somatic cell nuclear transfer in the pig can significantly improve the in vitro blastocyst production...

  1. Inspecting Targeted Deep Sequencing of Whole Genome Amplified DNA Versus Fresh DNA for Somatic Mutation Detection: A Genetic Study in Myelodysplastic Syndrome Patients.

    Science.gov (United States)

    Palomo, Laura; Fuster-Tormo, Francisco; Alvira, Daniel; Ademà, Vera; Armengol, María Pilar; Gómez-Marzo, Paula; de Haro, Nuri; Mallo, Mar; Xicoy, Blanca; Zamora, Lurdes; Solé, Francesc

    2017-08-01

    Whole genome amplification (WGA) has become an invaluable method for preserving limited samples of precious stock material and has been used during the past years as an alternative tool to increase the amount of DNA before library preparation for next-generation sequencing. Myelodysplastic syndromes (MDS) are a group of clonal hematopoietic stem cell disorders characterized by presenting somatic mutations in several myeloid-related genes. In this work, targeted deep sequencing has been performed on four paired fresh DNA and WGA DNA samples from bone marrow of MDS patients, to assess the feasibility of using WGA DNA for detecting somatic mutations. The results of this study highlighted that, in general, the sequencing and alignment statistics of fresh DNA and WGA DNA samples were similar. However, after variant calling and when considering variants detected at all frequencies, there was a high level of discordance between fresh DNA and WGA DNA (overall, a higher number of variants was detected in WGA DNA). After proper filtering, a total of three somatic mutations were detected in the cohort. All somatic mutations detected in fresh DNA were also identified in WGA DNA and validated by whole exome sequencing.

  2. Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation?

    Science.gov (United States)

    Oback, B; Wells, D N

    2007-05-01

    Compared to other assisted reproductive technologies, mammalian nuclear transfer (NT) cloning is inefficient in generating viable offspring. It has been postulated that nuclear reprogramming and cloning efficiency can be increased by choosing less differentiated cell types as nuclear donors. This hypothesis is mainly supported by comparative mouse cloning experiments using early blastomeres, embryonic stem (ES) cells, and terminally differentiated somatic donor cells. We have re-evaluated these comparisons, taking into account different NT procedures, the use of donor cells from different genetic backgrounds, sex, cell cycle stages, and the lack of robust statistical significance when post-blastocyst development is compared. We argue that while the reprogrammability of early blastomeres appears to be much higher than that of somatic cells, it has so far not been conclusively determined whether differentiation status affects cloning efficiency within somatic donor cell lineages. Copyright (c) 2006 Wiley-Liss, Inc.

  3. Immunoglobulin diversification in B cell malignancies: internal splicing of heavy chain variable region as a by-product of somatic hypermutation

    NARCIS (Netherlands)

    Bende, R. J.; Aarts, W. M.; Pals, S. T.; van Noesel, C. J. M.

    2002-01-01

    In this study we describe alternative splicing of somatically mutated immunoglobulin (Ig) variable heavy chain (V-H) genes in three distinct primary B cell non-Hodgkin's lymphomas (B-NHL). In two V4-34 expressing lymphomas, ie a post-germinal center type B cell chronic lymphocytic leukemia (B-CLL)

  4. Expression of members of immunoglobulin gene family in somatic cell hybrids between human B and T cells

    International Nuclear Information System (INIS)

    Kozbor, D.; Burioni, R.; Ar-Rushdi, A.; Zmijewski, C.; Croce, C.M.

    1987-01-01

    Somatic cell hybrids were obtained between human T and B cells and tested for the expression of differentiated traits of both cell lineages. The T-cell parent SUP-T1 is CD3 - , CD4 + , CD1 + , CD8 + , is weakly positive for HLA class I determinants, and has an inversion of chromosome 14 due to a site-specific recombination event between an immunoglobulin heavy-chain variable gene and the joining segment of the T-cell receptor α chain. The B-cell parent, the 6-thioguanine- and ouabain-resistant mutant GM1500, is a lymphoblastoid cell line that secretes IgG2, K chains, and expresses B1, B532, and HLA class I and II antigens. All hybrids expressed characteristics of B cells (Ig + , B1 + , B532 + , EBNA + , HLA antigens), whereas only CD4 among the T-cell markers was expressed. The level of T-cell receptor β-chain transcript was greatly reduced and no RNA of the chimeric T-cell receptor α-chain joining segment-immunoglobulin heavy-chain variable region was detected. Southern blot analysis indicated that absence of T-cell differentiation markers in the hybrids was not due to chromosomal loss. Rather, some B-cell-specific factor present in the hybrids may account for the suppression

  5. Somatic PI3K activity regulates transition to the spermatocyte stages ...

    Indian Academy of Sciences (India)

    Samir Gupta

    2017-04-22

    Apr 22, 2017 ... like growth factor (IGF) families, control the tissue homeosta- sis (Biteau et al. 2011 ... A breach in the somatic encapsulation due to the loss of somatic cyst cells .... populations at the apical region of testes of 4-days-old adults.

  6. Restoration of Mitochondrial NAD+ Levels Delays Stem Cell Senescence and Facilitates Reprogramming of Aged Somatic Cells.

    Science.gov (United States)

    Son, Myung Jin; Kwon, Youjeong; Son, Taekwon; Cho, Yee Sook

    2016-12-01

    The fundamental tenet that aging is irreversible has been challenged by the development of reprogramming technology that can restore molecular and cellular age by reversing the progression of aging. The use of cells from aged individuals as sources for reprogramming or transplantation creates a major barrier in stem cell therapy with respect to cell quality and quantity. Here, we investigated the molecular features underlying senescence and rejuvenation during aged cell reprogramming and identified novel factors that can overcome age-associated barriers. Enzymes, such as nicotinamide nucleotide transhydrogenase (NNT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), that control mitochondrial NAD + levels appear to be susceptible to aging. In aged cells, mitochondrial NAD + levels decrease, accompanied by reduced SIRT3 activity; these changes severely impede cell fate transition. However, in cells collected from aged p16 knockout mice, which exhibit delayed cellular senescence, no changes in NNT or NMNAT3 expression were found. Importantly, restoring mitochondrial NAD + levels by overexpressing NNT and NMNAT3 enhanced reprogramming efficiency of aged somatic cells and extended the lifespan of human mesenchymal stem cells by delaying replicative senescence. These results demonstrate that maintenance of mitochondrial NAD + levels is critical for reversing the mechanisms of aging and ensuring that cells collected from aged individuals are of high quality. Stem Cells 2016;34:2840-2851. © 2016 AlphaMed Press.

  7. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs...... during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated......, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...

  8. Somatic Embryogenesis in Two Orchid Genera (Cymbidium, Dendrobium).

    Science.gov (United States)

    da Silva, Jaime A Teixeira; Winarto, Budi

    2016-01-01

    The protocorm-like body (PLB) is the de facto somatic embryo in orchids. Here we describe detailed protocols for two orchid genera (hybrid Cymbidium Twilight Moon 'Day Light' and Dendrobium 'Jayakarta', D. 'Gradita 31', and D. 'Zahra FR 62') for generating PLBs. These protocols will most likely have to be tweaked for different cultivars as the response of orchids in vitro tends to be dependent on genotype. In addition to primary somatic embryogenesis, secondary (or repetitive) somatic embryogenesis is also described for both genera. The use of thin cell layers as a sensitive tissue assay is outlined for hybrid Cymbidium while the protocol outlined is suitable for bioreactor culture of D. 'Zahra FR 62'.

  9. Assessing somatic hypermutation in Ramos B cells after overexpression or knockdown of specific genes.

    Science.gov (United States)

    Upton, Dana C; Unniraman, Shyam

    2011-11-01

    B cells start their life with low affinity antibodies generated by V(D)J recombination. However, upon detecting a pathogen, the variable (V) region of an immunoglobulin (Ig) gene is mutated approximately 100,000-fold more than the rest of the genome through somatic hypermutation (SHM), resulting in high affinity antibodies. In addition, class switch recombination (CSR) produces antibodies with different effector functions depending on the kind of immune response that is needed for a particular pathogen. Both CSR and SHM are initiated by activation-induced cytidine deaminase (AID), which deaminates cytosine residues in DNA to produce uracils. These uracils are processed by error-prone forms of repair pathways, eventually leading to mutations and recombination. Our current understanding of the molecular details of SHM and CSR come from a combination of studies in mice, primary cells, cell lines, and cell-free experiments. Mouse models remain the gold standard with genetic knockouts showing critical roles for many repair factors (e.g. Ung, Msh2, Msh6, Exo1, and polymerase η). However, not all genes are amenable for knockout studies. For example, knockouts of several double-strand break repair proteins are embryonically lethal or impair B-cell development. Moreover, sometimes the specific function of a protein in SHM or CSR may be masked by more global defects caused by the knockout. In addition, since experiments in mice can be lengthy, altering expression of individual genes in cell lines has become an increasingly popular first step to identifying and characterizing candidate genes. Ramos - a Burkitt lymphoma cell line that constitutively undergoes SHM - has been a popular cell-line model to study SHM. One advantage of Ramos cells is that they have a built-in convenient semi-quantitative measure of SHM. Wild type cells express IgM and, as they pick up mutations, some of the mutations knock out IgM expression. Therefore, assaying IgM loss by fluorescence

  10. Six cloned calves produced from adult fibroblast cells after long-term culture

    Science.gov (United States)

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  11. Chromatin dynamics in Pollen Mother Cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Wenjing eShe

    2015-04-01

    Full Text Available Unlike animals, where the germline is established early during embryogenesis, plants set aside their reproductive lineage late in development in dedicated floral organs. The specification of pollen mother cells (PMCs committed to meiosis takes place in the sporogenous tissue in anther locules and marks the somatic-to-reproductive cell fate transition towards the male reproductive lineage. Here we show that Arabidopsis PMCs differentiation is accompanied by large-scale changes in chromatin organization. This is characterized by significant increase in nuclear volume, chromatin decondensation, reduction in heterochromatin, eviction of linker histones and the H2AZ histone variant. These structural alterations are accompanied by dramatic, quantitative changes in histone modifications levels compared to that of surrounding somatic cells that do not share a sporogenic fate. All these changes are highly reminiscent of those we have formerly described in female megaspore mother cells (MMCs. This indicates that chromatin reprogramming is a common underlying scenario in the somatic-to-reproductive cell fate transition in both male and female lineages.

  12. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects

    NARCIS (Netherlands)

    A.F. Daly (Adrian); B. Yuan (Bo); Fina, F. (Frederic); J.-H. Caberg (Jean-Hubert); G. Trivellin (Giampaolo); L. Rostomyan (Liliya); W.W. de Herder (Wouter); L.A. Naves (Lucianna); D. Metzger (Daniel); T. Cuny (Thomas); Rabl, W. (Wolfgang); N.S. Shah (Nalini Samir); M-L. Jaffrain-Rea (Marie-Lise); Chiara Zatelli, M. (Maria); F.R. Faucz (Fabio R.); E. Castermans (Emilie); Nanni-Metellus, I. (Isabelle); Lodish, M. (Maya); A. Muhammad (Ammar); Palmeira, L. (Leonor); Potorac, I. (Iulia); G. Mantovani (Giovanna); S.J.C.M.M. Neggers (Bas); Klein, M. (Marc); A. Barlier (Anne); P. Liu (Pengfei); Ouafik, L. (L'houcine); V. Bours (Vincent); Lupski, J.R. (James R.); C.A. Stratakis (Constantine); A. Beckers (Albert)

    2016-01-01

    textabstractSomatic mosaicism has been implicated as a causative mechanism in a number of genetic and genomic disorders. X-linked acrogigantism (XLAG)syndrome is a recently characterized genomic form of pediatric gigantism due to aggressive pituitary tumors that is caused by submicroscopic

  13. DNA methylation at a bovine alpha satellite I repeat CpG site during development following fertilization and somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT. Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5 during development of cattle generated either by artificial insemination (AI or in vitro fertilization (IVF and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT blastocysts showed significantly more methylation than IVF blastocysts. At implantation, no difference in methylation was observed between SCNT and AI in trophoblast tissue at αsatI-5, however, SCNT embryos were significantly hyper-methylated compared to AI controls at this time point. Following implantation, DNA methylation at αsatI-5 decreased in AI but not SCNT placental tissues. In contrast to placenta, the proportion of methylation at αsatI-5 remained high in adrenal, kidney and muscle tissues during development. Differences in the average proportion of methylation were smaller in somatic tissues than placental tissues but, on average, SCNT somatic tissues were hyper-methylated at αsatI-5. Although sperm from all bulls was less methylated than somatic tissues at αsatI-5, on average this site remained hyper-methylated in sperm from cloned bulls compared with control bulls. This developmental time course confirms that epigenetic reprogramming does occur, at least to some extent, following SCNT. However, the elevated methylation levels observed in SCNT blastocysts and cellular derivatives implies that there is either insufficient time or abundance of appropriate reprogramming factors in oocytes to ensure complete reprogramming. Incomplete reprogramming at this CpG site may be a contributing factor to low SCNT success rates, but more likely represents the tip of the iceberg in terms of incompletely reprogramming. Until protocols ensure the epigenetic

  14. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait.

    Science.gov (United States)

    Goji, Katsumi; Ozaki, Kayo; Sadewa, Ahmad H; Nishio, Hisahide; Matsuo, Masafumi

    2006-02-01

    Familial hypophosphatemic rickets is usually transmitted as an X-linked dominant disorder (XLH), although autosomal dominant forms have also been observed. Genetic studies of these disorders have identified mutations in PHEX and FGF23 as the causes of X-linked dominant disorder and autosomal dominant forms, respectively. The objective of the study was to describe the molecular genetic findings in a family affected by hypophosphatemic rickets with presumed autosomal dominant inheritance. We studied a family in which the father and the elder of his two daughters, but not the second daughter, were affected by hypophosphatemic rickets. The pedigree interpretation of the family suggested that genetic transmission of the disorder occurred as an autosomal dominant trait. Direct nucleotide sequencing of FGF23 and PHEX revealed that the elder daughter was heterozygous for an R567X mutation in PHEX, rather than FGF23, suggesting that the genetic transmission occurred as an X-linked dominant trait. Unexpectedly, the father was heterozygous for this mutation. Single-nucleotide primer extension and denaturing HPLC analysis of the father using DNA from single hair roots revealed that he was a somatic mosaic for the mutation. Haplotype analysis confirmed that the father transmitted the genotypes for 18 markers on the X chromosome equally to his two daughters. The fact that the father transmitted the mutation to only one of his two daughters indicated that he was a germline mosaic for the mutation. Somatic and germline mosaicism for an X-linked dominant mutation in PHEX may mimic autosomal dominant inheritance.

  15. Genetic architecture of clinical mastitis traits in dairy cattle

    DEFF Research Database (Denmark)

    Sahana, Goutam; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2012-01-01

    investigate the genetic architecture of clinical mastitis and somatic cell score traits in dairy cattle using a high density (HD) SNP panel. Mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection, is a frequent disease in dairy cattle. Clinical mastitis and somatic cell...... score from first three lactations were studied for association with SNP markers in 4,200 progeny-tested Nordic Holstein bulls. Single trait breeding values were used as phenotypes. All the individuals were genotyped with BovineSNP50 Beadchip. Part of this population was also genotyped with the Bovine...... mixed model analysis. After Bonferroni correction 12, 372 SNP exhibited genome-wide significant associations with mastitis related traits. A total 61 QTL regions on 22 chromosomes associated with mastitis related traits were identified. The SNP with highest effect explained 5.6% of the variance...

  16. Socializing with MYC: cell competition in development and as a model for premalignant cancer.

    Science.gov (United States)

    Johnston, Laura A

    2014-04-01

    Studies in Drosophila and mammals have made it clear that genetic mutations that arise in somatic tissues are rapidly recognized and eliminated, suggesting that cellular fitness is tightly monitored. During development, damaged, mutant, or otherwise unfit cells are prevented from contributing to the tissue and are instructed to die, whereas healthy cells benefit and populate the animal. This cell selection process, known as cell competition, eliminates somatic genetic heterogeneity and promotes tissue fitness during development. Yet cell competition also has a dark side. Super competition can be exploited by incipient cancers to subvert cellular cooperation and promote selfish behavior. Evidence is accumulating that MYC plays a key role in regulation of social behavior within tissues. Given the high number of tumors with deregulated MYC, studies of cell competition promise to yield insight into how the local environment yields to and participates in the early stages of tumor formation.

  17. Genetic analysis of processed in-line mastitis indicator data

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Løvendahl, Peter

    2013-01-01

    indicates high risk of mastitis. The EMR values were summarized for each cow using the log-transformed median EMR. A second trait was defined as the median of the log-transformed SCC values from 5 to 305 d in milk. A bivariate animal model was used for estimation of co-variance components for the 2 traits......The aim of this study was to estimate heritability of elevated mastitis risk (EMR), a trait derived from in-line measurements of cell counts expressing risk of mastitis on a continuous scale, and its genetic correlation with in-line somatic cell counts. Log-transformed somatic cell counts (SCC; n...... = 855,181) based on in-line measurements (OCC, DeLaval, Sweden) in automatic milking systems were collected from 2007 to2013 in 7 herds from a total of 1986 first and second parity cows (5 to 305 d in milk). Only data from the lactation with most measurements was used from each cow. A bio-model based...

  18. Aspects of Chemical Composition and Somatic Cell count of Cow Milk Marketed at Dispensers

    Directory of Open Access Journals (Sweden)

    Mircea Valentin MUNTEAN

    2018-05-01

    Full Text Available Milk quality is influenced by many factors: lactation, fat, protein, lactose, number of somatic cells. In order to process raw milk and compare with criteria of quality and food safety the Regulation of European Parliament and the council no. 853/2004. Analysing the total number of somatic cells (SCC in the period July-August 2017 it is noted that in case of samples collected from first automatic milk dispenser exceed 2 times the maximum admissible values and the samples collected from second automatic milk dispenser are up to the maximum allowable values which show that milking hygiene and animal health are at the European standards required. Analysis of fat content for both cases indicates that it is within the standard values for cow's milk and fat variations for DM1 samples are very low at temperatures above 30 degrees Celsius which shows that high temperatures do not influence these parameters. The biological material study was represented analysed by 30 samples of milk from only two cow milk dispensers functional located in this period in Cluj-Napoca city. These samples were collected at the same time period during July-August months. The aim of present study is to determine whether milk marketed through dispensers under the high temperature conditions specific to this period is affected in terms of qualitative parameter analysis.

  19. Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos.

    Science.gov (United States)

    Samiec, M; Skrzyszowska, M

    2018-03-01

    The efficiency of somatic cell cloning in mammals remains disappointingly low. Incomplete and aberrant reprogramming of epigenetic memory of somatic cell nuclei in preimplantation nuclear- transferred (NT) embryos is one of the most important factors that limit the cloning effectiveness. The extent of epigenetic genome-wide alterations, involving histone or DNA methylation and histone deacetylation, that are mediated by histone-lysine methyltransferases (HMTs) or DNA methyltransferases (DNMTs) and histone deacetylases (HDACs) can be modulated/reversed via exogenous inhibitors of these enzymes throughout in vitro culture of nuclear donor cells, nuclear recipient oocytes and/or cloned embryos. The use of the artificial modifiers of epigenomically-conditioned gene expression leads to inhibition of both chromatin condensation and transcriptional silencing the genomic DNA of somatic cells that provide a source of nuclear donors for reconstruction of enucleated oocytes and generation of cloned embryos. The onset of chromatin decondensation and gene transcriptional activity is evoked both through specific/selective inactivating HMTs by BIX-01294 and through non-specific/non-selective blocking the activity of either DNMTs by 5-aza-2'-deoxycytidine, zebularine, S-adenosylhomocysteine or HDACs by trichostatin A, valproic acid, scriptaid, oxamflatin, sodium butyrate, m-carboxycinnamic acid bishydroxamide, panobinostat, abexinostat, quisinostat, dacinostat, belinostat and psammaplin A. Epigenomic modulation of nuclear donor cells, nuclear recipient cells and/or cloned embryos may facilitate and accelerate the reprogrammability for gene expression of donor cell nuclei that have been transplanted into a host ooplasm and subsequently underwent dedifferentiating and re-establishing the epigenetically dependent status of their transcriptional activity during pre- and postimplantation development of NT embryos. Nevertheless, a comprehensive additional work is necessary to determine

  20. Targeted capture massively parallel sequencing analysis of LCIS and invasive lobular cancer: Repertoire of somatic genetic alterations and clonal relationships.

