Sample records for solving unconstrained influence

  1. A comparison of two approaches for solving unconstrained influence diagrams

    DEFF Research Database (Denmark)

    Ahlmann-Ohlsen, Kristian S.; Jensen, Finn V.; Nielsen, Thomas Dyhre


    Influence diagrams and decision trees represent the two most common frameworks for specifying and solving decision problems. As modeling languages, both of these frameworks require that the decision analyst specifies all possible sequences of observations and decisions (in influence diagrams, thi...

  2. Anytime decision making based on unconstrained influence diagrams

    DEFF Research Database (Denmark)

    Luque, Manuel; Nielsen, Thomas Dyhre; Jensen, Finn Verner


    . This paper addresses this problem by proposing an anytime algorithm that at any time provides a qualified recommendation for the first decisions of the problem. The algorithm performs a heuristic-based search in a decision tree representation of the problem. We provide a framework for analyzing......Unconstrained influence diagrams extend the language of influence diagrams to cope with decision problems in which the order of the decisions is unspecified. Thus, when solving an unconstrained influence diagram we not only look for an optimal policy for each decision, but also for a so-called step......-policy specifying the next decision given the observations made so far. However, due to the complexity of the problem, temporal constraints can force the decision maker to act before the solution algorithm has finished, and, in particular, before an optimal policy for the first decision has been computed...

  3. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu


    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  4. Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao


    Full Text Available Teaching-Learning-based optimization (TLBO is a recently proposed population based algorithm, which simulates the teaching-learning process of the class room. This algorithm requires only the common control parameters and does not require any algorithm-specific control parameters. In this paper, the effect of elitism on the performance of the TLBO algorithm is investigated while solving unconstrained benchmark problems. The effects of common control parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 76 unconstrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. A statistical test is also performed to investigate the results obtained using different algorithms. The results have proved the effectiveness of the proposed elitist TLBO algorithm.

  5. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao


    Full Text Available The teaching-learning-based optimization (TLBO algorithm is finding a large number of applications in different fields of engineering and science since its introduction in 2011. The major applications are found in electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics, chemistry, biotechnology and economics. This paper presents a review of applications of TLBO algorithm and a tutorial for solving the unconstrained and constrained optimization problems. The tutorial is expected to be useful to the beginners.

  6. Unconstrained Optimization

    DEFF Research Database (Denmark)

    Frandsen, P. E.; Jonasson, K.; Nielsen, Hans Bruun


    This lecture note is intended for use in the course 04212 Optimization and Data Fitting at the Technincal University of Denmark. It covers about 25% of the curriculum. Hopefully, the note may be useful also to interested persons not participating in that course. The aim of the note is to give...... an introduction to algorithms for unconstrained optimization. We present Conjugate Gradient, Damped Newton and Quasi Newton methods together with the relevant theoretical background. The reader is assumed to be familiar with algorithms for solving linear and nonlinear system of equations, at a level corresponding...

  7. A Note on Using Partitioning Techniques for Solving Unconstrained Optimization Problems on Parallel Systems

    Directory of Open Access Journals (Sweden)

    Mehiddin Al-Baali


    Full Text Available We deal with the design of parallel algorithms by using variable partitioning techniques to solve nonlinear optimization problems. We propose an iterative solution method that is very efficient for separable functions, our scope being to discuss its performance for general functions. Experimental results on an illustrative example have suggested some useful modifications that, even though they improve the efficiency of our parallel method, leave some questions open for further investigation.

  8. The Influence of Cognitive Abilities on Mathematical Problem Solving Performance (United States)

    Bahar, Abdulkadir


    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of students. The…

  9. Spontaneous gestures influence strategy choices in problem solving. (United States)

    Alibali, Martha W; Spencer, Robert C; Knox, Lucy; Kita, Sotaro


    Do gestures merely reflect problem-solving processes, or do they play a functional role in problem solving? We hypothesized that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving. Participants in two experiments solved problems requiring the prediction of gear movement, either with gesture allowed or with gesture prohibited. Such problems can be correctly solved using either a perceptual-motor strategy (simulation of gear movements) or an abstract strategy (the parity strategy). Participants in the gesture-allowed condition were more likely to use perceptual-motor strategies than were participants in the gesture-prohibited condition. Gesture promoted use of perceptual-motor strategies both for participants who talked aloud while solving the problems (Experiment 1) and for participants who solved the problems silently (Experiment 2). Thus, spontaneous gestures influence strategy choices in problem solving.

  10. Gender influences on preschool children's social problem-solving strategies. (United States)

    Walker, Sue; Irving, Kym; Berthelsen, Donna


    The authors investigated gender influences on the nature and competency of preschool children's social problem-solving strategies. Preschool-age children (N = 179; 91 boys, 88 girls) responded to hypothetical social situations designed to assess their social problem-solving skills in the areas of provocation, peer group entry, and sharing or taking turns. Results indicated that, overall, girls' responses were more competent (i.e., reflective of successful functioning with peers) than those of boys, and girls' strategies were less likely to involve retaliation or verbal or physical aggression. The competency of the children's responses also varied with the gender of the target child. Findings are discussed in terms of the influence of gender-related social experiences on the types of strategies and behaviors that may be viewed as competent for boys and girls of preschool age.

  11. Unconstrained multiplet in N=2 conformal supergravity

    International Nuclear Information System (INIS)

    Hayashi, Masahito; Uehara, Shozo.


    An unconstrained (general) multiplet was studied in N = 2 conformal supergravity. Transformation law, embedding formula and multiplication rule are explicitly presented at the linearized level. (author)

  12. Number-unconstrained quantum sensing (United States)

    Mitchell, Morgan W.


    Quantum sensing is commonly described as a constrained optimization problem: maximize the information gained about an unknown quantity using a limited number of particles. Important sensors including gravitational wave interferometers and some atomic sensors do not appear to fit this description, because there is no external constraint on particle number. Here, we develop the theory of particle-number-unconstrained quantum sensing, and describe how optimal particle numbers emerge from the competition of particle-environment and particle-particle interactions. We apply the theory to optical probing of an atomic medium modeled as a resonant, saturable absorber, and observe the emergence of well-defined finite optima without external constraints. The results contradict some expectations from number-constrained quantum sensing and show that probing with squeezed beams can give a large sensitivity advantage over classical strategies when each is optimized for particle number.

  13. Sequential unconstrained minimization algorithms for constrained optimization

    International Nuclear Information System (INIS)

    Byrne, Charles


    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  14. An Efficient Algorithm for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Sergio Gerardo de-los-Cobos-Silva


    Full Text Available This paper presents an original and efficient PSO algorithm, which is divided into three phases: (1 stabilization, (2 breadth-first search, and (3 depth-first search. The proposed algorithm, called PSO-3P, was tested with 47 benchmark continuous unconstrained optimization problems, on a total of 82 instances. The numerical results show that the proposed algorithm is able to reach the global optimum. This work mainly focuses on unconstrained optimization problems from 2 to 1,000 variables.

  15. Single Crystals Grown Under Unconstrained Conditions (United States)

    Sunagawa, Ichiro

    Based on detailed investigations on morphology (evolution and variation in external forms), surface microtopography of crystal faces (spirals and etch figures), internal morphology (growth sectors, growth banding and associated impurity partitioning) and perfection (dislocations and other lattice defects) in single crystals, we can deduce how and by what mechanism the crystal grew and experienced fluctuation in growth parameters through its growth and post-growth history under unconstrained condition. The information is useful not only in finding appropriate way to growing highly perfect and homogeneous single crystals, but also in deciphering letters sent from the depth of the Earth and the Space. It is also useful in discriminating synthetic from natural gemstones. In this chapter, available methods to obtain molecular information are briefly summarized, and actual examples to demonstrate the importance of this type of investigations are selected from both natural minerals (diamond, quartz, hematite, corundum, beryl, phlogopite) and synthetic crystals (SiC, diamond, corundum, beryl).

  16. Genetic influences on insight problem solving: the role of catechol-O-methyltransferase (COMT) gene polymorphisms. (United States)

    Jiang, Weili; Shang, Siyuan; Su, Yanjie


    People may experience an "aha" moment, when suddenly realizing a solution of a puzzling problem. This experience is called insight problem solving. Several findings suggest that catecholamine-related genes may contribute to insight problem solving, among which the catechol-O-methyltransferase (COMT) gene is the most promising candidate. The current study examined 753 healthy individuals to determine the associations between 7 candidate single nucleotide polymorphisms on the COMT gene and insight problem-solving performance, while considering gender differences. The results showed that individuals carrying A allele of rs4680 or T allele of rs4633 scored significantly higher on insight problem-solving tasks, and the COMT gene rs5993883 combined with gender interacted with correct solutions of insight problems, specifically showing that this gene only influenced insight problem-solving performance in males. This study presents the first investigation of the genetic impact on insight problem solving and provides evidence that highlights the role that the COMT gene plays in insight problem solving.

  17. Creativity in Unique Problem-Solving in Mathematics and Its Influence on Motivation for Learning (United States)

    Bishara, Saied


    This research study investigates the ability of students to tackle the solving of unique mathematical problems in the domain of numerical series, verbal and formal, and its influence on the motivation of junior high students with learning disabilities in the Arab sector. Two instruments were used to collect the data: mathematical series were…

  18. Unconstrained Finite Element for Geometrical Nonlinear Dynamics of Shells

    Directory of Open Access Journals (Sweden)

    Humberto Breves Coda


    Full Text Available This paper presents a positional FEM formulation to deal with geometrical nonlinear dynamics of shells. The main objective is to develop a new FEM methodology based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors not displacements and rotations. These characteristics are the novelty of the present work and avoid the use of large rotation approximations. A nondimensional auxiliary coordinate system is created, and the change of configuration function is written following two independent mappings from which the strain energy function is derived. This methodology is called positional and, as far as the authors' knowledge goes, is a new procedure to approximated geometrical nonlinear structures. In this paper a proof for the linear and angular momentum conservation property of the Newmark algorithm is provided for total Lagrangian description. The proposed shell element is locking free for elastic stress-strain relations due to the presence of linear strain variation along the shell thickness. The curved, high-order element together with an implicit procedure to solve nonlinear equations guarantees precision in calculations. The momentum conserving, the locking free behavior, and the frame invariance of the adopted mapping are numerically confirmed by examples.

  19. Progression paths in children's problem solving: The influence of dynamic testing, initial variability, and working memory. (United States)

    Resing, Wilma C M; Bakker, Merel; Pronk, Christine M E; Elliott, Julian G


    The current study investigated developmental trajectories of analogical reasoning performance of 104 7- and 8-year-old children. We employed a microgenetic research method and multilevel analysis to examine the influence of several background variables and experimental treatment on the children's developmental trajectories. Our participants were divided into two treatment groups: repeated practice alone and repeated practice with training. Each child received an initial working memory assessment and was subsequently asked to solve figural analogies on each of several sessions. We examined children's analogical problem-solving behavior and their subsequent verbal accounts of their employed solving processes. We also investigated the influence of verbal and visual-spatial working memory capacity and initial variability in strategy use on analogical reasoning development. Results indicated that children in both treatment groups improved but that gains were greater for those who had received training. Training also reduced the influence of children's initial variability in the use of analogical strategies with the degree of improvement in reasoning largely unrelated to working memory capacity. Findings from this study demonstrate the value of a microgenetic research method and the use of multilevel analysis to examine inter- and intra-individual change in problem-solving processes. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Influence of personality, age, sex, and estrous state on chimpanzee problem-solving success

    DEFF Research Database (Denmark)

    Hopper, Lydia M; Price, Sara A; Freeman, Hani D


    Despite the importance of individual problem solvers for group- and individual-level fitness, the correlates of individual problem-solving success are still an open topic of investigation. In addition to demographic factors, such as age or sex, certain personality dimensions have also been revealed...... as reliable correlates of problem-solving by animals. Such correlates, however, have been little-studied in chimpanzees. To empirically test the influence of age, sex, estrous state, and different personality factors on chimpanzee problem-solving, we individually tested 36 captive chimpanzees with two novel...... with the luteinizing hormone surge of a female's estrous cycle) and again when it was detumescent. Although we found no correlation between the chimpanzees' success with either puzzle and their age or sex, the chimpanzees' personality ratings did correlate with responses to the novel foraging puzzles. Specifically...

  1. Global Convergence of a Spectral Conjugate Gradient Method for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Jinkui Liu


    Full Text Available A new nonlinear spectral conjugate descent method for solving unconstrained optimization problems is proposed on the basis of the CD method and the spectral conjugate gradient method. For any line search, the new method satisfies the sufficient descent condition gkTdk<−∥gk∥2. Moreover, we prove that the new method is globally convergent under the strong Wolfe line search. The numerical results show that the new method is more effective for the given test problems from the CUTE test problem library (Bongartz et al., 1995 in contrast to the famous CD method, FR method, and PRP method.

  2. The influence of transformational leadership on organizational creative problem solving capacity

    Directory of Open Access Journals (Sweden)

    Stevanović Ana


    Full Text Available In order to successfully operate and remain in contemporary turbulent marketplace, organizations need to foster their employees' creativity, because it is a prerequisite of organizational innovation. As creativity is a precursor of innovation, and as innovation is an example of creative solutions implementation, there arenumerous situations which require creative behavior of employees and that can be labeled as 'problems'. Therefore, creative problem solving turns out to be relevant in understanding of creativity. The aim of this paper is to offer an answer to the question - how transformational leadership influences the improvement of the capacity for creative problem solving within the organization. On the basis of the relevant literature, but also numerous practical examples of successful companies, we realized that transformational leaders foster a creative attitude of the employees and help them to build capacity for creative problem solving. Also, we realized that many studies have neglected the psychological conditions under which this exchange takes place. As creative problem solving requires extensive and strenuous cognitive processes, we assumed that the role of psychological safety is necessary because employees need to feel free during proposing new creative solutions.

  3. Vector Graph Assisted Pedestrian Dead Reckoning Using an Unconstrained Smartphone

    Directory of Open Access Journals (Sweden)

    Jiuchao Qian


    Full Text Available The paper presents a hybrid indoor positioning solution based on a pedestrian dead reckoning (PDR approach using built-in sensors on a smartphone. To address the challenges of flexible and complex contexts of carrying a phone while walking, a robust step detection algorithm based on motion-awareness has been proposed. Given the fact that step length is influenced by different motion states, an adaptive step length estimation algorithm based on motion recognition is developed. Heading estimation is carried out by an attitude acquisition algorithm, which contains a two-phase filter to mitigate the distortion of magnetic anomalies. In order to estimate the heading for an unconstrained smartphone, principal component analysis (PCA of acceleration is applied to determine the offset between the orientation of smartphone and the actual heading of a pedestrian. Moreover, a particle filter with vector graph assisted particle weighting is introduced to correct the deviation in step length and heading estimation. Extensive field tests, including four contexts of carrying a phone, have been conducted in an office building to verify the performance of the proposed algorithm. Test results show that the proposed algorithm can achieve sub-meter mean error in all contexts.

  4. Gender Recognition from Unconstrained and Articulated Human Body

    Directory of Open Access Journals (Sweden)

    Qin Wu


    human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  5. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle.

    Directory of Open Access Journals (Sweden)

    David L Gibbs


    Full Text Available The Influence Maximization Problem (IMP aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at:

  6. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle (United States)

    Shmulevich, Ilya


    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at: PMID:28628618

  7. Solving the influence maximization problem reveals regulatory organization of the yeast cell cycle. (United States)

    Gibbs, David L; Shmulevich, Ilya


    The Influence Maximization Problem (IMP) aims to discover the set of nodes with the greatest influence on network dynamics. The problem has previously been applied in epidemiology and social network analysis. Here, we demonstrate the application to cell cycle regulatory network analysis for Saccharomyces cerevisiae. Fundamentally, gene regulation is linked to the flow of information. Therefore, our implementation of the IMP was framed as an information theoretic problem using network diffusion. Utilizing more than 26,000 regulatory edges from YeastMine, gene expression dynamics were encoded as edge weights using time lagged transfer entropy, a method for quantifying information transfer between variables. By picking a set of source nodes, a diffusion process covers a portion of the network. The size of the network cover relates to the influence of the source nodes. The set of nodes that maximizes influence is the solution to the IMP. By solving the IMP over different numbers of source nodes, an influence ranking on genes was produced. The influence ranking was compared to other metrics of network centrality. Although the top genes from each centrality ranking contained well-known cell cycle regulators, there was little agreement and no clear winner. However, it was found that influential genes tend to directly regulate or sit upstream of genes ranked by other centrality measures. The influential nodes act as critical sources of information flow, potentially having a large impact on the state of the network. Biological events that affect influential nodes and thereby affect information flow could have a strong effect on network dynamics, potentially leading to disease. Code and data can be found at:


    NARCIS (Netherlands)

    Marti, U-V.; Bunke, H.


    In this paper we present a number of language models and their behavior in the recognition of unconstrained handwritten English sentences. We use the perplexity to compare the different models and their prediction power, and relate it to the performance of a recognition system under different

  9. New preconditioned conjugate gradient algorithms for nonlinear unconstrained optimization problems

    International Nuclear Information System (INIS)

    Al-Bayati, A.; Al-Asadi, N.


    This paper presents two new predilection conjugate gradient algorithms for nonlinear unconstrained optimization problems and examines their computational performance. Computational experience shows that the new proposed algorithms generally imp lone the efficiency of Nazareth's [13] preconditioned conjugate gradient algorithm. (authors). 16 refs., 1 tab

  10. Gender Recognition from Unconstrained and Articulated Human Body (United States)

    Wu, Qin; Guo, Guodong


    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition. PMID:24977203

  11. Gender recognition from unconstrained and articulated human body. (United States)

    Wu, Qin; Guo, Guodong


    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, how many body parts are needed to combine together, and what representations are good for articulated body-based gender recognition, is also presented. This paper also pursues data fusion schemes and efficient feature dimensionality reduction based on the partial least squares estimation. Extensive experiments are performed on two unconstrained databases which have not been explored before for gender recognition.

  12. Gender Recognition from Unconstrained and Articulated Human Body


    Wu, Qin; Guo, Guodong


    Gender recognition has many useful applications, ranging from business intelligence to image search and social activity analysis. Traditional research on gender recognition focuses on face images in a constrained environment. This paper proposes a method for gender recognition in articulated human body images acquired from an unconstrained environment in the real world. A systematic study of some critical issues in body-based gender recognition, such as which body parts are informative, ho...

  13. Several Guaranteed Descent Conjugate Gradient Methods for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    San-Yang Liu


    Full Text Available This paper investigates a general form of guaranteed descent conjugate gradient methods which satisfies the descent condition gkTdk≤-1-1/4θkgk2  θk>1/4 and which is strongly convergent whenever the weak Wolfe line search is fulfilled. Moreover, we present several specific guaranteed descent conjugate gradient methods and give their numerical results for large-scale unconstrained optimization.

  14. A Spectral Conjugate Gradient Method for Unconstrained Optimization

    International Nuclear Information System (INIS)

    Birgin, E. G.; Martinez, J. M.


    A family of scaled conjugate gradient algorithms for large-scale unconstrained minimization is defined. The Perry, the Polak-Ribiere and the Fletcher-Reeves formulae are compared using a spectral scaling derived from Raydan's spectral gradient optimization method. The best combination of formula, scaling and initial choice of step-length is compared against well known algorithms using a classical set of problems. An additional comparison involving an ill-conditioned estimation problem in Optics is presented

  15. The coordination of problem solving strategies: when low competence sources exert more influence on task processing than high competence sources. (United States)

    Quiamzade, Alain; Mugny, Gabriel; Darnon, Céline


    Previous research has shown that low competence sources, compared to highly competent sources, can exert influence in aptitudes tasks in as much as they induce people to focus on the task and to solve it more deeply. Two experiments aimed at testing the coordination between self and source's problem solving strategies as a main explanation of such a difference in influence. The influence of a low versus high competence source has been examined in an anagram task that allows for distinguishing between three response strategies, including one that corresponds to the coordination between the source's strategy and participants' own strategy. In Study 1 the strategy suggested by the source was either relevant and useful or irrelevant and useless for solving the task. Results indicated that participants used the coordination strategy in a larger extend when they had been confronted to a low competence rather than a highly competent source but only when the source displayed a strategy that was useful to solve the task. In Study 2 the source's strategy was always relevant and useful, but a decentring procedure was introduced for half of the participants. This procedure induced participants to consider other points of view than their own. Results replicated the difference observed in Study 1 when no decentring was introduced. The difference however disappeared when decentring was induced, because of an increase of the high competence source's influence. These results highlight coordination of strategies as one mechanism underlying influence from low competence sources.

  16. The influence of mechatronic learning systems on creative problem solving of pupils participating in technology class A pilot study

    Directory of Open Access Journals (Sweden)

    Kai-Christian Tönnsen


    Full Text Available Without being creative and finding solutions for various problems of life mankind wouldn’t be what it is today. Problem solving always has been a key ability for development, in the past, the present and it will also be a key for the future. Creative problem solving is one of the most important ways of technical thinking and acting. Therefore, the ability of finding solutions for problems and realizing them is a primary goal for technological education, especially if it is part of a comprehensive school education. It can be assumed that the available resources affect the possibilities and the result of problem solving processes. In terms of technology classes there are numerous resources that aim for the development of pupils’ creative problem solving skills like for instance mechatronic educational environments (MEEs. Unfortunately there is currently no test instrument for rating the influence of these MEEs on the outcome in terms of creative technical problem solving processes. Therefore, we designed a trial for such purpose and tested it in a pilot study: 33 students (9th grade, average age of 15.24 years of comprehensive schools were given a problem, which had to be solved using three different MEEs. Solutions found by the students have been documented and analyzed to identify system characteristics which enhance or inhibit the creative outcome.Key words: Creative problem solving, technology education, mechatronic educational environments, Festo MecLab, Fischertechnik RoboTX, Lego Mindstorms EV3

  17. Unconstrained Iris Acquisition and Recognition Using COTS PTZ Camera

    Directory of Open Access Journals (Sweden)

    Venugopalan Shreyas


    Full Text Available Abstract Uniqueness of iris patterns among individuals has resulted in the ubiquity of iris recognition systems in virtual and physical spaces, at high security facilities around the globe. Traditional methods of acquiring iris patterns in commercial systems scan the iris when an individual is at a predetermined location in front of the scanner. Most state-of-the-art techniques for unconstrained iris acquisition in literature use expensive custom equipment and are composed of a multicamera setup, which is bulky, expensive, and requires calibration. This paper investigates a method of unconstrained iris acquisition and recognition using a single commercial off-the-shelf (COTS pan-tilt-zoom (PTZ camera, that is compact and that reduces the cost of the final system, compared to other proposed hierarchical multicomponent systems. We employ state-of-the-art techniques for face detection and a robust eye detection scheme using active shape models for accurate landmark localization. Additionally, our system alleviates the need for any calibration stage prior to its use. We present results using a database of iris images captured using our system, while operating in an unconstrained acquisition mode at 1.5 m standoff, yielding an iris diameter in the 150–200 pixels range.

  18. The Strengthening Families Program 10-14: influence on parent and youth problem-solving skill. (United States)

    Semeniuk, Y; Brown, R L; Riesch, S K; Zywicki, M; Hopper, J; Henriques, J B


    The aim of this paper is to report the results of a preliminary examination of the efficacy of the Strengthening Families Program (SFP) 10-14 in improving parent and youth problem-solving skill. The Hypotheses in this paper include: (1) youth and parents who participated in SFP would have lower mean scores immediately (T2) and 6 months (T3) post intervention on indicators of hostile and negative problem-solving strategies; (2) higher mean scores on positive problem-solving strategies; and (3) youth who participated in SFP would have higher mean scores at T2 and at T3 on indicators of individual problem solving and problem-solving efficacy than youth in the comparison group. The dyads were recruited from elementary schools that had been stratified for race and assigned randomly to intervention or comparison conditions. Mean age of youth was 11 years (SD = 1.04). Fifty-seven dyads (34-intervention&23-control) were videotaped discussing a frequently occurring problem. The videotapes were analysed using the Iowa Family Interaction Rating Scale (IFIRS) and data were analysed using Dyadic Assessment Intervention Model. Most mean scores on the IFIRS did not change. One score changed as predicted: youth hostility decreased at T3. Two scores changed contrary to prediction: parent hostility increased T3 and parent positive problem solving decreased at T2. SFP demonstrated questionable efficacy for problem-solving skill in this study.

  19. Parallel Quasi Newton Algorithms for Large Scale Non Linear Unconstrained Optimization

    International Nuclear Information System (INIS)

    Rahman, M. A.; Basarudin, T.


    This paper discusses about Quasi Newton (QN) method to solve non-linear unconstrained minimization problems. One of many important of QN method is choice of matrix Hk. to be positive definite and satisfies to QN method. Our interest here is the parallel QN methods which will suite for the solution of large-scale optimization problems. The QN methods became less attractive in large-scale problems because of the storage and computational requirements. How ever, it is often the case that the Hessian is space matrix. In this paper we include the mechanism of how to reduce the Hessian update and hold the Hessian properties.One major reason of our research is that the QN method may be good in solving certain type of minimization problems, but it is efficiency degenerate when is it applied to solve other category of problems. For this reason, we use an algorithm containing several direction strategies which are processed in parallel. We shall attempt to parallelized algorithm by exploring different search directions which are generated by various QN update during the minimization process. The different line search strategies will be employed simultaneously in the process of locating the minimum along each direction.The code of algorithm will be written in Occam language 2 which is run on the transputer machine

  20. Factors Influencing Problem-Solving in Middle-Aged and Elderly Adults (United States)

    Kesler, Mary S.; And Others


    Groups of middle-aged and elderly men and women were compared on three problem solving tasks, including written problems, the 20-questions procedure, and problems administered on a Heuristic Evaluation Problem Programmer. (MS)

  1. How illustrations influence performance and eye movement behaviour when solving problems in vector calculus

    DEFF Research Database (Denmark)

    Ögren, Magnus; Nyström, Marcus


    Mathematical formulas in vector calculus often have direct visual representations, which in form of illustrations are used extensively during teaching and when assessing students’ levels of understanding. However, there is very little, if any, empirical evidence of how the illustrations...... are utilized during problem solving and whether they are beneficial to comprehension. In this paper we collect eye movements and performance scores (true or false answers) from students while solving eight problems in vector calculus; 20 students solve illustrated problems whereas 16 students solve the same...... problems, but without the illustrations. Results show no overall performance benefit for illustrated problems even though they are clearly visually attended. Surprisingly, we found a significant effect of whether the answer to the problem was true of false; students were more likely to answer...

  2. Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation

    International Nuclear Information System (INIS)

    Chacón, M; Nuñez, N; Henríquez, C; Panerai, R B


    Measurement of dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow (CBF) to changes in arterial blood pressure (ABP), has been performed with an index of autoregulation (ARI), related to the parameters of a second-order differential equation model, namely gain (K), damping factor (D) and time constant (T). Limitations of the ARI were addressed by increasing its numerical resolution and generalizing the parameter space. In 16 healthy subjects, recordings of ABP (Finapres) and CBF velocity (ultrasound Doppler) were performed at rest, before, during and after 5% CO 2 breathing, and for six repeated thigh cuff maneuvers. The unconstrained model produced lower predictive error (p < 0.001) than the original model. Unconstrained parameters (K'–D'–T') were significantly different from K–D–T but were still sensitive to different measurement conditions, such as the under-regulation induced by hypercapnia. The intra-subject variability of K' was significantly lower than that of the ARI and this parameter did not show the unexpected occurrences of zero values as observed with the ARI and the classical value of K. These results suggest that K' could be considered as a more stable and reliable index of dynamic autoregulation than ARI. Further studies are needed to validate this new index under different clinical conditions

  3. Gender Influences on Parent-Child Science Problem-Solving Behaviors (United States)

    Short-Meyerson, Katherine; Sandrin, Susannah; Edwards, Chris


    Gender is a critical social factor influencing how children view the world from very early childhood. Additionally, during the early elementary years, parents can have a significant influence on their child's behaviors and dispositions in fields such as science. This study examined the influence of parent gender and child gender on 2nd- and…

  4. Spherical symmetry as a test case for unconstrained hyperboloidal evolution

    International Nuclear Information System (INIS)

    Vañó-Viñuales, Alex; Husa, Sascha; Hilditch, David


    We consider the hyperboloidal initial value problem for the Einstein equations in numerical relativity, motivated by the goal to evolve radiating compact objects such as black hole binaries with a numerical grid that includes null infinity. Unconstrained evolution schemes promise optimal efficiency, but are difficult to regularize at null infinity, where the compactified Einstein equations are formally singular. In this work we treat the spherically symmetric case, which already poses nontrivial problems and constitutes an important first step. We have carried out stable numerical evolutions with the generalized BSSN and Z4 equations coupled to a scalar field. The crucial ingredients have been to find an appropriate evolution equation for the lapse function and to adapt constraint damping terms to handle null infinity. (paper)

  5. Parallel algorithms for unconstrained optimization by multisplitting with inexact subspace search - the abstract

    Energy Technology Data Exchange (ETDEWEB)

    Renaut, R.; He, Q. [Arizona State Univ., Tempe, AZ (United States)


    In a new parallel iterative algorithm for unconstrained optimization by multisplitting is proposed. In this algorithm the original problem is split into a set of small optimization subproblems which are solved using well known sequential algorithms. These algorithms are iterative in nature, e.g. DFP variable metric method. Here the authors use sequential algorithms based on an inexact subspace search, which is an extension to the usual idea of an inexact fine search. Essentially the idea of the inexact line search for nonlinear minimization is that at each iteration the authors only find an approximate minimum in the line search direction. Hence by inexact subspace search, they mean that, instead of finding the minimum of the subproblem at each interation, they do an incomplete down hill search to give an approximate minimum. Some convergence and numerical results for this algorithm will be presented. Further, the original theory will be generalized to the situation with a singular Hessian. Applications for nonlinear least squares problems will be presented. Experimental results will be presented for implementations on an Intel iPSC/860 Hypercube with 64 nodes as well as on the Intel Paragon.

  6. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid


    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the \\\\textit{lattice decoder}. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.

  7. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid


    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.

  8. Recognition of Faces in Unconstrained Environments: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Javier Ruiz-del-Solar


    Full Text Available The aim of this work is to carry out a comparative study of face recognition methods that are suitable to work in unconstrained environments. The analyzed methods are selected by considering their performance in former comparative studies, in addition to be real-time, to require just one image per person, and to be fully online. In the study two local-matching methods, histograms of LBP features and Gabor Jet descriptors, one holistic method, generalized PCA, and two image-matching methods, SIFT-based and ERCF-based, are analyzed. The methods are compared using the FERET, LFW, UCHFaceHRI, and FRGC databases, which allows evaluating them in real-world conditions that include variations in scale, pose, lighting, focus, resolution, facial expression, accessories, makeup, occlusions, background and photographic quality. Main conclusions of this study are: there is a large dependence of the methods on the amount of face and background information that is included in the face's images, and the performance of all methods decreases largely with outdoor-illumination. The analyzed methods are robust to inaccurate alignment, face occlusions, and variations in expressions, to a large degree. LBP-based methods are an excellent election if we need real-time operation as well as high recognition rates.

  9. Flow and fracture in water-saturated, unconstrained granular beds

    Directory of Open Access Journals (Sweden)

    Germán eVaras


    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  10. On Lattice Sequential Decoding for The Unconstrained AWGN Channel

    KAUST Repository

    Abediseid, Walid; Alouini, Mohamed-Slim


    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter --- the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity.

  11. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle (United States)

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.


    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  12. A numerical method for solving singular De`s

    Energy Technology Data Exchange (ETDEWEB)

    Mahaver, W.T.


    A numerical method is developed for solving singular differential equations using steepest descent based on weighted Sobolev gradients. The method is demonstrated on a variety of first and second order problems, including linear constrained, unconstrained, and partially constrained first order problems, a nonlinear first order problem with irregular singularity, and two second order variational problems.

  13. Unconstrained snoring detection using a smartphone during ordinary sleep. (United States)

    Shin, Hangsik; Cho, Jaegeol


    Snoring can be a representative symptom of a sleep disorder, and thus snoring detection is quite important to improving the quality of an individual's daily life. The purpose of this research is to develop an unconstrained snoring detection technique that can be integrated into a smartphone application. In contrast with previous studies, we developed a practical technique for snoring detection during ordinary sleep by using the built-in sound recording system of a smartphone, and the recording was carried out in a standard private bedroom. The experimental protocol was designed to include a variety of actions that frequently produce noise (including coughing, playing music, talking, rining an alarm, opening/closing doors, running a fan, playing the radio, and walking) in order to accurately recreate the actual circumstances during sleep. The sound data were recorded for 10 individuals during actual sleep. In total, 44 snoring data sets and 75 noise datasets were acquired. The algorithm uses formant analysis to examine sound features according to the frequency and magnitude. Then, a quadratic classifier is used to distinguish snoring from non-snoring noises. Ten-fold cross validation was used to evaluate the developed snoring detection methods, and validation was repeated 100 times randomly to improve statistical effectiveness. The overall results showed that the proposed method is competitive with those from previous research. The proposed method presented 95.07% accuracy, 98.58% sensitivity, 94.62% specificity, and 70.38% positive predictivity. Though there was a relatively high false positive rate, the results show the possibility for ubiquitous personal snoring detection through a smartphone application that takes into account data from normally occurring noises without training using preexisting data.

  14. The Influence of Game Design on the Collaborative Problem Solving Process: A Cross-Case Study of Multi-Player Collaborative Gameplay Analysis (United States)

    Yildirim, Nilay


    This cross-case study examines the relationships between game design attributes and collaborative problem solving process in the context of multi-player video games. The following game design attributes: sensory stimuli elements, level of challenge, and presentation of game goals and rules were examined to determine their influence on game…

  15. The Influence of Self-Efficacy Beliefs and Metacognitive Prompting on Genetics Problem Solving Ability among High School Students in Kenya (United States)

    Aurah, Catherine Muhonja

    Within the framework of social cognitive theory, the influence of self-efficacy beliefs and metacognitive prompting on genetics problem solving ability among high school students in Kenya was examined through a mixed methods research design. A quasi-experimental study, supplemented by focus group interviews, was conducted to investigate both the outcomes and the processes of students' genetics problem-solving ability. Focus group interviews substantiated and supported findings from the quantitative instruments. The study was conducted in 17 high schools in Western Province, Kenya. A total of 2,138 high school students were purposively sampled. A sub-sample of 48 students participated in focus group interviews to understand their perspectives and experiences during the study so as to corroborate the quantitative data. Quantitative data were analyzed through descriptive statistics, zero-order correlations, 2 x 2 factorial ANOVA,, and sequential hierarchical multiple regressions. Qualitative data were transcribed, coded, and reported thematically. Results revealed metacognitive prompts had significant positive effects on student problem-solving ability independent of gender. Self-efficacy and metacognitive prompting significantly predicted genetics problem-solving ability. Gender differences were revealed, with girls outperforming boys on the genetics problem-solving test. Furthermore, self-efficacy moderated the relationship between metacognitive prompting and genetics problem-solving ability. This study established a foundation for instructional methods for biology teachers and recommendations are made for implementing metacognitive prompting in a problem-based learning environment in high schools and science teacher education programs in Kenya.

  16. Approximating a wavefunction as an unconstrained sum of Slater determinants

    International Nuclear Information System (INIS)

    Beylkin, Gregory; Perez, Fernando; Mohlenkamp, Martin J.


