 #### Sample records for solving polynomial equations

1. Solving polynomial differential equations by transforming them to linear functional-differential equations

OpenAIRE

Nahay, John Michael

2008-01-01

We present a new approach to solving polynomial ordinary differential equations by transforming them to linear functional equations and then solving the linear functional equations. We will focus most of our attention upon the first-order Abel differential equation with two nonlinear terms in order to demonstrate in as much detail as possible the computations necessary for a complete solution. We mention in our section on further developments that the basic transformation idea can be generali...

2. Solving the interval type-2 fuzzy polynomial equation using the ranking method

Science.gov (United States)

Rahman, Nurhakimah Ab.; Abdullah, Lazim

2014-07-01

Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.

3. On method of solving third-order ordinary differential equations directly using Bernstein polynomials

Science.gov (United States)

Khataybeh, S. N.; Hashim, I.

2018-04-01

In this paper, we propose for the first time a method based on Bernstein polynomials for solving directly a class of third-order ordinary differential equations (ODEs). This method gives a numerical solution by converting the equation into a system of algebraic equations which is solved directly. Some numerical examples are given to show the applicability of the method.

4. Matrix form of Legendre polynomials for solving linear integro-differential equations of high order

Science.gov (United States)

Kammuji, M.; Eshkuvatov, Z. K.; Yunus, Arif A. M.

2017-04-01

This paper presents an effective approximate solution of high order of Fredholm-Volterra integro-differential equations (FVIDEs) with boundary condition. Legendre truncated series is used as a basis functions to estimate the unknown function. Matrix operation of Legendre polynomials is used to transform FVIDEs with boundary conditions into matrix equation of Fredholm-Volterra type. Gauss Legendre quadrature formula and collocation method are applied to transfer the matrix equation into system of linear algebraic equations. The latter equation is solved by Gauss elimination method. The accuracy and validity of this method are discussed by solving two numerical examples and comparisons with wavelet and methods.

5. Solving Multi-variate Polynomial Equations in a Finite Field

Science.gov (United States)

2013-06-01

hardware to encrypt and decrypt messages. Many of the AES predecessors use this Feistel structure (i.e. DES, Lucifer , Blowfish). However, AES does not...However, then it is very effective . The interesting aspect about the agreeing algorithm is that it can gain momentum to solve the system once RHSs are...columns from Lh can now be removed. This can create a ‘cascade effect ’ on the system and the system quickly reduces its size and complexity. Agreeing

6. Algorithm for solving polynomial algebraic Riccati equations and its application

Czech Academy of Sciences Publication Activity Database

Augusta, Petr; Augustová, Petra

2012-01-01

Roč. 1, č. 4 (2012), s. 237-242 ISSN 2223-7038 R&D Projects: GA ČR GPP103/12/P494 Institutional support: RVO:67985556 Keywords : Numerical algorithms * algebraic Riccati equation * spatially distributed systems * optimal control Subject RIV: BC - Control Systems Theory http://lib.physcon.ru/doc?id=8b4876d6a57d

7. The Use of Generalized Laguerre Polynomials in Spectral Methods for Solving Fractional Delay Differential Equations.

Science.gov (United States)

2013-10-01

In this paper, an efficient numerical method for solving the fractional delay differential equations (FDDEs) is considered. The fractional derivative is described in the Caputo sense. The proposed method is based on the derived approximate formula of the Laguerre polynomials. The properties of Laguerre polynomials are utilized to reduce FDDEs to a linear or nonlinear system of algebraic equations. Special attention is given to study the error and the convergence analysis of the proposed method. Several numerical examples are provided to confirm that the proposed method is in excellent agreement with the exact solution.

8. Finite difference method and algebraic polynomial interpolation for numerically solving Poisson's equation over arbitrary domains

Directory of Open Access Journals (Sweden)

Tsugio Fukuchi

2014-06-01

Full Text Available The finite difference method (FDM based on Cartesian coordinate systems can be applied to numerical analyses over any complex domain. A complex domain is usually taken to mean that the geometry of an immersed body in a fluid is complex; here, it means simply an analytical domain of arbitrary configuration. In such an approach, we do not need to treat the outer and inner boundaries differently in numerical calculations; both are treated in the same way. Using a method that adopts algebraic polynomial interpolations in the calculation around near-wall elements, all the calculations over irregular domains reduce to those over regular domains. Discretization of the space differential in the FDM is usually derived using the Taylor series expansion; however, if we use the polynomial interpolation systematically, exceptional advantages are gained in deriving high-order differences. In using the polynomial interpolations, we can numerically solve the Poisson equation freely over any complex domain. Only a particular type of partial differential equation, Poisson's equations, is treated; however, the arguments put forward have wider generality in numerical calculations using the FDM.

9. General Reducibility and Solvability of Polynomial Equations ...

African Journals Online (AJOL)

General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...

10. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation

Energy Technology Data Exchange (ETDEWEB)

Tumelero, Fernanda; Petersen, Claudio Zen; Goncalves, Glenio Aguiar [Universidade Federal de Pelotas, Capao do Leao, RS (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcelo [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

2016-12-15

In this work, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. The main idea is to expand the neutron density and delayed neutron precursors as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions and the analytical continuation is used to determine the solutions of the next intervals. A genuine error control is developed based on an analogy with the Rest Theorem. For illustration, we also report simulations for different approaches types (linear, quadratic and cubic). The results obtained by numerical simulations for linear approximation are compared with results in the literature.

11. An algorithmic approach to solving polynomial equations associated with quantum circuits

International Nuclear Information System (INIS)

Gerdt, V.P.; Zinin, M.V.

2009-01-01

In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Groebner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Groebner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Groebner bases over F 2

12. Operational matrices with respect to Hermite polynomials and their applications in solving linear dierential equations with variable coecients

Directory of Open Access Journals (Sweden)

A. Aminataei

2014-05-01

Full Text Available In this paper, a new and ecient approach is applied for numerical approximation of the linear dierential equations with variable coecients based on operational matrices with respect to Hermite polynomials. Explicit formulae which express the Hermite expansioncoecients for the moments of derivatives of any dierentiable function in terms of the original expansion coecients of the function itself are given in the matrix form. The mainimportance of this scheme is that using this approach reduces solving the linear dierentialequations to solve a system of linear algebraic equations, thus greatly simplifying the problem. In addition, two experiments are given to demonstrate the validity and applicability of the method

13. Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

Directory of Open Access Journals (Sweden)

Mahmoud Paripour

2014-08-01

Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out

14. The Nodal Polynomial Expansion method to solve the multigroup diffusion equations

International Nuclear Information System (INIS)

Ribeiro, R.D.M.

1983-03-01

The methodology of the solutions of the multigroup diffusion equations and uses the Nodal Polynomial Expansion Method is covered. The EPON code was developed based upon the above mentioned method for stationary state, rectangular geometry, one-dimensional or two-dimensional and for one or two energy groups. Then, one can study some effects such as the influence of the baffle on the thermal flux by calculating the flux and power distribution in nuclear reactors. Furthermore, a comparative study with other programs which use Finite Difference (CITATION and PDQ5) and Finite Element (CHD and FEMB) Methods was undertaken. As a result, the coherence, feasibility, speed and accuracy of the methodology used were demonstrated. (Author) [pt

15. On polynomial solutions of the Heun equation

International Nuclear Information System (INIS)

Gurappa, N; Panigrahi, Prasanta K

2004-01-01

By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)

16. An Operational Matrix Technique for Solving Variable Order Fractional Differential-Integral Equation Based on the Second Kind of Chebyshev Polynomials

Directory of Open Access Journals (Sweden)

Jianping Liu

2016-01-01

Full Text Available An operational matrix technique is proposed to solve variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials in this paper. The differential operational matrix and integral operational matrix are derived based on the second kind of Chebyshev polynomials. Using two types of operational matrixes, the original equation is transformed into the arithmetic product of several dependent matrixes, which can be viewed as an algebraic system after adopting the collocation points. Further, numerical solution of original equation is obtained by solving the algebraic system. Finally, several examples show that the numerical algorithm is computationally efficient.

17. A family of orthogonal polynomials to solve the inverse equation of punctual kinetics

International Nuclear Information System (INIS)

Suescun D, D.; Bonilla L, H. F.; Figueroa J, J. H.

2015-09-01

This paper proposes a new method to reduce fluctuations in the reactivity calculation, a discrete family of orthogonal polynomials that can soften the nuclear power is used, regarded as the set of data needed to calculate the reactivity in a nuclear reactor. The final results show an improvement in the calculation precision of reactivity, compared to some papers presented in the literature. (Author)

18. About the solvability of matrix polynomial equations

OpenAIRE

Netzer, Tim; Thom, Andreas

2016-01-01

We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.

19. Complex centers of polynomial differential equations

Directory of Open Access Journals (Sweden)

2007-07-01

Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.

20. Transport equation solving methods

International Nuclear Information System (INIS)

Granjean, P.M.

1984-06-01

This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

1. Polynomial chaos functions and stochastic differential equations

International Nuclear Information System (INIS)

Williams, M.M.R.

2006-01-01

The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory

2. Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation

International Nuclear Information System (INIS)

Demina, Maria V; Kudryashov, Nikolai A

2012-01-01

Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)

3. Algebraic polynomial system solving and applications

NARCIS (Netherlands)

Bleylevens, I.W.M.

2010-01-01

The problem of computing the solutions of a system of multivariate polynomial equations can be approached by the Stetter-Möller matrix method which casts the problem into a large eigenvalue problem. This Stetter-Möller matrix method forms the starting point for the development of computational

4. Dual exponential polynomials and linear differential equations

Science.gov (United States)

Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne

2018-01-01

We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.

5. Polynomial solutions of nonlinear integral equations

International Nuclear Information System (INIS)

Dominici, Diego

2009-01-01

We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

6. Polynomial solutions of nonlinear integral equations

Energy Technology Data Exchange (ETDEWEB)

Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

2009-05-22

We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

7. Constructing general partial differential equations using polynomial and neural networks.

Science.gov (United States)

2016-01-01

Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

8. The Use of Transformations in Solving Equations

Science.gov (United States)

Libeskind, Shlomo

2010-01-01

Many workshops and meetings with the US high school mathematics teachers revealed a lack of familiarity with the use of transformations in solving equations and problems related to the roots of polynomials. This note describes two transformational approaches to the derivation of the quadratic formula as well as transformational approaches to…

9. Algebraic limit cycles in polynomial systems of differential equations

International Nuclear Information System (INIS)

Llibre, Jaume; Zhao Yulin

2007-01-01

Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4

10. On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations

Science.gov (United States)

Cima, A.; Gasull, A.; Mañosas, F.

2017-12-01

In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.

11. Solution of linear transport equation using Chebyshev polynomials and Laplace transform

International Nuclear Information System (INIS)

Cardona, A.V.; Vilhena, M.T.M.B. de

1994-01-01

The Chebyshev polynomials and the Laplace transform are combined to solve, analytically, the linear transport equation in planar geometry, considering isotropic scattering and the one-group model. Numerical simulation is presented. (author)

12. Numerical solution of the Schroedinger equation with a polynomial potential

International Nuclear Information System (INIS)

Campoy, G.; Palma, A.

1986-01-01

A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables

13. Solving the Rational Polynomial Coefficients Based on L Curve

Science.gov (United States)

Zhou, G.; Li, X.; Yue, T.; Huang, W.; He, C.; Huang, Y.

2018-05-01

The rational polynomial coefficients (RPC) model is a generalized sensor model, which can achieve high approximation accuracy. And it is widely used in the field of photogrammetry and remote sensing. Least square method is usually used to determine the optimal parameter solution of the rational function model. However the distribution of control points is not uniform or the model is over-parameterized, which leads to the singularity of the coefficient matrix of the normal equation. So the normal equation becomes ill conditioned equation. The obtained solutions are extremely unstable and even wrong. The Tikhonov regularization can effectively improve and solve the ill conditioned equation. In this paper, we calculate pathological equations by regularization method, and determine the regularization parameters by L curve. The results of the experiments on aerial format photos show that the accuracy of the first-order RPC with the equal denominators has the highest accuracy. The high order RPC model is not necessary in the processing of dealing with frame images, as the RPC model and the projective model are almost the same. The result shows that the first-order RPC model is basically consistent with the strict sensor model of photogrammetry. Orthorectification results both the firstorder RPC model and Camera Model (ERDAS9.2 platform) are similar to each other, and the maximum residuals of X and Y are 0.8174 feet and 0.9272 feet respectively. This result shows that RPC model can be used in the aerial photographic compensation replacement sensor model.

14. A family of orthogonal polynomials to solve the inverse equation of punctual kinetics; Una familia de polinomios ortogonales para resolver la ecuacion inversa de la cinetica puntual

Energy Technology Data Exchange (ETDEWEB)

Suescun D, D.; Bonilla L, H. F.; Figueroa J, J. H., E-mail: dsuescun@javerianacali.edu.co [Pontificia Universidad Javeriana Cali, Departamento de Ciencias Naturales y Matematicas, Calle 18 No. 118-250, Cali, Valle del Cauca (Colombia)

2015-09-15

This paper proposes a new method to reduce fluctuations in the reactivity calculation, a discrete family of orthogonal polynomials that can soften the nuclear power is used, regarded as the set of data needed to calculate the reactivity in a nuclear reactor. The final results show an improvement in the calculation precision of reactivity, compared to some papers presented in the literature. (Author)

15. Solving polynomial systems using no-root elimination blending schemes

KAUST Repository

Barton, Michael

2011-01-01

Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however

16. Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline

Directory of Open Access Journals (Sweden)

Ravi Kanth A.S.V.

2016-01-01

Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.

17. Generalized Freud's equation and level densities with polynomial

Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.

18. Solving Ordinary Differential Equations

Science.gov (United States)

Krogh, F. T.

1987-01-01

Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

19. A polynomial expansion method and its application in the coupled Zakharov-Kuznetsov equations

International Nuclear Information System (INIS)

Huang Wenhua

2006-01-01

A polynomial expansion method is presented to solve nonlinear evolution equations. Applying this method, the coupled Zakharov-Kuznetsov equations in fluid system are studied and many exact travelling wave solutions are obtained. These solutions include solitary wave solutions, periodic solutions and rational type solutions

20. Solving Linear Differential Equations

NARCIS (Netherlands)

Nguyen, K.A.; Put, M. van der

2010-01-01

The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend

1. The structure of solutions of the matrix linear unilateral polynomial equation with two variables

Directory of Open Access Journals (Sweden)

N. S. Dzhaliuk

2017-07-01

Full Text Available We investigate the structure of solutions of the matrix linear polynomial equation $A(\\lambdaX(\\lambda+B(\\lambdaY(\\lambda=C(\\lambda,$ in particular, possible degrees of the solutions. The solving of this equation is reduced to the solving of the equivalent matrix polynomial equation with matrix coefficients in triangular forms with invariant factors on the main diagonals, to which the matrices $A (\\lambda, B(\\lambda$ \\ and \\ $C(\\lambda$ are reduced by means of semiscalar equivalent transformations. On the basis of it, we have pointed out the bounds of the degrees of the matrix polynomial equation solutions. Necessary and sufficient conditions for the uniqueness of a solution with a minimal degree are established. An effective method for constructing minimal degree solutions of the equations is suggested. In this article, unlike well-known results about the estimations of the degrees of the solutions of the matrix polynomial equations in which both matrix coefficients are regular or at least one of them is regular, we have considered the case when the matrix polynomial equation has arbitrary matrix coefficients $A(\\lambda$ and $B(\\lambda.$

2. Polynomial solutions of the Monge-Ampère equation

Energy Technology Data Exchange (ETDEWEB)

Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)

2014-11-30

The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.

3. Generalized Freud's equation and level densities with polynomial potential

Science.gov (United States)

Boobna, Akshat; Ghosh, Saugata

2013-08-01

We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.

4. Solution of Dirac equation for modified Poschl Teller plus trigonometric Scarf potential using Romanovsky polynomials method

International Nuclear Information System (INIS)

Prastyaningrum, I.; Cari, C.; Suparmi, A.

2016-01-01

The approximation analytical solution of Dirac equation for Modified Poschl Teller plus Trigonometric Scarf Potential are investigated numerically in terms of finite Romanovsky Polynomial. The combination of two potentials are substituted into Dirac Equation then the variables are separated into radial and angular parts. The Dirac equation is solved by using Romanovsky Polynomial Method. The equation that can reduce from the second order of differential equation into the differential equation of hypergeometry type by substituted variable method. The energy spectrum is numerically solved using Matlab 2011. Where the increase in the radial quantum number nr and variable of modified Poschl Teller Potential causes the energy to decrease. The radial and the angular part of the wave function also visualized with Matlab 2011. The results show, by the disturbance of a combination between this potential can change the wave function of the radial and angular part. (paper)

5. Modified Chebyshev Collocation Method for Solving Differential Equations

Directory of Open Access Journals (Sweden)

M Ziaul Arif

2015-05-01

Full Text Available This paper presents derivation of alternative numerical scheme for solving differential equations, which is modified Chebyshev (Vieta-Lucas Polynomial collocation differentiation matrices. The Scheme of modified Chebyshev (Vieta-Lucas Polynomial collocation method is applied to both Ordinary Differential Equations (ODEs and Partial Differential Equations (PDEs cases. Finally, the performance of the proposed method is compared with finite difference method and the exact solution of the example. It is shown that modified Chebyshev collocation method more effective and accurate than FDM for some example given.

6. Finding higher order Darboux polynomials for a family of rational first order ordinary differential equations

Science.gov (United States)

Avellar, J.; Claudino, A. L. G. C.; Duarte, L. G. S.; da Mota, L. A. C. P.

2015-10-01

For the Darbouxian methods we are studying here, in order to solve first order rational ordinary differential equations (1ODEs), the most costly (computationally) step is the finding of the needed Darboux polynomials. This can be so grave that it can render the whole approach unpractical. Hereby we introduce a simple heuristics to speed up this process for a class of 1ODEs.

7. Application of ANNs approach for solving fully fuzzy polynomials system

Directory of Open Access Journals (Sweden)

R. Novin

2017-11-01

Full Text Available In processing indecisive or unclear information, the advantages of fuzzy logic and neurocomputing disciplines should be taken into account and combined by fuzzy neural networks. The current research intends to present a fuzzy modeling method using multi-layer fuzzy neural networks for solving a fully fuzzy polynomials system. To clarify the point, it is necessary to inform that a supervised gradient descent-based learning law is employed. The feasibility of the method is examined using computer simulations on a numerical example. The experimental results obtained from the investigation of the proposed method are valid and delivers very good approximation results.

8. Superiority of legendre polynomials to Chebyshev polynomial in ...

African Journals Online (AJOL)

In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...

9. Polynomial asymptotic stability of damped stochastic differential equations

Directory of Open Access Journals (Sweden)

John Appleby

2004-08-01

Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\$dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\$ where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.

10. Solving Kepler's equation using implicit functions

Science.gov (United States)

Mortari, Daniele; Elipe, Antonio

2014-01-01

A new approach to solve Kepler's equation based on the use of implicit functions is proposed here. First, new upper and lower bounds are derived for two ranges of mean anomaly. These upper and lower bounds initialize a two-step procedure involving the solution of two implicit functions. These two implicit functions, which are non-rational (polynomial) Bézier functions, can be linear or quadratic, depending on the derivatives of the initial bound values. These are new initial bounds that have been compared and proven more accurate than Serafin's bounds. The procedure reaches machine error accuracy with no more that one quadratic and one linear iterations, experienced in the "tough range", where the eccentricity is close to one and the mean anomaly to zero. The proposed method is particularly suitable for space-based applications with limited computational capability.

11. Solving polynomial systems using no-root elimination blending schemes

KAUST Repository

Barton, Michael

2011-12-01

Searching for the roots of (piecewise) polynomial systems of equations is a crucial problem in computer-aided design (CAD), and an efficient solution is in strong demand. Subdivision solvers are frequently used to achieve this goal; however, the subdivision process is expensive, and a vast number of subdivisions is to be expected, especially for higher-dimensional systems. Two blending schemes that efficiently reveal domains that cannot contribute by any root, and therefore significantly reduce the number of subdivisions, are proposed. Using a simple linear blend of functions of the given polynomial system, a function is sought after to be no-root contributing, with all control points of its BernsteinBézier representation of the same sign. If such a function exists, the domain is purged away from the subdivision process. The applicability is demonstrated on several CAD benchmark problems, namely surfacesurfacesurface intersection (SSSI) and surfacecurve intersection (SCI) problems, computation of the Hausdorff distance of two planar curves, or some kinematic-inspired tasks. © 2011 Elsevier Ltd. All rights reserved.

12. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

International Nuclear Information System (INIS)

Duran, Antonio J; Gruenbaum, F Alberto

2006-01-01

The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein

13. Chemical Equilibrium and Polynomial Equations: Beware of Roots.

Science.gov (United States)

Smith, William R.; Missen, Ronald W.

1989-01-01

Describes two easily applied mathematical theorems, Budan's rule and Rolle's theorem, that in addition to Descartes's rule of signs and intermediate-value theorem, are useful in chemical equilibrium. Provides examples that illustrate the use of all four theorems. Discusses limitations of the polynomial equation representation of chemical…

14. Solving Differential Equations in R: Package deSolve

Science.gov (United States)

In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...

15. Solving Differential Equations in R: Package deSolve

NARCIS (Netherlands)

Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.

2010-01-01

In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The

16. Relations between zeros of special polynomials associated with the Painleve equations

International Nuclear Information System (INIS)

Kudryashov, Nikolai A.; Demina, Maria V.

2007-01-01

A method for finding relations of roots of polynomials is presented. Our approach allows us to get a number of relations between the zeros of the classical polynomials as well as the roots of special polynomials associated with rational solutions of the Painleve equations. We apply the method to obtain the relations for the zeros of several polynomials. These are: the Hermite polynomials, the Laguerre polynomials, the Yablonskii-Vorob'ev polynomials, the generalized Okamoto polynomials, and the generalized Hermite polynomials. All the relations found can be considered as analogues of generalized Stieltjes relations

17. A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics

Energy Technology Data Exchange (ETDEWEB)

Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.

2014-10-01

We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.

18. A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions

KAUST Repository

Butler, T.; Dawson, C.; Wildey, T.

2011-01-01

We develop computable a posteriori error estimates for linear functionals of a solution to a general nonlinear stochastic differential equation with random model/source parameters. These error estimates are based on a variational analysis applied to stochastic Galerkin methods for forward and adjoint problems. The result is a representation for the error estimate as a polynomial in the random model/source parameter. The advantage of this method is that we use polynomial chaos representations for the forward and adjoint systems to cheaply produce error estimates by simple evaluation of a polynomial. By comparison, the typical method of producing such estimates requires repeated forward/adjoint solves for each new choice of random parameter. We present numerical examples showing that there is excellent agreement between these methods. © 2011 Society for Industrial and Applied Mathematics.

19. Discriminants and functional equations for polynomials orthogonal on the unit circle

International Nuclear Information System (INIS)

Ismail, M.E.H.; Witte, N.S.

2000-01-01

We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle

20. Poincare map for some polynomial systems of differential equations

International Nuclear Information System (INIS)

Varin, V P

2004-01-01

One approach to the classical problem of distinguishing between a centre and a focus for a system of differential equations with polynomial right-hand sides in the plane is discussed. For a broad class of such systems necessary and sufficient conditions for a centre are expressed in terms of equations in variations of higher order. By contrast with the existing methods of investigation, attention is concentrated on the explicit calculation of the asymptotic behaviour of the Poincare map rather than on finding sufficient centre conditions as such; this also enables one to study bifurcations of birth of arbitrarily strongly degenerate cycles.

1. A high-order q-difference equation for q-Hahn multiple orthogonal polynomials

DEFF Research Database (Denmark)

Arvesú, J.; Esposito, Chiara

2012-01-01

A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....

2. Nonlinear evolution equations and solving algebraic systems: the importance of computer algebra

International Nuclear Information System (INIS)

Gerdt, V.P.; Kostov, N.A.

1989-01-01

In the present paper we study the application of computer algebra to solve the nonlinear polynomial systems which arise in investigation of nonlinear evolution equations. We consider several systems which are obtained in classification of integrable nonlinear evolution equations with uniform rank. Other polynomial systems are related with the finding of algebraic curves for finite-gap elliptic potentials of Lame type and generalizations. All systems under consideration are solved using the method based on construction of the Groebner basis for corresponding polynomial ideals. The computations have been carried out using computer algebra systems. 20 refs

3. Spherical harmonics and energy polynomial solution of the Boltzmann equation for neutrons, 1

International Nuclear Information System (INIS)

Toledo, P.S. de

1974-01-01

The approximate solution of the source-free energy-dependent Boltzmann transport equation for neutrons in plane geometry and isotropic scattering case was given by Leonard and Ferziger using a truncated development in a series of energy-polynomials for the energy dependent neutron flux and solving exactly for the angular dependence. The presence in the general solution of eigenfunctions belonging to a continuous spectrum gives rise to difficult analytical problems in the application of their method even to simple problems. To avoid such difficulties, the angular dependence is treated by a spherical harmonics method and a general solution of the energy-dependent transport equation in plane geometry and isotropic scattering is obtained, in spite of the appearance of matrices as argument of the angular polynomials [pt

4. Diffusion Coefficient Calculations With Low Order Legendre Polynomial and Chebyshev Polynomial Approximation for the Transport Equation in Spherical Geometry

International Nuclear Information System (INIS)

Yasa, F.; Anli, F.; Guengoer, S.

2007-01-01

We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general

5. Solving Nonlinear Coupled Differential Equations

Science.gov (United States)

Mitchell, L.; David, J.

1986-01-01

Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

6. Note on Generating Orthogonal Polynomials and Their Application in Solving Complicated Polynomial Regression Tasks

Czech Academy of Sciences Publication Activity Database

Knížek, J.; Tichý, Petr; Beránek, L.; Šindelář, Jan; Vojtěšek, B.; Bouchal, P.; Nenutil, R.; Dedík, O.

2010-01-01

Roč. 7, č. 10 (2010), s. 48-60 ISSN 0974-5718 Grant - others:GA MZd(CZ) NS9812; GA ČR(CZ) GAP304/10/0868 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : polynomial regression * orthogonalization * numerical methods * markers * biomarkers Subject RIV: BA - General Mathematics

7. A Novel Operational Matrix of Caputo Fractional Derivatives of Fibonacci Polynomials: Spectral Solutions of Fractional Differential Equations

Directory of Open Access Journals (Sweden)

Waleed M. Abd-Elhameed

2016-09-01

Full Text Available Herein, two numerical algorithms for solving some linear and nonlinear fractional-order differential equations are presented and analyzed. For this purpose, a novel operational matrix of fractional-order derivatives of Fibonacci polynomials was constructed and employed along with the application of the tau and collocation spectral methods. The convergence and error analysis of the suggested Fibonacci expansion were carefully investigated. Some numerical examples with comparisons are presented to ensure the efficiency, applicability and high accuracy of the proposed algorithms. Two accurate semi-analytic polynomial solutions for linear and nonlinear fractional differential equations are the result.

8. Solving equations by topological methods

Directory of Open Access Journals (Sweden)

Lech Górniewicz

2005-01-01

Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.

9. Solving Differential Equations in R

Science.gov (United States)

Although R is still predominantly applied for statistical analysis and graphical representation, it is rapidly becoming more suitable for mathematical computing. One of the fields where considerable progress has been made recently is the solution of differential equations. Here w...

10. Solving Absolute Value Equations Algebraically and Geometrically

Science.gov (United States)

Shiyuan, Wei

2005-01-01

The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

11. On progress of the solution of the stationary 2-dimensional neutron diffusion equation: a polynomial approximation method with error analysis

International Nuclear Information System (INIS)

Ceolin, C.; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T.