    Science.gov (United States)

    Sakr, Rita A; Schizas, Michail; Carniello, Jose V Scarpa; Ng, Charlotte K Y; Piscuoglio, Salvatore; Giri, Dilip; Andrade, Victor P; De Brot, Marina; Lim, Raymond S; Towers, Russell; Weigelt, Britta; Reis-Filho, Jorge S; King, Tari A

    2016-02-01

    Lobular carcinoma in situ (LCIS) has been proposed as a non-obligate precursor of invasive lobular carcinoma (ILC). Here we sought to define the repertoire of somatic genetic alterations in pure LCIS and in synchronous LCIS and ILC using targeted massively parallel sequencing. DNA samples extracted from microdissected LCIS, ILC and matched normal breast tissue or peripheral blood from 30 patients were subjected to massively parallel sequencing targeting all exons of 273 genes, including the genes most frequently mutated in breast cancer and DNA repair-related genes. Single nucleotide variants and insertions and deletions were identified using state-of-the-art bioinformatics approaches. The constellation of somatic mutations found in LCIS (n = 34) and ILC (n = 21) were similar, with the most frequently mutated genes being CDH1 (56% and 66%, respectively), PIK3CA (41% and 52%, respectively) and CBFB (12% and 19%, respectively). Among 19 LCIS and ILC synchronous pairs, 14 (74%) had at least one identical mutation in common, including identical PIK3CA and CDH1 mutations. Paired analysis of independent foci of LCIS from 3 breasts revealed at least one common mutation in each of the 3 pairs (CDH1, PIK3CA, CBFB and PKHD1L1). LCIS and ILC have a similar repertoire of somatic mutations, with PIK3CA and CDH1 being the most frequently mutated genes. The presence of identical mutations between LCIS-LCIS and LCIS-ILC pairs demonstrates that LCIS is a clonal neoplastic lesion, and provides additional evidence that at least some LCIS are non-obligate precursors of ILC. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Choi, Seong-Jun [Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Shim, Hosup, E-mail: shim@dku.edu [Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan (Korea, Republic of); Institute of Tissue Regeneration Engineering, Dankook University, Cheonan (Korea, Republic of); Department of Physiology, Dankook University School of Medicine, Cheonan (Korea, Republic of)

    2014-10-03

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.

  2. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Kim, Young June; Ahn, Kwang Sung; Kim, Minjeong; Kim, Min Ju; Park, Sang-Min; Ryu, Junghyun; Ahn, Jin Seop; Heo, Soon Young; Kang, Jee Hyun; Choi, You Jung; Choi, Seong-Jun; Shim, Hosup

    2014-01-01

    Highlights: • ATM gene-targeted pigs were produced by somatic cell nuclear transfer. • A novel large animal model for ataxia telangiectasia was developed. • The new model may provide an alternative to the mouse model. - Abstract: Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies

  3. Replication of somatic micronuclei in bovine enucleated oocytes

    Directory of Open Access Journals (Sweden)

    Canel Natalia

    2012-11-01

    Full Text Available Abstract Background Microcell-mediated chromosome transfer (MMCT was developed to introduce a low number of chromosomes into a host cell. We have designed a novel technique combining part of MMCT with somatic cell nuclear transfer, which consists of injecting a somatic micronucleus into an enucleated oocyte, and inducing its cellular machinery to replicate such micronucleus. It would allow the isolation and manipulation of a single or a low number of somatic chromosomes. Methods Micronuclei from adult bovine fibroblasts were produced by incubation in 0.05 μg/ml demecolcine for 46 h followed by 2 mg/ml mitomycin for 2 h. Cells were finally treated with 10 μg/ml cytochalasin B for 1 h. In vitro matured bovine oocytes were mechanically enucleated and intracytoplasmatically injected with one somatic micronucleus, which had been previously exposed [Micronucleus- injected (+] or not [Micronucleus- injected (−] to a transgene (50 ng/μl pCX-EGFP during 5 min. Enucleated oocytes [Enucleated (+] and parthenogenetic [Parthenogenetic (+] controls were injected into the cytoplasm with less than 10 pl of PVP containing 50 ng/μl pCX-EGFP. A non-injected parthenogenetic control [Parthenogenetic (−] was also included. Two hours after injection, oocytes and reconstituted embryos were activated by incubation in 5 μM ionomycin for 4 min + 1.9 mM 6-DMAP for 3 h. Cleavage stage and egfp expression were evaluated. DNA replication was confirmed by DAPI staining. On day 2, Micronucleus- injected (−, Parthenogenetic (− and in vitro fertilized (IVF embryos were karyotyped. Differences among treatments were determined by Fisher′s exact test (p≤0.05. Results All the experimental groups underwent the first cell divisions. Interestingly, a low number of Micronucleus-injected embryos showed egfp expression. DAPI staining confirmed replication of micronuclei in most of the evaluated embryos. Karyotype analysis revealed that all Micronucleus-injected embryos had

  4. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  5. Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Adam Shlien

    2016-08-01

    Full Text Available Disordered transcriptomes of cancer encompass direct effects of somatic mutation on transcription, coordinated secondary pathway alterations, and increased transcriptional noise. To catalog the rules governing how somatic mutation exerts direct transcriptional effects, we developed an exhaustive pipeline for analyzing RNA sequencing data, which we integrated with whole genomes from 23 breast cancers. Using X-inactivation analyses, we found that cancer cells are more transcriptionally active than intermixed stromal cells. This is especially true in estrogen receptor (ER-negative tumors. Overall, 59% of substitutions were expressed. Nonsense mutations showed lower expression levels than expected, with patterns characteristic of nonsense-mediated decay. 14% of 4,234 rearrangements caused transcriptional abnormalities, including exon skips, exon reusage, fusions, and premature polyadenylation. We found productive, stable transcription from sense-to-antisense gene fusions and gene-to-intergenic rearrangements, suggesting that these mutation classes drive more transcriptional disruption than previously suspected. Systematic integration of transcriptome with genome data reveals the rules by which transcriptional machinery interprets somatic mutation.

  6. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-01-01

    Full Text Available Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germination and that makes its natural propagation difficult. The aim of this study was to establish a protocol of regeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculated on WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein or glutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D (22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed casein or glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture medium containing NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction (8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein and the development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promoted in WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containing hydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. During the maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages. The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histological studies.

  7. SOMATIC EMBRYOGENESIS AND MORPHOANATOMY OF Ocotea porosa SOMATIC EMBRYOS

    Directory of Open Access Journals (Sweden)

    Luciana Luiza Pelegrini

    2013-12-01

    Full Text Available http://dx.doi.org/10.5902/1980509812343Ocotea porosa seeds have strong tegument dormancy, recalcitrant behavior, low and irregular germinationand that makes its natural propagation difficult. The aim of this study was to establish a protocol ofregeneration of Ocotea porosa from somatic embryogenesis. Immature embryonic axes were inoculatedon WPM culture medium supplemented with 2.4-D (200 μM combined or not with hydrolyzed casein orglutamine (0.5 or 1 g l-1, during 90 days. The repetitive embryogenesis was induced on medium with 2.4-D(22.62 μM combined with 2-iP (2.46 μM followed by transfer to culture medium with hydrolyzed caseinor glutamine (1 g l-1 during 90 days. The maturation of somatic embryos was tested in culture mediumcontaining NAA (0.5 μM and 2-iP (5; 10 and 20 μM. The highest percentage of somatic embryos induction(8.3% was observed in WPM culture medium containing 200 μM 2.4-D and 1 g L-1 hydrolyzed casein andthe development of somatic embryos occurred indirectly. Repetitive somatic embryogenesis was promotedin WPM medium containing hydrolyzed casein or glutamine. However, the culture medium containinghydrolyzed casein promoted the maintenance of embryogenic capacity for more than two years. Duringthe maturity phase, there was a low progression of globular embryos to cordiform and torpedo stages.The different ontogenetic stages of somatic embryos of Ocotea porosa were characterized by histologicalstudies.

  8. Melanoma genetics

    DEFF Research Database (Denmark)

    Read, Jazlyn; Wadt, Karin A W; Hayward, Nicholas K

    2015-01-01

    Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence of herita......Approximately 10% of melanoma cases report a relative affected with melanoma, and a positive family history is associated with an increased risk of developing melanoma. Although the majority of genetic alterations associated with melanoma development are somatic, the underlying presence...... in a combined total of approximately 50% of familial melanoma cases, the underlying genetic basis is unexplained for the remainder of high-density melanoma families. Aside from the possibility of extremely rare mutations in a few additional high penetrance genes yet to be discovered, this suggests a likely...... polygenic component to susceptibility, and a unique level of personal melanoma risk influenced by multiple low-risk alleles and genetic modifiers. In addition to conferring a risk of cutaneous melanoma, some 'melanoma' predisposition genes have been linked to other cancers, with cancer clustering observed...

  9. Mutational analysis of EGFR and related signaling pathway genes in lung adenocarcinomas identifies a novel somatic kinase domain mutation in FGFR4.

    Directory of Open Access Journals (Sweden)

    Jenifer L Marks

    2007-05-01

    Full Text Available Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis.We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16 of FGFR4 (Glu681Lys, identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr in a lung adenocarcinoma cell line.This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas.

  10. Development of somatic embryos for genetic transformation in Curcuma longa L. and Curcuma mangga Valeton & Zijp

    Directory of Open Access Journals (Sweden)

    Vachiraporn Pikulthong

    2016-07-01

    Full Text Available Buds from rhizomes of Curcuma longa L. variety ‘Chumphon’ and Curcuma mangga Valeton & Zijp variety ‘Phetchaburi’ were cultured on Murashige and Skoog (MS medium supplemented with 2.0 mg/L N6-benzyladenine (BA for multiple shoot induction. Their shoots were cultured on MS medium supplemented with various concentrations of one of two plant growth regulators or a combination of both—2,4-dichlorophenoxyacetic acid (2,4-D and naphthaleneacetic acid (NAA. Interestingly, the medium containing both auxins (5 mg/L 2,4-D and 5 mg/L NAA was best for somatic embryo induction after culturing for 4 weeks. Somatic embryo formation reached 87.50% for Curcuma longa and 95.83% for Curcuma mangga with a high quality of loose, friable and yellowish characters. The best conditions for the formation of shootlets occurred after transferring the somatic embryo to MS medium supplemented with 3.0 mg/L BA, 0.5 mg/L NAA and 3% maltose. The shootlets were rooted by transferring to MS medium containing 3.0 mg/L NAA. This is the first report of a complete in vitro regeneration system from somatic embryos of C. longa and C. mangga which was further used for gene manipulation in these plants. Diketide CoA synthase (DCS and curcumin synthase (CURS genes, which are the two genes involved in curcuminoid biosynthesis in turmeric, were cloned and transferred to these two species using Agrobacterium-mediated transformation. The presence of both target and marker genes, hpt, in the transformed somatic embryos was confirmed by polymerase chain reaction assay. After culturing, the transformed somatic embryos could survive for 4 weeks.

  11. Comparative proteomic analysis of off-type and normal phenotype somatic plantlets derived from somatic embryos of Feijoa (Acca sellowiana (O. Berg) Burret).

    Science.gov (United States)

    Fraga, Hugo Pacheco de Freitas; Agapito-Tenfen, Sarah Zanon; Caprestano, Clarissa Alves; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2013-09-01

    Morphological disorders in a relevant portion of emerged somatic embryos have been a limiting factor in the true-to-type plantlet formation in Acca sellowiana. In this sense, the present study undertook a comparison between normal phenotype and off-type somatic plantlets protein profiles by means of the 2-D DIGE proteomics approach. Off-type and normal phenotype somatic plantlets obtained at 10 and 20 days conversion were evaluated. Results indicated 12 exclusive spots between normal and off-type plantlets at 10 days conversion, and 17 exclusive spots at 20 days conversion. Also at 20 days conversion, 4 spots were differentially expressed, up- or down-regulated. Two proteins related to carbohydrate metabolism were only expressed in off-types at 10 days conversion, suggesting a more active respiratory pathway. A vicilin-like storage protein was only found in off-types at 20 days conversion, indicating that plantlets may present an abnormality in the mobilization of storage compounds, causing reduced vigor in the development of derived plantlets. The presence of heat shock proteins were only observed during formation of normal phenotype somatic plantlets, indicating that these proteins may be involved in normal morphogenesis of plantlets formed. These new findings shed light on possible genetic or epigenetic mechanisms governing A. sellowiana morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Influence of plant growth regulators on somatic embryos induction ...

    African Journals Online (AJOL)

    TANOH

    2013-04-17

    Theobroma cacao L.) using Thidiazuron. In vitro Cell Dev. Biol. 34:293-299. Michaux-Ferrière N, Carron MP (1989). Histology of early somatic embryogenesis in Hevea brasiliensis. The importance of timing of subculturing. Plant Cell Tiss ...

  13. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  14. Comparing ESC and iPSC-Based Models for Human Genetic Disorders.

    Science.gov (United States)

    Halevy, Tomer; Urbach, Achia

    2014-10-24

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  15. Receiver-operating characteristic curves for somatic cell scores and California mastitis test in Valle del Be lice dairy sheep

    NARCIS (Netherlands)

    Riggio, V.; Pesce, L.L.; Morreale, S.; Portolano, B.

    2013-01-01

    Using receiver-operating characteristic (ROC) curve methodology this study was designed to assess the diagnostic effectiveness of somatic cell count (SCC) and the California mastitis test (CMT) in Valle del Belice sheep, and to propose and evaluate threshold values for those tests that would

  16. Effects of mechanical stimulation on the reprogramming of somatic cells into human-induced pluripotent stem cells.

    Science.gov (United States)

    Kim, Young Mi; Kang, Yun Gyeong; Park, So Hee; Han, Myung-Kwan; Kim, Jae Ho; Shin, Ji Won; Shin, Jung-Woog

    2017-06-08

    Mechanical stimuli play important roles in the proliferation and differentiation of adult stem cells. However, few studies on their effects on induced pluripotent stem cells (iPSCs) have been published. Human dermal fibroblasts were seeded onto flexible membrane-bottom plates, and infected with retrovirus expressing the four reprogramming factors OCT4, SOX2, KLF, and c-MYC (OSKM). The cells were subjected to equiaxial stretching (3% or 8% for 2, 4, or 7 days) and seeded on feeder cells (STO). The reprogramming into iPSCs was evaluated by the expression of pluripotent markers, in vitro differentiation into three germ layers, and teratoma formation. Equiaxial stretching enhanced reprogramming efficiency without affecting the viral transduction rate. iPSCs induced by transduction of four reprogramming factors and application of equiaxial stretching had characteristics typical of iPSCs in terms of pluripotency and differentiation potentials. This is the first study to show that mechanical stimuli can increase reprogramming efficiency. However, it did not enhance the infection rate, indicating that mechanical stimuli, defined as stretching in this study, have positive effects on reprogramming rather than on infection. Additional studies should evaluate the mechanism underlying the modulation of reprogramming of somatic cells into iPSCs.

  17. Retrospective on reverse genetics in mice around the world and in Japan.

    Science.gov (United States)

    Aizawa, Shinichi

    2008-06-01

    The 2007 Nobel Prize for Physiology or Medicine was awarded to Mario R. Capecchi, Martin J. Evans and Oliver Smithies for their contribution in generating mutant mice by gene targeting in embryonic stem (ES) cells. Although there are many experimental animals, it is yet only in mouse that one can genetically examine functions of genes at will. It was merely a dream in the early 1980s that genetic studies with mutants would one day become a reality in mammals. The story began with tetratocarcinoma/embryonal carcinoma cells. Now, through the successes of cloning in mammals, somatic cells such as our skin cells will shortly be transformed into ES-like (induced pluripotent stem) cells by the proper activation of endogenous genes such as Oct4 and Sox2 with chemicals. How have times changed?

  18. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming

    Science.gov (United States)

    Wu, Quan; Fukuda, Kurumi; Kato, Yuzuru; Zhou, Zhi; Deng, Chu-Xia; Saga, Yumiko

    2016-01-01

    The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4) in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells. PMID:27606421

  19. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.

    Science.gov (United States)

    Tyzio, Roman; Minlebaev, Marat; Rheims, Sylvain; Ivanov, Anton; Jorquera, Isabelle; Holmes, Gregory L; Zilberter, Yuri; Ben-Ari, Yehezkiel; Khazipov, Rustem

    2008-05-01

    During postnatal development of the rat hippocampus, gamma-aminobutyric acid (GABA) switches its action on CA3 pyramidal cells from excitatory to inhibitory. To characterize the underlying changes in the GABA reversal potential, we used somatic cell-attached recordings of GABA(A) and N-methyl-D-aspartate channels to monitor the GABA driving force and resting membrane potential, respectively. We found that the GABA driving force is strongly depolarizing during the first postnatal week. The strength of this depolarization rapidly declines with age, although GABA remains slightly depolarizing, by a few millivolts, even in adult neurons. Reduction in the depolarizing GABA driving force was due to a progressive negative shift of the reversal potential of GABA currents. Similar postnatal changes in GABA signalling were also observed using the superfused hippocampus preparation in vivo, and in the hippocampal interneurons in vitro. We also found that in adult pyramidal cells, somatic GABA reversal potential is maintained at a slightly depolarizing level by bicarbonate conductance, chloride-extrusion and chloride-loading systems. Thus, the postnatal excitatory-to-inhibitory switch in somatic GABA signalling is associated with a negative shift of the GABA reversal potential but without a hyperpolarizing switch in the polarity of GABA responses. These results also suggest that in adult CA3 pyramidal cells, somatic GABAergic inhibition takes place essentially through shunting rather than hyperpolarization. Apparent hyperpolarizing GABA responses previously reported in the soma of CA3 pyramidal cells are probably due to cell depolarization during intracellular or whole-cell recordings.

  20. Efficient somatic embryogenesis in sugar beet (Beta vulgaris L.) breeding lines

    Czech Academy of Sciences Publication Activity Database

    Zhang, C.L.; Chen, D. F.; Kubaláková, Marie; Zhang, J.; Scott, N. W.; Elliott, M. C.; Slater, A.

    2008-01-01

    Roč. 93, č. 2 (2008), s. 209-221 ISSN 0167-6857 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : Sugar beet * somatic embryogenesis * culture medium Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.017, year: 2008

  1. The special cell effects and somatic consequences of exposure to low dose radiation

    International Nuclear Information System (INIS)

    Regina Fedortseva; Sergei Aleksanin; Eugene Zheleznyakov; Irina Bychkovskaya

    2007-01-01

    Complete text of publication follows. Objective: The experimental data presented in the report put some clarity into the ongoing polemics about possibility of induction of harmful non-carcinogenic effects in human body as a result of exposure to low doses of radiation. The denial of this possibility is based on the fact that traditionally studied genotoxic effects cannot be the cause of this pathology: the incidence of these effects in exposure to low doses of radiation is fairly low; the effects are not overt in critical slowly regenerating tissues, since they can only be morphologically manifested in actively growing cell populations. Methods: Endothelium of myocardial and alveolar capillaries were studied ultra-structurally in 236 rats irradiated by a wide range of X-ray doses (0,25;0,5;2,25;4,5;9;30;48;100) and 28 intact control animals. Studies were conducted during 12-18 months. The material consisted of 2-3 portions from various parts of myocardium and lung. From each portion, sections were prepared, in which all capillary sections were analyzed and ultra-structure of all lining capillary endotheliocytes (their number most often was more than 100) was studied. In each animal the percentage of non-viable endotheliocytes with signs of generalized organoid destruction, damage of plasmalemma and nuclear structures was accounted. Results: Irradiation of rat to low and higher doses caused significant (up to 7 times) increase number of endothelial cells with various ultra-structural damages (from relatively light ones to in the cell death). Even the lowest dose - 0,25 Gy produce an increasing degeneration, intracellular lysis and defects of mitochondria. We found unusual features of postradiational endothelium changes: dose independence, necessity of revealing the long-term, non-mutational cellular effects, massive involvement of cells, early development of the maximum effect already after the low dose irradiation. These special somatic effects, unlike genotoxic

  2. Somatic symptom disorder

    Science.gov (United States)

    ... related disorders; Somatization disorder; Somatiform disorders; Briquet syndrome; Illness anxiety disorder References American Psychiatric Association. Somatic symptom disorder. Diagnostic and Statistical Manual of Mental Disorders . ...

  3. The Somatic Reproductive Tissues of C. elegans Promote Longevity through Steroid Hormone Signaling

    Science.gov (United States)

    Yamawaki, Tracy M.; Berman, Jennifer R.; Suchanek-Kavipurapu, Monika; McCormick, Mark; Gaglia, Marta Maria; Lee, Seung-Jae; Kenyon, Cynthia

    2010-01-01

    In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12. PMID:20824162

  4. The somatic reproductive tissues of C. elegans promote longevity through steroid hormone signaling.

    Directory of Open Access Journals (Sweden)

    Tracy M Yamawaki

    2010-08-01

    Full Text Available In Caenorhabditis elegans and Drosophila melanogaster, removing the germline precursor cells increases lifespan. In worms, and possibly also in flies, this lifespan extension requires the presence of somatic reproductive tissues. How the somatic gonad signals other tissues to increase lifespan is not known. The lifespan increase triggered by loss of the germ cells is known to require sterol hormone signaling, as reducing the activity of the nuclear hormone receptor DAF-12, or genes required for synthesis of the DAF-12 ligand dafachronic acid, prevents germline loss from extending lifespan. In addition to sterol signaling, the FOXO transcription factor DAF-16 is required to extend lifespan in animals that lack germ cells. DAF-12/NHR is known to assist with the nuclear accumulation of DAF-16/FOXO in these animals, yet we find that loss of DAF-12/NHR has little or no effect on the expression of at least some DAF-16/FOXO target genes. In this study, we show that the DAF-12-sterol signaling pathway has a second function to activate a distinct set of genes and extend lifespan in response to the somatic reproductive tissues. When germline-deficient animals lacking somatic reproductive tissues are given dafachronic acid, their expression of DAF-12/NHR-dependent target genes is restored and their lifespan is increased. Together, our findings indicate that in C. elegans lacking germ cells, the somatic reproductive tissues promote longevity via steroid hormone signaling to DAF-12.