    The wavefunction for the multiparticle Schroedinger equation is a function of many variables and satisfies an antisymmetry condition, so it is natural to approximate it as a sum of Slater determinants. Many current methods do so, but they impose additional structural constraints on the determinants, such as orthogonality between orbitals or an excitation pattern. We present a method without any such constraints, by which we hope to obtain much more efficient expansions and insight into the inherent structure of the wavefunction. We use an integral formulation of the problem, a Green's function iteration, and a fitting procedure based on the computational paradigm of separated representations. The core procedure is the construction and solution of a matrix-integral system derived from antisymmetric inner products involving the potential operators. We show how to construct and solve this system with computational complexity competitive with current methods

  17. A Modified Limited-Memory BNS Method for Unconstrained Minimization Based on the Conjugate Directions Idea

    Czech Academy of Sciences Publication Activity Database

    Vlček, Jan; Lukšan, Ladislav


    Roč. 30, č. 3 (2015), s. 616-633 ISSN 1055-6788 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : unconstrained minimization * variable metric methods * limited-memory methods * the BFGS update * conjugate directions * numerical results Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015

  18. Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators (United States)

    Weissman, Alexander


    Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…

  19. A Note on the Dual of an Unconstrained (Generalized) Geometric Programming Problem

    NARCIS (Netherlands)

    J.B.G. Frenk (Hans); G.J. Still


    textabstractIn this note we show that the strong duality theorem of an unconstrained (generalized) geometric programming problem as defined by Peterson (cf.[1]) is actually a special case of a Lagrangian duality result. Contrary to [1] we also consider the case that the set C is compact and

  20. Learning-based encoding with soft assignment for age estimation under unconstrained imaging conditions

    NARCIS (Netherlands)

    Alnajar, F.; Shan, C.; Gevers, T.; Geusebroek, J.M.


    In this paper we propose to adopt a learning-based encoding method for age estimation under unconstrained imaging conditions. A similar approach [Cao et al., 2010] is applied to face recognition in real-life face images. However, the feature vectors are encoded in hard manner i.e. each feature

  1. 4D Unconstrained Real-time Face Recognition Using a Commodity Depthh Camera

    NARCIS (Netherlands)

    Schimbinschi, Florin; Wiering, Marco; Mohan, R.E.; Sheba, J.K.


    Robust unconstrained real-time face recognition still remains a challenge today. The recent addition to the market of lightweight commodity depth sensors brings new possibilities for human-machine interaction and therefore face recognition. This article accompanies the reader through a succinct

  2. Single-Camera-Based Method for Step Length Symmetry Measurement in Unconstrained Elderly Home Monitoring. (United States)

    Cai, Xi; Han, Guang; Song, Xin; Wang, Jinkuan


    single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring. To build unconstrained monitoring environments, we propose a method to measure step length symmetry ratio (a useful gait parameter representing gait symmetry without significant relationship with age) from unconstrained straight walking using a single camera, without strict restrictions on walking directions or routes. according to projective geometry theory, we first develop a calculation formula of step length ratio for the case of unconstrained straight-line walking. Then, to adapt to general cases, we propose to modify noncollinear footprints, and accordingly provide general procedure for step length ratio extraction from unconstrained straight walking. Our method achieves a mean absolute percentage error (MAPE) of 1.9547% for 15 subjects' normal and abnormal side-view gaits, and also obtains satisfactory MAPEs for non-side-view gaits (2.4026% for 45°-view gaits and 3.9721% for 30°-view gaits). The performance is much better than a well-established monocular gait measurement system suitable only for side-view gaits with a MAPE of 3.5538%. Independently of walking directions, our method can accurately estimate step length ratios from unconstrained straight walking. This demonstrates our method is applicable for elders' daily gait monitoring to provide valuable information for elderly health care, such as abnormal gait recognition, fall risk assessment, etc. single-camera-based gait monitoring is unobtrusive, inexpensive, and easy-to-use to monitor daily gait of seniors in their homes. However, most studies require subjects to walk perpendicularly to camera's optical axis or along some specified routes, which limits its application in elderly home monitoring

  3. Investigating the Influences of a LEAPS Model on Preservice Teachers' Problem Solving, Metacognition, and Motivation in an Educational Technology Course (United States)

    Lubin, Ian A.; Ge, Xun


    This paper discusses a qualitative study which examined students' problem-solving, metacognition, and motivation in a learning environment designed for teaching educational technology to pre-service teachers. The researchers converted a linear and didactic learning environment into a new open learning environment by contextualizing domain-related…

  4. Influence of Family Processes, Motivation, and Beliefs about Intelligence on Creative Problem Solving of Scientifically Talented Individuals (United States)

    Cho, Seokhee; Lin, Chia-Yi


    Predictive relationships among perceived family processes, intrinsic and extrinsic motivation, incremental beliefs about intelligence, confidence in intelligence, and creative problem-solving practices in mathematics and science were examined. Participants were 733 scientifically talented Korean students in fourth through twelfth grades as well as…

  5. Exploring Factors of a Web-Based Seminar that Influence Hispanic Preservice Teachers' Critical Thinking and Problem-Solving Skills (United States)

    Garcia, Criselda G.; Hooper, H. H., Jr.


    The purpose of the qualitative study using a phenomenological approach was to gain insight of preservice teachers' experiences with a WebCT seminar designed to develop critical thinking and problem-solving skills in a Hispanic-Serving Institution's teacher education program. By applying a "holistic approach" to analyze data, NVivo software was…

  6. Generalization of unconstrained reaching with hand-weight changes. (United States)

    Yan, Xiang; Wang, Qining; Lu, Zhengchuan; Stevenson, Ian H; Körding, Konrad; Wei, Kunlin


    Studies of motor generalization usually perturb hand reaches by distorting visual feedback with virtual reality or by applying forces with a robotic manipulandum. Whereas such perturbations are useful for studying how the central nervous system adapts and generalizes to novel dynamics, they are rarely encountered in daily life. The most common perturbations that we experience are changes in the weights of objects that we hold. Here, we use a center-out, free-reaching task, in which we can manipulate the weight of a participant's hand to examine adaptation and generalization following naturalistic perturbations. In both trial-by-trial paradigms and block-based paradigms, we find that learning converges rapidly (on a timescale of approximately two trials), and this learning generalizes mostly to movements in nearby directions with a unimodal pattern. However, contrary to studies using more artificial perturbations, we find that the generalization has a strong global component. Furthermore, the generalization is enhanced with repeated exposure of the same perturbation. These results suggest that the familiarity of a perturbation is a major factor in movement generalization and that several theories of the neural control of movement, based on perturbations applied by robots or in virtual reality, may need to be extended by incorporating prior influence that is characterized by the familiarity of the perturbation.

  7. TabletGaze: Unconstrained Appearance-based Gaze Estimation in Mobile Tablets


    Huang, Qiong; Veeraraghavan, Ashok; Sabharwal, Ashutosh


    We study gaze estimation on tablets, our key design goal is uncalibrated gaze estimation using the front-facing camera during natural use of tablets, where the posture and method of holding the tablet is not constrained. We collected the first large unconstrained gaze dataset of tablet users, labeled Rice TabletGaze dataset. The dataset consists of 51 subjects, each with 4 different postures and 35 gaze locations. Subjects vary in race, gender and in their need for prescription glasses, all o...

  8. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm (United States)

    Pasik, Tomasz; van der Meij, Raymond


    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  9. Male foraging efficiency, but not male problem-solving performance, influences female mating preferences in zebra finches

    Directory of Open Access Journals (Sweden)

    Véronique Chantal


    Full Text Available Experimental evidence suggests that females would prefer males with better cognitive abilities as mates. However, little is known about the traits reflecting enhanced cognitive skills on which females might base their mate-choice decisions. In particular, it has been suggested that male foraging performance could be used as an indicator of cognitive capacity, but convincing evidence for this hypothesis is still lacking. In the present study, we investigated whether female zebra finches (Taeniopygia guttata modify their mating preferences after having observed the performance of males on a problem-solving task. Specifically, we measured the females’ preferences between two males once before and once after an observation period, during which their initially preferred male was incapable of solving the task contrary to their initially less-preferred male. We also conducted a control treatment to test whether the shift in female preferences was attributable to differences between the two stimulus males in their foraging efficiency. Finally, we assessed each bird’s performance in a color associative task to check whether females can discriminate among males based on their learning speed. We found that females significantly increased their preference toward the most efficient male in both treatments. Yet, there was no difference between the two treatments and we found no evidence that females assess male cognitive ability indirectly via morphological traits. Thus, our results suggest that females would not use the males’ problem-solving performance as an indicator of general cognitive ability to gain indirect fitness benefits (i.e., good genes but rather to assess their foraging efficiency and gain direct benefits.

  10. Learning style preferences and their influence on students' problem solving in kinematics observed by eye-tracking method (United States)

    Kekule, Martina


    The article presents eye-tracking method and its using for observing students when they solve problems from kinematics. Particularly, multiple-choice items in TUG-K test by Robert Beichner. Moreover, student's preference for visual way of learning as a possible influential aspect is proofed and discussed. Learning Style Inventory by Dunn, Dunn&Price was administered to students in order to find out their preferences. More than 20 high school and college students about 20 years old took part in the research. Preferred visual way of learning in contrast to the other ways of learning (audio, tactile, kinesthetic) shows very slight correlation with the total score of the test, none correlation with the average fixation duration and slight correlation with average fixation count on a task and average total visit duration on a task.

  11. How Culture Influences Teacher Self-Reflective Problem Solving Behavior and Self-Efficacy: Experiences of White Female Teachers Working through Relationship with Black Students in a Mid-Western American City (United States)

    Tolson, Bonnie Lynn


    Teachers make a difference. White female middle-class teachers represent 84 percent of Americas' teachers. How does culture influence the self-reflective problem-solving behaviors of urban teachers? Urban schools fail youth by opening the doors for a mass exodus. The problem solving behavior of urban teachers may contribute to the student exodus…

  12. The influence of contextual teaching with the problem solving method on students' knowledge and attitudes toward horticulture, science, and school (United States)

    Whitcher, Carrie Lynn


    Adolescence is marked with many changes in the development of higher order thinking skills. As students enter high school they are expected to utilize these skills to solve problems, become abstract thinkers, and contribute to society. The goal of this study was to assess horticultural science knowledge achievement and attitude toward horticulture, science, and school in high school agriculture students. There were approximately 240 high school students in the sample including both experimental and control groups from California and Washington. Students in the experimental group participated in an educational program called "Hands-On Hortscience" which emphasized problem solving in investigation and experimentation activities with greenhouse plants, soilless media, and fertilizers. Students in the control group were taught by the subject matter method. The activities included in the Hands-On Hortscience curriculum were created to reinforce teaching the scientific method through the context of horticulture. The objectives included evaluating whether the students participating in the Hands-On Hortscience experimental group benefited in the areas of science literacy, data acquisition and analysis, and attitude toward horticulture, science, and school. Pre-tests were administered in both the experimental and control groups prior to the research activities and post-tests were administered after completion. The survey questionnaire included a biographical section and attitude survey. Significant increases in hortscience achievement were found from pre-test to post-test in both control and experimental study groups. The experimental treatment group had statistically higher achievement scores than the control group in the two areas tested: scientific method (p=0.0016) and horticulture plant nutrition (p=0.0004). In addition, the students participating in the Hands-On Hortscience activities had more positive attitudes toward horticulture, science, and school (p=0

  13. The Development of Physics Learning Instrument Based on Hypermedia and Its Influence on the Student Problem Solving Skill (United States)

    Amin, Bunga Dara; Mahmud, Alimuddin; Muris


    This research aims to produce a learning instrument based on hypermedia which is valid, interesting, practical, and effective as well as to know its influence on the problem based skill of students Mathematical and Science Faculty, Makassar State University. This research is a research and development at (R&D) type. The development procedure…

  14. Strain development in a filled epoxy resin curing under constrained and unconstrained conditions as assessed by Fibre Bragg Grating sensors

    Directory of Open Access Journals (Sweden)


    Full Text Available The influence of adhesion to the mould wall on the released strain of a highly filled anhydride cured epoxy resin (EP, which was hardened in an aluminium mould under constrained and unconstrained condition, was investigated. The shrinkage-induced strain was measured by fibre optical sensing technique. Fibre Bragg Grating (FBG sensors were embedded into the curing EP placed in a cylindrical mould cavity. The cure-induced strain signals were detected in both, vertical and horizontal directions, during isothermal curing at 75 °C for 1000 minutes. A huge difference in the strain signal of both directions could be detected for the different adhesion conditions. Under non-adhering condition the horizontal and vertical strain-time traces were practically identical resulting in a compressive strain at the end of about 3200 ppm, which is a proof of free or isotropic shrinking. However, under constrained condition the horizontal shrinkage in the EP was prevented due to its adhesion to the mould wall. So, the curing material shrunk preferably in vertical direction. This resulted in much higher released compressive strain signals in vertical (10430 ppm than in horizontal (2230 ppm direction. The constrained cured EP resins are under inner stresses. Qualitative information on the residual stress state in the molding was deduced by exploiting the birefringence of the EP.

  15. Design of Unconstrained DMC to Improve the Distillate Product Purity of the Distillation Column

    Directory of Open Access Journals (Sweden)

    Bhat Vinayambika S.


    Full Text Available This paper demonstrates the use of unconstrained Dynamic Matrix Control (DMC to control the process transfer function with time delay. The selection of tuning parameter is challenging task in predictive control algorithm. The DMC scheme is designed and it is used here to control the process transfer function, First Order Plant with Dead Time (FOPDT model. Here, one manipulated variable (reflux and one controlled variable (distillate is considered for the implementation. The algorithm significantly controls the reflux to improve the distillate product purity. The simulation is done using MATLAB m-file. Both servo and regulatory responses were obtained. The simulation result validates the effectiveness of the proposed algorithm.

  16. Unconstrained SU(2) and SU(3) Yang-Mills clasical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.


    A systematic study of constraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with vanishing spatial angular momenta they turn out to be non-holonomic. Using Dirac's constraint formalism we achieve a complete elimination of the unphysical gauge and rotational degrees of freedom. This leads to an effective unconstrained formulation both for the full SU(2) Yang-Mills classical mechanics and for the SU(3) case in the subspace of vanishing spatial angular momenta. We believe that our results are well suited for further explicit dynamical investigations. (orig.)

  17. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.


    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  18. An Improved Marriage in Honey Bees Optimization Algorithm for Single Objective Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Yuksel Celik


    Full Text Available Marriage in honey bees optimization (MBO is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm’s performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  19. Influence of droplet coverage on the electrochemical response of planar microelectrodes and potential solving strategies based on nesting concept

    Directory of Open Access Journals (Sweden)

    Yue Yu


    Full Text Available Recently, biosensors have been widely used for the detection of bacteria, viruses and other toxins. Electrodes, as commonly used transducers, are a vital part of electrochemical biosensors. The coverage of the droplets can change significantly based on the hydrophobicity of the microelectrode surface materials. In the present research, screen-printed interdigitated microelectrodes (SPIMs, as one type of planar microelectrode, were applied to investigate the influence of droplet coverage on electrochemical response. Furthermore, three dimensional (3D printing technology was employed to print smart devices with different diameters based on the nesting concept. Theoretical explanations were proposed to elucidate the influence of the droplet coverage on the electrochemical response. 3D-printed ring devices were used to incubate the SPIMs and the analytical performances of the SPIMs were tested. According to the results obtained, our device successfully improved the stability of the signal responses and eliminated irregular signal changes to a large extent. Our proposed method based on the nesting concept provides a promising method for the fabrication of stable electrochemical biosensors. We also introduced two types of electrode bases to improve the signal stability.

  20. Long-term Outcome of Unconstrained Primary Total Hip Arthroplasty in Ipsilateral Residual Poliomyelitis. (United States)

    Buttaro, Martín A; Slullitel, Pablo A; García Mansilla, Agustín M; Carlucci, Sofía; Comba, Fernando M; Zanotti, Gerardo; Piccaluga, Francisco


    Incapacitating articular sequelae in the hip joint have been described for patients with late effects of poliomyelitis. In these patients, total hip arthroplasty (THA) has been associated with a substantial rate of dislocation. This study was conducted to evaluate the long-term clinical and radiologic outcomes of unconstrained THA in this specific group of patients. The study included 6 patients with ipsilateral polio who underwent primary THA between 1985 and 2006. Patients with polio who underwent THA on the nonparalytic limb were excluded. Mean follow-up was 119.5 months (minimum, 84 months). Clinical outcomes were evaluated with the modified Harris Hip Score (mHHS) and the visual analog scale (VAS) pain score. Radiographs were examined to identify the cause of complications and determine the need for revision surgery. All patients showed significantly better functional results when preoperative and postoperative mHHS (67.58 vs 87.33, respectively; P=.002) and VAS pain score (7.66 vs 2, respectively; P=.0003) were compared. Although 2 cases of instability were diagnosed, only 1 patient needed acetabular revision as a result of component malpositioning. None of the patients had component loosening, osteolysis, or infection. Unconstrained THA in the affected limb of patients with poliomyelitis showed favorable long-term clinical results, with improved function and pain relief. Nevertheless, instability may be a more frequent complication in this group of patients compared with the general population. [Orthopedics. 2017; 40(2):e255-e261.]. Copyright 2016, SLACK Incorporated.

  1. Unconstrained monitoring of long-term heart and breath rates during sleep

    International Nuclear Information System (INIS)

    Chen, Wenxi; Zhu, Xin; Wei, Daming; Nemoto, Tetsu; Sugitani, Kayo; Kitamura, Kei-ichiro


    An unconstrained method for the long-term monitoring of heart and breath rates during sleep is proposed. The system includes a sensor unit and a web-based network module. The sensor unit is set beneath a pillow to pick up the pressure variations from the head induced by inhalation/exhalation movements and heart pulsation during sleep. The measured pressure signal was digitized and transferred to a remote database server via the network module. A wavelet-based algorithm was employed to detect the heart and breath rates, as well as body movement, during sleep. The overall system was utilized for a total six-month trial operation delivered to a female subject. The profiles of the heart and breath rates on a beat-by-beat and daily basis were obtained. Movements during sleep were also estimated. The results show that the daily average percentage of undetectable periods (UPs) during 881.6 sleep hours over a 180 day period was 17.2%. A total of 89.2% of sleep hours had a UP of not more than 25%. The profile of the heart rate revealed a periodic property that corresponded to the female monthly menstrual cycle. Our system shows promise as a long-term unconstrained monitor for heart and breath rates, and for other physiological parameters related to the quality of sleep and the regularity of the menstrual cycle. (note)

  2. Does Cash Contribute to Value? A Comparison of Constrained and Unconstrained Firms in China and Germany

    Directory of Open Access Journals (Sweden)

    Wei Zhang


    Full Text Available A fundamental characteristic of emerging markets is the underdevelopment of legal institutions and financial markets. Therefore, the marginal value of a firm’s cash holdings in emerging countries can be lower than 1, due to high agency costs resulting from poor external corporate governance. However, the marginal value of cash may also be high in emerging markets because the information asymmetry between current and new providers of funds is high, which means that it is difficult to access the (low quality capital markets. We study for the industrialized countries of China and Germany whether corporate cash holdings contribute to shareholder value in both constrained and unconstrained firms. In contradiction to previous literature on emerging markets, we find that the marginal value of cash is not smaller than 1 in China, so that agency costs do not dominate. We, however, find marginal values of cash lower than 1 for unconstrained firms in both countries, implying that in these firms agency costs of cash holdings exist. For constrained firms we find marginal values significantly larger than 1 in both countries. This indicates difficulties in accessing the financial markets for these firms. These difficulties prove to be larger in China than in Germany for small and service firms, but not for high growth firms.

  3. Unconstrained N=2 matter, Yang-Mills and supergravity theories in harmonic superspace

    International Nuclear Information System (INIS)

    Galperin, A.; Kalitzin, S.; Sokatchev, E.


    A new approach to N=2 supersymmetry based on the concept of harmonic superspace is proposed and is used to give an unconstrained superfield geometric description of N=2 super Yang-Mills and supergravity theories as well as of matter N=2 hypermultiplets. The harmonic N=2 superspace has as independent coordinates, in addition to the usual ones, the isospinor harmonics Usub(i)sup(+-) on the sphere SU(2)/U(1). The role of Usub(i)sup(+-) is to relate the SU(2) group realized on the component fields to a U(1) group acting on the relevant superfields. Their introduction makes it possible to SU(2)-covariantize the notion of Grassmann analyticity. Crucial for our construction is the existence of an analytic subspace of the general harmonic N=2 superspace. The hypermultiplet superfields and the true prepotentials (pre-prepotentials) of N=2 super Yang-Mills and supergravity are unconstrained superfunctions over this analytic subspace. The pre-prepotentials have a clear geometric interpretation as gauge connections with respect to the internal SU(2)/U(1)-directions. A radically new feature arises: the number of gauge and auxiliary degrees of freedom becomes infinite while the number of physical degrees of freedom remains finite. Other new results are the massive N=2 Yang-Mills theory and various off-shell self-interactions of hypermultiplets. The propagators for matter and Yang-Mills superfields are given. (author)

  4. Assessment of patient functional performance in different knee arthroplasty designs during unconstrained squat. (United States)

    Verdini, Federica; Zara, Claudio; Leo, Tommaso; Mengarelli, Alessandro; Cardarelli, Stefano; Innocenti, Bernardo


    In this paper, squat named by Authors unconstrained because performed without constrains related to feet position, speed, knee maximum angle to be reached, was tested as motor task revealing differences in functional performance after knee arthroplasty. It involves large joints ranges of motion, does not compromise joint safety and requires accurate control strategies to maintain balance. Motion capture techniques were used to study squat on a healthy control group (CTR) and on three groups, each characterised by a specific knee arthroplasty design: a Total Knee Arthroplasty (TKA), a Mobile Bearing and a Fixed Bearing Unicompartmental Knee Arthroplasty (respectively MBUA and FBUA). Squat was analysed during descent, maintenance and ascent phase and described by speed, angular kinematics of lower and upper body, the Center of Pressure (CoP) trajectory and muscle activation timing of quadriceps and biceps femoris. Compared to CTR, for TKA and MBUA knee maximum flexion was lower, vertical speed during descent and ascent reduced and the duration of whole movement was longer. CoP mean distance was higher for all arthroplasty groups during descent as higher was, CoP mean velocity for MBUA and TKA during ascent and descent. Unconstrained squat is able to reveal differences in the functional performance among control and arthroplasty groups and between different arthroplasty designs. Considering the similarity index calculated for the variables showing statistically significance, FBUA performance appears to be closest to that of the CTR group. III a.

  5. Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments

    Directory of Open Access Journals (Sweden)

    Annette Mossel


    Full Text Available In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1 user tracking for virtual and augmented reality applications, (2 handheld target tracking for tunneling and (3 machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m.

  6. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity. (United States)

    Lamb, R J; Daws, L C


    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  7. Assessment of patient functional performance in different knee arthroplasty designs during unconstrained squat (United States)

    Verdini, Federica; Zara, Claudio; Leo, Tommaso; Mengarelli, Alessandro; Cardarelli, Stefano; Innocenti, Bernardo


    Summary Background In this paper, squat named by Authors unconstrained because performed without constrains related to feet position, speed, knee maximum angle to be reached, was tested as motor task revealing differences in functional performance after knee arthroplasty. It involves large joints ranges of motion, does not compromise joint safety and requires accurate control strategies to maintain balance. Methods Motion capture techniques were used to study squat on a healthy control group (CTR) and on three groups, each characterised by a specific knee arthroplasty design: a Total Knee Arthroplasty (TKA), a Mobile Bearing and a Fixed Bearing Unicompartmental Knee Arthroplasty (respectively MBUA and FBUA). Squat was analysed during descent, maintenance and ascent phase and described by speed, angular kinematics of lower and upper body, the Center of Pressure (CoP) trajectory and muscle activation timing of quadriceps and biceps femoris. Results Compared to CTR, for TKA and MBUA knee maximum flexion was lower, vertical speed during descent and ascent reduced and the duration of whole movement was longer. CoP mean distance was higher for all arthroplasty groups during descent as higher was, CoP mean velocity for MBUA and TKA during ascent and descent. Conclusions Unconstrained squat is able to reveal differences in the functional performance among control and arthroplasty groups and between different arthroplasty designs. Considering the similarity index calculated for the variables showing statistically significance, FBUA performance appears to be closest to that of the CTR group. Level of evidence III a. PMID:29387646

  8. Can motto-goals outperform learning and performance goals? Influence of goal setting on performance and affect in a complex problem solving task

    Directory of Open Access Journals (Sweden)

    Miriam S. Rohe


    Full Text Available In this paper, we bring together research on complex problem solving with that on motivational psychology about goal setting. Complex problems require motivational effort because of their inherent difficulties. Goal Setting Theory has shown with simple tasks that high, specific performance goals lead to better performance outcome than do-your-best goals. However, in complex tasks, learning goals have proven more effective than performance goals. Based on the Zurich Resource Model (Storch & Krause, 2014, so-called motto-goals (e.g., "I breathe happiness" should activate a person’s resources through positive affect. It was found that motto-goals are effective with unpleasant duties. Therefore, we tested the hypothesis that motto-goals outperform learning and performance goals in the case of complex problems. A total of N = 123 subjects participated in the experiment. In dependence of their goal condition, subjects developed a personal motto, learning, or performance goal. This goal was adapted for the computer-simulated complex scenario Tailorshop, where subjects worked as managers in a small fictional company. Other than expected, there was no main effect of goal condition for the management performance. As hypothesized, motto goals led to higher positive and lower negative affect than the other two goal types. Even though positive affect decreased and negative affect increased in all three groups during Tailorshop completion, participants with motto goals reported the lowest rates of negative affect over time. Exploratory analyses investigated the role of affect in complex problem solving via mediational analyses and the influence of goal type on perceived goal attainment.

  9. Unconstrained tripolar implants for primary total hip arthroplasty in patients at risk for dislocation. (United States)

    Guyen, Olivier; Pibarot, Vincent; Vaz, Gualter; Chevillotte, Christophe; Carret, Jean-Paul; Bejui-Hugues, Jacques


    We performed a retrospective study on 167 primary total hip arthroplasty (THA) procedures in 163 patients at high risk for instability to assess the reliability of unconstrained tripolar implants (press-fit outer metal shell articulating a bipolar polyethylene component) in preventing dislocations. Eighty-four percent of the patients had at least 2 risk factors for dislocation. The mean follow-up length was 40.2 months. No dislocation was observed. Harris hip scores improved significantly. Six hips were revised, and no aseptic loosening of the cup was observed. The tripolar implant was extremely successful in achieving stability. However, because of the current lack of data documenting polyethylene wear at additional bearing, the routine use of tripolar implants in primary THA is discouraged and should be considered at the present time only for selected patients at high risk for dislocation and with limited activities.

  10. Steepest descent method implementation on unconstrained optimization problem using C++ program (United States)

    Napitupulu, H.; Sukono; Mohd, I. Bin; Hidayat, Y.; Supian, S.


    Steepest Descent is known as the simplest gradient method. Recently, many researches are done to obtain the appropriate step size in order to reduce the objective function value progressively. In this paper, the properties of steepest descent method from literatures are reviewed together with advantages and disadvantages of each step size procedure. The development of steepest descent method due to its step size procedure is discussed. In order to test the performance of each step size, we run a steepest descent procedure in C++ program. We implemented it to unconstrained optimization test problem with two variables, then we compare the numerical results of each step size procedure. Based on the numerical experiment, we conclude the general computational features and weaknesses of each procedure in each case of problem.

  11. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels. (United States)

    Takeoka, Masahiro; Seshadreesan, Kaushik P; Wilde, Mark M


    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  12. Unconstrained off-shell N=3 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Kalitzin, S.; Ogievetsky, V.; Sokatchev, E.


    The harmonic superspace is used to build up an unconstrained off-shell formulation of N=3 supersymmetric Yang-Mills theory. The theory is defined in an analytic N=3 superspace having M 4 x(SU(3)/U(1)xU(1) as an even part. The basic objects are the analytic potentials which serve as gauge connections entering harmonic derivatives. The action is an integral over analytic superspace. The Lagrange density is surprisingly simple and it is gauge invariant up to total harmonic derivative. The equations of motion are integrability conditions on the internal space SU(3)/U(1)xU(1). The jumping over the ''N=3 barrier'' became possible due to the infinite number of auxiliary fields

  13. Two Modified Three-Term Type Conjugate Gradient Methods and Their Global Convergence for Unconstrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhongbo Sun


    Full Text Available Two modified three-term type conjugate gradient algorithms which satisfy both the descent condition and the Dai-Liao type conjugacy condition are presented for unconstrained optimization. The first algorithm is a modification of the Hager and Zhang type algorithm in such a way that the search direction is descent and satisfies Dai-Liao’s type conjugacy condition. The second simple three-term type conjugate gradient method can generate sufficient decent directions at every iteration; moreover, this property is independent of the steplength line search. Also, the algorithms could be considered as a modification of the MBFGS method, but with different zk. Under some mild conditions, the given methods are global convergence, which is independent of the Wolfe line search for general functions. The numerical experiments show that the proposed methods are very robust and efficient.

  14. New generalized conjugate gradient methods for the non-quadratic model in unconstrained optimization

    International Nuclear Information System (INIS)

    Al-Bayati, A.


    This paper present two new conjugate gradient algorithms which use the non-quadratic model in unconstrained optimization. The first is a new generalized self-scaling variable metric algorithm based on the sloboda generalized conjugate gradient method which is invariant to a nonlinear scaling of a stricity convex quadratic function; the second is an interleaving between the generalized sloboda method and the first algorithm; all these algorithm use exact line searches. Numerical comparisons over twenty test functions show that the interleaving algorithm is best overall and requires only about half the function evaluations of the Sloboda method: interleaving algorithms are likely to be preferred when the dimensionality of the problem is increased. (author). 29 refs., 1 tab

  15. Unconstrained Capacities of Quantum Key Distribution and Entanglement Distillation for Pure-Loss Bosonic Broadcast Channels (United States)

    Takeoka, Masahiro; Seshadreesan, Kaushik P.; Wilde, Mark M.


    We consider quantum key distribution (QKD) and entanglement distribution using a single-sender multiple-receiver pure-loss bosonic broadcast channel. We determine the unconstrained capacity region for the distillation of bipartite entanglement and secret key between the sender and each receiver, whenever they are allowed arbitrary public classical communication. A practical implication of our result is that the capacity region demonstrated drastically improves upon rates achievable using a naive time-sharing strategy, which has been employed in previously demonstrated network QKD systems. We show a simple example of a broadcast QKD protocol overcoming the limit of the point-to-point strategy. Our result is thus an important step toward opening a new framework of network channel-based quantum communication technology.

  16. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables (United States)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.


    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  17. Properties of the block BFGS update and its application to the limited-memory block BNS method for unconstrained minimization

    Czech Academy of Sciences Publication Activity Database

    Vlček, Jan; Lukšan, Ladislav

    Online: 02 April (2018) ISSN 1017-1398 R&D Projects: GA ČR GA13-06684S Institutional support: RVO:67985807 Keywords : Unconstrained minimization * Block variable metric methods * Limited-memory methods * BFGS update * Global convergence * Numerical results Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016

  18. Unconstrained and Noninvasive Measurement of Swimming Behavior of Small Fish Based on Ventilatory Signals (United States)

    Kitayama, Shigehisa; Soh, Zu; Hirano, Akira; Tsuji, Toshio; Takiguchi, Noboru; Ohtake, Hisao

    Ventilatory signal is a kind of bioelectric signals reflecting the ventilatory conditions of fish, and has received recent attention as an indicator for assessment of water quality, since breathing is adjusted by the respiratory center according to changes in the underwater environment surrounding the fish. The signals are thus beginning to be used in bioassay systems for water examination. Other than ventilatory conditions, swimming behavior also contains important information for water examination. The conventional bioassay systems, however, only measure either ventilatory signals or swimming behavior. This paper proposes a new unconstrained and noninvasive measurement method that is capable of conducting ventilatory signal measurement and behavioral analysis of fish at the same time. The proposed method estimates the position and the velocity of a fish in free-swimming conditions using power spectrum distribution of measured ventilatory signals from multiple electrodes. This allowed the system to avoid using a camera system which requires light sources. In order to validate estimation accuracy, the position and the velocity estimated by the proposed method were compared to those obtained from video analysis. The results confirmed that the estimated error of the fish positions was within the size of fish, and the correlation coefficient between the velocities was 0.906. The proposed method thus not only can measure the ventilatory signals, but also performs behavioral analysis as accurate as using a video camera.

  19. Real-time construction and visualisation of drift-free video mosaics from unconstrained camera motion

    Directory of Open Access Journals (Sweden)

    Mateusz Brzeszcz


    Full Text Available This work proposes a novel approach for real-time video mosaicking facilitating drift-free mosaic construction and visualisation, with integrated frame blending and redundancy management, that is shown to be flexible to a range of varying mosaic scenarios. The approach supports unconstrained camera motion with in-sequence loop closing, variation in camera focal distance (zoom and recovery from video sequence breaks. Real-time performance, over extended duration sequences, is realised via novel aspects of frame management within the mosaic representation and thus avoiding the high data redundancy associated with temporally dense, spatially overlapping video frame inputs. This managed set of image frames is visualised in real time using a dynamic mosaic representation of overlapping textured graphics primitives in place of the traditional globally constructed, and hence frequently reconstructed, mosaic image. Within this formulation, subsequent optimisation occurring during online construction can thus efficiency adjust relative frame positions via simple primitive position transforms. Effective visualisation is similarly facilitated by online inter-frame blending to overcome the illumination and colour variance associated with modern camera hardware. The evaluation illustrates overall robustness in video mosaic construction under a diverse range of conditions including indoor and outdoor environments, varying illumination and presence of in-scene motion on varying computational platforms.

  20. An Improved Real-Coded Population-Based Extremal Optimization Method for Continuous Unconstrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Zeng


    Full Text Available As a novel evolutionary optimization method, extremal optimization (EO has been successfully applied to a variety of combinatorial optimization problems. However, the applications of EO in continuous optimization problems are relatively rare. This paper proposes an improved real-coded population-based EO method (IRPEO for continuous unconstrained optimization problems. The key operations of IRPEO include generation of real-coded random initial population, evaluation of individual and population fitness, selection of bad elements according to power-law probability distribution, generation of new population based on uniform random mutation, and updating the population by accepting the new population unconditionally. The experimental results on 10 benchmark test functions with the dimension N=30 have shown that IRPEO is competitive or even better than the recently reported various genetic algorithm (GA versions with different mutation operations in terms of simplicity, effectiveness, and efficiency. Furthermore, the superiority of IRPEO to other evolutionary algorithms such as original population-based EO, particle swarm optimization (PSO, and the hybrid PSO-EO is also demonstrated by the experimental results on some benchmark functions.

  1. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization. (United States)

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing


    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  2. Sequencing of real-world samples using a microfabricated hybrid device having unconstrained straight separation channels. (United States)

    Liu, Shaorong; Elkin, Christopher; Kapur, Hitesh


    We describe a microfabricated hybrid device that consists of a microfabricated chip containing multiple twin-T injectors attached to an array of capillaries that serve as the separation channels. A new fabrication process was employed to create two differently sized round channels in a chip. Twin-T injectors were formed by the smaller round channels that match the bore of the separation capillaries and separation capillaries were incorporated to the injectors through the larger round channels that match the outer diameter of the capillaries. This allows for a minimum dead volume and provides a robust chip/capillary interface. This hybrid design takes full advantage, such as sample stacking and purification and uniform signal intensity profile, of the unique chip injection scheme for DNA sequencing while employing long straight capillaries for the separations. In essence, the separation channel length is optimized for both speed and resolution since it is unconstrained by chip size. To demonstrate the reliability and practicality of this hybrid device, we sequenced over 1000 real-world samples from Human Chromosome 5 and Ciona intestinalis, prepared at Joint Genome Institute. We achieved average Phred20 read of 675 bases in about 70 min with a success rate of 91%. For the similar type of samples on MegaBACE 1000, the average Phred20 read is about 550-600 bases in 120 min separation time with a success rate of about 80-90%.