2015-01-01

Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)

12. On progress of the solution of the stationary 2-dimensional neutron diffusion equation: a polynomial approximation method with error analysis

Energy Technology Data Exchange (ETDEWEB)

Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

2015-07-01

Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)

13. AMDLIBAE, IBM 360 Subroutine Library, Special Function, Polynomials, Differential Equation

International Nuclear Information System (INIS)

Wang, Jesse Y.

1980-01-01

Description of problem or function: AMDLIBAE is a subset of the IBM 360 Subroutine Library at the Applied Mathematics Division at Argonne National Laboratory. This subset includes library categories A-E: Identification/Description: A152S A MPA: Mult. prec. floating point arith. package; B156S A ARSIN: Arcsine, arccosine; B158S A DSIN/DCOS: DP sine, cosine; B159S A DTAN/DCOT: DP tangent, cotangent; B252S A SINH/COSH: Hyperbolic sine, cosine; B353S A ALOG: SP logarithm; B354S A DEXP: DP exponential; B355S A DLOG: DP logarithm; B456S A DCUBRT: DP cube root; B457S A ARGPOWER: X Y ; B458S A ARGFDXPD: DP X Y ; C150S F DQD: Q. D. algorithm applied to a power series; C151S F DCONF1: Eval. cont. fract. Q. D. of power series; C250S F CUBIC: Roots of cubic polynomial equation; C251S F QUARTIC: Roots of quartic polynomial equation; C252S F RSSR: All roots of poly eqs. with real coef.; C253S F POLDRV: Driver for C254S; C254S F CPOLY: Roots arb. poly. Jenkins-Traub algorithm; C353S F1 CLEBSH: Ang. mom. coef. - Clebsch, Racah, Wigner; C365S A ALGAMA: Logarithm of the gamma function; C366S A DGAMMA/DLGAMA: DP gamma and log(gamma) functions; C368S F EONE: Exponential integral E1; C370S F BESJY: Bessel functions J and Y; C371S F BESIK: Bessel functions I and K; C372S F CHIPRB: Chi-square integral; C380S F DRZETA: Long precision zeta, zeta-1 functions; C382S F DCGAM: Long precision complex gamma; C383S A DERF/DERFC: DP error function; C384S F BFJ1: Bessel function J1; C385S F COULMB: Regular Coulomb wave functions; C386S F1 DSGMAL: Coulomb phase shift; C387S F BFJYR: Bessel functions J0,J1,Y0,Y1; C388S F IRCOUL: LP irregular Coulomb wave functions; C389S F GAMIN: Incomplete gamma function; C390S F LQ: Assoc. Legendre functions of 2. kind; C392S A DAERF: Inverse error function; C393S F CDEONE: Modified complex exponential integral; D153S F DROMB: Two-dimensional Romberg quadrature; D153S P DROMBP: Two-dimensional Romberg quadrature; D158S F ANC4: Adap. quad. using 4. order Newton

14. P A M Dirac meets M G Krein: matrix orthogonal polynomials and Dirac's equation

Energy Technology Data Exchange (ETDEWEB)

Duran, Antonio J [Departamento de Analisis Matematico, Universidad de Sevilla, Apdo (PO BOX) 1160, 41080 Sevilla (Spain); Gruenbaum, F Alberto [Department of Mathematics, University of California, Berkeley, CA 94720 (United States)

2006-04-07

The solution of several instances of the Schroedinger equation (1926) is made possible by using the well-known orthogonal polynomials associated with the names of Hermite, Legendre and Laguerre. A relativistic alternative to this equation was proposed by Dirac (1928) involving differential operators with matrix coefficients. In 1949 Krein developed a theory of matrix-valued orthogonal polynomials without any reference to differential equations. In Duran A J (1997 Matrix inner product having a matrix symmetric second order differential operator Rocky Mt. J. Math. 27 585-600), one of us raised the question of determining instances of these matrix-valued polynomials going along with second order differential operators with matrix coefficients. In Duran A J and Gruenbaum F A (2004 Orthogonal matrix polynomials satisfying second order differential equations Int. Math. Res. Not. 10 461-84), we developed a method to produce such examples and observed that in certain cases there is a connection with the instance of Dirac's equation with a central potential. We observe that the case of the central Coulomb potential discussed in the physics literature in Darwin C G (1928 Proc. R. Soc. A 118 654), Nikiforov A F and Uvarov V B (1988 Special Functions of Mathematical Physics (Basle: Birkhauser) and Rose M E 1961 Relativistic Electron Theory (New York: Wiley)), and its solution, gives rise to a matrix weight function whose orthogonal polynomials solve a second order differential equation. To the best of our knowledge this is the first instance of a connection between the solution of the first order matrix equation of Dirac and the theory of matrix-valued orthogonal polynomials initiated by M G Krein.

15. Parallel Algorithm Solves Coupled Differential Equations

Science.gov (United States)

Hayashi, A.

1987-01-01

Numerical methods adapted to concurrent processing. Algorithm solves set of coupled partial differential equations by numerical integration. Adapted to run on hypercube computer, algorithm separates problem into smaller problems solved concurrently. Increase in computing speed with concurrent processing over that achievable with conventional sequential processing appreciable, especially for large problems.

16. Fibonacci-like Differential Equations with a Polynomial Non-Homogeneous Part

NARCIS (Netherlands)

Asveld, P.R.J.

1989-01-01

We investigate non-homogeneous linear differential equations of the form $x''(t) + x'(t) - x(t) = p(t)$ where $p(t)$ is either a polynomial or a factorial polynomial in $t$. We express the solution of these differential equations in terms of the coefficients of $p(t)$, in the initial conditions, and

17. Solving Differential Equations in R: Package deSolve

Directory of Open Access Journals (Sweden)

Karline Soetaert

2010-02-01

Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in

18. Numerical study of nonlinear singular fractional differential equations arising in biology by operational matrix of shifted Legendre polynomials

Directory of Open Access Journals (Sweden)

D. Jabari Sabeg

2016-10-01

Full Text Available In this paper, we present a new computational method for solving nonlinear singular boundary value problems of fractional order arising in biology. To this end, we apply the operational matrices of derivatives of shifted Legendre polynomials to reduce such problems to a system of nonlinear algebraic equations. To demonstrate the validity and applicability of the presented method, we present some numerical examples.

19. Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations

International Nuclear Information System (INIS)

Clarkson, Peter A

2013-01-01

We investigate semi-classical generalizations of the Charlier and Meixner polynomials, which are discrete orthogonal polynomials that satisfy three-term recurrence relations. It is shown that the coefficients in these recurrence relations can be expressed in terms of Wronskians of modified Bessel functions and confluent hypergeometric functions, respectively for the generalized Charlier and generalized Meixner polynomials. These Wronskians arise in the description of special function solutions of the third and fifth Painlevé equations. (paper)

20. Adomian decomposition method for solving the telegraph equation in charged particle transport

International Nuclear Information System (INIS)

Abdou, M.A.

2005-01-01

In this paper, the analysis for the telegraph equation in case of isotropic small angle scattering from the Boltzmann transport equation for charged particle is presented. The Adomian decomposition is used to solve the telegraph equation. By means of MAPLE the Adomian polynomials of obtained series (ADM) solution have been calculated. The behaviour of the distribution function are shown graphically. The results reported in this article provide further evidence of the usefulness of Adomain decomposition for obtaining solution of linear and nonlinear problems

1. Special polynomials associated with the fourth order analogue to the Painleve equations

International Nuclear Information System (INIS)

Kudryashov, Nikolai A.; Demina, Maria V.

2007-01-01

Rational solutions of the fourth order analogue to the Painleve equations are classified. Special polynomials associated with the rational solutions are introduced. The structure of the polynomials is found. Formulae for their coefficients and degrees are derived. It is shown that special solutions of the Fordy-Gibbons, the Caudrey-Dodd-Gibbon and the Kaup-Kupershmidt equations can be expressed through solutions of the equation studied

2. Isotope decay equations solved by means of a recursive method

International Nuclear Information System (INIS)

Grant, Carlos

2009-01-01

The isotope decay equations have been solved using forward finite differences taking small time steps, among other methods. This is the case of the cell code WIMS, where it is assumed that concentrations of all fissionable isotopes remain constant during the integration interval among other simplifications. Even when the problem could be solved running through a logical tree, all algorithms used for resolution of these equations used an iterative programming formulation. That happened because nearly all computer languages used up to a recent past by the scientific programmers did not support recursion, such as the case of the old versions of FORTRAN or BASIC. Nowadays also an integral form of the depletion equations is used in Monte Carlo simulation. In this paper we propose another programming solution using a recursive algorithm, running through all descendants of each isotope and adding their contributions to all isotopes in each generation. The only assumption made for this solution is that fluxes remain constant during the whole time step. Recursive process is interrupted when a stable isotope was attained or the calculated contributions are smaller than a given precision. These algorithms can be solved by means an exact analytic method that can have some problems when circular loops appear for isotopes with alpha decay, and a more general polynomial method. Both methods are shown. (author)

3. Solving the Schroedinger equation using Smolyak interpolants

International Nuclear Information System (INIS)

Avila, Gustavo; Carrington, Tucker Jr.

2013-01-01

In this paper, we present a new collocation method for solving the Schroedinger equation. Collocation has the advantage that it obviates integrals. All previous collocation methods have, however, the crucial disadvantage that they require solving a generalized eigenvalue problem. By combining Lagrange-like functions with a Smolyak interpolant, we device a collocation method that does not require solving a generalized eigenvalue problem. We exploit the structure of the grid to develop an efficient algorithm for evaluating the matrix-vector products required to compute energy levels and wavefunctions. Energies systematically converge as the number of points and basis functions are increased

4. Students’ difficulties in solving linear equation problems

Science.gov (United States)

Wati, S.; Fitriana, L.; Mardiyana

2018-03-01

A linear equation is an algebra material that exists in junior high school to university. It is a very important material for students in order to learn more advanced mathematics topics. Therefore, linear equation material is essential to be mastered. However, the result of 2016 national examination in Indonesia showed that students’ achievement in solving linear equation problem was low. This fact became a background to investigate students’ difficulties in solving linear equation problems. This study used qualitative descriptive method. An individual written test on linear equation tasks was administered, followed by interviews. Twenty-one sample students of grade VIII of SMPIT Insan Kamil Karanganyar did the written test, and 6 of them were interviewed afterward. The result showed that students with high mathematics achievement donot have difficulties, students with medium mathematics achievement have factual difficulties, and students with low mathematics achievement have factual, conceptual, operational, and principle difficulties. Based on the result there is a need of meaningfulness teaching strategy to help students to overcome difficulties in solving linear equation problems.

5. A method for solving neutron transport equation

International Nuclear Information System (INIS)

Dimitrijevic, Z.

1993-01-01

The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)

6. Numerical solutions of multi-order fractional differential equations by Boubaker polynomials

Directory of Open Access Journals (Sweden)

Bolandtalat A.

2016-01-01

Full Text Available In this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.

7. Development of a polynomial nodal model to the multigroup transport equation in one dimension

International Nuclear Information System (INIS)

Feiz, M.

1986-01-01

A polynomial nodal model that uses Legendre polynomial expansions was developed for the multigroup transport equation in one dimension. The development depends upon the least-squares minimization of the residuals using the approximate functions over the node. Analytical expressions were developed for the polynomial coefficients. The odd moments of the angular neutron flux over the half ranges were used at the internal interfaces, and the Marshak boundary condition was used at the external boundaries. Sample problems with fine-mesh finite-difference solutions of the diffusion and transport equations were used for comparison with the model

8. Generalized Bilinear Differential Operators, Binary Bell Polynomials, and Exact Periodic Wave Solution of Boiti-Leon-Manna-Pempinelli Equation

Directory of Open Access Journals (Sweden)

Huanhe Dong

2014-01-01

Full Text Available We introduce how to obtain the bilinear form and the exact periodic wave solutions of a class of (2+1-dimensional nonlinear integrable differential equations directly and quickly with the help of the generalized Dp-operators, binary Bell polynomials, and a general Riemann theta function in terms of the Hirota method. As applications, we solve the periodic wave solution of BLMP equation and it can be reduced to soliton solution via asymptotic analysis when the value of p is 5.

9. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

KAUST Repository

Dolgov, Sergey

2015-11-03

We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.

10. Laguerre-Freud Equations for the Recurrence Coefficients of Some Discrete Semi-Classical Orthogonal Polynomials of Class Two

Science.gov (United States)

Hounga, C.; Hounkonnou, M. N.; Ronveaux, A.

2006-10-01

In this paper, we give Laguerre-Freud equations for the recurrence coefficients of discrete semi-classical orthogonal polynomials of class two, when the polynomials in the Pearson equation are of the same degree. The case of generalized Charlier polynomials is also presented.

11. Application of the Generalized Differential Quadrature Method in Solving Burgers' Equations

International Nuclear Information System (INIS)

Mokhtari, R.; Toodar, A. Samadi; Chegini, N.G.

2011-01-01

The aim of this paper is to obtain numerical solutions of the one-dimensional, two-dimensional and coupled Burgers' equations through the generalized differential quadrature method (GDQM). The polynomial-based differential quadrature (PDQ) method is employed and the obtained system of ordinary differential equations is solved via the total variation diminishing Runge-Kutta (TVD-RK) method. The numerical solutions are satisfactorily coincident with the exact solutions. The method can compete against the methods applied in the literature. (general)

12. The discrete Toda equation revisited: dual β-Grothendieck polynomials, ultradiscretization, and static solitons

Science.gov (United States)

Iwao, Shinsuke; Nagai, Hidetomo

2018-04-01

This paper presents a study of the discrete Toda equation that was introduced in 1977. In this paper, it is proved that the determinantal solution of the discrete Toda equation, obtained via the Lax formalism, is naturally related to the dual Grothendieck polynomials, a K-theoretic generalization of the Schur polynomials. A tropical permanent solution to the ultradiscrete Toda equation is also derived. The proposed method gives a tropical algebraic representation of the static solitons. Lastly, a new cellular automaton realization of the ultradiscrete Toda equation is proposed.

13. A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation

Science.gov (United States)

Oruç, Ömer

2018-04-01

In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.

14. A polynomial time algorithm for solving the maximum flow problem in directed networks

International Nuclear Information System (INIS)

Tlas, M.

2015-01-01

An efficient polynomial time algorithm for solving maximum flow problems has been proposed in this paper. The algorithm is basically based on the binary representation of capacities; it solves the maximum flow problem as a sequence of O(m) shortest path problems on residual networks with nodes and m arcs. It runs in O(m"2r) time, where is the smallest integer greater than or equal to log B , and B is the largest arc capacity of the network. A numerical example has been illustrated using this proposed algorithm.(author)

15. A novel method to solve functional differential equations

International Nuclear Information System (INIS)

Tapia, V.

1990-01-01

A method to solve differential equations containing the variational operator as the derivation operation is presented. They are called variational differential equations (VDE). The solution to a VDE should be a function containing the derivatives, with respect to the base space coordinates, of the fields up to a generic order s: a s-th-order function. The variational operator doubles the order of the function on which it acts. Therefore, in order to make compatible the orders of the different terms appearing in a VDE, the solution should be a function containing the derivatives of the fields at all orders. But this takes us again back to the functional methods. In order to avoid this, one must restrict the considerations, in the case of second-order VDEs, to the space of s-th-order functions on which the variational operator acts transitively. These functions have been characterized for a one-dimensional base space for the first- and second-order cases. These functions turn out to be polynomial in the highest-order derivatives of the fields with functions of the lower-order derivatives as coefficients. Then VDEs reduce to a system of coupled partial differential equations for the coefficients above mentioned. The importance of the method lies on the fact that the solutions to VDEs are in a one-to-one correspondence with the solutions of functional differential equations. The previous method finds direct applications in quantum field theory, where the Schroedinger equation plays a central role. Since the Schroedinger equation is reduced to a system of coupled partial differential equations, this provides a nonperturbative scheme for quantum field theory. As an example, the massless scalar field is considered

16. Integrability of an extended (2+1)-dimensional shallow water wave equation with Bell polynomials

International Nuclear Information System (INIS)

Wang Yun-Hu; Chen Yong

2013-01-01

We investigate the extended (2+1)-dimensional shallow water wave equation. The binary Bell polynomials are used to construct bilinear equation, bilinear Bäcklund transformation, Lax pair, and Darboux covariant Lax pair for this equation. Moreover, the infinite conservation laws of this equation are found by using its Lax pair. All conserved densities and fluxes are given with explicit recursion formulas. The N-soliton solutions are also presented by means of the Hirota bilinear method. (general)

17. Solution of multigroup diffusion equations in cylindrical configuration by local polynomial approximation

International Nuclear Information System (INIS)

Jakab, J.

1979-05-01

Local approximations of neutron flux density by 2nd degree polynomials are used in calculating light water reactors. The calculations include spatial kinetics tasks for the models of two- and three-dimensional reactors in the Cartesian geometry. The resulting linear algebraic equations are considered to be formally identical to the results of the differential method of diffusion equation solution. (H.S.)

18. Exact polynomial solutions of second order differential equations and their applications

International Nuclear Information System (INIS)

Zhang Yaozhong

2012-01-01

We find all polynomials Z(z) such that the differential equation where X(z), Y(z), Z(z) are polynomials of degree at most 4, 3, 2, respectively, has polynomial solutions S(z) = ∏ n i=1 (z − z i ) of degree n with distinct roots z i . We derive a set of n algebraic equations which determine these roots. We also find all polynomials Z(z) which give polynomial solutions to the differential equation when the coefficients of X(z) and Y(z) are algebraically dependent. As applications to our general results, we obtain the exact (closed-form) solutions of the Schrödinger-type differential equations describing: (1) two Coulombically repelling electrons on a sphere; (2) Schrödinger equation from the kink stability analysis of φ 6 -type field theory; (3) static perturbations for the non-extremal Reissner–Nordström solution; (4) planar Dirac electron in Coulomb and magnetic fields; and (5) O(N) invariant decatic anharmonic oscillator. (paper)

19. Application of the trial equation method for solving some nonlinear ...

Therefore, our aim is just to find the function F. Liu has obtained a number of exact solutions to many nonlinear differential equations when F(u) is a polynomial or a rational function. ... In this study, we apply the trial equation method to seek exact solutions of the ... twice and setting the integration constant to zero, we have.

20. SOLUTION OF SINGULAR INTEGRAL EQUATION FOR ELASTICITY THEORY WITH THE HELP OF ASYMPTOTIC POLYNOMIAL FUNCTION

Directory of Open Access Journals (Sweden)

V. P. Gribkova

2014-01-01

Full Text Available The paper offers a new method for approximate solution of one type of singular integral equations for elasticity theory which have been studied by other authors. The approximate solution is found in the form of asymptotic polynomial function of a low degree (first approximation based on the Chebyshev second order polynomial. Other authors have obtained a solution (only in separate points using a method of mechanical quadrature  and though they used also the Chebyshev polynomial of the second order they applied another system of junctures which were used for the creation of the required formulas.The suggested method allows not only to find an approximate solution for the whole interval in the form of polynomial, but it also makes it possible to obtain a remainder term in the form of infinite expansion where coefficients are linear functional of the given integral equation and basis functions are the Chebyshev polynomial of the second order. Such presentation of the remainder term of the first approximation permits to find a summand of the infinite series, which will serve as a start for fulfilling the given solution accuracy. This number is a degree of the asymptotic polynomial (second approximation, which will give the approximation to the exact solution with the given accuracy. The examined polynomial functions tend asymptotically to the polynomial of the best uniform approximation in the space C, created for the given operator.The paper demonstrates a convergence of the approximate solution to the exact one and provides an error estimation. The proposed algorithm for obtaining of the approximate solution and error estimation is easily realized with the help of computing technique and does not require considerable preliminary preparation during programming.

1. Cognitive Load in Algebra: Element Interactivity in Solving Equations

Science.gov (United States)

Ngu, Bing Hiong; Chung, Siu Fung; Yeung, Alexander Seeshing

2015-01-01

Central to equation solving is the maintenance of equivalence on both sides of the equation. However, when the process involves an interaction of multiple elements, solving an equation can impose a high cognitive load. The balance method requires operations on both sides of the equation, whereas the inverse method involves operations on one side…

2. Fibonacci collocation method with a residual error Function to solve linear Volterra integro differential equations

Directory of Open Access Journals (Sweden)

Salih Yalcinbas

2016-01-01

Full Text Available In this paper, a new collocation method based on the Fibonacci polynomials is introduced to solve the high-order linear Volterra integro-differential equations under the conditions. Numerical examples are included to demonstrate the applicability and validity of the proposed method and comparisons are made with the existing results. In addition, an error estimation based on the residual functions is presented for this method. The approximate solutions are improved by using this error estimation.

3. Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh

International Nuclear Information System (INIS)

Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao

2008-01-01

A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions

4. Method of solution of the neutron transport equation in multidimensional cartesian geometries using spherical harmonics and spatially orthogonal polynomials

International Nuclear Information System (INIS)

Fenstermacher, T.E.

1981-01-01

The solution of the neutron transport equation has long been a subject of intense interest to nuclear engineers. Present computer codes for the solution of this equation, however, are expensive to run for large, multidimensional problems, and also suffer from computational problems such as the ray effect. A method has been developed which eliminates many of these problems. It consists of transforming the transport equation into a set of linear partial differential equations by the use of spherical harmonics. The problem volume is divided into mesh boxes, and the flux components are approximated within each mesh box by spatially orthogonal quadratic polynomials, which need not be continuous at mesh box interfaces. A variational principle is developed, and used to solve for the unknown coefficients of these polynomials. Both one dimensional and two dimensional computer codes using this method have been written. The codes have each been tested on several test cases, and the solutions checked against solutions obtained by other methods. While the codes have some difficulty in modeling sharp transients, they produce excellent results on problems where the characteristic lengths are many mean free paths. On one test case, the two dimensional code, SHOP/2D, required only one-fourth the computer time required by the finite difference, discrete ordinates code TWOTRAN to produce a solution. In addition, SHOP/2D converged much better than TWOTRAN and produced more physical-appearing results

5. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

International Nuclear Information System (INIS)

Tsuchida, Takayuki; Wolf, Thomas

2005-01-01

We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made

6. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

Energy Technology Data Exchange (ETDEWEB)

Tsuchida, Takayuki [Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Wolf, Thomas [Department of Mathematics, Brock University, St Catharines, ON L2S 3A1 (Canada)

2005-09-02

We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.

7. Polynomially decaying transmission for the nonlinear schrodinger equation in a random medium

International Nuclear Information System (INIS)

Devillard, P.; Sovillard, B.

1986-01-01

This is the first study of one the transmission problems associate to the nonlinear Schrodinger equation with a random potential. We show that for almost every realization of the medium the rate of transmission vanishes when increasing the size of the medium; however, whereas it decays exponentially in the linear regime, it decays polynomially in the nonlinear one

8. Application of the Binary Bell Polynomials Method to the Dissipative (2+1)-Dimensional AKNS Equation

International Nuclear Information System (INIS)

Liu Na; Liu Xi-Qiang

2012-01-01

Based on the binary Bell polynomials, the bilinear representation, bilinear Bäcklund transformation and the Lax pair for the dissipative (2+1)-dimensional Ablowitz—Kaup—Newell—Segur (AKNS) equation are obtained. Moreover, the infinite conservation laws are also derived

9. Estimation of Ordinary Differential Equation Parameters Using Constrained Local Polynomial Regression.

Science.gov (United States)

2014-10-01

We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.

10. A Photon Free Method to Solve Radiation Transport Equations

International Nuclear Information System (INIS)

Chang, B

2006-01-01

The multi-group discrete-ordinate equations of radiation transfer is solved for the first time by Newton's method. It is a photon free method because the photon variables are eliminated from the radiation equations to yield a N group XN direction smaller but equivalent system of equations. The smaller set of equations can be solved more efficiently than the original set of equations. Newton's method is more stable than the Semi-implicit Linear method currently used by conventional radiation codes

11. Applying homotopy analysis method for solving differential-difference equation

International Nuclear Information System (INIS)

Wang Zhen; Zou Li; Zhang Hongqing

2007-01-01

In this Letter, we apply the homotopy analysis method to solving the differential-difference equations. A simple but typical example is applied to illustrate the validity and the great potential of the generalized homotopy analysis method in solving differential-difference equation. Comparisons are made between the results of the proposed method and exact solutions. The results show that the homotopy analysis method is an attractive method in solving the differential-difference equations

12. Solving Variable Coefficient Fourth-Order Parabolic Equation by ...

African Journals Online (AJOL)

Solving Variable Coefficient Fourth-Order Parabolic Equation by Modified initial guess Variational ... variable coefficient fourth order parabolic partial differential equations. The new method shows rapid convergence to the exact solution.

13. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

Science.gov (United States)

Mall, Susmita; Chakraverty, S

2016-08-01

Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

14. Sinc-collocation method for solving the Blasius equation

International Nuclear Information System (INIS)

Parand, K.; Dehghan, Mehdi; Pirkhedri, A.

2009-01-01

Sinc-collocation method is applied for solving Blasius equation which comes from boundary layer equations. It is well known that sinc procedure converges to the solution at an exponential rate. Comparison with Howarth and Asaithambi's numerical solutions reveals that the proposed method is of high accuracy and reduces the solution of Blasius' equation to the solution of a system of algebraic equations.

15. Bound state solution of Dirac equation for Hulthen plus trigonometric Rosen Morse non-central potential using Romanovski polynomial

Energy Technology Data Exchange (ETDEWEB)

Suparmi, A., E-mail: suparmiuns@gmail.com; Cari, C., E-mail: suparmiuns@gmail.com [Physics Department, Post Graduate Study, Sebelas Maret University (Indonesia); Angraini, L. M. [Physics Department, Mataram University (Indonesia)

2014-09-30

The bound state solutions of Dirac equation for Hulthen and trigonometric Rosen Morse non-central potential are obtained using finite Romanovski polynomials. The approximate relativistic energy spectrum and the radial wave functions which are given in terms of Romanovski polynomials are obtained from solution of radial Dirac equation. The angular wave functions and the orbital quantum number are found from angular Dirac equation solution. In non-relativistic limit, the relativistic energy spectrum reduces into non-relativistic energy.

16. An Efficient Numerical Approach for Solving Nonlinear Coupled Hyperbolic Partial Differential Equations with Nonlocal Conditions

Directory of Open Access Journals (Sweden)

A. H. Bhrawy

2014-01-01

Full Text Available One of the most important advantages of collocation method is the possibility of dealing with nonlinear partial differential equations (PDEs as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions. This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical algorithm is efficient and very accurate.

17. Polynomial Chaos Expansion of Random Coefficients and the Solution of Stochastic Partial Differential Equations in the Tensor Train Format

KAUST Repository

Dolgov, Sergey; Khoromskij, Boris N.; Litvinenko, Alexander; Matthies, Hermann G.

2015-01-01

We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some

18. FIT: Computer Program that Interactively Determines Polynomial Equations for Data which are a Function of Two Independent Variables

Science.gov (United States)

Arbuckle, P. D.; Sliwa, S. M.; Roy, M. L.; Tiffany, S. H.

1985-01-01

A computer program for interactively developing least-squares polynomial equations to fit user-supplied data is described. The program is characterized by the ability to compute the polynomial equations of a surface fit through data that are a function of two independent variables. The program utilizes the Langley Research Center graphics packages to display polynomial equation curves and data points, facilitating a qualitative evaluation of the effectiveness of the fit. An explanation of the fundamental principles and features of the program, as well as sample input and corresponding output, are included.

19. Solving Differential Equations Using Modified Picard Iteration

Science.gov (United States)

Robin, W. A.