  5. Maize histone H2B-mCherry: a new fluorescent chromatin marker for somatic and meiotic chromosome research.

    Science.gov (United States)

    Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W

    2012-06-01

    Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.

  6. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    International Nuclear Information System (INIS)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin; Sun, Xiaofang

    2009-01-01

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  7. Developmental potential of human oocytes reconstructed by transferring somatic cell nuclei into polyspermic zygote cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Yong; Chen, Xinjie; Luo, Yumei; Chen, Xiaolin; Li, Shaoying; Huang, Yulin [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China); Sun, Xiaofang, E-mail: xiaofangsun@hotmail.com [Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical College, Duobao Road 63, Guangzhou, Guangdong (China)

    2009-04-24

    The generation of patient-specific nuclear transfer embryonic stem cells holds huge promise in modern regenerative medicine and cell-based drug discovery. Since human in vivo matured oocytes are not readily available, human therapeutic cloning is developing slowly. Here, we investigated for the first time whether human polyspermic zygotes could support preimplantation development of cloned embryos. Our results showed that polyspermic zygotes could be used as recipients for human somatic cell nuclear transfer (SCNT). The preimplantation developmental potential of SCNT embryos from polyspermic zygotes was limited to the 8-cell stage. Since ES cell lines can be derived from single blastomeres, these results may have important significance for human ES cells derived by SCNT. In addition, confocal images demonstrated that all of the SCNT embryos that failed to cleave showed abnormal microtubule organization. The results of the present study suggest that polyspermic human zygotes could be used as a potential source of recipient cytoplasm for SCNT.

  8. DNMT1 maintains progenitor function in self-renewing somatic tissue.

    Science.gov (United States)

    Sen, George L; Reuter, Jason A; Webster, Daniel E; Zhu, Lilly; Khavari, Paul A

    2010-01-28

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation. DNA methylation provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1) maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintenance, the role for DNMT1 in maintaining the progenitor state in constantly replenished somatic tissues, such as mammalian epidermis, is unclear. Here we show that DNMT1 is essential for epidermal progenitor cell function. DNMT1 protein was found enriched in undifferentiated cells, where it was required to retain proliferative stamina and suppress differentiation. In tissue, DNMT1 depletion led to exit from the progenitor cell compartment, premature differentiation and eventual tissue loss. Genome-wide analysis showed that a significant portion of epidermal differentiation gene promoters were methylated in self-renewing conditions but were subsequently demethylated during differentiation. Furthermore, UHRF1 (refs 9, 10), a component of the DNA methylation machinery that targets DNMT1 to hemi-methylated DNA, is also necessary to suppress premature differentiation and sustain proliferation. In contrast, Gadd45A and B, which promote active DNA demethylation, are required for full epidermal differentiation gene induction. These data demonstrate that proteins involved in the dynamic regulation of DNA methylation patterns are required for progenitor maintenance and self-renewal in mammalian somatic tissue.

  9. Biallelic germline and somatic mutations in malignant mesothelioma: multiple mutations in transcription regulators including mSWI/SNF genes.

    Science.gov (United States)

    Yoshikawa, Yoshie; Sato, Ayuko; Tsujimura, Tohru; Otsuki, Taiichiro; Fukuoka, Kazuya; Hasegawa, Seiki; Nakano, Takashi; Hashimoto-Tamaoki, Tomoko

    2015-02-01

    We detected low levels of acetylation for histone H3 tail lysines in malignant mesothelioma (MM) cell lines resistant to histone deacetylase inhibitors. To identify the possible genetic causes related to the low histone acetylation levels, whole-exome sequencing was conducted with MM cell lines established from eight patients. A mono-allelic variant of BRD1 was common to two MM cell lines with very low acetylation levels. We identified 318 homozygous protein-damaging variants/mutations (18-78 variants/mutations per patient); annotation analysis showed enrichment of the molecules associated with mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complexes and co-activators that facilitate initiation of transcription. In seven of the patients, we detected a combination of variants in histone modifiers or transcription factors/co-factors, in addition to variants in mSWI/SNF. Direct sequencing showed that homozygous mutations in SMARCA4, PBRM1 and ARID2 were somatic. In one patient, homozygous germline variants were observed for SMARCC1 and SETD2 in chr3p22.1-3p14.2. These exhibited extended germline homozygosity and were in regions containing somatic mutations, leading to a loss of BAP1 and PBRM1 expression in MM cell line. Most protein-damaging variants were heterozygous in normal tissues. Heterozygous germline variants were often converted into hemizygous variants by mono-allelic deletion, and were rarely homozygous because of acquired uniparental disomy. Our findings imply that MM might develop through the somatic inactivation of mSWI/SNF complex subunits and/or histone modifiers, including BAP1, in subjects that have rare germline variants of these transcription regulators and/or transcription factors/co-factors, and in regions prone to mono-allelic deletion during oncogenesis. © 2014 UICC.

  10. A novel molecular diagnostics platform for somatic and germline precision oncology.

    Science.gov (United States)

    Cabanillas, Rubén; Diñeiro, Marta; Castillo, David; Pruneda, Patricia C; Penas, Cristina; Cifuentes, Guadalupe A; de Vicente, Álvaro; Durán, Noelia S; Álvarez, Rebeca; Ordóñez, Gonzalo R; Cadiñanos, Juan

    2017-07-01

    Next-generation sequencing (NGS) opens new options in clinical oncology, from therapy selection to genetic counseling. However, realization of this potential not only requires succeeding in the bioinformatics and interpretation of the results, but also in their integration into the clinical practice. We have developed a novel NGS diagnostic platform aimed at detecting (1) somatic genomic alterations associated with the response to approved targeted cancer therapies and (2) germline mutations predisposing to hereditary malignancies. Next-generation sequencing libraries enriched in the exons of 215 cancer genes (97 for therapy selection and 148 for predisposition, with 30 informative for both applications), as well as selected introns from 17 genes involved in drug-related rearrangements, were prepared from 39 tumors (paraffin-embedded tissues/cytologies), 36 germline samples (blood) and 10 cell lines using hybrid capture. Analysis of NGS results was performed with specifically developed bioinformatics pipelines. The platform detects single-nucleotide variants (SNVs) and insertions/deletions (indels) with sensitivity and specificity >99.5% (allelic frequency ≥0.1), as well as copy-number variants (CNVs) and rearrangements. Somatic testing identified tailored approved targeted drugs in 35/39 tumors (89.74%), showing a diagnostic yield comparable to that of leading commercial platforms. A somatic EGFR p.E746_S752delinsA mutation in a mediastinal metastasis from a breast cancer prompted its anatomopathologic reassessment, its definite reclassification as a lung cancer and its treatment with gefitinib (partial response sustained for 15 months). Testing of 36 germline samples identified two pathogenic mutations (in CDKN2A and BRCA2 ). We propose a strategy for interpretation and reporting of results adaptable to the aim of the request, the availability of tumor and/or normal samples and the scope of the informed consent. With an adequate methodology, it is possible to

  11. Determination of somatic mutations in human erythrocytes by cytometry

    International Nuclear Information System (INIS)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-01-01

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab

  12. Determination of somatic mutations in human erythrocytes by cytometry

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, R.H.; Langlois, R.G.; Bigbee, W.L.

    1985-06-21

    Flow cytometric assays of human erythrocytes labeled with monoclonal antibodies specific for glycophorin A were used to enumerate variant cells that appear in peripheral blood as a result of somatic gene-loss mutations in erythrocyte precursor cells. The assay was performed on erythrocytes from 10 oncology patients who had received at least one treatment from radiation or mutagenic chemotherapy at least 3 weeks before being assayed. The patients were suffering from many different malignancies (e.g., breast, renal, bone, colon and lung), and were treated with several different mutagenic therapeutics (e.g., cisplatinum, adriamycin, daunomycin, or cyclophosphamide). The frequency of these variant cells is an indication of the amount of mutagenic damage accumulated in the individual's erythropoietic cell population. Comparing these results to HPRT clonogenic assays, we find similar baseline frequencies of somatic mutation as well as similar correlation with mutagenic exposures. 9 refs., 3 figs., 1 tab.

  13. An integrated inspection of the somatic mutations in a lung squamous cell carcinoma using next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Lucy F Stead

    Full Text Available Squamous cell carcinoma (SCC of the lung kills over 350,000 people annually worldwide, and is the main lung cancer histotype with no targeted treatments. High-coverage whole-genome sequencing of the other main subtypes, small-cell and adenocarcinoma, gave insights into carcinogenic mechanisms and disease etiology. The genomic complexity within the lung SCC subtype, as revealed by The Cancer Genome Atlas, means this subtype is likely to benefit from a more integrated approach in which the transcriptional consequences of somatic mutations are simultaneously inspected. Here we present such an approach: the integrated analysis of deep sequencing data from both the whole genome and whole transcriptome (coding and non-coding of LUDLU-1, a SCC lung cell line. Our results show that LUDLU-1 lacks the mutational signature that has been previously associated with tobacco exposure in other lung cancer subtypes, and suggests that DNA-repair efficiency is adversely affected; LUDLU-1 contains somatic mutations in TP53 and BRCA2, allelic imbalance in the expression of two cancer-associated BRCA1 germline polymorphisms and reduced transcription of a potentially endogenous PARP2 inhibitor. Functional assays were performed and compared with a control lung cancer cell line. LUDLU-1 did not exhibit radiosensitisation or an increase in sensitivity to PARP inhibitors. However, LUDLU-1 did exhibit small but significant differences with respect to cisplatin sensitivity. Our research shows how integrated analyses of high-throughput data can generate hypotheses to be tested in the lab.

  14. Direct Reprogramming of Adult Human Somatic Stem Cells Into Functional Neurons Using Sox2, Ascl1, and Neurog2

    Directory of Open Access Journals (Sweden)

    Jessica Alves de Medeiros Araújo

    2018-06-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPS or directly into cells from a different lineage, including neurons, has revolutionized research in regenerative medicine in recent years. Mesenchymal stem cells are good candidates for lineage reprogramming and autologous transplantation, since they can be easily isolated from accessible sources in adult humans, such as bone marrow and dental tissues. Here, we demonstrate that expression of the transcription factors (TFs SRY (sex determining region Y-box 2 (Sox2, Mammalian achaete-scute homolog 1 (Ascl1, or Neurogenin 2 (Neurog2 is sufficient for reprogramming human umbilical cord mesenchymal stem cells (hUCMSC into induced neurons (iNs. Furthermore, the combination of Sox2/Ascl1 or Sox2/Neurog2 is sufficient to reprogram up to 50% of transfected hUCMSCs into iNs showing electrical properties of mature neurons and establishing synaptic contacts with co-culture primary neurons. Finally, we show evidence supporting the notion that different combinations of TFs (Sox2/Ascl1 and Sox2/Neurog2 may induce multiple and overlapping neuronal phenotypes in lineage-reprogrammed iNs, suggesting that neuronal fate is determined by a combination of signals involving the TFs used for reprogramming but also the internal state of the converted cell. Altogether, the data presented here contribute to the advancement of techniques aiming at obtaining specific neuronal phenotypes from lineage-converted human somatic cells to treat neurological disorders.

  15. Developmental Localization and Methylesterification of Pectin Epitopes during Somatic Embryogenesis of Banana (Musa spp. AAA)

    Science.gov (United States)

    Xu, Chunxiang; Zhao, Lu; Pan, Xiao; Šamaj, Jozef

    2011-01-01

    Background The plant cell walls play an important role in somatic embryogenesis and plant development. Pectins are major chemical components of primary cell walls while homogalacturonan (HG) is the most abundant pectin polysaccharide. Developmental regulation of HG methyl-esterification degree is important for cell adhesion, division and expansion, and in general for proper organ and plant development. Methodology/Principal Findings Developmental localization of pectic homogalacturonan (HG) epitopes and the (1→4)-β-D-galactan epitope of rhamnogalacturonan I (RG-I) and degree of pectin methyl-esterification (DM) were studied during somatic embryogenesis of banana (Musa spp. AAA). Histological analysis documented all major developmental stages including embryogenic cells (ECs), pre-globular, globular, pear-shaped and cotyledonary somatic embryos. Histochemical staining of extracellularly secreted pectins with ruthenium red showed the most intense staining at the surface of pre-globular, globular and pear-shaped somatic embryos. Biochemical analysis revealed developmental regulation of galacturonic acid content and DM in diverse embryogenic stages. Immunodots and immunolabeling on tissue sections revealed developmental regulation of highly methyl-esterified HG epitopes recognized by JIM7 and LM20 antibodies during somatic embryogenesis. Cell walls of pre-globular/globular and late-stage embryos contained both low methyl-esterified HG epitopes as well as partially and highly methyl-esterified ones. Extracellular matrix which covered surface of early developing embryos contained pectin epitopes recognized by 2F4, LM18, JIM5, JIM7 and LM5 antibodies. De-esterification of cell wall pectins by NaOH caused a decrease or an elimination of immunolabeling in the case of highly methyl-esterified HG epitopes. However, immunolabeling of some low methyl-esterified epitopes appeared stronger after this base treatment. Conclusions/Significance These data suggest that both low

  16. Inherent Immunogenicity or Lack Thereof of Pluripotent Stem Cells: Implications for Cell Replacement Therapy

    Directory of Open Access Journals (Sweden)

    Arvind Chhabra

    2017-08-01

    Full Text Available Donor-specific induced pluripotent stem cells (iPSCs offer opportunities for personalized cell replacement therapeutic approaches due to their unlimited self-renewal potential and ability to differentiate into different somatic cells. A significant progress has been made toward generating iPSC lines that are free of integrating viral vectors, development of xeno-free culture conditions, and differentiation of pluripotent stem cells (PSCs into functional somatic cell lineages. Since donor-specific iPSC lines are genetically identical to the individual, they are expected to be immunologically matched and these iPSC lines and their cellular derivatives are not expected to be immunologically rejected. However, studies in mouse models, utilizing rejection of teratomas as a model, have claimed that syngenic iPSC lines, especially the iPSC lines derived with integrating viral vectors, could be inherently immunogenic. This manuscript reviews current understanding of inherent immunogenicity of PSC lines, especially that of the human iPSC lines and their cellular derivatives, and strategies to overcome it.

  17. Circumvention of MHC class II restriction by genetic immunization.

    Science.gov (United States)

    Schuler, K; Lu, C; Chang, H D; Croft, M; Zanetti, M; Gerloni, M

    2001-11-12

    The fate of T cell responses to peptide-based vaccination is subject to constraints by the major histocompatibility complex (MHC), MHC restriction. Using as a model system of T and B cell epitopes from the circumsporozoite protein of Plasmodium falciparum malaria parasite, we show that vaccination by somatic transgene immunization readily primes Balb/c mice (H-2(d)) a strain previously reported to be non-responder to immunization with a synthetic peptide vaccine encompassing these epitopes. Following genetic vaccination Balb/c mice developed a primary T cell response comparable to that of the responder strain C57Bl/6 (H-2(b)). Following booster immunization on day 45 Balb/c mice responded with a typical T cell memory response. Priming induced the formation of specific antibodies, which rose sharply after booster immunization. These findings suggests that genetic immunization can circumvent MHC class II restriction.

  18. Inference of Tumor Phylogenies with Improved Somatic Mutation Discovery

    KAUST Repository

    Salari, Raheleh

    2013-01-01

    Next-generation sequencing technologies provide a powerful tool for studying genome evolution during progression of advanced diseases such as cancer. Although many recent studies have employed new sequencing technologies to detect mutations across multiple, genetically related tumors, current methods do not exploit available phylogenetic information to improve the accuracy of their variant calls. Here, we present a novel algorithm that uses somatic single nucleotide variations (SNVs) in multiple, related tissue samples as lineage markers for phylogenetic tree reconstruction. Our method then leverages the inferred phylogeny to improve the accuracy of SNV discovery. Experimental analyses demonstrate that our method achieves up to 32% improvement for somatic SNV calling of multiple related samples over the accuracy of GATK\\'s Unified Genotyper, the state of the art multisample SNV caller. © 2013 Springer-Verlag.

  19. Numerical Chromosome Errors in Day 7 Somatic Nuclear Transfer Bovine Blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J.; VIUFF, Dorte; Tan, Shijian

    2002-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...

  20. A pathway-centric survey of somatic mutations in Chinese patients with colorectal carcinomas.

    Directory of Open Access Journals (Sweden)

    Chao Ling

    Full Text Available Previous genetic studies on colorectal carcinomas (CRC have identified multiple somatic mutations in four candidate pathways (TGF-β, Wnt, P53 and RTK-RAS pathways on populations of European ancestry. However, it is under-studied whether other populations harbor different sets of hot-spot somatic mutations in these pathways and other oncogenes. In this study, to evaluate the mutational spectrum of novel somatic mutations, we assessed 41 pairs of tumor-stroma tissues from Chinese patients with CRC, including 29 colon carcinomas and 12 rectal carcinomas. We designed Illumina Custom Amplicon panel to target 43 genes, including genes in the four candidate pathways, as well as several known oncogenes for other cancers. Candidate mutations were validated by Sanger sequencing, and we further used SIFT and PolyPhen-2 to assess potentially functional mutations. We discovered 3 new somatic mutations in gene APC, TCF7L2, and PIK3CA that had never been reported in the COSMIC or NCI-60 databases. Additionally, we confirmed 6 known somatic mutations in gene SMAD4, APC, FBXW7, BRAF and PTEN in Chinese CRC patients. While most were previously reported in CRC, one mutation in PTEN was reported only in malignant endometrium cancer. Our study confirmed the existence of known somatic mutations in the four candidate pathways for CRC in Chinese patients. We also discovered a number of novel somatic mutations in these pathways, which may have implications for the pathogenesis of CRC.

  1. Management of somatic symptoms

    DEFF Research Database (Denmark)

    Schröder, Andreas; Dimsdale, Joel

    2014-01-01

    on the recognition and effective management of patients with excessive and disabling somatic symptoms. The clinical presentation of somatic symptoms is categorized into three groups of patients: those with multiple somatic symptoms, those with health anxiety, and those with conversion disorder. The chapter provides...

  2. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells.

    Science.gov (United States)

    Kleene, Kenneth C

    2005-01-01

    This review proposes that the peculiar patterns of gene expression in spermatogenic cells are the consequence of powerful evolutionary forces known as sexual selection. Sexual selection is generally characterized by intense competition of males for females, an enormous variety of the strategies to maximize male reproductive success, exaggerated male traits at all levels of biological organization, co-evolution of sexual traits in males and females, and conflict between the sexual advantage of the male trait and the reproductive fitness of females and the individual fitness of both sexes. In addition, spermatogenesis is afflicted by selfish genes that promote their transmission to progeny while causing deleterious effects. Sexual selection, selfish genes, and genetic conflict provide compelling explanations for many atypical features of gene expression in spermatogenic cells including the gross overexpression of certain mRNAs, transcripts encoding truncated proteins that cannot carry out basic functions of the proteins encoded by the same genes in somatic cells, the large number of gene families containing paralogous genes encoding spermatogenic cell-specific isoforms, the large number of testis-cancer-associated genes that are expressed only in spermatogenic cells and malignant cells, and the overbearing role of Sertoli cells in regulating the number and quality of spermatozoa.

  3. Development capacity of pre- and postpubertal pig oocytes evaluated by somatic cell nuclear transfer and parthenogenetic activation

    DEFF Research Database (Denmark)

    Skovsgaard, Hanne; Li, Rong; Liu, Ying

    2013-01-01

    Most of the porcine oocytes used for in vitro studies are collected from gilts. Our aims were to study development capacity of gilt v. sow oocytes (pre- and postpubertal respectively) using 2 techniques illustrating development competence [parthenogenetic activation (PA) and somatic cell nuclear...... transfer (SCNT)], and to describe a simple method to select the most competent oocytes. Inside-ZP diameter of in vitro-matured gilt oocytes was measured (µm; small ≤110; medium >110; large ≥120). Gilt and sow oocytes were morphologically grouped as good (even cytoplasm, smooth cell membrane, visible...

  4. Testicular germ cell tumours in dogs are predominantly of spermatocytic seminoma type and are frequently associated with somatic cell tumours

    DEFF Research Database (Denmark)

    Bush, J M; Gardiner, D W; Palmer, J S

    2011-01-01

    Unlike seminomas in humans, seminomas in animals are not typically sub-classified as classical or spermatocytic types. To compare testicular germ cell tumours (TGCT) in dogs with those of men, archived tissues from 347 cases of canine testicular tumours were morphologically evaluated...... in canine TGCT. None of the canine TGCT evaluated demonstrated the presence of carcinoma in situ cells, a standard feature of human classical seminomas, suggesting that classical seminomas either do not occur in dogs or are rare in occurrence. Canine spermatocytic seminomas may provide a useful model...... and characterized using human classification criteria. Histopathological and immunohistological analysis of PLAP, KIT, DAZ and DMRT1 expression revealed that canine seminomas closely resemble human spermatocytic seminomas. In addition, a relatively frequent concomitant presence of somatic cell tumours was noted...

  5. Generating autologous hematopoietic cells from human-induced pluripotent stem cells through ectopic expression of transcription factors.