  3. Unconstrained Enhanced Sampling for Free Energy Calculations of Biomolecules: A Review (United States)

    Miao, Yinglong; McCammon, J. Andrew


    Free energy calculations are central to understanding the structure, dynamics and function of biomolecules. Yet insufficient sampling of biomolecular configurations is often regarded as one of the main sources of error. Many enhanced sampling techniques have been developed to address this issue. Notably, enhanced sampling methods based on biasing collective variables (CVs), including the widely used umbrella sampling, adaptive biasing force and metadynamics, have been discussed in a recent excellent review (Abrams and Bussi, Entropy, 2014). Here, we aim to review enhanced sampling methods that do not require predefined system-dependent CVs for biomolecular simulations and as such do not suffer from the hidden energy barrier problem as encountered in the CV-biasing methods. These methods include, but are not limited to, replica exchange/parallel tempering, self-guided molecular/Langevin dynamics, essential energy space random walk and accelerated molecular dynamics. While it is overwhelming to describe all details of each method, we provide a summary of the methods along with the applications and offer our perspectives. We conclude with challenges and prospects of the unconstrained enhanced sampling methods for accurate biomolecular free energy calculations. PMID:27453631

  4. A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones. (United States)

    Kang, Xiaomin; Huang, Baoqi; Qi, Guodong


    Recently, with the development of artificial intelligence technologies and the popularity of mobile devices, walking detection and step counting have gained much attention since they play an important role in the fields of equipment positioning, saving energy, behavior recognition, etc. In this paper, a novel algorithm is proposed to simultaneously detect walking motion and count steps through unconstrained smartphones in the sense that the smartphone placement is not only arbitrary but also alterable. On account of the periodicity of the walking motion and sensitivity of gyroscopes, the proposed algorithm extracts the frequency domain features from three-dimensional (3D) angular velocities of a smartphone through FFT (fast Fourier transform) and identifies whether its holder is walking or not irrespective of its placement. Furthermore, the corresponding step frequency is recursively updated to evaluate the step count in real time. Extensive experiments are conducted by involving eight subjects and different walking scenarios in a realistic environment. It is shown that the proposed method achieves the precision of 93.76 % and recall of 93.65 % for walking detection, and its overall performance is significantly better than other well-known methods. Moreover, the accuracy of step counting by the proposed method is 95.74 % , and is better than both of the several well-known counterparts and commercial products.

  5. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments

    Directory of Open Access Journals (Sweden)

    Joana B. Balardin


    Full Text Available Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis, playing a musical instrument (i.e., piano and violin alone or in duo and performing daily activities for many hours (i.e., continuous monitoring. Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.

  6. Unconstrained steps of myosin VI appear longest among known molecular motors. (United States)

    Ali, M Yusuf; Homma, Kazuaki; Iwane, Atsuko Hikikoshi; Adachi, Kengo; Itoh, Hiroyasu; Kinosita, Kazuhiko; Yanagida, Toshio; Ikebe, Mitsuo


    Myosin VI is a two-headed molecular motor that moves along an actin filament in the direction opposite to most other myosins. Previously, a single myosin VI molecule has been shown to proceed with steps that are large compared to its neck size: either it walks by somehow extending its neck or one head slides along actin for a long distance before the other head lands. To inquire into these and other possible mechanism of motility, we suspended an actin filament between two plastic beads, and let a single myosin VI molecule carrying a bead duplex move along the actin. This configuration, unlike previous studies, allows unconstrained rotation of myosin VI around the right-handed double helix of actin. Myosin VI moved almost straight or as a right-handed spiral with a pitch of several micrometers, indicating that the molecule walks with strides slightly longer than the actin helical repeat of 36 nm. The large steps without much rotation suggest kinesin-type walking with extended and flexible necks, but how to move forward with flexible necks, even under a backward load, is not clear. As an answer, we propose that a conformational change in the lifted head would facilitate landing on a forward, rather than backward, site. This mechanism may underlie stepping of all two-headed molecular motors including kinesin and myosin V.

  7. A Novel Walking Detection and Step Counting Algorithm Using Unconstrained Smartphones

    Directory of Open Access Journals (Sweden)

    Xiaomin Kang


    Full Text Available Recently, with the development of artificial intelligence technologies and the popularity of mobile devices, walking detection and step counting have gained much attention since they play an important role in the fields of equipment positioning, saving energy, behavior recognition, etc. In this paper, a novel algorithm is proposed to simultaneously detect walking motion and count steps through unconstrained smartphones in the sense that the smartphone placement is not only arbitrary but also alterable. On account of the periodicity of the walking motion and sensitivity of gyroscopes, the proposed algorithm extracts the frequency domain features from three-dimensional (3D angular velocities of a smartphone through FFT (fast Fourier transform and identifies whether its holder is walking or not irrespective of its placement. Furthermore, the corresponding step frequency is recursively updated to evaluate the step count in real time. Extensive experiments are conducted by involving eight subjects and different walking scenarios in a realistic environment. It is shown that the proposed method achieves the precision of 93.76 % and recall of 93.65 % for walking detection, and its overall performance is significantly better than other well-known methods. Moreover, the accuracy of step counting by the proposed method is 95.74 % , and is better than both of the several well-known counterparts and commercial products.

  8. Performance-complexity tradeoff in sequential decoding for the unconstrained AWGN channel

    KAUST Repository

    Abediseid, Walid


    In this paper, the performance limits and the computational complexity of the lattice sequential decoder are analyzed for the unconstrained additive white Gaussian noise channel. The performance analysis available in the literature for such a channel has been studied only under the use of the minimum Euclidean distance decoder that is commonly referred to as the lattice decoder. Lattice decoders based on solutions to the NP-hard closest vector problem are very complex to implement, and the search for low complexity receivers for the detection of lattice codes is considered a challenging problem. However, the low computational complexity advantage that sequential decoding promises, makes it an alternative solution to the lattice decoder. In this work, we characterize the performance and complexity tradeoff via the error exponent and the decoding complexity, respectively, of such a decoder as a function of the decoding parameter - the bias term. For the above channel, we derive the cut-off volume-to-noise ratio that is required to achieve a good error performance with low decoding complexity. © 2013 IEEE.

  9. Recent Result from E821 Experiment on Muon g-2 and Unconstrained Minimal Supersymemtric Standard Model

    CERN Document Server

    Komine, S; Yamaguchi, M; Komine, Shinji; Moroi, Takeo; Yamaguchi, Masahiro


    Recently, the E821 experiment at the Brookhaven National Laboratory announced their latest result of their muon g-2 measurement which is about 2.6-\\sigma away from the standard model prediction. Taking this result seriously, we examine the possibility to explain this discrepancy by the supersymmetric contribution. Our analysis is performed in the framework of the unconstrained supersymmetric standard model which has free seven parameters relevant to muon g-2. We found that, in the case of large \\tan\\beta, sparticle masses are allowed to be large in the region where the SUSY contribution to the muon g-2 is large enough, and hence the conventional SUSY search may fail even at the LHC. On the contrary, to explain the discrepancy in the case of small \\tan\\beta, we found that (i) sleptons and SU(2)_L gauginos should be light, and (ii) negative search for the Higgs boson severely constrains the model in the framework of the mSUGRA and gauge-mediated model.

  10. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao


    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  11. A detailed survey of numerical methods for unconstrained minimization. Pt. 1

    International Nuclear Information System (INIS)

    Mika, K.; Chaves, T.


    A detailed description of numerical methods for unconstrained minimization is presented. This first part surveys in particular conjugate direction and gradient methods, whereas variable metric methods will be the subject of the second part. Among the results of special interest we quote the following. The conjugate direction methods of Powell, Zangwill and Sutti can be best interpreted if the Smith approach is adopted. The conditions for quadratic termination of Powell's first procedure are analyzed. Numerical results based on nonlinear least squares problems are presented for the following conjugate direction codes: VA04AD from Harwell Subroutine Library and ZXPOW from IMSL, both implementations of Powell's second procedure, DFMND from IBM-SILMATH (Zangwill's method) and Brent's algorithm PRAXIS. VA04AD turns out to be superior in all cases, PRAXIS improves for high-dimensional problems. All codes clearly exhibit superlinear convergence. Akaike's result for the method of steepest descent is derived directly from a set of nonlinear recurrence relations. Numerical results obtained with the highly ill conditioned Hilbert function confirm the theoretical predictions. Several properties of the conjugate gradient method are presented and a new derivation of the equivalence of steepest descent partan and the CG method is given. A comparison of numerical results from the CG codes VA08AD (Fletcher-Reeves), DFMCG (the SSP version of the Fletcher-Reevens algorithm) and VA14AD (Powell's implementation of the Polak-Ribiere formula) reveals that VA14AD is clearly superior in all cases, but that the convergence rate of these codes is only weakly superlinear such that high accuracy solutions require extremely large numbers of function calls. (orig.)

  12. An Algorithm for the Weighted Earliness-Tardiness Unconstrained Project Scheduling Problem (United States)

    Afshar Nadjafi, Behrouz; Shadrokh, Shahram

    This research considers a project scheduling problem with the object of minimizing weighted earliness-tardiness penalty costs, taking into account a deadline for the project and precedence relations among the activities. An exact recursive method has been proposed for solving the basic form of this problem. We present a new depth-first branch and bound algorithm for extended form of the problem, which time value of money is taken into account by discounting the cash flows. The algorithm is extended with two bounding rules in order to reduce the size of the branch and bound tree. Finally, some test problems are solved and computational results are reported.



    T. Triyuni


    This research aims to produce the scientific approach for science learning using a problem solving model on the topic of heat and temperatureon the junior high school learning outcome. The curriculum used during the study was curriculum 2013 (valid, practical and effective). The development of the learning setfollowed the four-D model which was reduced to three-D model (without dissemination). The study was tested in Class VIIA, VIIB, and VIIC in SMP Negeri 5 Academic Year 2015/2016. The data...

  14. Penalty Algorithm Based on Conjugate Gradient Method for Solving Portfolio Management Problem

    Directory of Open Access Journals (Sweden)

    Wang YaLin


    Full Text Available A new approach was proposed to reformulate the biobjectives optimization model of portfolio management into an unconstrained minimization problem, where the objective function is a piecewise quadratic polynomial. We presented some properties of such an objective function. Then, a class of penalty algorithms based on the well-known conjugate gradient methods was developed to find the solution of portfolio management problem. By implementing the proposed algorithm to solve the real problems from the stock market in China, it was shown that this algorithm is promising.

  15. Confluent-Functional solving systems

    Directory of Open Access Journals (Sweden)

    V.N. Koval


    Full Text Available The paper proposes a statistical knowledge-acquision approach. The solving systems are considered, which are able to find unknown structural dependences between situational and transforming variables on the basis of statistically analyzed input information. Situational variables describe features, states and relations between environment objects. Transforming variables describe transforming influences, exerted by a goal-oriented system onto an environment. Unknown environment rules are simulated by a structural equations system, associating situational and transforming variables.

  16. The influence of the way the muscle force is modeled on the predicted results obtained by solving indeterminate problems for a fast elbow flexion. (United States)

    Raikova, Rositsa; Aladjov, Hristo


    A critical point in models of the human limbs when the aim is to investigate the motor control is the muscle model. More often the mechanical output of a muscle is considered as one musculotendon force that is a design variable in optimization tasks solved predominantly by static optimization. For dynamic conditions, the relationship between the developed force, the length and the contraction velocity of a muscle becomes important and rheological muscle models can be incorporated in the optimization tasks. Here the muscle activation can be a design variable as well. Recently a new muscle model was proposed. A muscle is considered as a mixture of motor units (MUs) with different peculiarities and the muscle force is calculated as a sum of the MUs twitches. The aim of the paper is to compare these three ways for presenting the muscle force. Fast elbow flexion is investigated using a planar model with five muscles. It is concluded that the rheological models are suitable for calculation of the current maximal muscle forces that can be used as weight factors in the objective functions. The model based on MUs has many advantages for precise investigations of motor control. Such muscle presentation can explain the muscle co-contraction and the role of the fast and the slow MUs. The relationship between the MUs activation and the mechanical output is more clear and closer to the reality.

  17. A new entropy function for feature extraction with the refined scores as a classifier for the unconstrained ear verification

    Directory of Open Access Journals (Sweden)

    Mamta Bansal


    Full Text Available For high end security like surveillance there is a need for a robust system capable of verifying a person under the unconstrained conditions. This paper presents the ear based verification system using a new entropy function that changes not only the information gain function but also the information source values. This entropy function displays peculiar characteristics such as splitting into two modes. Two types of entropy features: Effective Gaussian Information source value and Effective Exponential Information source value functions are derived using the entropy function. To classify the entropy features we have devised refined scores (RS method that refines the scores generated using the Euclidean distance. The experimental results vindicate the superiority of proposed method over literature.

  18. Problem Solving and Learning (United States)

    Singh, Chandralekha


    One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.

  19. Teaching Creative Problem Solving. (United States)

    Christensen, Kip W.; Martin, Loren


    Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)

  20. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline]. (United States)

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing


    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  1. Velocity-dependent changes of rotational axes in the non-visual control of unconstrained 3D arm motions. (United States)

    Isableu, B; Rezzoug, N; Mallet, G; Bernardin, D; Gorce, P; Pagano, C C


    We examined the roles of inertial (e(3)), shoulder-centre of mass (SH-CM) and shoulder-elbow articular (SH-EL) rotation axes in the non-visual control of unconstrained 3D arm rotations. Subjects rotated the arm in elbow configurations that yielded either a constant or variable separation between these axes. We hypothesized that increasing the motion frequency and the task complexity would result in the limbs' rotational axis to correspond to e(3) in order to minimize rotational resistances. Results showed two velocity-dependent profiles wherein the rotation axis coincided with the SH-EL axis for S and I velocities and then in the F velocity shifted to either a SH-CM/e(3) trade-off axis for one profile, or to no preferential axis for the other. A third profile was velocity-independent, with the SH-CM/e(3) trade-off axis being adopted. Our results are the first to provide evidence that the rotational axis of a multi-articulated limb may change from a geometrical axis of rotation to a mass or inertia based axis as motion frequency increases. These findings are discussed within the framework of the minimum inertia tensor model (MIT), which shows that rotations about e(3) reduce the amount of joint muscle torque that must be produced by employing the interaction torque to assist movement.

  2. On Applicability of Tunable Filter Bank Based Feature for Ear Biometrics: A Study from Constrained to Unconstrained. (United States)

    Chowdhury, Debbrota Paul; Bakshi, Sambit; Guo, Guodong; Sa, Pankaj Kumar


    In this paper, an overall framework has been presented for person verification using ear biometric which uses tunable filter bank as local feature extractor. The tunable filter bank, based on a half-band polynomial of 14th order, extracts distinct features from ear images maintaining its frequency selectivity property. To advocate the applicability of tunable filter bank on ear biometrics, recognition test has been performed on available constrained databases like AMI, WPUT, IITD and unconstrained database like UERC. Experiments have been conducted applying tunable filter based feature extractor on subparts of the ear. Empirical experiments have been conducted with four and six subdivisions of the ear image. Analyzing the experimental results, it has been found that tunable filter moderately succeeds to distinguish ear features at par with the state-of-the-art features used for ear recognition. Accuracies of 70.58%, 67.01%, 81.98%, and 57.75% have been achieved on AMI, WPUT, IITD, and UERC databases through considering Canberra Distance as underlying measure of separation. The performances indicate that tunable filter is a candidate for recognizing human from ear images.

  3. Distributed Problem-Solving

    DEFF Research Database (Denmark)

    Chemi, Tatiana


    This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...

  4. Solving Environmental Problems

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph


    for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...

  5. Introspection in Problem Solving (United States)

    Jäkel, Frank; Schreiber, Cornell


    Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…

  6. Problem Solving in Practice (United States)

    Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia


    Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…

  7. Solving Linear Differential Equations

    NARCIS (Netherlands)

    Nguyen, K.A.; Put, M. van der


    The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

  8. Solving a binary puzzle

    NARCIS (Netherlands)

    Utomo, P.H.; Makarim, R.H.


    A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each

  9. Electric Current Solves Mazes (United States)

    Ayrinhac, Simon


    We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…

  10. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.


    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  11. On Solving Linear Recurrences (United States)

    Dobbs, David E.


    A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.

  12. Diagrams benefit symbolic problem-solving. (United States)

    Chu, Junyi; Rittle-Johnson, Bethany; Fyfe, Emily R


    The format of a mathematics problem often influences students' problem-solving performance. For example, providing diagrams in conjunction with story problems can benefit students' understanding, choice of strategy, and accuracy on story problems. However, it remains unclear whether providing diagrams in conjunction with symbolic equations can benefit problem-solving performance as well. We tested the impact of diagram presence on students' performance on algebra equation problems to determine whether diagrams increase problem-solving success. We also examined the influence of item- and student-level factors to test the robustness of the diagram effect. We worked with 61 seventh-grade students who had received 2 months of pre-algebra instruction. Students participated in an experimenter-led classroom session. Using a within-subjects design, students solved algebra problems in two matched formats (equation and equation-with-diagram). The presence of diagrams increased equation-solving accuracy and the use of informal strategies. This diagram benefit was independent of student ability and item complexity. The benefits of diagrams found previously for story problems generalized to symbolic problems. The findings are consistent with cognitive models of problem-solving and suggest that diagrams may be a useful additional representation of symbolic problems. © 2017 The British Psychological Society.

  13. Toward Solving the Problem of Problem Solving: An Analysis Framework (United States)

    Roesler, Rebecca A.


    Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…

  14. Environmental problem-solving: Psychosocial factors (United States)

    Miller, Alan


    This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.

  15. Exploring the Metabolic and Perceptual Correlates of Self-Selected Walking Speed under Constrained and Un-Constrained Conditions

    Directory of Open Access Journals (Sweden)

    David T Godsiff, Shelly Coe, Charlotte Elsworth-Edelsten, Johnny Collett, Ken Howells, Martyn Morris, Helen Dawes


    Full Text Available Mechanisms underpinning self-selected walking speed (SSWS are poorly understood. The present study investigated the extent to which SSWS is related to metabolism, energy cost, and/or perceptual parameters during both normal and artificially constrained walking. Fourteen participants with no pathology affecting gait were tested under standard conditions. Subjects walked on a motorized treadmill at speeds derived from their SSWS as a continuous protocol. RPE scores (CR10 and expired air to calculate energy cost ( and carbohydrate (CHO oxidation rate ( were collected during minutes 3-4 at each speed. Eight individuals were re-tested under the same conditions within one week with a hip and knee-brace to immobilize their right leg. Deflection in RPE scores (CR10 and CHO oxidation rate ( were not related to SSWS (five and three people had deflections in the defined range of SSWS in constrained and unconstrained conditions, respectively (p > 0.05. Constrained walking elicited a higher energy cost ( and slower SSWS (p 0.05. SSWS did not occur at a minimum energy cost ( in either condition, however, the size of the minimum energy cost to SSWS disparity was the same (Froude {Fr} = 0.09 in both conditions (p = 0.36. Perceptions of exertion can modify walking patterns and therefore SSWS and metabolism/ energy cost are not directly related. Strategies which minimize perceived exertion may enable faster walking in people with altered gait as our findings indicate they should self-optimize to the same extent under different conditions.

  16. Creativity and Problem Solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui


    This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....

  17. Creativity and problem Solving

    Directory of Open Access Journals (Sweden)

    René Victor Valqui Vidal


    Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.

  18. Appreciative Problem Solving

    DEFF Research Database (Denmark)

    Hansen, David


    Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...

  19. Simon on problem solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul


    as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  20. Planning and Problem Solving (United States)


    Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R

  1. Innovation and problem solving: a review of common mechanisms. (United States)

    Griffin, Andrea S; Guez, David


    Behavioural innovations have become central to our thinking about how animals adjust to changing environments. It is now well established that animals vary in their ability to innovate, but understanding why remains a challenge. This is because innovations are rare, so studying innovation requires alternative experimental assays that create opportunities for animals to express their ability to invent new behaviours, or use pre-existing ones in new contexts. Problem solving of extractive foraging tasks has been put forward as a suitable experimental assay. We review the rapidly expanding literature on problem solving of extractive foraging tasks in order to better understand to what extent the processes underpinning problem solving, and the factors influencing problem solving, are in line with those predicted, and found, to underpin and influence innovation in the wild. Our aim is to determine whether problem solving can be used as an experimental proxy of innovation. We find that in most respects, problem solving is determined by the same underpinning mechanisms, and is influenced by the same factors, as those predicted to underpin, and to influence, innovation. We conclude that problem solving is a valid experimental assay for studying innovation, propose a conceptual model of problem solving in which motor diversity plays a more central role than has been considered to date, and provide recommendations for future research using problem solving to investigate innovation. This article is part of a Special Issue entitled: Cognition in the wild. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Solving Differential Equations in R: Package deSolve (United States)

    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

  3. Solving Differential Equations in R: Package deSolve

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.


    In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

  4. Comparing kinematic changes between a finger-tapping task and unconstrained finger flexion-extension task in patients with Parkinson's disease. (United States)

    Teo, W P; Rodrigues, J P; Mastaglia, F L; Thickbroom, G W


    Repetitive finger tapping is a well-established clinical test for the evaluation of parkinsonian bradykinesia, but few studies have investigated other finger movement modalities. We compared the kinematic changes (movement rate and amplitude) and response to levodopa during a conventional index finger-thumb-tapping task and an unconstrained index finger flexion-extension task performed at maximal voluntary rate (MVR) for 20 s in 11 individuals with levodopa-responsive Parkinson's disease (OFF and ON) and 10 healthy age-matched controls. Between-task comparisons showed that for all conditions, the initial movement rate was greater for the unconstrained flexion-extension task than the tapping task. Movement rate in the OFF state was slower than in controls for both tasks and normalized in the ON state. The movement amplitude was also reduced for both tasks in OFF and increased in the ON state but did not reach control levels. The rate and amplitude of movement declined significantly for both tasks under all conditions (OFF/ON and controls). The time course of rate decline was comparable for both tasks and was similar in OFF/ON and controls, whereas the tapping task was associated with a greater decline in MA, both in controls and ON, but not OFF. The findings indicate that both finger movement tasks show similar kinematic changes during a 20-s sustained MVR, but that movement amplitude is less well sustained during the tapping task than the unconstrained finger movement task. Both movement rate and amplitude improved with levodopa; however, movement rate was more levodopa responsive than amplitude.

  5. Flexibility in Mathematics Problem Solving Based on Adversity Quotient (United States)

    Dina, N. A.; Amin, S. M.; Masriyah


    Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.

  6. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco


    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  7. Solved problems in electrochemistry

    International Nuclear Information System (INIS)

    Piron, D.L.


    This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems

  8. Schema Knowledge for Solving Arithmetic Story Problems: Some Affective Components. (United States)

    Marshall, Sandra P.

    This report discusses the role of affect in cognitive processing. The importance of affect in processing mathematical information is described in the context of solving arithmetic story problems. Some ideas are offered about the way affective responses to mathematical problem solving situations influence the development, maintenance, and retrieval…

  9. Problem solving and problem strategies in the teaching and learning ...

    African Journals Online (AJOL)

    Perennial poor performance recorded annually in both internal and external examinations in Mathematics has been a great concern for the Mathematics Educators in Nigeria. This paper discusses problem-solving and influence of problem-solving strategies on students' performance in mathematics. The concept of ...

  10. Teachers Beliefs in Problem Solving in Rural Malaysian Secondary Schools (United States)

    Palraj, Shalini; DeWitt, Dorothy; Alias, Norlidah


    Problem solving is the highest level of cognitive skill. However, this skill seems to be lacking among secondary school students. Teachers' beliefs influence the instructional strategies used for students' learning. Hence, it is important to understand teachers' beliefs so as to improve the processes for teaching problem solving. The purpose of…

  11. Discourse and Problem Solving (United States)


    me?" S-REQUEST ^---^ S-REQUEST (plan recognitio ; REQUEST V EXECUTE-PLAN RHjtfEST BIDTOhC TASK COMMUNICATIVE Figure 3-6. Analysis using’please...sur- face phenomena affected? How do beliefs and’ attitudes (social factors) influence? Various principles of coherence are explored as well

  12. Affect and mathematical problem solving a new perspective

    CERN Document Server

    Adams, Verna


    Research on cognitive aspects of mathematical problem solving has made great progress in recent years, but the relationship of affective factors to problem-solving performance has been a neglected research area. The purpose of Affect and Mathematical Problem Solving: A New Perspective is to show how the theories and methods of cognitive science can be extended to include the role of affect in mathematical problem solving. The book presents Mandler's theory of emotion and explores its implications for the learning and teaching of mathematical problem solving. Also, leading researchers from mathematics, education, and psychology report how they have integrated affect into their own cognitive research. The studies focus on metacognitive processes, aesthetic influences on expert problem solvers, teacher decision-making, technology and teaching problem solving, and beliefs about mathematics. The results suggest how emotional factors like anxiety, frustration, joy, and satisfaction can help or hinder performance in...

  13. Using Grey Wolf Algorithm to Solve the Capacitated Vehicle Routing Problem (United States)

    Korayem, L.; Khorsid, M.; Kassem, S. S.


    The capacitated vehicle routing problem (CVRP) is a class of the vehicle routing problems (VRPs). In CVRP a set of identical vehicles having fixed capacities are required to fulfill customers' demands for a single commodity. The main objective is to minimize the total cost or distance traveled by the vehicles while satisfying a number of constraints, such as: the capacity constraint of each vehicle, logical flow constraints, etc. One of the methods employed in solving the CVRP is the cluster-first route-second method. It is a technique based on grouping of customers into a number of clusters, where each cluster is served by one vehicle. Once clusters are formed, a route determining the best sequence to visit customers is established within each cluster. The recently bio-inspired grey wolf optimizer (GWO), introduced in 2014, has proven to be efficient in solving unconstrained, as well as, constrained optimization problems. In the current research, our main contributions are: combining GWO with the traditional K-means clustering algorithm to generate the ‘K-GWO’ algorithm, deriving a capacitated version of the K-GWO algorithm by incorporating a capacity constraint into the aforementioned algorithm, and finally, developing 2 new clustering heuristics. The resulting algorithm is used in the clustering phase of the cluster-first route-second method to solve the CVR problem. The algorithm is tested on a number of benchmark problems with encouraging results.

  14. A new modified conjugate gradient coefficient for solving system of linear equations (United States)

    Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.


    Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

  15. Difficulties in Genetics Problem Solving. (United States)

    Tolman, Richard R.


    Examined problem-solving strategies of 30 high school students as they solved genetics problems. Proposes a new sequence of teaching genetics based on results: meiosis, sex chromosomes, sex determination, sex-linked traits, monohybrid and dihybrid crosses (humans), codominance (humans), and Mendel's pea experiments. (JN)

  16. Problem Solving, Scaffolding and Learning (United States)

    Lin, Shih-Yin


    Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…

  17. Problem Solving on a Monorail. (United States)

    Barrow, Lloyd H.; And Others


    This activity was created to address a lack of problem-solving activities for elementary children. A "monorail" activity from the Evening Science Program for K-3 Students and Parents program is presented to illustrate the problem-solving format. Designed for performance at stations by groups of two students. (LZ)

  18. Solving complex fisheries management problems

    DEFF Research Database (Denmark)

    Petter Johnsen, Jahn; Eliasen, Søren Qvist


    A crucial issue for the new EU common fisheries policy is how to solve the discard problem. Through a study of the institutional set up and the arrangements for solving the discard problem in Denmark, the Faroe Islands, Iceland and Norway, the article identifies the discard problem as related...

  19. Problem Solving with General Semantics. (United States)

    Hewson, David


    Discusses how to use general semantics formulations to improve problem solving at home or at work--methods come from the areas of artificial intelligence/computer science, engineering, operations research, and psychology. (PA)

  20. How to solve mathematical problems

    CERN Document Server

    Wickelgren, Wayne A


    Seven problem-solving techniques include inference, classification of action sequences, subgoals, contradiction, working backward, relations between problems, and mathematical representation. Also, problems from mathematics, science, and engineering with complete solutions.

  1. Interactive Problem-Solving Interventions

    African Journals Online (AJOL)

    Frew Demeke Alemu

    concerted efforts of unofficial actors to establish unofficial communication ... Frew Demeke Alemu (LLB, LLM in International Human Rights Law from Lund ..... 24 Tamra Pearson d'Estrée (2009), “Problem-Solving Approaches”, (in The SAGE ...

  2. Cognitive Backgrounds of Problem Solving: A Comparison of Open-Ended vs. Closed Mathematics Problems (United States)

    Bahar, Abdulkadir; Maker, C. June


    Problem solving has been a core theme in education for several decades. Educators and policy makers agree on the importance of the role of problem solving skills for school and real life success. A primary purpose of this study was to investigate the influence of cognitive abilities on mathematical problem solving performance of elementary…

  3. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving. (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu


    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  4. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components (United States)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.


    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  5. Customer-centered problem solving. (United States)

    Samelson, Q B


    If there is no single best way to attract new customers and retain current customers, there is surely an easy way to lose them: fail to solve the problems that arise in nearly every buyer-supplier relationship, or solve them in an unsatisfactory manner. Yet, all too frequently, companies do just that. Either we deny that a problem exists, we exert all our efforts to pin the blame elsewhere, or we "Band-Aid" the problem instead of fixing it, almost guaranteeing that we will face it again and again.

  6. Simon on Problem-Solving

    DEFF Research Database (Denmark)

    Foss, Kirsten; Foss, Nicolai Juul

    as a general approach to problem solving. We apply these Simonian ideas to organizational issues, specifically new organizational forms. Specifically, Simonian ideas allow us to develop a morphology of new organizational forms and to point to some design problems that characterize these forms.Keywords: Herbert...... Simon, problem-solving, new organizational forms. JEL Code: D23, D83......Two of Herbert Simon's best-known papers are "The Architecture of Complexity" and "The Structure of Ill-Structured Problems." We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...

  7. Interactive problem solving using LOGO

    CERN Document Server

    Boecker, Heinz-Dieter; Fischer, Gerhard


    This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more

  8. Inference rule and problem solving

    Energy Technology Data Exchange (ETDEWEB)

    Goto, S


    Intelligent information processing signifies an opportunity of having man's intellectual activity executed on the computer, in which inference, in place of ordinary calculation, is used as the basic operational mechanism for such an information processing. Many inference rules are derived from syllogisms in formal logic. The problem of programming this inference function is referred to as a problem solving. Although logically inference and problem-solving are in close relation, the calculation ability of current computers is on a low level for inferring. For clarifying the relation between inference and computers, nonmonotonic logic has been considered. The paper deals with the above topics. 16 references.

  9. Human Problem Solving in 2012 (United States)

    Funke, Joachim


    This paper presents a bibliography of 263 references related to human problem solving, arranged by subject matter. The references were taken from PsycInfo and Academic Premier data-base. Journal papers, book chapters, and dissertations are included. The topics include human development, education, neuroscience, and research in applied settings. It…

  10. Solved problems in classical electromagnetism

    CERN Document Server

    Franklin, Jerrold


    This original Dover publication is the companion to a new edition of the author's Classical Electromagnetism: Second Edition. The latter volume will feature only basic answers; this book will contain some problems from the reissue as well as many other new ones. All feature complete, worked-out solutions and form a valuable source of problem-solving material for students.

  11. Error Patterns in Problem Solving. (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  12. Quantitative Reasoning in Problem Solving (United States)

    Ramful, Ajay; Ho, Siew Yin


    In this article, Ajay Ramful and Siew Yin Ho explain the meaning of quantitative reasoning, describing how it is used in the to solve mathematical problems. They also describe a diagrammatic approach to represent relationships among quantities and provide examples of problems and their solutions.

  13. Students' Problem Solving and Justification (United States)

    Glass, Barbara; Maher, Carolyn A.


    This paper reports on methods of students' justifications of their solution to a problem in the area of combinatorics. From the analysis of the problem solving of 150 students in a variety of settings from high-school to graduate study, four major forms of reasoning evolved: (1) Justification by Cases, (2) Inductive Argument, (3) Elimination…

  14. Solving Differential Equations in R: Package deSolve

    Directory of Open Access Journals (Sweden)

    Karline Soetaert


    Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

  15. Problem solving skills for schizophrenia. (United States)

    Xia, J; Li, Chunbo


    The severe and long-lasting symptoms of schizophrenia are often the cause of severe disability. Environmental stress such as life events and the practical problems people face in their daily can worsen the symptoms of schizophrenia. Deficits in problem solving skills in people with schizophrenia affect their independent and interpersonal functioning and impair their quality of life. As a result, therapies such as problem solving therapy have been developed to improve problem solving skills for people with schizophrenia. To review the effectiveness of problem solving therapy compared with other comparable therapies or routine care for those with schizophrenia. We searched the Cochrane Schizophrenia Group's Register (September 2006), which is based on regular searches of BIOSIS, CENTRAL, CINAHL, EMBASE, MEDLINE and PsycINFO. We inspected references of all identified studies for further trials. We included all clinical randomised trials comparing problem solving therapy with other comparable therapies or routine care. We extracted data independently. For homogenous dichotomous data we calculated random effects, relative risk (RR), 95% confidence intervals (CI) and, where appropriate, numbers needed to treat (NNT) on an intention-to-treat basis. For continuous data, we calculated weighted mean differences (WMD) using a random effects statistical model. We included only three small trials (n=52) that evaluated problem solving versus routine care, coping skills training or non-specific interaction. Inadequate reporting of data rendered many outcomes unusable. We were unable to undertake meta-analysis. Overall results were limited and inconclusive with no significant differences between treatment groups for hospital admission, mental state, behaviour, social skills or leaving the study early. No data were presented for global state, quality of life or satisfaction. We found insufficient evidence to confirm or refute the benefits of problem solving therapy as an additional

  16. Genetics problem solving and worldview (United States)

    Dale, Esther

    The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.

  17. SHA-1, SAT-solving, and CNF

    CSIR Research Space (South Africa)

    Motara, YM


    Full Text Available the intersection between the SHA-1 preimage problem, the encoding of that problem for SAT-solving, and SAT-solving. The results demonstrate that SAT-solving is not yet a viable approach to take to solve the preimage problem, and also indicate that some...

  18. Assessing Algebraic Solving Ability: A Theoretical Framework (United States)

    Lian, Lim Hooi; Yew, Wun Thiam


    Algebraic solving ability had been discussed by many educators and researchers. There exists no definite definition for algebraic solving ability as it can be viewed from different perspectives. In this paper, the nature of algebraic solving ability in terms of algebraic processes that demonstrate the ability in solving algebraic problem is…

  19. Methods of solving nonstandard problems

    CERN Document Server

    Grigorieva, Ellina


    This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas.   It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions.  The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem.  Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems.   Over 360 problems are included with hints, ...

  20. Studies of Visual Attention in Physics Problem Solving (United States)

    Madsen, Adrian M.


    The work described here represents an effort to understand and influence visual attention while solving physics problems containing a diagram. Our visual system is guided by two types of processes--top-down and bottom-up. The top-down processes are internal and determined by ones prior knowledge and goals. The bottom-up processes are external and…

  1. Problem-solving skills and perceived stress among undergraduate students: The moderating role of hardiness. (United States)

    Abdollahi, Abbas; Abu Talib, Mansor; Carlbring, Per; Harvey, Richard; Yaacob, Siti Nor; Ismail, Zanariah


    This study was designed to examine the relationships between problem-solving skills, hardiness, and perceived stress and to test the moderating role of hardiness in the relationship between problem-solving skills and perceived stress among 500 undergraduates from Malaysian public universities. The analyses showed that undergraduates with poor problem-solving confidence, external personal control of emotion, and approach-avoidance style were more likely to report perceived stress. Hardiness moderated the relationships between problem-solving skills and perceived stress. These findings reinforce the importance of moderating role of hardiness as an influencing factor that explains how problem-solving skills affect perceived stress among undergraduates.

  2. Comprehension and computation in Bayesian problem solving

    Directory of Open Access Journals (Sweden)

    Eric D. Johnson


    Full Text Available Humans have long been characterized as poor probabilistic reasoners when presented with explicit numerical information. Bayesian word problems provide a well-known example of this, where even highly educated and cognitively skilled individuals fail to adhere to mathematical norms. It is widely agreed that natural frequencies can facilitate Bayesian reasoning relative to normalized formats (e.g. probabilities, percentages, both by clarifying logical set-subset relations and by simplifying numerical calculations. Nevertheless, between-study performance on transparent Bayesian problems varies widely, and generally remains rather unimpressive. We suggest there has been an over-focus on this representational facilitator (i.e. transparent problem structures at the expense of the specific logical and numerical processing requirements and the corresponding individual abilities and skills necessary for providing Bayesian-like output given specific verbal and numerical input. We further suggest that understanding this task-individual pair could benefit from considerations from the literature on mathematical cognition, which emphasizes text comprehension and problem solving, along with contributions of online executive working memory, metacognitive regulation, and relevant stored knowledge and skills. We conclude by offering avenues for future research aimed at identifying the stages in problem solving at which correct versus incorrect reasoners depart, and how individual difference might influence this time point.