2010-01-01

Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

20. Auxiliary equation method for solving nonlinear partial differential equations

International Nuclear Information System (INIS)

Sirendaoreji,; Jiong, Sun

2003-01-01

By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

1. Variational iteration method for solving coupled-KdV equations

International Nuclear Information System (INIS)

Assas, Laila M.B.

2008-01-01

In this paper, the He's variational iteration method is applied to solve the non-linear coupled-KdV equations. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converge to the exact solution of the coupled-KdV equations. This procedure is a powerful tool for solving coupled-KdV equations

2. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

Energy Technology Data Exchange (ETDEWEB)

Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica

2015-07-01

In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

3. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

International Nuclear Information System (INIS)

Tumelero, Fernanda; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana

2015-01-01

In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

4. Random polynomials and expected complexity of bisection methods for real solving

DEFF Research Database (Denmark)

Emiris, Ioannis Z.; Galligo, André; Tsigaridas, Elias

2010-01-01

, and by Edelman and Kostlan in order to estimate the real root separation of degree d polynomials with i.i.d. coefficients that follow two zero-mean normal distributions: for SO(2) polynomials, the i-th coefficient has variance (d/i), whereas for Weyl polynomials its variance is 1/i!. By applying results from....... The second part of the paper shows that the expected number of real roots of a degree d polynomial in the Bernstein basis is √2d ± O(1), when the coefficients are i.i.d. variables with moderate standard deviation. Our paper concludes with experimental results which corroborate our analysis....

5. Effective quadrature formula in solving linear integro-differential equations of order two

Science.gov (United States)

Eshkuvatov, Z. K.; Kammuji, M.; Long, N. M. A. Nik; Yunus, Arif A. M.

2017-08-01

In this note, we solve general form of Fredholm-Volterra integro-differential equations (IDEs) of order 2 with boundary condition approximately and show that proposed method is effective and reliable. Initially, IDEs is reduced into integral equation of the third kind by using standard integration techniques and identity between multiple and single integrals then truncated Legendre series are used to estimate the unknown function. For the kernel integrals, we have applied Gauss-Legendre quadrature formula and collocation points are chosen as the roots of the Legendre polynomials. Finally, reduce the integral equations of the third kind into the system of algebraic equations and Gaussian elimination method is applied to get approximate solutions. Numerical examples and comparisons with other methods reveal that the proposed method is very effective and dominated others in many cases. General theory of existence of the solution is also discussed.

6. Constructing and solving equations - inverse operations

Czech Academy of Sciences Publication Activity Database

Neuman, František

2005-01-01

Roč. 70, č. 1 (2005), s. 77-87 ISSN 0001-9054 R&D Projects: GA AV ČR(CZ) IAA1163401 Institutional research plan: CEZ:AV0Z10190503 Keywords : functional and differential equations * representation of solution spaces * discretization of smooth relations Subject RIV: BA - General Mathematics

7. Space-time spectral collocation algorithm for solving time-fractional Tricomi-type equations

Directory of Open Access Journals (Sweden)

Abdelkawy M.A.

2016-01-01

Full Text Available We introduce a new numerical algorithm for solving one-dimensional time-fractional Tricomi-type equations (T-FTTEs. We used the shifted Jacobi polynomials as basis functions and the derivatives of fractional is evaluated by the Caputo definition. The shifted Jacobi Gauss-Lobatt algorithm is used for the spatial discretization, while the shifted Jacobi Gauss-Radau algorithmis applied for temporal approximation. Substituting these approximations in the problem leads to a system of algebraic equations that greatly simplifies the problem. The proposed algorithm is successfully extended to solve the two-dimensional T-FTTEs. Extensive numerical tests illustrate the capability and high accuracy of the proposed methodologies.

8. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

Science.gov (United States)

Filipuk, Galina; Van Assche, Walter; Zhang, Lun

2012-05-01

We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation.

9. The recurrence coefficients of semi-classical Laguerre polynomials and the fourth Painlevé equation

International Nuclear Information System (INIS)

Filipuk, Galina; Van Assche, Walter; Zhang Lun

2012-01-01

We show that the coefficients of the three-term recurrence relation for orthogonal polynomials with respect to a semi-classical extension of the Laguerre weight satisfy the fourth Painlevé equation when viewed as functions of one of the parameters in the weight. We compare different approaches to derive this result, namely, the ladder operators approach, the isomonodromy deformations approach and combining the Toda system for the recurrence coefficients with a discrete equation. We also discuss a relation between the recurrence coefficients for the Freud weight and the semi-classical Laguerre weight and show how it arises from the Bäcklund transformation of the fourth Painlevé equation. (paper)

10. Final report [on solving the multigroup diffusion equations

International Nuclear Information System (INIS)

Birkhoff, G.

1975-01-01

Progress achieved in the development of variational methods for solving the multigroup neutron diffusion equations is described. An appraisal is made of the extent to which improved variational methods could advantageously replace difference methods currently used

11. students' preference of method of solving simultaneous equations

African Journals Online (AJOL)

Ugboduma,Samuel.O.

substitution method irrespective of their gender for solving simultaneous equations. A recommendation ... advantage given to one method over others. Students' interest .... from two (2) single girls' schools, two (2) single boys schools and ten.

12. A New Approach and Solution Technique to Solve Time Fractional Nonlinear Reaction-Diffusion Equations

Directory of Open Access Journals (Sweden)

Inci Cilingir Sungu

2015-01-01

Full Text Available A new application of the hybrid generalized differential transform and finite difference method is proposed by solving time fractional nonlinear reaction-diffusion equations. This method is a combination of the multi-time-stepping temporal generalized differential transform and the spatial finite difference methods. The procedure first converts the time-evolutionary equations into Poisson equations which are then solved using the central difference method. The temporal differential transform method as used in the paper takes care of stability and the finite difference method on the resulting equation results in a system of diagonally dominant linear algebraic equations. The Gauss-Seidel iterative procedure then used to solve the linear system thus has assured convergence. To have optimized convergence rate, numerical experiments were done by using a combination of factors involving multi-time-stepping, spatial step size, and degree of the polynomial fit in time. It is shown that the hybrid technique is reliable, accurate, and easy to apply.

13. Adams Predictor-Corrector Systems for Solving Fuzzy Differential Equations

Directory of Open Access Journals (Sweden)

Dequan Shang

2013-01-01

Full Text Available A predictor-corrector algorithm and an improved predictor-corrector (IPC algorithm based on Adams method are proposed to solve first-order differential equations with fuzzy initial condition. These algorithms are generated by updating the Adams predictor-corrector method and their convergence is also analyzed. Finally, the proposed methods are illustrated by solving an example.

14. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

Energy Technology Data Exchange (ETDEWEB)

Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)

2016-12-15

An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

15. Solving the equation of neutron transport

International Nuclear Information System (INIS)

Nasfi, Rim

2009-01-01

This work is devoted to the study of some numerical methods of resolution of the problem of transport of the neutrons. We started by introducing the equation integro-differential transport of the neutrons. Then we applied the finite element method traditional for stationary and nonstationary linear problems in 2D. A great part is reserved for the presentation of the mixed numerical diagram and mixed hybrid with two types of uniform grids: triangular and rectangular. Thereafter we treated some numerical examples by implementations in Matlab in order to test the convergence of each method. To finish, we had results of simulation by the Monte Carlo method on a problem of two-dimensional transport with an aim of comparing them with the results resulting from the finite element method mixed hybrids. Some remarks and prospects conclude this work.

16. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

Science.gov (United States)

Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

2013-01-01

We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

17. Students' errors in solving linear equation word problems: Case ...

African Journals Online (AJOL)

The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

18. Solving the Richardson equations close to the critical points

Energy Technology Data Exchange (ETDEWEB)

DomInguez, F [Departamento de Matematicas, Universidad de Alcala, 28871 Alcala de Henares (Spain); Esebbag, C [Departamento de Matematicas, Universidad de Alcala, 28871 Alcala de Henares (Spain); Dukelsky, J [Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid (Spain)

2006-09-15

We study the Richardson equations close to the critical values of the pairing strength g{sub c}, where the occurrence of divergences precludes numerical solutions. We derive a set of equations for determining the critical g values and the non-collapsing pair energies. Studying the behaviour of the solutions close to the critical points, we develop a procedure to solve numerically the Richardson equations for arbitrary coupling strength.

19. An accurate solution of parabolic equations by expansion in ultraspherical polynomials

International Nuclear Information System (INIS)

Doha, E.H.

1986-11-01

An ultraspherical expansion technique is applied to obtain numerically the solution of the third boundary value problem for linear parabolic partial differential equation in one-space variable. The differential equation with its boundary and initial conditions is reduced to a system of ordinary differential equations for the coefficients of the expansion. This system may be solved analytically or numerically in a step-by-step manner. The method in its present form may be considered as a generalization of that of Dew and Scraton. The extension of the method to the polar-type equations is also considered. (author). 12 refs, 1 tab

20. New method for solving three-dimensional Schroedinger equation

International Nuclear Information System (INIS)

Melezhik, V.S.

1992-01-01

A new method is developed for solving the multidimensional Schroedinger equation without the variable separation. To solve the Schroedinger equation in a multidimensional coordinate space X, a difference grid Ω i (i=1,2,...,N) for some of variables, Ω, from X={R,Ω} is introduced and the initial partial-differential equation is reduced to a system of N differential-difference equations in terms of one of the variables R. The arising multi-channel scattering (or eigenvalue) problem is solved by the algorithm based on a continuous analog of the Newton method. The approach has been successfully tested for several two-dimensional problems (scattering on a nonspherical potential well and 'dipole' scatterer, a hydrogen atom in a homogenous magnetic field) and for a three-dimensional problem of the helium-atom bound states. (author)

1. Nodal spectrum method for solving neutron diffusion equation

International Nuclear Information System (INIS)

Sanchez, D.; Garcia, C. R.; Barros, R. C. de; Milian, D.E.

1999-01-01

Presented here is a new numerical nodal method for solving static multidimensional neutron diffusion equation in rectangular geometry. Our method is based on a spectral analysis of the nodal diffusion equations. These equations are obtained by integrating the diffusion equation in X, Y directions and then considering flat approximations for the current. These flat approximations are the only approximations that are considered in this method, as a result the numerical solutions are completely free from truncation errors. We show numerical results to illustrate the methods accuracy for coarse mesh calculations

2. Multiparameter extrapolation and deflation methods for solving equation systems

Directory of Open Access Journals (Sweden)

A. J. Hughes Hallett

1984-01-01

Full Text Available Most models in economics and the applied sciences are solved by first order iterative techniques, usually those based on the Gauss-Seidel algorithm. This paper examines the convergence of multiparameter extrapolations (accelerations of first order iterations, as an improved approximation to the Newton method for solving arbitrary nonlinear equation systems. It generalises my earlier results on single parameter extrapolations. Richardson's generalised method and the deflation method for detecting successive solutions in nonlinear equation systems are also presented as multiparameter extrapolations of first order iterations. New convergence results are obtained for those methods.

3. A solver for General Unilateral Polynomial Matrix Equation with Second-Order Matrices Over Prime Finite Fields

Science.gov (United States)

Burtyka, Filipp

2018-03-01

The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.

4. Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

Directory of Open Access Journals (Sweden)

S. Narayanamoorthy

2015-01-01

Full Text Available We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.

5. Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations

KAUST Repository

Jimenez, M. Navarro; Le Maî tre, O. P.; Knio, Omar

2017-01-01

A Galerkin polynomial chaos (PC) method was recently proposed to perform variance decomposition and sensitivity analysis in stochastic differential equations (SDEs), driven by Wiener noise and involving uncertain parameters. The present paper extends the PC method to nonintrusive approaches enabling its application to more complex systems hardly amenable to stochastic Galerkin projection methods. We also discuss parallel implementations and the variance decomposition of the derived quantity of interest within the framework of nonintrusive approaches. In particular, a novel hybrid PC-sampling-based strategy is proposed in the case of nonsmooth quantities of interest (QoIs) but smooth SDE solution. Numerical examples are provided that illustrate the decomposition of the variance of QoIs into contributions arising from the uncertain parameters, the inherent stochastic forcing, and joint effects. The simulations are also used to support a brief analysis of the computational complexity of the method, providing insight on the types of problems that would benefit from the present developments.

6. Nonintrusive Polynomial Chaos Expansions for Sensitivity Analysis in Stochastic Differential Equations

KAUST Repository

Jimenez, M. Navarro

2017-04-18

A Galerkin polynomial chaos (PC) method was recently proposed to perform variance decomposition and sensitivity analysis in stochastic differential equations (SDEs), driven by Wiener noise and involving uncertain parameters. The present paper extends the PC method to nonintrusive approaches enabling its application to more complex systems hardly amenable to stochastic Galerkin projection methods. We also discuss parallel implementations and the variance decomposition of the derived quantity of interest within the framework of nonintrusive approaches. In particular, a novel hybrid PC-sampling-based strategy is proposed in the case of nonsmooth quantities of interest (QoIs) but smooth SDE solution. Numerical examples are provided that illustrate the decomposition of the variance of QoIs into contributions arising from the uncertain parameters, the inherent stochastic forcing, and joint effects. The simulations are also used to support a brief analysis of the computational complexity of the method, providing insight on the types of problems that would benefit from the present developments.

7. Solution of the pulse width modulation problem using orthogonal polynomials and Korteweg-de Vries equations.

Science.gov (United States)

Chudnovsky, D V; Chudnovsky, G V

1999-10-26

The mathematical underpinning of the pulse width modulation (PWM) technique lies in the attempt to represent "accurately" harmonic waveforms using only square forms of a fixed height. The accuracy can be measured using many norms, but the quality of the approximation of the analog signal (a harmonic form) by a digital one (simple pulses of a fixed high voltage level) requires the elimination of high order harmonics in the error term. The most important practical problem is in "accurate" reproduction of sine-wave using the same number of pulses as the number of high harmonics eliminated. We describe in this paper a complete solution of the PWM problem using Pade approximations, orthogonal polynomials, and solitons. The main result of the paper is the characterization of discrete pulses answering the general PWM problem in terms of the manifold of all rational solutions to Korteweg-de Vries equations.

8. Modified homotopy perturbation method for solving hypersingular integral equations of the first kind.

Science.gov (United States)

Eshkuvatov, Z K; Zulkarnain, F S; Nik Long, N M A; Muminov, Z

2016-01-01

Modified homotopy perturbation method (HPM) was used to solve the hypersingular integral equations (HSIEs) of the first kind on the interval [-1,1] with the assumption that the kernel of the hypersingular integral is constant on the diagonal of the domain. Existence of inverse of hypersingular integral operator leads to the convergence of HPM in certain cases. Modified HPM and its norm convergence are obtained in Hilbert space. Comparisons between modified HPM, standard HPM, Bernstein polynomials approach Mandal and Bhattacharya (Appl Math Comput 190:1707-1716, 2007), Chebyshev expansion method Mahiub et al. (Int J Pure Appl Math 69(3):265-274, 2011) and reproducing kernel Chen and Zhou (Appl Math Lett 24:636-641, 2011) are made by solving five examples. Theoretical and practical examples revealed that the modified HPM dominates the standard HPM and others. Finally, it is found that the modified HPM is exact, if the solution of the problem is a product of weights and polynomial functions. For rational solution the absolute error decreases very fast by increasing the number of collocation points.

9. A neuro approach to solve fuzzy Riccati differential equations

Energy Technology Data Exchange (ETDEWEB)

Shahrir, Mohammad Shazri, E-mail: mshazri@gmail.com [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia); Telekom Malaysia, R& D TM Innovation Centre, LingkaranTeknokrat Timur, 63000 Cyberjaya, Selangor (Malaysia); Kumaresan, N., E-mail: drnk2008@gmail.com; Kamali, M. Z. M.; Ratnavelu, Kurunathan [InstitutSainsMatematik, Universiti Malaya 50603 Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur (Malaysia)

2015-10-22

There are many applications of optimal control theory especially in the area of control systems in engineering. In this paper, fuzzy quadratic Riccati differential equation is estimated using neural networks (NN). Previous works have shown reliable results using Runge-Kutta 4th order (RK4). The solution can be achieved by solving the 1st Order Non-linear Differential Equation (ODE) that is found commonly in Riccati differential equation. Research has shown improved results relatively to the RK4 method. It can be said that NN approach shows promising results with the advantage of continuous estimation and improved accuracy that can be produced over RK4.

10. A highly accurate method to solve Fisher's equation

The solution of the Helmholtz equation was approximated by a sixth-order compact finite difference. (CFD6) method in . In , a CFD6 scheme has been presented to ... efficiency of the proposed method are reported in §3. Finally .... our discussion, one can apply the proposed method to solve the more general problem.

11. A Simple Derivation of Kepler's Laws without Solving Differential Equations

Science.gov (United States)

Provost, J.-P.; Bracco, C.

2009-01-01

Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple…

12. Using Computer Symbolic Algebra to Solve Differential Equations.

Science.gov (United States)

Mathews, John H.

1989-01-01

This article illustrates that mathematical theory can be incorporated into the process to solve differential equations by a computer algebra system, muMATH. After an introduction to functions of muMATH, several short programs for enhancing the capabilities of the system are discussed. Listed are six references. (YP)

13. New method for solving three-dimensional Schroedinger equation

International Nuclear Information System (INIS)

Melezhik, V.S.

1990-01-01

The method derived recently for solving a multidimensional scattering problem is applied to a three-dimensional Schroedinger equation. As compared with direct three-dimensional calculations of finite elements and finite differences, this approach gives sufficiently accurate upper and lower approximations to the helium-atom binding energy, which demonstrates its efficiency. 15 refs.; 1 fig.; 2 tabs

14. Ten-Year-Old Students Solving Linear Equations

Science.gov (United States)

Brizuela, Barbara; Schliemann, Analucia

2004-01-01

In this article, the authors seek to re-conceptualize the perspective regarding students' difficulties with algebra. While acknowledging that students "do" have difficulties when learning algebra, they also argue that the generally espoused criteria for algebra as the ability to work with the syntactical rules for solving equations is…

15. Insights into the School Mathematics Tradition from Solving Linear Equations

Science.gov (United States)

Buchbinder, Orly; Chazan, Daniel; Fleming, Elizabeth

2015-01-01

In this article, we explore how the solving of linear equations is represented in English­-language algebra text books from the early nineteenth century when schooling was becoming institutionalized, and then survey contemporary teachers. In the text books, we identify the increasing presence of a prescribed order of steps (a canonical method) for…

16. Students' errors in solving linear equation word problems: Case ...

African Journals Online (AJOL)

kofi.mereku

Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

17. Experimental quantum computing to solve systems of linear equations.

Science.gov (United States)

Cai, X-D; Weedbrook, C; Su, Z-E; Chen, M-C; Gu, Mile; Zhu, M-J; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

2013-06-07

Solving linear systems of equations is ubiquitous in all areas of science and engineering. With rapidly growing data sets, such a task can be intractable for classical computers, as the best known classical algorithms require a time proportional to the number of variables N. A recently proposed quantum algorithm shows that quantum computers could solve linear systems in a time scale of order log(N), giving an exponential speedup over classical computers. Here we realize the simplest instance of this algorithm, solving 2×2 linear equations for various input vectors on a quantum computer. We use four quantum bits and four controlled logic gates to implement every subroutine required, demonstrating the working principle of this algorithm.

18. Polynomial two-parameter eigenvalue problems and matrix pencil methods for stability of delay-differential equations

NARCIS (Netherlands)

Jarlebring, E.; Hochstenbach, M.E.

2009-01-01

Several recent methods used to analyze asymptotic stability of delay-differential equations (DDEs) involve determining the eigenvalues of a matrix, a matrix pencil or a matrix polynomial constructed by Kronecker products. Despite some similarities between the different types of these so-called

19. A Matrix Method Based on the Fibonacci Polynomials to the Generalized Pantograph Equations with Functional Arguments

Directory of Open Access Journals (Sweden)

Ayşe Betül Koç

2014-01-01

Full Text Available A pseudospectral method based on the Fibonacci operational matrix is proposed to solve generalized pantograph equations with linear functional arguments. By using this method, approximate solutions of the problems are easily obtained in form of the truncated Fibonacci series. Some illustrative examples are given to verify the efficiency and effectiveness of the proposed method. Then, the numerical results are compared with other methods.

20. Fitting method of pseudo-polynomial for solving nonlinear parametric adjustment

Institute of Scientific and Technical Information of China (English)

陶华学; 宫秀军; 郭金运

2001-01-01

The optimal condition and its geometrical characters of the least-square adjustment were proposed. Then the relation between the transformed surface and least-squares was discussed. Based on the above, a non-iterative method, called the fitting method of pseudo-polynomial, was derived in detail. The final least-squares solution can be determined with sufficient accuracy in a single step and is not attained by moving the initial point in the view of iteration. The accuracy of the solution relys wholly on the frequency of Taylor's series. The example verifies the correctness and validness of the method.

1. Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients

International Nuclear Information System (INIS)

Zhang Yi; Wei Wei-Wei; Cheng Teng-Fei; Song Yang

2011-01-01

In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived. (general)

2. Approximate analytical methods for solving ordinary differential equations

CERN Document Server

2015-01-01

Approximate Analytical Methods for Solving Ordinary Differential Equations (ODEs) is the first book to present all of the available approximate methods for solving ODEs, eliminating the need to wade through multiple books and articles. It covers both well-established techniques and recently developed procedures, including the classical series solution method, diverse perturbation methods, pioneering asymptotic methods, and the latest homotopy methods.The book is suitable not only for mathematicians and engineers but also for biologists, physicists, and economists. It gives a complete descripti

3. Reproducing Kernel Method for Solving Nonlinear Differential-Difference Equations

Directory of Open Access Journals (Sweden)

Reza Mokhtari

2012-01-01

Full Text Available On the basis of reproducing kernel Hilbert spaces theory, an iterative algorithm for solving some nonlinear differential-difference equations (NDDEs is presented. The analytical solution is shown in a series form in a reproducing kernel space, and the approximate solution , is constructed by truncating the series to terms. The convergence of , to the analytical solution is also proved. Results obtained by the proposed method imply that it can be considered as a simple and accurate method for solving such differential-difference problems.

4. A method of solving simple harmonic oscillator Schroedinger equation

Science.gov (United States)

Maury, Juan Carlos F.

1995-01-01

A usual step in solving totally Schrodinger equation is to try first the case when dimensionless position independent variable w is large. In this case the Harmonic Oscillator equation takes the form (d(exp 2)/dw(exp 2) - w(exp 2))F = 0, and following W.K.B. method, it gives the intermediate corresponding solution F = exp(-w(exp 2)/2), which actually satisfies exactly another equation, (d(exp 2)/dw(exp 2) + 1 - w(exp 2))F = 0. We apply a different method, useful in anharmonic oscillator equations, similar to that of Rampal and Datta, and although it is slightly more complicated however it is also more general and systematic.

5. A New Fractional Projective Riccati Equation Method for Solving Fractional Partial Differential Equations

International Nuclear Information System (INIS)

Feng Qing-Hua

2014-01-01

In this paper, a new fractional projective Riccati equation method is proposed to establish exact solutions for fractional partial differential equations in the sense of modified Riemann—Liouville derivative. This method can be seen as the fractional version of the known projective Riccati equation method. For illustrating the validity of this method, we apply this method to solve the space-time fractional Whitham—Broer—Kaup (WBK) equations and the nonlinear fractional Sharma—Tasso—Olever (STO) equation, and as a result, some new exact solutions for them are obtained. (general)

6. Solving nonlinear evolution equation system using two different methods

Science.gov (United States)

Kaplan, Melike; Bekir, Ahmet; Ozer, Mehmet N.

2015-12-01

This paper deals with constructing more general exact solutions of the coupled Higgs equation by using the (G0/G, 1/G)-expansion and (1/G0)-expansion methods. The obtained solutions are expressed by three types of functions: hyperbolic, trigonometric and rational functions with free parameters. It has been shown that the suggested methods are productive and will be used to solve nonlinear partial differential equations in applied mathematics and engineering. Throughout the paper, all the calculations are made with the aid of the Maple software.

7. Solving Nonlinear Partial Differential Equations with Maple and Mathematica

CERN Document Server

Shingareva, Inna K

2011-01-01

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple an

8. Various Newton-type iterative methods for solving nonlinear equations

Directory of Open Access Journals (Sweden)

Manoj Kumar

2013-10-01

Full Text Available The aim of the present paper is to introduce and investigate new ninth and seventh order convergent Newton-type iterative methods for solving nonlinear equations. The ninth order convergent Newton-type iterative method is made derivative free to obtain seventh-order convergent Newton-type iterative method. These new with and without derivative methods have efficiency indices 1.5518 and 1.6266, respectively. The error equations are used to establish the order of convergence of these proposed iterative methods. Finally, various numerical comparisons are implemented by MATLAB to demonstrate the performance of the developed methods.

9. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

Directory of Open Access Journals (Sweden)

Zhi-Kai Fu

2015-01-01

Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

10. A Meshfree Quasi-Interpolation Method for Solving Burgers’ Equation

Directory of Open Access Journals (Sweden)

Mingzhu Li

2014-01-01

Full Text Available The main aim of this work is to consider a meshfree algorithm for solving Burgers’ equation with the quartic B-spline quasi-interpolation. Quasi-interpolation is very useful in the study of approximation theory and its applications, since it can yield solutions directly without the need to solve any linear system of equations and overcome the ill-conditioning problem resulting from using the B-spline as a global interpolant. The numerical scheme is presented, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the time derivative of the dependent variable. Compared to other numerical methods, the main advantages of our scheme are higher accuracy and lower computational complexity. Meanwhile, the algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.

11. New Efficient Fourth Order Method for Solving Nonlinear Equations

Directory of Open Access Journals (Sweden)

2013-12-01

Full Text Available In a paper [Appl. Math. Comput., 188 (2 (2007 1587--1591], authors have suggested and analyzed a method for solving nonlinear equations. In the present work, we modified this method by using the finite difference scheme, which has a quintic convergence. We have compared this modified Halley method with some other iterative of fifth-orders convergence methods, which shows that this new method having convergence of fourth order, is efficient.

12. New numerical method for solving the solute transport equation

International Nuclear Information System (INIS)

Ross, B.; Koplik, C.M.

1978-01-01

The solute transport equation can be solved numerically by approximating the water flow field by a network of stream tubes and using a Green's function solution within each stream tube. Compared to previous methods, this approach permits greater computational efficiency and easier representation of small discontinuities, and the results are easier to interpret physically. The method has been used to study hypothetical sites for disposal of high-level radioactive waste

13. Deterministic methods to solve the integral transport equation in neutronic

International Nuclear Information System (INIS)

Warin, X.

1993-11-01

We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

14. Domain decomposition method for solving the neutron diffusion equation

International Nuclear Information System (INIS)

Coulomb, F.

1989-03-01

The aim of this work is to study methods for solving the neutron diffusion equation; we are interested in methods based on a classical finite element discretization and well suited for use on parallel computers. Domain decomposition methods seem to answer this preoccupation. This study deals with a decomposition of the domain. A theoretical study is carried out for Lagrange finite elements and some examples are given; in the case of mixed dual finite elements, the study is based on examples [fr

15. A Proposed Method for Solving Fuzzy System of Linear Equations

Directory of Open Access Journals (Sweden)

Reza Kargar

2014-01-01

Full Text Available This paper proposes a new method for solving fuzzy system of linear equations with crisp coefficients matrix and fuzzy or interval right hand side. Some conditions for the existence of a fuzzy or interval solution of m×n linear system are derived and also a practical algorithm is introduced in detail. The method is based on linear programming problem. Finally the applicability of the proposed method is illustrated by some numerical examples.