    Science.gov (United States)

    Hwang, Yongsung; Broxmeyer, Hal E; Lee, Man Ryul

    2017-07-01

    Hematopoietic cell transplantation (HCT) is a successful treatment modality for patients with malignant and nonmalignant disorders, usually when no other treatment option is available. The cells supporting long-term reconstitution after HCT are the hematopoietic stem cells (HSCs), which can be limited in numbers. Moreover, finding an appropriate human leukocyte antigen-matched donor can be problematic. If HSCs can be stably produced in large numbers from autologous or allogeneic cell sources, it would benefit HCT. Induced pluripotent stem cells (iPSCs) established from patients' own somatic cells can be differentiated into hematopoietic cells in vitro. This review will highlight recent methods for regulating human (h) iPSC production of HSCs and more mature blood cells. Advancements in transcription factor-mediated regulation of the developmental stages of in-vivo hematopoietic lineage commitment have begun to provide an understanding of the molecular mechanism of hematopoiesis. Such studies involve not only directed differentiation in which transcription factors, specifically expressed in hematopoietic lineage-specific cells, are overexpressed in iPSCs, but also direct conversion in which transcription factors are introduced into patient-derived somatic cells which are dedifferentiated to hematopoietic cells. As iPSCs derived from patients suffering from genetically mutated diseases would express the same mutated genetic information, CRISPR-Cas9 gene editing has been utilized to differentiate genetically corrected iPSCs into normal hematopoietic cells. IPSCs provide a model for molecular understanding of disease, and also may function as a cell population for therapy. Efficient differentiation of patient-specific iPSCs into HSCs and progenitor cells is a potential means to overcome limitations of such cells for HCT, as well as for providing in-vitro drug screening templates as tissue-on-a-chip models.

  6. Novel Secondary Somatic Mutations in Ewing's Sarcoma and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    Janku, Filip; Ludwig, Joseph A.; Naing, Aung; Benjamin, Robert S.; Brown, Robert E.; Anderson, Pete; Kurzrock, Razelle

    2014-01-01

    Background Ewing's sarcoma (ES) and desmoplastic small round cell tumors (DSRCT) are small round blue cell tumors driven by an N-terminal containing EWS translocation. Very few somatic mutations have been reported in ES, and none have been identified in DSRCT. The aim of this study is to explore potential actionable mutations in ES and DSRCT. Methodology Twenty eight patients with ES or DSRCT had tumor tissue available that could be analyzed by one of the following methods: 1) Next-generation exome sequencing platform; 2) Multiplex PCR/Mass Spectroscopy; 3) Polymerase chain reaction (PCR)-based single- gene mutation screening; 4) Sanger sequencing; 5) Morphoproteomics. Principal Findings Novel somatic mutations were identified in four out of 18 patients with advanced ES and two of 10 patients with advanced DSRCT (six out of 28 (21.4%));KRAS (n = 1), PTPRD (n = 1), GRB10 (n = 2), MET (n = 2) and PIK3CA (n = 1). One patient with both PTPRD and GRB10 mutations and one with a GRB10 mutation achieved a complete remission (CR) on an Insulin like growth factor 1 receptor (IGF1R) inhibitor based treatment. One patient, who achieved a partial remission (PR) with IGF1R inhibitor treatment, but later developed resistance, demonstrated a KRAS mutation in the post-treatment resistant tumor, but not in the pre-treatment tumor suggesting that the RAF/RAS/MEK pathway was activated with progression. Conclusions We have reported several different mutations in advanced ES and DSRCT that have direct implications for molecularly-directed targeted therapy. Our technology agnostic approach provides an initial mutational roadmap used in the path towards individualized combination therapy. PMID:25119929

  7. Further evidence for a broader concept of somatization disorder using the somatic symptom index.

    Science.gov (United States)

    Hiller, W; Rief, W; Fichter, M M

    1995-01-01

    Somatization syndromes were defined in a sample of 102 psychosomatic inpatients according to the restrictive criteria of DSM-III-R somatization disorder and the broader diagnostic concept of the Somatic Symptom Index (SSI). Both groups showed a qualitatively similar pattern of psychopathological comorbidity and had elevated scores on measures of depression, hypochondriasis, and anxiety. A good discrimination between mild and severe forms of somatization was found by using the SSI criterion. SSI use accounted for a substantial amount of comorbidity variance, with rates of 15%-20% for depression, 16% for hypochondriasis, and 13% for anxiety. The results provide further evidence for the validity of the SSI concept, which reflects the clinical relevance of somatization in addition to the narrow definition of somatization disorder.

  8. Biomimetic extracellular matrix mediated somatic stem cell differentiation: applications in dental pulp tissue regeneration

    Science.gov (United States)

    Ravindran, Sriram; George, Anne

    2015-01-01

    Dental caries is one of the most widely prevalent infectious diseases in the world. It affects more than half of the world's population. The current treatment for necrotic dental pulp tissue arising from dental caries is root canal therapy. This treatment results in loss of tooth sensitivity and vitality making it prone for secondary infections. Over the past decade, several tissue-engineering approaches have attempted regeneration of the dental pulp tissue. Although several studies have highlighted the potential of dental stem cells, none have transitioned into a clinical setting owing to limited availability of dental stem cells and the need for growth factor delivery systems. Our strategy is to utilize the intact ECM of pulp cells to drive lineage specific differentiation of bone marrow derived mesenchymal stem cells. From a clinical perspective, pulp ECM scaffolds can be generated using cell lines and patient specific somatic stem cells can be used for regeneration. Our published results have shown the feasibility of using pulp ECM scaffolds for odontogenic differentiation of non-dental mesenchymal cells. This focused review discusses the issues surrounding dental pulp tissue regeneration and the potential of our strategy to overcome these issues. PMID:25954205

  9. Novel somatic and germline mutations in intracranial germ cell tumours.

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M; Gibbs, Richard A; Leal, Suzanne M; Wheeler, David A; Lau, Ching C

    2014-07-10

    Intracranial germ cell tumours (IGCTs) are a group of rare heterogeneous brain tumours that are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographical and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically five- to eightfold greater in Japan and other East Asian countries than in Western countries, with peak incidence near the time of puberty. About half of the tumours are located in the pineal region. The male-to-female incidence ratio is approximately 3-4:1 overall, but is even higher for tumours located in the pineal region. Owing to the scarcity of tumour specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next-generation sequencing, single nucleotide polymorphism array and expression array. We find the KIT/RAS signalling pathway frequently mutated in more than 50% of IGCTs, including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gains of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional co-repressor and tumour suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, which codes for a histone demethylase and is a coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway.

  10. Novel somatic and germline mutations in intracranial germ cell tumors

    Science.gov (United States)

    Wang, Linghua; Yamaguchi, Shigeru; Burstein, Matthew D.; Terashima, Keita; Chang, Kyle; Ng, Ho-Keung; Nakamura, Hideo; He, Zongxiao; Doddapaneni, Harshavardhan; Lewis, Lora; Wang, Mark; Suzuki, Tomonari; Nishikawa, Ryo; Natsume, Atsushi; Terasaka, Shunsuke; Dauser, Robert; Whitehead, William; Adekunle, Adesina; Sun, Jiayi; Qiao, Yi; Marth, Gábor; Muzny, Donna M.; Gibbs, Richard A.; Leal, Suzanne M.; Wheeler, David A.; Lau, Ching C.

    2015-01-01

    Intracranial germ cell tumors (IGCTs) are a group of rare heterogeneous brain tumors which are clinically and histologically similar to the more common gonadal GCTs. IGCTs show great variation in their geographic and gender distribution, histological composition and treatment outcomes. The incidence of IGCTs is historically 5–8 fold greater in Japan and other East Asian countries than in Western countries1 with peak incidence near the time of puberty2. About half of the tumors are located in the pineal region. The male-to-female incidence ratio is approximately 3–4:1 overall but even higher for tumors located in the pineal region3. Due to the scarcity of tumor specimens available for research, little is currently known about this rare disease. Here we report the analysis of 62 cases by next generation sequencing, SNP array and expression array. We find the KIT/RAS signaling pathway frequently mutated in over 50% of IGCTs including novel recurrent somatic mutations in KIT, its downstream mediators KRAS and NRAS, and its negative regulator CBL. Novel somatic alterations in the AKT/mTOR pathway included copy number gain of the AKT1 locus at 14q32.33 in 19% of patients, with corresponding upregulation of AKT1 expression. We identified loss-of-function mutations in BCORL1, a transcriptional corepressor and tumor suppressor. We report significant enrichment of novel and rare germline variants in JMJD1C, a histone demethylase and coactivator of the androgen receptor, among Japanese IGCT patients. This study establishes a molecular foundation for understanding the biology of IGCTs and suggests potentially promising therapeutic strategies focusing on the inhibition of KIT/RAS activation and the AKT1/mTOR pathway. PMID:24896186

  11. Somatic hypermutation of T cell receptor α chain contributes to selection in nurse shark thymus.

    Science.gov (United States)

    Ott, Jeannine A; Castro, Caitlin D; Deiss, Thaddeus C; Ohta, Yuko; Flajnik, Martin F; Criscitiello, Michael F

    2018-04-17

    Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on α chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRα was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRα utilizes SHM to broaden diversification of the primary αβ T cell repertoire in sharks, the first reported use in vertebrates. © 2018, Ott et al.

  12. Germline contamination and leakage in whole genome somatic single nucleotide variant detection.

    Science.gov (United States)

    Sendorek, Dorota H; Caloian, Cristian; Ellrott, Kyle; Bare, J Christopher; Yamaguchi, Takafumi N; Ewing, Adam D; Houlahan, Kathleen E; Norman, Thea C; Margolin, Adam A; Stuart, Joshua M; Boutros, Paul C

    2018-01-31

    The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. The median somatic SNV prediction set contained 4325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.

  13. Is somatic comorbidity associated with more somatic symptoms, mental distress, or unhealthy lifestyle in elderly cancer survivors?

    Science.gov (United States)

    Grov, Ellen Karine; Fosså, Sophie D; Dahl, Alv A

    2009-06-01

    The associations of lifestyle factors, somatic symptoms, mental distress, and somatic comorbidity in elderly cancer survivors have not been well studied. This study examines these associations among elderly cancer survivors (age >or=65 years) in a population-based sample. A cross-sectional comparative study of Norwegian elderly cancer survivors. Combining information from The Norwegian Cancer Registry, and by self-reporting, 972 elderly cancer survivors were identified, of whom 632 (65%) had somatic comorbidity and 340 did not. Elderly cancer survivors with somatic comorbidity had significantly higher BMI, more performed minimal physical activity, had more somatic symptoms, used more medication, and had more frequently seen a medical doctor than survivors without somatic comorbidity. In multivariable analyses, unhealthy lifestyle and higher somatic symptoms scores were significantly associated with cancer cases with somatic comorbidity. In univariate analyses those with somatic comorbidity were significantly older, had lower levels of education, higher proportions of BMI >or= 30, less physical activity, poorer self-rated health, higher somatic symptoms score, more mental distress, had more frequently seen a medical doctor last year, and more frequently used daily medication. Our outcome measures of lifestyle, somatic symptoms and mental distress were all significantly associated with somatic comorbidity in elderly cancer survivors, however only lifestyle and somatic symptoms were significant in multivariable analyses. In elderly cancer survivors not only cancer, but also somatic comorbidity, deserve attention. Such comorbidity is associated with unhealthy lifestyles, more somatic symptoms and mental distress which should be evaluated and eventually treated.

  14. Initial embryology and pluripotent stem cells in the pig - the quest for establishing the pig as a model for cell therapy

    DEFF Research Database (Denmark)

    Secher, Jan; Callesen, Henrik; Freude, Karla Kristine

    2016-01-01

    genetically modified pigs emerged. Over the past years, renewed interest in porcine PSCs has sparked activities in deriving in particular porcine induced pluripotent stem cells to develop the pig as a faithful model for studying the potentials and risks associated with induced pluripotent stem cell......The quest for porcine pluripotent stem cells (PSCs) was initiated in the early 90s. Initially, it was the intention to benefit from these cells for production of genetically modified pigs using homologous recombination followed by derivation of chimeric offspring; a technology that has been used...... to produce genetically modified mice since the mid-80s. However, no convincing reports on the generation of bona fide porcine embryonic stem cells or embryonic germ cells resulted from these activities, and with the advent of somatic cell nuclear transfer during the late 90s, alternative methods for creating...

  15. Somatic mutations affect key pathways in lung adenocarcinoma

    Science.gov (United States)

    Ding, Li; Getz, Gad; Wheeler, David A.; Mardis, Elaine R.; McLellan, Michael D.; Cibulskis, Kristian; Sougnez, Carrie; Greulich, Heidi; Muzny, Donna M.; Morgan, Margaret B.; Fulton, Lucinda; Fulton, Robert S.; Zhang, Qunyuan; Wendl, Michael C.; Lawrence, Michael S.; Larson, David E.; Chen, Ken; Dooling, David J.; Sabo, Aniko; Hawes, Alicia C.; Shen, Hua; Jhangiani, Shalini N.; Lewis, Lora R.; Hall, Otis; Zhu, Yiming; Mathew, Tittu; Ren, Yanru; Yao, Jiqiang; Scherer, Steven E.; Clerc, Kerstin; Metcalf, Ginger A.; Ng, Brian; Milosavljevic, Aleksandar; Gonzalez-Garay, Manuel L.; Osborne, John R.; Meyer, Rick; Shi, Xiaoqi; Tang, Yuzhu; Koboldt, Daniel C.; Lin, Ling; Abbott, Rachel; Miner, Tracie L.; Pohl, Craig; Fewell, Ginger; Haipek, Carrie; Schmidt, Heather; Dunford-Shore, Brian H.; Kraja, Aldi; Crosby, Seth D.; Sawyer, Christopher S.; Vickery, Tammi; Sander, Sacha; Robinson, Jody; Winckler, Wendy; Baldwin, Jennifer; Chirieac, Lucian R.; Dutt, Amit; Fennell, Tim; Hanna, Megan; Johnson, Bruce E.; Onofrio, Robert C.; Thomas, Roman K.; Tonon, Giovanni; Weir, Barbara A.; Zhao, Xiaojun; Ziaugra, Liuda; Zody, Michael C.; Giordano, Thomas; Orringer, Mark B.; Roth, Jack A.; Spitz, Margaret R.; Wistuba, Ignacio I.; Ozenberger, Bradley; Good, Peter J.; Chang, Andrew C.; Beer, David G.; Watson, Mark A.; Ladanyi, Marc; Broderick, Stephen; Yoshizawa, Akihiko; Travis, William D.; Pao, William; Province, Michael A.; Weinstock, George M.; Varmus, Harold E.; Gabriel, Stacey B.; Lander, Eric S.; Gibbs, Richard A.; Meyerson, Matthew; Wilson, Richard K.

    2009-01-01

    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers—including NF1, APC, RB1 and ATM—and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment. PMID:18948947

  16. Sexual Fate Change of XX Germ Cells Caused by the Deletion of SMAD4 and STRA8 Independent of Somatic Sex Reprogramming.

    Directory of Open Access Journals (Sweden)

    Quan Wu

    2016-09-01

    Full Text Available The differential programming of sperm and eggs in gonads is a fundamental topic in reproductive biology. Although the sexual fate of germ cells is believed to be determined by signaling factors from sexually differentiated somatic cells in fetal gonads, the molecular mechanism that determines germ cell fate is poorly understood. Herein, we show that mothers against decapentaplegic homolog 4 (SMAD4 in germ cells is required for female-type differentiation. Germ cells in Smad4-deficient ovaries respond to retinoic acid signaling but fail to undergo meiotic prophase I, which coincides with the weaker expression of genes required for follicular formation, indicating that SMAD4 signaling is essential for oocyte differentiation and meiotic progression. Intriguingly, germline-specific deletion of Smad4 in Stra8-null female germ cells resulted in the up-regulation of genes required for male gonocyte differentiation, including Nanos2 and PLZF, suggesting the initiation of male-type differentiation in ovaries. Moreover, our transcriptome analyses of mutant ovaries revealed that the sex change phenotype is achieved without global gene expression changes in somatic cells. Our results demonstrate that SMAD4 and STRA8 are essential factors that regulate the female fate of germ cells.

  17. Autosomal dominant polycystic kidney disease caused by somatic and germline mosaicism.

    Science.gov (United States)

    Tan, A Y; Blumenfeld, J; Michaeel, A; Donahue, S; Bobb, W; Parker, T; Levine, D; Rennert, H

    2015-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a heterogeneous genetic disorder caused by loss of function mutations of PKD1 or PKD2 genes. Although PKD1 is highly polymorphic and the new mutation rate is relatively high, the role of mosaicism is incompletely defined. Herein, we describe the molecular analysis of ADPKD in a 19-year-old female proband and her father. The proband had a PKD1 truncation mutation c.10745dupC (p.Val3584ArgfsX43), which was absent in paternal peripheral blood lymphocytes (PBL). However, very low quantities of this mutation were detected in the father's sperm DNA, but not in DNA from his buccal cells or urine sediment. Next generation sequencing (NGS) analysis determined the level of this mutation in the father's PBL, buccal cells and sperm to be ∼3%, 4.5% and 10%, respectively, consistent with somatic and germline mosaicism. The PKD1 mutation in ∼10% of her father's sperm indicates that it probably occurred early in embryogenesis. In ADPKD cases where a de novo mutation is suspected because of negative PKD gene testing of PBL, additional evaluation with more sensitive methods (e.g. NGS) of the proband PBL and paternal sperm can enhance detection of mosaicism and facilitate genetic counseling. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Genotoxicity evaluation of buprofezin, petroleum oil and profenofos in somatic and germ cells of male mice.

    Science.gov (United States)

    Fahmy, M A; Abdalla, E F

    1998-01-01

    The two pest control agents, buprofezin and petroleum oil (Super Royal), were tested to evaluate their potential mutagenicity, in comparison with the organophosphorus insecticide profenofos. Chromosomal aberration analysis was used in both somatic and germ cells of male mice. Single oral treatment at three different dose levels (1/16, 1/8 and 1/4 LD50) for each insecticide induced an increase in the percentage of chromosomal aberrations in bone-marrow cells 24 h post-treatment, indicating a dose-dependent relationship. The percentage of chromosomal aberrations reached 23 +/- 0.73, 10.5 +/- 0.64 and 15 +/- 1.4 after treatment with the highest tested dose of profenofos, buprofezin and Super Royal, respectively. Such percentages did not exceed the corresponding value of the positive control, mitomycin C (29.2 +/- 0.69). The percentage of chromosomal aberrations induced by the different doses of profenofos was still highly significant even after excluding gaps. The same trend of results was noticed only at the highest tested dose of buprofezin and Super Royal. With respect to germ cells, profenofos is also a potent inducer of chromosomal aberrations in 1ry spermatocytes, giving percentages of 14 +/- 1.3 and 19 +/- 1.6 at the two higher doses of 4.25 and 8.5 mg kg(-1) body wt., respectively. Buprofezin and Super Royal had no significant effect on mouse spermatocytes at the tested concentrations. The various types of induced aberrations were examined and recorded in both somatic and germ cells. In conclusion, the present investigation indicates that the two pest control agents buprofezin and Super Royal are relatively much safer compounds than the conventional organophosphorus insecticides.

  19. Transcriptional landscape of ncRNA and Repeat elements in somatic cells

    KAUST Repository

    Ghosheh, Yanal

    2016-12-01

    The advancement of Nucleic acids (DNA and RNA) sequencing technology has enabled many projects targeted towards the identification of genome structure and transcriptome complexity of organisms. The first conclusions of the human and mouse projects have underscored two important, yet unexpected, findings. First, while almost the entire genome is transcribed, only 5% of it encodes for proteins. Thereby, most transcripts are noncoding RNA. This includes both short RNA (<200 nucleotides (nt)) comprising piRNAs; microRNAs (miRNAs); endogenous Short Interfering RNAs (siRNAs) among others, and includes lncRNA (>200nt). Second, a significant portion of the mammalian genome (45%) is composed of Repeat Elements (REs). RE are mostly relics of ancestral viruses that during evolution have invaded the host genome by producing thousands of copies. Their roles within their host genomes have yet to be fully explored considering that they sometimes produce lncRNA, and have been shown to influence expression at the transcriptional and post-transcriptional levels. Moreover, because some REs can still mobilize within host genomes, host genomes have evolved mechanisms, mainly epigenetic, to maintain REs under tight control. Recent reports indicate that REs activity is regulated in somatic cells, particularily in the brain, suggesting a physiological role of RE mobilization during normal development. In this thesis, I focus on the analysis of ncRNAs, specifically REs; piRNAs; lncRNAs in human and mouse post-mitotic somatic cells. The main aspects of this analysis are: Using sRNA-Seq, I show that piRNAs, a class of ncRNAs responsible for the silencing of Transposable elements (TEs) in testes, are present also in adult mouse brain. Furthermore, their regulation shows only a subset of testes piRNAs are expressed in the brain and may be controlled by known neurogenesis factors. To investigate the dynamics of the transcriptome during cellular differentiation, I examined deep RNA-Seq and Cap

  20. Distinct subtype distribution and somatic mutation spectrum of lymphomas in East Asia.

    Science.gov (United States)

    Ren, Weicheng; Li, Wei; Ye, Xiaofei; Liu, Hui; Pan-Hammarström, Qiang

    2017-07-01

    Here, we give an updated overview of the subtype distribution of lymphomas in East Asia and also present the genome sequencing data on two major subtypes of these tumors. The distribution of lymphoma types/subtypes among East Asian countries is very similar, with a lower proportion of B-cell malignancies and a higher proportion of T/natural killer (NK)-cell lymphomas as compared to Western populations. Extranodal NK/T-cell lymphoma is more frequently observed in East Asia, whereas follicular lymphoma and chronic lymphocytic leukemia, are proportionally lower. The incidence rate of lymphoma subtypes in Asians living in the US was generally intermediate to the general rate in US and Asia, suggesting that both genetic and environmental factors may underlie the geographical variations observed.Key cancer driver mutations have been identified in Asian patients with diffuse large B-cell lymphoma or extranodal NK/T-cell lymphoma through genome sequencing. A distinct somatic mutation profile has also been observed in Chinese diffuse large B-cell lymphoma patients. The incidence and distribution of lymphoma subtypes differed significantly between patients from East Asia and Western countries, suggesting subtype-specific etiologic mechanisms. Further studies on the mechanism underlying these geographical variations may give new insights into our understanding of lymphomagenesis.