  3. Problem solving through recreational mathematics

    CERN Document Server

    Averbach, Bonnie


    Historically, many of the most important mathematical concepts arose from problems that were recreational in origin. This book takes advantage of that fact, using recreational mathematics - problems, puzzles and games - to teach students how to think critically. Encouraging active participation rather than just observation, the book focuses less on mathematical results than on how these results can be applied to thinking about problems and solving them. Each chapter contains a diverse array of problems in such areas as logic, number and graph theory, two-player games of strategy, solitaire ga

  4. Problem solving and inference mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, K; Nakajima, R; Yonezawa, A; Goto, S; Aoyama, A


    The heart of the fifth generation computer will be powerful mechanisms for problem solving and inference. A deduction-oriented language is to be designed, which will form the core of the whole computing system. The language is based on predicate logic with the extended features of structuring facilities, meta structures and relational data base interfaces. Parallel computation mechanisms and specialized hardware architectures are being investigated to make possible efficient realization of the language features. The project includes research into an intelligent programming system, a knowledge representation language and system, and a meta inference system to be built on the core. 30 references.


    African Journals Online (AJOL)


    Sep 1, 2015 ... There is a large number of experimental and numerical works on melting and solidification of PCM[6-10], and also its usage as thermal management in building [11-14], electronic devices [15-16] and solar energy. [17-20].Most investigated geometries in melting and freezing process are sphere (spherical.

  6. Prompting in Web-Based Environments: Supporting Self-Monitoring and Problem Solving Skills in College Students (United States)

    Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei


    This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…

  7. Solving rational expectations models using Excel

    DEFF Research Database (Denmark)

    Strulik, Holger


    Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved......Problems of discrete time optimal control can be solved using backward iteration and Microsoft Excel. The author explains the method in general and shows how the basic models of neoclassical growth and real business cycles are solved...

  8. The Unconstrained Event Bulletin (UEB) for the IMS Seismic Network Spaning the Period May 15-28, 2010: a New Resource for Algorithm Development and Testing (United States)

    Brogan, R.; Young, C. J.; Ballard, S.


    A major problem with developing new data processing algorithms for seismic event monitoring is the lack of standard, high-quality "ground-truth" data sets to test against. The unfortunate effect of this is that new algorithms are often developed and tested with new data sets, making comparison of algorithms difficult and subjective. In an effort towards resolving this problem, we have developed the Unconstrained Event Bulletin (UEB), a ground-truth data set from the International Monitoring System (IMS) primary and auxiliary seismic networks for a two-week period in May 2010. All UEB analysis was performed by the same expert, who has more than 30 years of experience analyzing seismic data for nuclear explosion monitoring. We used the most complete International Data Centre (IDC) analyst-review event bulletin (the Late Event Bulletin or LEB) as a starting point for this analysis. To make the UEB more complete, we relaxed the minimum event definite criteria to the level of a pair of P-type and an S-type phases at a single station and using azimuth/slowness as defining. To add even more events that our analyst recognized and didn't want to omit, in rare cases, events were constructed using only 1 P-phase. Perhaps most importantly, on average our analyst spent more than 60 hours per day of data, far more than was possible in the production of the LEB. The result of all this was that while the LEB had 2,101 LEB events for the 2-week time period, we ended up with 11,435 events in the UEB, an increase of over 400%. New events are located all over the world and include both earthquakes and manmade events such as mining explosions. Our intent is to make our UEB data set openly available for all researchers to use for testing detection, correlation, and location algorithms, thus making it much easier to objectively compare different research efforts. Acknowledgement: Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

  9. Solve the Dilemma of Over-Simplification (United States)

    Schmitt, Gerhard

    Complexity science can help to understand the functioning and the interaction of the components of a city. In 1965, Christopher Alexander gave in his book A city is not a tree a description of the complex nature of urban organization. At this time, neither high-speed computers nor urban big data existed. Today, Luis Bettencourt et al. use complexity science to analyze data for countries, regions, or cities. The results can be used globally in other cities. Objectives of complexity science with regard to future cities are the observation and identification of tendencies and regularities in behavioral patterns, and to find correlations between them and spatial configurations. Complex urban systems cannot be understood in total yet. But research focuses on describing the system by finding some simple, preferably general and emerging patterns and rules that can be used for urban planning. It is important that the influencing factors are not just geo-spatial patterns but also consider variables which are important for the design quality. Complexity science is a way to solve the dilemma of oversimplification of insights from existing cities and their applications to new cities. An example: The effects of streets, public places and city structures on citizens and their behavior depend on how they are perceived. To describe this perception, it is not sufficient to consider only particular characteristics of the urban environment. Different aspects play a role and influence each other. Complexity science could take this fact into consideration and handle the non-linearity of the system...

  10. LEGO Robotics: An Authentic Problem Solving Tool? (United States)

    Castledine, Alanah-Rei; Chalmers, Chris


    With the current curriculum focus on correlating classroom problem solving lessons to real-world contexts, are LEGO robotics an effective problem solving tool? This present study was designed to investigate this question and to ascertain what problem solving strategies primary students engaged with when working with LEGO robotics and whether the…

  11. Perspectives on Problem Solving and Instruction (United States)

    van Merrienboer, Jeroen J. G.


    Most educators claim that problem solving is important, but they take very different perspective on it and there is little agreement on how it should be taught. This article aims to sort out the different perspectives and discusses problem solving as a goal, a method, and a skill. As a goal, problem solving should not be limited to well-structured…

  12. Assessing Leadership and Problem-Solving Skills and Their Impacts in the Community. (United States)

    Rohs, F. Richard; Langone, Christine A.


    A pretest-posttest control group design was used to assess the leadership and problem-solving skills of 281 participants and 110 controls in a statewide community leadership development program. Quantitative and qualitative data demonstrate that the program has been a catalyst to influence leadership and problem-solving skills for community…

  13. Technology Confidence, Competence and Problem Solving Strategies: Differences within Online and Face-to-Face Formats (United States)

    Peterson, Sharon L.; Palmer, Louann Bierlein


    This study identified the problem solving strategies used by students within a university course designed to teach pre-service teachers educational technology, and whether those strategies were influenced by the format of the course (i.e., face-to-face computer lab vs. online). It also examined to what extent the type of problem solving strategies…

  14. Review on solving the forward problem in EEG source analysis

    Directory of Open Access Journals (Sweden)

    Vergult Anneleen


    methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-relaxation, conjugate gradients method and algebraic multigrid method. Conclusion Solving the forward problem has been well documented in the past decades. In the past simplified spherical head models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of the head model and of the numerical techniques on the solution of the forward problem.

  15. Community-powered problem solving. (United States)

    Gouillart, Francis; Billings, Douglas


    Traditionally, companies have managed their constituencies with specific processes: marketing to customers, procuring from vendors, developing HR policies for employees, and so on. The problem is, such processes focus on repeatability and compliance, so they can lead to stagnation. Inviting your constituencies to collectively help you solve problems and exploit opportunities--"co-creation"--is a better approach. It allows you to continually tap the skills and insights of huge numbers of stakeholders and develop new ways to produce value for all. The idea is to provide stakeholders with platforms (physical and digital forums) on which they can interact, get them to start exploring new experiences and connections, and let the system grow organically. A co-creation initiative by a unit of Becton, Dickinson and Company demonstrates how this works. A global leader in syringes, BD set out to deepen its ties with hospital customers and help them reduce the incidence of infections from unsafe injection and syringe disposal practices. The effort began with a cross-functional internal team, brought in the hospital procurement and supply managers BD had relationships with, and then reached out to hospitals' infection-prevention and occupational health leaders. Eventually product designers, nurses, sustainability staffers, and even hospital CFOs were using the platform, contributing data that generated new best practices and reduced infections.

  16. Students’ difficulties in probabilistic problem-solving (United States)

    Arum, D. P.; Kusmayadi, T. A.; Pramudya, I.


    There are many errors can be identified when students solving mathematics problems, particularly in solving the probabilistic problem. This present study aims to investigate students’ difficulties in solving the probabilistic problem. It focuses on analyzing and describing students errors during solving the problem. This research used the qualitative method with case study strategy. The subjects in this research involve ten students of 9th grade that were selected by purposive sampling. Data in this research involve students’ probabilistic problem-solving result and recorded interview regarding students’ difficulties in solving the problem. Those data were analyzed descriptively using Miles and Huberman steps. The results show that students have difficulties in solving the probabilistic problem and can be divided into three categories. First difficulties relate to students’ difficulties in understanding the probabilistic problem. Second, students’ difficulties in choosing and using appropriate strategies for solving the problem. Third, students’ difficulties with the computational process in solving the problem. Based on the result seems that students still have difficulties in solving the probabilistic problem. It means that students have not able to use their knowledge and ability for responding probabilistic problem yet. Therefore, it is important for mathematics teachers to plan probabilistic learning which could optimize students probabilistic thinking ability.

  17. IDEAL Problem Solving dalam Pembelajaran Matematika

    Directory of Open Access Journals (Sweden)

    Eny Susiana


    Full Text Available Most educators agree that problem solving is among the most meaningful and importantkinds of learning and thingking. That is, the central focus of learning and instructionshould be learning to solve problems. There are several warrants supporting that claims.They are authenticity, relevance, problem solving engages deeper learning angtherefore enhances meaning making, and constructed to represent problems (problemsolving is more meaningful. It is the reason why we must provide teaching and learningto make student’s problem solving skill in progress. There are many informationprocessingmodels of problem solving, such as simplified model of the problem-solvingprocess by Gicks, Polya’s problem solving process etc. One of them is IDEAL problemsolving. Each letter of IDEAL is stand for an aspect of thinking that is important forproblem solving. IDEAL is identify problem, Define Goal, Explore possible strategies,Anticipate outcme and Act, and Look back and learn. Using peer interaction andquestion prompt in small group in IDEAL problem solving teaching and Learning canimprove problem solving skill.Kata kunci: IDEAL Problem Solving, Interaksi Sebaya, Pertanyaan Penuntun, KelompokKecil.

  18. The Future of Design: Unframed Problem Solving in Design Education

    DEFF Research Database (Denmark)

    Friis, Silje Alberthe Kamille; Gelting, Anne Katrine Gøtzsche


    The present paper sets out to investigate the impact and significance of a 3rd semester course in design methods, complex problem solving, and cross-disciplinary collaboration to the students within six design disciplines as experienced by the students three years later. The course reflects a shi......, society, and technology influencing the future disciplines and practices of design and thus the professional roles that they themselves might take....

  19. [Methods for teaching problem-solving in medical schools]. (United States)

    Shumway, J M; Vargas, M E; Heller, L E


    The need to include in the medical curriculum instructional activities to promote the development of problem-solving abilities has been asserted at the national and international levels. In research on the mental process involved in the solution of problems in medicine, problem-solving has been defined as a hypothetical-deductive activity engaged in by experienced physicians, in which the early generation of hypotheses influences the subsequent gathering of information. This article comments briefly on research on the mental process by which medical problems are solved. It describes the methods that research has shown to be most applicable in instruction to develop problem-solving abilities, and presents some educational principles that justify their application. The "trail-following" approach is the method that has been most commonly used to study the physician's problem-solving behavior. The salient conclusions from this research are that in the problem-solving process the diagnostic hypothesis is generated very early on and with limited data; the number of hypotheses is small; the problem-solving approach is specific to the type of medical problem and case in hand; and the accumulation of medical knowledge and experience forms the basis of clinical competence. Four methods for teaching the solution of problems are described: case presentation, the rain of ideas, the nominal groups technique and decision-making consensus, the census and analysis of forces in the field, and the analysis of clinical decisions. These methods are carried out in small groups. The advantages of the small groups are that the students are active participants in the learning process, they receive formative evaluation of their performance in a setting conductive to learning, and are able to interact with their instructor if he makes proper use of the right questioning techniques. While no single problem-solving method can be useful to all students or in all the problems they encounter

  20. Can Architecture Design Solve Social Problem? (United States)

    Ginting, S. W.; TSB Darjosanjoto, E.; Sulistyarso, H.


    Most of architects and urban designers believe physical design gives impact on our social life. For example, a sign or landmark in the middle of a city makes people find orientation easier. In vice verse, most of social scientists believe it is social dynamic that plays role in shaping our space. How people spend their time moving from real space into cyber space is a proof that life style and IT give impact to space usage. This paper argues that interaction between physical design and social change is a two ways process. Both design aspect and social dynamic influence each other. This paper aims to examine how designing of gated community plays important role in increasing or decreasing segregation, both spatially and socially. The paper explores some architectural design principles applied in a gated community called CitraLand in west Surabaya, Indonesia, and addresses segregation between CitraLanders and outside kampung. We find CitraLand is designed openly and fully accessible for outsiders. It provides public spaces and several accessible gates and streets without walls and fences making all places inside and outside CitraLand spatially integrated. What’s interesting is it still reinforces social segregation due to its policy on prohibiting using the public park. We believe CitraLand’s planning and designing has successfully solved segregation problem spatially not socially.

  1. Problem-solving in a Constructivist Environment

    Directory of Open Access Journals (Sweden)

    Lee Chien Sing


    Full Text Available The dynamic challenges of an increasingly borderless world buoyed by advances in telecommunications and information technology has resulted in educational reform and subsequently, a reconceptualisation of what constitutes a learner, learning and the influence of the learning environment on the process of learning. In keeping up with the changing trends and challenges of an increasingly networked, dynamic and challenging international community, means to provide an alternative environment that stimulates inquiry and equips learners with the skills needed to manage technological change and innovations must be considered. This paper discusses the importance of interaction, cognition and context, collaboration in a networked computer-mediated environment, the problem-solving approach as a catalyst in stimulating creative and critical thinking and in providing context for meaningful interaction and whether the interactive environment created through computer-mediated collaboration will motivate learners to be responsible for their own learning and be independent thinkers. The sample involved learners from three schools in three different countries. Findings conclude that a rich interactive environment must be personally relevant to the learner by simulating authentic problems without lowering the degree of cognitive complexity. Review in curriculum, assessment and teacher training around constructivist principles are also imperative as these interrelated factors form part of the learning process system.

  2. Rumination, Social Problem Solving and Suicide Intent Among Egyptians With a Recent Suicide Attempt. (United States)

    Sharaf, Amira Y; Lachine, Ola A; Thompson, Elaine A


    The more complex influences of social problem-solving abilities and rumination-specifically brooding and reflection-on suicide intent is not well understood. We hypothesized that social problem solving would moderate the association between reflection and suicide intent, and mediate the influence of brooding on suicide intent. A convenience sample (N=186) of individuals hospitalized for recent suicide attempt was interviewed, assessing suicide intent, social problem solving, brooding, reflection and depression. Brooding and reflection were positively associated with suicide intent. The mediating, but not the moderating, hypothesis was supported. Brooding was not significant (β=0.15, t=1.92, p=0.06) with social problem solving controlled. Interventions to disengage rumination and improve social problem-solving skills are underscored. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Conceptual problem solving in high school physics


    Jennifer L. Docktor; Natalie E. Strand; José P. Mestre; Brian H. Ross


    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in w...

  4. Solving global optimization problems on GPU cluster

    Energy Technology Data Exchange (ETDEWEB)

    Barkalov, Konstantin; Gergel, Victor; Lebedev, Ilya [Lobachevsky State University of Nizhni Novgorod, Gagarin Avenue 23, 603950 Nizhni Novgorod (Russian Federation)


    The paper contains the results of investigation of a parallel global optimization algorithm combined with a dimension reduction scheme. This allows solving multidimensional problems by means of reducing to data-independent subproblems with smaller dimension solved in parallel. The new element implemented in the research consists in using several graphic accelerators at different computing nodes. The paper also includes results of solving problems of well-known multiextremal test class GKLS on Lobachevsky supercomputer using tens of thousands of GPU cores.

  5. Information Seeking When Problem Solving: Perspectives of Public Health Professionals. (United States)

    Newman, Kristine; Dobbins, Maureen; Yost, Jennifer; Ciliska, Donna


    Given the many different types of professionals working in public health and their diverse roles, it is likely that their information needs, information-seeking behaviors, and problem-solving abilities differ. Although public health professionals often work in interdisciplinary teams, few studies have explored their information needs and behaviors within the context of teamwork. This study explored the relationship between Canadian public health professionals' perceptions of their problem-solving abilities and their information-seeking behaviors with a specific focus on the use of evidence in practice settings. It also explored their perceptions of collaborative information seeking and the work contexts in which they sought information. Key Canadian contacts at public health organizations helped recruit study participants through their list-servs. An electronic survey was used to gather data about (a) individual information-seeking behaviors, (b) collaborative information-seeking behaviors, (c) use of evidence in practice environments, (d) perceived problem-solving abilities, and (e) demographic characteristics. Fifty-eight public health professionals were recruited, with different roles and representing most Canadian provinces and one territory. A significant relationship was found between perceived problem-solving abilities and collaborative information-seeking behavior (r = -.44, p public health professionals take a shared, active approach to problem solving, maintain personal control, and have confidence, they are more likely collaborate with others in seeking information to complete a work task. Administrators of public health organizations should promote collaboration by implementing effective communication and information-seeking strategies, and by providing information resources and retrieval tools. Public health professionals' perceived problem-solving abilities can influence how they collaborate in seeking information. Educators in public health

  6. Applying Cooperative Techniques in Teaching Problem Solving

    Directory of Open Access Journals (Sweden)

    Krisztina Barczi


    Full Text Available Teaching how to solve problems – from solving simple equations to solving difficult competition tasks – has been one of the greatest challenges for mathematics education for many years. Trying to find an effective method is an important educational task. Among others, the question arises as to whether a method in which students help each other might be useful. The present article describes part of an experiment that was designed to determine the effects of cooperative teaching techniques on the development of problem-solving skills.

  7. Assertiveness and problem solving in midwives. (United States)

    Yurtsal, Zeliha Burcu; Özdemir, Levent


    Midwifery profession is required to bring solutions to problems and a midwife is expected to be an assertive person and to develop midwifery care. This study was planned to examine the relationship between assertiveness and problem-solving skills of midwives. This cross-sectional study was conducted with 201 midwives between July 2008 and February 2009 in the city center of Sivas. The Rathus Assertiveness Schedule (RAS) and Problem Solving Inventory (PSI) were used to determine the level of assertiveness and problem-solving skills of midwives. Statistical methods were used as mean, standard deviation, percentage, Student's T, ANOVA and Tukey HSD, Kruskal Wallis, Fisher Exact, Pearson Correlation and Chi-square tests and P problem-solving skills training. A statistically significant negative correlation was found between the RAS and PSI scores. The RAS scores decreased while the problem-solving scores increased (r: -0451, P problem solving skills of midwives, and midwives who were assertive solved their problems better than did others. Assertiveness and problem-solving skills training will contribute to the success of the midwifery profession. Midwives able to solve problems, and display assertive behaviors will contribute to the development of midwifery profession.

  8. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf


    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  9. Personality-dependent differences in problem-solving performance in a social context reflect foraging strategies. (United States)

    Zandberg, Lies; Quinn, John L; Naguib, Marc; van Oers, Kees


    Individuals develop innovative behaviours to solve foraging challenges in the face of changing environmental conditions. Little is known about how individuals differ in their tendency to solve problems and in their subsequent use of this solving behaviour in social contexts. Here we investigated whether individual variation in problem-solving performance could be explained by differences in the likelihood of solving the task, or if they reflect differences in foraging strategy. We tested this by studying the use of a novel foraging skill in groups of great tits (Parus major), consisting of three naive individuals with different personality, and one knowledgeable tutor. We presented them with multiple, identical foraging devices over eight trials. Though birds of different personality type did not differ in solving latency; fast and slow explorers showed a steeper increase over time in their solving rate, compared to intermediate explorers. Despite equal solving potential, personality influenced the subsequent use of the skill, as well as the pay-off received from solving. Thus, variation in the tendency to solve the task reflected differences in foraging strategy among individuals linked to their personality. These results emphasize the importance of considering the social context to fully understand the implications of learning novel skills. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Distance Measurement Solves Astrophysical Mysteries (United States)


    Location, location, and location. The old real-estate adage about what's really important proved applicable to astrophysics as astronomers used the sharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) to pinpoint the distance to a pulsar. Their accurate distance measurement then resolved a dispute over the pulsar's birthplace, allowed the astronomers to determine the size of its neutron star and possibly solve a mystery about cosmic rays. "Getting an accurate distance to this pulsar gave us a real bonanza," said Walter Brisken, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM. Monogem Ring The Monogem Ring, in X-Ray Image by ROSAT satellite CREDIT: Max-Planck Institute, American Astronomical Society (Click on Image for Larger Version) The pulsar, called PSR B0656+14, is in the constellation Gemini, and appears to be near the center of a circular supernova remnant that straddles Gemini and its neighboring constellation, Monoceros, and is thus called the Monogem Ring. Since pulsars are superdense, spinning neutron stars left over when a massive star explodes as a supernova, it was logical to assume that the Monogem Ring, the shell of debris from a supernova explosion, was the remnant of the blast that created the pulsar. However, astronomers using indirect methods of determining the distance to the pulsar had concluded that it was nearly 2500 light-years from Earth. On the other hand, the supernova remnant was determined to be only about 1000 light-years from Earth. It seemed unlikely that the two were related, but instead appeared nearby in the sky purely by a chance juxtaposition. Brisken and his colleagues used the VLBA to make precise measurements of the sky position of PSR B0656+14 from 2000 to 2002. They were able to detect the slight offset in the object's apparent position when viewed from opposite sides of Earth's orbit around the Sun. This effect, called parallax, provides a direct measurement of

  11. Creativity and Insight in Problem Solving (United States)

    Golnabi, Laura


    This paper analyzes the thought process involved in problem solving and its categorization as creative thinking as defined by psychologist R. Weisberg (2006). Additionally, the notion of insight, sometimes present in unconscious creative thinking and often leading to creative ideas, is discussed in the context of geometry problem solving. In…

  12. Metacognition: Student Reflections on Problem Solving (United States)

    Wismath, Shelly; Orr, Doug; Good, Brandon


    Twenty-first century teaching and learning focus on the fundamental skills of critical thinking and problem solving, creativity and innovation, and collaboration and communication. Metacognition is a crucial aspect of both problem solving and critical thinking, but it is often difficult to get students to engage in authentic metacognitive…

  13. Parallel Algorithm Solves Coupled Differential Equations (United States)

    Hayashi, A.


    Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

  14. Measuring Problem Solving Skills in "Portal 2" (United States)

    Shute, Valerie J.; Wang, Lubin


    This paper examines possible improvement to problem solving skills as a function of playing the video game "Portal 2." Stealth assessment is used in the game to evaluate students' problem solving abilities--specifically basic and flexible rule application. The stealth assessment measures will be validated against commonly accepted…

  15. Conceptual Problem Solving in High School Physics (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.


    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an…

  16. Concept mapping instrumental support for problem solving

    NARCIS (Netherlands)

    Stoyanov, S.; Stoyanov, Slavi; Kommers, Petrus A.M.


    The main theoretical position of this paper is that it is the explicit problem-solving support in concept mapping software that produces a stronger effect in problem-solving performance than the implicit support afforded by the graphical functionality of concept mapping software. Explicit

  17. Problem Solving Methods in Engineering Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C


    This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...

  18. The Process of Solving Complex Problems (United States)

    Fischer, Andreas; Greiff, Samuel; Funke, Joachim


    This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…

  19. Strategy Keys as Tools for Problem Solving (United States)

    Herold-Blasius, Raja


    Problem solving is one of the main competences we seek to teach students at school for use in their future lives. However, when dealing with mathematical problems, teachers encounter a wide variety of difficulties. To foster students' problem-solving skills, the authors developed "strategy keys." Strategy keys can serve as material to…

  20. Problem Solving Strategies among Primary School Teachers (United States)

    Yew, Wun Thiam; Lian, Lim Hooi; Meng, Chew Cheng


    The purpose of this article was to examine problem solving strategies among primary school teachers. The researchers employed survey research design to examine their problem solving strategies. The participants of this study consisted of 120 primary school teachers from a public university in Peninsula Malaysia who enrolled in a 4-year Graduating…

  1. Teaching Effective Problem Solving Strategies for Interns (United States)

    Warren, Louis L.


    This qualitative study investigates what problem solving strategies interns learn from their clinical teachers during their internships. Twenty-four interns who completed their internship in the elementary grades shared what problem solving strategies had the greatest impact upon them in learning how to deal with problems during their internship.…

  2. Some Applications of Algebraic System Solving (United States)

    Roanes-Lozano, Eugenio


    Technology and, in particular, computer algebra systems, allows us to change both the way we teach mathematics and the mathematical curriculum. Curiously enough, unlike what happens with linear system solving, algebraic system solving is not widely known. The aim of this paper is to show that, although the theory lying behind the "exact…

  3. Mathematical problem solving in primary school

    NARCIS (Netherlands)

    Kolovou, A.


    A student is engaged in (non-routine) problem solving when there is no clear pathway to the solution. In contrast to routine problems, non-routine ones cannot be solved through the direct application of a standard procedure. Consider the following problem: In a quiz you get two points for each

  4. A Multivariate Model of Physics Problem Solving (United States)

    Taasoobshirazi, Gita; Farley, John


    A model of expertise in physics problem solving was tested on undergraduate science, physics, and engineering majors enrolled in an introductory-level physics course. Structural equation modeling was used to test hypothesized relationships among variables linked to expertise in physics problem solving including motivation, metacognitive planning,…

  5. Solving applied mathematical problems with Matlab

    CERN Document Server

    Xue, Dingyu


    Computer Mathematics Language-An Overview. Fundamentals of MATLAB Programming. Calculus Problems. MATLAB Computations of Linear Algebra Problems. Integral Transforms and Complex Variable Functions. Solutions to Nonlinear Equations and Optimization Problems. MATLAB Solutions to Differential Equation Problems. Solving Interpolations and Approximations Problems. Solving Probability and Mathematical Statistics Problems. Nontraditional Solution Methods for Mathematical Problems.

  6. The effectiveness of problem-based learning on students’ problem solving ability in vector analysis course (United States)

    Mushlihuddin, R.; Nurafifah; Irvan


    The student’s low ability in mathematics problem solving proved to the less effective of a learning process in the classroom. Effective learning was a learning that affects student’s math skills, one of which is problem-solving abilities. Problem-solving capability consisted of several stages: understanding the problem, planning the settlement, solving the problem as planned, re-examining the procedure and the outcome. The purpose of this research was to know: (1) was there any influence of PBL model in improving ability Problem solving of student math in a subject of vector analysis?; (2) was the PBL model effective in improving students’ mathematical problem-solving skills in vector analysis courses? This research was a quasi-experiment research. The data analysis techniques performed from the test stages of data description, a prerequisite test is the normality test, and hypothesis test using the ANCOVA test and Gain test. The results showed that: (1) there was an influence of PBL model in improving students’ math problem-solving abilities in vector analysis courses; (2) the PBL model was effective in improving students’ problem-solving skills in vector analysis courses with a medium category.

  7. Synthesizing Huber's Problem Solving and Kolb's Learning Cycle: A Balanced Approach to Technical Problem Solving (United States)

    Kamis, Arnold; Khan, Beverly K.


    How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental study that tested several hypotheses derived from Kolb's experiential learning cycle and Huber's problem solving model. As subjects solved a network subnetting problem, they mapped their mental processes according to Huber's…

  8. Pre-Service Class Teacher' Ability in Solving Mathematical Problems and Skills in Solving Daily Problems (United States)

    Aljaberi, Nahil M.; Gheith, Eman


    This study aims to investigate the ability of pre-service class teacher at University of Petrain solving mathematical problems using Polya's Techniques, their level of problem solving skills in daily-life issues. The study also investigates the correlation between their ability to solve mathematical problems and their level of problem solving…

  9. PSQP: Puzzle Solving by Quadratic Programming. (United States)

    Andalo, Fernanda A; Taubin, Gabriel; Goldenstein, Siome


    In this article we present the first effective method based on global optimization for the reconstruction of image puzzles comprising rectangle pieces-Puzzle Solving by Quadratic Programming (PSQP). The proposed novel mathematical formulation reduces the problem to the maximization of a constrained quadratic function, which is solved via a gradient ascent approach. The proposed method is deterministic and can deal with arbitrary identical rectangular pieces. We provide experimental results showing its effectiveness when compared to state-of-the-art approaches. Although the method was developed to solve image puzzles, we also show how to apply it to the reconstruction of simulated strip-shredded documents, broadening its applicability.

  10. Solving the Schroedinger equation using Smolyak interpolants

    International Nuclear Information System (INIS)

    Avila, Gustavo; Carrington, Tucker Jr.


    In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased

  11. Improving mathematical problem solving : A computerized approach

    NARCIS (Netherlands)

    Harskamp, EG; Suhre, CJM

    Mathematics teachers often experience difficulties in teaching students to become skilled problem solvers. This paper evaluates the effectiveness of two interactive computer programs for high school mathematics problem solving. Both programs present students with problems accompanied by instruction

  12. Indoor Air Quality Problem Solving Tool (United States)

    Use the IAQ Problem Solving Tool to learn about the connection between health complaints and common solutions in schools. This resource provides an easy, step-by-step process to start identifying and resolving IAQ problems found at your school.

  13. Problem solving using soft systems methodology. (United States)

    Land, L

    This article outlines a method of problem solving which considers holistic solutions to complex problems. Soft systems methodology allows people involved in the problem situation to have control over the decision-making process.

  14. Exact Algorithms for Solving Stochastic Games

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels


    Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....

  15. How to solve applied mathematics problems

    CERN Document Server

    Moiseiwitsch, B L


    This workbook bridges the gap between lectures and practical applications, offering students of mathematics, engineering, and physics the chance to practice solving problems from a wide variety of fields. 2011 edition.

  16. Physics: Quantum problems solved through games (United States)

    Maniscalco, Sabrina


    Humans are better than computers at performing certain tasks because of their intuition and superior visual processing. Video games are now being used to channel these abilities to solve problems in quantum physics. See Letter p.210

  17. Photoreactors for Solving Problems of Environmental Pollution (United States)

    Tchaikovskaya, O. N.; Sokolova, I. V.


    Designs and physical aspects of photoreactors, their capabilities for a study of kinetics and mechanisms of processes proceeding under illumination with light, as well as application of photoreactors for solving various applied problem are discussed.

  18. The art and science of problem solving

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui


    In this paper we will document that real-life problem solving in complex situations demands both rational (scientific) and intuitive (artistic) thinking. First, the concepts of art and science will be discussed; differences and similarities will be enhanced. Thereafter the concept of group problem...... solving facilitation both as science and art will be presented. A case study related to examination's planning will be discussed to illustrate the main concepts in practice. In addition, other cases studies will also be shortly presented....

  19. Local Strategy Improvement for Parity Game Solving


    Friedmann, Oliver; Lange, Martin


    The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may...

  20. Conceptual problem solving in high school physics (United States)

    Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.


    Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  1. Could HPS Improve Problem-Solving? (United States)

    Coelho, Ricardo Lopes


    It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.

  2. Conceptual problem solving in high school physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor


    Full Text Available Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers’ implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.

  3. Enhancement of problem solving ability of high school students through learning with real engagement in active problem solving (REAPS) model on the concept of heat transfer (United States)

    Yulindar, A.; Setiawan, A.; Liliawati, W.


    This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.

  4. Noticing relevant problem features: activating prior knowledge affects problem solving by guiding encoding (United States)

    Crooks, Noelle M.; Alibali, Martha W.


    This study investigated whether activating elements of prior knowledge can influence how problem solvers encode and solve simple mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __). Past work has shown that such problems are difficult for elementary school students (McNeil and Alibali, 2000). One possible reason is that children's experiences in math classes may encourage them to think about equations in ways that are ultimately detrimental. Specifically, children learn a set of patterns that are potentially problematic (McNeil and Alibali, 2005a): the perceptual pattern that all equations follow an “operations = answer” format, the conceptual pattern that the equal sign means “calculate the total”, and the procedural pattern that the correct way to solve an equation is to perform all of the given operations on all of the given numbers. Upon viewing an equivalence problem, knowledge of these patterns may be reactivated, leading to incorrect problem solving. We hypothesized that these patterns may negatively affect problem solving by influencing what people encode about a problem. To test this hypothesis in children would require strengthening their misconceptions, and this could be detrimental to their mathematical development. Therefore, we tested this hypothesis in undergraduate participants. Participants completed either control tasks or tasks that activated their knowledge of the three patterns, and were then asked to reconstruct and solve a set of equivalence problems. Participants in the knowledge activation condition encoded the problems less well than control participants. They also made more errors in solving the problems, and their errors resembled the errors children make when solving equivalence problems. Moreover, encoding performance mediated the effect of knowledge activation on equivalence problem solving. Thus, one way in which experience may affect equivalence problem solving is by influencing what students encode about the

  5. Development of a problem solving evaluation instrument; untangling of specific problem solving assets (United States)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  6. The Enhancement of Communication Skill and Prediction Skill in Colloidal Concept by Problem Solving Learning


    Anggraini, Agita Dzulhajh; Fadiawati, Noor; Diawati, Chansyanah


    Accuracy educators in selecting and implementing learning models influence students' science process skills. Models of learning that can be applied to improve science process skills and tend constructivist among athers learning model of problem solving. This research was conducted to describe the effectiveness of the learning model of problem solving in improving communication skills and prediction skills. Subjects in this research were students of high school YP Unila Bandar Lampung Even ...

  7. The Improvement of Simple Explanation and Inferencetion Skills with Problem Solving


    Dewanti, Fransiska Olivia; Diawati, Chansyanah; Fadiawati, Noor


    The learning process is strongly influenced by the ability and accuracy of teachers in selecting and applying the learning model. The model can be applied to improve of  simple explanation and inferencetion skill is a model of problem solving. The purpose of this study was to describe the model of problem solving that are effective in improving simple explanation and inferencetion skills on the material electrolyte and non-electrolyte solution. This research use a quasi-experimental methods ...

  8. Lesion mapping of social problem solving. (United States)

    Barbey, Aron K; Colom, Roberto; Paul, Erick J; Chau, Aileen; Solomon, Jeffrey; Grafman, Jordan H


    Accumulating neuroscience evidence indicates that human intelligence is supported by a distributed network of frontal and parietal regions that enable complex, goal-directed behaviour. However, the contributions of this network to social aspects of intellectual function remain to be well characterized. Here, we report a human lesion study (n = 144) that investigates the neural bases of social problem solving (measured by the Everyday Problem Solving Inventory) and examine the degree to which individual differences in performance are predicted by a broad spectrum of psychological variables, including psychometric intelligence (measured by the Wechsler Adult Intelligence Scale), emotional intelligence (measured by the Mayer, Salovey, Caruso Emotional Intelligence Test), and personality traits (measured by the Neuroticism-Extraversion-Openness Personality Inventory). Scores for each variable were obtained, followed by voxel-based lesion-symptom mapping. Stepwise regression analyses revealed that working memory, processing speed, and emotional intelligence predict individual differences in everyday problem solving. A targeted analysis of specific everyday problem solving domains (involving friends, home management, consumerism, work, information management, and family) revealed psychological variables that selectively contribute to each. Lesion mapping results indicated that social problem solving, psychometric intelligence, and emotional intelligence are supported by a shared network of frontal, temporal, and parietal regions, including white matter association tracts that bind these areas into a coordinated system. The results support an integrative framework for understanding social intelligence and make specific recommendations for the application of the Everyday Problem Solving Inventory to the study of social problem solving in health and disease. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved

  9. Pupils' Visual Representations in Standard and Problematic Problem Solving in Mathematics: Their Role in the Breach of the Didactical Contract (United States)

    Deliyianni, Eleni; Monoyiou, Annita; Elia, Iliada; Georgiou, Chryso; Zannettou, Eleni


    This study investigated the modes of representations generated by kindergarteners and first graders while solving standard and problematic problems in mathematics. Furthermore, it examined the influence of pupils' visual representations on the breach of the didactical contract rules in problem solving. The sample of the study consisted of 38…

  10. Innovative problem solving by wild spotted hyenas (United States)

    Benson-Amram, Sarah; Holekamp, Kay E.