16. Guiding brine shrimp through mazes by solving reaction diffusion equations

Science.gov (United States)

Singal, Krishma; Fenton, Flavio

Excitable systems driven by reaction diffusion equations have been shown to not only find solutions to mazes but to also to find the shortest path between the beginning and the end of the maze. In this talk we describe how we can use the Fitzhugh-Nagumo model, a generic model for excitable media, to solve a maze by varying the basin of attraction of its two fixed points. We demonstrate how two dimensional mazes are solved numerically using a Java Applet and then accelerated to run in real time by using graphic processors (GPUs). An application of this work is shown by guiding phototactic brine shrimp through a maze solved by the algorithm. Once the path is obtained, an Arduino directs the shrimp through the maze using lights from LEDs placed at the floor of the Maze. This method running in real time could be eventually used for guiding robots and cars through traffic.

17. Laguerre-Freud equations for the recurrence coefficients of the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices

International Nuclear Information System (INIS)

Bangerezako, Gaspard; Foupouagnigni, Mama

2003-10-01

We give an algorithmic derivation of the Laguerre-Freud equations for the recurrence coefficients β n and γ n of the Laguerre-Hahn orthogonal polynomials on special nonuniform lattices. This algorithm is the most general one since it is valid for the Laguerre-Hahn orthogonal polynomials of any class k, on the special nonuniform lattices including the continuous (limiting cases), linear, q-linear and the q-nonlinear ones. Moreover, the algorithm allows to deduce an upper bound for the order of the equations in β n and γ n , which is respectively 2 k + 2 and 2 k + 3 when k is even, or 2 k + 3 and 2 k + 2 when k is odd. Finally, as applications, we discuss explicitly these equations for k = 1 in the continuous and linear cases, and k = 2 in the continuous symmetric one. (author)

18. Taylor's series method for solving the nonlinear point kinetics equations

International Nuclear Information System (INIS)

Nahla, Abdallah A.

2011-01-01

Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

19. Existence of positive solutions for multi-term non-autonomous fractional differential equations with polynomial coefficients

Directory of Open Access Journals (Sweden)

Azizollah Babakhani

2006-10-01

Full Text Available In the present paper we discuss the existence of positive solutions in the case of multi-term non-autonomous fractional differential equations with polynomial coefficients; the constant coefficient case has been studied in . We consider the equation $$Big(D^{alpha_n} -sum_{j = 1}^{n - 1} p_j(xD^{alpha_{n - j}}Bigy = f(x, y.$$ We state various conditions on $f$ and $p_j$'s under which this equation has: positive solutions, a unique solution which is positive, and a unique solution which may not be positive.

20. Mathematics Literacy of Secondary Students in Solving Simultanenous Linear Equations

Science.gov (United States)

Sitompul, R. S. I.; Budayasa, I. K.; Masriyah

2018-01-01

This study examines the profile of secondary students’ mathematical literacy in solving simultanenous linear equations problems in terms of cognitive style of visualizer and verbalizer. This research is a descriptive research with qualitative approach. The subjects in this research consist of one student with cognitive style of visualizer and one student with cognitive style of verbalizer. The main instrument in this research is the researcher herself and supporting instruments are cognitive style tests, mathematics skills tests, problem-solving tests and interview guidelines. Research was begun by determining the cognitive style test and mathematics skill test. The subjects chosen were given problem-solving test about simultaneous linear equations and continued with interview. To ensure the validity of the data, the researcher conducted data triangulation; the steps of data reduction, data presentation, data interpretation, and conclusion drawing. The results show that there is a similarity of visualizer and verbalizer-cognitive style in identifying and understanding the mathematical structure in the process of formulating. There are differences in how to represent problems in the process of implementing, there are differences in designing strategies and in the process of interpreting, and there are differences in explaining the logical reasons.

1. Solving Partial Differential Equations Using a New Differential Evolution Algorithm

Directory of Open Access Journals (Sweden)

Natee Panagant

2014-01-01

Full Text Available This paper proposes an alternative meshless approach to solve partial differential equations (PDEs. With a global approximate function being defined, a partial differential equation problem is converted into an optimisation problem with equality constraints from PDE boundary conditions. An evolutionary algorithm (EA is employed to search for the optimum solution. For this approach, the most difficult task is the low convergence rate of EA which consequently results in poor PDE solution approximation. However, its attractiveness remains due to the nature of a soft computing technique in EA. The algorithm can be used to tackle almost any kind of optimisation problem with simple evolutionary operation, which means it is mathematically simpler to use. A new efficient differential evolution (DE is presented and used to solve a number of the partial differential equations. The results obtained are illustrated and compared with exact solutions. It is shown that the proposed method has a potential to be a future meshless tool provided that the search performance of EA is greatly enhanced.

2. Neural network error correction for solving coupled ordinary differential equations

Science.gov (United States)

Shelton, R. O.; Darsey, J. A.; Sumpter, B. G.; Noid, D. W.

1992-01-01

A neural network is presented to learn errors generated by a numerical algorithm for solving coupled nonlinear differential equations. The method is based on using a neural network to correctly learn the error generated by, for example, Runge-Kutta on a model molecular dynamics (MD) problem. The neural network programs used in this study were developed by NASA. Comparisons are made for training the neural network using backpropagation and a new method which was found to converge with fewer iterations. The neural net programs, the MD model and the calculations are discussed.

3. A rational function based scheme for solving advection equation

International Nuclear Information System (INIS)

Xiao, Feng; Yabe, Takashi.

1995-07-01

A numerical scheme for solving advection equations is presented. The scheme is derived from a rational interpolation function. Some properties of the scheme with respect to convex-concave preserving and monotone preserving are discussed. We find that the scheme is attractive in surpressinging overshoots and undershoots even in the vicinities of discontinuity. The scheme can also be easily swicthed as the CIP (Cubic interpolated Pseudo-Particle) method to get a third-order accuracy in smooth region. Numbers of numerical tests are carried out to show the non-oscillatory and less diffusive nature of the scheme. (author)

4. Solving the generalized Langevin equation with the algebraically correlated noise

International Nuclear Information System (INIS)

Srokowski, T.; Ploszajczak, M.

1997-01-01

The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)

5. Gabor Wave Packet Method to Solve Plasma Wave Equations

International Nuclear Information System (INIS)

Pletzer, A.; Phillips, C.K.; Smithe, D.N.

2003-01-01

A numerical method for solving plasma wave equations arising in the context of mode conversion between the fast magnetosonic and the slow (e.g ion Bernstein) wave is presented. The numerical algorithm relies on the expansion of the solution in Gaussian wave packets known as Gabor functions, which have good resolution properties in both real and Fourier space. The wave packets are ideally suited to capture both the large and small wavelength features that characterize mode conversion problems. The accuracy of the scheme is compared with a standard finite element approach

6. A simple derivation of Kepler's laws without solving differential equations

International Nuclear Information System (INIS)

Provost, J-P; Bracco, C

2009-01-01

Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non-trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple reconsideration of Newton's figure naturally leads to an explicit expression of the velocity and to the equation of the trajectory. This derivation, which can be fully apprehended by undergraduates or by secondary school teachers (who might use it with their pupils), can be considered as a first application of mechanical concepts to a physical problem of great historical and pedagogical interest

7. Integrator Performance Analysis In Solving Stiff Differential Equation System

International Nuclear Information System (INIS)

2001-01-01

In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used

8. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

KAUST Repository

Bagci, Hakan

2015-01-01

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

9. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

KAUST Repository

Bagci, Hakan

2015-01-07

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

10. On the Evaluation of Computational Results Obtained from Solving System of linear Equations With matlab The Dual affine Scalling interior Point

International Nuclear Information System (INIS)

Murfi, Hendri; Basaruddin, T.

2001-01-01

The interior point method for linear programming has gained extraordinary interest as an alternative to simplex method since Karmarkar presented a polynomial-time algorithm for linear programming based on interior point method. In implementation of the algorithm of this method, there are two important things that have impact heavily to performance of the algorithm; they are data structure and used method to solve linear equation system in the algorithm. This paper describes about solving linear equation system in variants of the algorithm called dual-affine scaling algorithm. Next, we evaluate experimentally results of some used methods, either direct method or iterative method. The experimental evaluation used Matlab

11. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].

Science.gov (United States)

Murase, Kenya

2015-01-01

In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.

12. Modeling Blazar Spectra by Solving an Electron Transport Equation

Science.gov (United States)

Lewis, Tiffany; Finke, Justin; Becker, Peter A.

2018-01-01

Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.

13. [Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].

Science.gov (United States)

Murase, Kenya

2014-01-01

Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.

14. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

Energy Technology Data Exchange (ETDEWEB)

Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G., E-mail: ansar.calloo@cea.fr, E-mail: jean-francois.vidal@cea.fr, E-mail: romain.le-tellier@cea.fr, E-mail: gerald.rimpault@cea.fr [CEA, DEN, DER/SPRC/LEPh, Saint-Paul-lez-Durance (France)

2011-07-01

This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S{sub n} method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

15. Angular finite volume method for solving the multigroup transport equation with piecewise average scattering cross sections

International Nuclear Information System (INIS)

Calloo, A.; Vidal, J.F.; Le Tellier, R.; Rimpault, G.

2011-01-01

This paper deals with the solving of the multigroup integro-differential form of the transport equation for fine energy group structure. In that case, multigroup transfer cross sections display strongly peaked shape for light scatterers and the current Legendre polynomial expansion is not well-suited to represent them. Furthermore, even if considering an exact scattering cross sections representation, the scattering source in the discrete ordinates method (also known as the Sn method) being calculated by sampling the angular flux at given directions, may be wrongly computed due to lack of angular support for the angular flux. Hence, following the work of Gerts and Matthews, an angular finite volume solver has been developed for 2D Cartesian geometries. It integrates the multigroup transport equation over discrete volume elements obtained by meshing the unit sphere with a product grid over the polar and azimuthal coordinates and by considering the integrated flux per solid angle element. The convergence of this method has been compared to the S_n method for a highly anisotropic benchmark. Besides, piecewise-average scattering cross sections have been produced for non-bound Hydrogen atoms using a free gas model for thermal neutrons. LWR lattice calculations comparing Legendre representations of the Hydrogen scattering multigroup cross section at various orders and piecewise-average cross sections for this same atom are carried out (while keeping a Legendre representation for all other isotopes). (author)

16. An inherently parallel method for solving discretized diffusion equations

International Nuclear Information System (INIS)

Eccleston, B.R.; Palmer, T.S.

1999-01-01

A Monte Carlo approach to solving linear systems of equations is being investigated in the context of the solution of discretized diffusion equations. While the technique was originally devised decades ago, changes in computer architectures (namely, massively parallel machines) have driven the authors to revisit this technique. There are a number of potential advantages to this approach: (1) Analog Monte Carlo techniques are inherently parallel; this is not necessarily true to today's more advanced linear equation solvers (multigrid, conjugate gradient, etc.); (2) Some forms of this technique are adaptive in that they allow the user to specify locations in the problem where resolution is of particular importance and to concentrate the work at those locations; and (3) These techniques permit the solution of very large systems of equations in that matrix elements need not be stored. The user could trade calculational speed for storage if elements of the matrix are calculated on the fly. The goal of this study is to compare the parallel performance of Monte Carlo linear solvers to that of a more traditional parallelized linear solver. The authors observe the linear speedup that they expect from the Monte Carlo algorithm, given that there is no domain decomposition to cause significant communication overhead. Overall, PETSc outperforms the Monte Carlo solver for the test problem. The PETSc parallel performance improves with larger numbers of unknowns for a given number of processors. Parallel performance of the Monte Carlo technique is independent of the size of the matrix and the number of processes. They are investigating modifications to the scheme to accommodate matrix problems with positive off-diagonal elements. They are also currently coding an on-the-fly version of the algorithm to investigate the solution of very large linear systems

17. Solving the RPA eigenvalue equation in real-space

CERN Document Server

Muta, A; Hashimoto, Y; Yabana, K

2002-01-01

We present a computational method to solve the RPA eigenvalue equation employing a uniform grid representation in three-dimensional Cartesian coordinates. The conjugate gradient method is used for this purpose as an interactive method for a generalized eigenvalue problem. No construction of unoccupied orbitals is required in the procedure. We expect this method to be useful for systems lacking spatial symmetry to calculate accurate eigenvalues and transition matrix elements of a few low-lying excitations. Some applications are presented to demonstrate the feasibility of the method, considering the simplified mean-field model as an example of a nuclear physics system and the electronic excitations in molecules with time-dependent density functional theory as an example of an electronic system. (author)

18. Numerical method for solving integral equations of neutron transport. II

International Nuclear Information System (INIS)

Loyalka, S.K.; Tsai, R.W.

1975-01-01

In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

19. Solving Fully Fuzzy Linear System of Equations in General Form

Directory of Open Access Journals (Sweden)

2012-06-01

Full Text Available In this work, we propose an approach for computing the positive solution of a fully fuzzy linear system where the coefficient matrix is a fuzzy $nimes n$ matrix. To do this, we use arithmetic operations on fuzzy numbers that introduced by Kaffman in and convert the fully fuzzy linear system into two $nimes n$ and $2nimes 2n$ crisp linear systems. If the solutions of these linear systems don't satisfy in positive fuzzy solution condition, we introduce the constrained least squares problem to obtain optimal fuzzy vector solution by applying the ranking function in given fully fuzzy linear system. Using our proposed method, the fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

20. Polynomial chaos methods for hyperbolic partial differential equations numerical techniques for fluid dynamics problems in the presence of uncertainties

CERN Document Server

2015-01-01

This monograph presents computational techniques and numerical analysis to study conservation laws under uncertainty using the stochastic Galerkin formulation. With the continual growth of computer power, these methods are becoming increasingly popular as an alternative to more classical sampling-based techniques. The approach described in the text takes advantage of stochastic Galerkin projections applied to the original conservation laws to produce a large system of modified partial differential equations, the solutions to which directly provide a full statistical characterization of the effect of uncertainties. Polynomial Chaos Methods of Hyperbolic Partial Differential Equations focuses on the analysis of stochastic Galerkin systems obtained for linear and non-linear convection-diffusion equations and for a systems of conservation laws; a detailed well-posedness and accuracy analysis is presented to enable the design of robust and stable numerical methods. The exposition is restricted to one spatial dime...

1. PRECONDITIONED CONJUGATE-GRADIENT 2 (PCG2), a computer program for solving ground-water flow equations

Science.gov (United States)

Hill, Mary C.

1990-01-01

This report documents PCG2 : a numerical code to be used with the U.S. Geological Survey modular three-dimensional, finite-difference, ground-water flow model . PCG2 uses the preconditioned conjugate-gradient method to solve the equations produced by the model for hydraulic head. Linear or nonlinear flow conditions may be simulated. PCG2 includes two reconditioning options : modified incomplete Cholesky preconditioning, which is efficient on scalar computers; and polynomial preconditioning, which requires less computer storage and, with modifications that depend on the computer used, is most efficient on vector computers . Convergence of the solver is determined using both head-change and residual criteria. Nonlinear problems are solved using Picard iterations. This documentation provides a description of the preconditioned conjugate gradient method and the two preconditioners, detailed instructions for linking PCG2 to the modular model, sample data inputs, a brief description of PCG2, and a FORTRAN listing.

2. Solving (2 + 1)-dimensional sine-Poisson equation by a modified variable separated ordinary differential equation method

International Nuclear Information System (INIS)

Ka-Lin, Su; Yuan-Xi, Xie

2010-01-01

By introducing a more general auxiliary ordinary differential equation (ODE), a modified variable separated ordinary differential equation method is presented for solving the (2 + 1)-dimensional sine-Poisson equation. As a result, many explicit and exact solutions of the (2 + 1)-dimensional sine-Poisson equation are derived in a simple manner by this technique. (general)

3. Two-energy group solution of the diffusion equation by the multidimensional nodal polynomial expansion method

International Nuclear Information System (INIS)

Ribeiro, R.D.M.; Vellozo, S.O.; Botelho, D.A.

1983-01-01

The EPON computer code based in a Nodal Polynomial Expansion Method, wrote in Fortran IV, for steady-state, square geometry, one-dimensional or two-dimensional geometry and for one or two-energy group is presented. The neutron and power flux distributions for nuclear power plants were calculated, comparing with codes that use similar or different methodologies. The availability, economy and speed of the methodology is demonstrated. (E.G.) [pt

4. ADM For Solving Linear Second-Order Fredholm Integro-Differential Equations

Science.gov (United States)

Karim, Mohd F.; Mohamad, Mahathir; Saifullah Rusiman, Mohd; Che-Him, Norziha; Roslan, Rozaini; Khalid, Kamil

2018-04-01

In this paper, we apply Adomian Decomposition Method (ADM) as numerically analyse linear second-order Fredholm Integro-differential Equations. The approximate solutions of the problems are calculated by Maple package. Some numerical examples have been considered to illustrate the ADM for solving this equation. The results are compared with the existing exact solution. Thus, the Adomian decomposition method can be the best alternative method for solving linear second-order Fredholm Integro-Differential equation. It converges to the exact solution quickly and in the same time reduces computational work for solving the equation. The result obtained by ADM shows the ability and efficiency for solving these equations.

5. Improved algorithm for solving nonlinear parabolized stability equations

Science.gov (United States)

Zhao, Lei; Zhang, Cun-bo; Liu, Jian-xin; Luo, Ji-sheng

2016-08-01

Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11332007 and 11402167).

6. Improved algorithm for solving nonlinear parabolized stability equations

International Nuclear Information System (INIS)

Zhao Lei; Zhang Cun-bo; Liu Jian-xin; Luo Ji-sheng

2016-01-01

Due to its high computational efficiency and ability to consider nonparallel and nonlinear effects, nonlinear parabolized stability equations (NPSE) approach has been widely used to study the stability and transition mechanisms. However, it often diverges in hypersonic boundary layers when the amplitude of disturbance reaches a certain level. In this study, an improved algorithm for solving NPSE is developed. In this algorithm, the mean flow distortion is included into the linear operator instead of into the nonlinear forcing terms in NPSE. An under-relaxation factor for computing the nonlinear terms is introduced during the iteration process to guarantee the robustness of the algorithm. Two case studies, the nonlinear development of stationary crossflow vortices and the fundamental resonance of the second mode disturbance in hypersonic boundary layers, are presented to validate the proposed algorithm for NPSE. Results from direct numerical simulation (DNS) are regarded as the baseline for comparison. Good agreement can be found between the proposed algorithm and DNS, which indicates the great potential of the proposed method on studying the crossflow and streamwise instability in hypersonic boundary layers. (paper)

7. A control volume based finite difference method for solving the equilibrium equations in terms of displacements

DEFF Research Database (Denmark)

Hattel, Jesper; Hansen, Preben

1995-01-01

This paper presents a novel control volume based FD method for solving the equilibrium equations in terms of displacements, i.e. the generalized Navier equations. The method is based on the widely used cv-FDM solution of heat conduction and fluid flow problems involving a staggered grid formulati....... The resulting linear algebraic equations are solved by line-Gauss-Seidel....

8. Solution of Schrodinger equation for Three Dimensional Harmonics Oscillator plus Rosen-Morse Non-central potential using NU Method and Romanovski Polynomials

International Nuclear Information System (INIS)

Cari, C; Suparmi, A

2013-01-01

The energy eigenvalues and eigenfunctions of Schrodinger equation for three dimensional harmonic oscillator potential plus Rosen-Morse non-central potential are investigated using NU method and Romanovski polynomial. The bound state energy eigenvalues are given in a closed form and corresponding radial wave functions are expressed in associated Laguerre polynomials while angular eigen functions are given in terms of Romanovski polynomials. The Rosen-Morse potential is considered to be a perturbation factor to the three dimensional harmonic oscillator potential that causes the increase of radial wave function amplitude and decrease of angular momentum length. Keywords: Schrodinger Equation, Three dimensional Harmonic Oscillator potential, Rosen-morse non-central potential, NU method, Romanovski Polynomials

9. PSsolver: A Maple implementation to solve first order ordinary differential equations with Liouvillian solutions

Science.gov (United States)

Avellar, J.; Duarte, L. G. S.; da Mota, L. A. C. P.

2012-10-01

We present a set of software routines in Maple 14 for solving first order ordinary differential equations (FOODEs). The package implements the Prelle-Singer method in its original form together with its extension to include integrating factors in terms of elementary functions. The package also presents a theoretical extension to deal with all FOODEs presenting Liouvillian solutions. Applications to ODEs taken from standard references show that it solves ODEs which remain unsolved using Maple's standard ODE solution routines. New version program summary Program title: PSsolver Catalogue identifier: ADPR_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPR_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2302 No. of bytes in distributed program, including test data, etc.: 31962 Distribution format: tar.gz Programming language: Maple 14 (also tested using Maple 15 and 16). Computer: Intel Pentium Processor P6000, 1.86 GHz. Operating system: Windows 7. RAM: 4 GB DDR3 Memory Classification: 4.3. Catalogue identifier of previous version: ADPR_v1_0 Journal reference of previous version: Comput. Phys. Comm. 144 (2002) 46 Does the new version supersede the previous version?: Yes Nature of problem: Symbolic solution of first order differential equations via the Prelle-Singer method. Solution method: The method of solution is based on the standard Prelle-Singer method, with extensions for the cases when the FOODE contains elementary functions. Additionally, an extension of our own which solves FOODEs with Liouvillian solutions is included. Reasons for new version: The program was not running anymore due to changes in the latest versions of Maple. Additionally, we corrected/changed some bugs/details that were hampering the smoother functioning of the routines. Summary

10. Scattering theory and orthogonal polynomials

International Nuclear Information System (INIS)

Geronimo, J.S.

1977-01-01

The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms

11. Analysis of a HP-refinement method for solving the neutron transport equation using two error estimators

International Nuclear Information System (INIS)

Fournier, D.; Le Tellier, R.; Suteau, C.; Herbin, R.

2011-01-01

The solution of the time-independent neutron transport equation in a deterministic way invariably consists in the successive discretization of the three variables: energy, angle and space. In the SNATCH solver used in this study, the energy and the angle are respectively discretized with a multigroup approach and the discrete ordinate method. A set of spatial coupled transport equations is obtained and solved using the Discontinuous Galerkin Finite Element Method (DGFEM). Within this method, the spatial domain is decomposed into elements and the solution is approximated by a hierarchical polynomial basis in each one. This approach is time and memory consuming when the mesh becomes fine or the basis order high. To improve the computational time and the memory footprint, adaptive algorithms are proposed. These algorithms are based on an error estimation in each cell. If the error is important in a given region, the mesh has to be refined (h−refinement) or the polynomial basis order increased (p−refinement). This paper is related to the choice between the two types of refinement. Two ways to estimate the error are compared on different benchmarks. Analyzing the differences, a hp−refinement method is proposed and tested. (author)

12. On the use of a spatial Chebyshev polynomials together with the collocation method in solving radiative transfer problem in a slab

International Nuclear Information System (INIS)

Haggag, M.H.; Al-Gorashi, A.K.; Machali, H.M.

2013-01-01

In this study, the integral form of the radiative transfer equation in planar slab with isotropic scattering has been studied by using the Chebyshev polynomial approximation which is called TN method. The scalar flux is expanded in terms of Chebyshev polynomials in the space variable. The expansion coefficients are solutions to a system of linear algebraic equations. Analytical expressions are given for the scalar and angular flux everywhere in the slab. Numerical calculations are done for the transmissivity and reflectivity of slabs with various values of the single scattering albedo. Calculations are also carried out for the transmitted and reflected angular intensity at the slab boundaries. Our numerical results are in a very good agreement with other results, as shown in the tables

13. Analysis and development of spatial hp-refinement methods for solving the neutron transport equation

International Nuclear Information System (INIS)

Fournier, D.

2011-01-01

The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4. generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called SN approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of hp-refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into sub-cells, or by order refinement (p-refinement), by increasing the order of the polynomial basis. In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores. These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the

14. Using packaged software for solving two differential equation problems that arise in plasma physics

International Nuclear Information System (INIS)

Gaffney, P.W.

1980-01-01

Experience in using packaged numerical software for solving two related problems that arise in Plasma physics is described. These problems are (i) the solution of the reduced resistive MHD equations and (ii) the solution of the Grad-Shafranov equation

15. Method of mechanical quadratures for solving singular integral equations of various types

Science.gov (United States)

Sahakyan, A. V.; Amirjanyan, H. A.

2018-04-01

The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

16. A novel approach for solving fractional Fisher equation using

Differential transform method; fractional Fisher equation. ... confirmed by applying this method on different forms of functional equations. Author Affiliations. MIRZAZADEH M1. Department of Engineering Sciences, Faculty of Technology and ...

17. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (3).

Science.gov (United States)

Murase, Kenya

2016-01-01

In this issue, simultaneous differential equations were introduced. These differential equations are often used in the field of medical physics. The methods for solving them were also introduced, which include Laplace transform and matrix methods. Some examples were also introduced, in which Laplace transform and matrix methods were applied to solving simultaneous differential equations derived from a three-compartment kinetic model for analyzing the glucose metabolism in tissues and Bloch equations for describing the behavior of the macroscopic magnetization in magnetic resonance imaging.In the next (final) issue, partial differential equations and various methods for solving them will be introduced together with some examples in medical physics.

18. The modified simple equation method for solving some fractional ...

... and processes in various areas of natural science. Thus, many effective and powerful methods have been established and improved. In this study, we establish exact solutions of the time fractional biological population model equation and nonlinearfractional Klein–Gordon equation by using the modified simple equation ...

19. Equations of motion of test particles for solving the spin-dependent Boltzmann–Vlasov equation

Energy Technology Data Exchange (ETDEWEB)

Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Science, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

2016-08-10

A consistent derivation of the equations of motion (EOMs) of test particles for solving the spin-dependent Boltzmann–Vlasov equation is presented. The resulting EOMs in phase space are similar to the canonical equations in Hamiltonian dynamics, and the EOM of spin is the same as that in the Heisenburg picture of quantum mechanics. Considering further the quantum nature of spin and choosing the direction of total angular momentum in heavy-ion reactions as a reference of measuring nucleon spin, the EOMs of spin-up and spin-down nucleons are given separately. The key elements affecting the spin dynamics in heavy-ion collisions are identified. The resulting EOMs provide a solid foundation for using the test-particle approach in studying spin dynamics in heavy-ion collisions at intermediate energies. Future comparisons of model simulations with experimental data will help to constrain the poorly known in-medium nucleon spin–orbit coupling relevant for understanding properties of rare isotopes and their astrophysical impacts.

20. Application of Monte Carlo method to solving boundary value problem of differential equations

International Nuclear Information System (INIS)

Zuo Yinghong; Wang Jianguo

2012-01-01

This paper introduces the foundation of the Monte Carlo method and the way how to generate the random numbers. Based on the basic thought of the Monte Carlo method and finite differential method, the stochastic model for solving the boundary value problem of differential equations is built. To investigate the application of the Monte Carlo method to solving the boundary value problem of differential equations, the model is used to solve Laplace's equations with the first boundary condition and the unsteady heat transfer equation with initial values and boundary conditions. The results show that the boundary value problem of differential equations can be effectively solved with the Monte Carlo method, and the differential equations with initial condition can also be calculated by using a stochastic probability model which is based on the time-domain finite differential equations. Both the simulation results and theoretical analyses show that the errors of numerical results are lowered as the number of simulation particles is increased. (authors)

1. Using high-order polynomial basis in 3-D EM forward modeling based on volume integral equation method

Science.gov (United States)

Kruglyakov, Mikhail; Kuvshinov, Alexey

2018-05-01

3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.

2. Mellin-Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions

International Nuclear Information System (INIS)

Kalmykov, Mikhail Yu.; Kniehl, Bernd A.

2012-05-01

We argue that the Mellin-Barnes representations of Feynman diagrams can be used for obtaining linear systems of homogeneous differential equations for the original Feynman diagrams with arbitrary powers of propagators without recourse to the integration-by-parts technique. These systems of differential equation can be used (i) for the differential reductions to sets of basic functions and (ii) for counting the numbers of master-integrals.