  1. Absence of nucleolus formation in raccoon dog-porcine interspecies somatic cell nuclear transfer embryos results in embryonic developmental failure.

    Science.gov (United States)

    Jeon, Yubyeol; Nam, Yeong-Hee; Cheong, Seung-A; Kwak, Seong-Sung; Lee, Eunsong; Hyun, Sang-Hwan

    2016-08-25

    Interspecies somatic cell nuclear transfer (iSCNT) can be a solution for preservation of endangered species that have limited oocytes. It has been reported that blastocyst production by iSCNT is successful even if the genetic distances between donors and recipients are large. In particular, domestic pig oocytes can support the development of canine to porcine iSCNT embryos. Therefore, we examined whether porcine oocytes may be suitable recipient oocytes for Korean raccoon dog iSCNT. We investigated the effects of trichostatin A (TSA) treatment on iSCNT embryo developmental patterns and nucleolus formation. Enucleated porcine oocytes were fused with raccoon dog fibroblasts by electrofusion and cleavage, and blastocyst development and nucleolus formation were evaluated. To our knowledge, this study is the first in which raccoon dog iSCNT was performed using porcine oocytes; we found that 68.5% of 158 iSCNT embryos had the ability to cleave. However, these iSCNT embryos did not develop past the 4-cell stage. Treatment with TSA did not affect iSCNT embryonic development; moreover, the nuclei failed to form nucleoli at 48 and 72 h post-activation (hpa). In contrast, pig SCNT embryos of the control group showed 18.8% and 87.9% nucleolus formation at 48 and 72 hpa, respectively. Our results demonstrated that porcine cytoplasts efficiently supported the development of raccoon dog iSCNT embryos to the 4-cell stage, the stage of porcine embryonic genome activation (EGA); however, these embryos failed to reach the blastocyst stage and showed defects in nucleolus formation.

  2. The effects of Ostertagia occidentalis somatic antigens on ovine TLR2 and TLR4 expression

    Directory of Open Access Journals (Sweden)

    Hassan BORJI

    2015-10-01

    Full Text Available Background: Recognition of helminth-derived pathogen associated molecular patterns (PAMPs by pattern recognition receptors (PRRs, including toll like recep­tors (TLRs is the first step towards initiating anti–helminth immune re­sponses.Methods: Using somatic antigens of Ostertagia occidentalis, an important abomasal parasite of ruminants, the expression of ovine TLR2 and TLR4 in peripheral blood mononuclear cells (PBMCs was analyzed by real-time quatitative reverse-transcrip­tion polymerase chain reaction (qRT-PCR. Somatic antigens of O. occidentalis were prepared to stimulate ovine PBMCs in a time and dose dependent manner.Results: A high expression of TLR2 and TLR4 was observed in PBMCs cultured with somatic antigens of the parasites specially when PBMCs were cultured with 100 µg/ml of somatic antigens and incubated for 2h. Up-regulation of TLR2 expres­sion was more pronounced and evident in our study.Conclsusion: Somatic antigens of O. occidentalis have immunostimulatory and domi­nant role on peripheral immune cells. This study provide for the first time evidence of induction of TLRs in ovine PBMCs by somatic antigen of O. occidentalis

  3. Stem Cell Interaction with Somatic Niche May Hold the Key to Fertility Restoration in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Deepa Bhartiya

    2012-01-01

    Full Text Available The spontaneous return of fertility after bone marrow transplantation or heterotopic grafting of cryopreserved ovarian cortical tissue has surprised many, and a possible link with stem cells has been proposed. We have reviewed the available literature on ovarian stem cells in adult mammalian ovaries and presented a model that proposes that the ovary harbors two distinct populations of stem cells, namely, pluripotent, quiescent, very small embryonic-like stem cells (VSELs, and slightly larger “progenitor” ovarian germ stem cells (OGSCs. Besides compromising the somatic niche, oncotherapy destroys OGSCs since, like tumor cells, they are actively dividing; however VSELs persist since they are relatively quiescent. BMT or transplanted ovarian cortical tissue may help rejuvenate the ovarian niche, which possibly supports differentiation of persisting VSELs resulting in neo-oogenesis and follicular development responsible for successful pregnancies. Postnatal oogenesis in mammalian ovary from VSELs may be exploited for fertility restoration in cancer survivors including those who were earlier deprived of gametes and/or gonadal tissue cryopreservation options.

  4. Resolving a genetic paradox throughout preimplantation genetic diagnosis for autosomal dominant severe congenital neutropenia.

    Science.gov (United States)

    Malcov, Mira; Reches, Adi; Ben-Yosef, Dalit; Cohen, Tania; Amit, Ami; Dgany, Orly; Tamary, Hannah; Yaron, Yuval

    2010-03-01

    Severe congenital neutropenia is an inherited disease characterized by low peripheral blood neutrophils, amenable to bone marrow transplantation. Genetic analysis in the family here described detected a ELA2 splice-site mutation in the affected child and also in his asymptomatic father. The parents requested preimplantation genetic diagnosis (PGD), coupled with HLA matching, to obtain a suitable bone marrow donor for the affected child. A PGD protocol was developed, based on multiplex nested PCR for direct analysis of the ELA2 mutation, flanking polymorphic markers and HLA typing. The amplification efficiency of the mutation was > 90% in single leukocytes from the affected child but only 67% in the father. Analysis of single haploid sperm cells from the father demonstrated three different sperm-cell populations: (1) sperm cells harboring the ELA2 mutation on the 'affected' haplotype, (2) sperm cells without the ELA2 mutation on the 'normal' haplotype, and (3) sperm cells without the ELA2 mutation on the 'affected' haplotype. These data demonstrate that the ELA2 mutation in the father occurred de novo during his embryonic development, resulting in somatic as well as germ-line mosaicism. This conclusion was also taken into consideration when PGD was performed. Copyright (c) 2010 John Wiley & Sons, Ltd.

  5. Cancer Genetics Overview (PDQ®)—Health Professional Version

    Science.gov (United States)

    Cancer Genetics Overview discusses hereditary cancers and the role of genetic variants (mutations). Get information about genetic counseling, familial cancer syndromes, genomic sequencing, germline and somatic testing, ethical and legal issues and more in this summary for clinicians.

  6. Milk Somatic Cell Counts and Some Hemato-Biochemical Changes in Sub-Clinical Mastitic Dromedary She-Camels (Camelus dromedarius

    Directory of Open Access Journals (Sweden)

    Farah Ali, Riaz Hussain, Abdul Qayyum, Shafia Tehseen Gul, Zahid Iqbal and Mohammad Farooque Hassan

    2016-11-01

    Full Text Available The dromedary camels are considered as the best livestock animals in arid, semiarid and desert areas and camel milk is known as the valuable food source in these areas. The present study was aimed to investigate milk somatic cell counts and some biochemical changes in milk due to sub-clinical mastitis in camels. For this purpose milk samples were collected from 33 lactating animals and examined for sub clinical mastitis using California Mastitis Test. The chi-square and frequency analysis did not show any significant association with age, lactation stage, parity and quarter involved. The results indicated significant (P<0.01 increase in milk electrical conductivity and milk pH while significantly lower values for milk proteins, lactose and fat contents were recorded. The results revealed that the total milk somatic cell and neutrophil counts were significantly increased while the lymphocytes and macrophages were decreased in infected animals. Moreover, milk enzymes; aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase were significantly increased in mastitic animals as compared to the non-infected animals. The results indicated that milk electrical conductivity and some milk enzymes can be screened to investigate the sub-clinical mastitis in Camelus dromedaries.

  7. Biomarkers of environmental genotoxicity: comparison of genetic damage induced in Trad-SH cells and human lymphocytes

    International Nuclear Information System (INIS)

    Cebulska-Wasilewska, A.

    1999-01-01

    The report presents some of the results of genotoxicity of the environmental agents studied in somatic cells of Tradescantia and show similarity between responses of the Tradescantia stamen hair cells (Trad-SH) and human blood cells to the physical and chemical mutagens. In the studies in vitro chromosome aberrations (CA) and sister chromatid exchanges (SCE) were applied to evaluate genotoxicity of pesticides. For comparison of genotoxic effectiveness of agrochemicals with other chemicals, there are also presented results of the genotoxicity of well-known mutagens (EMS, X-rays). The results confirm that in the environment a chemical pollution might cause higher genetic risk than radiation. Trad-SH assay was applied for in situ monitoring of the ambient air mutagenicity caused by benzene and petroleum associated compounds. The studies showed that gene mutation frequencies were slightly dependent on the distance from the petroleum work center. Results of measures of the cell cycle factor have shown also that the chemical pollutants in the air played also an important role in physiological cellular processes. The similarity of the Trad-SH and human blood cells responses to the physical and chemical mutagens showed that the gene mutations in Tradescantia present a simple and sensitive model, which can be very useful in biological monitoring

  8. Genetic and Epigenetic Tumor Suppressor Gene Silencing Are Distinct Molecular Phenotypes Driven by Growth Promoting Mutations in Nonsmall Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Carmen J. Marsit

    2008-01-01

    Full Text Available Both genetic and epigenetic alterations characterize human nonsmall cell lung cancer (NSCLC, but the biological processes that create or select these alterations remain incompletely investigated. Our hypothesis posits that a roughly reciprocal relationship between the propensity for promoter hypermethylation and a propensity for genetic deletion leads to distinct molecular phenotypes of lung cancer. To test this hypothesis, we examined promoter hypermethylation of 17 tumor suppressor genes, as a marker of epigenetic alteration propensity, and deletion events at the 3p21 region, as a marker of genetic alteration. To model the complex biology between these somatic alterations, we utilized an item response theory model. We demonstrated that tumors exhibiting LOH at greater than 30% of informative alleles in the 3p21 region have a significantly reduced propensity for hypermethylation. At the same time, tumors with activating KRAS mutations showed a significantly increased propensity for hypermethylation of the loci examined, a result similar to what has been observed in colon cancer. These data suggest that NSCLCs have distinct epigenetic or genetic alteration phenotypes acting upon tumor suppressor genes and that mutation of oncogenic growth promoting genes, such as KRAS, is associated with the epigenetic phenotype.

  9. DNA fingerprinting techniques for the analysis of genetic and epigenetic alterations in colorectal cancer.

    Science.gov (United States)

    Samuelsson, Johanna K; Alonso, Sergio; Yamamoto, Fumiichiro; Perucho, Manuel

    2010-11-10

    Genetic somatic alterations are fundamental hallmarks of cancer. In addition to point and other small mutations targeting cancer genes, solid tumors often exhibit aneuploidy as well as multiple chromosomal rearrangements of large fragments of the genome. Whether somatic chromosomal alterations and aneuploidy are a driving force or a mere consequence of tumorigenesis remains controversial. Recently it became apparent that not only genetic but also epigenetic alterations play a major role in carcinogenesis. Epigenetic regulation mechanisms underlie the maintenance of cell identity crucial for development and differentiation. These epigenetic regulatory mechanisms have been found substantially altered during cancer development and progression. In this review, we discuss approaches designed to analyze genetic and epigenetic alterations in colorectal cancer, especially DNA fingerprinting approaches to detect changes in DNA copy number and methylation. DNA fingerprinting techniques, despite their modest throughput, played a pivotal role in significant discoveries in the molecular basis of colorectal cancer. The aim of this review is to revisit the fingerprinting technologies employed and the oncogenic processes that they unveiled. 2010 Elsevier B.V. All rights reserved.

  10. In vivo cytogenetic effects of 2-trans hexenal on somatic and germ ...

    African Journals Online (AJOL)

    Francis

    meiotic cells. Wyrobek et al. (1983) emphasized that chemicals which are mutagenic to somatic cells, could also affect germ cells. The dose-dependent increase in the frequency of abnormal sperm observed in the present study suggests that ...

  11. Induction and selection of mutants from in vitro cultured plant cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author).

  12. Induction and selection of mutants from in vitro cultured plant cells

    International Nuclear Information System (INIS)

    Lee, Yung Il; Kim, Jae Sung; Shin, In Chul; Lee, Sang Jae

    1994-07-01

    Mutant cell lines are useful for biochemical, physiological and genetical material for marker in various genetic manipulation experiments and for the direct use in crop plant improvement. Mutant selection may lead to the production of plants showing resistance or tolerance to specific environmental stress, such as solinity, drought, toxed metals, herbicides, pathogens and low temperature. In this review, these included the production of the somatic variation, the selection process itself and stability of the selected characters in cell culture and regenerated plant. Which would seem to be useful for improving plants and securring genetic resources. 45 refs. (Author)

  13. Primary cutaneous B-cell lymphoma is associated with somatically hypermutated immunoglobulin variable genes and frequent use of VH1-69 and VH4-59 segments.

    Science.gov (United States)

    Perez, M; Pacchiarotti, A; Frontani, M; Pescarmona, E; Caprini, E; Lombardo, G A; Russo, G; Faraggiana, T

    2010-03-01

    Accurate assessment of the somatic mutational status of clonal immunoglobulin variable region (IgV) genes is relevant in elucidating tumour cell origin in B-cell lymphoma; virgin B cells bear unmutated IgV genes, while germinal centre and postfollicular B cells carry mutated IgV genes. Furthermore, biases in the IgV repertoire and distribution pattern of somatic mutations indicate a possible antigen role in the pathogenesis of B-cell malignancies. This work investigates the cellular origin and antigenic selection in primary cutaneous B-cell lymphoma (PCBCL). We analysed the nucleotide sequence of clonal IgV heavy-chain gene (IgVH) rearrangements in 51 cases of PCBCL (25 follicle centre, 19 marginal zone and seven diffuse large B-cell lymphoma, leg-type) and compared IgVH sequences with their closest germline segment in the GenBank database. Molecular data were then correlated with histopathological features. We showed that all but one of the 51 IgVH sequences analysed exhibited extensive somatic hypermutations. The detected mutation rate ranged from 1.6% to 21%, with a median rate of 9.8% and was independent of PCBCL histotype. Calculation of antigen-selection pressure showed that 39% of the mutated IgVH genes displayed a number of replacement mutations and silent mutations in a pattern consistent with antigenic selection. Furthermore, two segments, VH1-69 (12%) and VH4-59 (14%), were preferentially used in our case series. Data indicate that neoplastic B cells of PBCBL have experienced germinal centre reaction and also suggest that the involvement of IgVH genes is not entirely random in PCBCL and that common antigen epitopes could be pathologically relevant in cutaneous lymphomagenesis.

  14. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  15. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  16. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    I. J. Guerra-Santos

    Full Text Available Abstract Vernonanthura polyanthes (Spreng. A.J. Vega & Dematt. (Asteraceae, known as “assa-peixe”, has been used in ethnomedicine for the treatment of various diseases such as bronchitis, pneumonia, hemoptysis, persistent cough, internal abscesses, gastric and kidney stone pain. Moreover, some studies demonstrated that species of Genus Vernonia present antifungal activity. Due to the biological relevance of this species, the aim of this study was to investigate the toxic, genotoxic, antigenotoxic and antifungal potential of V. polyanthes leaves aqueous extract in somatic cells of Drosophila melanogaster or against Candida spp. The aqueous extract of the plant showed no toxic, genotoxic and antigenotoxic activity in the experimental conditions tested using the wing somatic mutation and recombination test (SMART/wing. However, when the extract was associated with doxorubicin, used in this work as a positive control, the mutagenic potential of doxorubicin was enhanced, increasing the number of mutations in D. melanogaster somatic cells. In the other hand, no inhibitory activity against Candida spp. was observed for V. polyanthes leaves aqueous extract using agar-well diffusion assay. More studies are necessary to reveal the components present in the V. polyanthes leaves aqueous extract that could contribute to potentiate the doxorubicin genotoxicity.

  17. Cellular heredity in haploid cultures of somatic cells, March 1968-April 1981. Final report

    International Nuclear Information System (INIS)

    Freed, J.J.

    1982-03-01

    An account is given of the development and application to cell-culture genetics of unique haploid cell lines from frog embryo developed in this laboratory. Since 1968, the main aim of this project has been to develop the haploid cell system for studies of mutagenesis in culture, particularly by ultraviolet radiation. In the course of this work we isolated chromosomally stable cell lines, derived and characterized a number of variants, and adapted cell hybridization and other methods to this material. Particular emphasis was placed on ultraviolet photobiology, including studies of cell survival, mutagenesis, and pathways of repair of uv-damaged DNA. Although at present less widely used for genetic experiments than mammalian cell lines, the frog cells offer the advantages of authentic haploidy and a favorable repertory of DNA repair pathways for study of uv mutagenesis

  18. Influence of somatic cell count on mineral content and salt equilibria of milk

    Directory of Open Access Journals (Sweden)

    Primo Mariani

    2010-01-01

    Full Text Available Aim of this research was to study the effect of somatic cell count on mineral content and salt equilibria at the level of quarter milk samples. Ten Italian Friesian cows, in which two homologous quarters (front quarters in 1 cow, rear quarters in 6 cows and both rear and front quarters in 3 cows were characterised by a milk SCC400,000 cells/mL (HC-milk, respectively, were selected. Cows were milked at quarter level during the morning milking and a single sample was collected from each selected quarter, thus, 26 quarter milk samples were collected. Compared to LC-milk, HC-milk was characterised by a lower content of phosphorus and potassium and by a higher content of both sodium and chloride. The equilibrium of calcium, phosphorus and magnesium between the colloidal and soluble phase of milk and the mineralisation degree of the casein micelles, were not different between HC and LC milk.

  19. Time-series models on somatic cell score improve detection of matistis

    DEFF Research Database (Denmark)

    Norberg, E; Korsgaard, I R; Sloth, K H M N

    2008-01-01

    In-line detection of mastitis using frequent milk sampling was studied in 241 cows in a Danish research herd. Somatic cell scores obtained at a daily basis were analyzed using a mixture of four time-series models. Probabilities were assigned to each model for the observations to belong to a normal...... "steady-state" development, change in "level", change of "slope" or "outlier". Mastitis was indicated from the sum of probabilities for the "level" and "slope" models. Time-series models were based on the Kalman filter. Reference data was obtained from veterinary assessment of health status combined...... with bacteriological findings. At a sensitivity of 90% the corresponding specificity was 68%, which increased to 83% using a one-step back smoothing. It is concluded that mixture models based on Kalman filters are efficient in handling in-line sensor data for detection of mastitis and may be useful for similar...

  20. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck.

    Science.gov (United States)

    Poi, M J; Yen, T; Li, J; Song, H; Lang, J C; Schuller, D E; Pearl, D K; Casto, B C; Tsai, M D; Weghorst, C M

    2001-01-01

    The INK4a-ARF locus is located on human chromosome 9p21 and is known to encode two functionally distinct tumor-suppressor genes. The p16(INK4a) (p16) tumor-suppressor gene product is a negative regulator of cyclin-dependent kinases 4 and 6, which in turn positively regulate progression of mammalian cells through the cell cycle. The p14(ARF) tumor-suppressor gene product specifically interacts with human double minute 2, leading to the subsequent stabilization of p53 and G(1) arrest. Previous investigations analyzing the p16 gene in squamous cell carcinomas of the head and neck (SCCHNs) have suggested the predominate inactivating events to be homozygous gene deletions and hypermethylation of the p16 promoter. Somatic mutational inactivation of p16 has been reported to be low (0-10%, with a combined incidence of 25 of 279, or 9%) and to play only a minor role in the development of SCCHN. The present study examined whether this particular mechanism of INK4a/ARF inactivation, specifically somatic mutation, has been underestimated in SCCHN by determining the mutational status of the p16 and p14(ARF) genes in 100 primary SCCHNs with the use of polymerase chain reaction technology and a highly sensitive, nonradioactive modification of single-stranded conformational polymorphism (SSCP) analysis termed "cold" SSCP. Exons 1alpha, 1beta, and 2 of INK4a/ARF were amplified using intron-based primers or a combination of intron- and exon-based primers. A total of 27 SCCHNs (27%) exhibited sequence alterations in this locus, 22 (22%) of which were somatic sequence alterations and five (5%) of which were a single polymorphism in codon 148. Of the 22 somatic alterations, 20 (91%) directly or indirectly involved exon 2, and two (9%) were located within exon 1alpha. No mutations were found in exon 1beta. All 22 somatic mutations would be expected to yield altered p16 proteins, but only 15 of them should affect p14(ARF) proteins. Specific somatic alterations included microdeletions or

  1. Repeatability of differential goat bulk milk culture and associations with somatic cell count, total bacterial count, and standard plate count

    NARCIS (Netherlands)

    Koop, G.; Dik, N.; Nielen, M.; Lipman, L.J.A.