    Innovative animals are those able to solve novel problems or invent novel solutions to existing problems. Despite the important ecological and evolutionary consequences of innovation, we still know very little about the traits that vary among individuals within a species to make them more or less innovative. Here we examine innovative problem solving by spotted hyenas (Crocuta crocuta) in their natural habitat, and demonstrate for the first time in a non-human animal that those individuals exhibiting a greater diversity of initial exploratory behaviours are more successful problem solvers. Additionally, as in earlier work, we found that neophobia was a critical inhibitor of problem-solving success. Interestingly, although juveniles and adults were equally successful in solving the problem, juveniles were significantly more diverse in their initial exploratory behaviours, more persistent and less neophobic than were adults. We found no significant effects of social rank or sex on success, the diversity of initial exploratory behaviours, behavioural persistence or neophobia. Our results suggest that the diversity of initial exploratory behaviours, akin to some measures of human creativity, is an important, but largely overlooked, determinant of problem-solving success in non-human animals. PMID:22874748

  11. Task Context Influences Brain Activation during Music Listening

    Directory of Open Access Journals (Sweden)

    Andjela Markovic


    Full Text Available In this paper, we examined brain activation in subjects during two music listening conditions: listening while simultaneously rating the musical piece being played [Listening and Rating (LR] and listening to the musical pieces unconstrained [Listening (L]. Using these two conditions, we tested whether the sequence in which the two conditions were fulfilled influenced the brain activation observable during the L condition (LR → L or L → LR. We recorded high-density EEG during the playing of four well-known positively experienced soundtracks in two subject groups. One group started with the L condition and continued with the LR condition (L → LR; the second group performed this experiment in reversed order (LR → L. We computed from the recorded EEG the power for different frequency bands (theta, lower alpha, upper alpha, lower beta, and upper beta. Statistical analysis revealed that the power in all examined frequency bands increased during the L condition but only when the subjects had not had previous experience with the LR condition (i.e., L → LR. For the subjects who began with the LR condition, there were no power increases during the L condition. Thus, the previous experience with the LR condition prevented subjects from developing the particular mental state associated with the typical power increase in all frequency bands. The subjects without previous experience of the LR condition listened to the musical pieces in an unconstrained and undisturbed manner and showed a general power increase in all frequency bands. We interpret the fact that unconstrained music listening was associated with increased power in all examined frequency bands as a neural indicator of a mental state that can best be described as a mind-wandering state during which the subjects are “drawn into” the music.

  12. On Teaching Problem Solving in School Mathematics

    Directory of Open Access Journals (Sweden)

    Erkki Pehkonen


    Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.

  13. Methods of solving sequence and series problems

    CERN Document Server

    Grigorieva, Ellina


    This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...

  14. Solving the SAT problem using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Arunava Bhattacharjee


    Full Text Available In this paper we propose our genetic algorithm for solving the SAT problem. We introduce various crossover and mutation techniques and then make a comparative analysis between them in order to find out which techniques are the best suited for solving a SAT instance. Before the genetic algorithm is applied to an instance it is better to seek for unit and pure literals in the given formula and then try to eradicate them. This can considerably reduce the search space, and to demonstrate this we tested our algorithm on some random SAT instances. However, to analyse the various crossover and mutation techniques and also to evaluate the optimality of our algorithm we performed extensive experiments on benchmark instances of the SAT problem. We also estimated the ideal crossover length that would maximise the chances to solve a given SAT instance.

  15. AI tools in computer based problem solving (United States)

    Beane, Arthur J.


    The use of computers to solve value oriented, deterministic, algorithmic problems, has evolved a structured life cycle model of the software process. The symbolic processing techniques used, primarily in research, for solving nondeterministic problems, and those for which an algorithmic solution is unknown, have evolved a different model, much less structured. Traditionally, the two approaches have been used completely independently. With the advent of low cost, high performance 32 bit workstations executing identical software with large minicomputers and mainframes, it became possible to begin to merge both models into a single extended model of computer problem solving. The implementation of such an extended model on a VAX family of micro/mini/mainframe systems is described. Examples in both development and deployment of applications involving a blending of AI and traditional techniques are given.

  16. Local Strategy Improvement for Parity Game Solving

    Directory of Open Access Journals (Sweden)

    Oliver Friedmann


    Full Text Available The problem of solving a parity game is at the core of many problems in model checking, satisfiability checking and program synthesis. Some of the best algorithms for solving parity game are strategy improvement algorithms. These are global in nature since they require the entire parity game to be present at the beginning. This is a distinct disadvantage because in many applications one only needs to know which winning region a particular node belongs to, and a witnessing winning strategy may cover only a fractional part of the entire game graph. We present a local strategy improvement algorithm which explores the game graph on-the-fly whilst performing the improvement steps. We also compare it empirically with existing global strategy improvement algorithms and the currently only other local algorithm for solving parity games. It turns out that local strategy improvement can outperform these others by several orders of magnitude.

  17. The impact of conflict issues on fixed-pie perceptions, problem solving, and integrative outcomes in negotiation

    NARCIS (Netherlands)

    Harinck, F.; de Dreu, C.K.W.; van Vianen, A.E.M.


    It is argued that a negotiators fixed-pie perception, cooperative motivation, problem-solving behavior, and integrative outcomes are influenced by the content of the negotiationthe conflict issue. Negotiation involves conflicting interests, conflicting ideas about intellective problems, or

  18. New method for solving multidimensional scattering problem

    International Nuclear Information System (INIS)

    Melezhik, V.S.


    A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed

  19. Dreams and creative problem-solving. (United States)

    Barrett, Deirdre


    Dreams have produced art, music, novels, films, mathematical proofs, designs for architecture, telescopes, and computers. Dreaming is essentially our brain thinking in another neurophysiologic state-and therefore it is likely to solve some problems on which our waking minds have become stuck. This neurophysiologic state is characterized by high activity in brain areas associated with imagery, so problems requiring vivid visualization are also more likely to get help from dreaming. This article reviews great historical dreams and modern laboratory research to suggest how dreams can aid creativity and problem-solving. © 2017 New York Academy of Sciences.

  20. Student Obstacles in Solving Algebraic Thinking Problems (United States)

    Andini, W.; Suryadi, D.


    The aim of this research is to analize the student obstacles on solving algebraic thinking problems in low grades elementary school. This research is a preliminary qualitative research, and involved 66 students of grade 3 elementary school. From the analysis student test results, most of student experience difficulty in solving algebraic thinking problems. The main obstacle is the student’s difficulty in understanding the problem of generalizing the pattern because the students are not accustomed to see the rules that exist in generalize the pattern.

  1. Vacuum engineering, calculations, formulas, and solved exercises

    CERN Document Server

    Berman, Armand


    This book was written with two main objectives in mind-to summarize and organize the vast material of vacuum technology in sets of useful formulas, and to provide a collection of worked out exercises showing how to use these formulas for solving technological problems. It is an ideal reference source for those with little time to devote to a full mathematical treatment of the many problems issued in vacuum practice, but who have a working knowledge of the essentials of vacuum technology, elementary physics, and mathematics. This time saving book employs a problem-solving approach throughout, p

  2. Problem solving with genetic algorithms and Splicer (United States)

    Bayer, Steven E.; Wang, Lui


    Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.

  3. A Novel Approach for Solving Semidefinite Programs

    Directory of Open Access Journals (Sweden)

    Hong-Wei Jiao


    Full Text Available A novel linearizing alternating direction augmented Lagrangian approach is proposed for effectively solving semidefinite programs (SDP. For every iteration, by fixing the other variables, the proposed approach alternatively optimizes the dual variables and the dual slack variables; then the primal variables, that is, Lagrange multipliers, are updated. In addition, the proposed approach renews all the variables in closed forms without solving any system of linear equations. Global convergence of the proposed approach is proved under mild conditions, and two numerical problems are given to demonstrate the effectiveness of the presented approach.

  4. Solving inversion problems with neural networks (United States)

    Kamgar-Parsi, Behzad; Gualtieri, J. A.


    A class of inverse problems in remote sensing can be characterized by Q = F(x), where F is a nonlinear and noninvertible (or hard to invert) operator, and the objective is to infer the unknowns, x, from the observed quantities, Q. Since the number of observations is usually greater than the number of unknowns, these problems are formulated as optimization problems, which can be solved by a variety of techniques. The feasibility of neural networks for solving such problems is presently investigated. As an example, the problem of finding the atmospheric ozone profile from measured ultraviolet radiances is studied.

  5. Students' Errors in Solving the Permutation and Combination Problems Based on Problem Solving Steps of Polya (United States)

    Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel


    This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…

  6. The Effect of Learning Environments Based on Problem Solving on Students' Achievements of Problem Solving (United States)

    Karatas, Ilhan; Baki, Adnan


    Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…

  7. Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving (United States)

    Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim


    This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…

  8. Teaching Problem Solving without Modeling through "Thinking Aloud Pair Problem Solving." (United States)

    Pestel, Beverly C.


    Reviews research relevant to the problem of unsatisfactory student problem-solving abilities and suggests a teaching strategy that addresses the issue. Author explains how she uses teaching aloud problem solving (TAPS) in college chemistry and presents evaluation data. Among the findings are that the TAPS class got fewer problems completely right,…

  9. Solving Problems with the Percentage Bar (United States)

    van Galen, Frans; van Eerde, Dolly


    At the end of primary school all children more of less know what a percentage is, but yet they often struggle with percentage problems. This article describes a study in which students of 13 and 14 years old were given a written test with percentage problems and a week later were interviewed about the way they solved some of these problems. In a…

  10. A Microgenetic Study of Insightful Problem Solving (United States)

    Luwel, Koen; Siegler, Robert S.; Verschaffel, Lieven


    An eight-session microgenetic study of acquisition of an insightful problem-solving strategy was conducted. A total of 35 second graders who did not use this insightful strategy initially were assigned to two groups that differed in the frequency of problems likely to facilitate discovery and generalization of the strategy. Children in the…

  11. Perceptual Salience and Children's Multidimensional Problem Solving (United States)

    Odom, Richard D.; Corbin, David W.


    Uni- and multidimensional processing of 6- to 9-year olds was studied using recall tasks in which an array of stimuli was reconstructed to match a model array. Results indicated that both age groups were able to solve multidimensional problems, but that solution rate was retarded by the unidimensional processing of highly salient dimensions.…

  12. Problem Solving in the Early Years (United States)

    Diamond, Lindsay Lile


    Problem solving is recognized as a critical component to becoming a self-determined individual. The development of this skill should be fostered in the early years through the use of age-appropriate direct and embedded activities. However, many early childhood teachers may not be providing adequate instruction in this area. This column provides a…

  13. Young Children's Drawings in Problem Solving (United States)

    Bakar, Kamariah Abu; Way, Jennifer; Bobis, Janette


    This paper explores young children's drawings (6 years old) in early number and addition activities in Malaysia. Observation, informal interviews and analysis of drawings revealed two types of drawing, and gave insight into the transitional process required for children to utilise drawings in problem solving. We argue the importance of valuing and…

  14. Solving Mathematical Problems A Personal Perspective

    CERN Document Server

    Tao, Terence


    Authored by a leading name in mathematics, this engaging and clearly presented text leads the reader through the tactics involved in solving mathematical problems at the Mathematical Olympiad level. With numerous exercises and assuming only basic mathematics, this text is ideal for students of 14 years and above in pure mathematics.

  15. Problem-Solving Strategies for Career Planning. (United States)

    McBryde, Merry J.; Karr-Kidwell, PJ

    The need for new expertise in problem solving in the work setting has emerged as a woman's issue because work outside the home has become a primary means for personal goal attainment for about half the women in the United States and because traditional career patterns and norms are ineffective. Career planning is the process of individual career…

  16. Stuttering mostly speeds up solving parity games

    NARCIS (Netherlands)

    Cranen, S.; Keiren, J.J.A.; Willemse, T.A.C.; Bobaru, M.; Havelund, K.; Holzmann, G.J.; Joshi, R.


    We study the process theoretic notion of stuttering equivalence in the setting of parity games. We demonstrate that stuttering equivalent vertices have the same winner in the parity game. This means that solving a parity game can be accelerated by minimising the game graph with respect to stuttering

  17. Instruction Emphasizing Effort Improves Physics Problem Solving (United States)

    Li, Daoquan


    Effectively using strategies to solve complex problems is an important educational goal and is implicated in successful academic performance. However, people often do not spontaneously use the effective strategies unless they are motivated to do so. The present study was designed to test whether educating students about the importance of effort in…

  18. Problem-Solving: Scaling the "Brick Wall" (United States)

    Benson, Dave


    Across the primary and secondary phases, pupils are encouraged to use and apply their knowledge, skills, and understanding of mathematics to solve problems in a variety of forms, ranging from single-stage word problems to the challenge of extended rich tasks. Amongst many others, Cockcroft (1982) emphasised the importance and relevance of…

  19. Pose and Solve Varignon Converse Problems (United States)

    Contreras, José N.


    The activity of posing and solving problems can enrich learners' mathematical experiences because it fosters a spirit of inquisitiveness, cultivates their mathematical curiosity, and deepens their views of what it means to do mathematics. To achieve these goals, a mathematical problem needs to be at the appropriate level of difficulty,…

  20. Collaborative Problem Solving Methods towards Critical Thinking (United States)

    Yin, Khoo Yin; Abdullah, Abdul Ghani Kanesan; Alazidiyeen, Naser Jamil


    This research attempts to examine the collaborative problem solving methods towards critical thinking based on economy (AE) and non economy (TE) in the SPM level among students in the lower sixth form. The quasi experiment method that uses the modal of 3X2 factorial is applied. 294 lower sixth form students from ten schools are distributed…

  1. Modeling visual problem solving as analogical reasoning. (United States)

    Lovett, Andrew; Forbus, Kenneth


    We present a computational model of visual problem solving, designed to solve problems from the Raven's Progressive Matrices intelligence test. The model builds on the claim that analogical reasoning lies at the heart of visual problem solving, and intelligence more broadly. Images are compared via structure mapping, aligning the common relational structure in 2 images to identify commonalities and differences. These commonalities or differences can themselves be reified and used as the input for future comparisons. When images fail to align, the model dynamically rerepresents them to facilitate the comparison. In our analysis, we find that the model matches adult human performance on the Standard Progressive Matrices test, and that problems which are difficult for the model are also difficult for people. Furthermore, we show that model operations involving abstraction and rerepresentation are particularly difficult for people, suggesting that these operations may be critical for performing visual problem solving, and reasoning more generally, at the highest level. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Insightful problem solving in an Asian elephant.

    Directory of Open Access Journals (Sweden)

    Preston Foerder

    Full Text Available The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  3. Problem Solving Model for Science Learning (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.


    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  4. Supporting Organizational Problem Solving with a Workstation. (United States)


    G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called

  5. Mental Imagery in Creative Problem Solving. (United States)

    Polland, Mark J.

    In order to investigate the relationship between mental imagery and creative problem solving, a study of 44 separate accounts reporting mental imagery experiences associated with creative discoveries were examined. The data included 29 different scientists, among them Albert Einstein and Stephen Hawking, and 9 artists, musicians, and writers,…

  6. Problem solving environment for distributed interactive applications

    NARCIS (Netherlands)

    Rycerz, K.; Bubak, M.; Sloot, P.; Getov, V.; Gorlatch, S.; Bubak, M.; Priol, T.


    Interactive Problem Solving Environments (PSEs) offer an integrated approach for constructing and running complex systems, such as distributed simulation systems. To achieve efficient execution of High Level Architecture (HLA)-based distributed interactive simulations on the Grid, we introduce a PSE

  7. Solving jigsaw puzzles using image features

    DEFF Research Database (Denmark)

    Nielsen, Ture R.; Drewsen, Peter; Hansen, Klaus


    In this article, we describe a method for automatic solving of the jigsaw puzzle problem based on using image features instead of the shape of the pieces. The image features are used for obtaining an accurate measure for edge similarity to be used in a new edge matching algorithm. The algorithm i...

  8. Problem-Solving Test: Tryptophan Operon Mutants (United States)

    Szeberenyi, Jozsef


    This paper presents a problem-solving test that deals with the regulation of the "trp" operon of "Escherichia coli." Two mutants of this operon are described: in mutant A, the operator region of the operon carries a point mutation so that it is unable to carry out its function; mutant B expresses a "trp" repressor protein unable to bind…

  9. Solving Wicked Problems through Action Learning (United States)

    Crul, Liselore


    This account of practice outlines the Oxyme Action Learning Program which was conducted as part of the Management Challenge in my final year of the MSc in Coaching and Behavioral Change at Henley Business School. The central research questions were: (1) how action learning can help to solve wicked problems and (2) what the effect of an action…

  10. Quickfire Challenges to Inspire Problem Solving (United States)

    Harper, Suzanne R.; Cox, Dana C.


    In the authors' attempts to incorporate problem solving into their mathematics courses, they have found that student ambition and creativity are often hampered by feelings of risk, as many students are conditioned to value a produced solution over the actual process of building one. Eliminating risk is neither possible nor desired. The challenge,…

  11. Using Computer Simulations in Chemistry Problem Solving (United States)

    Avramiotis, Spyridon; Tsaparlis, Georgios


    This study is concerned with the effects of computer simulations of two novel chemistry problems on the problem solving ability of students. A control-experimental group, equalized by pair groups (n[subscript Exp] = n[subscript Ctrl] = 78), research design was used. The students had no previous experience of chemical practical work. Student…

  12. A method for solving neutron transport equation

    International Nuclear Information System (INIS)

    Dimitrijevic, Z.


    The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)

  13. Discovering Steiner Triple Systems through Problem Solving (United States)

    Sriraman, Bharath


    An attempt to implement problem solving as a teacher of ninth grade algebra is described. The problems selected were not general ones, they involved combinations and represented various situations and were more complex which lead to the discovery of Steiner triple systems.

  14. [Problem-solving strategies and marital satisfaction]. (United States)

    Kriegelewicz, Olga


    This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.

  15. Three-M in Word Problem Solving (United States)

    Hajra, Sayonita Ghosh; Kofman, Victoria


    We describe three activities that help undergraduates (pre-service teachers) to develop scientific vocabulary on measurable attributes and units of measurement. Measurable attributes are important features in understanding a word problem and solving the problem. These activities help students comprehend word problems better by identifying…

  16. Neural Network to Solve Concave Games


    Liu, Zixin; Wang, Nengfa


    The issue on neural network method to solve concave games is concerned. Combined with variational inequality, Ky Fan inequality, and projection equation, concave games are transformed into a neural network model. On the basis of the Lyapunov stable theory, some stability results are also given. Finally, two classic games’ simulation results are given to illustrate the theoretical results.

  17. Nanomedicine: Problem Solving to Treat Cancer (United States)

    Hemling, Melissa A.; Sammel, Lauren M.; Zenner, Greta; Payne, Amy C.; Crone, Wendy C.


    Many traditional classroom science and technology activities often ask students to complete prepackaged labs that ensure that everyone arrives at the same "scientifically accurate" solution or theory, which ignores the important problem-solving and creative aspects of scientific research and technological design. Students rarely have the…

  18. Solving Absolute Value Equations Algebraically and Geometrically (United States)

    Shiyuan, Wei


    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  19. Insightful problem solving in an Asian elephant. (United States)

    Foerder, Preston; Galloway, Marie; Barthel, Tony; Moore, Donald E; Reiss, Diana


    The "aha" moment or the sudden arrival of the solution to a problem is a common human experience. Spontaneous problem solving without evident trial and error behavior in humans and other animals has been referred to as insight. Surprisingly, elephants, thought to be highly intelligent, have failed to exhibit insightful problem solving in previous cognitive studies. We tested whether three Asian elephants (Elephas maximus) would use sticks or other objects to obtain food items placed out-of-reach and overhead. Without prior trial and error behavior, a 7-year-old male Asian elephant showed spontaneous problem solving by moving a large plastic cube, on which he then stood, to acquire the food. In further testing he showed behavioral flexibility, using this technique to reach other items and retrieving the cube from various locations to use as a tool to acquire food. In the cube's absence, he generalized this tool utilization technique to other objects and, when given smaller objects, stacked them in an attempt to reach the food. The elephant's overall behavior was consistent with the definition of insightful problem solving. Previous failures to demonstrate this ability in elephants may have resulted not from a lack of cognitive ability but from the presentation of tasks requiring trunk-held sticks as potential tools, thereby interfering with the trunk's use as a sensory organ to locate the targeted food.

  20. The Use of Transformations in Solving Equations (United States)

    Libeskind, Shlomo


    Many workshops and meetings with the US high school mathematics teachers revealed a lack of familiarity with the use of transformations in solving equations and problems related to the roots of polynomials. This note describes two transformational approaches to the derivation of the quadratic formula as well as transformational approaches to…

  1. Cooperative learning, problem solving and mediating artifacts

    African Journals Online (AJOL)


    10, 2012. 39. Cooperative learning, problem solving and mediating artifacts. F. Bahmaei6 & N. ... out cooperative learning in the end, post-test was done and by analyzing the tests it was concluded that ... Johnson et al, 1991 b, Reynolds et al. 1995, Vidakovic .... connection of mental constructs (Hiebert, Carpenter, 1992).

  2. Using CAS to Solve Classical Mathematics Problems (United States)

    Burke, Maurice J.; Burroughs, Elizabeth A.


    Historically, calculus has displaced many algebraic methods for solving classical problems. This article illustrates an algebraic method for finding the zeros of polynomial functions that is closely related to Newton's method (devised in 1669, published in 1711), which is encountered in calculus. By exploring this problem, precalculus students…

  3. Behaviors of Problem-Solving Groups

    National Research Council Canada - National Science Library

    Bennis, Warren G


    The results of two studies are contained in this report in summary form. They represent the first parts of a program of research designed to study the effects of change and history on the on the behaviors of problem-solving Groups...

  4. A reflexive perspective in problem solving


    Chio, José Angel; Álvarez, Aida; López, Margarita


    The objective of this paper is to favour the methodological process of reflexive analysis in problem solving in the general teaching methods that concentrates in strengthening the dimensional analysis, to gain a greater preparation of the students for the solution of mathematical problems.

  5. Counterfactual Problem Solving and Situated Cognition

    Directory of Open Access Journals (Sweden)

    Glebkin V.V.,


    Full Text Available The paper describes and interprets data of a study on counterfactual problem solving in representatives of modern industrial culture. The study was inspired by similar experiments carried out by A.R. Luria during his expedition to Central Asia. The hypothesis of our study was that representatives of modern industrial culture would solve counterfactual puzzles at a slower rate and with higher numbers of mistakes than similar non-counterfactual tasks. The experiments we conducted supported this hypothesis as well as provided us with some insights as to how to further develop it. For instance, we found no significant differences in time lag in solving counterfactual and ‘realistic’ tasks between the subjects with mathematical and the ones with liberal arts education. As an interpretation of the obtained data, we suggest a two-stage model of counterfactual problem solving: on the first stage, where situated cognition dominates, the realistic situation is transferred into the system of symbols unrelated to this very situation; on the second stage, operations are carried out within the framework of this new system of symbols.

  6. Language and mathematical problem solving among bilinguals. (United States)

    Bernardo, Allan B I


    Does using a bilingual's 1st or 2nd language have an effect on problem solving in semantically rich domains like school mathematics? The author conducted a study to determine whether Filipino-English bilingual students' understanding and solving of word problems in arithmetic differed when the problems were in the students' 1st and 2nd languages. Two groups participated-students whose 1st language was Filipino and students whose 1st language was English-and easy and difficult arithmetic problems were used. The author used a recall paradigm to assess how students understood the word problems and coded the solution accuracy to assess problem solving. The results indicated a 1st-language advantage; that is, the students were better able to understand and solve problems in their 1st language, whether the 1st language was English or Filipino. Moreover, the advantage was more marked with the easy problems. The theoretical and practical implications of the results are discussed.

  7. PISA 2012 Analysis of School Variables Affecting Problem-Solving Competency: Turkey-Serbia Comparison

    Directory of Open Access Journals (Sweden)

    Emine YAVUZ


    Full Text Available According to the OECD's PISA 2012 Turkey problem-solving report, Turkey and Serbia are at the same mathematical literacy level. However, Serbia's average of problem-solving competency is said to be higher than Turkey's. In this study, school variables that affect problem-solving competency of the two countries were examined and compared. The method of the study was causal comparison method, and HLM analysis was performed on data of 4494 students from 147 schools in Turkey sample and 4059 students from 132 schools in Serbia sample separately. As a result of HLM analysis, "obstacle and family donation" variable for Serbia and "abandon, teacher morale and mathematics competition" variable for Turkey were statistically significant. Although it was found that for each countries different variables influence the problem-solving competency, it was quite remarkable that these variables are in common in that they are components of the school climate concept.

  8. Young Children's Analogical Problem Solving: Gaining Insights from Video Displays (United States)

    Chen, Zhe; Siegler, Robert S.


    This study examined how toddlers gain insights from source video displays and use the insights to solve analogous problems. Two- to 2.5-year-olds viewed a source video illustrating a problem-solving strategy and then attempted to solve analogous problems. Older but not younger toddlers extracted the problem-solving strategy depicted in the video…

  9. impact of the curriculum reform on problem solving ability in ...

    African Journals Online (AJOL)


    that “learning is problem solving”. Therefore, teaching problem solving is teaching people how to learn, so is problem solving in chemistry education. Kalbag (4) states that problem solving orientation in chemistry education has an importance in that problem solving converts information into knowledge. Kalbag further states.

  10. Teaching Problem Solving Skills to Elementary Age Students with Autism (United States)

    Cote, Debra L.; Jones, Vita L.; Barnett, Crystal; Pavelek, Karin; Nguyen, Hoang; Sparks, Shannon L.


    Students with disabilities need problem-solving skills to promote their success in solving the problems of daily life. The research into problem-solving instruction has been limited for students with autism. Using a problem-solving intervention and the Self Determined Learning Model of Instruction, three elementary age students with autism were…

  11. Students’ Covariational Reasoning in Solving Integrals’ Problems (United States)

    Harini, N. V.; Fuad, Y.; Ekawati, R.


    Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.

  12. Learning Matlab a problem solving approach

    CERN Document Server

    Gander, Walter


    This comprehensive and stimulating introduction to Matlab, a computer language now widely used for technical computing, is based on an introductory course held at Qian Weichang College, Shanghai University, in the fall of 2014.  Teaching and learning a substantial programming language aren’t always straightforward tasks. Accordingly, this textbook is not meant to cover the whole range of this high-performance technical programming environment, but to motivate first- and second-year undergraduate students in mathematics and computer science to learn Matlab by studying representative problems, developing algorithms and programming them in Matlab. While several topics are taken from the field of scientific computing, the main emphasis is on programming. A wealth of examples are completely discussed and solved, allowing students to learn Matlab by doing: by solving problems, comparing approaches and assessing the proposed solutions.

  13. What is physics problem solving competency?

    DEFF Research Database (Denmark)

    Niss, Martin


    on the nature of physics problem- solving competency. The first, Sommerfeld’s, is a “theory first, phenomenon second” approach. Here the relevant problems originate in one of the theories of physics and the job goal of the problem- solver is to make a mathematical analysis of the suitable equation......A central goal of physics education is to teach problem-solving competency, but the nature of this competency is not well-described in the literature. The present paperarticle uses recent historical scholarship on Arnold Sommerfeld and Enrico Fermi to identify and characterize two positions......(s) and then give a qualitative analysis of the phenomenon that arise from these mathematical results. Fermi’s position is a “phenomenon first, theory second” approach, where the starting point is a physical phenomenon that is analyzed and then brought into the realm of a physics theory. The two positions...

  14. Solving ptychography with a convex relaxation (United States)

    Horstmeyer, Roarke; Chen, Richard Y.; Ou, Xiaoze; Ames, Brendan; Tropp, Joel A.; Yang, Changhuei


    Ptychography is a powerful computational imaging technique that transforms a collection of low-resolution images into a high-resolution sample reconstruction. Unfortunately, algorithms that currently solve this reconstruction problem lack stability, robustness, and theoretical guarantees. Recently, convex optimization algorithms have improved the accuracy and reliability of several related reconstruction efforts. This paper proposes a convex formulation of the ptychography problem. This formulation has no local minima, it can be solved using a wide range of algorithms, it can incorporate appropriate noise models, and it can include multiple a priori constraints. The paper considers a specific algorithm, based on low-rank factorization, whose runtime and memory usage are near-linear in the size of the output image. Experiments demonstrate that this approach offers a 25% lower background variance on average than alternating projections, the ptychographic reconstruction algorithm that is currently in widespread use.

  15. Analysis of mathematical problem-solving ability based on metacognition on problem-based learning (United States)

    Mulyono; Hadiyanti, R.


    Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.

  16. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vukadin, Z.


    The exact method of solving radioactive transformations is presented. Nonsingular Bateman coefficients, which can be computed using recurrence formulas, greatly reduce computational time and eliminate singularities that often arise in problems involving nuclide transmutations. Depletion function power series expansion enables high accuracy of the performed calculations, specially in a case of a decay constants with closely spaced values. Generality and simplicity of the method make the method useful for many practical applications. (author)

  17. Solving-Problems and Hypermedia Systems

    Directory of Open Access Journals (Sweden)



    Full Text Available The solving problems like the transfer constitute two nuclei, related, essential in the cognitive investigation and in the mathematical education. No is in and of itself casual that, from the first moment, in the investigations on the application gives the computer science to the teaching the mathematics, cybernetic models were developed that simulated processes problem solving and transfer cotexts (GPS, 1969 and IDEA (Interactive Decision Envisioning Aid, Pea, BrunerCohen, Webster & Mellen, 1987. The present articulates it analyzes, that can contribute to the development in this respect the new technologies hypermedias, give applications that are good to implement processes of learning the heuristic thought and give the capacity of «transfer». From our perspective and from the experience that we have developed in this field, to carry out a function gives analysis and the theories on the problem solving, it requires that we exercise a previous of interpretation the central aspsects over the theories gives the solving problem and transfer starting from the classic theories on the prosecution of the information. In this sense, so much the theory gives the dual memory as the most recent, J. Anderson (1993 based on the mechanisms activation nodes information they allow to establish an interpretation suggester over the mental mechanism that you/they operate in the heuristic processes. On this analysis, the present articulates it develops a theoritical interpretation over the function gives the supports based on technology hypermedia advancing in the definition of a necessary theoretical body, having in it counts that on the other hand the practical experimentation is permanent concluding in the efficiency and effectiveness gives the support hypermedia like mechanism of comunication in the processes heuristic learning.

  18. Rational approximatons for solving cauchy problems

    Directory of Open Access Journals (Sweden)

    Veyis Turut


    Full Text Available In this letter, numerical solutions of Cauchy problems are considered by multivariate Padé approximations (MPA. Multivariate Padé approximations (MPA were applied to power series solutions of Cauchy problems that solved by using He’s variational iteration method (VIM. Then, numerical results obtained by using multivariate Padé approximations were compared with the exact solutions of Cauchy problems.

  19. Solving Conic Systems via Projection and Rescaling


    Pena, Javier; Soheili, Negar


    We propose a simple projection and rescaling algorithm to solve the feasibility problem \\[ \\text{ find } x \\in L \\cap \\Omega, \\] where $L$ and $\\Omega$ are respectively a linear subspace and the interior of a symmetric cone in a finite-dimensional vector space $V$. This projection and rescaling algorithm is inspired by previous work on rescaled versions of the perceptron algorithm and by Chubanov's projection-based method for linear feasibility problems. As in these predecessors, each main it...

  20. Solving QCD via multi-Regge theory

    International Nuclear Information System (INIS)

    White, A. R.


    To solve QCD at high-energy the authors must simultaneously find the hadronic states and the exchanged pomeron (IP) giving UNITARY scattering amplitudes. Experimentally, the IP ∼ a Regge pole at small Q 2 and a single gluon at larger Q 2 . (F 2 D -H1, dijets-ZEUS). In the solution which the author describes, these non-perturbative properties of the IP are directly related to the non-perturbative confinement and chiral symmetry breaking properties of hadrons

  1. DC-8 MTP calibration for SOLVE-2 (United States)

    Mahoney, M. J.


    The Jet Propulsion Laboratory (JPL) Microwave Temperature Profiler (MTP) was the only instrument making temperature measurements at and below flight level on the DC-8 during the SOLVE-2 campaign. Many years of careful comparison of MTP measurements with radiosondes near the DC-8 flight track have shown that the flight level temperature can be determined to an accuracy of 0.2K relative to radiosondes.

  2. Problem solving in nuclear engineering using supercomputers

    International Nuclear Information System (INIS)

    Schmidt, F.; Scheuermann, W.; Schatz, A.


    The availability of supercomputers enables the engineer to formulate new strategies for problem solving. One such strategy is the Integrated Planning and Simulation System (IPSS). With the integrated systems, simulation models with greater consistency and good agreement with actual plant data can be effectively realized. In the present work some of the basic ideas of IPSS are described as well as some of the conditions necessary to build such systems. Hardware and software characteristics as realized are outlined. (orig.) [de

  3. Solving multiconstraint assignment problems using learning automata. (United States)

    Horn, Geir; Oommen, B John


    This paper considers the NP-hard problem of object assignment with respect to multiple constraints: assigning a set of elements (or objects) into mutually exclusive classes (or groups), where the elements which are "similar" to each other are hopefully located in the same class. The literature reports solutions in which the similarity constraint consists of a single index that is inappropriate for the type of multiconstraint problems considered here and where the constraints could simultaneously be contradictory. This feature, where we permit possibly contradictory constraints, distinguishes this paper from the state of the art. Indeed, we are aware of no learning automata (or other heuristic) solutions which solve this problem in its most general setting. Such a scenario is illustrated with the static mapping problem, which consists of distributing the processes of a parallel application onto a set of computing nodes. This is a classical and yet very important problem within the areas of parallel computing, grid computing, and cloud computing. We have developed four learning-automata (LA)-based algorithms to solve this problem: First, a fixed-structure stochastic automata algorithm is presented, where the processes try to form pairs to go onto the same node. This algorithm solves the problem, although it requires some centralized coordination. As it is desirable to avoid centralized control, we subsequently present three different variable-structure stochastic automata (VSSA) algorithms, which have superior partitioning properties in certain settings, although they forfeit some of the scalability features of the fixed-structure algorithm. All three VSSA algorithms model the processes as automata having first the hosting nodes as possible actions; second, the processes as possible actions; and, third, attempting to estimate the process communication digraph prior to probabilistically mapping the processes. This paper, which, we believe, comprehensively reports the

  4. Analytical method for solving radioactive transformations

    International Nuclear Information System (INIS)

    Vudakin, Z.


    Analytical method for solving radioactive transformations is presented in this paper. High accuracy series expansion of the depletion function and nonsingular Bateman coefficients are used to overcome numerical difficulties when applying well-known Bateman solution of a simple radioactive decay. Generality and simplicity of the method are found to be useful in evaluating nuclide chains with one hundred or more nuclides in the chain. Method enables evaluation of complete chain, without elimination of short-lives nuclides. It is efficient and accurate

  5. Multiscale empirical interpolation for solving nonlinear PDEs

    KAUST Repository

    Calo, Victor M.


    In this paper, we propose a multiscale empirical interpolation method for solving nonlinear multiscale partial differential equations. The proposed method combines empirical interpolation techniques and local multiscale methods, such as the Generalized Multiscale Finite Element Method (GMsFEM). To solve nonlinear equations, the GMsFEM is used to represent the solution on a coarse grid with multiscale basis functions computed offline. Computing the GMsFEM solution involves calculating the system residuals and Jacobians on the fine grid. We use empirical interpolation concepts to evaluate these residuals and Jacobians of the multiscale system with a computational cost which is proportional to the size of the coarse-scale problem rather than the fully-resolved fine scale one. The empirical interpolation method uses basis functions which are built by sampling the nonlinear function we want to approximate a limited number of times. The coefficients needed for this approximation are computed in the offline stage by inverting an inexpensive linear system. The proposed multiscale empirical interpolation techniques: (1) divide computing the nonlinear function into coarse regions; (2) evaluate contributions of nonlinear functions in each coarse region taking advantage of a reduced-order representation of the solution; and (3) introduce multiscale proper-orthogonal-decomposition techniques to find appropriate interpolation vectors. We demonstrate the effectiveness of the proposed methods on several nonlinear multiscale PDEs that are solved with Newton\\'s methods and fully-implicit time marching schemes. Our numerical results show that the proposed methods provide a robust framework for solving nonlinear multiscale PDEs on a coarse grid with bounded error and significant computational cost reduction.