3. Exp-function method for solving fractional partial differential equations.

Science.gov (United States)

Zheng, Bin

2013-01-01

We extend the Exp-function method to fractional partial differential equations in the sense of modified Riemann-Liouville derivative based on nonlinear fractional complex transformation. For illustrating the validity of this method, we apply it to the space-time fractional Fokas equation and the nonlinear fractional Sharma-Tasso-Olver (STO) equation. As a result, some new exact solutions for them are successfully established.

4. Sufficient Descent Conjugate Gradient Methods for Solving Convex Constrained Nonlinear Monotone Equations

Directory of Open Access Journals (Sweden)

San-Yang Liu

2014-01-01

Full Text Available Two unified frameworks of some sufficient descent conjugate gradient methods are considered. Combined with the hyperplane projection method of Solodov and Svaiter, they are extended to solve convex constrained nonlinear monotone equations. Their global convergence is proven under some mild conditions. Numerical results illustrate that these methods are efficient and can be applied to solve large-scale nonsmooth equations.

5. A Python Program for Solving Schro¨dinger's Equation in Undergraduate Physical Chemistry

Science.gov (United States)

2017-01-01

In undergraduate physical chemistry, Schrödinger's equation is solved for a variety of cases. In doing so, the energies and wave functions of the system can be interpreted to provide connections with the physical system being studied. Solving this equation by hand for a one-dimensional system is a manageable task, but it becomes time-consuming…

6. Numerical solution of matrix exponential in burn-up equation using mini-max polynomial approximation

International Nuclear Information System (INIS)

Kawamoto, Yosuke; Chiba, Go; Tsuji, Masashi; Narabayashi, Tadashi

2015-01-01

Highlights: • We propose a new numerical solution of matrix exponential in burn-up depletion calculations. • The depletion calculation with extremely short half-lived nuclides can be done numerically stable with this method. • The computational time is shorter than the other conventional methods. - Abstract: Nuclear fuel burn-up depletion calculations are essential to compute the nuclear fuel composition transition. In the burn-up calculations, the matrix exponential method has been widely used. In the present paper, we propose a new numerical solution of the matrix exponential, a Mini-Max Polynomial Approximation (MMPA) method. This method is numerically stable for burn-up matrices with extremely short half-lived nuclides as the Chebyshev Rational Approximation Method (CRAM), and it has several advantages over CRAM. We also propose a multi-step calculation, a computational time reduction scheme of the MMPA method, which can perform simultaneously burn-up calculations with several time periods. The applicability of these methods has been theoretically and numerically proved for general burn-up matrices. The numerical verification has been performed, and it has been shown that these methods have high precision equivalent to CRAM

7. Solving Sparse Polynomial Optimization Problems with Chordal Structure Using the Sparse, Bounded-Degree Sum-of-Squares Hierarchy

NARCIS (Netherlands)

Marandi, Ahmadreza; de Klerk, Etienne; Dahl, Joachim

The sparse bounded degree sum-of-squares (sparse-BSOS) hierarchy of Weisser, Lasserre and Toh [arXiv:1607.01151,2016] constructs a sequence of lower bounds for a sparse polynomial optimization problem. Under some assumptions, it is proven by the authors that the sequence converges to the optimal

8. Semiconductor device simulation by a new method of solving poisson, Laplace and Schrodinger equations

International Nuclear Information System (INIS)

2000-01-01

In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as poisson, Laplace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in several cases including the problem of finding electron concentration profile in the channel of a HEMT. In another section, we solve the Poisson equation by this method, choosing the problem of SBD as an example. Finally we solve the Laplace equation in two dimensions and as an example, we focus on the VED. In this paper, we have shown that, the method can get stable and precise results in solving all of these problems. Also the programs which have been written based on this method become considerably faster, more clear, and more abstract

9. Variable-mesh method of solving differential equations

Science.gov (United States)

Van Wyk, R.

1969-01-01

Multistep predictor-corrector method for numerical solution of ordinary differential equations retains high local accuracy and convergence properties. In addition, the method was developed in a form conducive to the generation of effective criteria for the selection of subsequent step sizes in step-by-step solution of differential equations.

10. Programmable calculator programs to solve softwood volume and value equations.

Science.gov (United States)

Janet K. Ayer. Sachet

1982-01-01

This paper presents product value and product volume equations as programs for handheld calculators. These tree equations are for inland Douglas-fir, young-growth Douglas-fir, western white pine, ponderosa pine, and western larch. Operating instructions and an example are included.

11. On an improved method for solving evolution equations of higher ...

African Journals Online (AJOL)

In this paper we introduce a new algebraic procedure to compute new classes of solutions of (1+1)-nonlinear partial differential equations (nPDEs) both of physical and technical relevance. The basic assumption is that the unknown solution(s) of the nPDE under consideration satisfy an ordinary differential equation (ODE) of ...

12. A Model for Solving the Maxwell Quasi Stationary Equations in a 3-Phase Electric Reduction Furnace

Directory of Open Access Journals (Sweden)

S. Ekrann

1982-10-01

Full Text Available A computer code has been developed for the approximate computation of electric and magnetic fields within an electric reduction furnace. The paper describes the numerical methods used to solve Maxwell's quasi-stationary equations, which are the governing equations for this problem. The equations are discretized by a staggered grid finite difference technique. The resulting algebraic equations are solved by iterating between computations of electric and magnetic quantities. This 'outer' iteration converges only when the skin depth is larger or of about the same magnitude as the linear dimensions of the computational domain. In solving for electric quantities with magnetic quantities being regarded as known, and vice versa, the central computational task is the solution of a Poisson equation for a scalar potential. These equations are solved by line successive overrelaxation combined with a rebalancing technique.

13. Multivariate Padé Approximation for Solving Nonlinear Partial Differential Equations of Fractional Order

Directory of Open Access Journals (Sweden)

Veyis Turut

2013-01-01

Full Text Available Two tecHniques were implemented, the Adomian decomposition method (ADM and multivariate Padé approximation (MPA, for solving nonlinear partial differential equations of fractional order. The fractional derivatives are described in Caputo sense. First, the fractional differential equation has been solved and converted to power series by Adomian decomposition method (ADM, then power series solution of fractional differential equation was put into multivariate Padé series. Finally, numerical results were compared and presented in tables and figures.

14. Exp-function method for solving Fisher's equation

Energy Technology Data Exchange (ETDEWEB)

Zhou, X-W [Department of Mathematics, Kunming Teacher' s College, Kunming, Yunnan 650031 (China)], E-mail: km_xwzhou@163.com

2008-02-15

There are many methods to solve Fisher's equation, but each method can only lead to a special solution. In this paper, a new method, namely the exp-function method, is employed to solve the Fisher's equation. The obtained result includes all solutions in open literature as special cases, and the generalized solution with some free parameters might imply some fascinating meanings hidden in the Fisher's equation.

15. Integral transform method for solving time fractional systems and fractional heat equation

Directory of Open Access Journals (Sweden)

Arman Aghili

2014-01-01

Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

16. A novel approach for solving fractional Fisher equation using ...

Department of Engineering Sciences, Faculty of Technology and Engineering, East of ... The reliability, simplicity and cost-effectiveness of the method are confirmed by applying this ... Differential transform method; fractional Fisher equation.

17. An uncoupling strategy for numerically solving the dynamic thermoelasticity equations

International Nuclear Information System (INIS)

Moura, C.A. de; Feijoo, R.A.

1981-01-01

The dynamic equations of coupled linear thermoelasticity are presented. A numerical algorithm which combines finite-element space approximation with a two-step time discretization in such a way as to reach significant computational savings is presented: It features a strategy for independently calculating the displacement and temperature fields through equations that nevertheless remain coupled. The scheme convergence was shown to be optimal and its machine performance, as ilustrated by some examples, fairly satisfactory. (Author) [pt

18. Weighted particle method for solving the Boltzmann equation

International Nuclear Information System (INIS)

Tohyama, M.; Suraud, E.

1990-01-01

We propose a new, deterministic, method of solution of the nuclear Boltzmann equation. In this Weighted Particle Method two-body collisions are treated by a Master equation for an occupation probability of each numerical particle. We apply the method to the quadrupole motion of 12 C. A comparison with usual stochastic methods is made. Advantages and disadvantages of the Weighted Particle Method are discussed

19. Solving Differential Equations Analytically. Elementary Differential Equations. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Unit 335.

Science.gov (United States)

Goldston, J. W.

This unit introduces analytic solutions of ordinary differential equations. The objective is to enable the student to decide whether a given function solves a given differential equation. Examples of problems from biology and chemistry are covered. Problem sets, quizzes, and a model exam are included, and answers to all items are provided. The…

20. Solving the Helmholtz equation in conformal mapped ARROWstructures using homotopy perturbation method

DEFF Research Database (Denmark)

Reck, Kasper; Thomsen, Erik Vilain; Hansen, Ole

2011-01-01

. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations using two dimensional Fourier series. The solution is entirely based on analytical expressions and is not mesh dependent. The analytical results are compared to a numerical (finite element method) solution......The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method...

1. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations

International Nuclear Information System (INIS)

An Hengbin; Mo Zeyao; Xu Xiaowen; Liu Xu

2009-01-01

The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

2. New Numerical Treatment for Solving the KDV Equation

Directory of Open Access Journals (Sweden)

khalid ali

2017-01-01

Full Text Available In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using collocation method with the modified exponential cubic B-spline. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Three invariants of motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads to careful and active results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique introduced here is easy to apply.

3. High-order quantum algorithm for solving linear differential equations

International Nuclear Information System (INIS)

Berry, Dominic W

2014-01-01

Linear differential equations are ubiquitous in science and engineering. Quantum computers can simulate quantum systems, which are described by a restricted type of linear differential equations. Here we extend quantum simulation algorithms to general inhomogeneous sparse linear differential equations, which describe many classical physical systems. We examine the use of high-order methods (where the error over a time step is a high power of the size of the time step) to improve the efficiency. These provide scaling close to Δt 2 in the evolution time Δt. As with other algorithms of this type, the solution is encoded in amplitudes of the quantum state, and it is possible to extract global features of the solution. (paper)

4. Solving the Linear 1D Thermoelasticity Equations with Pure Delay

Directory of Open Access Journals (Sweden)

Denys Ya. Khusainov

2015-01-01

Full Text Available We propose a system of partial differential equations with a single constant delay τ>0 describing the behavior of a one-dimensional thermoelastic solid occupying a bounded interval of R1. For an initial-boundary value problem associated with this system, we prove a well-posedness result in a certain topology under appropriate regularity conditions on the data. Further, we show the solution of our delayed model to converge to the solution of the classical equations of thermoelasticity as τ→0. Finally, we deduce an explicit solution representation for the delay problem.

5. Matrix Methods for Solving Hartree-Fock Equations in Atomic Structure Calculations and Line Broadening

Directory of Open Access Journals (Sweden)

Thomas Gomez

2018-04-01

Full Text Available Atomic structure of N-electron atoms is often determined by solving the Hartree-Fock equations, which are a set of integro-differential equations. The integral part of the Hartree-Fock equations treats electron exchange, but the Hartree-Fock equations are not often treated as an integro-differential equation. The exchange term is often approximated as an inhomogeneous or an effective potential so that the Hartree-Fock equations become a set of ordinary differential equations (which can be solved using the usual shooting methods. Because the Hartree-Fock equations are an iterative-refinement method, the inhomogeneous term relies on the previous guess of the wavefunction. In addition, there are numerical complications associated with solving inhomogeneous differential equations. This work uses matrix methods to solve the Hartree-Fock equations as an integro-differential equation. It is well known that a derivative operator can be expressed as a matrix made of finite-difference coefficients; energy eigenvalues and eigenvectors can be obtained by using linear-algebra packages. The integral (exchange part of the Hartree-Fock equation can be approximated as a sum and written as a matrix. The Hartree-Fock equations can be solved as a matrix that is the sum of the differential and integral matrices. We compare calculations using this method against experiment and standard atomic structure calculations. This matrix method can also be used to solve for free-electron wavefunctions, thus improving how the atoms and free electrons interact. This technique is important for spectral line broadening in two ways: it improves the atomic structure calculations, and it improves the motion of the plasma electrons that collide with the atom.

6. Wavelet Methods for Solving Fractional Order Differential Equations

OpenAIRE

A. K. Gupta; S. Saha Ray

2014-01-01

Fractional calculus is a field of applied mathematics which deals with derivatives and integrals of arbitrary orders. The fractional calculus has gained considerable importance during the past decades mainly due to its application in diverse fields of science and engineering such as viscoelasticity, diffusion of biological population, signal processing, electromagnetism, fluid mechanics, electrochemistry, and many more. In this paper, we review different wavelet methods for solving both linea...

7. Fibonacci-regularization method for solving Cauchy integral equations of the first kind

Directory of Open Access Journals (Sweden)

2017-09-01

Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.

8. Projection-iteration methods for solving nonlinear operator equations

International Nuclear Information System (INIS)

Nguyen Minh Chuong; Tran thi Lan Anh; Tran Quoc Binh

1989-09-01

In this paper, the authors investigate a nonlinear operator equation in uniformly convex Banach spaces as in metric spaces by using stationary and nonstationary generalized projection-iteration methods. Convergence theorems in the strong and weak sense were established. (author). 7 refs

9. Lagrange-Noether method for solving second-order differential equations

Institute of Scientific and Technical Information of China (English)

Wu Hui-Bin; Wu Run-Heng

2009-01-01

The purpose of this paper is to provide a new method called the Lagrange-Noether method for solving second-order differential equations. The method is,firstly,to write the second-order differential equations completely or partially in the form of Lagrange equations,and secondly,to obtain the integrals of the equations by using the Noether theory of the Lagrange system. An example is given to illustrate the application of the result.

10. Numerical treatments for solving nonlinear mixed integral equation

Directory of Open Access Journals (Sweden)

M.A. Abdou

2016-12-01

Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

11. Solving singular convolution equations using the inverse fast Fourier transform

Czech Academy of Sciences Publication Activity Database

Krajník, E.; Montesinos, V.; Zizler, P.; Zizler, Václav

2012-01-01

Roč. 57, č. 5 (2012), s. 543-550 ISSN 0862-7940 R&D Projects: GA AV ČR IAA100190901 Institutional research plan: CEZ:AV0Z10190503 Keywords : singular convolution equations * fast Fourier transform * tempered distribution Subject RIV: BA - General Mathematics Impact factor: 0.222, year: 2012 http://www.springerlink.com/content/m8437t3563214048/

12. HEXAN - a hexagonal nodal code for solving the diffusion equation

International Nuclear Information System (INIS)

Makai, M.

1982-07-01

This report describes the theory of and provides a user's manual for the HEXAN program, which is a nodal program for the solution of the few-group diffusion equation in hexagonal geometry. Based upon symmetry considerations, the theory provides an analytical solution in a homogeneous node. WWER and HTGR test problem solutions are presented. The equivalence of the finite-difference scheme and the response matrix method is proven. The properties of a symmetric node's response matrix are investigated. (author)

13. Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).

Science.gov (United States)

Murase, Kenya

2016-01-01

Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.

14. Solving the Schroedinger equation using the finite difference time domain method

International Nuclear Information System (INIS)

Sudiarta, I Wayan; Geldart, D J Wallace

2007-01-01

In this paper, we solve the Schroedinger equation using the finite difference time domain (FDTD) method to determine energies and eigenfunctions. In order to apply the FDTD method, the Schroedinger equation is first transformed into a diffusion equation by the imaginary time transformation. The resulting time-domain diffusion equation is then solved numerically by the FDTD method. The theory and an algorithm are provided for the procedure. Numerical results are given for illustrative examples in one, two and three dimensions. It is shown that the FDTD method accurately determines eigenfunctions and energies of these systems

15. Application of Trotter approximation for solving time dependent neutron transport equation

International Nuclear Information System (INIS)

Stancic, V.

1987-01-01

A method is proposed to solve multigroup time dependent neutron transport equation with arbitrary scattering anisotropy. The recurrence relation thus obtained is simple, numerically stable and especially suitable for treatment of complicated geometries. (author)

16. A predictor-corrector scheme for solving the Volterra integral equation

KAUST Repository

Al Jarro, Ahmed; Bagci, Hakan

2011-01-01

The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been

17. MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids

KAUST Repository

Iliev, Oleg; Kirsch, Ralf; Lakdawala, Zahra; Printsypar, Galina

2014-01-01

This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid

18. Solving differential–algebraic equation systems by means of index reduction methodology

DEFF Research Database (Denmark)

Sørensen, Kim; Houbak, Niels; Condra, Thomas

2006-01-01

of a number of differential equations and algebraic equations — a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODEs and index 1 DAEs by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of ordinary differential equations — ODEs....

19. Solving differential-algebraic equation systems by means of index reduction methodology

DEFF Research Database (Denmark)

Sørensen, Kim; Houbak, Niels; Condra, Thomas Joseph

2006-01-01

of a number of differential equations and algebraic equations - a so called DAE system. Two of the DAE systems are of index 1 and they can be solved by means of standard DAE-solvers. For the actual application, the equation systems are integrated by means of MATLAB’s solver: ode23t, that solves moderately...... stiff ODE’s and index 1 DAE’s by means of the trapezoidal rule. The last sub-model that models the boilers steam drum consist of two differential and three algebraic equations. The index of this model is greater than 1, which means that ode23t cannot integrate this equation system. In this paper......, it is shown how the equation system, by means of an index reduction methodology, can be reduced to a system of Ordinary- Differential-Equations - ODE’s....

20. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

International Nuclear Information System (INIS)

Tao Ganqiang; Yu Qing; Xiao Xiao

2011-01-01

Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

1. An Algorithm for Solving the Absolute Value Equation

Czech Academy of Sciences Publication Activity Database

Rohn, Jiří

2009-01-01

Roč. 18, - (2009), s. 589-599 E-ISSN 1081-3810 R&D Projects: GA ČR GA201/09/1957; GA ČR GC201/08/J020 Institutional research plan: CEZ:AV0Z10300504 Keywords : absolute value equation * algorithm * regularity * singularity * theorem of the alternatives Subject RIV: BA - General Mathematics Impact factor: 0.892, year: 2009 http://www.math.technion.ac.il/iic/ ela / ela -articles/articles/vol18_pp589-599.pdf

2. Optimal Homotopy Asymptotic Method for Solving the Linear Fredholm Integral Equations of the First Kind

Directory of Open Access Journals (Sweden)

2013-01-01

Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

3. Solving Linear Equations by Classical Jacobi-SR Based Hybrid Evolutionary Algorithm with Uniform Adaptation Technique

OpenAIRE

Jamali, R. M. Jalal Uddin; Hashem, M. M. A.; Hasan, M. Mahfuz; Rahman, Md. Bazlar

2013-01-01

Solving a set of simultaneous linear equations is probably the most important topic in numerical methods. For solving linear equations, iterative methods are preferred over the direct methods especially when the coefficient matrix is sparse. The rate of convergence of iteration method is increased by using Successive Relaxation (SR) technique. But SR technique is very much sensitive to relaxation factor, {\\omega}. Recently, hybridization of classical Gauss-Seidel based successive relaxation t...

4. The Convergence Study of the Homotopy Analysis Method for Solving Nonlinear Volterra-Fredholm Integrodifferential Equations

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available We aim to study the convergence of the homotopy analysis method (HAM in short for solving special nonlinear Volterra-Fredholm integrodifferential equations. The sufficient condition for the convergence of the method is briefly addressed. Some illustrative examples are also presented to demonstrate the validity and applicability of the technique. Comparison of the obtained results HAM with exact solution shows that the method is reliable and capable of providing analytic treatment for solving such equations.

5. From baking a cake to solving the diffusion equation

Science.gov (United States)

Olszewski, Edward A.

2006-06-01

We explain how modifying a cake recipe by changing either the dimensions of the cake or the amount of cake batter alters the baking time. We restrict our consideration to the génoise and obtain a semiempirical relation for the baking time as a function of oven temperature, initial temperature of the cake batter, and dimensions of the unbaked cake. The relation, which is based on the diffusion equation, has three parameters whose values are estimated from data obtained by baking cakes in cylindrical pans of various diameters. The relation takes into account the evaporation of moisture at the top surface of the cake, which is the dominant factor affecting the baking time of a cake.

6. A generalized trial solution method for solving the aerosol equation

International Nuclear Information System (INIS)

Simons, S.; Simpson, D.R.

1988-01-01

It is shown how the introduction of orthogonal functions together with a time-dependent scaling factor may be used to develop a generalized trial solution method for tackling the aerosol equation. The approach is worked out in detail for the case where the initial particle size spectrum follows a γ-distribution, and it is shown to be a viable technique as long as the initial volume fraction of particulate material is not too large. The method is applied to several situations of interest, and is shown to give more accurate results (with marginally shorter computing times) than are given by the three-parameter log-normal or γ distribution trial functions. (author)

7. Extensions of the auxiliary field method to solve Schroedinger equations

International Nuclear Information System (INIS)

Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien

2008-01-01

It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed

8. Extensions of the auxiliary field method to solve Schroedinger equations

Energy Technology Data Exchange (ETDEWEB)

Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be

2008-10-24

It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed.

9. Parallel computation for solving the tridiagonal linear system of equations

International Nuclear Information System (INIS)

Ishiguro, Misako; Harada, Hiroo; Fujii, Minoru; Fujimura, Toichiro; Nakamura, Yasuhiro; Nanba, Katsumi.

1981-09-01

Recently, applications of parallel computation for scientific calculations have increased from the need of the high speed calculation of large scale programs. At the JAERI computing center, an array processor FACOM 230-75 APU has installed to study the applicability of parallel computation for nuclear codes. We made some numerical experiments by using the APU on the methods of solution of tridiagonal linear equation which is an important problem in scientific calculations. Referring to the recent papers with parallel methods, we investigate eight ones. These are Gauss elimination method, Parallel Gauss method, Accelerated parallel Gauss method, Jacobi method, Recursive doubling method, Cyclic reduction method, Chebyshev iteration method, and Conjugate gradient method. The computing time and accuracy were compared among the methods on the basis of the numerical experiments. As the result, it is found that the Cyclic reduction method is best both in computing time and accuracy and the Gauss elimination method is the second one. (author)

10. Application of Local Fractional Series Expansion Method to Solve Klein-Gordon Equations on Cantor Sets

Directory of Open Access Journals (Sweden)

Ai-Min Yang

2014-01-01

Full Text Available We use the local fractional series expansion method to solve the Klein-Gordon equations on Cantor sets within the local fractional derivatives. The analytical solutions within the nondifferential terms are discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems of the liner differential equations on Cantor sets.

11. Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets

Directory of Open Access Journals (Sweden)

Ai-Min Yang

2013-01-01

Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.

12. Solving Fokker-Planck Equations on Cantor Sets Using Local Fractional Decomposition Method

Directory of Open Access Journals (Sweden)

Shao-Hong Yan

2014-01-01

Full Text Available The local fractional decomposition method is applied to approximate the solutions for Fokker-Planck equations on Cantor sets with local fractional derivative. The obtained results give the present method that is very effective and simple for solving the differential equations on Cantor set.

13. The discontinuous finite element method for solving Eigenvalue problems of transport equations

International Nuclear Information System (INIS)

Yang, Shulin; Wang, Ruihong

2011-01-01

In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)

14. The H-N method for solving linear transport equation: theory and application

International Nuclear Information System (INIS)

Kaskas, A.; Gulecyuz, M.C.; Tezcan, C.

2002-01-01

The system of singular integral equation which is obtained from the integro-differential form of the linear transport equation as a result of Placzec lemma is solved. Application are given using the exit distributions and the infinite medium Green's function. The same theoretical results are also obtained with the use of the singular eigenfunction of the method of elementary solutions

15. New approach to solve fully fuzzy system of linear equations using ...

This paper proposes two new methods to solve fully fuzzy system of linear equations. The fuzzy system has been converted to a crisp system of linear equations by using single and double parametric form of fuzzy numbers to obtain the non-negative solution. Double parametric form of fuzzy numbers is defined and applied ...

16. On the Efficiency of Algorithms for Solving Hartree–Fock and Kohn–Sham Response Equations

DEFF Research Database (Denmark)

Kauczor, Joanna; Jørgensen, Poul; Norman, Patrick

2011-01-01

The response equations as occurring in the Hartree–Fock, multiconfigurational self-consistent field, and Kohn–Sham density functional theory have identical matrix structures. The algorithms that are used for solving these equations are discussed, and new algorithms are proposed where trial vectors...

17. Performance and Difficulties of Students in Formulating and Solving Quadratic Equations with One Unknown

Science.gov (United States)

Didis, Makbule Gozde; Erbas, Ayhan Kursat

2015-01-01

This study attempts to investigate the performance of tenth-grade students in solving quadratic equations with one unknown, using symbolic equation and word-problem representations. The participants were 217 tenth-grade students, from three different public high schools. Data was collected through an open-ended questionnaire comprising eight…

18. Normal scheme for solving the transport equation independently of spatial discretization

International Nuclear Information System (INIS)

Zamonsky, O.M.

1993-01-01

To solve the discrete ordinates neutron transport equation, a general order nodal scheme is used, where nodes are allowed to have different orders of approximation and the whole system reaches a final order distribution. Independence in the election of system discretization and order of approximation is obtained without loss of accuracy. The final equations and the iterative method to reach a converged order solution were implemented in a two-dimensional computer code to solve monoenergetic, isotropic scattering, external source problems. Two benchmark problems were solved using different automatic selection order methods. Results show accurate solutions without spatial discretization, regardless of the initial selection of distribution order. (author)

19. Solving eigenvalue response matrix equations with nonlinear techniques

International Nuclear Information System (INIS)

Roberts, Jeremy A.; Forget, Benoit

2014-01-01

Highlights: • High performance solvers were applied within ERMM for the first time. • Accelerated fixed-point methods were developed that reduce computational times by 2–3. • A nonlinear, Newton-based ERMM led to similar improvement and more robustness. • A 3-D, SN-based ERMM shows how ERMM can apply fine-mesh methods to full-core analysis. - Abstract: This paper presents new algorithms for use in the eigenvalue response matrix method (ERMM) for reactor eigenvalue problems. ERMM spatially decomposes a domain into independent nodes linked via boundary conditions approximated as truncated orthogonal expansions, the coefficients of which are response functions. In its simplest form, ERMM consists of a two-level eigenproblem: an outer Picard iteration updates the k-eigenvalue via balance, while the inner λ-eigenproblem imposes neutron balance between nodes. Efficient methods are developed for solving the inner λ-eigenvalue problem within the outer Picard iteration. Based on results from several diffusion and transport benchmark models, it was found that the Krylov–Schur method applied to the λ-eigenvalue problem reduces Picard solver times (excluding response generation) by a factor of 2–5. Furthermore, alternative methods, including Picard acceleration schemes, Steffensen’s method, and Newton’s method, are developed in this paper. These approaches often yield faster k-convergence and a need for fewer k-dependent response function evaluations, which is important because response generation is often the primary cost for problems using responses computed online (i.e., not from a precomputed database). Accelerated Picard iteration was found to reduce total computational times by 2–3 compared to the unaccelerated case for problems dominated by response generation. In addition, Newton’s method was found to provide nearly the same performance with improved robustness

20. Dielectric metasurfaces solve differential and integro-differential equations.

Science.gov (United States)

2017-04-01

Leveraging subwavelength resonant nanostructures, plasmonic metasurfaces have recently attracted much attention as a breakthrough concept for engineering optical waves both spatially and spectrally. However, inherent ohmic losses concomitant with low coupling efficiencies pose fundamental impediments over their practical applications. Not only can all-dielectric metasurfaces tackle such substantial drawbacks, but also their CMOS-compatible configurations support both Mie resonances that are invariant to the incident angle. Here, we report on a transmittive metasurface comprising arrayed silicon nanodisks embedded in a homogeneous dielectric medium to manipulate phase and amplitude of incident light locally and almost independently. By taking advantage of the interplay between the electric/magnetic resonances and employing general concepts of spatial Fourier transformation, a highly efficient metadevice is proposed to perform mathematical operations including solution of ordinary differential and integro-differential equations with constant coefficients. Our findings further substantiate dielectric metasurfaces as promising candidates for miniaturized, two-dimensional, and planar optical analog computing systems that are much thinner than their conventional lens-based counterparts.