    2010-01-01

    The aims of this study were to assess how different bacterial groups in bulk milk are related to bulk milk somatic cell count (SCC), bulk milk total bacterial count (TBC), and bulk milk standard plate count (SPC) and to measure the repeatability of bulk milk culturing. On 53 Dutch dairy goat farms,

  2. Cis-regulatory somatic mutations and gene-expression alteration in B-cell lymphomas.

    Science.gov (United States)

    Mathelier, Anthony; Lefebvre, Calvin; Zhang, Allen W; Arenillas, David J; Ding, Jiarui; Wasserman, Wyeth W; Shah, Sohrab P

    2015-04-23

    With the rapid increase of whole-genome sequencing of human cancers, an important opportunity to analyze and characterize somatic mutations lying within cis-regulatory regions has emerged. A focus on protein-coding regions to identify nonsense or missense mutations disruptive to protein structure and/or function has led to important insights; however, the impact on gene expression of mutations lying within cis-regulatory regions remains under-explored. We analyzed somatic mutations from 84 matched tumor-normal whole genomes from B-cell lymphomas with accompanying gene expression measurements to elucidate the extent to which these cancers are disrupted by cis-regulatory mutations. We characterize mutations overlapping a high quality set of well-annotated transcription factor binding sites (TFBSs), covering a similar portion of the genome as protein-coding exons. Our results indicate that cis-regulatory mutations overlapping predicted TFBSs are enriched in promoter regions of genes involved in apoptosis or growth/proliferation. By integrating gene expression data with mutation data, our computational approach culminates with identification of cis-regulatory mutations most likely to participate in dysregulation of the gene expression program. The impact can be measured along with protein-coding mutations to highlight key mutations disrupting gene expression and pathways in cancer. Our study yields specific genes with disrupted expression triggered by genomic mutations in either the coding or the regulatory space. It implies that mutated regulatory components of the genome contribute substantially to cancer pathways. Our analyses demonstrate that identifying genomically altered cis-regulatory elements coupled with analysis of gene expression data will augment biological interpretation of mutational landscapes of cancers.

  3. Somatic USP8 Gene Mutations Are a Common Cause of Pediatric Cushing Disease.

    Science.gov (United States)

    Faucz, Fabio R; Tirosh, Amit; Tatsi, Christina; Berthon, Annabel; Hernández-Ramírez, Laura C; Settas, Nikolaos; Angelousi, Anna; Correa, Ricardo; Papadakis, Georgios Z; Chittiboina, Prashant; Quezado, Martha; Pankratz, Nathan; Lane, John; Dimopoulos, Aggeliki; Mills, James L; Lodish, Maya; Stratakis, Constantine A

    2017-08-01

    Somatic mutations in the ubiquitin-specific protease 8 (USP8) gene have been recently identified as the most common genetic alteration in patients with Cushing disease (CD). However, the frequency of these mutations in the pediatric population has not been extensively assessed. We investigated the status of the USP8 gene at the somatic level in a cohort of pediatric patients with corticotroph adenomas. The USP8 gene was fully sequenced in both germline and tumor DNA samples from 42 pediatric patients with CD. Clinical, biochemical, and imaging data were compared between patients with and without somatic USP8 mutations. Five different USP8 mutations (three missense, one frameshift, and one in-frame deletion) were identified in 13 patients (31%), all of them located in exon 14 at the previously described mutational hotspot, affecting the 14-3-3 binding motif of the protein. Patients with somatic mutations were older at disease presentation [mean 5.1 ± 2.1 standard deviation (SD) vs 13.1 ± 3.6 years, P = 0.03]. Levels of urinary free cortisol, midnight serum cortisol, and adrenocorticotropic hormone, as well as tumor size and frequency of invasion of the cavernous sinus, were not significantly different between the two groups. However, patients harboring somatic USP8 mutations had a higher likelihood of recurrence compared with patients without mutations (46.2% vs 10.3%, P = 0.009). Somatic USP8 gene mutations are a common cause of pediatric CD. Patients harboring a somatic mutation had a higher likelihood of tumor recurrence, highlighting the potential importance of this molecular defect for the disease prognosis and the development of targeted therapeutic options. Copyright © 2017 Endocrine Society

  4. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    International Nuclear Information System (INIS)

    Takai, Atsushi; Marusawa, Hiroyuki; Chiba, Tsutomu

    2011-01-01

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis

  5. Genome reorganization in Nicotiana asymmetric somatic hybrids analysed by in situ hybridization

    International Nuclear Information System (INIS)

    Parokonny, A.S.; Kenton, A.Y.; Gleba, Y.Y.; Bennett, M.D.

    1992-01-01

    In situ hybridization was used to examine genome reorganization in asymmetric somatic hybrids between Nicotiana plumbaginifolia and Nicotiana sylvestris obtained by fusion of gamma-irradiated protoplasts from one of the parents (donor) with non-irradiated protoplasts from the other (recipient). Probing with biotinylated total genomic DNA from either the donor or the recipient species unequivocally identified genetic material from both parents in 31 regenerant plants, each originating from a different nuclear hybrid colony. This method, termed genomic in situ hybridization (GISH), allowed intergenomic translocations containing chromosome segments from both species to be recognized in four regenerants. A probe homologous to the consensus sequence of the Arabidopsis thaliana telomeric repeat (5'-TTTAGGG-3')n, identified telomeres on all chromosomes, including 'mini-chromosomes' originating from the irradiated donor genome. Genomic in situ hybridization to plant chromosomes provides a rapid and reliable means of screening for recombinant genotypes in asymmetric somatic hybrids. Used in combination with other DNA probes, it also contributes to a greater understanding of the events responsible for genomic recovery and restabilization following genetic manipulation in vitro

  6. Family studies of somatic and functional characteristics in the polish rural population

    Directory of Open Access Journals (Sweden)

    T Wieczorek

    2010-09-01

    Full Text Available In the present investigation we were trying to determine the genetic and environmental conditioning of the chosen somatic and functional traits in Polish rural population during ontogenesis. In order to find out interactions between environmental and genetic conditions of the studied traits, classical methods of quantitative features were applied: correlation coefficients corrected by assortative mating in the chosen types of heritability were evaluated on their base, heritability coefficients of analyzed features were assessed. The biggest stability of the correlation coefficients was observed for the length-parameters. We did not noticed stronger genetic control of functional features in men. Mean-strong genetic control among analyzed traits was observed in: reaction time, space orientation and static strength expressed as relative and absolute strength.

  7. iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types

    Directory of Open Access Journals (Sweden)

    Athanasia D. Panopoulos

    2017-04-01

    Full Text Available Summary: Large-scale collections of induced pluripotent stem cells (iPSCs could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for 95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines. : Working as part of the NHLBI NextGen consortium, Panopoulos and colleagues report the derivation and characterization of 222 publicly available iPSCs from ethnically diverse individuals with corresponding genomic data including SNP arrays, RNA-seq, and whole-genome sequencing. This collection provides a powerful resource to investigate the function of genetic variants. Keywords: iPSCORE, iPSC, GWAS, molecular traits, physiological traits, cardiac disease, NHLBI Next Gen, LQT2, KCNH2, iPSC-derived cardiomyocytes

  8. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    Science.gov (United States)

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  9. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    Directory of Open Access Journals (Sweden)

    Chenghua Cui

    2016-09-01

    Full Text Available Fluorescence in situ hybridization (FISH is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbials and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells

  10. Interspecies somatic cell nuclear transfer in Asiatic cheetah using nuclei derived from post-mortem frozen tissue in absence of cryo-protectant and in vitro matured domestic cat oocytes.

    Science.gov (United States)

    Moulavi, F; Hosseini, S M; Tanhaie-Vash, N; Ostadhosseini, S; Hosseini, S H; Hajinasrollah, M; Asghari, M H; Gourabi, H; Shahverdi, A; Vosough, A D; Nasr-Esfahani, M H

    2017-03-01

    Recent accomplishments in the field of somatic cell nuclear transfer (SCNT) hold tremendous promise to prevent rapid loss of animal genetic resources using ex situ conservation technology. Most of SCNT studies use viable cells for nuclear transfer into recipient oocytes. However, preparation of live cells in extreme circumstances, in which post-mortem material of endangered/rare animals is improperly retained frozen, is difficult, if not impossible. This study investigated the possibility of interspecies-SCNT (iSCNT) in Asiatic cheetah (Acinonyx jubatus venaticus), a critically endangered subspecies, using nuclei derived from frozen tissue in absence of cryo-protectant at -20 °C and in vitro matured domestic cat oocytes. No cells growth was detected in primary culture of skin and tendon pieces or following culture of singled cells prepared by enzymatic digestion. Furthermore, no live cells were detected following differential viable staining and almost all cells had ruptured membrane. Therefore, direct injection of donor nuclei into enucleated cat oocytes matured in vitro was carried out for SCNT experiments. Early signs of nuclear remodeling were observed as early as 2 h post-iSCNT and significantly increased at 4 h post-iSCNT. The percentages of iSCNT reconstructs that cleaved and developed to 4-16 cell and morula stages were 32.3 ± 7.3, 18.2 ± 9.8 and 5.9 ± 4.3%, respectively. However, none of the iSCNT reconstructs developed to the blastocyst stage. When domestic cat somatic and oocytes were used for control SCNT and parthenogenetic activation, the respective percentages of oocytes that cleaved (51.3 ± 13.9 and 77.3 ± 4.0%) and further developed to the blastocyst stage (11.3 ± 3.3 and 16.8 ± 3.8%) were comparable. In summary, this study demonstrated that enucleated cat oocytes can partially remodel and reactivate non-viable nuclei of Asiatic cheetah and support its reprogramming back to the embryonic stage. To our knowledge, this is

  11. Hypochondriasis and somatization.

    Science.gov (United States)

    Kellner, R

    1987-11-20

    Between 60% and 80% of healthy individuals experience somatic symptoms in any one week. About 10% to 20% of a random sample of people worry intermittently about illness. A substantial proportion of patients present physicians with somatic complaints for which no organic cause can be found. Patients who are hypochondriacal do not understand the benign nature of functional somatic symptoms and interpret these as evidence of disease. Hypochondriacal concerns range from common short-lived worries to persistent and distressing fears or convictions of having a disease. Hypochondriasis can be secondary to other psychiatric disorders (eg, melancholia or panic disorder), and hypochondriacal attitudes remit when the primary disorder is successfully treated. Patients with primary hypochondriasis are also anxious or depressed, but the fear of disease, or the false belief of having a disease, persists and is the most important feature of their psychopathology. There are substantial differences among hypochondriacal patients in their personalities and psychopathologies. Psychotherapy as well as psychotropic drugs are effective in the treatment of functional somatic symptoms. There are no adequate controlled studies on the value of psychotherapy in hypochondriasis; the recommended guidelines are based on uncontrolled studies of hypochondriasis and on controlled studies of the psychotherapy in similar disorders. The prognosis of functional somatic symptoms as well as that of hypochondriasis is good in a substantial proportion of patients.

  12. Effect of Somatic Cell Types and Culture Medium on in vitro Maturation, Fertilization and Early Development Capability of Buffalo Oocytes

    Directory of Open Access Journals (Sweden)

    H. Jamil*, H. A. Samad, N. Rehman, Z. I. Qureshi and L. A. Lodhi

    2011-04-01

    Full Text Available This study was designed to evaluate the efficacy of different somatic cell types and media in supporting in vitro maturation (IVM, in vitro fertilization (IVF and early embryonic development competence of buffalo follicular oocytes. Cumulus oocyte complexes were collected for maturation from follicles (>6mm of buffalo ovaries collected at the local abattoir. Oocytes were co-cultured in tissue culture medium (TCM-199 with either granulosa cells, cumulus cells, or buffalo oviductal epithelial cells (BOEC @ 3x106 cells/ml or in TCM-199 without helper cells (control at 39°C and 5%CO2 in humidified air. Fresh semen was prepared in modified Ca++ free Tyrode medium. Fertilization was carried out in four types of media: i Tyrode lactate albumin pyruvate (TALP, ii TALP+BOEC, iii modified Ca++ free Tyrode and iv modified Ca++ free Tyrode+BOEC. Fertilized oocytes were cultured for early embryonic development in TCM-199 with and without BOEC. Higher maturation rates were observed in the granulosa (84.24% and cumulus cells (83.44% than BOEC co culture system (73.37%. Highest fertilization rate was obtained in modified Ca++ free Tyrode with BOEC co culture (70.42%, followed by modified Ca++ free Tyrode alone (63.77%, TALP with BOEC (36.92% and TALP alone (10.94%. Development of early embryos (8-cell stage improved in TCM-199 with BOEC co culture than TCM-199 alone. From the results of this study, it can be concluded that addition of somatic cells (granulosa cells, cumulus cells results in higher maturation rates of buffalo follicular oocytes than BOEC co culture system, while fertilization rate improved in modified Ca++ free Tyrode with and without BOEC. Addition of BOEC to TCM-199 improved the developmental capacity of early embryo.

  13. Non-genetic engineering of cells for drug delivery and cell-based therapy.

    Science.gov (United States)

    Wang, Qun; Cheng, Hao; Peng, Haisheng; Zhou, Hao; Li, Peter Y; Langer, Robert

    2015-08-30

    Cell-based therapy is a promising modality to address many unmet medical needs. In addition to genetic engineering, material-based, biochemical, and physical science-based approaches have emerged as novel approaches to modify cells. Non-genetic engineering of cells has been applied in delivering therapeutics to tissues, homing of cells to the bone marrow or inflammatory tissues, cancer imaging, immunotherapy, and remotely controlling cellular functions. This new strategy has unique advantages in disease therapy and is complementary to existing gene-based cell engineering approaches. A better understanding of cellular systems and different engineering methods will allow us to better exploit engineered cells in biomedicine. Here, we review non-genetic cell engineering techniques and applications of engineered cells, discuss the pros and cons of different methods, and provide our perspectives on future research directions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Influence of the type of milking and storage of milk on the chem ical composition, Somatic Cell Count and bacterial count Total

    Directory of Open Access Journals (Sweden)

    Aline Leite Peixoto

    2017-03-01

    Full Text Available The refrigeration of milk and the usage of mechanical milking are important to obtain milk in accordance with quality standards. In this work we evaluated the influence of the type of milking process and type of storage on the quality of the refrigerated milk. It was obtained 1363 refrigerated milk samples stored in single or collective expansion tanks, from manually or mechanically milked animals. The experiment was carried out in a 2x2 randomized factorial scheme. Two types of expansion tanks (single and collective and two types of milking (manual and mechanical. The average comparison test and Tukey test was carried out with 95% confidence. The levels of fat, protein, lactose and defatted dry extract, were evaluated according to the type of milking and type of milk storage. The values obtained were higher when compared to the values stabilished by the Ministry of Agriculture, Livestock and Food Supply. The level of milk fat was higher in samples with somatic cell count above 501,000 SC/mL. However, the levels of protein and defatted dry extract were higher in samples with somatic cell count below 500,000 SC/mL. The type of milking and the type of storage have influence on parameters related to milk quality such as levels of fat, protein, lactose and somatic cell count. The milk chemical composition revealed in accordance with the values stabilished by the Brazilian legislation. The total bacterial count did not vary with storage type nor the type of milking.

  15. Estimates of genetic parameters, genetic trends, and inbreeding in a crossbred dairy sheep research flock in the United States.

    Science.gov (United States)

    Murphy, T W; Berger, Y M; Holman, P W; Baldin, M; Burgett, R L; Thomas, D L

    2017-10-01

    For the past 2 decades, the Spooner Agriculture Research Station (ARS) of the University of Wisconsin-Madison operated the only dairy sheep research flock in North America. The objectives of the present study were to 1) obtain estimates of genetic parameters for lactation and reproductive traits in dairy ewes, 2) estimate the amount of genetic change in these traits over time, and 3) quantify the level of inbreeding in this flock over the last 20 yr. Multiple-trait repeatability models (MTRM) were used to analyze ewe traits through their first 6 parities. The first MTRM jointly analyzed milk (180-d-adjusted milk yield [180d MY]), fat (180-d-adjusted fat yield [180d FY]), and protein (180-d-adjusted protein yield [180d PY]) yields adjusted to 180 d of lactation; number of lambs born per ewe lambing (NLB); and lactation average test-day somatic cell score (LSCS). A second MTRM analyzed 180d MY, NLB, LSCS, and percentage milk fat (%F) and percentage milk protein (%P). The 3 yield traits were moderately heritable (0.26 to 0.32) and strongly genetically correlated (0.91 to 0.96). Percentage milk fat and %P were highly heritable (0.53 and 0.61, respectively) and moderately genetically correlated (0.61). Milk yield adjusted to 180 d was negatively genetically correlated with %F and %P (-0.31 and -0.34, respectively). Ewe prolificacy was not significantly ( > 0.67) genetically correlated with yield traits, %P, or LSCS but lowly negatively correlated with %F (-0.26). Lactation somatic cell score was unfavorably genetically correlated with yield traits (0.28 to 0.39) but not significantly ( > 0.09) correlated with %F, %P, and NLB. Within-trait multiple-trait models through the first 4 parities revealed that 180d MY, 180d FY, 180d PY, %F, and %P were strongly genetically correlated across parity (0.67 to 1.00). However, the genetic correlations across parity for NLB and LSCS were somewhat lower (0.51 to 0.96). Regressing predicted breeding values for 180d MY, without and with

  16. Genetic Modifiers of Sickle Cell Disease

    Science.gov (United States)

    Steinberg, Martin H.; Sebastiani, Paola

    2015-01-01

    Sickle cell anemia is associated with unusual clinical heterogeneity for a Mendelian disorder. Fetal hemoglobin concentration and coincident ∝ thalassemia, both which directly affect the sickle erythrocyte, are the major modulators of the phenotype of disease. Understanding the genetics underlying the heritable subphenotypes of sickle cell anemia would be prognostically useful, could inform personalized therapeutics, and might help the discovery of new “druggable” pathophysiologic targets. Genotype-phenotype association studies have been used to identify novel genetic modifiers. In the future, whole genome sequencing with its promise of discovering hitherto unsuspected variants could add to our understanding of the genetic modifiers of this disease. PMID:22641398

  17. Assignment of the gene for human tetranectin (TNA) to chromosome 3p22-->p21.3 by somatic cell hybrid mapping

    DEFF Research Database (Denmark)

    Durkin, M E; Naylor, S L; Albrechtsen, R

    1997-01-01

    Tetranectin is a plasminogen-binding protein that is induced during the mineralization phase of osteogenesis. By screening a human chromosome 3 somatic cell hybrid mapping panel, we have localized the human tetranectin gene (TNA) to 3p22-->p21.3, which is distinct from the loci of two human...

  18. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

    Science.gov (United States)

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk

    2013-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (Pcloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

  19. Somatic ACE regulates self-renewal of mouse spermatogonial stem cells via the MAPK signaling pathway.

    Science.gov (United States)

    Gao, Tingting; Zhao, Xin; Liu, Chenchen; Shao, Binbin; Zhang, Xi; Li, Kai; Cai, Jinyang; Wang, Su; Huang, Xiaoyan

    2018-05-24

    Spermatogonial stem cell (SSC) self-renewal is an indispensable part of spermatogenesis. Angiotensin I-converting enzyme (ACE) is a zinc dipeptidyl carboxypeptidase that plays a critical role in regulation of the renin-angiotensin system. Here, we used RT-PCR and Western blot analysis to confirm that somatic ACE (sACE) but not testicular ACE (tACE) is highly expressed in mouse testis before postpartum day 7 and in cultured SSCs. Our results revealed that sACE is located on the membrane of SSCs. Treating cultured SSCs with the ACE competitive inhibitor captopril was found to inhibit sACE activity, and significantly reduced the proliferation rate of SSCs. Microarray analysis identified 651 genes with significant differential expression. KEGG pathway analysis showed that these differentially expressed genes are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway and cell cycle. sACE was found to play an important role in SSC self-renewal via the regulation of MAPK-dependent cell proliferation.

  20. Current status and applications of somatic cell nuclear transfer in dogs.

    Science.gov (United States)

    Jang, Goo; Kim, Min Kyu; Lee, Byeong Chun

    2010-11-01

    Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation.

    Science.gov (United States)

    De Vliegher, S; Laevens, H; Devriese, L A; Opsomer, G; Leroy, J L M; Barkema, H W; de Kruif, A

    2003-04-02

    A high number of dairy heifers freshen with udder health problems. The prevalence of teat apex colonization (TAC) with Staphylococcus chromogenes, one of the most widespread coagulase-negative staphylococci (CNS) in milk samples from freshly calved dairy heifers, was measured cross-sectionally in non-lactating heifers on eight commercial dairy farms in Belgium. The influence of age on this prevalence, and the association between teat apex colonization with S. chromogenes prepartum and quarter milk somatic cell count (SCC) in early lactation were studied. In total, 492 teat apices were sampled from 123 heifers. The age of the heifers varied from 8 to 34 months. Overall, 20% of the heifers had at least one teat apex colonized with S. chromogenes. Of all teats sampled, 10% were colonized with S. chromogenes. The chance of having at least one teat apex colonized with S. chromogenes increased with age of the heifer. The presence of prepartum teat apex colonization with S. chromogenes was not associated with intramammary infection (IMI) early postpartum with the same bacterium. On the contrary, teat apex colonization with S. chromogenes prepartum appeared to protect quarters in the first few days of lactation from having somatic cell count >or=200000cells/ml milk, commonly accepted as the threshold for intramammary infection.