  6. Processes involved in solving mathematical problems (United States)

    Shahrill, Masitah; Putri, Ratu Ilma Indra; Zulkardi, Prahmana, Rully Charitas Indra


    This study examines one of the instructional practices features utilized within the Year 8 mathematics lessons in Brunei Darussalam. The codes from the TIMSS 1999 Video Study were applied and strictly followed, and from the 183 mathematics problems recorded, there were 95 problems with a solution presented during the public segments of the video-recorded lesson sequences of the four sampled teachers. The analyses involved firstly, identifying the processes related to mathematical problem statements, and secondly, examining the different processes used in solving the mathematical problems for each problem publicly completed during the lessons. The findings revealed that for three of the teachers, their problem statements coded as `using procedures' ranged from 64% to 83%, while the remaining teacher had 40% of his problem statements coded as `making connections.' The processes used when solving the problems were mainly `using procedures', and none of the problems were coded as `giving results only'. Furthermore, all four teachers made use of making the relevant connections in solving the problems given to their respective students.

  7. Learning via problem solving in mathematics education

    Directory of Open Access Journals (Sweden)

    Piet Human


    Full Text Available Three forms of mathematics education at school level are distinguished: direct expository teaching with an emphasis on procedures, with the expectation that learners will at some later stage make logical and functional sense of what they have learnt and practised (the prevalent form, mathematically rigorous teaching in terms of fundamental mathematical concepts, as in the so-called “modern mathematics” programmes of the sixties, teaching and learning in the context of engaging with meaningful problems and focused both on learning to become good problem solvers (teaching for problem solving andutilising problems as vehicles for the development of mathematical knowledge andproficiency by learners (problem-centred learning, in conjunction with substantialteacher-led social interaction and mathematical discourse in classrooms.Direct expository teaching of mathematical procedures dominated in school systems after World War II, and was augmented by the “modern mathematics” movement in the period 1960-1970. The latter was experienced as a major failure, and was soon abandoned. Persistent poor outcomes of direct expository procedural teaching of mathematics for the majority of learners, as are still being experienced in South Africa, triggered a world-wide movement promoting teaching mathematics for and via problem solving in the seventies and eighties of the previous century. This movement took the form of a variety of curriculum experiments in which problem solving was the dominant classroom activity, mainly in the USA, Netherlands, France and South Africa. While initially focusing on basic arithmetic (computation with whole numbers and elementary calculus, the problem-solving movement started to address other mathematical topics (for example, elementary statistics, algebra, differential equations around the turn of the century. The movement also spread rapidly to other countries, including Japan, Singapore and Australia. Parallel with the

  8. Characteristics of students in comparative problem solving (United States)

    Irfan, M.; Sudirman; Rahardi, R.


    Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.

  9. Students’ difficulties in solving linear equation problems (United States)

    Wati, S.; Fitriana, L.; Mardiyana


    A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

  10. The Effect of Problem Solving Teaching with Texts of Turkish Lesson on Students’ Problem Solving Skills


    Havva ILGIN; Derya ARSLAN


    In this research, by carrying out activities based on texts, effect of providing problem solving skill on students’ levels of problem solving attainment was tried to be identified. Research was performed according to pretest-posttest Experimental Model with Control Group, in 2008-2009 educational year at second grade of an elementary school in Denizli province. For nine weeks, four hours in a week, while teacher guide book was being followed in control group in Turkish language lesson, texts ...

  11. A literature review of expert problem solving using analogy


    Mair, C; Martincova, M; Shepperd, MJ


    We consider software project cost estimation from a problem solving perspective. Taking a cognitive psychological approach, we argue that the algorithmic basis for CBR tools is not representative of human problem solving and this mismatch could account for inconsistent results. We describe the fundamentals of problem solving, focusing on experts solving ill-defined problems. This is supplemented by a systematic literature review of empirical studies of expert problem solving of non-trivial pr...

  12. The Effect of Contextual and Conceptual Rewording on Mathematical Problem-Solving Performance (United States)

    Haghverdi, Majid; Wiest, Lynda R.


    This study shows how separate and combined contextual and conceptual problem rewording can positively influence student performance in solving mathematical word problems. Participants included 80 seventh-grade Iranian students randomly assigned in groups of 20 to three experimental groups involving three types of rewording and a control group. All…

  13. Effects of "Handep" Cooperative Learning Based on Indigenous Knowledge on Mathematical Problem Solving Skill (United States)

    Demitra; Sarjoko


    Indigenous people of Dayak tribe in Kalimantan, Indonesia have traditionally relied on a system of mutual cooperation called "handep." The cultural context has an influence on students mathematics learning. The "handep" system might be suitable for modern learning situations to develop mathematical problem-solving skill. The…

  14. Effects of the SOLVE Strategy on the Mathematical Problem Solving Skills of Secondary Students with Learning Disabilities (United States)

    Freeman-Green, Shaqwana M.; O'Brien, Chris; Wood, Charles L.; Hitt, Sara Beth


    This study examined the effects of explicit instruction in the SOLVE Strategy on the mathematical problem solving skills of six Grade 8 students with specific learning disabilities. The SOLVE Strategy is an explicit instruction, mnemonic-based learning strategy designed to help students in solving mathematical word problems. Using a multiple probe…

  15. Group Problem Solving as a Zone of Proximal Development activity (United States)

    Brewe, Eric


    Vygotsky described learning as a process, intertwined with development, which is strongly influenced by social interactions with others that are at differing developmental stages.i These interactions create a Zone of Proximal Development for each member of the interaction. Vygotsky’s notion of social constructivism is not only a theory of learning, but also of development. While teaching introductory physics in an interactive format, I have found manifestations of Vygotsky’s theory in my classroom. The source of evidence is a paired problem solution. A standard mechanics problem was solved by students in two classes as a homework assignment. Students handed in the homework and then solved the same problem in small groups. The solutions to both the group and individual problem were assessed by multiple reviewers. In many cases the group score was the same as the highest individual score in the group, but in some cases, the group score was higher than any individual score. For this poster, I will analyze the individual and group scores and focus on three groups solutions and video that provide evidence of learning through membership in a Zone of Proximal Development. Endnotes i L. Vygotsky -Mind and society: The development of higher mental processes. Cambridge, MA: Harvard University Press. (1978).

  16. Biostimulators: A New Trend towards Solving an Old Problem. (United States)

    Posmyk, Małgorzata M; Szafrańska, Katarzyna


    Stresses provoked by adverse living conditions are inherent to a changing environment (climate change and anthropogenic influence) and they are basic factors that limit plant development and yields. Agriculture always struggled with this problem. The survey of non-toxic, natural, active substances useful in protection, and stimulation of plants growing under suboptimal and even harmful conditions, as well as searching for the most effective methods for their application, will direct our activities toward sustainable development and harmony with nature. It seems highly probable that boosting natural plant defense strategies by applying biostimulators will help to solve an old problem of poor yield in plant cultivation, by provoking their better growth and development even under suboptimal environmental conditions. This work is a concise review of such substances and methods of their application to plants.

  17. Biostimulators – a new trend to solve an old problem

    Directory of Open Access Journals (Sweden)

    Malgorzata Maria Posmyk


    Full Text Available Stresses provoked by adverse living conditions are inherent to a changing environment (climate change, anthropogenic influence and they are basic factors that limit plant development and yields. Agriculture always struggled with this problem. The survey of nontoxic, natural, active substances useful in protection and stimulation of plants growing under suboptimal and even harmful conditions, as well as searching for the most effective methods for their application, will direct our activities towards sustainable development and harmony with nature. It seems highly probable that boosting natural plant defence strategies by applying biostimulators will help to solve an old problem of poor yield in plant cultivation, by provoking their better growth and development even under suboptimal environmental conditions. This work is a concise review of such substances and methods of their application to plants.

  18. Memetic Algorithms to Solve a Global Nonlinear Optimization Problem. A Review

    Directory of Open Access Journals (Sweden)

    M. K. Sakharov


    Full Text Available In recent decades, evolutionary algorithms have proven themselves as the powerful optimization techniques of search engine. Their popularity is due to the fact that they are easy to implement and can be used in all areas, since they are based on the idea of universal evolution. For example, in the problems of a large number of local optima, the traditional optimization methods, usually, fail in finding the global optimum. To solve such problems using a variety of stochastic methods, in particular, the so-called population-based algorithms, which are a kind of evolutionary methods. The main disadvantage of this class of methods is their slow convergence to the exact solution in the neighborhood of the global optimum, as these methods incapable to use the local information about the landscape of the function. This often limits their use in largescale real-world problems where the computation time is a critical factor.One of the promising directions in the field of modern evolutionary computation are memetic algorithms, which can be regarded as a combination of population search of the global optimum and local procedures for verifying solutions, which gives a synergistic effect. In the context of memetic algorithms, the meme is an implementation of the local optimization method to refine solution in the search.The concept of memetic algorithms provides ample opportunities for the development of various modifications of these algorithms, which can vary the frequency of the local search, the conditions of its end, and so on. The practically significant memetic algorithm modifications involve the simultaneous use of different memes. Such algorithms are called multi-memetic.The paper gives statement of the global problem of nonlinear unconstrained optimization, describes the most promising areas of AI modifications, including hybridization and metaoptimization. The main content of the work is the classification and review of existing varieties of

  19. Neural bases for basic processes in heuristic problem solving: Take solving Sudoku puzzles as an example. (United States)

    Qin, Yulin; Xiang, Jie; Wang, Rifeng; Zhou, Haiyan; Li, Kuncheng; Zhong, Ning


    Newell and Simon postulated that the basic steps in human problem-solving involve iteratively applying operators to transform the state of the problem to eventually achieve a goal. To check the neural basis of this framework, the present study focused on the basic processes in human heuristic problem-solving that the participants identified the current problem state and then recalled and applied the corresponding heuristic rules to change the problem state. A new paradigm, solving simplified Sudoku puzzles, was developed for an event-related functional magnetic resonance imaging (fMRI) study in problem solving. Regions of interest (ROIs), including the left prefrontal cortex, the bilateral posterior parietal cortex, the anterior cingulated cortex, the bilateral caudate nuclei, the bilateral fusiform, as well as the bilateral frontal eye fields, were found to be involved in the task. To obtain convergent evidence, in addition to traditional statistical analysis, we used the multivariate voxel classification method to check the accuracy of the predictions for the condition of the task from the blood oxygen level dependent (BOLD) response of the ROIs, using a new classifier developed in this study for fMRI data. To reveal the roles that the ROIs play in problem solving, we developed an ACT-R computational model of the information-processing processes in human problem solving, and tried to predict the BOLD response of the ROIs from the task. Advances in human problem-solving research after Newell and Simon are then briefly discussed. © 2012 The Institute of Psychology, Chinese Academy of Sciences and Blackwell Publishing Asia Pty Ltd.

  20. Working memory components as predictors of children's mathematical word problem solving. (United States)

    Zheng, Xinhua; Swanson, H Lee; Marcoulides, George A


    This study determined the working memory (WM) components (executive, phonological loop, and visual-spatial sketchpad) that best predicted mathematical word problem-solving accuracy of elementary school children in Grades 2, 3, and 4 (N=310). A battery of tests was administered to assess problem-solving accuracy, problem-solving processes, WM, reading, and math calculation. Structural equation modeling analyses indicated that (a) all three WM components significantly predicted problem-solving accuracy, (b) reading skills and calculation proficiency mediated the predictive effects of the central executive system and the phonological loop on solution accuracy, and (c) academic mediators failed to moderate the relationship between the visual-spatial sketchpad and solution accuracy. The results support the notion that all components of WM play a major role in predicting problem-solving accuracy, but basic skills acquired in specific academic domains (reading and math) can compensate for some of the influence of WM on children's mathematical word problem solving. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Multiobjective CVaR Optimization Model and Solving Method for Hydrothermal System Considering Uncertain Load Demand

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan


    Full Text Available In order to solve the influence of load uncertainty on hydrothermal power system operation and achieve the optimal objectives of system power generation consumption, pollutant emissions, and first-stage hydropower station storage capacity, this paper introduced CVaR method and built a multiobjective optimization model and its solving method. In the optimization model, load demand’s actual values and deviation values are regarded as random variables, scheduling objective is redefined to meet confidence level requirement and system operation constraints and loss function constraints are taken into consideration. To solve the proposed model, this paper linearized nonlinear constraints, applied fuzzy satisfaction, fuzzy entropy, and weighted multiobjective function theories to build a fuzzy entropy multiobjective CVaR model. The model is a mixed integer linear programming problem. Then, six thermal power plants and three cascade hydropower stations are taken as the hydrothermal system for numerical simulation. The results verified that multiobjective CVaR method is applicable to solve hydrothermal scheduling problems. It can better reflect risk level of the scheduling result. The fuzzy entropy satisfaction degree solving algorithm can simplify solving difficulty and get the optimum operation scheduling scheme.

  2. Programming languages for business problem solving

    CERN Document Server

    Wang, Shouhong


    It has become crucial for managers to be computer literate in today's business environment. It is also important that those entering the field acquire the fundamental theories of information systems, the essential practical skills in computer applications, and the desire for life-long learning in information technology. Programming Languages for Business Problem Solving presents a working knowledge of the major programming languages, including COBOL, C++, Java, HTML, JavaScript, VB.NET, VBA, ASP.NET, Perl, PHP, XML, and SQL, used in the current business computing environment. The book examin

  3. Solving hyperbolic heat conduction using electrical simulation

    International Nuclear Information System (INIS)

    Gheitaghy, A. M.; Talaee, M. R.


    In the present study, the electrical network simulation method is proposed to solve the hyperbolic and parabolic heat conduction problem considering Cattaneo-Vernoute (C.V) constitutive relation. Using this new proposed numerical model and the electrical circuit simulation program HSPICE, transient temperature and heat flux profiles at slab can be obtained easily and quickly. To verify the proposed method, the obtained numerical results for cases of one dimensional two-layer slab under periodic boundary temperature with perfect and imperfect thermal contact are compared with the published results. Comparisons show the proposed technique might be considered as a useful tool in the analysis of parabolic and hyperbolic thermal problems.

  4. Solving crystal structures from neutron diffraction data

    International Nuclear Information System (INIS)

    Wilson, C.C.


    In order to pursue crystal structure determination using neutron diffraction data, and given the wide experience available of solving structures using X-ray data, the codes used in X-ray structural analysis should be adapted to the different requirements of a neutron experiment. Modifications have been made to a direct methods program MITHRIL and to a Patterson methods program PATMET to incorporate into these the features of neutron rather than X-ray diffraction. While to date these modifications have been fairly straightforward and many sophistications remain to be exploited, results obtained from the neutron versions of both programs are promising. (author)

  5. The development and nature of problem-solving among first-semester calculus students (United States)

    Dawkins, Paul Christian; Mendoza Epperson, James A.


    This study investigates interactions between calculus learning and problem-solving in the context of two first-semester undergraduate calculus courses in the USA. We assessed students' problem-solving abilities in a common US calculus course design that included traditional lecture and assessment with problem-solving-oriented labs. We investigate this blended instruction as a local representative of the US calculus reform movements that helped foster it. These reform movements tended to emphasize problem-solving as well as multiple mathematical registers and quantitative modelling. Our statistical analysis reveals the influence of the blended traditional/reform calculus instruction on students' ability to solve calculus-related, non-routine problems through repeated measures over the semester. The calculus instruction in this study significantly improved students' performance on non-routine problems, though performance improved more regarding strategies and accuracy than it did for drawing conclusions and providing justifications. We identified problem-solving behaviours that characterized top performance or attrition in the course. Top-performing students displayed greater algebraic proficiency, calculus skills, and more general heuristics than their peers, but overused algebraic techniques even when they proved cumbersome or inappropriate. Students who subsequently withdrew from calculus often lacked algebraic fluency and understanding of the graphical register. The majority of participants, when given a choice, relied upon less sophisticated trial-and-error approaches in the numerical register and rarely used the graphical register, contrary to the goals of US calculus reform. We provide explanations for these patterns in students' problem-solving performance in view of both their preparation for university calculus and the courses' assessment structure, which preferentially rewarded algebraic reasoning. While instruction improved students' problem-solving

  6. A Flipped Pedagogy for Expert Problem Solving (United States)

    Pritchard, David

    The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on (see; it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).

  7. Back to Basics: Solving Games with SAT

    Directory of Open Access Journals (Sweden)

    QUER, S.


    Full Text Available Games became popular, within the formal verification community, after their application to automatic synthesis of circuits from specifications, and they have been receiving more and more attention since then. This paper focuses on coding the "Sokoban" puzzle, i.e., a very complex single-player strategy game. We show how its solution can be encoded and represented as a Bounded Model Checking problem, and then solved with a SAT solver. After that, to cope with very complex instances of the game, we propose two different ad-hoc divide-and-conquer strategies. Those strategies, somehow similar to state-of-the-art abstraction-and-refinement schemes, are able to decompose deep Bounded Model Checking instances into easier subtasks, trading-off between efficiency and completeness. We analyze a vast set of difficult hard-to-solve benchmark games, trying to push forward the applicability of state-of-the-art SAT solvers in the field. Those results show that games may provide one of the next frontier for the SAT community.

  8. Rerouting algorithms solving the air traffic congestion (United States)

    Adacher, Ludovica; Flamini, Marta; Romano, Elpidio


    Congestion in the air traffic network is a problem with an increasing relevance for airlines costs as well as airspace safety. One of the major issue is the limited operative capacity of the air network. In this work an Autonomous Agent approach is proposed to solve in real time the problem of air traffic congestion. The air traffic infrastructures are modeled with a graph and are considered partitioned in different sectors. Each sector has its own decision agent dealing with the air traffic control involved in it. Each agent sector imposes a real time aircraft scheduling to respect both delay and capacity constrains. When a congestion is predicted, a new aircraft scheduling is computed. Congestion is solved when the capacity constrains are satisfied once again. This can be done by delaying on ground aircraft or/and rerouting aircraft and/or postponing the congestion. We have tested two different algorithms that calculate K feasible paths for each aircraft involved in the congestion. Some results are reported on North Italian air space.

  9. Using qualitative problem-solving strategies to highlight the role of conceptual knowledge in solving problems (United States)

    Leonard, William J.; Dufresne, Robert J.; Mestre, Jose P.


    We report on the use of qualitative problem-solving strategies in teaching an introductory, calculus-based physics course as a means of highlighting the role played by conceptual knowledge in solving problems. We found that presenting strategies during lectures and in homework solutions provides an excellent opportunity to model for students the type of concept-based, qualitative reasoning that is valued in our profession, and that student-generated strategies serve a diagnostic function by providing instructors with insights on students' conceptual understanding and reasoning. Finally, we found strategies to be effective pedagogical tools for helping students both to identify principles that could be applied to solve specific problems, as well as to recall the major principles covered in the course months after it was over.

  10. Relative Effects of Problem-Solving and Concept Mapping ...

    African Journals Online (AJOL)

    Relative Effects of Problem-Solving and Concept Mapping Instructional ... mapping strategies are also discussed and their significance and importance to students. ... development of problem solving skills before the end of SSCE Programmebr ...

  11. Contextualized teaching on the problem solving performance of students

    Directory of Open Access Journals (Sweden)

    Rolando V. Obiedo


    Full Text Available This study investigated the effect of contextualized teaching on students’ problem solving skills in physics through a quasi-experimental approach. Problem solving performance of students was described quantitatively through their mean problem solving scores and problem solving skills level. A unit plan patterned from the cognitive apprenticeship approach and contextualized using maritime context of ship stability was implemented on the experimental group while the control group had the conventional lecture method. Pre and post assessment, which is a researcher-developed word problem assessment, was administered to both groups. Results indicated increased problem solving mean scores (p < 0.001, problem solving skill level (p < 0.001 of the experimental group while the control group increased only their problem solving skill level (p = 0.008. Thus, contextualized teaching can improve the problem solving performance of students. This study recommends using contextualization using other physics topics where other contexts can be applied.

  12. The Automatic Generation of Knowledge Spaces From Problem Solving Strategies

    NARCIS (Netherlands)

    Milovanovic, Ivica; Jeuring, Johan


    In this paper, we explore theoretical and practical aspects of the automatic generation of knowledge spaces from problem solving strategies. We show how the generated spaces can be used for adapting strategy-based problem solving learning environments (PSLEs).

  13. Simulated annealing approach for solving economic load dispatch ...

    African Journals Online (AJOL)


    thermodynamics to solve economic load dispatch (ELD) problems. ... evolutionary programming algorithm has been successfully applied for solving the ... concept behind the simulated annealing (SA) optimization is discussed in Section 3.

  14. Effects of Concept Mapping and Problem Solving Instructional ...

    African Journals Online (AJOL)


    (iii). lack of organizational skill in solving quantitative problems. (Onwu, 1982, Onwu ... improved in terms of conceptual thinking, intuitive knowledge and insightful ... Problem Solving: This is a cognitive learning strategy which has to do with ...

  15. Students' Competence in some Problem Solving Skills throughout ...

    African Journals Online (AJOL)

    Students' Competence in some Problem Solving Skills throughout their B.Sc. Course. ... there is a need for explicitly identifying important cognitive skills and strategies and ... Keywords: Cognitive skills, thinking skills, problem solving, students' ...

  16. Teacher Practices with Toddlers during Social Problem Solving Opportunities (United States)

    Gloeckler, Lissy; Cassell, Jennifer


    This article explores how teachers can foster an environment that facilitates social problem solving when toddlers experience conflict, emotional dysregulation, and aggression. This article examines differences in child development and self-regulation outcomes when teachers engage in problem solving "for" toddlers and problem solving "with"…

  17. Using Systemic Problem Solving (SPS) to Assess Student ...

    African Journals Online (AJOL)

    This paper focuses on the uses of systemic problem solving in chemistry at the tertiary level. Traditional problem solving (TPS) is a useful tool to help teachers examine recall of information, comprehension, and application. However, systemic problem solving (SPS) can challenge students and probe higher cognitive skills ...

  18. The Role of Expository Writing in Mathematical Problem Solving (United States)

    Craig, Tracy S.


    Mathematical problem-solving is notoriously difficult to teach in a standard university mathematics classroom. The project on which this article reports aimed to investigate the effect of the writing of explanatory strategies in the context of mathematical problem solving on problem-solving behaviour. This article serves to describe the…

  19. Using Digital Mapping Tool in Ill-Structured Problem Solving (United States)

    Bai, Hua


    Scaffolding students' problem solving and helping them to improve problem solving skills are critical in instructional design courses. This study investigated the effects of students' uses of a digital mapping tool on their problem solving performance in a design case study. It was found that the students who used the digital mapping tool…

  20. Internet Computer Coaches for Introductory Physics Problem Solving (United States)

    Xu Ryan, Qing


    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  1. Capturing Problem-Solving Processes Using Critical Rationalism (United States)

    Chitpin, Stephanie; Simon, Marielle


    The examination of problem-solving processes continues to be a current research topic in education. Knowing how to solve problems is not only a key aspect of learning mathematics but is also at the heart of cognitive theories, linguistics, artificial intelligence, and computers sciences. Problem solving is a multistep, higher-order cognitive task…

  2. Systematic Problem Solving in Production: The NAX Approach

    DEFF Research Database (Denmark)

    Axelsdottir, Aslaug; Nygaard, Martin; Edwards, Kasper


    This paper outlines the NAX problem solving approach developed by a group of problem solving experts at a large Danish Producer of medical equipment. The company, “Medicmeter” is one of Denmark’s leading companies when it comes to lean and it has developed a strong problem solving culture. The ma...

  3. Translation among Symbolic Representations in Problem-Solving. Revised. (United States)

    Shavelson, Richard J.; And Others

    This study investigated the relationships among the symbolic representation of problems given to students to solve, the mental representations they use to solve the problems, and the accuracy of their solutions. Twenty eleventh-grade science students were asked to think aloud as they solved problems on the ideal gas laws. The problems were…

  4. Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement (United States)

    Zheng, Robert; Cook, Anne


    The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…

  5. The Place of Problem Solving in Contemporary Mathematics Curriculum Documents (United States)

    Stacey, Kaye


    This paper reviews the presentation of problem solving and process aspects of mathematics in curriculum documents from Australia, UK, USA and Singapore. The place of problem solving in the documents is reviewed and contrasted, and illustrative problems from teachers' support materials are used to demonstrate how problem solving is now more often…

  6. Exploring mathematics problem-solving and proof

    CERN Document Server

    Grieser, Daniel


    Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is requi...

  7. Use of EPR to Solve Biochemical Problems (United States)

    Sahu, Indra D.; McCarrick, Robert M.; Lorigan, Gary A.


    EPR spectroscopy is a very powerful biophysical tool that can provide valuable structural and dynamic information on a wide variety of biological systems. The intent of this review is to provide a general overview for biochemists and biological researchers on the most commonly used EPR methods and how these techniques can be used to answer important biological questions. The topics discussed could easily fill one or more textbooks; thus, we present a brief background on several important biological EPR techniques and an overview of several interesting studies that have successfully used EPR to solve pertinent biological problems. The review consists of the following sections: an introduction to EPR techniques, spin labeling methods, and studies of naturally occurring organic radicals and EPR active transition metal systems which are presented as a series of case studies in which EPR spectroscopy has been used to greatly further our understanding of several important biological systems. PMID:23961941

  8. Solving fault diagnosis problems linear synthesis techniques

    CERN Document Server

    Varga, Andreas


    This book addresses fault detection and isolation topics from a computational perspective. Unlike most existing literature, it bridges the gap between the existing well-developed theoretical results and the realm of reliable computational synthesis procedures. The model-based approach to fault detection and diagnosis has been the subject of ongoing research for the past few decades. While the theoretical aspects of fault diagnosis on the basis of linear models are well understood, most of the computational methods proposed for the synthesis of fault detection and isolation filters are not satisfactory from a numerical standpoint. Several features make this book unique in the fault detection literature: Solution of standard synthesis problems in the most general setting, for both continuous- and discrete-time systems, regardless of whether they are proper or not; consequently, the proposed synthesis procedures can solve a specific problem whenever a solution exists Emphasis on the best numerical algorithms to ...

  9. Solving Kepler's equation using implicit functions (United States)

    Mortari, Daniele; Elipe, Antonio


    A new approach to solve Kepler's equation based on the use of implicit functions is proposed here. First, new upper and lower bounds are derived for two ranges of mean anomaly. These upper and lower bounds initialize a two-step procedure involving the solution of two implicit functions. These two implicit functions, which are non-rational (polynomial) Bézier functions, can be linear or quadratic, depending on the derivatives of the initial bound values. These are new initial bounds that have been compared and proven more accurate than Serafin's bounds. The procedure reaches machine error accuracy with no more that one quadratic and one linear iterations, experienced in the "tough range", where the eccentricity is close to one and the mean anomaly to zero. The proposed method is particularly suitable for space-based applications with limited computational capability.

  10. Solving a Deconvolution Problem in Photon Spectrometry

    CERN Document Server

    Aleksandrov, D; Hille, P T; Polichtchouk, B; Kharlov, Y; Sukhorukov, M; Wang, D; Shabratova, G; Demanov, V; Wang, Y; Tveter, T; Faltys, M; Mao, Y; Larsen, D T; Zaporozhets, S; Sibiryak, I; Lovhoiden, G; Potcheptsov, T; Kucheryaev, Y; Basmanov, V; Mares, J; Yanovsky, V; Qvigstad, H; Zenin, A; Nikolaev, S; Siemiarczuk, T; Yuan, X; Cai, X; Redlich, K; Pavlinov, A; Roehrich, D; Manko, V; Deloff, A; Ma, K; Maruyama, Y; Dobrowolski, T; Shigaki, K; Nikulin, S; Wan, R; Mizoguchi, K; Petrov, V; Mueller, H; Ippolitov, M; Liu, L; Sadovsky, S; Stolpovsky, P; Kurashvili, P; Nomokonov, P; Xu, C; Torii, H; Il'kaev, R; Zhang, X; Peresunko, D; Soloviev, A; Vodopyanov, A; Sugitate, T; Ullaland, K; Huang, M; Zhou, D; Nystrand, J; Punin, V; Yin, Z; Batyunya, B; Karadzhev, K; Nazarov, G; Fil'chagin, S; Nazarenko, S; Buskenes, J I; Horaguchi, T; Djuvsland, O; Chuman, F; Senko, V; Alme, J; Wilk, G; Fehlker, D; Vinogradov, Y; Budilov, V; Iwasaki, T; Ilkiv, I; Budnikov, D; Vinogradov, A; Kazantsev, A; Bogolyubsky, M; Lindal, S; Polak, K; Skaali, B; Mamonov, A; Kuryakin, A; Wikne, J; Skjerdal, K


    We solve numerically a deconvolution problem to extract the undisturbed spectrum from the measured distribution contaminated by the finite resolution of the measuring device. A problem of this kind emerges when one wants to infer the momentum distribution of the neutral pions by detecting the it decay photons using the photon spectrometer of the ALICE LHC experiment at CERN {[}1]. The underlying integral equation connecting the sought for pion spectrum and the measured gamma spectrum has been discretized and subsequently reduced to a system of linear algebraic equations. The latter system, however, is known to be ill-posed and must be regularized to obtain a stable solution. This task has been accomplished here by means of the Tikhonov regularization scheme combined with the L-curve method. The resulting pion spectrum is in an excellent quantitative agreement with the pion spectrum obtained from a Monte Carlo simulation. (C) 2010 Elsevier B.V. All rights reserved.


    Directory of Open Access Journals (Sweden)

    Boris HÂNCU


    Full Text Available Different ways of solving bimatrix games in complete and perfect information (or over the set of informational extended strategies are studied in the present paper. The Nash and Bayes-Nash solutions for informational extended games are discussed.MODALITĂŢI DE SOLUŢIONARE A JOCURILOR BIMATRICEALE INFORMAŢIONAL EXTINSEÎn acest articol sunt analizate diferite moduri de soluţionare a jocurilor bimatriceale în informaţie completă a şi perfectă. Informaţia perfectă permite jucătorilor să utilizeze strategii informaţional extinse. Se analizează asoluţii de tip Nash şi Bayes-Nash pentru jocuri în strategii informaţional extinse.

  12. Data completion problems solved as Nash games

    International Nuclear Information System (INIS)

    Habbal, A; Kallel, M


    The Cauchy problem for an elliptic operator is formulated as a two-player Nash game. Player (1) is given the known Dirichlet data, and uses as strategy variable the Neumann condition prescribed over the inaccessible part of the boundary. Player (2) is given the known Neumann data, and plays with the Dirichlet condition prescribed over the inaccessible boundary. The two players solve in parallel the associated Boundary Value Problems. Their respective objectives involve the gap between the non used Neumann/Dirichlet known data and the traces of the BVP's solutions over the accessible boundary, and are coupled through a difference term. We prove the existence of a unique Nash equilibrium, which turns out to be the reconstructed data when the Cauchy problem has a solution. We also prove that the completion algorithm is stable with respect to noise, and present two 3D experiments which illustrate the efficiency and stability of our algorithm.

  13. Modeling and Solving the Train Pathing Problem

    Directory of Open Access Journals (Sweden)

    Chuen-Yih Chen


    Full Text Available In a railroad system, train pathing is concerned with the assignment of trains to links and tracks, and train timetabling allocates time slots to trains. In this paper, we present an optimization heuristic to solve the train pathing and timetabling problem. This heuristic allows the dwell time of trains in a station or link to be dependent on the assigned tracks. It also allows the minimum clearance time between the trains to depend on their relative status. The heuristic generates a number of alternative paths for each train service in the initialization phase. Then it uses a neighborhood search approach to find good feasible combinations of these paths. A linear program is developed to evaluate the quality of each combination that is encountered. Numerical examples are provided.

  14. Algorithms for solving common fixed point problems

    CERN Document Server

    Zaslavski, Alexander J


    This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter ...

  15. Solving stochastic inflation for arbitrary potentials

    International Nuclear Information System (INIS)

    Martin, Jerome; Musso, Marcello


    A perturbative method for solving the Langevin equation of inflationary cosmology in the presence of backreaction is presented. In the Gaussian approximation, the method permits an explicit calculation of the probability distribution of the inflaton field for an arbitrary potential, with or without the volume effects taken into account. The perturbative method is then applied to various concrete models, namely, large field, small field, hybrid, and running mass inflation. New results on the stochastic behavior of the inflaton field in those models are obtained. In particular, it is confirmed that the stochastic effects can be important in new inflation while it is demonstrated they are negligible in (vacuum dominated) hybrid inflation. The case of stochastic running mass inflation is discussed in some details and it is argued that quantum effects blur the distinction between the four classical versions of this model. It is also shown that the self-reproducing regime is likely to be important in this case

  16. Exploiting Quantum Resonance to Solve Combinatorial Problems (United States)

    Zak, Michail; Fijany, Amir


    Quantum resonance would be exploited in a proposed quantum-computing approach to the solution of combinatorial optimization problems. In quantum computing in general, one takes advantage of the fact that an algorithm cannot be decoupled from the physical effects available to implement it. Prior approaches to quantum computing have involved exploitation of only a subset of known quantum physical effects, notably including parallelism and entanglement, but not including resonance. In the proposed approach, one would utilize the combinatorial properties of tensor-product decomposability of unitary evolution of many-particle quantum systems for physically simulating solutions to NP-complete problems (a class of problems that are intractable with respect to classical methods of computation). In this approach, reinforcement and selection of a desired solution would be executed by means of quantum resonance. Classes of NP-complete problems that are important in practice and could be solved by the proposed approach include planning, scheduling, search, and optimal design.

  17. Handwriting segmentation of unconstrained Oriya text

    Indian Academy of Sciences (India)

    Based on vertical projection profiles and structural features of Oriya characters, text lines are segmented into words. For character segmentation, at first, the isolated and connected (touching) characters in a word are detected. Using structural, topological and water reservoir concept-based features, characters of the word ...

  18. Unconstrained and contactless hand geometry biometrics. (United States)

    de-Santos-Sierra, Alberto; Sánchez-Ávila, Carmen; Del Pozo, Gonzalo Bailador; Guerra-Casanova, Javier


    This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely support vector machines (SVM) and k-nearest neighbour (k-NN). Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.


    Directory of Open Access Journals (Sweden)

    Nataša Krejić


    Full Text Available This papers presents an overview of gradient based methods for minimization of noisy functions. It is assumed that the objective functions is either given with error terms of stochastic nature or given as the mathematical expectation. Such problems arise in the context of simulation based optimization. The focus of this presentation is on the gradient based Stochastic Approximation and Sample Average Approximation methods. The concept of stochastic gradient approximation of the true gradient can be successfully extended to deterministic problems. Methods of this kind are presented for the data fitting and machine learning problems.

  20. Unconstrained and Contactless Hand Geometry Biometrics

    Directory of Open Access Journals (Sweden)

    Carmen Sánchez-Ávila


    Full Text Available This paper presents a hand biometric system for contact-less, platform-free scenarios, proposing innovative methods in feature extraction, template creation and template matching. The evaluation of the proposed method considers both the use of three contact-less publicly available hand databases, and the comparison of the performance to two competitive pattern recognition techniques existing in literature: namely Support Vector Machines (SVM and k-Nearest Neighbour (k-NN. Results highlight the fact that the proposed method outcomes existing approaches in literature in terms of computational cost, accuracy in human identification, number of extracted features and number of samples for template creation. The proposed method is a suitable solution for human identification in contact-less scenarios based on hand biometrics, providing a feasible solution to devices with limited hardware requirements like mobile devices.

  1. Handwriting segmentation of unconstrained Oriya text

    Indian Academy of Sciences (India)

    Segmentation of handwritten text into lines, words and characters .... We now discuss here some terms relating to water reservoirs that will be used in feature ..... is found. Next, based on the touching position, reservoir base-area points, ...