1. Computer programs for solving systems of nonlinear equations

International Nuclear Information System (INIS)

Asaoka, Takumi

1978-03-01

Computer programs to find a solution, usually the one closest to some guess, of a system of simultaneous nonlinear equations are provided for real functions of the real arguments. These are based on quasi-Newton methods or projection methods, which are briefly reviewed in the present report. Benchmark tests were performed on these subroutines to grasp their characteristics. As the program not requiring analytical forms of the derivatives of the Jacobian matrix, we have dealt with NS01A of Powell, NS03A of Reid for a system with the sparse Jacobian and NONLIN of Brown. Of these three subroutines of quasi-Newton methods, NONLIN is shown to be the most useful because of its stable algorithm and short computation time. On the other hand, as the subroutine for which the derivatives of the Jacobian are to be supplied analytically, we have tested INTECH of a quasi-Newton method based on the Boggs' algorithm, PROJA of Georg and Keller based on the projection method and an option of NS03A. The results have shown that INTECH, treating variables which appear only linearly in the functions separately, takes the shortest computation time, on the whole, while the projection method requires further research to find an optimal algorithm. (auth.)

2. Set of difference spitting schemes for solving the Navier-Stokes incompressible equations in natural variables

International Nuclear Information System (INIS)

Koleshko, S.B.

1989-01-01

A three-parametric set of difference schemes is suggested to solve Navier-Stokes equations with the use of the relaxation form of the continuity equation. The initial equations are stated for time increments. Use is made of splitting the operator into one-dimensional forms that reduce calculations to scalar factorizations. Calculated results for steady- and unsteady-state flows in a cavity are presented

3. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

Energy Technology Data Exchange (ETDEWEB)

Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

2007-01-15

In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

4. Solving the discrete KdV equation with homotopy analysis method

International Nuclear Information System (INIS)

Zou, L.; Zong, Z.; Wang, Z.; He, L.

2007-01-01

In this Letter, we apply the homotopy analysis method to differential-difference equations. We take the discrete KdV equation as an example, and successfully obtain double periodic wave solutions and solitary wave solutions. It illustrates the validity and the great potential of the homotopy analysis method in solving discrete KdV equation. Comparisons are made between the results of the proposed method and exact solutions. The results reveal that the proposed method is very effective and convenient

5. Non-standard finite difference and Chebyshev collocation methods for solving fractional diffusion equation

Science.gov (United States)

Agarwal, P.; El-Sayed, A. A.

2018-06-01

In this paper, a new numerical technique for solving the fractional order diffusion equation is introduced. This technique basically depends on the Non-Standard finite difference method (NSFD) and Chebyshev collocation method, where the fractional derivatives are described in terms of the Caputo sense. The Chebyshev collocation method with the (NSFD) method is used to convert the problem into a system of algebraic equations. These equations solved numerically using Newton's iteration method. The applicability, reliability, and efficiency of the presented technique are demonstrated through some given numerical examples.

6. Effective methods of solving of model equations of certain class of thermal systems

International Nuclear Information System (INIS)

Lach, J.

1985-01-01

A number of topics connected with solving of model equations of certain class of thermal systems by the method of successive approximations is touched. A system of partial differential equations of the first degree, appearing most frequently in practical applications of heat and mass transfer theory is reduced to an equivalent system of Volterra integral equations of the second kind. Among a few sample applications the thermal processes appearing in the fuel channel of nuclear reactor are solved. The theoretical analysis is illustrated by the results of numerical calculations given in tables and diagrams. 111 refs., 17 figs., 16 tabs. (author)

7. Newton-Raphson based modified Laplace Adomian decomposition method for solving quadratic Riccati differential equations

Directory of Open Access Journals (Sweden)

Mishra Vinod

2016-01-01

Full Text Available Numerical Laplace transform method is applied to approximate the solution of nonlinear (quadratic Riccati differential equations mingled with Adomian decomposition method. A new technique is proposed in this work by reintroducing the unknown function in Adomian polynomial with that of well known Newton-Raphson formula. The solutions obtained by the iterative algorithm are exhibited in an infinite series. The simplicity and efficacy of method is manifested with some examples in which comparisons are made among the exact solutions, ADM (Adomian decomposition method, HPM (Homotopy perturbation method, Taylor series method and the proposed scheme.

8. Computer programme for the derivation of transfer functions for multivariable systems (solutions of determinants with polynomial elements)

International Nuclear Information System (INIS)

Guppy, C.B.

1962-03-01

In the methods adopted in this report transfer functions in the form of the ratio of two polynomials of the complex variable s are derived from sets of laplace transformed simultaneous differential equations. The set of algebraic simultaneous equations are solved using Cramer's Rule and this gives rise to determinants having polynomial elements. It is shown how the determinants are formed when transfer functions are specified. The procedure for finding the polynomial coefficients from a given determinant is fully described. The first method adopted is a direct one and reduces a determinant with first degree polynomial elements to secular form and follows this by an application of the similarity transformation to reduce the determinant to a form from which the polynomial coefficients can be read out directly. The programme is able to solve a single determinant with polynomial elements and this can be used to reduce an eigenvalue problem in the form of a secular determinant to polynomial form if the need arises. A description is given of the way in which the data is to be set out for solution by the programme. A description is also given of a method used in an earlier programme for solving polynomial determinants by curve fitting techniques using Chebyshev Polynomials. In this method determinants with polynomial elements of any degree can be solved. (author)

9. Orthogonal polynomials derived from the tridiagonal representation approach

Science.gov (United States)

Alhaidari, A. D.

2018-01-01

The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.

10. Will learning to solve one-step equations pose a challenge to 8th grade students?

Science.gov (United States)

Ngu, Bing Hiong; Phan, Huy P.

2017-08-01

Assimilating multiple interactive elements simultaneously in working memory to allow understanding to occur, while solving an equation, would impose a high cognitive load. Element interactivity arises from the interaction between elements within and across operational and relational lines. Moreover, operating with special features (e.g. negative pronumeral) poses additional challenge to master equation solving skills. In an experiment, 41 8th grade students (girls = 16, boys = 25) sat for a pre-test, attended a session about equation solving, completed an acquisition phase which constituted the main intervention and were tested again in a post-test. The results showed that at post-test, students performed better on one-step equations tapping low rather than high element interactivity knowledge. In addition, students performed better on those one-step equations that contained no special features. Thus, both the degree of element interactivity and the operation with special features affect the challenge posed to 8th grade students on learning how to solve one-step equations.

11. Direct method of solving finite difference nonlinear equations for multicomponent diffusion in a gas centrifuge

International Nuclear Information System (INIS)

Potemki, Valeri G.; Borisevich, Valentine D.; Yupatov, Sergei V.

1996-01-01

This paper describes the the next evolution step in development of the direct method for solving systems of Nonlinear Algebraic Equations (SNAE). These equations arise from the finite difference approximation of original nonlinear partial differential equations (PDE). This method has been extended on the SNAE with three variables. The solving SNAE bases on Reiterating General Singular Value Decomposition of rectangular matrix pencils (RGSVD-algorithm). In contrast to the computer algebra algorithm in integer arithmetic based on the reduction to the Groebner's basis that algorithm is working in floating point arithmetic and realizes the reduction to the Kronecker's form. The possibilities of the method are illustrated on the example of solving the one-dimensional diffusion equation for 3-component model isotope mixture in a ga centrifuge. The implicit scheme for the finite difference equations without simplifying the nonlinear properties of the original equations is realized. The technique offered provides convergence to the solution for the single run. The Toolbox SNAE is developed in the framework of the high performance numeric computation and visualization software MATLAB. It includes more than 30 modules in MATLAB language for solving SNAE with two and three variables. (author)

12. An algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equations

Science.gov (United States)

Daud, Wan Suhana Wan; Ahmad, Nazihah; Malkawi, Ghassan

2017-11-01

Sylvester matrix equations played a prominent role in various areas including control theory. Considering to any un-certainty problems that can be occurred at any time, the Sylvester matrix equation has to be adapted to the fuzzy environment. Therefore, in this study, an algorithm for solving an arbitrary triangular fully fuzzy Sylvester matrix equation is constructed. The construction of the algorithm is based on the max-min arithmetic multiplication operation. Besides that, an associated arbitrary matrix equation is modified in obtaining the final solution. Finally, some numerical examples are presented to illustrate the proposed algorithm.

13. A nonclassical Radau collocation method for solving the Lane-Emden equations of the polytropic index 4.75 ≤ α < 5

Science.gov (United States)

Tirani, M. D.; Maleki, M.; Kajani, M. T.

2014-11-01

A numerical method for solving the Lane-Emden equations of the polytropic index α when 4.75 ≤ α ≤ 5 is introduced. The method is based upon nonclassical Gauss-Radau collocation points and Freud type weights. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced and are utilized in the interval [0,1]. A smooth, strictly monotonic transformation is used to map the infinite domain x ∈ [0,∞) onto a half-open interval t ∈ [0,1). The resulting problem on the finite interval is then transcribed to a system of nonlinear algebraic equations using collocation. The method is easy to implement and yields very accurate results.

14. DIAGRAM SOLVE THE USE OF SIMULINK BLOCK DIAGRAM TO SOLVE MATHEMA THEMATICAL CONTROL EQU MATHEMATICAL MODELS AND CONTROL EQUATIONS

Directory of Open Access Journals (Sweden)

N.M. Ghasem

2003-12-01

Full Text Available In this paper, the simulink block diagram is used to solve a model consists of a set of ordinary differential and algebraic equations to control the temperature inside a simple stirred tank heater. The flexibility of simulink block diagram gives students a better understanding of the control systems. The simulink also allows solution of mathematical models and easy visualization of the system variables. A polyethylene fluidized bed reactor is considered as an industrial example and the effect of the Proportional, Integral and Derivative control policy is presented for comparison.

15. Solving inverse problems for biological models using the collage method for differential equations.

Science.gov (United States)

Capasso, V; Kunze, H E; La Torre, D; Vrscay, E R

2013-07-01

In the first part of this paper we show how inverse problems for differential equations can be solved using the so-called collage method. Inverse problems can be solved by minimizing the collage distance in an appropriate metric space. We then provide several numerical examples in mathematical biology. We consider applications of this approach to the following areas: population dynamics, mRNA and protein concentration, bacteria and amoeba cells interaction, tumor growth.

16. Minimal residual method stronger than polynomial preconditioning

Energy Technology Data Exchange (ETDEWEB)

Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others

1994-12-31

Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.

17. A Fortran program (RELAX3D) to solve the 3 dimensional Poisson (Laplace) equation

International Nuclear Information System (INIS)

Houtman, H.; Kost, C.J.

1983-09-01

RELAX3D is an efficient, user friendly, interactive FORTRAN program which solves the Poisson (Laplace) equation Λ 2 =p for a general 3 dimensional geometry consisting of Dirichlet and Neumann boundaries approximated to lie on a regular 3 dimensional mesh. The finite difference equations at these nodes are solved using a successive point-iterative over-relaxation method. A menu of commands, supplemented by HELP facility, controls the dynamic loading of the subroutine describing the problem case, the iterations to converge to a solution, and the contour plotting of any desired slices, etc

18. A predictor-corrector scheme for solving the Volterra integral equation

KAUST Repository

Al Jarro, Ahmed

2011-08-01

The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been developed for removing low and high frequency instabilities. On the other hand, literature on stabilizing explicit schemes, which might be considered more efficient since they do not require a matrix inversion at each time step, is practically non-existent. In this work, a stable but still explicit predictor-corrector scheme is proposed for solving the Volterra integral equation and its efficacy is verified numerically. © 2011 IEEE.

19. A New Numerical Technique for Solving Systems Of Nonlinear Fractional Partial Differential Equations

Directory of Open Access Journals (Sweden)

Mountassir Hamdi Cherif

2017-11-01

Full Text Available In this paper, we apply an efficient method called the Aboodh decomposition method to solve systems of nonlinear fractional partial differential equations. This method is a combined form of Aboodh transform with Adomian decomposition method. The theoretical analysis of this investigated for systems of nonlinear fractional partial differential equations is calculated in the explicit form of a power series with easily computable terms. Some examples are given to shows that this method is very efficient and accurate. This method can be applied to solve others nonlinear systems problems.

20. Solving Eigenvalue response matrix equations with Jacobian-Free Newton-Krylov methods

International Nuclear Information System (INIS)

Roberts, Jeremy A.; Forget, Benoit

2011-01-01

The response matrix method for reactor eigenvalue problems is motivated as a technique for solving coarse mesh transport equations, and the classical approach of power iteration (PI) for solution is described. The method is then reformulated as a nonlinear system of equations, and the associated Jacobian is derived. A Jacobian-Free Newton-Krylov (JFNK) method is employed to solve the system, using an approximate Jacobian coupled with incomplete factorization as a preconditioner. The unpreconditioned JFNK slightly outperforms PI, and preconditioned JFNK outperforms both PI and Steffensen-accelerated PI significantly. (author)

1. A homotopy method for solving Riccati equations on a shared memory parallel computer

International Nuclear Information System (INIS)

Zigic, D.; Watson, L.T.; Collins, E.G. Jr.; Davis, L.D.

1993-01-01

Although there are numerous algorithms for solving Riccati equations, there still remains a need for algorithms which can operate efficiently on large problems and on parallel machines. This paper gives a new homotopy-based algorithm for solving Riccati equations on a shared memory parallel computer. The central part of the algorithm is the computation of the kernel of the Jacobian matrix, which is essential for the corrector iterations along the homotopy zero curve. Using a Schur decomposition the tensor product structure of various matrices can be efficiently exploited. The algorithm allows for efficient parallelization on shared memory machines

2. On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2

Directory of Open Access Journals (Sweden)

Tian-Xiao He

2009-01-01

Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.

3. A universal concept based on cellular neural networks for ultrafast and flexible solving of differential equations.

Science.gov (United States)

Chedjou, Jean Chamberlain; Kyamakya, Kyandoghere

2015-04-01

This paper develops and validates a comprehensive and universally applicable computational concept for solving nonlinear differential equations (NDEs) through a neurocomputing concept based on cellular neural networks (CNNs). High-precision, stability, convergence, and lowest-possible memory requirements are ensured by the CNN processor architecture. A significant challenge solved in this paper is that all these cited computing features are ensured in all system-states (regular or chaotic ones) and in all bifurcation conditions that may be experienced by NDEs.One particular quintessence of this paper is to develop and demonstrate a solver concept that shows and ensures that CNN processors (realized either in hardware or in software) are universal solvers of NDE models. The solving logic or algorithm of given NDEs (possible examples are: Duffing, Mathieu, Van der Pol, Jerk, Chua, Rössler, Lorenz, Burgers, and the transport equations) through a CNN processor system is provided by a set of templates that are computed by our comprehensive templates calculation technique that we call nonlinear adaptive optimization. This paper is therefore a significant contribution and represents a cutting-edge real-time computational engineering approach, especially while considering the various scientific and engineering applications of this ultrafast, energy-and-memory-efficient, and high-precise NDE solver concept. For illustration purposes, three NDE models are demonstratively solved, and related CNN templates are derived and used: the periodically excited Duffing equation, the Mathieu equation, and the transport equation.

4. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

KAUST Repository

Wu, Zedong

2018-04-05

Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is is highly accurate and efficient.

5. Intuitive physics knowledge, physics problem solving and the role of mathematical equations

Directory of Open Access Journals (Sweden)

Laura Buteler

2012-09-01

Full Text Available The present work explores the role that mathematical equations play in modifying students’ physical intuition (diSessa, 1993. The work is carried out assuming that students achieve a great deal of the refinement in their physical intuitions during problem solving (Sherin, 2006. The study is guided by the question of how the use of mathematical equations contributes to this refinement. The authors aim at expanding on Sherin´s (2006 hypothesis, suggesting a more bounding relation between physical intuitions and mathematics. In this scenario, intuitions play a more compelling role in “deciding” which equations are acceptable and which are not. Our hypothesis is constructed on the basis of three cases: the first published by Sherin (2006 and two more from registries of our own. The three cases are compared and analyzed in relation to the role of mathematical equations in refining – or not – the intuitive knowledge students bring to play during problem solving.

6. Solving Some Special Cases of Monomial Ratio Equations Appearing Frequently in Physical and Engineering Problems

Directory of Open Access Journals (Sweden)

Enrique Castillo

2016-01-01

Full Text Available We first show that monomial ratio equations are not only very common in Physics and Engineering, but the natural type of equations in many practical problems. More precisely, in the case of models involving scale variables if the used formulas are not of this type they are not physically valid. The consequence is that when estimating the model parameters we are faced with systems of monomial ratio equations that are nonlinear and difficult to solve. In this paper, we provide an original algorithm to obtain the unique solutions of systems of equations made of linear combinations of monomial ratios whose coefficient matrix has a proper null space with low dimension that permits solving the problem in a simple way. Finally, we illustrate the proposed methods by their application to two practical problems from the hydraulic and structural fields.

7. A Genetic algorithm for evaluating the zeros (roots) of polynomial ...

African Journals Online (AJOL)

This paper presents a Genetic Algorithm software (which is a computational, search technique) for finding the zeros (roots) of any given polynomial function, and optimizing and solving N-dimensional systems of equations. The software is particularly useful since most of the classic schemes are not all embracing.

8. A method for solving the KDV equation and some numerical experiments

International Nuclear Information System (INIS)

Chang Jinjiang.

1993-01-01

In this paper, by means of difference method for discretization of space partial derivatives of KDV equation, an initial value problem in ordinary differential equations of large dimensions is produced. By using this ordinary differential equations the existence and the uniqueness of the solution of the KDV equation and the conservation of scheme are proved. This ordinary differential equation can be solved by using implicit Runge-Kutta methods, so a new method for finding the numerical solution of the KDV equation is presented. Numerical experiments not only describe in detail the procedure of two solitons collision, soliton reflex and soliton produce, but also show that this method is very effective. (author). 7 refs, 3 figs

9. On a numereeical method for solving the Faddv integral equation without deformation of contour

International Nuclear Information System (INIS)

Belyaev, V.O.; Moller, K.

1976-01-01

A numerical method is proposed for solving the Faddeev equation for separable potentials at positive total energy. The method is based on the fact that after applying a simple interpolation procedure the logarithmic singularities in the kernel of the integral equation can be extracted in the same way as usually the pole singularity is extracted. The method has been applied to calculate the eigenvalues of the Faddeev kernel

10. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

Science.gov (United States)

Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

1988-01-01

This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

11. Solving nonlinear, High-order partial differential equations using a high-performance isogeometric analysis framework

KAUST Repository

Cortes, Adriano Mauricio; Vignal, Philippe; Sarmiento, Adel; Garcí a, Daniel O.; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.

2014-01-01

In this paper we present PetIGA, a high-performance implementation of Isogeometric Analysis built on top of PETSc. We show its use in solving nonlinear and time-dependent problems, such as phase-field models, by taking advantage of the high-continuity of the basis functions granted by the isogeometric framework. In this work, we focus on the Cahn-Hilliard equation and the phase-field crystal equation.

12. Advantages and Disadvantages of Using MATLAB/ode45 for Solving Differential Equations in Engineering Applications

OpenAIRE

Waleed K. Ahmed

2013-01-01

The present paper demonstrates the route used for solving differential equations for the engineering applications at UAEU. Usually students at the Engineering Requirements Unit (ERU) stage of the Faculty of Engineering at the UAEU must enroll in a course of Differential Equations and Engineering Applications (MATH 2210) as a prerequisite for the subsequent stages of their study. Mainly, one of the objectives of this course is that the students practice MATLAB software package during the cours...

13. New Approaches for Solving Fokker Planck Equation on Cantor Sets within Local Fractional Operators

Directory of Open Access Journals (Sweden)

Hassan Kamil Jassim

2015-01-01

Full Text Available We discuss new approaches to handling Fokker Planck equation on Cantor sets within local fractional operators by using the local fractional Laplace decomposition and Laplace variational iteration methods based on the local fractional calculus. The new approaches maintain the efficiency and accuracy of the analytical methods for solving local fractional differential equations. Illustrative examples are given to show the accuracy and reliable results.

14. Numerical methods for solving the governing equations for a seriated continuum

International Nuclear Information System (INIS)

Narum, R.E.; Noble, C.; Mortensen, G.A.; McFadden, J.H.

1976-09-01

A desire to more accurately predict the behavior of transient two-phase flows has resulted in an investigation of the feasibility of computing unequal phase velocities and unequal phase temperatures. The finite difference forms of a set of equations governing a seriated continuum are presented along with two methods developed for solving the resulting systems of simultaneous nonlinear equations. Results from a one-dimensional computer code are presented to illustrate the capabilities of one of the solution methods

15. A Regularized Approach for Solving Magnetic Differential Equations and a Revised Iterative Equilibrium Algorithm

International Nuclear Information System (INIS)

Hudson, S.R.

2010-01-01

A method for approximately solving magnetic differential equations is described. The approach is to include a small diffusion term to the equation, which regularizes the linear operator to be inverted. The extra term allows a 'source-correction' term to be defined, which is generally required in order to satisfy the solvability conditions. The approach is described in the context of computing the pressure and parallel currents in the iterative approach for computing magnetohydrodynamic equilibria.

16. An efficient computer based wavelets approximation method to solve Fuzzy boundary value differential equations

Science.gov (United States)

Alam Khan, Najeeb; Razzaq, Oyoon Abdul

2016-03-01

In the present work a wavelets approximation method is employed to solve fuzzy boundary value differential equations (FBVDEs). Essentially, a truncated Legendre wavelets series together with the Legendre wavelets operational matrix of derivative are utilized to convert FB- VDE into a simple computational problem by reducing it into a system of fuzzy algebraic linear equations. The capability of scheme is investigated on second order FB- VDE considered under generalized H-differentiability. Solutions are represented graphically showing competency and accuracy of this method.

17. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

International Nuclear Information System (INIS)

2017-01-01

Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

18. Orthogonal polynomials

CERN Document Server

Freud, Géza

1971-01-01

Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc

19. Approximate method for solving the velocity dependent transport equation in a slab lattice

International Nuclear Information System (INIS)

Ferrari, A.

1966-01-01

A method is described that is intended to provide an approximate solution of the transport equation in a medium simulating a water-moderated plate filled reactor core. This medium is constituted by a periodic array of water channels and absorbing plates. The velocity dependent transport equation in slab geometry is included. The computation is performed in a water channel: the absorbing plates are accounted for by the boundary conditions. The scattering of neutrons in water is assumed isotropic, which allows the use of a double Pn approximation to deal with the angular dependence. This method is able to represent the discontinuity of the angular distribution at the channel boundary. The set of equations thus obtained is dependent only on x and v and the coefficients are independent on x. This solution suggests to try solutions involving Legendre polynomials. This scheme leads to a set of equations v dependent only. To obtain an explicit solution, a thermalization model must now be chosen. Using the secondary model of Cadilhac a solution of this set is easy to get. The numerical computations were performed with a particular secondary model, the well-known model of Wigner and Wilkins. (author) [fr

20. Nonlinearly Activated Neural Network for Solving Time-Varying Complex Sylvester Equation.

Science.gov (United States)

Li, Shuai; Li, Yangming

2013-10-28

The Sylvester equation is often encountered in mathematics and control theory. For the general time-invariant Sylvester equation problem, which is defined in the domain of complex numbers, the Bartels-Stewart algorithm and its extensions are effective and widely used with an O(n³) time complexity. When applied to solving the time-varying Sylvester equation, the computation burden increases intensively with the decrease of sampling period and cannot satisfy continuous realtime calculation requirements. For the special case of the general Sylvester equation problem defined in the domain of real numbers, gradient-based recurrent neural networks are able to solve the time-varying Sylvester equation in real time, but there always exists an estimation error while a recently proposed recurrent neural network by Zhang et al [this type of neural network is called Zhang neural network (ZNN)] converges to the solution ideally. The advancements in complex-valued neural networks cast light to extend the existing real-valued ZNN for solving the time-varying real-valued Sylvester equation to its counterpart in the domain of complex numbers. In this paper, a complex-valued ZNN for solving the complex-valued Sylvester equation problem is investigated and the global convergence of the neural network is proven with the proposed nonlinear complex-valued activation functions. Moreover, a special type of activation function with a core function, called sign-bi-power function, is proven to enable the ZNN to converge in finite time, which further enhances its advantage in online processing. In this case, the upper bound of the convergence time is also derived analytically. Simulations are performed to evaluate and compare the performance of the neural network with different parameters and activation functions. Both theoretical analysis and numerical simulations validate the effectiveness of the proposed method.

1. Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential

International Nuclear Information System (INIS)

Zhang Ying; Liang Haozhao; Meng Jie

2009-01-01

The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus 12 C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.

2. Derivation of the physical equations solved in the inertial confinement stability code DOC. Informal report

International Nuclear Information System (INIS)

Scannapieco, A.J.; Cranfill, C.W.

1978-11-01

There now exists an inertial confinement stability code called DOC, which runs as a postprocessor. DOC (a code that has evolved from a previous code, PANSY) is a spherical harmonic linear stability code that integrates, in time, a set of Lagrangian perturbation equations. Effects due to real equations of state, asymmetric energy deposition, thermal conduction, shock propagation, and a time-dependent zeroth-order state are handled in the code. We present here a detailed derivation of the physical equations that are solved in the code

3. Solving the KPI wave equation with a moving adaptive FEM grid

Directory of Open Access Journals (Sweden)

Granville Sewell

2013-04-01

Full Text Available The Kadomtsev-Petviashvili I (KPI equation is the difficult nonlinear wave equation $U_{xt} + 6U_x^2 + 6UU_{xx} + U_{xxxx} = 3U_{yy}.$ We solve this equation using PDE2D (www.pde2d.com with initial conditions consisting of two lump solitons, which collide and reseparate. Since the solution has steep, moving, peaks, an adaptive finite element grid is used with a grading which moves with the peaks.

4. Derivation of the physical equations solved in the inertial confinement stability code DOC. Informal report

Energy Technology Data Exchange (ETDEWEB)

Scannapieco, A.J.; Cranfill, C.W.

1978-11-01

There now exists an inertial confinement stability code called DOC, which runs as a postprocessor. DOC (a code that has evolved from a previous code, PANSY) is a spherical harmonic linear stability code that integrates, in time, a set of Lagrangian perturbation equations. Effects due to real equations of state, asymmetric energy deposition, thermal conduction, shock propagation, and a time-dependent zeroth-order state are handled in the code. We present here a detailed derivation of the physical equations that are solved in the code.

5. Local Fractional Laplace Variational Iteration Method for Solving Linear Partial Differential Equations with Local Fractional Derivative

Directory of Open Access Journals (Sweden)

Ai-Min Yang

2014-01-01

Full Text Available The local fractional Laplace variational iteration method was applied to solve the linear local fractional partial differential equations. The local fractional Laplace variational iteration method is coupled by the local fractional variational iteration method and Laplace transform. The nondifferentiable approximate solutions are obtained and their graphs are also shown.

6. Solving Nonlinear Fractional Differential Equation by Generalized Mittag-Leffler Function Method

Science.gov (United States)

Arafa, A. A. M.; Rida, S. Z.; Mohammadein, A. A.; Ali, H. M.