  2. Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study.

    Science.gov (United States)

    Tereso, Susana; Zoglauer, Kurt; Milhinhos, Ana; Miguel, Célia; Oliveira, M Margarida

    2007-05-01

    We compared morphogenesis and accumulation of storage proteins and starch in Pinus pinaster Ait. zygotic embryos with those in somatic embryos grown with different carbohydrate sources. The maturation medium for somatic embryos included 80 microM abscisic acid (ABA), 9 g l(-1) gellam gum and either glucose, sucrose or maltose at 44, 88, 175 or 263 mM in the presence or absence of 6% (w/v) polyethylene glycol (PEG) 4000 MW. Maturation medium containing 44 or 88 mM of a carbohydrate source produced only one or no cotyledonary somatic embryos per 0.6 g fresh mass of culture. The addition of PEG to the basal maturation medium resulted in a low yield of cotyledonary somatic embryos that generally showed incomplete development and anatomical abnormalities such as large intercellular spaces and large vacuoles. High concentrations of maltose also induced large intercellular spaces in the somatic embryonic cells, and 263 mM sucrose produced fewer and less developed cotyledonary somatic embryos compared with 175 mM sucrose, indicating that the effect of carbohydrate source is partially osmotic. Zygotic embryos had a lower dry mass than somatic embryos at the same stage of development. Starch granules followed a similar accumulation pattern in zygotic and somatic embryos. A low starch content was found in cotyledonary zygotic embryos and in somatic embryos developed in the presence of 175 mM maltose or 263 mM glucose. In zygotic embryos and in PEG-treated somatic embryos, protein bodies appeared later and were smaller and fewer than in well-developed somatic embryos grown without PEG. We propose that storage protein concentration might be a marker of embryo quality.

  3. DNMT1 Maintains Progenitor Function in Self-Renewing Somatic Tissue

    OpenAIRE

    Sen, George L.; Reuter, Jason A.; Webster, Daniel E.; Zhu, Lilly; Khavari, Paul A.

    2010-01-01

    Progenitor cells maintain self-renewing tissues throughout life by sustaining their capacity for proliferation while suppressing cell cycle exit and terminal differentiation1,2. DNA methylation3,4,5 provides a potential epigenetic mechanism for the cellular memory needed to preserve the somatic progenitor state through repeated cell divisions. DNA methyltransferase 1 (DNMT1)6,7 maintains DNA methylation patterns after cellular replication. Although dispensable for embryonic stem cell maintena...

  4. Control of Anther Cell Differentiation by the Small Protein Ligand TPD1 and Its Receptor EMS1 in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jian Huang

    2016-08-01

    Full Text Available A fundamental feature of sexual reproduction in plants and animals is the specification of reproductive cells that conduct meiosis to form gametes, and the associated somatic cells that provide nutrition and developmental cues to ensure successful gamete production. The anther, which is the male reproductive organ in seed plants, produces reproductive microsporocytes (pollen mother cells and surrounding somatic cells. The microsporocytes yield pollen via meiosis, and the somatic cells, particularly the tapetum, are required for the normal development of pollen. It is not known how the reproductive cells affect the differentiation of these somatic cells, and vice versa. Here, we use molecular genetics, cell biological, and biochemical approaches to demonstrate that TPD1 (TAPETUM DETERMINANT1 is a small secreted cysteine-rich protein ligand that interacts with the LRR (Leucine-Rich Repeat domain of the EMS1 (EXCESS MICROSPOROCYTES1 receptor kinase at two sites. Analyses of the expressions and localizations of TPD1 and EMS1, ectopic expression of TPD1, experimental missorting of TPD1, and ablation of microsporocytes yielded results suggesting that the precursors of microsporocyte/microsporocyte-derived TPD1 and pre-tapetal-cell-localized EMS1 initially promote the periclinal division of secondary parietal cells and then determine one of the two daughter cells as a functional tapetal cell. Our results also indicate that tapetal cells suppress microsporocyte proliferation. Collectively, our findings show that tapetal cell differentiation requires reproductive-cell-secreted TPD1, illuminating a novel mechanism whereby signals from reproductive cells determine somatic cell fate in plant sexual reproduction.

  5. The somatic shunt cable model for neurons.

    OpenAIRE

    Durand, D

    1984-01-01

    The derivation of the equations for an electrical model of nerve cells is presented. The model consists of an equivalent cylinder, a lumped somatic impedance, and a variable shunt at the soma. This shunt was introduced to take into account the fast voltage decays observed following the injections of current pulses in some motoneurons and hippocampal granule cells that could not be explained by existing models. The shunt can be interpreted either by penetration damage with the electrode or by ...

  6. Loss of centrioles causes chromosomal instability in vertebrate somatic cells.

    Science.gov (United States)

    Sir, Joo-Hee; Pütz, Monika; Daly, Owen; Morrison, Ciaran G; Dunning, Mark; Kilmartin, John V; Gergely, Fanni

    2013-12-09

    Most animal cells contain a centrosome, which comprises a pair of centrioles surrounded by an ordered pericentriolar matrix (PCM). Although the role of this organelle in organizing the mitotic spindle poles is well established, its precise contribution to cell division and cell survival remains a subject of debate. By genetically ablating key components of centriole biogenesis in chicken DT40 B cells, we generated multiple cell lines that lack centrioles. PCM components accumulated in acentriolar microtubule (MT)-organizing centers but failed to adopt a higher-order structure, as shown by three-dimensional structured illumination microscopy. Cells without centrioles exhibited both a delay in bipolar spindle assembly and a high rate of chromosomal instability. Collectively, our results expose a vital role for centrosomes in establishing a mitotic spindle geometry that facilitates correct kinetochore-MT attachments. We propose that centrosomes are essential in organisms in which rapid segregation of a large number of chromosomes needs to be attained with fidelity.

  7. Somatic cell count and biochemical components of milk related to udder health in buffaloes

    Directory of Open Access Journals (Sweden)

    S.T. Singh

    2010-02-01

    Full Text Available The 399 clinically healthy quarters from 101 Murrah buffaloes were analyzed for somatic cell count (SCC; DCC and microscope methods and biochemical composition of milk in relation to udder health. The udder health revealed specific subclinical mastitis (SSM in 7% and non-specific mastitis (NSM in 49% of quarters. Latent infections comprised 1%. Staphylococci (43%, streptococci (39% and corynebacteria (18% constituted chief etiological agents in SSM. Electrical conductivity increased significantly both in SSM and NSM compared to healthy quarters. Significant effects for SNF and density were seen in SSM only. DCC and microscope depicted similar cell counts with a correlation coefficient of 0.89. The correlations of DCC with CMT and EC were 0.85 and 0.51, respectively. Quarters with negative CMT reactions had DCC values of < 3 × 105 cells/ml. The DCC means for negative, trace, and +1 to 2 CMT scores were 122, 238, and 593 (× 103 cells/ml, respectively. Lactose with discrimination ability of 83.76% was found better indicator of udder inflammation in buffaloes. Buffaloes unlike cows have low numbers of quarter infections, respond similarly as cows to udder inflammation but at different levels, and DCC may be effectively employed for expressing milk cell count in this species.

  8. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore 'Elsa'.

    Science.gov (United States)

    Shen, Hui-Ju; Chen, Jen-Tsung; Chung, Hsiao-Hang; Chang, Wei-Chin

    2018-01-22

    Tolumnia genus (equitant Oncidium) is a group of small orchids with vivid flower color. Thousands of hybrids have been registered on Royal Horticulture Society and showed great potential for ornamental plant market. The aim of this study is to establish an efficient method for in vitro propagation. Leaf explants taken from in vitro-grown plants were used to induce direct somatic embryogenesis on a modified 1/2 MS medium supplemented with five kinds of cytokinins, 2iP, BA, kinetin, TDZ and zeatin at 0.3, 1 and 3 mg l -1 in darkness. TDZ at 3 mg l -1 gave the highest percentage of explants with somatic globular embryos after 90 days of culture. It was found that 2,4-D and light regime highly retarded direct somatic embryogenesis and showed 95-100% of explant browning. Histological observations revealed that the leaf cells divided into meristematic cells firstly, followed by somatic proembryos, and then somatic globular embryos. Eventually, somatic embryos developed a bipolar structure with the shoot apical meristem and the root meristem. Scanning electron microscopy observations showed that the direct somatic embryogenesis from leaf explants was asynchronously. The somatic embryos were found on the leaf tip, the adaxial surface and also the mesophyll through a cleft, and it reflected the heterogeneity of the explant. The 90-day-old globular embryos were detached from the parent explants and transferred onto a hormone-free 1/2 MS medium in light condition for about 1 month to obtain 1-cm-height plantlets. After another 3 months for growth, the plantlets were potted with Sphagnum moss and were acclimatized in a shaded greenhouse. After 1 month of culture, the survival rate was 100%. In this report, a protocol for efficient regenerating a Tolumnia orchid, Louise Elmore 'Elsa', was established via direct somatic embryogenesis and might reveal an alternative approach for mass propagation of Tolumnia genus in orchid industry.

  9. [Somatization disorders of the urogenital tract].

    Science.gov (United States)

    Günthert, E A

    2002-11-01

    Diffuse symptoms in the urogenital region can frequently be explained by somatization disorders. Since they cannot be proven either by laboratory tests or with common technical diagnostic methods, somatization disorders should always be taken into consideration. Somatization disorders are to be considered functional disorders. Since somatization disorders due to muscular tension prevail in the urogenital region, the functional disturbance can be explained by the muscular tension. Subsequently, muscular tension causes the pathophysiological development of symptoms. As a rule they appear as myofascial pain or disorder. Muscular tension can have a psychic origin. The absence of urological findings is typical. Males and females between the ages of 16 and 75 can be affected by somatization disorders in the urogenital region. Somatization disorders due to muscular tension belong to the large group of symptoms due to tension. Diagnostic and therapeutic procedures as well as the pathophysiology of somatization disorders due to muscular tension are illustrated by two detailed case-reports.

  10. Evaluating the Genetic, Hormonal, and Exogenous Factors Affecting Somatic Copy Number Variation in Breast Cancer

    Science.gov (United States)

    2016-10-01

    assess genomic instability in different mammary epithelial populations in vivo and in vitro, 2) determine how mutations in heritable breast cancer genes...respectively, located on chromosome 6. When loci harboring the shRNAs are deleted by a spontaneous mutation event, affected cells become GFP and/or RFP...assay adapted from the yeast genetics literature, we will determine whether baseline deletion rates in normal human mammary epithelial cells (HMECs

  11. In Vitro and In Vivo Hepatic Differentiation of Adult Somatic Stem Cells and Extraembryonic Stem Cells for Treating End Stage Liver Diseases

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2015-01-01

    Full Text Available The shortage of liver donors is a major handicap that prevents most patients from receiving liver transplantation and places them on a waiting list for donated liver tissue. Then, primary hepatocyte transplantation and bioartificial livers have emerged as two alternative treatments for these often fatal diseases. However, another problem has emerged. Functional hepatocytes for liver regeneration are in short supply, and they will dedifferentiate immediately in vitro after they are isolated from liver tissue. Alternative stem-cell-based therapeutic strategies, including hepatic stem cells (HSCs, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and mesenchymal stem cells (MSCs, are more promising, and more attention has been devoted to these approaches because of the high potency and proliferation ability of the cells. This review will focus on the general characteristics and the progress in hepatic differentiation of adult somatic stem cells and extraembryonic stem cells in vitro and in vivo for the treatment of end stage liver diseases. The hepatic differentiation of stem cells would offer an ideal and promising source for cell therapy and tissue engineering for treating liver diseases.

  12. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    OpenAIRE

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Link, Brian K.; Zou, Lihua

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include...

  13. Comparison of Analysis and Quantification of Cell Death in vivo and in vitro

    Science.gov (United States)

    1985-05-01

    mammalian somatic cells appear to have a finite life span that is genetically programmed ( Hayflick , 1977). Following the consummation of this program... limited situations it is possible to evaluate the proliferation kinetics of cell populations in tis- sues by autoradiographically detecting radiolabeled...are, therefore, virtually limited to the analysis of toxicity of directly active chemicals. Primary cultures of target cells retain the ability to

  14. Near Infrared Microspectroscopy, Fluorescence Microspectroscopy, Infrared Chemical Imaging and High Resolution Nuclear Magnetic Resonance Analysis of Soybean Seeds, Somatic Embryos and Single Cells

    CERN Document Server

    Baianu, I C; Hofmann, N E; Korban, S S; Lozano, P; You, T; AOCS 94th Meeting, Kansas

    2002-01-01

    Novel methodologies are currently being developed and established for the chemical analysis of soybean seeds, embryos and single cells by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR) Microspectroscopy, Fluorescence and High-Resolution NMR (HR-NMR). The first FT-NIR chemical images of biological systems approaching one micron resolution are presented here. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos are also presented here with nanoliter precision. Such 400 MHz 1H NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. ~20%) compared to non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monitored by FT-NIR with a precision ...

  15. DNA Methylation at a Bovine Alpha Satellite I Repeat CpG Site during Development following Fertilization and Somatic Cell Nuclear Transfer

    OpenAIRE

    Couldrey, Christine; Wells, David N.

    2013-01-01

    Incomplete epigenetic reprogramming is postulated to contribute to the low developmental success following somatic cell nuclear transfer (SCNT). Here, we describe the epigenetic reprogramming of DNA methylation at an alpha satellite I CpG site (αsatI-5) during development of cattle generated either by artificial insemination (AI) or in vitro fertilization (IVF) and SCNT. Quantitative methylation analysis identified that SCNT donor cells were highly methylated at αsatI-5 and resulting SCNT bla...

  16. Study of the association of atmospheric temperature and relative humidity with bulk tank milk somatic cell count in dairy herds using Generalized additive mixed models.

    Science.gov (United States)

    Testa, Francesco; Marano, Giuseppe; Ambrogi, Federico; Boracchi, Patrizia; Casula, Antonio; Biganzoli, Elia; Moroni, Paolo

    2017-10-01

    Elevated bulk tank milk somatic cell count (BMSCC) has a negative impact on milk production, milk quality, and animal health. Seasonal increases in herd level somatic cell count (SCC) are commonly associated with elevated environmental temperature and humidity. The Temperature Humidity Index (THI) has been developed to measure general environmental stress in dairy cattle; however, additional work is needed to determine a specific effect of the heat stress index on herd-level SCC. Generalized Additive Model methods were used for a flexible exploration of the relationships between daily temperature, relative humidity, and bulk milk somatic cell count. The data consist of BMSCC and meteorological recordings collected between March 2009 and October 2011 of 10 dairy farms. The results indicate that, an average increase of 0.16% of BMSCC is expected for an increase of 1°C degree of temperature. A complex relationship was found for relative humidity. For example, increase of 0.099%, 0.037% and 0.020% are expected in correspondence to an increase of relative humidity from 50% to 51%, 80% to 81%; and 90% to 91%, respectively. Using this model, it will be possible to provide evidence-based advice to dairy farmers for the use of THI control charts created on the basis of our statistical model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Activation of specific cellular immunity toward murine leukemia in mice rejecting syngeneic somatic hybrid cells

    International Nuclear Information System (INIS)

    Liang, W.; Cohen, E.P.

    1977-01-01

    ASL-1 x LM(TK) - somatic hybrid cells form both H-2/sup a/ and H-2/sup k/ antigen complexes. After forming a localized tumor in syngeneic (A/J x C 3 H/HeJ)F 1 mice, they are rejected. Such mice are resistant to otherwise invariably lethal injections of ASL-1 cells, surviving for prolonged and, in some instances, indefinite periods. To examine the basis of immunity, the capacity of spleen cells from mice rejecting hybrid cells to stimulate the release of 51 Cr from labeled ASL-1 cells was investigated. Cells from the spleens of mice rejecting ASL-1 x LM(TK) - cells stimulated the release of 51 Cr from labeled ASL-1 cells, but not from Ehrlich ascites or P815 cells. Cells from mice injected with mitomycin-C-treated ASL-1 cells led to the release of 51 Cr from labeled ASL-1 cells as well, but the extent of 51 Cr release was approximately one-third as occurred in the presence of cells from hybrid cell-injected mice. Cells from noninjected mice or from mice injected with LM(TK) - cells failed to lead to the specific release of 51 Cr from ASL-1 cells. The presence of unlabeled ASL-1 cells, but not Ehrlich ascites cells, competitively inhibited the spleen cell-stimulated release of 51 Cr from labeled ASL-1 cells. Sera from A/J mice injected with mitomycin-C-treated ASL-1 cells contained antibodies specific for the tumor-associated antigen of ASL-1 cells

  18. In vitro development of canine somatic cell nuclear transfer embryos in different culture media.

    Science.gov (United States)

    Kim, Dong-Hoon; No, Jin-Gu; Choi, Mi-Kyung; Yeom, Dong-Hyeon; Kim, Dong-Kyo; Yang, Byoung-Chul; Yoo, Jae Gyu; Kim, Min Kyu; Kim, Hong-Tea

    2015-01-01

    The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.

  19. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  20. Occurrence of mastitis pathogens in relation to somatic cells

    Directory of Open Access Journals (Sweden)

    Marcela Vyletělová Klimešová

    2013-01-01

    Full Text Available There were examined 161 cows from 4 farms in total. The suspect animals were selected according to viscosity test results, clinical symptoms and somatic cell count (SCC. Milk samples were examined for the presence of pathogens and for SCC. 55 mastitis pathogens were identified. The most frequently isolated species was Enterococcus faecalis (n = 20, followed by Staphylococcus aureus (n = 6 and Streptococcus uberis (n = 5. The SCC ranged from 9 to 24 204 ths.ml−1. There was positive occurrence of bacteria genus Staphylococcus and Enterococcus at lower SCC (50 ths.ml−1 and at higher SCC numbers (> 300 ths. ml−1 bacteria genus Streptococcus, Enterobacter and Escherichia coli. Differences in SCC were significant (P < 0.001 in negative samples xg 131 SCC versus 491 for positive, 611 for staphylococci and 464 ths.ml−1 for other positive. SCC discrimination limit for practical likelihood of pathogen occurrence estimation in infectious sample groups was calculated. This limit for suspicion of infection is 159 for positive group, 113 for staphylococci and 174 ths.ml−1 for other positive. This could be possible to recommend the value 174 ths.ml−1 for practical use with target to apply preventive or curative measures.

  1. The influence of selenium and zinc addition in food on concentration of these elements in blood and milk, on somatic cells number and histological characteristics of cows udders

    Directory of Open Access Journals (Sweden)

    Davidov Ivana

    2014-01-01

    Full Text Available The experiment included 30 cows of Holstein-Friesian breed, out of which 15 were receiving selenium and zinc in optimal doses before calving, while the others had never been supplemented with these micronutrients. There was analysed the concentration of selenium and zinc in blood and milk serum as well as the average number of somatic cells in corresponding lactation. After the cows exclusion from production, histological characteristics of cows udders were examined. The results of the investigation have shown that addition of selenium and zinc before calving has a positive effect on the values of these microelements in the blood and milk during the period of early lactation, that is, the concentration of these elements was significantly higher in the blood and milk of the cows that obtained selenium and zinc supplements. Also, in these cows there was significantly lower number of somatic cells during the following lacation period. In the parenchyma of the udder there was found less pronounced infiltration of leukocytes, notably thicker keratin layer of ductus papillaris and less expressed repairing processes that indicate a chronic inflammation of the udder in the samples after exclusion of the cows from production. There was a significant positive correlation between selenium in blood and milk, while there was not observed such a correlation for zinc. On the other hand, there was a significant negative correlation between the concentration of selenium in the blood and milk with the average number of somatic cells and the degree of infiltration of leukocytes, while its influence on the keratin layer of ductus papillarus was not shown. Zinc from blood and udder had a negative correlation with the number of somatic cells, had a positive correlation with the thickness of ductus papillaris keratin layer and had no influence on the level of leukocyte infiltration of udder parenchyma. Zinc demonstrates a positive influence on the formation of ductus

  2. Agrobacterium tumefaciens-mediated genetic transformation of embryogenesis cell suspensions of banana cultivar Grande naine (AAA

    Directory of Open Access Journals (Sweden)

    Idalmis Bermúdez-Caraballoso

    2004-01-01

    Full Text Available The black Sigatoka (Mycosphaerella fijiensis Morelet has become in the last years, the most destructive disease that affects the production of banana and plantains world-wide. The present work was made with the objective to obtain transgenic plants of banana cultivar Grand naine (AAA resistant to this disease with the use of genetic transformation. Embryogenenic cell suspensions obtained from somatic embryos formed from immature male flowers, were used for the transformation by Agrobacterium tumefaciens. The bacterial strain EHA-105 was used with the binary plasmids pHCA-58, pHCG-59 and pHGA-91, which contain different combinations of genes that encode for the antifungal chitinase, glucanase enzymes and the AP-24 osmotin. The commercial herbicide BASTA® was used as selective agent. One hundred ten putative transformed lines of the three constructions were obtained, after three selection months in the culture medium. The transgenic events were verified by means of Polymerase Chain Reaction analysis. Key words: AP-24, chitinase, glucanase, Musa, Mycosphaerella fijiensis

  3. Numerical chromosome errors in day 7 somatic nuclear blastocysts

    DEFF Research Database (Denmark)

    Booth, Paul J; Viuff, Dorthe; Tan, Shijian J

    2003-01-01

    Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona-free manipulat......Day 7 bovine somatic nuclear transfer (NT) embryos reconstructed from granulosa cells were examined for numerical chromosome aberrations as a potential cause of the high embryonic and fetal loss observed in such embryos after transfer. The NT embryos were reconstructed using a zona...... families, consisting of 112 blastocysts reconstructed from five different primary granulosa cell cultures, were examined. Overall, the mean chromosome complement within embryos was 86.9 +/- 3.7% (mean +/- SEM) diploid, 2.6 +/- 0.5% triploid, 10.0 +/- 3.1% tetraploid, and 0.5 +/- 0.2% pentaploid or greater......; the vast majority (>75%) of the abnormal nuclei were tetraploid. Completely diploid and mixoploid embryos represented 22.1 +/- 4.5% and 73.7 +/- 5.5%, respectively, of all clones. Six totally polyploid blastocysts, containing or=5N chromosome complements, respectively) between two clone families were...