    Directory of Open Access Journals (Sweden)

    Evans BAIDOO


    Full Text Available Modern real world science and engineering problems can be classified as multi-objective optimisation problems which demand for expedient and efficient stochastic algorithms to respond to the optimization needs. This paper presents an object-oriented software application that implements a firework optimization algorithm for function optimization problems. The algorithm, a kind of parallel diffuse optimization algorithm is based on the explosive phenomenon of fireworks. The algorithm presented promising results when compared to other population or iterative based meta-heuristic algorithm after it was experimented on five standard benchmark problems. The software application was implemented in Java with interactive interface which allow for easy modification and extended experimentation. Additionally, this paper validates the effect of runtime on the algorithm performance.

  3. "I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours (United States)

    Muir, Tracey; Beswick, Kim; Williamson, John


    This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…

  4. Effectiveness of Word Solving: Integrating Morphological Problem-Solving within Comprehension Instruction for Middle School Students (United States)

    Goodwin, Amanda P.


    This study explores the effectiveness of integrating morphological instruction within comprehension strategy instruction. Participants were 203 students (N = 117 fifth-grade; 86 sixth-grade) from four urban schools who were randomly assigned to the intervention (N = 110; morphological problem-solving within comprehension strategy instruction) or…

  5. How to make university students solve physics problems requiring mathematical skills: The "Adventurous Problem Solving" approach

    NARCIS (Netherlands)

    de Mul, F.F.M.; Martin Batlle, C.; Martin i Batlle, Cristina; de Bruijn, Imme; Rinzema, K.; Rinzema, Kees


    Teaching physics to first-year university students (in the USA: junior/senior level) is often hampered by their lack of skills in the underlying mathematics, and that in turn may block their understanding of the physics and their ability to solve problems. Examples are vector algebra, differential


    Directory of Open Access Journals (Sweden)

    Boris Alekseyevich Kucherov


    Full Text Available The paper discusses issues of human-machine interaction in solving tasks of the planning department under severe resource restrictions using information technology. The negative factors influencing specialists of the planning department in solving their tasks under the given circumstances are shown. Specific features of designing the user interface in this subject area are noted. Directions to increase the efficiency of reaction of the planning department’s specialists to change the current situation by visual and sound notification of various events are marked. Various ways to develop user interface to generate a conflict-free plan under severe resource restrictions are considered. The variants of informative presentation of operational and statistical information to stakeholders are analyzed. These issues are discussed by the example of the planning department which solves the tasks of allocation of control facilities for spacecraft (a subset of satellite range scheduling problem,

  7. Age-related changes in strategic variations during arithmetic problem solving: The role of executive control. (United States)

    Hinault, T; Lemaire, P


    In this review, we provide an overview of how age-related changes in executive control influence aging effects in arithmetic processing. More specifically, we consider the role of executive control in strategic variations with age during arithmetic problem solving. Previous studies found that age-related differences in arithmetic performance are associated with strategic variations. That is, when they accomplish arithmetic problem-solving tasks, older adults use fewer strategies than young adults, use strategies in different proportions, and select and execute strategies less efficiently. Here, we review recent evidence, suggesting that age-related changes in inhibition, cognitive flexibility, and working memory processes underlie age-related changes in strategic variations during arithmetic problem solving. We discuss both behavioral and neural mechanisms underlying age-related changes in these executive control processes. © 2016 Elsevier B.V. All rights reserved.

  8. Cross-national comparisons of complex problem-solving strategies in two microworlds. (United States)

    Güss, C Dominik; Tuason, Ma Teresa; Gerhard, Christiane


    Research in the fields of complex problem solving (CPS) and dynamic decision making using microworlds has been mainly conducted in Western industrialized countries. This study analyzes the CPS process by investigating thinking-aloud protocols in five countries. Participants were 511 students from Brazil, Germany, India, the Philippines, and the United States who worked on two microworlds. On the basis of cultural-psychological theories, specific cross-national differences in CPS strategies were hypothesized. Following theories of situatedness of cognition, hypotheses about the specific frequency of problem-solving strategies in the two microworlds were developed. Results of the verbal protocols showed (a) modification of the theoretical CPS model, (b) task dependence of CPS strategies, and (c) cross-national differences in CPS strategies. Participants' CPS processes were particularly influenced by country-specific problem-solving strategies. Copyright © 2009 Cognitive Science Society, Inc.

  9. Solving Math Problems Approximately: A Developmental Perspective.

    Directory of Open Access Journals (Sweden)

    Dana Ganor-Stern

    Full Text Available Although solving arithmetic problems approximately is an important skill in everyday life, little is known about the development of this skill. Past research has shown that when children are asked to solve multi-digit multiplication problems approximately, they provide estimates that are often very far from the exact answer. This is unfortunate as computation estimation is needed in many circumstances in daily life. The present study examined 4th graders, 6th graders and adults' ability to estimate the results of arithmetic problems relative to a reference number. A developmental pattern was observed in accuracy, speed and strategy use. With age there was a general increase in speed, and an increase in accuracy mainly for trials in which the reference number was close to the exact answer. The children tended to use the sense of magnitude strategy, which does not involve any calculation but relies mainly on an intuitive coarse sense of magnitude, while the adults used the approximated calculation strategy which involves rounding and multiplication procedures, and relies to a greater extent on calculation skills and working memory resources. Importantly, the children were less accurate than the adults, but were well above chance level. In all age groups performance was enhanced when the reference number was smaller (vs. larger than the exact answer and when it was far (vs. close from it, suggesting the involvement of an approximate number system. The results suggest the existence of an intuitive sense of magnitude for the results of arithmetic problems that might help children and even adults with difficulties in math. The present findings are discussed in the context of past research reporting poor estimation skills among children, and the conditions that might allow using children estimation skills in an effective manner.

  10. Examining problem solving in physics-intensive Ph.D. research (United States)

    Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris


    Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students

  11. Examining problem solving in physics-intensive Ph.D. research

    Directory of Open Access Journals (Sweden)

    Anne E. Leak


    Full Text Available Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging. Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting, while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options. In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation. Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver’s perspective. This framework will be examined and refined in future work. Understanding problems

  12. Analysis of the Impact on Creative Problem Solving in an Organization

    Directory of Open Access Journals (Sweden)

    Jasmina Žnideršič


    Full Text Available Research Question (RQ: What affects creative problem solving in anorganization?Purpose: The aim is to obtain a better picture by using statisticalanalysis on the effects of workers' creativity in problem solving inan organizationMethod: The data was obtained by interviewing employees and usingnonparametric tests (χ2 test, Fisher test and χ2 test with Yates correction for data analysis. Results: The research results showed that fear of failure does not affect creative problem solving nor do creativity test encourageworkers towards greater creativity, but prior knowledge and experience do influence workers' creative problem-solving.Organization: Results of this research study will provide managers inan organization a clearer picture of employees’ views, whether there is dominance of routine work, poor stimulated creativity and other factors that affect their creativity.Society: Opinion of workers in an organization can encourage other organizations to explore the impact on creativity of their employees.Originality: Because the data were obtained from a small organization, the results of this research study can only refer tothe setting it researched.Limitations/Future Research: To obtain a wider picture of the effectson creativity, a greater number of employees would need to be included as well as other factors would need to be analysed.This research study took place in an organization where creativityand problem solving are not required.

  13. Interior Point Method for Solving Fuzzy Number Linear Programming Problems Using Linear Ranking Function

    Directory of Open Access Journals (Sweden)

    Yi-hua Zhong


    Full Text Available Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex method and dual simplex method. But their computational complexities are exponential, which is not satisfactory for solving large-scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar to that of interior point method used for solving linear programming problems in crisp environment before, but its feasible direction and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end condition is involved in linear ranking function. Their correctness and rationality are proved. Moreover, choice of the initial interior point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative method for solving fuzzy number linear programming problems.

  14. Improving mathematical problem solving skills through visual media (United States)

    Widodo, S. A.; Darhim; Ikhwanudin, T.


    The purpose of this article was to find out the enhancement of students’ mathematical problem solving by using visual learning media. The ability to solve mathematical problems is the ability possessed by students to solve problems encountered, one of the problem-solving model of Polya. This preliminary study was not to make a model, but it only took a conceptual approach by comparing the various literature of problem-solving skills by linking visual learning media. The results of the study indicated that the use of learning media had not been appropriated so that the ability to solve mathematical problems was not optimal. The inappropriateness of media use was due to the instructional media that was not adapted to the characteristics of the learners. Suggestions that can be given is the need to develop visual media to increase the ability to solve problems.

  15. Understanding the determinants of problem-solving behavior in a complex environment (United States)

    Casner, Stephen A.


    It is often argued that problem-solving behavior in a complex environment is determined as much by the features of the environment as by the goals of the problem solver. This article explores a technique to determine the extent to which measured features of a complex environment influence problem-solving behavior observed within that environment. In this study, the technique is used to determine how complex flight deck and air traffic control environment influences the strategies used by airline pilots when controlling the flight path of a modern jetliner. Data collected aboard 16 commercial flights are used to measure selected features of the task environment. A record of the pilots' problem-solving behavior is analyzed to determine to what extent behavior is adapted to the environmental features that were measured. The results suggest that the measured features of the environment account for as much as half of the variability in the pilots' problem-solving behavior and provide estimates on the probable effects of each environmental feature.

  16. A Framework for Distributed Problem Solving (United States)

    Leone, Joseph; Shin, Don G.


    This work explores a distributed problem solving (DPS) approach, namely the AM/AG model, to cooperative memory recall. The AM/AG model is a hierarchic social system metaphor for DPS based on the Mintzberg's model of organizations. At the core of the model are information flow mechanisms, named amplification and aggregation. Amplification is a process of expounding a given task, called an agenda, into a set of subtasks with magnified degree of specificity and distributing them to multiple processing units downward in the hierarchy. Aggregation is a process of combining the results reported from multiple processing units into a unified view, called a resolution, and promoting the conclusion upward in the hierarchy. The combination of amplification and aggregation can account for a memory recall process which primarily relies on the ability of making associations between vast amounts of related concepts, sorting out the combined results, and promoting the most plausible ones. The amplification process is discussed in detail. An implementation of the amplification process is presented. The process is illustrated by an example.

  17. Solved Problems in Quantum and Statistical Mechanics

    CERN Document Server

    Cini, Michele; Sbragaglia, Mauro


    This work arises from our teaching this subject during many years. The vast majority of these exercises are the exams we gave to our students in this period. We carefully selected the subjects of the exercises to cover all the material which is most needed  and which is treated in the most well known texts on these subjects. Each exercise is carefully solved in full details, explaining the theory behind the solution with particular care for those issues that, from our experience, are found most difficult from the average student. Indeed, several exercises are designed to throw light on  aspects of the theory that, for one reason or another, are usually neglected with the result to make the students feel uneasy about them. In fact most students get acquainted just with the more common manipulations,  which are illustrated by  many examples in textbooks. Our exercises never require extensive calculations  but tend to be somewhat unusual  and force the solver  to think about the problem starting from the ...

  18. Generating and Solving Symbolic Parity Games

    Directory of Open Access Journals (Sweden)

    Gijs Kant


    Full Text Available We present a new tool for verification of modal mu-calculus formulae for process specifications, based on symbolic parity games. It enhances an existing method, that first encodes the problem to a Parameterised Boolean Equation System (PBES and then instantiates the PBES to a parity game. We improved the translation from specification to PBES to preserve the structure of the specification in the PBES, we extended LTSmin to instantiate PBESs to symbolic parity games, and implemented the recursive parity game solving algorithm by Zielonka for symbolic parity games. We use Multi-valued Decision Diagrams (MDDs to represent sets and relations, thus enabling the tools to deal with very large systems. The transition relation is partitioned based on the structure of the specification, which allows for efficient manipulation of the MDDs. We performed two case studies on modular specifications, that demonstrate that the new method has better time and memory performance than existing PBES based tools and can be faster (but slightly less memory efficient than the symbolic model checker NuSMV.

  19. Learning disabilities and social problem solving skills

    Directory of Open Access Journals (Sweden)

    Pina Filippello


    Full Text Available Normal 0 14 false false false MicrosoftInternetExplorer4 Recent studies showed that children with learning disabilities present significant difficulties in learning as well as in social skills (Siperstein, 2009.Therefore, it was observed how it is difficult for these children to establish adequate relationships, especially to advise coping strategies to face interpersonal conflicts (Oliva & LaGreca, 1988. Accordingly to this argument and with reference to Agaliotis e Kalyva (2004, 2009, this study examines the preferences for strategies to solve an hypothetical conflict on a sample of children with LD in comparison to typical developing peers. They used the method of social story to conduct this research. In fact, researchers asked to the children, after they have listened a short story describing an interpersonal conflict interaction between adult and peers,  which strategies they would have chosen if they were in the same situation and the strategies that would be most appropriate to resolve a conflict. Results obtained from the experiment corroborated literature data and demonstrated that children with LD, in comparison to typical developing peers, use and prefer dysfunctional coping strategies, aggressive or passive, also in relation to the partner interaction (adult or peers to face interpersonal conflict.

  20. Solved? The reductive radiation chemistry of alanine. (United States)

    Pauwels, Ewald; De Cooman, Hendrik; Waroquier, Michel; Hole, Eli O; Sagstuen, Einar


    The structural changes throughout the entire reductive radiation-induced pathway of l-α-alanine are solved on an atomistic level with the aid of periodic DFT and nudged elastic band (NEB) simulations. This yields unprecedented information on the conformational changes taking place, including the protonation state of the carboxyl group in the "unstable" and "stable" alanine radicals and the internal transformation converting these two radical variants at temperatures above 220 K. The structures of all stable radicals were verified by calculating EPR properties and comparing those with experimental data. The variation of the energy throughout the full radiochemical process provides crucial insight into the reason why these structural changes and rearrangements occur. Starting from electron capture, the excess electron quickly localizes on the carbon of a carboxyl group, which pyramidalizes and receives a proton from the amino group of a neighboring alanine molecule, forming a first stable radical species (up to 150 K). In the temperature interval 150-220 K, this radical deaminates and deprotonates at the carboxyl group, the detached amino group undergoes inversion and its methyl group sustains an internal rotation. This yields the so-called "unstable alanine radical". Above 220 K, triggered by the attachment of an additional proton on the detached amino group, the radical then undergoes an internal rotation in the reverse direction, giving rise to the "stable alanine radical", which is the final stage in the reductive radiation-induced decay of alanine.

  1. Glow discharge based device for solving mazes

    Energy Technology Data Exchange (ETDEWEB)

    Dubinov, Alexander E., E-mail:; Mironenko, Maxim S.; Selemir, Victor D. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation); Sarov Institute of Physics and Technology (SarFTI) of National Research Nuclear University “MEPhI,” Sarov, Nizhni Novgorod region 607188 (Russian Federation); Maksimov, Artem N.; Pylayev, Nikolay A. [Russian Federal Nuclear Center − All-Russian Scientific and Research Institute of Experimental Physics (RFNC-VNIIEF), Sarov, Nizhni Novgorod region 607188 (Russian Federation)


    A glow discharge based device for solving mazes has been designed and tested. The device consists of a gas discharge chamber and maze-transformer of radial-azimuth type. It allows changing of the maze pattern in a short period of time (within several minutes). The device has been tested with low pressure air. Once switched on, a glow discharge has been shown to find the shortest way through the maze from the very first attempt, even if there is a section with potential barrier for electrons on the way. It has been found that ionization waves (striations) can be excited in the maze along the length of the plasma channel. The dependancy of discharge voltage on the length of the optimal path through the maze has been measured. A reduction in discharge voltage with one or two potential barriers present has been found and explained. The dependency of the magnitude of discharge ignition voltage on the length of the optimal path through the maze has been measured. The reduction of the ignition voltage with the presence of one or two potential barriers has been observed and explained.

  2. Solving the RNA polymerase I structural puzzle

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Morcillo, María [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Taylor, Nicholas M. I. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Gruene, Tim [Georg-August-University, Tammannstrasse 4, 37077 Göttingen (Germany); Legrand, Pierre [SOLEIL Synchrotron, L’Orme de Merisiers, Saint Aubin, Gif-sur-Yvette (France); Rashid, Umar J. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Ruiz, Federico M. [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); Steuerwald, Ulrich; Müller, Christoph W. [European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany); Fernández-Tornero, Carlos, E-mail: [Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid (Spain); European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg (Germany)


    Details of the RNA polymerase I crystal structure determination provide a framework for solution of the structures of other multi-subunit complexes. Simple crystallographic experiments are described to extract relevant biological information such as the location of the enzyme active site. Knowing the structure of multi-subunit complexes is critical to understand basic cellular functions. However, when crystals of these complexes can be obtained they rarely diffract beyond 3 Å resolution, which complicates X-ray structure determination and refinement. The crystal structure of RNA polymerase I, an essential cellular machine that synthesizes the precursor of ribosomal RNA in the nucleolus of eukaryotic cells, has recently been solved. Here, the crucial steps that were undertaken to build the atomic model of this multi-subunit enzyme are reported, emphasizing how simple crystallographic experiments can be used to extract relevant biological information. In particular, this report discusses the combination of poor molecular replacement and experimental phases, the application of multi-crystal averaging and the use of anomalous scatterers as sequence markers to guide tracing and to locate the active site. The methods outlined here will likely serve as a reference for future structural determination of large complexes at low resolution.

  3. Solving the Examination Timetabling Problem in GPUs

    Directory of Open Access Journals (Sweden)

    Vasileios Kolonias


    Full Text Available The examination timetabling problem belongs to the class of combinatorial optimization problems and is of great importance for every University. In this paper, a hybrid evolutionary algorithm running on a GPU is employed to solve the examination timetabling problem. The hybrid evolutionary algorithm proposed has a genetic algorithm component and a greedy steepest descent component. The GPU computational capabilities allow the use of very large population sizes, leading to a more thorough exploration of the problem solution space. The GPU implementation, depending on the size of the problem, is up to twenty six times faster than the identical single-threaded CPU implementation of the algorithm. The algorithm is evaluated with the well known Toronto datasets and compares well with the best results found in the bibliography. Moreover, the selection of the encoding of the chromosomes and the tournament selection size as the population grows are examined and optimized. The compressed sparse row format is used for the conflict matrix and was proven essential to the process, since most of the datasets have a small conflict density, which translates into an extremely sparse matrix.

  4. Projective geometry solved problems and theory review

    CERN Document Server

    Fortuna, Elisabetta; Pardini, Rita


    This book starts with a concise but rigorous overview of the basic notions of projective geometry, using straightforward and modern language. The goal is not only to establish the notation and terminology used, but also to offer the reader a quick survey of the subject matter. In the second part, the book presents more than 200 solved problems, for many of which several alternative solutions are provided. The level of difficulty of the exercises varies considerably: they range from computations to harder problems of a more theoretical nature, up to some actual complements of the theory. The structure of the text allows the reader to use the solutions of the exercises both to master the basic notions and techniques and to further their knowledge of the subject, thus learning some classical results not covered in the first part of the book. The book addresses the needs of undergraduate and graduate students in the theoretical and applied sciences, and will especially benefit those readers with a solid grasp of ...

  5. The effect of Missouri mathematics project learning model on students’ mathematical problem solving ability (United States)

    Handayani, I.; Januar, R. L.; Purwanto, S. E.


    This research aims to know the influence of Missouri Mathematics Project Learning Model to Mathematical Problem-solving Ability of Students at Junior High School. This research is a quantitative research and uses experimental research method of Quasi Experimental Design. The research population includes all student of grade VII of Junior High School who are enrolled in the even semester of the academic year 2016/2017. The Sample studied are 76 students from experimental and control groups. The sampling technique being used is cluster sampling method. The instrument is consisted of 7 essay questions whose validity, reliability, difficulty level and discriminating power have been tested. Before analyzing the data by using t-test, the data has fulfilled the requirement for normality and homogeneity. The result of data shows that there is the influence of Missouri mathematics project learning model to mathematical problem-solving ability of students at junior high school with medium effect.

  6. Refractive Thinking Profile In Solving Mathematical Problem Reviewed from Students Math Capability (United States)

    Maslukha, M.; Lukito, A.; Ekawati, R.


    Refraction is a mental activity experienced by a person to make a decision through reflective thinking and critical thinking. Differences in mathematical capability have an influence on the difference of student’s refractive thinking processes in solving math problems. This descriptive research aims to generate a picture of refractive thinking of students in solving mathematical problems in terms of students’ math skill. Subjects in this study consisted of three students, namely students with high, medium, and low math skills based on mathematics capability test. Data collection methods used are test-based methods and interviews. After collected data is analyzed through three stages that are, condensing and displaying data, data display, and drawing and verifying conclusion. Results showed refractive thinking profiles of three subjects is different. This difference occurs at the planning and execution stage of the problem. This difference is influenced by mathematical capability and experience of each subject.

  7. The semantic system is involved in mathematical problem solving. (United States)

    Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng


    Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The effects of monitoring environment on problem-solving performance. (United States)

    Laird, Brian K; Bailey, Charles D; Hester, Kim


    While effective and efficient solving of everyday problems is important in business domains, little is known about the effects of workplace monitoring on problem-solving performance. In a laboratory experiment, we explored the monitoring environment's effects on an individual's propensity to (1) establish pattern solutions to problems, (2) recognize when pattern solutions are no longer efficient, and (3) solve complex problems. Under three work monitoring regimes-no monitoring, human monitoring, and electronic monitoring-114 participants solved puzzles for monetary rewards. Based on research related to worker autonomy and theory of social facilitation, we hypothesized that monitored (versus non-monitored) participants would (1) have more difficulty finding a pattern solution, (2) more often fail to recognize when the pattern solution is no longer efficient, and (3) solve fewer complex problems. Our results support the first two hypotheses, but in complex problem solving, an interaction was found between self-assessed ability and the monitoring environment.


    Directory of Open Access Journals (Sweden)

    NOVOTNÁ, Jarmila


    Full Text Available The paper describes one of the ways of developing pupils’ creative approach to problem solving. The described experiment is a part of a longitudinal research focusing on improvement of culture of problem solving by pupils. It deals with solving of problems using the following heuristic strategies: Analogy, Guess – check – revise, Systematic experimentation, Problem reformulation, Solution drawing, Way back and Use of graphs of functions. Most attention is paid to the question whether short-term work, in this case only over the period of three months, can result in improvement of pupils’ abilities to solve problems whose solving algorithms are easily accessible. It also answers the question which strategies pupils will prefer and with what results. The experiment shows that even short-term work can bear positive results as far as pupils’ approach to problem solving is concerned.

  10. Self-affirmation improves problem-solving under stress. (United States)

    Creswell, J David; Dutcher, Janine M; Klein, William M P; Harris, Peter R; Levine, John M


    High levels of acute and chronic stress are known to impair problem-solving and creativity on a broad range of tasks. Despite this evidence, we know little about protective factors for mitigating the deleterious effects of stress on problem-solving. Building on previous research showing that self-affirmation can buffer stress, we tested whether an experimental manipulation of self-affirmation improves problem-solving performance in chronically stressed participants. Eighty undergraduates indicated their perceived chronic stress over the previous month and were randomly assigned to either a self-affirmation or control condition. They then completed 30 difficult remote associate problem-solving items under time pressure in front of an evaluator. Results showed that self-affirmation improved problem-solving performance in underperforming chronically stressed individuals. This research suggests a novel means for boosting problem-solving under stress and may have important implications for understanding how self-affirmation boosts academic achievement in school settings.

  11. Using Analogy to Solve a Three-Step Physics Problem (United States)

    Lin, Shih-Yin; Singh, Chandralekha


    In a companion paper, we discuss students' ability to take advantage of what they learn from a solved problem and transfer their learning to solve a quiz problem that has different surface features but the same underlying physics principles. Here, we discuss students' ability to perform analogical reasoning between another pair of problems. Both the problems can be solved using the same physics principles. However, the solved problem provided was a two-step problem (which can be solved by decomposing it into two sub-problems) while the quiz problem was a three-step problem. We find that it is challenging for students to extend what they learned from a two-step problem to solve a three-step problem.

  12. An Integer Programming Approach to Solving Tantrix on Fixed Boards

    Directory of Open Access Journals (Sweden)

    Yushi Uno


    Full Text Available Tantrix (Tantrix R ⃝ is a registered trademark of Colour of Strategy Ltd. in New Zealand, and of TANTRIX JAPAN in Japan, respectively, under the license of M. McManaway, the inventor. is a puzzle to make a loop by connecting lines drawn on hexagonal tiles, and the objective of this research is to solve it by a computer. For this purpose, we first give a problem setting of solving Tantrix as making a loop on a given fixed board. We then formulate it as an integer program by describing the rules of Tantrix as its constraints, and solve it by a mathematical programming solver to have a solution. As a result, we establish a formulation that can solve Tantrix of moderate size, and even when the solutions are invalid only by elementary constraints, we achieved it by introducing additional constraints and re-solve it. By this approach we succeeded to solve Tantrix of size up to 60.

  13. Problem solving therapy - use and effectiveness in general practice. (United States)

    Pierce, David


    Problem solving therapy (PST) is one of the focused psychological strategies supported by Medicare for use by appropriately trained general practitioners. This article reviews the evidence base for PST and its use in the general practice setting. Problem solving therapy involves patients learning or reactivating problem solving skills. These skills can then be applied to specific life problems associated with psychological and somatic symptoms. Problem solving therapy is suitable for use in general practice for patients experiencing common mental health conditions and has been shown to be as effective in the treatment of depression as antidepressants. Problem solving therapy involves a series of sequential stages. The clinician assists the patient to develop new empowering skills, and then supports them to work through the stages of therapy to determine and implement the solution selected by the patient. Many experienced GPs will identify their own existing problem solving skills. Learning about PST may involve refining and focusing these skills.

  14. The Impact of Childhood Emotional Abuse and Experiential Avoidance on Maladaptive Problem Solving and Intimate Partner Violence (United States)

    Bell, Kathryn M.; Higgins, Lorrin


    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person’s ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk. PMID:25893570

  15. Moving your eyes to solution: effects of movements on the perception of a problem-solving task. (United States)

    Werner, K; Raab, M


    There is ample evidence suggesting a bidirectional connection between bodily movements and cognitive processes, such as problem solving. Current research suggests that previous movements can influence the problem-solving process, but it is unclear what phase of this process is affected. Therefore, we investigated participants' gaze behaviour in the first phase of arithmetic problem solving with two groups (plus group, minus group) to explore a spatial bias toward the left or the right while perceiving a problem-solving task (the water-jar problem) after two different movements-that is, for the plus group, sorting marbles from two outer bowls into one in the middle, and for the minus group, sorting marbles from the middle bowl to the outer ones. We showed a right shift of spatial bias for the plus and to the left for the minus group in the perception and problem tasks. Although movements affected gaze, the groups did not differ in their overall problem-solving strategies; however, the first correct solutions did differ. This study provides further evidence of sensorimotor effects on problem solving and spatial bias and offers insight into how a two-phase problem-solving process is guided by sensorimotor information.

  16. The impact of childhood emotional abuse and experiential avoidance on maladaptive problem solving and intimate partner violence. (United States)

    Bell, Kathryn M; Higgins, Lorrin


    The purpose of the current study was to examine the joint influences of experiential avoidance and social problem solving on the link between childhood emotional abuse (CEA) and intimate partner violence (IPV). Experiential avoidance following CEA may interfere with a person's ability to effectively problem solve in social situations, increasing risk for conflict and interpersonal violence. As part of a larger study, 232 women recruited from the community completed measures assessing childhood emotional, physical, and sexual abuse, experiential avoidance, maladaptive social problem solving, and IPV perpetration and victimization. Final trimmed models indicated that CEA was indirectly associated with IPV victimization and perpetration via experiential avoidance and Negative Problem Orientation (NPO) and Impulsivity/Carelessness Style (ICS) social problem solving strategies. Though CEA was related to an Avoidance Style (AS) social problem solving strategy, this strategy was not significantly associated with IPV victimization or perpetration. Experiential avoidance had both a direct and indirect effect, via NPO and ICS social problem solving, on IPV victimization and perpetration. Findings suggest that CEA may lead some women to avoid unwanted internal experiences, which may adversely impact their ability to effectively problem solve in social situations and increase IPV risk.

  17. Transformational and transactional leadership and problem solving in restaurant industry


    Huhtala, Nina


    The study tries to give information on the leadership behavior of restaurant managers in their problem solving. The results of the study were collected by evaluating three restaurant managers by interviewing them. The restaurant managers’ answers were compared to transformational and transactional leadership model and the aspects of it. Their problem solving skills were evaluated by the help of a rational and creative problem solving model. The study showed that restaurant managers have both ...

  18. Understanding adults’ strong problem-solving skills based on PIAAC


    Hämäläinen, Raija; De Wever, Bram; Nissinen, Kari; Cincinnato, Sebastiano


    Purpose Research has shown that the problem-solving skills of adults with a vocational education and training (VET) background in technology-rich environments (TREs) are often inadequate. However, some adults with a VET background do have sound problem-solving skills. The present study aims to provide insight into the socio-demographic, work-related and everyday life factors that are associated with a strong problem-solving performance. Design/methodology/approach The study builds...

  19. Applying homotopy analysis method for solving differential-difference equation

    International Nuclear Information System (INIS)

    Wang Zhen; Zou Li; Zhang Hongqing


    In this Letter, we apply the homotopy analysis method to solving the differential-difference equations. A simple but typical example is applied to illustrate the validity and the great potential of the generalized homotopy analysis method in solving differential-difference equation. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the differential-difference equations

  20. The Unified Problem-Solving Method Development Language UPML


    Fensel, Dieter; Motta, Enrico; van Harmelen, Frank; Benjamins, V. Richard; Crubezy, Monica; Decker, Stefan; Gaspari, Mauro; Groenboom, Rix; Grosso, William; Musen, Mark; Plaza, Enric; Schreiber, Guus; Studer, Rudi; Wielinga, Bob


    Problem-solving methods provide reusable architectures and components for implementing the reasoning part of knowledge-based systems. The UNIFIED PROBLEM-SOLVING METHOD DESCRIPTION LANGUAGE (UPML) has been developed to describe and implement such architectures and components to facilitate their semi-automatic reuse and adaptation. In a nutshell, UPML is a framework for developing knowledge-intensive reasoning systems based on libraries ofg eneric problem-solving components. The paper describe...

  1. Happy software developers solve problems better: psychological measurements in empirical software engineering. (United States)

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka


    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  2. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions (United States)

    Lin, Shih-Yin; Singh, Chandralekha


    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  3. Using a general problem-solving strategy to promote transfer. (United States)

    Youssef-Shalala, Amina; Ayres, Paul; Schubert, Carina; Sweller, John


    Cognitive load theory was used to hypothesize that a general problem-solving strategy based on a make-as-many-moves-as-possible heuristic could facilitate problem solutions for transfer problems. In four experiments, school students were required to learn about a topic through practice with a general problem-solving strategy, through a conventional problem solving strategy or by studying worked examples. In Experiments 1 and 2 using junior high school students learning geometry, low knowledge students in the general problem-solving group scored significantly higher on near or far transfer tests than the conventional problem-solving group. In Experiment 3, an advantage for a general problem-solving group over a group presented worked examples was obtained on far transfer tests using the same curriculum materials, again presented to junior high school students. No differences between conditions were found in Experiments 1, 2, or 3 using test problems similar to the acquisition problems. Experiment 4 used senior high school students studying economics and found the general problem-solving group scored significantly higher than the conventional problem-solving group on both similar and transfer tests. It was concluded that the general problem-solving strategy was helpful for novices, but not for students that had access to domain-specific knowledge. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  4. Solving Dynamic Battlespace Movement Problems Using Dynamic Distributed Computer Networks

    National Research Council Canada - National Science Library

    Bradford, Robert


    .... The thesis designs a system using this architecture that invokes operations research network optimization algorithms to solve problems involving movement of people and equipment over dynamic road networks...

  5. Applying Lakatos' Theory to the Theory of Mathematical Problem Solving. (United States)

    Nunokawa, Kazuhiko


    The relation between Lakatos' theory and issues in mathematics education, especially mathematical problem solving, is investigated by examining Lakatos' methodology of a scientific research program. (AIM)

  6. Algebraic reasoning and bat-and-ball problem variants: Solving isomorphic algebra first facilitates problem solving later. (United States)

    Hoover, Jerome D; Healy, Alice F


    The classic bat-and-ball problem is used widely to measure biased and correct reasoning in decision-making. University students overwhelmingly tend to provide the biased answer to this problem. To what extent might reasoners be led to modify their judgement, and, more specifically, is it possible to facilitate problem solution by prompting participants to consider the problem from an algebraic perspective? One hundred ninety-seven participants were recruited to investigate the effect of algebraic cueing as a debiasing strategy on variants of the bat-and-ball problem. Participants who were cued to consider the problem algebraically were significantly more likely to answer correctly relative to control participants. Most of this cueing effect was confined to a condition that required participants to solve isomorphic algebra equations corresponding to the structure of bat-and-ball question types. On a subsequent critical question with differing item and dollar amounts presented without a cue, participants were able to generalize the learned information to significantly reduce overall bias. Math anxiety was also found to be significantly related to bat-and-ball problem accuracy. These results suggest that, under specific conditions, algebraic reasoning is an effective debiasing strategy on bat-and-ball problem variants, and provide the first documented evidence for the influence of math anxiety on Cognitive Reflection Test performance.

  7. How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving


    Balasubrahmanya Hegde; B. N. Meera


    A perceived difficulty is associated with physics problem solving from a learner’s viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students’ thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student interviews. Design of appropriate scaffoldings serves as pointers to the identification of student problem solving difficulties. An analysis of the results ...

  8. How do they solve it? An insight into the learner’s approach to the mechanism of physics problem solving

    Directory of Open Access Journals (Sweden)

    Balasubrahmanya Hegde


    Full Text Available A perceived difficulty is associated with physics problem solving from a learner’s viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students’ thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student interviews. Design of appropriate scaffoldings serves as pointers to the identification of student problem solving difficulties. An analysis of the results suggests the necessity of identification of the skill sets required for developing better problem solving abilities.

  9. Goals and everyday problem solving: examining the link between age-related goals and problem-solving strategy use. (United States)

    Hoppmann, Christiane A; Coats, Abby Heckman; Blanchard-Fields, Fredda


    Qualitative interviews on family and financial problems from 332 adolescents, young, middle-aged, and older adults, demonstrated that developmentally relevant goals predicted problem-solving strategy use over and above problem domain. Four focal goals concerned autonomy, generativity, maintaining good relationships with others, and changing another person. We examined both self- and other-focused problem-solving strategies. Autonomy goals were associated with self-focused instrumental problem solving and generative goals were related to other-focused instrumental problem solving in family and financial problems. Goals of changing another person were related to other-focused instrumental problem solving in the family domain only. The match between goals and strategies, an indicator of problem-solving adaptiveness, showed that young individuals displayed the greatest match between autonomy goals and self-focused problem solving, whereas older adults showed a greater match between generative goals and other-focused problem solving. Findings speak to the importance of considering goals in investigations of age-related differences in everyday problem solving.


    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yang; Lin, Weipeng [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Shanghai 200030 (China); Pearce, Frazer R.; Lux, Hanni; Onions, Julian [School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (United Kingdom); Muldrew, Stuart I., E-mail:, E-mail: [Department of Physics and Astronomy, University of Leicester, University Road, Leicester, LE1 7RH (United Kingdom)


    Investigating the spin parameter distribution of subhalos in two high-resolution isolated halo simulations, recent work by Onions et al. suggested that typical subhalo spins are consistently lower than the spin distribution found for field halos. To further examine this puzzle, we have analyzed simulations of a cosmological volume with sufficient resolution to resolve a significant subhalo population. We confirm the result of Onions et al. and show that the typical spin of a subhalo decreases with decreasing mass and increasing proximity to the host halo center. We interpret this as the growing influence of tidal stripping in removing the outer layers, and hence the higher angular momentum particles, of the subhalos as they move within the host potential. Investigating the redshift dependence of this effect, we find that the typical subhalo spin is smaller with decreasing redshift. This indicates a temporal evolution, as expected in the tidal stripping scenario.