2013-06-01

In this paper, we use Mittag—Leffler function method for solving some nonlinear fractional differential equations. A new solution is constructed in power series. The fractional derivatives are described by Caputo's sense. To illustrate the reliability of the method, some examples are provided.

7. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

Directory of Open Access Journals (Sweden)

Bahman Ghazanfari

2013-08-01

Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

8. Two split cell numerical methods for solving 2-D non-equilibrium radiation transport equations

International Nuclear Information System (INIS)

Feng Tinggui

2004-11-01

Two numerically positive methods, the step characteristic integral method and subcell balance method, for solving radiative transfer equations on quadrilateral grids are presented. Numerical examples shows that the schemes presented are feasible on non-rectangle grid computation, and that the computing results by the schemes presented are comparative to that by the discrete ordinate diamond scheme on rectangle grid. (author)

9. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

International Nuclear Information System (INIS)

Biazar, J.; Ghazvini, H.

2009-01-01

In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

10. Who Solved the Bernoulli Differential Equation and How Did They Do It?

Science.gov (United States)

2013-01-01

The Bernoulli brothers, Jacob and Johann, and Leibniz: Any of these might have been first to solve what is called the Bernoulli differential equation. We explore their ideas and the chronology of their work, finding out, among other things, that variation of parameters was used in 1697, 78 years before 1775, when Lagrange introduced it in general.

11. Formulae of differentiation for solving differential equations with complex-valued random coefficients

International Nuclear Information System (INIS)

Kim, Ki Hong; Lee, Dong Hun

1999-01-01

Generalizing the work of Shapiro and Loginov, we derive new formulae of differentiation useful for solving differential equations with complex-valued random coefficients. We apply the formulae to the quantum-mechanical problem of noninteracting electrons moving in a correlated random potential in one dimension

12. SOLVING NONLINEAR KLEIN-GORDON EQUATION WITH A QUADRATIC NONLINEAR TERM USING HOMOTOPY ANALYSIS METHOD

Directory of Open Access Journals (Sweden)

H. Jafari

2010-07-01

Full Text Available In this paper, nonlinear Klein-Gordon equation with quadratic term is solved by means of an analytic technique, namely the Homotopy analysis method (HAM.Comparisons are made between the Adomian decomposition method (ADM, the exact solution and homotopy analysis method. The results reveal that the proposed method is very effective and simple.

13. FMCEIR: a Monte Carlo program for solving the stationary neutron and gamma transport equation

International Nuclear Information System (INIS)

Taormina, A.

1978-05-01

FMCEIR is a three-dimensional Monte Carlo program for solving the stationary neutron and gamma transport equation. It is used to study the problem of neutron and gamma streaming in the GCFR and HHT reactor channels. (G.T.H.)

14. Construction of Interval Wavelet Based on Restricted Variational Principle and Its Application for Solving Differential Equations

OpenAIRE

Mei, Shu-Li; Lv, Hong-Liang; Ma, Qin

2008-01-01

Based on restricted variational principle, a novel method for interval wavelet construction is proposed. For the excellent local property of quasi-Shannon wavelet, its interval wavelet is constructed, and then applied to solve ordinary differential equations. Parameter choices for the interval wavelet method are discussed and its numerical performance is demonstrated.

15. Modifying a numerical algorithm for solving the matrix equation X + AX T B = C

Science.gov (United States)

Vorontsov, Yu. O.

2013-06-01

Certain modifications are proposed for a numerical algorithm solving the matrix equation X + AX T B = C. By keeping the intermediate results in storage and repeatedly using them, it is possible to reduce the total complexity of the algorithm from O( n 4) to O( n 3) arithmetic operations.

16. Solving Second-Order Ordinary Differential Equations without Using Complex Numbers

Science.gov (United States)

Kougias, Ioannis E.

2009-01-01

Ordinary differential equations (ODEs) is a subject with a wide range of applications and the need of introducing it to students often arises in the last year of high school, as well as in the early stages of tertiary education. The usual methods of solving second-order ODEs with constant coefficients, among others, rely upon the use of complex…

17. Theory of Perturbed Equilibria for Solving the Grad-Shafranov Equation

International Nuclear Information System (INIS)

Pletzer, A.; Zakharov, L.E.

1999-01-01

The theory of perturbed magnetohydrodynamic equilibria is presented for different formulations of the tokamak equilibrium problem. For numerical codes, it gives an explicit Newton scheme for solving the Grad-Shafranov equation subject to different constraints. The problem of stability of axisymmetric modes is shown to be a particular case of the equilibrium perturbation theory

18. Predicting Eight Grade Students' Equation Solving Performances via Concepts of Variable and Equality

Science.gov (United States)

Ertekin, Erhan

2017-01-01

This study focused on how two algebraic concepts- equality and variable- predicted 8th grade students' equation solving performance. In this study, predictive design as a correlational research design was used. Randomly selected 407 eight-grade students who were from the central districts of a city in the central region of Turkey participated in…

19. Development of C++ Application Program for Solving Quadratic Equation in Elementary School in Nigeria

Science.gov (United States)

2015-01-01

The study was conducted to design, develop and test a c++ application program CAP-QUAD for solving quadratic equation in elementary school in Nigeria. The package was developed in c++ using object-oriented programming language, other computer program that were also utilized during the development process is DevC++ compiler, it was used for…

20. Derivative free Davidon-Fletcher-Powell (DFP) for solving symmetric systems of nonlinear equations

Science.gov (United States)

Mamat, M.; Dauda, M. K.; Mohamed, M. A. bin; Waziri, M. Y.; Mohamad, F. S.; Abdullah, H.

2018-03-01

Research from the work of engineers, economist, modelling, industry, computing, and scientist are mostly nonlinear equations in nature. Numerical solution to such systems is widely applied in those areas of mathematics. Over the years, there has been significant theoretical study to develop methods for solving such systems, despite these efforts, unfortunately the methods developed do have deficiency. In a contribution to solve systems of the form F(x) = 0, x ∈ Rn , a derivative free method via the classical Davidon-Fletcher-Powell (DFP) update is presented. This is achieved by simply approximating the inverse Hessian matrix with {Q}k+1-1 to θkI. The modified method satisfied the descent condition and possess local superlinear convergence properties. Interestingly, without computing any derivative, the proposed method never fail to converge throughout the numerical experiments. The output is based on number of iterations and CPU time, different initial starting points were used on a solve 40 benchmark test problems. With the aid of the squared norm merit function and derivative-free line search technique, the approach yield a method of solving symmetric systems of nonlinear equations that is capable of significantly reducing the CPU time and number of iteration, as compared to its counterparts. A comparison between the proposed method and classical DFP update were made and found that the proposed methodis the top performer and outperformed the existing method in almost all the cases. In terms of number of iterations, out of the 40 problems solved, the proposed method solved 38 successfully, (95%) while classical DFP solved 2 problems (i.e. 05%). In terms of CPU time, the proposed method solved 29 out of the 40 problems given, (i.e.72.5%) successfully whereas classical DFP solves 11 (27.5%). The method is valid in terms of derivation, reliable in terms of number of iterations and accurate in terms of CPU time. Thus, suitable and achived the objective.

1. An efficient numerical technique for solving navier-stokes equations for rotating flows

International Nuclear Information System (INIS)

Haroon, T.; Shah, T.M.

2000-01-01

This paper simulates an industrial problem by solving compressible Navier-Stokes equations. The time-consuming tri-angularization process of a large-banded matrix, performed by memory economical Frontal Technique. This scheme successfully reduces the time for I/O operations even for as large as (40, 000 x 40, 000) matrix. Previously, this industrial problem can solved by using modified Newton's method with Gaussian elimination technique for the large matrix. In the present paper, the proposed Frontal Technique is successfully used, together with Newton's method, to solve compressible Navier-Stokes equations for rotating cylinders. By using the Frontal Technique, the method gives the solution within reasonably acceptance computational time. Results are compared with the earlier works done, and found computationally very efficient. Some features of the solution are reported here for the rotating machines. (author)

2. New numerical approximation for solving fractional delay differential equations of variable order using artificial neural networks

Science.gov (United States)

Zúñiga-Aguilar, C. J.; Coronel-Escamilla, A.; Gómez-Aguilar, J. F.; Alvarado-Martínez, V. M.; Romero-Ugalde, H. M.

2018-02-01

In this paper, we approximate the solution of fractional differential equations with delay using a new approach based on artificial neural networks. We consider fractional differential equations of variable order with the Mittag-Leffler kernel in the Liouville-Caputo sense. With this new neural network approach, an approximate solution of the fractional delay differential equation is obtained. Synaptic weights are optimized using the Levenberg-Marquardt algorithm. The neural network effectiveness and applicability were validated by solving different types of fractional delay differential equations, linear systems with delay, nonlinear systems with delay and a system of differential equations, for instance, the Newton-Leipnik oscillator. The solution of the neural network was compared with the analytical solutions and the numerical simulations obtained through the Adams-Bashforth-Moulton method. To show the effectiveness of the proposed neural network, different performance indices were calculated.

3. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

KAUST Repository

Southern, J.A.; Plank, G.; Vigmond, E.J.; Whiteley, J.P.

2009-01-01

The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

4. Splitting Method for Solving the Coarse-Mesh Discretized Low-Order Quasi-Diffusion Equations

International Nuclear Information System (INIS)

Hiruta, Hikaru; Anistratov, Dmitriy Y.; Adams, Marvin L.

2005-01-01

In this paper, the development is presented of a splitting method that can efficiently solve coarse-mesh discretized low-order quasi-diffusion (LOQD) equations. The LOQD problem can reproduce exactly the transport scalar flux and current. To solve the LOQD equations efficiently, a splitting method is proposed. The presented method splits the LOQD problem into two parts: (a) the D problem that captures a significant part of the transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation and (b) the Q problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent coarse-mesh discretizations are applied: the D problem equations are approximated by means of a finite element method, whereas the Q problem equations are discretized using a finite volume method. Numerical results demonstrate the efficiency of the methodology presented. This methodology can be used to modify existing diffusion codes for full-core calculations (which already solve a version of the D problem) to account for transport effects

5. Solving the Coupled System Improves Computational Efficiency of the Bidomain Equations

KAUST Repository

Southern, J.A.

2009-10-01

The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

6. Solving large sets of coupled equations iteratively by vector processing on the CYBER 205 computer

International Nuclear Information System (INIS)

Tolsma, L.D.

1985-01-01

The set of coupled linear second-order differential equations which has to be solved for the quantum-mechanical description of inelastic scattering of atomic and nuclear particles can be rewritten as an equivalent set of coupled integral equations. When some type of functions is used as piecewise analytic reference solutions, the integrals that arise in this set can be evaluated analytically. The set of integral equations can be solved iteratively. For the results mentioned an inward-outward iteration scheme has been applied. A concept of vectorization of coupled-channel Fortran programs, based on this integral method, is presented for the use on the Cyber 205 computer. It turns out that, for two heavy ion nuclear scattering test cases, this vector algorithm gives an overall speed-up of about a factor of 2 to 3 compared to a highly optimized scalar algorithm for a one vector pipeline computer

7. A parallel algorithm for solving the integral form of the discrete ordinates equations

International Nuclear Information System (INIS)

Zerr, R. J.; Azmy, Y. Y.

2009-01-01

The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)

8. Fractional approximations for linear first order differential equation with polynomial coefficients-application to E1(x) and Z(s)

International Nuclear Information System (INIS)

Martin, P.; Zamudio-Cristi, J.

1982-01-01

A method is described to obtain fractional approximations for linear first order differential equations with polynomial coefficients. This approximation can give good accuracy in a large region of the complex variable plane that may include all the real axis. The parameters of the approximation are solutions of algebraic equations obtained through the coefficients of the highest and lowest power of the variable after the sustitution of the fractional approximation in the differential equation. The method is more general than the asymptotical Pade method, and it is not required to determine the power series or asymptotical expansion. A simple approximation for the exponential integral is found, which give three exact digits for most of the real values of the variable. Approximations of higher accuracy and of the same degree than other authors are also obtained. (Author) [pt

9. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

International Nuclear Information System (INIS)

Hernandez-Walls, R; Martín-Atienza, B; Salinas-Matus, M; Castillo, J

2017-01-01

When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations. (paper)

10. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

Science.gov (United States)

Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

2017-11-01

When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

11. A new high accuracy non-polynomial tension spline method for the solution of one dimensional wave equation in polar co-ordinates

Directory of Open Access Journals (Sweden)

Venu Gopal

2014-07-01

Full Text Available In this paper, we propose a new three-level implicit nine point compact finite difference formulation of O(k2 + h4 based on non-polynomial tension spline approximation in r-direction and finite difference approximation in t-direction for the numerical solution of one dimensional wave equation in polar co-ordinates. We describe the mathematical formulation procedure in details and also discuss the stability of the method. Numerical results are provided to justify the usefulness of the proposed method.

12. Solving ordinary differential equations by electrical analogy: a multidisciplinary teaching tool

Science.gov (United States)

Sanchez Perez, J. F.; Conesa, M.; Alhama, I.

2016-11-01

Ordinary differential equations are the mathematical formulation for a great variety of problems in science and engineering, and frequently, two different problems are equivalent from a mathematical point of view when they are formulated by the same equations. Students acquire the knowledge of how to solve these equations (at least some types of them) using protocols and strict algorithms of mathematical calculation without thinking about the meaning of the equation. The aim of this work is that students learn to design network models or circuits in this way; with simple knowledge of them, students can establish the association of electric circuits and differential equations and their equivalences, from a formal point of view, that allows them to associate knowledge of two disciplines and promote the use of this interdisciplinary approach to address complex problems. Therefore, they learn to use a multidisciplinary tool that allows them to solve these kinds of equations, even students of first course of engineering, whatever the order, grade or type of non-linearity. This methodology has been implemented in numerous final degree projects in engineering and science, e.g., chemical engineering, building engineering, industrial engineering, mechanical engineering, architecture, etc. Applications are presented to illustrate the subject of this manuscript.

13. A Method for Solving the Voltage and Torque Equations of the Split-Phase Induction Machines

Directory of Open Access Journals (Sweden)

G. A. Olarinoye

2013-06-01

Full Text Available Single phase induction machines have been the subject of many researches in recent times. The voltage and torque equations which describe the dynamic characteristics of these machines have been quoted in many papers, including the papers that present the simulation results of these model equations. The way and manner in which these equations are solved is not common in literature. This paper presents a detailed procedure of how these equations are to be solved with respect to the splitphase induction machine which is one of the different types of the single phase induction machines available in the market. In addition, these equations have been used to simulate the start-up response of the split phase induction motor on no-load. The free acceleration characteristics of the motor voltages, currents and electromagnetic torque have been plotted and discussed. The simulation results presented include the instantaneous torque-speed characteristics of the Split phase Induction machine. A block diagram of the method for the solution of the machine equations has also been presented.

14. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

KAUST Repository

Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

2015-01-01

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

15. An Accurate Approximate-Analytical Technique for Solving Time-Fractional Partial Differential Equations

Directory of Open Access Journals (Sweden)

M. Bishehniasar

2017-01-01

Full Text Available The demand of many scientific areas for the usage of fractional partial differential equations (FPDEs to explain their real-world systems has been broadly identified. The solutions may portray dynamical behaviors of various particles such as chemicals and cells. The desire of obtaining approximate solutions to treat these equations aims to overcome the mathematical complexity of modeling the relevant phenomena in nature. This research proposes a promising approximate-analytical scheme that is an accurate technique for solving a variety of noninteger partial differential equations (PDEs. The proposed strategy is based on approximating the derivative of fractional-order and reducing the problem to the corresponding partial differential equation (PDE. Afterwards, the approximating PDE is solved by using a separation-variables technique. The method can be simply applied to nonhomogeneous problems and is proficient to diminish the span of computational cost as well as achieving an approximate-analytical solution that is in excellent concurrence with the exact solution of the original problem. In addition and to demonstrate the efficiency of the method, it compares with two finite difference methods including a nonstandard finite difference (NSFD method and standard finite difference (SFD technique, which are popular in the literature for solving engineering problems.

16. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

KAUST Repository

2015-05-16

Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

17. Perceptual support promotes strategy generation: Evidence from equation solving.

Science.gov (United States)

Alibali, Martha W; Crooks, Noelle M; McNeil, Nicole M

2017-08-30

Over time, children shift from using less optimal strategies for solving mathematics problems to using better ones. But why do children generate new strategies? We argue that they do so when they begin to encode problems more accurately; therefore, we hypothesized that perceptual support for correct encoding would foster strategy generation. Fourth-grade students solved mathematical equivalence problems (e.g., 3 + 4 + 5 = 3 + __) in a pre-test. They were then randomly assigned to one of three perceptual support conditions or to a Control condition. Participants in all conditions completed three mathematical equivalence problems with feedback about correctness. Participants in the experimental conditions received perceptual support (i.e., highlighting in red ink) for accurately encoding the equal sign, the right side of the equation, or the numbers that could be added to obtain the correct solution. Following this intervention, participants completed a problem-solving post-test. Among participants who solved the problems incorrectly at pre-test, those who received perceptual support for correctly encoding the equal sign were more likely to generate new, correct strategies for solving the problems than were those who received feedback only. Thus, perceptual support for accurate encoding of a key problem feature promoted generation of new, correct strategies. Statement of Contribution What is already known on this subject? With age and experience, children shift to using more effective strategies for solving math problems. Problem encoding also improves with age and experience. What the present study adds? Support for encoding the equal sign led children to generate correct strategies for solving equations. Improvements in problem encoding are one source of new strategies. © 2017 The British Psychological Society.

18. A Compact Numerical Implementation for Solving Stokes Equations Using Matrix-vector Operations

KAUST Repository

Zhang, Tao; Salama, Amgad; Sun, Shuyu; Zhong, Hua

2015-01-01

In this work, a numerical scheme is implemented to solve Stokes equations based on cell-centered finite difference over staggered grid. In this scheme, all the difference operations have been vectorized thereby eliminating loops. This is particularly important when using programming languages that require interpretations, e.g., MATLAB and Python. Using this scheme, the execution time becomes significantly smaller compared with non-vectorized operations and also become comparable with those languages that require no repeated interpretations like FORTRAN, C, etc. This technique has also been applied to Navier-Stokes equations under laminar flow conditions.

19. A Compact Numerical Implementation for Solving Stokes Equations Using Matrix-vector Operations

KAUST Repository

Zhang, Tao

2015-06-01

In this work, a numerical scheme is implemented to solve Stokes equations based on cell-centered finite difference over staggered grid. In this scheme, all the difference operations have been vectorized thereby eliminating loops. This is particularly important when using programming languages that require interpretations, e.g., MATLAB and Python. Using this scheme, the execution time becomes significantly smaller compared with non-vectorized operations and also become comparable with those languages that require no repeated interpretations like FORTRAN, C, etc. This technique has also been applied to Navier-Stokes equations under laminar flow conditions.

20. Solving the transport equation with quadratic finite elements: Theory and applications

International Nuclear Information System (INIS)

Ferguson, J.M.

1997-01-01

At the 4th Joint Conference on Computational Mathematics, the author presented a paper introducing a new quadratic finite element scheme (QFEM) for solving the transport equation. In the ensuing year the author has obtained considerable experience in the application of this method, including solution of eigenvalue problems, transmission problems, and solution of the adjoint form of the equation as well as the usual forward solution. He will present detailed results, and will also discuss other refinements of his transport codes, particularly for 3-dimensional problems on rectilinear and non-rectilinear grids

1. GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations

Science.gov (United States)

Antoine, Xavier; Duboscq, Romain

2015-08-01

GPELab is a free Matlab toolbox for modeling and numerically solving large classes of systems of Gross-Pitaevskii equations that arise in the physics of Bose-Einstein condensates. The aim of this second paper, which follows (Antoine and Duboscq, 2014), is to first present the various pseudospectral schemes available in GPELab for computing the deterministic and stochastic nonlinear dynamics of Gross-Pitaevskii equations (Antoine, et al., 2013). Next, the corresponding GPELab functions are explained in detail. Finally, some numerical examples are provided to show how the code works for the complex dynamics of BEC problems.

2. A boundary value approach for solving three-dimensional elliptic and hyperbolic partial differential equations.

Science.gov (United States)

Biala, T A; Jator, S N

2015-01-01

In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.

3. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

KAUST Repository

Asiri, Sharefa M.; Zayane, Chadia; Laleg-Kirati, Taous-Meriem

2015-01-01

Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

4. An Adaptive Observer-Based Algorithm for Solving Inverse Source Problem for the Wave Equation

KAUST Repository

Asiri, Sharefa M.

2015-08-31

Observers are well known in control theory. Originally designed to estimate the hidden states of dynamical systems given some measurements, the observers scope has been recently extended to the estimation of some unknowns, for systems governed by partial differential equations. In this paper, observers are used to solve inverse source problem for a one-dimensional wave equation. An adaptive observer is designed to estimate the state and source components for a fully discretized system. The effectiveness of the algorithm is emphasized in noise-free and noisy cases and an insight on the impact of measurements’ size and location is provided.

5. MPFA algorithm for solving stokes-brinkman equations on quadrilateral grids

KAUST Repository

Iliev, Oleg

2014-01-01

This work is concerned with the development of a robust and accurate numerical method for solving the Stokes-Brinkman system of equations, which describes a free fluid flow coupled with a flow in porous media. Quadrilateral boundary fitted grid with a sophisticated finite volume method, namely MPFA O-method, is used to discretize the system of equations. Numerical results for two examples are presented, namely, channel flow and flow in a ring with a rolled porous medium. © Springer International Publishing Switzerland 2014.

6. Performance of a parallel algorithm for solving the neutron diffusion equation on the hypercube

International Nuclear Information System (INIS)

Kirk, B.L.; Azmy, Y.Y.

1989-01-01

The one-group, steady state neutron diffusion equation in two- dimensional Cartesian geometry is solved using the nodal method technique. By decoupling sets of equations representing the neutron current continuity along the length of rows and columns of computational cells a new iterative algorithm is derived that is more suitable to solving large practical problems. This algorithm is highly parallelizable and is implemented on the Intel iPSC/2 hypercube in three versions which differ essentially in the total size of communicated data. Even though speedup was achieved, the efficiency is very low when many processors are used leading to the conclusion that the hypercube is not as well suited for this algorithm as shared memory machines. 10 refs., 1 fig., 3 tabs

7. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation

Science.gov (United States)

Jerke, Jonathan; Tymczak, C. J.; Poirier, Bill

We report on theoretical and computational developments towards a computationally efficient direct solve of the many-body Schrödinger wave equation for electronic systems. This methodology relies on two recent developments pioneered by the authors: 1) the development of a Cardinal Sine basis for electronic structure calculations; and 2) the development of a highly efficient and compact representation of multidimensional functions using the Canonical tensor rank representation developed by Belykin et. al. which we have adapted to electronic structure problems. We then show several relevant examples of the utility and accuracy of this methodology, scaling with system size, and relevant convergence issues of the methodology. Method for the Direct Solve of the Many-Body Schrödinger Wave Equation.

8. The spectral transform as a tool for solving nonlinear discrete evolution equations

International Nuclear Information System (INIS)

Levi, D.

1979-01-01

In this contribution we study nonlinear differential difference equations which became important to the description of an increasing number of problems in natural science. Difference equations arise for instance in the study of electrical networks, in statistical problems, in queueing problems, in ecological problems, as computer models for differential equations and as models for wave excitation in plasma or vibrations of particles in an anharmonic lattice. We shall first review the passages necessary to solve linear discrete evolution equations by the discrete Fourier transfrom, then, starting from the Zakharov-Shabat discretized eigenvalue, problem, we shall introduce the spectral transform. In the following part we obtain the correlation between the evolution of the potentials and scattering data through the Wronskian technique, giving at the same time many other properties as, for example, the Baecklund transformations. Finally we recover some of the important equations belonging to this class of nonlinear discrete evolution equations and extend the method to equations with n-dependent coefficients. (HJ)

9. Improving Teaching Quality and Problem Solving Ability through Contextual Teaching and Learning in Differential Equations: A Lesson Study Approach

Science.gov (United States)

Khotimah, Rita Pramujiyanti; Masduki

2016-01-01

Differential equations is a branch of mathematics which is closely related to mathematical modeling that arises in real-world problems. Problem solving ability is an essential component to solve contextual problem of differential equations properly. The purposes of this study are to describe contextual teaching and learning (CTL) model in…

10. Factors Affecting Differential Equation Problem Solving Ability of Students at Pre-University Level: A Conceptual Model

Science.gov (United States)

Aisha, Bibi; Zamri, Sharifa NorulAkmar Syed; Abdallah, Nabeel; Abedalaziz, Mohammad; Ahmad, Mushtaq; Satti, Umbreen

2017-01-01

In this study, different factors affecting students' differential equations (DEs) solving abilities were explored at pre university level. To explore main factors affecting students' differential equations problem solving ability, articles for a 19-year period, from 1996 to 2015, were critically reviewed and analyzed. It was revealed that…

11. Extended biorthogonal matrix polynomials

Directory of Open Access Journals (Sweden)

Ayman Shehata

2017-01-01

Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in . The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

12. The Adomian decomposition method for solving partial differential equations of fractal order in finite domains

Energy Technology Data Exchange (ETDEWEB)

El-Sayed, A.M.A. [Faculty of Science University of Alexandria (Egypt)]. E-mail: amasyed@hotmail.com; Gaber, M. [Faculty of Education Al-Arish, Suez Canal University (Egypt)]. E-mail: mghf408@hotmail.com

2006-11-20

The Adomian decomposition method has been successively used to find the explicit and numerical solutions of the time fractional partial differential equations. A different examples of special interest with fractional time and space derivatives of order {alpha}, 0<{alpha}=<1 are considered and solved by means of Adomian decomposition method. The behaviour of Adomian solutions and the effects of different values of {alpha} are shown graphically for some examples.

13. T-Stability of the Heun Method and Balanced Method for Solving Stochastic Differential Delay Equations

Directory of Open Access Journals (Sweden)

Xiaolin Zhu

2014-01-01

Full Text Available This paper studies the T-stability of the Heun method and balanced method for solving stochastic differential delay equations (SDDEs. Two T-stable conditions of the Heun method are obtained for two kinds of linear SDDEs. Moreover, two conditions under which the balanced method is T-stable are obtained for two kinds of linear SDDEs. Some numerical examples verify the theoretical results proposed.

14. A semi-analytical approach for solving of nonlinear systems of functional differential equations with delay

Science.gov (United States)

Rebenda, Josef; Šmarda, Zdeněk

2017-07-01

In the paper, we propose a correct and efficient semi-analytical approach to solve initial value problem for systems of functional differential equations with delay. The idea is to combine the method of steps and differential transformation method (DTM). In the latter, formulas for proportional arguments and nonlinear terms are used. An example of using this technique for a system with constant and proportional delays is presented.

15. On Newton-Kantorovich Method for Solving the Nonlinear Operator Equation

Directory of Open Access Journals (Sweden)

Hameed Husam Hameed

2015-01-01

Full Text Available We develop the Newton-Kantorovich method to solve the system of 2×2 nonlinear Volterra integral equations where the unknown function is in logarithmic form. A new majorant function is introduced which leads to the increment of the convergence interval. The existence and uniqueness of approximate solution are proved and a numerical example is provided to show the validation of the method.

16. Comparison of numerical approaches to solve a Poincare-covariant Faddeev equation

International Nuclear Information System (INIS)

Alkofer, R.; Eichmann, G.; Krassnigg, A.; Schwinzerl, M.