  4. Genetic analysis of somatic cell score in Danish dairy cattle using ramdom regression test-day model

    DEFF Research Database (Denmark)

    Elsaid, Reda; Sabry, Ayman; Lund, Mogens Sandø

    2011-01-01

    ,233 Danish Holstein cows, were extracted from the national milk recording database. Each data set was analyzed with random regression models using AI-REML. Fixed effects in all models were age at first calving, herd test day, days carrying calf, effects of germ plasm importation (e.g. additive breed effects......) and low between the beginning and the end of lactation. The estimated environmental correlations were lower than the genetic correlations, but the trends were similar. Based on test-day records, the accuracy of genetic evaluations for SCC should be improved when the variation in heritabilities...

  5. Ionizing radiation and genetic risks

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.; Wassom, J.S.

    2005-01-01

    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G 2 phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G 1 . In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other rearrangements

  6. Ionizing radiation and genetic risks

    Energy Technology Data Exchange (ETDEWEB)

    Sankaranarayanan, K. [Department of Toxicogenetics, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333 AL Leiden (Netherlands)]. E-mail: sankaran@lumc.nl; Wassom, J.S. [YAHSGS, LLC, Richland, WA 99352 (United States); Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830 (United States)

    2005-10-15

    Recent estimates of genetic risks from exposure of human populations to ionizing radiation are those presented in the 2001 report of the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). These estimates incorporate two important concepts, namely, the following: (1) most radiation-induced mutations are DNA deletions, often encompassing multiple genes, but only a small proportion of the induced deletions is compatible with offspring viability; and (2) the viability-compatible deletions induced in germ cells are more likely to manifest themselves as multi-system developmental anomalies rather than as single gene disorders. This paper: (a) pursues these concepts further in the light of knowledge of mechanisms of origin of deletions and other rearrangements from two fields of contemporary research: repair of radiation-induced DNA double-strand breaks (DSBs) in mammalian somatic cells and human molecular genetics; and (b) extends them to deletions induced in the germ cell stages of importance for radiation risk estimation, namely, stem cell spermatogonia in males and oocytes in females. DSB repair studies in somatic cells have elucidated the roles of two mechanistically distinct pathways, namely, homologous recombination repair (HRR) that utilizes extensive sequence homology and non-homologous end-joining (NHEJ) that requires little or no homology at the junctions. A third process, single-strand annealing (SSA), which utilizes short direct repeat sequences, is considered a variant of HRR. HRR is most efficient in late S and G{sub 2} phases of the cell cycle and is a high fidelity mechanism. NHEJ operates in all cell cycle phases, but is especially important in G{sub 1}. In the context of radiation-induced DSBs, NHEJ is error-prone. SSA is also an error-prone mechanism and its role is presumably similar to that of HRR. Studies in human molecular genetics have demonstrated that the occurrence of large deletions, duplications or other

  7. Preimplantation genetic diagnosis guided by single-cell genomics

    Science.gov (United States)

    2013-01-01

    Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD. PMID:23998893

  8. Mediators between bereavement and somatic symptoms

    Directory of Open Access Journals (Sweden)

    Konkolÿ Thege Barna

    2012-06-01

    Full Text Available Abstract Background In our research we examined the frequency of somatic symptoms among bereaved (N = 185 and non-bereaved men and women in a national representative sample (N = 4041 and investigated the possible mediating factors between bereavement status and somatic symptoms. Methods Somatic symptoms were measured by the Patient Health Questionnaire (PHQ-15, anxiety with a four-point anxiety rating scale, and depression with a nine-item shortened version of the Beck Depression Inventory. Results Among the bereaved, somatic symptoms proved to be significantly more frequent in both genders when compared to the non-bereaved, as did anxiety and depression. On the multivariate level, the results show that both anxiety and depression proved to be a mediator between somatic symptoms and bereavement. The effect sizes indicated that for both genders, anxiety was a stronger predictor of somatic symptoms than depression. Conclusions The results of our research indicate that somatic symptoms accompanying bereavement are not direct consequences of this state but they can be traced back to the associated anxiety and depression. These results draw attention to the need to recognize anxiety and depression looming in the background of somatic complaints in bereavement and to the importance of the dissemination of related information.

  9. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment.

    Science.gov (United States)

    Hammami, H; Bormann, J; M'hamdi, N; Montaldo, H H; Gengler, N

    2013-03-01

    This study was aimed to evaluate the degree of thermal stress exhibited by Holsteins under a continental temperate climate. Milk, fat, protein, and somatic cell count test-day records collected between 2000 and 2011 from 23,963 cows in 604 herds were combined with meteorological data from 14 public weather stations in Luxembourg. Daily values of 6 different thermal indices (TI) weighted in term of temperature, relative humidity, solar radiation, and wind speed were calculated by averaging hourly TI over 24h. Heat stress thresholds were first identified by a broken-line regression model. Regression models were thereafter applied to quantify milk production losses due to heat stress. The tipping points at which milk and protein yields declined were effectively identified. For fat yield, no valid threshold was identified for any of the studied TI. Daily fat yields tended to decrease steadily with increasing values of TI. Daily somatic cell score patterns were marked by increased values at both lowest and highest TI ranges, with a more pronounced reaction to cold stress for apparent temperature indices. Thresholds differed between TI and traits. For production traits, they ranged from 62 (TI(1)) to 80 (TI(3)) for temperature-humidity indices (THI) and from 16 (TI(5)) to 20 (TI(6)) for apparent temperature indices. Corresponding somatic cell score thresholds were higher and ranged from 66 (TI(1)) to 82 (TI(3)) and from 20 (TI(5)) to 23 (TI(6)), respectively. The largest milk decline per unit of mild, moderate, and extreme heat stress levels of 0.164, 0.356, and 0.955 kg, respectively, was observed when using the conventional THI (TI(1)). The highest yearly milk, fat, and protein losses of 54, 5.7, and 4.2 kg, respectively, were detected by TI(2), the THI index that is adjusted for wind speed and solar radiation. The latter index could be considered as the best indicator of heat stress to be used for forecast and herd management in a first step in temperate regions under

  10. Production of somatic chimera chicks by injection of bone marrow cells into recipient blastoderms.

    Science.gov (United States)

    Heo, Young Tae; Lee, Sung Ho; Kim, Teoan; Kim, Nam Hyung; Lee, Hoon Taek

    2012-01-01

    Several types of cells, including blastoderm cells, primordial germ cells, and embryonic germ cells were injected into early-stage recipient embryos to produce chimera avians and to gain insights into cell development. However, a limited number of studies of avian adult stem cells have also been conducted. This study is, to the best of our knowledge, the first to evaluate chicken bone marrow cells' (chBMC) ability to differentiate into multiple cell lineages and capability to generate chimera chicks. We induced random differentiation of chBMCs in vitro and injected immunologically selected pluripotent cells in chBMCs into the blastoderms of recipient eggs. The multipotency of BMCs from the barred Plymouth rock (BPR) was confirmed via AP staining, RT-PCR, immunocytochemistry, and FACS using specific markers, such as Oct-4 and SSEA-1, 3 and 4. Isolated chBMCs were found to be able to induce in vitro differentiation to multiple cell lineages. Approximately 5,000 chBMCs were injected into the blastoderms of white leghorn (WL) recipients and proved able to contribute to the generation of somatic chimera chicks with a frequency of 2.7% (2 of 73). Confirmation of chimerism in hatched chicks was achieved via PCR analysis using D-loop-specific primers of BPR and WL. Our study demonstrated the successful production of chimera chicks using chBMC. Therefore, we propose that the use of adult chBMCs may constitute a new possible approach to the production of chimera poultry, and may provide helpful studies in avian developmental biology.

  11. Fanconi anemia: causes and consequences of genetic instability.

    Science.gov (United States)

    Kalb, R; Neveling, K; Nanda, I; Schindler, D; Hoehn, H

    2006-01-01

    Fanconi anemia (FA) is a rare recessive disease that reflects the cellular and phenotypic consequences of genetic instability: growth retardation, congenital malformations, bone marrow failure, high risk of neoplasia, and premature aging. At the cellular level, manifestations of genetic instability include chromosomal breakage, cell cycle disturbance, and increased somatic mutation rates. FA cells are exquisitely sensitive towards oxygen and alkylating drugs such as mitomycin C or diepoxybutane, pointing to a function of FA genes in the defense against reactive oxygen species and other DNA damaging agents. FA is caused by biallelic mutations in at least 12 different genes which appear to function in the maintenance of genomic stability. Eight of the FA proteins form a nuclear core complex with a catalytic function involving ubiquitination of the central FANCD2 protein. The posttranslational modification of FANCD2 promotes its accumulation in nuclear foci, together with known DNA maintenance proteins such as BRCA1, BRCA2, and the RAD51 recombinase. Biallelic mutations in BRCA2 cause a severe FA-like phenotype, as do biallelic mutations in FANCD2. In fact, only leaky or hypomorphic mutations in this central group of FA genes appear to be compatible with life birth and survival. The newly discovered FANCJ (= BRIP1) and FANCM (= Hef ) genes correspond to known DNA-maintenance genes (helicase resp. helicase-associated endonuclease for fork-structured DNA). These genes provide the most convincing evidence to date of a direct involvement of FA genes in DNA repair functions associated with the resolution of DNA crosslinks and stalled replication forks. Even though genetic instability caused by mutational inactivation of the FANC genes has detrimental effects for the majority of FA patients, around 20% of patients appear to benefit from genetic instability since genetic instability also increases the chance of somatic reversion of their constitutional mutations. Intragenic

  12. Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns.

    Science.gov (United States)

    Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R

    2017-10-05

    As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

    Science.gov (United States)

    Lohr, Jens G.; Stojanov, Petar; Lawrence, Michael S.; Auclair, Daniel; Chapuy, Bjoern; Sougnez, Carrie; Cruz-Gordillo, Peter; Knoechel, Birgit; Asmann, Yan W.; Slager, Susan L.; Novak, Anne J.; Dogan, Ahmet; Ansell, Stephen M.; Zou, Lihua; Gould, Joshua; Saksena, Gordon; Stransky, Nicolas; Rangel-Escareño, Claudia; Fernandez-Lopez, Juan Carlos; Hidalgo-Miranda, Alfredo; Melendez-Zajgla, Jorge; Hernández-Lemus, Enrique; Schwarz-Cruz y Celis, Angela; Imaz-Rosshandler, Ivan; Ojesina, Akinyemi I.; Jung, Joonil; Pedamallu, Chandra S.; Lander, Eric S.; Habermann, Thomas M.; Cerhan, James R.; Shipp, Margaret A.; Getz, Gad; Golub, Todd R.

    2012-01-01

    To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease. PMID:22343534

  14. Tobacco arabinogalactan protein NtEPc can promote banana (Musa AAA) somatic embryogenesis.

    Science.gov (United States)

    Shu, H; Xu, L; Li, Z; Li, J; Jin, Z; Chang, S

    2014-12-01

    Banana is an important tropical fruit worldwide. Parthenocarpy and female sterility made it impossible to improve banana varieties through common hybridization. Genetic transformation for banana improvement is imperative. But the low rate that banana embryogenic callus was induced made the transformation cannot be performed in many laboratories. Finding ways to promote banana somatic embryogenesis is critical for banana genetic transformation. After tobacco arabinogalactan protein gene NtEPc was transformed into Escherichia coli (DE3), the recombinant protein was purified and filter-sterilized. A series of the sterilized protein was added into tissue culture medium. It was found that the number of banana immature male flowers developing embryogenic calli increased significantly in the presence of NtEPc protein compared with the effect of the control medium. Among the treatments, explants cultured on medium containing 10 mg/l of NtEPc protein had the highest chance to develop embryogenic calli. The percentage of lines that developed embryogenic calli on this medium was about 12.5 %. These demonstrated that NtEPc protein can be used to promote banana embryogenesis. This is the first paper that reported that foreign arabinogalactan protein (AGP) could be used to improve banana somatic embryogenesis.

  15. Embryonic hybrid cells: a powerful tool for studying pluripotency and reprogramming of the differentiated cell chromosomes

    Directory of Open Access Journals (Sweden)

    SEROV OLEG

    2001-01-01

    Full Text Available The properties of embryonic hybrid cells obtained by fusion of embryonic stem (ES or teratocarcinoma (TC cells with differentiated cells are reviewed. Usually, ES-somatic or TC-somatic hybrids retain pluripotent capacity at high levels quite comparable or nearly identical with those of the pluripotent partner. When cultured in vitro, ES-somatic- and TC-somatic hybrid cell clones, as a rule, lose the chromosomes derived from the somatic partner; however, in some clones the autosomes from the ES cell partner were also eliminated, i.e. the parental chromosomes segregated bilaterally in the ES-somatic cell hybrids. This opens up ways for searching correlation between the pluripotent status of the hybrid cells and chromosome segregation patterns and therefore for identifying the particular chromosomes involved in the maintenance of pluripotency. Use of selective medium allows to isolate in vitro the clones of ES-somatic hybrid cells in which "the pluripotent" chromosome can be replaced by "the somatic" counterpart carrying the selectable gene. Unlike the TC-somatic cell hybrids, the ES-somatic hybrids with a near-diploid complement of chromosomes are able to contribute to various tissues of chimeric animals after injection into the blastocoel cavity. Analysis of the chimeric animals showed that the "somatic" chromosome undergoes reprogramming during development. The prospects for the identification of the chromosomes that are involved in the maintenance of pluripotency and its cis- and trans-regulation in the hybrid cell genome are discussed.

  16. Osteoporosis and Somatization of Anxiety

    Directory of Open Access Journals (Sweden)

    Maria Papanikou

    2013-12-01

    Full Text Available Chronic stress can now be physiologically traced as a significant player in the creation of osteoporotic bones. The present pilot study involved 100 women (N = 42 have been diagnosed with osteopenia, N = 21 have been diagnosed with osteoporosis, N = 37 had a non-osteoporotic condition who participated in the Hellenic Society of Osteoporosis Association Support. Correlations between somatic symptoms of anxiety and osteoporosis, and among medications and somatization in women were explored. Assessments were based on a self-report demographic questionnaire and on the Short Anxiety Screening Test (SAST administered for detection of anxiety disorder and somatization. Statistical analysis detected non-significant differences regarding the correlation between anxiety symptomatology or somatization due to osteoporosis and osteopenia diagnosis. The same pattern is observed among women’s age group, the occupational and marital status. Hypothesis that the osteoporosis and osteopenia group would manifest significant relationships with the age group and medicines was confirmed, as well as between somatization and medicines that women with osteoporosis and osteopenia undertake. The results suggest that women are not prone to manifest anxiety or somatization in relation to the osteoporosis condition. However, the majority of women with osteoporosis and osteopenia consume more than two medicines other than those for osteoporosis. This quantity and combination they undertake appear to contribute and deteriorate their anxiety/somatization symptomatology. Further research based on a larger sample would give more definite results.

  17. Age Is Relative—Impact of Donor Age on Induced Pluripotent Stem Cell-Derived Cell Functionality

    Directory of Open Access Journals (Sweden)

    Elisabeth Tamara Strässler

    2018-01-01

    Full Text Available Induced pluripotent stem cells (iPSCs avoid many of the restrictions that hamper the application of human embryonic stem cells: limited availability of source material due to legal restrictions in some countries, immunogenic rejection and ethical concerns. Also, the donor’s clinical phenotype is often known when working with iPSCs. Therefore, iPSCs seem ideal to tackle the two biggest tasks of regenerative medicine: degenerative diseases with genetic cause (e.g., Duchenne’s muscular dystrophy and organ replacement in age-related diseases (e.g., end-stage heart or renal failure, especially in combination with recently developed gene-editing tools. In the setting of autologous transplantation in elderly patients, donor age becomes a potentially relevant factor that needs to be assessed. Here, we review and critically discuss available data pertinent to the questions: How does donor age influence the reprogramming process and iPSC functionality? Would it even be possible to reprogram senescent somatic cells? How does donor age affect iPSC differentiation into specialised cells and their functionality? We also identify research needs, which might help resolve current unknowns. Until recently, most hallmarks of ageing were attributed to an accumulation of DNA damage over time, and it was thus expected that DNA damage from a somatic cell would accumulate in iPSCs and the cells derived from them. In line with this, a decreased lifespan of cloned organisms compared with the donor was also observed in early cloning experiments. Therefore, it was questioned for a time whether iPSC derived from an old individual’s somatic cells would suffer from early senescence and, thus, may not be a viable option either for disease modelling nor future clinical applications. Instead, typical signs of cellular ageing are reverted in the process of iPSC reprogramming, and iPSCs from older donors do not show diminished differentiation potential nor do i

  18. Genetic diversity and geographical dispersal in grapevine clones revealed by microsatellite markers.

    Science.gov (United States)

    Moncada, Ximena; Pelsy, Frédérique; Merdinoglu, Didier; Hinrichsen, Patricio

    2006-11-01

    Intravarietal genetic diversification associated with geographical dispersal of a vegetatively propagated species was studied using grapevine Vitis vinifera L. 'Cabernet Sauvignon' as a model. Fifty-nine clonal samples obtained from 7 countries (France, Chile, Spain, Australia, Hungary, USA, and Italy) were analyzed using 84 microsatellite markers. Eighteen polymorphic microsatellite loci (21.4%) were detected, finding 22 different genotypes in the population analyzed with a genetic similarity of over 97%. The presence of chimeric clones was evidenced at locus VMC5g7 by means of a segregation analysis of descendants by self-pollination of a triallelic Chilean clone and by somatic embryogenesis analysis, showing a mutation in L2 cell layer. Only 2 clones (obtained from France and Australia) presented the ancestral genotype, and the most divergent genotype was exhibited by another French clone, which had accumulated 5 somatic mutations. The 2 largest populations considered (from France and Chile) showed a clear divergency in the polymorphisms detected. These antecedents enabled the tracing of geographical dispersal with a phylogenetic hypothesis supporting France as the center of origin of diversification of Cabernet Sauvignon. The results obtained could help to explain diversification processes in other grapevine cultivars. The possibility that this kind of genetic variability occurs in other vegetatively propagated species is discussed, focusing on possible fingerprinting applications.

  19. Hemoglobin promotes somatic embryogenesis in peanut cultures.

    Science.gov (United States)

    Jayabalan, N; Anthony, P; Davey, M R; Power, J B; Lowe, K C

    2004-02-01

    Critical parameters influencing somatic embryogenesis include growth regulators and oxygen supply. Consequently, the present investigation has focused on optimization of a somatic embryogenic system for peanut (Arachis hypogaea L.) through media supplementation with the auxin, picloram. The latter at 30 mg L(-1) was optimal for inducing regeneration of somatic embryos from cultured explants of zygotic embryos. In contrast, somatic embryogenesis did not occur in the absence of this growth regulator. An assessment has also been made of the beneficial effect on somatic embryogenesis and plant regeneration of the commercial hemoglobin (Hb) solution, Erythrogen. Hemoglobin at 1:50 and 1:100 (v:v) stimulated increases in mean fresh weight (up to a maximum of 57% over control), mean number of explants producing somatic embryos (15%) and mean number of somatic embryos per explant (29%).

  20. Quercetin decrease somatic cells count in mastitis of dairy cows.

    Science.gov (United States)

    Burmańczuk, Artur; Hola, Piotr; Milczak, Andrzej; Piech, Tomasz; Kowalski, Cezary; Wojciechowska, Beata; Grabowski, Tomasz

    2018-04-01

    Quercetin is a dietary flavonoid which has an effect on inflammation, angiogenesis and vascular inflammation. In several other flavonoids (e.g. kaempferol, astragalin, alpinetin, baicalein, indirubin), anti-inflammatory mechanism was proven by using mice mastitis model. The aim of the current study was pilot analysis of quercetin tolerability and its impact on somatic cells count (SCC) after multiple intramammary treatment on dairy cows with clinical mastitis. Based on SCC and clinical investigation, 9 dairy cows with clinical mastitis of one quarter were selected for the pilot study. Baseline analysis (hematology, TNFα, SCC) was performed every 24h among all cows three days before the first dose (B1-B3). After the baseline monitoring (B1-B3) eight days treatment (D1-D8) was performed with a high and low dose. Selected blood parameters were analyzed. Starting from D1 to D8, a decrease of SCC in relation to baseline was characterized by declining trend. The presented results allowed the confirmation of the significant influence of quercetin on the reduction of SCC in mastitis in dairy cows after 8days of therapy. Copyright © 2018. Published by Elsevier Ltd.