  11. Differences in problem-solving between canid populations: Do domestication and lifetime experience affect persistence? (United States)

    Brubaker, Lauren; Dasgupta, Sandipan; Bhattacharjee, Debottam; Bhadra, Anindita; Udell, Monique A R


    Past research has suggested that a variety of factors, phylogenetic and ontogenetic, play a role in how canines behave during problem-solving tasks and the degree to which the presence of a human influences their problem-solving behaviour. While comparisons between socialized wolves and domestic dogs have commonly been used to tease apart these predictive factors, in many cases a single dog population, often pets, have been used for these comparisons. Less is understood about how different populations of dogs may behave when compared with wolves, or with each other, during an independent problem-solving task. This experiment compared the independent persistence of four populations of canines (two groups of pet domestic dogs, a group of free-ranging domestic dogs, and human-socialized wolves) on an independent problem-solving task in the presence of an on looking human. Results showed that wolves persisted the most at the task while free-ranging dogs persisted the least. Free-ranging dogs gazed at the human experimenter for the longest durations during the task. While further research is needed to understand why these differences exist, this study demonstrates that dogs, even those living outside human homes as scavengers, show comparatively low levels of persistence when confronted with a solvable task in the presence of a human as well as significantly greater duration of human-directed gaze when compared with wolves.

  12. Processing of Words Related to the Demands of a Previously Solved Problem

    Directory of Open Access Journals (Sweden)

    Kowalczyk Marek


    Full Text Available Earlier research by the author brought about findings suggesting that people in a special way process words related to demands of a problem they previously solved, even when they do not consciously notice this relationship. The findings concerned interference in the task in which the words appeared, a shift in affective responses to them that depended on sex of the participants, and impaired memory of the words. The aim of this study was to replicate these effects and to find out whether they are related to working memory (WM span of the participants, taken as a measure of the individual’s ability to control attention. Participants in the experimental group solved a divergent problem, then performed an ostensibly unrelated speeded affective classification task concerning each of a series of nouns, and then performed an unexpected cued recall task for the nouns. Afterwards, a task measuring WM span was administered. In the control group there was no problem-solving phase. Response latencies for words immediately following problem-related words in the classification task were longer in the experimental than in the control group, but there was no relationship between this effect and WM span. Solving the problem, in interaction with sex of the participants and, independently, with their WM span, influenced affective responses to problem-related words. Recall of these words, however, was not impaired in the experimental group.

  13. The impact of perceived self-efficacy on mental time travel and social problem solving. (United States)

    Brown, Adam D; Dorfman, Michelle L; Marmar, Charles R; Bryant, Richard A


    Current models of autobiographical memory suggest that self-identity guides autobiographical memory retrieval. Further, the capacity to recall the past and imagine one's self in the future (mental time travel) can influence social problem solving. We examined whether manipulating self-identity, through an induction task in which students were led to believe they possessed high or low self-efficacy, impacted episodic specificity and content of retrieved and imagined events, as well as social problem solving. Compared to individuals in the low self efficacy group, individuals in the high self efficacy group generated past and future events with greater (a) specificity, (b) positive words, and (c) self-efficacious statements, and also performed better on social problem solving indices. A lack of episodic detail for future events predicted poorer performance on social problem solving tasks. Strategies that increase perceived self-efficacy may help individuals to selectively construct a past and future that aids in negotiating social problems. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Students' Epistemological Framing in Quantum Mechanics Problem Solving (United States)

    Modir, Bahar; Thompson, John D.; Sayre, Eleanor C.


    Students' difficulties in quantum mechanics may be the result of unproductive framing and not a fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of epistemological framing, we investigated four…

  15. Threshold Concepts in the Development of Problem-Solving Skills (United States)

    Wismath, Shelly; Orr, Doug; MacKay, Bruce


    Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…

  16. Problem-Solving during Shared Reading at Kindergarten (United States)

    Gosen, Myrte N.; Berenst, Jan; de Glopper, Kees


    This paper reports on a conversation analytic study of problem-solving interactions during shared reading at three kindergartens in the Netherlands. It illustrates how teachers and pupils discuss book characters' problems that arise in the events in the picture books. A close analysis of the data demonstrates that problem-solving interactions do…

  17. Measuring Problem Solving Skills in Plants vs. Zombies 2 (United States)

    Shute, Valerie J.; Moore, Gregory R.; Wang, Lubin


    We are using stealth assessment, embedded in "Plants vs. Zombies 2," to measure middle-school students' problem solving skills. This project started by developing a problem solving competency model based on a thorough review of the literature. Next, we identified relevant in-game indicators that would provide evidence about students'…

  18. Emergent Leadership in Children's Cooperative Problem Solving Groups (United States)

    Sun, Jingjng; Anderson, Richard C.; Perry, Michelle; Lin, Tzu-Jung


    Social skills involved in leadership were examined in a problem-solving activity in which 252 Chinese 5th-graders worked in small groups on a spatial-reasoning puzzle. Results showed that students who engaged in peer-managed small-group discussions of stories prior to problem solving produced significantly better solutions and initiated…

  19. Instructional Design-Based Research on Problem Solving Strategies (United States)

    Emre-Akdogan, Elçin; Argün, Ziya


    The main goal of this study is to find out the effect of the instructional design method on the enhancement of problem solving abilities of students. Teaching sessions were applied to ten students who are in 11th grade, to teach them problem solving strategies which are working backwards, finding pattern, adopting a different point of view,…

  20. Problem Solving and the Development of Expertise in Management. (United States)

    Lash, Fredrick B.

    This study investigated novice and expert problem solving behavior in management to examine the role of domain specific knowledge on problem solving processes. Forty-one middle level marketing managers in a large petrochemical organization provided think aloud protocols in response to two hypothetical management scenarios. Protocol analysis…

  1. Glogs as Non-Routine Problem Solving Tools in Mathematics (United States)

    Devine, Matthew T.


    In mathematical problem solving, American students are falling behind their global peers because of a lack of foundational and reasoning skills. A specific area of difficulty with problem solving is working non-routine, heuristic-based problems. Many students are not provided with effective instruction and often grow frustrated and dislike math.…

  2. Adams Predictor-Corrector Systems for Solving Fuzzy Differential Equations

    Directory of Open Access Journals (Sweden)

    Dequan Shang


    Full Text Available A predictor-corrector algorithm and an improved predictor-corrector (IPC algorithm based on Adams method are proposed to solve first-order differential equations with fuzzy initial condition. These algorithms are generated by updating the Adams predictor-corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.

  3. A theory of intelligence: networked problem solving in animal societies


    Shour, Robert


    A society's single emergent, increasing intelligence arises partly from the thermodynamic advantages of networking the innate intelligence of different individuals, and partly from the accumulation of solved problems. Economic growth is proportional to the square of the network entropy of a society's population times the network entropy of the number of the society's solved problems.

  4. Visual Attention Modulates Insight versus Analytic Solving of Verbal Problems (United States)

    Wegbreit, Ezra; Suzuki, Satoru; Grabowecky, Marcia; Kounios, John; Beeman, Mark


    Behavioral and neuroimaging findings indicate that distinct cognitive and neural processes underlie solving problems with sudden insight. Moreover, people with less focused attention sometimes perform better on tests of insight and creative problem solving. However, it remains unclear whether different states of attention, within individuals,…

  5. High School Students' Use of Meiosis When Solving Genetics Problems. (United States)

    Wynne, Cynthia F.; Stewart, Jim; Passmore, Cindy


    Paints a different picture of students' reasoning with meiosis as they solved complex, computer-generated genetics problems, some of which required them to revise their understanding of meiosis in response to anomalous data. Students were able to develop a rich understanding of meiosis and can utilize that knowledge to solve genetics problems.…

  6. RUPS: Research Utilizing Problem Solving. Administrators Version. Leader's Manual. (United States)

    Jung, Charles; And Others

    This manual is to be used by leaders of RUPS (Research Utilizing Problem Solving) workshops for school or district administrators. The workshop's goal is for administrators to develop problem solving skills by using the RUPS simulation situations in a teamwork setting. Although workshop leaders should be familiar with the RUPS materials and…

  7. RUPS: Research Utilizing Problem Solving. Classroom Version. Leader's Manual. (United States)

    Jung, Charles; And Others

    This training manual is for teachers participating in the Research Utilizing Problem Solving (RUPS) workshops. The workshops last for four and one-half days and are designed to improve the school setting and to increase teamwork skills. The teachers participate in simulation exercises in which they help a fictitious teacher or principal solve a…

  8. Find the Dimensions: Students Solving a Tiling Problem (United States)

    Obara, Samuel


    Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.

  9. Best Known Problem Solving Strategies in "High-Stakes" Assessments (United States)

    Hong, Dae S.


    In its mathematics standards, National Council of Teachers of Mathematics (NCTM) states that problem solving is an integral part of all mathematics learning and exposure to problem solving strategies should be embedded across the curriculum. Furthermore, by high school, students should be able to use, decide and invent a wide range of strategies.…

  10. Solving L-L Extraction Problems with Excel Spreadsheet (United States)

    Teppaitoon, Wittaya


    This work aims to demonstrate the use of Excel spreadsheets for solving L-L extraction problems. The key to solving the problems successfully is to be able to determine a tie line on the ternary diagram where the calculation must be carried out. This enables the reader to analyze the extraction process starting with a simple operation, the…

  11. A descriptive model of information problem solving while using internet

    NARCIS (Netherlands)

    Brand-Gruwel, Saskia; Wopereis, Iwan; Walraven, Amber


    This paper presents the IPS-I-model: a model that describes the process of information problem solving (IPS) in which the Internet (I) is used to search information. The IPS-I-model is based on three studies, in which students in secondary and (post) higher education were asked to solve information

  12. Solving the minimum flow problem with interval bounds and flows

    Indian Academy of Sciences (India)

    ... with crisp data. In this paper, the idea of Ghiyasvand was extended for solving the minimum flow problem with interval-valued lower, upper bounds and flows. This problem can be solved using two minimum flow problems with crisp data. Then, this result is extended to networks with fuzzy lower, upper bounds and flows.

  13. Relationship between Problem-Solving Ability and Career Maturity ...

    African Journals Online (AJOL)

    This study investigated the relationship between problem-solving ability and career maturity of secondary school students in Ibadan, Oyo State, Nigeria. 230 final year secondary school students completed self-report measures of problem solving and career maturity. Multiple regression analysis was used to analyse the data ...

  14. Two pricing methods for solving an integrated commercial fishery ...

    African Journals Online (AJOL)

    In this paper, we develop two novel pricing methods for solving an integer program. We demonstrate the methods by solving an integrated commercial fishery planning model (IFPM). In this problem, a fishery manager must schedule fishing trawlers (determine when and where the trawlers should go fishing, and when the ...

  15. Concept Learning versus Problem Solving: Is There a Difference? (United States)

    Nurrenbern, Susan C.; Pickering, Miles


    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  16. The Relationship between Students' Problem Solving Frames and Epistemological Beliefs (United States)

    Wampler, Wendi N.


    Introductory undergraduate physics courses aim to help students develop the skills and strategies necessary to solve complex, real world problems, but many students not only leave these courses with serious gaps in their conceptual understanding, but also maintain a novice-like approach to solving problems. "Matter and Interactions"…

  17. Solving the uncalibrated photometric stereo problem using total variation

    DEFF Research Database (Denmark)

    Quéau, Yvain; Lauze, Francois Bernard; Durou, Jean-Denis


    In this paper we propose a new method to solve the problem of uncalibrated photometric stereo, making very weak assumptions on the properties of the scene to be reconstructed. Our goal is to solve the generalized bas-relief ambiguity (GBR) by performing a total variation regularization of both...

  18. Social Problem Solving and Aggression: The Role of Depression (United States)

    Ozdemir, Yalcin; Kuzucu, Yasar; Koruklu, Nermin


    The purpose of the present study was to examine direct and indirect relations among social problem-solving, depression, and aggression, as well as the mediating role of depression in the link between social problem-solving and aggression among Turkish youth. Data for the present study were collected from 413 adolescents. The participants' age…

  19. Cognitive Load in Algebra: Element Interactivity in Solving Equations (United States)

    Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing


    Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…

  20. Extricating Justification Scheme Theory in Middle School Mathematical Problem Solving (United States)

    Matteson, Shirley; Capraro, Mary Margaret; Capraro, Robert M.; Lincoln, Yvonna S.


    Twenty middle grades students were interviewed to gain insights into their reasoning about problem-solving strategies using a Problem Solving Justification Scheme as our theoretical lens and the basis for our analysis. The scheme was modified from the work of Harel and Sowder (1998) making it more broadly applicable and accounting for research…

  1. Determining Students' Attitude towards Physics through Problem-Solving Strategy (United States)

    Erdemir, Naki


    In this study, the effects of teacher-directed and self-directed problem-solving strategies on students' attitudes toward physics were explored. Problem-solving strategies were used with the experimental group, while the control group was instructed using traditional teaching methods. The study was conducted with 270 students at various high…

  2. Social problem-solving among adolescents treated for depression. (United States)

    Becker-Weidman, Emily G; Jacobs, Rachel H; Reinecke, Mark A; Silva, Susan G; March, John S


    Studies suggest that deficits in social problem-solving may be associated with increased risk of depression and suicidality in children and adolescents. It is unclear, however, which specific dimensions of social problem-solving are related to depression and suicidality among youth. Moreover, rational problem-solving strategies and problem-solving motivation may moderate or predict change in depression and suicidality among children and adolescents receiving treatment. The effect of social problem-solving on acute treatment outcomes were explored in a randomized controlled trial of 439 clinically depressed adolescents enrolled in the Treatment for Adolescents with Depression Study (TADS). Measures included the Children's Depression Rating Scale-Revised (CDRS-R), the Suicidal Ideation Questionnaire--Grades 7-9 (SIQ-Jr), and the Social Problem-Solving Inventory-Revised (SPSI-R). A random coefficients regression model was conducted to examine main and interaction effects of treatment and SPSI-R subscale scores on outcomes during the 12-week acute treatment stage. Negative problem orientation, positive problem orientation, and avoidant problem-solving style were non-specific predictors of depression severity. In terms of suicidality, avoidant problem-solving style and impulsiveness/carelessness style were predictors, whereas negative problem orientation and positive problem orientation were moderators of treatment outcome. Implications of these findings, limitations, and directions for future research are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Problem Solving Frameworks for Mathematics and Software Development (United States)

    McMaster, Kirby; Sambasivam, Samuel; Blake, Ashley


    In this research, we examine how problem solving frameworks differ between Mathematics and Software Development. Our methodology is based on the assumption that the words used frequently in a book indicate the mental framework of the author. We compared word frequencies in a sample of 139 books that discuss problem solving. The books were grouped…

  4. Logo Programming, Problem Solving, and Knowledge-Based Instruction. (United States)

    Swan, Karen; Black, John B.

    The research reported in this paper was designed to investigate the hypothesis that computer programming may support the teaching and learning of problem solving, but that to do so, problem solving must be explicitly taught. Three studies involved students in several grades: 4th, 6th, 8th, 11th, and 12th. Findings collectively show that five…

  5. A Rubric for Assessing Students' Experimental Problem-Solving Ability (United States)

    Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.


    The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…

  6. Interpersonal Problem-Solving Deficits in Self-Poisoning Patients. (United States)

    McLeavey, Breda C.; And Others


    Compared self-poisoning patients with psychiatric patients and nonpatient controls on problem-solving skills and locus of control. The psychiatric and self-poisoning groups showed deficits on interpersonal problem solving compared with nonpatient controls. The self-poisoning group performed below or at the level of the psychiatric group. Locus of…

  7. Strategies, Not Solutions: Involving Students in Problem Solving. (United States)

    Von Kuster, Lee N.


    Defines problem solving, discusses the use of problems developed by students that are relevant to their own lives, presents examples of practical mathematics problems that deal with local situations, discusses fringe benefits of this type of problem solving, and addresses teachers' concern that this method consumes too much time. (MBR)

  8. Decision-Making Styles and Problem-Solving Appraisal. (United States)

    Phillips, Susan D.; And Others


    Compared decision-making style and problem-solving appraisal in 243 undergraduates. Results suggested that individuals who employ rational decision-making strategies approach problematic situations, while individuals who endorse dependent decisional strategies approach problematic situations without confidence in their problem-solving abilities.…

  9. Mathematical Profiles and Problem Solving Abilities of Mathematically Promising Students (United States)

    Budak, Ibrahim


    Mathematically promising students are defined as those who have the potential to become the leaders and problem solvers of the future. The purpose of this research is to reveal what problem solving abilities mathematically promising students show in solving non-routine problems and type of profiles they present in the classroom and during problem…

  10. Student’s scheme in solving mathematics problems (United States)

    Setyaningsih, Nining; Juniati, Dwi; Suwarsono


    The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.

  11. Problem Solving in Technology Education: A Taoist Perspective. (United States)

    Flowers, Jim


    Offers a new approach to teaching problem solving in technology education that encourages students to apply problem-solving skills to improving the human condition. Suggests that technology teachers incorporate elements of a Taoist approach in teaching by viewing technology as a tool with a goal of living a harmonious life. (JOW)

  12. An approach for solving linear fractional programming problems ...

    African Journals Online (AJOL)

    The paper presents a new approach for solving a fractional linear programming problem in which the objective function is a linear fractional function, while the constraint functions are in the form of linear inequalities. The approach adopted is based mainly upon solving the problem algebraically using the concept of duality ...

  13. Using Everyday Materials To Promote Problem Solving in Toddlers. (United States)

    Segatti, Laura; Brown-DuPaul, Judy; Keyes, Tracy L.


    Outlines benefits of and skills involved in problem solving. Details how an environment rich in materials that foster cause-and-effect or trial-and-error explorations promote cognitive development among toddlers. Offers examples of problem-solving experiences and lists materials for use in curriculum planning. Describes the teacher' role as one of…

  14. A problem solving model for regulatory policy making

    NARCIS (Netherlands)

    Boer, A.; van Engers, T.; Sileno, G.; Wyner, A.; Benn, N.


    In this paper we discuss how the interests and field theory promoted by public administration as a stakeholder in policy argumentation, directly arise from its problem solving activities, using the framework for public administration problem solving we proposed in [1,2]. We propose that calls for

  15. Is Word-Problem Solving a Form of Text Comprehension? (United States)

    Fuchs, Lynn S.; Fuchs, Douglas; Compton, Donald L.; Hamlett, Carol L.; Wang, Amber Y.


    This study's hypotheses were that (a) word-problem (WP) solving is a form of text comprehension that involves language comprehension processes, working memory, and reasoning, but (b) WP solving differs from other forms of text comprehension by requiring WP-specific language comprehension as well as general language comprehension. At the start of…

  16. Elementary School Students Perception Levels of Problem Solving Skills (United States)

    Yavuz, Günes; Yasemin, Deringöl; Arslan, Çigdem


    The purpose of this study is to reveal the perception levels of problem solving skills of elementary school students. The sample of the study is formed by totally 264 elementary students attending to 5th, 6th, 7th and 8th grade in a big city in Turkey. Data were collected by means of "Perception Scale for Problem Solving Skills" which…

  17. Working memory dysfunctions predict social problem solving skills in schizophrenia. (United States)

    Huang, Jia; Tan, Shu-ping; Walsh, Sarah C; Spriggens, Lauren K; Neumann, David L; Shum, David H K; Chan, Raymond C K


    The current study aimed to examine the contribution of neurocognition and social cognition to components of social problem solving. Sixty-seven inpatients with schizophrenia and 31 healthy controls were administrated batteries of neurocognitive tests, emotion perception tests, and the Chinese Assessment of Interpersonal Problem Solving Skills (CAIPSS). MANOVAs were conducted to investigate the domains in which patients with schizophrenia showed impairments. Correlations were used to determine which impaired domains were associated with social problem solving, and multiple regression analyses were conducted to compare the relative contribution of neurocognitive and social cognitive functioning to components of social problem solving. Compared with healthy controls, patients with schizophrenia performed significantly worse in sustained attention, working memory, negative emotion, intention identification and all components of the CAIPSS. Specifically, sustained attention, working memory and negative emotion identification were found to correlate with social problem solving and 1-back accuracy significantly predicted the poor performance in social problem solving. Among the dysfunctions in schizophrenia, working memory contributed most to deficits in social problem solving in patients with schizophrenia. This finding provides support for targeting working memory in the development of future social problem solving rehabilitation interventions. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Problem solving and Program design using the TI-92

    NARCIS (Netherlands) Ton Marée; ir Martijn van Dongen


    This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or

  19. Cognitive Predictors of Everyday Problem Solving across the Lifespan. (United States)

    Chen, Xi; Hertzog, Christopher; Park, Denise C


    An important aspect of successful aging is maintaining the ability to solve everyday problems encountered in daily life. The limited evidence today suggests that everyday problem solving ability increases from young adulthood to middle age, but decreases in older age. The present study examined age differences in the relative contributions of fluid and crystallized abilities to solving problems on the Everyday Problems Test (EPT). We hypothesized that due to diminishing fluid resources available with advanced age, crystallized knowledge would become increasingly important in predicting everyday problem solving with greater age. Two hundred and twenty-one healthy adults from the Dallas Lifespan Brain Study, aged 24-93 years, completed a cognitive battery that included measures of fluid ability (i.e., processing speed, working memory, inductive reasoning) and crystallized ability (i.e., multiple measures of vocabulary). These measures were used to predict performance on EPT. Everyday problem solving showed an increase in performance from young to early middle age, with performance beginning to decrease at about age of 50 years. As hypothesized, fluid ability was the primary predictor of performance on everyday problem solving for young adults, but with increasing age, crystallized ability became the dominant predictor. This study provides evidence that everyday problem solving ability differs with age, and, more importantly, that the processes underlying it differ with age as well. The findings indicate that older adults increasingly rely on knowledge to support everyday problem solving, whereas young adults rely almost exclusively on fluid intelligence. © 2017 S. Karger AG, Basel.

  20. Behavioral flexibility and problem solving in an invasive bird. (United States)

    Logan, Corina J


    Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.

  1. Effectiveness of discovery learning model on mathematical problem solving (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn


    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  2. Solving Complex Problems to Create Charter Extension Options

    DEFF Research Database (Denmark)

    Tippmann, Esther; Nell, Phillip Christopher

    undertaken by 29 subsidiary units supports our hypotheses, demonstrating that these activities are a means to systematically reduce inherent problem solving biases. This study contributes to problem solving theory, the literature on headquarters’ roles in complex organizations, as well as the literature......This study examines subsidiary-driven problem solving processes and their potential to create advanced solutions for charter extension options. Problem solving theory suggests that biases in problem formulation and solution search can confine problem solving potential. We thus argue that balanced...... solution search, or activities to reconcile the need for some solution features to be locally-tailored while others can be internationally standardized, mediates the relationships between problem complexity/headquarters involvement and the capacity to create advanced solutions. An analysis of 67 projects...

  3. Analysis of problem solving in terms of cognitive style (United States)

    Anthycamurty, Rr C. C.; Mardiyana; Saputro, D. R. S.


    The purpose of this study was to analyze the problem solving based on the type of cognitive style. Subjects used in this study are students of class X SMK located in Purworejo. The method used in this research is qualitative descriptive. Data collection techniques used in this research is a problem-solving test to determine student problem solving and GEFT to determine the type of cognitive style possessed by students. The result of this research is to determine the mastery of each type in cognitive style, that is Field Independent type and Field Dependent type on problem solving indicator. The impact of this research is the teacher can know the mastery of student problem solving on each type of cognitive style so that teacher can determine the proper way of delivering to student at next meeting.

  4. Social problem solving ability predicts mental health among undergraduate students. (United States)

    Ranjbar, Mansour; Bayani, Ali Asghar; Bayani, Ali


    The main objective of this study was predicting student's mental health using social problem solving- ability. In this correlational. descriptive study, 369 (208 female and 161 male) from, Mazandaran University of Medical Science were selected through stratified random sampling method. In order to collect the data, the social problem solving inventory-revised and general health questionnaire were used. Data were analyzed through SPSS-19, Pearson's correlation, t test, and stepwise regression analysis. Data analysis showed significant relationship between social problem solving ability and mental health (P Social problem solving ability was significantly associated with the somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (P social problem solving ability and mental health.

  5. Inquiry-based problem solving in introductory physics (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  6. Testing problem-solving capacities: differences between individual testing and social group setting. (United States)

    Krasheninnikova, Anastasia; Schneider, Jutta M


    Testing animals individually in problem-solving tasks limits distractions of the subjects during the test, so that they can fully concentrate on the problem. However, such individual performance may not indicate the problem-solving capacity that is commonly employed in the wild when individuals are faced with a novel problem in their social groups, where the presence of a conspecific influences an individual's behaviour. To assess the validity of data gathered from parrots when tested individually, we compared the performance on patterned-string tasks among parrots tested singly and parrots tested in social context. We tested two captive groups of orange-winged amazons (Amazona amazonica) with several patterned-string tasks. Despite the differences in the testing environment (singly vs. social context), parrots from both groups performed similarly. However, we found that the willingness to participate in the tasks was significantly higher for the individuals tested in social context. The study provides further evidence for the crucial influence of social context on individual's response to a challenging situation such as a problem-solving test.

  7. Renewable Energy: An Interdisciplinary Problem Solving Course

    Directory of Open Access Journals (Sweden)

    Alan H Mcgowan


    Full Text Available This paper describes a new intermediate course given in the Environmental Studies Program at The New School. It incorporates research activities by the class as a whole, in the process of which the class learns a great deal about the science and technology of non-fossil fuels, their promises and difficulties. Since ameliorating human influenced global climate change, educating and training students in the skills necessary to accomplish the necessary transition is essential. The course embodies a class project on which everyone works, entitled "Fueling America," whose purpose is to determine what technologies deployed in what manner and in what quantities can eliminate the use of fossil fuels in the United States by a date certain. Knowing that it was impossible, we nevertheless chose an early date, 2030, so that it seemed reachable for the students. The project resulted in a technical paper, which included an economic analysis. In addition to alternative energy technologies, the technologies of energy efficiencies were also included.

  8. Block Model Approach in Problem Solving: Effects on Problem Solving Performance of the Grade V Pupils in Mathematics (United States)

    de Guzman, Niño Jose P.; Belecina, Rene R.


    The teaching of mathematics involves problem solving skills which prove to be difficult on the part of the pupils due to misrepresentation of the word problems. Oftentimes, pupils tend to represent the phrase "more than" as addition and the word difference as "- ". This paper aims to address the problem solving skills of grade…

  9. How Do They Solve It? An Insight into the Learner's Approach to the Mechanism of Physics Problem Solving (United States)

    Hegde, Balasubrahmanya; Meera, B. N.


    A perceived difficulty is associated with physics problem solving from a learner's viewpoint, arising out of a multitude of reasons. In this paper, we have examined the microstructure of students' thought processes during physics problem solving by combining the analysis of responses to multiple-choice questions and semistructured student…

  10. Investigating a Proposed Problem Solving Theory in the Context of Mathematical Problem Solving: A Multi-Case Study (United States)

    Mills, Nadia Monrose


    The ability to succeed in Science, Technology, Engineering, and Mathematics (STEM) careers is contingent on a student's ability to engage in mathematical problem solving. As a result, there has been increased focus on students' ability to think critically by providing them more with problem solving experiences in the classroom. Much research has…

  11. The Effects of a Problem Solving Intervention on Problem Solving Skills of Students with Autism during Vocational Tasks (United States)

    Yakubova, Gulnoza


    Problem solving is an important employability skill and considered valuable both in educational settings (Agran & Alper, 2000) and the workplace (Ju, Zhang, & Pacha, 2012). However, limited research exists instructing students with autism to engage in problem solving skills (e.g., Bernard-Opitz, Sriram, & Nakhoda-Sapuan, 2001). The…

  12. Does Solving Insight-Based Problems Differ from Solving Learning-Based Problems? Some Evidence from an ERP Study (United States)

    Leikin, Roza; Waisman, Ilana; Leikin, Mark


    We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…

  13. ASA's Chandra Neon Discovery Solves Solar Paradox (United States)


    NASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works. "We use the sun to test how well we understand stars and, to some extent, the rest of the universe," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "But in order to understand the sun, we need to know exactly what it is made of," he added. It is not well known how much neon the sun contains. This is critical information for creating theoretical models of the sun. Neon atoms, along with carbon, oxygen and nitrogen, play an important role in how quickly energy flows from nuclear reactions in the sun's core to its edge, where it then radiates into space. Chandra X-ray Spectrum of II Pegasi Chandra X-ray Spectrum of II Pegasi The rate of this energy flow determines the location and size of a crucial stellar region called the convection zone. The zone extends from near the sun's surface inward approximately 125,000 miles. The zone is where the gas undergoes a rolling, convective motion much like the unstable air in a thunderstorm. "This turbulent gas has an extremely important job, because nearly all of the energy emitted at the surface of the sun is transported there by convection," Drake said. The accepted amount of neon in the sun has led to a paradox. The predicted location and size of the solar convection zone disagree with those deduced from solar oscillations. Solar oscillations is a technique astronomers previously relied on to probe the sun's interior. Several scientists have noted the problem could be fixed if the abundance of neon is in fact about three times larger than currently accepted. Attempts to measure the precise amount of neon in the Sun have been frustrated by a quirk of nature; neon atoms in the Sun give off no signatures in visible light. However, in a gas

  14. Using Problem-solving Therapy to Improve Problem-solving Orientation, Problem-solving Skills and Quality of Life in Older Hemodialysis Patients. (United States)

    Erdley-Kass, Shiloh D; Kass, Darrin S; Gellis, Zvi D; Bogner, Hillary A; Berger, Andrea; Perkins, Robert M


    To determine the effectiveness of Problem-Solving Therapy (PST) in older hemodialysis (HD) patients by assessing changes in health-related quality of life and problem-solving skills. 33 HD patients in an outpatient hemodialysis center without active medical and psychiatric illness were enrolled. The intervention group (n = 15) received PST from a licensed social worker for 6 weeks, whereas the control group (n = 18) received usual care treatment. In comparison to the control group, patients receiving PST intervention reported improved perceptions of mental health, were more likely to view their problems with a positive orientation and were more likely to use functional problem-solving methods. Furthermore, this group was also more likely to view their overall health, activity limits, social activities and ability to accomplish desired tasks with a more positive mindset. The results demonstrate that PST may positively impact mental health components of quality of life and problem-solving coping among older HD patients. PST is an effective, efficient, and easy to implement intervention that can benefit problem-solving abilities and mental health-related quality of life in older HD patients. In turn, this will help patients manage their daily living activities related to their medical condition and reduce daily stressors.

  15. Geochemistry's vital contribution to solving water resource problems

    International Nuclear Information System (INIS)

    Edmunds, W.M.


    As part of the events celebrating 40 a of IAGC, it is fitting to trace the modern evolution and development of hydrogeochemistry. However, fascination with water quality can be traced back more than 2 ka. In the post-war years, hydrogeochemistry was influenced heavily by the advances in other disciplines including physical chemistry, metallurgy and oceanography. Hydrological applications of isotope science also developed rapidly at this time, and important advances in analytical chemistry allowed multi-element and trace element applications to be made. Experimental studies on equilibrium processes and reaction kinetics allowed bench-scale insight into water-rock interaction. Consolidation of knowledge on processes in groundwaters and the current awareness of hydrogeochemistry by water professionals owe much to the work of Robert Garrels, John Hem, and co-workers in the early 1960s. Studies of down-gradient evolution enabled a field-scale understanding of groundwater quality and geochemical processes as a function of residence time (dissolution and precipitation processes in carbonate and non-carbonate aquifers; redox processes; cation exchange and salinity origins). Emerging water resource and water quality issues in the 1960s and 70s permitted the application of hydrogeochemistry to contaminant and related problems and this trend continues. The impacts of diffuse pollution from intensive agriculture, waste disposal and point source pollution from urban and industrial sources relied on geochemistry to solve questions of origin and attenuation. In semi-arid regions facing water scarcity, geochemical approaches have been vital in the assessment of renewability and characterising palaeowaters. The protection and new incoming regulation of water resources will rely increasingly on a sound geochemical basis for management.

  16. The effects of stating problems in bilingual students' first and second languages on solving mathematical word problems. (United States)

    Bernardo, Allan B I; Calleja, Marissa O


    Researchers have suggested that among bilinguals, solving word problems in mathematics is influenced by linguistic factors (K. Durkin & B. Shire, 1991; L. Verschaffel, B. Greer, & E. De Corte, 2000). Others have suggested that students exhibit a strong tendency to exclude real-world constraints in solving mathematics word problems (L. Verschaffel, E. De Corte, & S. Lasure, 1994). In the present study, the authors explored the effects of stating word problems in either Filipino or English on how Filipino-English bilingual students solved word problems in which the solution required the application of real-world knowledge. The authors asked bilingual students to solve word problems in either their first or second language. For some of the word problems, real-life constraints prevented straightforward application of mathematical procedures. The authors analyzed the students' solutions to determine whether the language of the word problems affected the tendency to apply real-life constraints in the solution. Results showed that the bilingual students (a) rarely considered real-life constraints in their solutions, (b) were more successful in understanding and solving word problems that were stated in their first language, and (c) were more likely to experience failure in finding a solution to problems stated in their second language. The results are discussed in terms of the relationship between linguistic and mathematical problem-solving processes among bilinguals.

  17. Effects of Information Retrieval Process on Decision Making and Problem Solving: An Emprical Study

    Directory of Open Access Journals (Sweden)

    Burcu Keten


    Full Text Available Individuals who are unaware of a need for information and/or who have not experienced the information retrieval process while meeting such a need cannot be a part of information society. Only those individuals with an awareness that information is essential to the problem-solving and decision-making processes, who are equipped with information retrieval and utilization skills and who can further integrate such skills into their daily lives, can be a part of an information society and attain the capability of performing properly in their societal roles and thus ultimately of shaping their society. Moving from this context, this article defines the elements of the information retrieval process, starting with the concept of information, and studies the influences of the information retrieval process on problem solving and decision making.

  18. Solving point reactor kinetic equations by time step-size adaptable numerical methods

    International Nuclear Information System (INIS)

    Liao Chaqing


    Based on the analysis of effects of time step-size on numerical solutions, this paper showed the necessity of step-size adaptation. Based on the relationship between error and step-size, two-step adaptation methods for solving initial value problems (IVPs) were introduced. They are Two-Step Method and Embedded Runge-Kutta Method. PRKEs were solved by implicit Euler method with step-sizes optimized by using Two-Step Method. It was observed that the control error has important influence on the step-size and the accuracy of solutions. With suitable control errors, the solutions of PRKEs computed by the above mentioned method are accurate reasonably. The accuracy and usage of MATLAB built-in ODE solvers ode23 and ode45, both of which adopt Runge-Kutta-Fehlberg method, were also studied and discussed. (authors)

  19. Solving linear systems in FLICA-4, thermohydraulic code for 3-D transient computations

    International Nuclear Information System (INIS)

    Allaire, G.


    FLICA-4 is a computer code, developed at the CEA (France), devoted to steady state and transient thermal-hydraulic analysis of nuclear reactor cores, for small size problems (around 100 mesh cells) as well as for large ones (more than 100000), on, either standard workstations or vector super-computers. As for time implicit codes, the largest time and memory consuming part of FLICA-4 is the routine dedicated to solve the linear system (the size of which is of the order of the number of cells). Therefore, the efficiency of the code is crucially influenced by the optimization of the algorithms used in assembling and solving linear systems: direct methods as the Gauss (or LU) decomposition for moderate size problems, iterative methods as the preconditioned conjugate gradient for large problems. 6 figs., 13 refs


    Directory of Open Access Journals (Sweden)

    Adela NEMEŞ


    Full Text Available We face with considerable challenge of developing students’ problem solving skills in our difficult environment. Good problem solving skills empower managers in their professional and personal lives. Problem solving skills are valued by academics and employers. The informations in Biology are often presented in abstract forms without contextualisation. Creative problem-solving process involves a few steps, which together provide a structured procedure for identifying challenges, generating ideas and implementing innovative solutions: identifying the problem, searching for possible solutions, selecting the most optimal solution and implementing a possible solution. Each aspect of personality has a different orientation to problem solving, different criteria for judging the effectiveness of the process and different associated strengths. Using real-world data in sample problems will also help facilitate the transfer process, since students can more easily identify with the context of a given situation. The paper describes the use of the Problem-Solving in Biology and the method of its administration. It also presents the results of a study undertaken to evaluate the value in teaching Biology. Problem-solving is seen as an essential skill that is developed in biology education.