2006-01-01

Full text: The quark core of Baryons can be described with the help of the numerical solution of the Poincare-Faddeev equation. Hereby the used elements, as e.g. the quark propagator are taken from non-perturbative studies of Landau gauge QCD. Different numerical approaches to solve in this way the relativistic three quark problem are compared and benchmarked results for the efficiency of different algorithms are presented. (author)

17. A Generalized FDM for solving the Poisson's Equation on 3D Irregular Domains

Directory of Open Access Journals (Sweden)

2014-01-01

Full Text Available In this paper a new method for solving the Poisson's equation with Dirichlet conditions on irregular domains is presented. For this purpose a generalized finite differences method is applied for numerical differentiation on irregular meshes. Three examples on cylindrical and spherical domains are considered. The numerical results are compared with analytical solution. These results show the performance and efficiency of the proposed method.

18. Solving large-scale sparse eigenvalue problems and linear systems of equations for accelerator modeling

International Nuclear Information System (INIS)

Gene Golub; Kwok Ko

2009-01-01

The solutions of sparse eigenvalue problems and linear systems constitute one of the key computational kernels in the discretization of partial differential equations for the modeling of linear accelerators. The computational challenges faced by existing techniques for solving those sparse eigenvalue problems and linear systems call for continuing research to improve on the algorithms so that ever increasing problem size as required by the physics application can be tackled. Under the support of this award, the filter algorithm for solving large sparse eigenvalue problems was developed at Stanford to address the computational difficulties in the previous methods with the goal to enable accelerator simulations on then the world largest unclassified supercomputer at NERSC for this class of problems. Specifically, a new method, the Hemitian skew-Hemitian splitting method, was proposed and researched as an improved method for solving linear systems with non-Hermitian positive definite and semidefinite matrices.

19. Highly efficient parallel direct solver for solving dense complex matrix equations from method of moments

Directory of Open Access Journals (Sweden)

Yan Chen

2017-03-01

Full Text Available Based on the vectorised and cache optimised kernel, a parallel lower upper decomposition with a novel communication avoiding pivoting scheme is developed to solve dense complex matrix equations generated by the method of moments. The fine-grain data rearrangement and assembler instructions are adopted to reduce memory accessing times and improve CPU cache utilisation, which also facilitate vectorisation of the code. Through grouping processes in a binary tree, a parallel pivoting scheme is designed to optimise the communication pattern and thus reduces the solving time of the proposed solver. Two large electromagnetic radiation problems are solved on two supercomputers, respectively, and the numerical results demonstrate that the proposed method outperforms those in open source and commercial libraries.

20. A matrix formalism to solve interface condition equations in a reactor system

Energy Technology Data Exchange (ETDEWEB)

Matausek, M V [Boris Kidric Institute of Nuclear Sciences Vinca, Beograd (Yugoslavia)

1970-05-15

When a nuclear reactor or a reactor lattice cell is treated by an approximate procedure to solve the neutron transport equation, as the last computational step often appears a problem of solving systems of algebraic equations stating the interface and boundary conditions for the neutron flux moments. These systems have usually the coefficient matrices of the block-bi diagonal type, containing thus a large number of zero elements. In the present report it is shown how such a system can be solved efficiently accounting for all the zero elements both in the coefficient matrix and in the free term vector. The procedure is presented here for the case of multigroup P{sub 3} calculation of neutron flux distribution in a cylindrical reactor lattice cell. Compared with the standard gaussian elimination method, this procedure is more advantageous both in respect to the number of operations needed to solve a given problem and in respect to the computer memory storage requirements. A similar formalism can also be applied for other approximate methods, for instance for multigroup diffusion treatment of a multi zone reactor. (author)

1. An efficient numerical method for solving the Boltzmann equation in multidimensions

Science.gov (United States)

Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

2018-01-01

In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 ) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

2. Solving the Fluid Pressure Poisson Equation Using Multigrid-Evaluation and Improvements.

Science.gov (United States)

Dick, Christian; Rogowsky, Marcus; Westermann, Rudiger

2016-11-01

In many numerical simulations of fluids governed by the incompressible Navier-Stokes equations, the pressure Poisson equation needs to be solved to enforce mass conservation. Multigrid solvers show excellent convergence in simple scenarios, yet they can converge slowly in domains where physically separated regions are combined at coarser scales. Moreover, existing multigrid solvers are tailored to specific discretizations of the pressure Poisson equation, and they cannot easily be adapted to other discretizations. In this paper we analyze the convergence properties of existing multigrid solvers for the pressure Poisson equation in different simulation domains, and we show how to further improve the multigrid convergence rate by using a graph-based extension to determine the coarse grid hierarchy. The proposed multigrid solver is generic in that it can be applied to different kinds of discretizations of the pressure Poisson equation, by using solely the specification of the simulation domain and pre-assembled computational stencils. We analyze the proposed solver in combination with finite difference and finite volume discretizations of the pressure Poisson equation. Our evaluations show that, despite the common assumption, multigrid schemes can exploit their potential even in the most complicated simulation scenarios, yet this behavior is obtained at the price of higher memory consumption.

3. Solving the neutron diffusion equation on combinatorial geometry computational cells for reactor physics calculations

International Nuclear Information System (INIS)

Azmy, Y. Y.

2004-01-01

An approach is developed for solving the neutron diffusion equation on combinatorial geometry computational cells, that is computational cells composed by combinatorial operations involving simple-shaped component cells. The only constraint on the component cells from which the combinatorial cells are assembled is that they possess a legitimate discretization of the underlying diffusion equation. We use the Finite Difference (FD) approximation of the x, y-geometry diffusion equation in this work. Performing the same combinatorial operations involved in composing the combinatorial cell on these discrete-variable equations yields equations that employ new discrete variables defined only on the combinatorial cell's volume and faces. The only approximation involved in this process, beyond the truncation error committed in discretizing the diffusion equation over each component cell, is a consistent-order Legendre series expansion. Preliminary results for simple configurations establish the accuracy of the solution to the combinatorial geometry solution compared to straight FD as the system dimensions decrease. Furthermore numerical results validate the consistent Legendre-series expansion order by illustrating the second order accuracy of the combinatorial geometry solution, the same as standard FD. Nevertheless the magnitude of the error for the new approach is larger than FD's since it incorporates the additional truncated series approximation. (authors)

4. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

Science.gov (United States)

Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

2017-12-01

We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

5. A toolbox to solve coupled systems of differential and difference equations

International Nuclear Information System (INIS)

Ablinger, Jakob; Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de

2016-01-01

We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do not request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter ε (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t. ε and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package SolveCoupledSystem which is based on the packages Sigma, HarmonicSums and OreSys. In all applications the representation in x-space is obtained as an iterated integral representation over general alphabets, generalizing Poincare iterated integrals.

6. A toolbox to solve coupled systems of differential and difference equations

Energy Technology Data Exchange (ETDEWEB)

Ablinger, Jakob; Schneider, Carsten [Linz Univ. (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [DESY Zeuthen (Germany)

2016-01-15

We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do not request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter ε (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t. ε and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package SolveCoupledSystem which is based on the packages Sigma, HarmonicSums and OreSys. In all applications the representation in x-space is obtained as an iterated integral representation over general alphabets, generalizing Poincare iterated integrals.

7. Derivation of Grad’s Thirteen Regularized Moment Equations Using a Hermite Polynomial Representation of Velocity Distribution Function (Preprint)

Science.gov (United States)

2010-06-16

B4) Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs...B9) Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs. (15...Substituting tui  / and tVT  /2 from the momentum and energy conservation law equations, Eqs. (15) and (16), into Eq. (B13) and then dropping all

8. Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method

International Nuclear Information System (INIS)

Suescun D, D.; Oviedo T, M.

2017-09-01

In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and

9. Polynomial chaos expansion with random and fuzzy variables

Science.gov (United States)

Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.

2016-06-01

A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.

10. Performance prediction of gas turbines by solving a system of non-linear equations

Energy Technology Data Exchange (ETDEWEB)

Kaikko, J

1998-09-01

This study presents a novel method for implementing the performance prediction of gas turbines from the component models. It is based on solving the non-linear set of equations that corresponds to the process equations, and the mass and energy balances for the engine. General models have been presented for determining the steady state operation of single components. Single and multiple shad arrangements have been examined with consideration also being given to heat regeneration and intercooling. Emphasis has been placed upon axial gas turbines of an industrial scale. Applying the models requires no information of the structural dimensions of the gas turbines. On comparison with the commonly applied component matching procedures, this method incorporates several advantages. The application of the models for providing results is facilitated as less attention needs to be paid to calculation sequences and routines. Solving the set of equations is based on zeroing co-ordinate functions that are directly derived from the modelling equations. Therefore, controlling the accuracy of the results is easy. This method gives more freedom for the selection of the modelling parameters since, unlike for the matching procedures, exchanging these criteria does not itself affect the algorithms. Implicit relationships between the variables are of no significance, thus increasing the freedom for the modelling equations as well. The mathematical models developed in this thesis will provide facilities to optimise the operation of any major gas turbine configuration with respect to the desired process parameters. The computational methods used in this study may also be adapted to any other modelling problems arising in industry. (orig.) 36 refs.

11. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

Energy Technology Data Exchange (ETDEWEB)

Korobkin, Oleg; Pazos, Enrique [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Aksoylu, Burak [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Holst, Michael [Department of Mathematics, University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0112 (United States); Tiglio, Manuel [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

2009-07-21

In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor psi. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

12. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

International Nuclear Information System (INIS)

Korobkin, Oleg; Pazos, Enrique; Aksoylu, Burak; Holst, Michael; Tiglio, Manuel

2009-01-01

In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

13. An iterative algorithm for solving the multidimensional neutron diffusion nodal method equations on parallel computers

International Nuclear Information System (INIS)

Kirk, B.L.; Azmy, Y.Y.

1992-01-01

In this paper the one-group, steady-state neutron diffusion equation in two-dimensional Cartesian geometry is solved using the nodal integral method. The discrete variable equations comprise loosely coupled sets of equations representing the nodal balance of neutrons, as well as neutron current continuity along rows or columns of computational cells. An iterative algorithm that is more suitable for solving large problems concurrently is derived based on the decomposition of the spatial domain and is accelerated using successive overrelaxation. This algorithm is very well suited for parallel computers, especially since the spatial domain decomposition occurs naturally, so that the number of iterations required for convergence does not depend on the number of processors participating in the calculation. Implementation of the authors' algorithm on the Intel iPSC/2 hypercube and Sequent Balance 8000 parallel computer is presented, and measured speedup and efficiency for test problems are reported. The results suggest that the efficiency of the hypercube quickly deteriorates when many processors are used, while the Sequent Balance retains very high efficiency for a comparable number of participating processors. This leads to the conjecture that message-passing parallel computers are not as well suited for this algorithm as shared-memory machines

14. Time-Dependent Heat Conduction Problems Solved by an Integral-Equation Approach

International Nuclear Information System (INIS)

Oberaigner, E.R.; Leindl, M.; Antretter, T.

2010-01-01

Full text: A classical task of mathematical physics is the formulation and solution of a time dependent thermoelastic problem. In this work we develop an algorithm for solving the time-dependent heat conduction equation c p ρ∂ t T-kT, ii =0 in an analytical, exact fashion for a two-component domain. By the Green's function approach the formal solution of the problem is obtained. As an intermediate result an integral-equation for the temperature history at the domain interface is formulated which can be solved analytically. This method is applied to a classical engineering problem, i.e. to a special case of a Stefan-Problem. The Green's function approach in conjunction with the integral-equation method is very useful in cases were strong discontinuities or jumps occur. The initial conditions and the system parameters of the investigated problem give rise to two jumps in the temperature field. Purely numerical solutions are obtained by using the FEM (finite element method) and the FDM (finite difference method) and compared with the analytical approach. At the domain boundary the analytical solution and the FEM-solution are in good agreement, but the FDM results show a signicant smearing effect. (author)

15. Solving Coupled Gross--Pitaevskii Equations on a Cluster of PlayStation 3 Computers

Science.gov (United States)

Edwards, Mark; Heward, Jeffrey; Clark, C. W.

2009-05-01

At Georgia Southern University we have constructed an 8+1--node cluster of Sony PlayStation 3 (PS3) computers with the intention of using this computing resource to solve problems related to the behavior of ultra--cold atoms in general with a particular emphasis on studying bose--bose and bose--fermi mixtures confined in optical lattices. As a first project that uses this computing resource, we have implemented a parallel solver of the coupled time--dependent, one--dimensional Gross--Pitaevskii (TDGP) equations. These equations govern the behavior of dual-- species bosonic mixtures. We chose the split--operator/FFT to solve the coupled 1D TDGP equations. The fast Fourier transform component of this solver can be readily parallelized on the PS3 cpu known as the Cell Broadband Engine (CellBE). Each CellBE chip contains a single 64--bit PowerPC Processor Element known as the PPE and eight Synergistic Processor Element'' identified as the SPE's. We report on this algorithm and compare its performance to a non--parallel solver as applied to modeling evaporative cooling in dual--species bosonic mixtures.

16. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations

Science.gov (United States)

Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

2015-01-01

The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067

17. Improved Quasi-Newton method via PSB update for solving systems of nonlinear equations

Science.gov (United States)

2016-10-01

The Newton method has some shortcomings which includes computation of the Jacobian matrix which may be difficult or even impossible to compute and solving the Newton system in every iteration. Also, the common setback with some quasi-Newton methods is that they need to compute and store an n × n matrix at each iteration, this is computationally costly for large scale problems. To overcome such drawbacks, an improved Method for solving systems of nonlinear equations via PSB (Powell-Symmetric-Broyden) update is proposed. In the proposed method, the approximate Jacobian inverse Hk of PSB is updated and its efficiency has improved thereby require low memory storage, hence the main aim of this paper. The preliminary numerical results show that the proposed method is practically efficient when applied on some benchmark problems.

18. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

Science.gov (United States)

Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

2018-02-01

In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

19. EDEF: a program for solving the neutron diffusion equation using microcomputers

International Nuclear Information System (INIS)

Fernandes, A.; Maiorino, J.R.

1990-01-01

This work presents the development of a program to solve the two-group two-dimensional diffusion equation (with a buckling option to simulate axial leakage) applying the finite element method. It has been developed to microcomputers compatibles to the IBM-PC. Among the facilities of the program, we can mention the simplicity to represent two-dimensional complex domains, the input through a pre-processor and the output in which the fluxes are presented graphically. The program also calculates the multiplication factor, the peaking factor and the power distribution. (author) [pt

20. Numerical methods to solve the two-dimensional heat conduction equation

International Nuclear Information System (INIS)

Santos, R.S. dos.

1981-09-01

A class of numerical methods, called 'Hopscotch Algorithms', was used to solve the heat conduction equation in cylindrical geometry. Using a time dependent heat source, the temperature versus time behaviour of cylindric rod was analysed. Numerical simulation was used to study the stability and the convergence of each different method. Another test had the temperature specified on the outer surface as boundary condition. The various Hopscotch methods analysed exhibit differing degrees of accuracy, few of them being so accurate as the ADE method, but requiring more computational operations than the later, were observed. Finally, compared with the so called ODD-EVEN method, two other Hopscotch methods, are more time consuming. (Author) [pt

1. An introduction to the history of algebra solving equations from Mesopotamian times to the Renaissance

CERN Document Server

Sesiano, Jacques

2009-01-01

This text should not be viewed as a comprehensive history of algebra before 1600, but as a basic introduction to the types of problems that illustrate the earliest forms of algebra. It would be particularly useful for an instructor who is looking for examples to help enliven a course on elementary algebra with problems drawn from actual historical texts. -Warren Van Egmond about the French edition for MathSciNet This book does not aim to give an exhaustive survey of the history of algebra up to early modern times but merely to present some significant steps in solving equations and, wherever

2. A theory of solving TAP equations for Ising models with general invariant random matrices

DEFF Research Database (Denmark)

Opper, Manfred; Çakmak, Burak; Winther, Ole

2016-01-01

We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....

3. Numerical method for solving the three-dimensional time-dependent neutron diffusion equation

International Nuclear Information System (INIS)

Khaled, S.M.; Szatmary, Z.

2005-01-01

A numerical time-implicit method has been developed for solving the coupled three-dimensional time-dependent multi-group neutron diffusion and delayed neutron precursor equations. The numerical stability of the implicit computation scheme and the convergence of the iterative associated processes have been evaluated. The computational scheme requires the solution of large linear systems at each time step. For this purpose, the point over-relaxation Gauss-Seidel method was chosen. A new scheme was introduced instead of the usual source iteration scheme. (author)

4. Development and adjustment of programs for solving systems of linear equations

International Nuclear Information System (INIS)

Fujimura, Toichiro

1978-03-01

Programs for solving the systems of linear equations have been adjusted and developed in expanding the scientific subroutine library SSL. The principal programs adjusted are based on the congruent method, method of product form of the inverse, orthogonal method, Crout's method for sparse system, and acceleration of iterative methods. The programs developed are based on the escalator method, direct parallel residue method and block tridiagonal method for band system. Described are usage of the programs developed and their future improvement. FORTRAN lists with simple examples in tests of the programs are also given. (auth.)

5. Comparison of two Ssub(infinity) methods for solving the neutron transport equation

International Nuclear Information System (INIS)

Mennig, J.; Brandt, D.; Haelg, W.

1978-01-01

A semianalytic method (S 0 sub(infinity)) is presented for solving the monoenergetic multi-region transport equation. This method is compared with results from S 1 sub(infinity)-theory given in the literature. Application of S 1 sub(infinity)-theory to reactor shields may lead to negative neutron fluxes and to flux oscillations. These unphysical effects are completely avoided by the new method. Numerical results demonstrate the limitations of S 1 sub(infinity) and confirm the numerical stability of (S 0 sub(infinity)). (Auth.)

6. A numerical technique for solving fractional optimal control problems and fractional Riccati differential equations

Directory of Open Access Journals (Sweden)

F. Ghomanjani

2016-10-01

Full Text Available In the present paper, we apply the Bezier curves method for solving fractional optimal control problems (OCPs and fractional Riccati differential equations. The main advantage of this method is that it can reduce the error of the approximate solutions. Hence, the solutions obtained using the Bezier curve method give good approximations. Some numerical examples are provided to confirm the accuracy of the proposed method. All of the numerical computations have been performed on a PC using several programs written in MAPLE 13.

7. Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations

Directory of Open Access Journals (Sweden)

Huiping Cao

2014-01-01

Full Text Available Schubert’s method is an extension of Broyden’s method for solving sparse nonlinear equations, which can preserve the zero-nonzero structure defined by the sparse Jacobian matrix and can retain many good properties of Broyden’s method. In particular, Schubert’s method has been proved to be locally and q-superlinearly convergent. In this paper, we globalize Schubert’s method by using a nonmonotone line search. Under appropriate conditions, we show that the proposed algorithm converges globally and superlinearly. Some preliminary numerical experiments are presented, which demonstrate that our algorithm is effective for large-scale problems.

8. Modeling digital pulse waveforms by solving one-dimensional Navier-stokes equations.

Science.gov (United States)

Fedotov, Aleksandr A; Akulova, Anna S; Akulov, Sergey A

2016-08-01

Mathematical modeling for composition distal arterial pulse wave in the blood vessels of the upper limbs was considered. Formation of distal arterial pulse wave is represented as a composition of forward and reflected pulse waves propagating along the arterial vessels. The formal analogy between pulse waves propagation along the human arterial system and the propagation of electrical oscillations in electrical transmission lines with distributed parameters was proposed. Dependencies of pulse wave propagation along the human arterial system were obtained by solving the one-dimensional Navier-Stokes equations for a few special cases.

9. Solving the Telegraph and Oscillatory Differential Equations by a Block Hybrid Trigonometrically Fitted Algorithm

Directory of Open Access Journals (Sweden)

F. F. Ngwane

2015-01-01

Full Text Available We propose a block hybrid trigonometrically fitted (BHT method, whose coefficients are functions of the frequency and the step-size for directly solving general second-order initial value problems (IVPs, including systems arising from the semidiscretization of hyperbolic Partial Differential Equations (PDEs, such as the Telegraph equation. The BHT is formulated from eight discrete hybrid formulas which are provided by a continuous two-step hybrid trigonometrically fitted method with two off-grid points. The BHT is implemented in a block-by-block fashion; in this way, the method does not suffer from the disadvantages of requiring starting values and predictors which are inherent in predictor-corrector methods. The stability property of the BHT is discussed and the performance of the method is demonstrated on some numerical examples to show accuracy and efficiency advantages.

10. Recent symbolic summation methods to solve coupled systems of differential and difference equations

International Nuclear Information System (INIS)

Schneider, Carsten; Bluemlein, Johannes; Freitas, Abilio de

2014-07-01

We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

11. An optimal iterative algorithm to solve Cauchy problem for Laplace equation

KAUST Repository

2015-05-25

An optimal mean square error minimizer algorithm is developed to solve severely ill-posed Cauchy problem for Laplace equation on an annulus domain. The mathematical problem is presented as a first order state space-like system and an optimal iterative algorithm is developed that minimizes the mean square error in states. Finite difference discretization schemes are used to discretize first order system. After numerical discretization algorithm equations are derived taking inspiration from Kalman filter however using one of the space variables as a time-like variable. Given Dirichlet and Neumann boundary conditions are used on the Cauchy data boundary and fictitious points are introduced on the unknown solution boundary. The algorithm is run for a number of iterations using the solution of previous iteration as a guess for the next one. The method developed happens to be highly robust to noise in Cauchy data and numerically efficient results are illustrated.

12. Solving differential equations with unknown constitutive relations as recurrent neural networks

Energy Technology Data Exchange (ETDEWEB)

Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.; Tartakovsky, Alexandre M.

2017-12-08

We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.

13. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

International Nuclear Information System (INIS)

Gelß, Patrick; Matera, Sebastian; Schütte, Christof

2016-01-01

In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO 2 (110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

14. Solving differential equations for Feynman integrals by expansions near singular points

Science.gov (United States)

Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

2018-03-01

We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

15. Results of numerically solving an integral equation for a two-fermion system

International Nuclear Information System (INIS)

Skachkov, N.B.; Solov'eva, T.M.

2003-01-01

A two-particle system is described by integral equations whose kernels are dependent on the total energy of the system. Such equations can be reduced to an eigenvalue problem featuring an eigenvalue-dependent operator. This nonlinear eigenvalue problem is solved by means of an iterative procedure developed by the present authors. The energy spectra of a two-fermion system formed by particles of identical masses are obtained for two cases, that where the total spin of the system is equal to zero and that where the total spin of the system is equal to unity. The splitting of the ground-state levels of positronium and dimuonium, the frequency of the transition from the ground state of orthopositronium to its first excited state, and the probabilities of parapositronium and paradimuonium decays are computed. The results obtained in this way are found to be in good agreement with experimental data

16. Newton's method for solving a quadratic matrix equation with special coefficient matrices

International Nuclear Information System (INIS)

Seo, Sang-Hyup; Seo, Jong Hyun; Kim, Hyun-Min

2014-01-01

We consider the iterative method for solving a quadratic matrix equation with special coefficient matrices which arises in the quasi-birth-death problem. In this paper, we show that the elementwise minimal positive solvents to quadratic matrix equations can be obtained using Newton's method. We also prove that the convergence rate of the Newton iteration is quadratic if the Fréchet derivative at the elementwise minimal positive solvent is nonsingular. However, if the Fréchet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.(This is summarized a paper which is to appear in Honam Mathematical Journal.)

17. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

Science.gov (United States)

Gelß, Patrick; Matera, Sebastian; Schütte, Christof

2016-06-01

In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

18. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

Energy Technology Data Exchange (ETDEWEB)

Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de

2016-06-01

In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

19. Recent symbolic summation methods to solve coupled systems of differential and difference equations

Energy Technology Data Exchange (ETDEWEB)

Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Freitas, Abilio de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

2014-07-15

We outline a new algorithm to solve coupled systems of differential equations in one continuous variable x (resp. coupled difference equations in one discrete variable N) depending on a small parameter ε: given such a system and given sufficiently many initial values, we can determine the first coefficients of the Laurent-series solutions in ε if they are expressible in terms of indefinite nested sums and products. This systematic approach is based on symbolic summation algorithms in the context of difference rings/fields and uncoupling algorithms. The proposed method gives rise to new interesting applications in connection with integration by parts (IBP) methods. As an illustrative example, we will demonstrate how one can calculate the ε-expansion of a ladder graph with 6 massive fermion lines.

20. A novel algebraic procedure for solving non-linear evolution equations of higher order

International Nuclear Information System (INIS)

Huber, Alfred

2007-01-01

We report here a systematic approach that can easily be used for solving non-linear partial differential equations (nPDE), especially of higher order. We restrict the analysis to the so called evolution equations describing any wave propagation. The proposed new algebraic approach leads us to traveling wave solutions and moreover, new class of solution can be obtained. The crucial step of our method is the basic assumption that the solutions satisfy an ordinary differential equation (ODE) of first order that can be easily integrated. The validity and reliability of the method is tested by its application to some non-linear evolution equations. The important aspect of this paper however is the fact that we are able to calculate distinctive class of solutions which cannot be found in the current literature. In other words, using this new algebraic method the solution manifold is augmented to new class of solution functions. Simultaneously we would like to stress the necessity of such sophisticated methods since a general theory of nPDE does not exist. Otherwise, for practical use the algebraic construction of new class of solutions is of fundamental interest

1. NUMERICAL TECHNIQUES TO SOLVE CONDENSATIONAL AND DISSOLUTIONAL GROWTH EQUATIONS WHEN GROWTH IS COUPLED TO REVERSIBLE REACTIONS (R823186)

Science.gov (United States)

Noniterative, unconditionally stable numerical techniques for solving condensational anddissolutional growth equations are given. Growth solutions are compared to Gear-code solutions forthree cases when growth is coupled to reversible equilibrium chemistry. In all cases, ...

2. A parallel algorithm for solving linear equations arising from one-dimensional network problems

International Nuclear Information System (INIS)

Mesina, G.L.

1991-01-01

One-dimensional (1-D) network problems, such as those arising from 1- D fluid simulations and electrical circuitry, produce systems of sparse linear equations which are nearly tridiagonal and contain a few non-zero entries outside the tridiagonal. Most direct solution techniques for such problems either do not take advantage of the special structure of the matrix or do not fully utilize parallel computer architectures. We describe a new parallel direct linear equation solution algorithm, called TRBR, which is especially designed to take advantage of this structure on MIMD shared memory machines. The new method belongs to a family of methods which split the coefficient matrix into the sum of a tridiagonal matrix T and a matrix comprised of the remaining coefficients R. Efficient tridiagonal methods are used to algebraically simplify the linear system. A smaller auxiliary subsystem is created and solved and its solution is used to calculate the solution of the original system. The newly devised BR method solves the subsystem. The serial and parallel operation counts are given for the new method and related earlier methods. TRBR is shown to have the smallest operation count in this class of direct methods. Numerical results are given. Although the algorithm is designed for one-dimensional networks, it has been applied successfully to three-dimensional problems as well. 20 refs., 2 figs., 4 tabs

3. Parallel algorithms for solving the diffusion equation by finite elements methods and by nodal methods

International Nuclear Information System (INIS)

Coulomb, F.

1989-06-01

The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr

4. A pertinent approach to solve nonlinear fuzzy integro-differential equations.

Science.gov (United States)

Narayanamoorthy, S; Sathiyapriya, S P

2016-01-01

Fuzzy integro-differential equations is one of the important parts of fuzzy analysis theory that holds theoretical as well as applicable values in analytical dynamics and so an appropriate computational algorithm to solve them is in essence. In this article, we use parametric forms of fuzzy numbers and suggest an applicable approach for solving nonlinear fuzzy integro-differential equations using homotopy perturbation method. A clear and detailed description of the proposed method is provided. Our main objective is to illustrate that the construction of appropriate convex homotopy in a proper way leads to highly accurate solutions with less computational work. The efficiency of the approximation technique is expressed via stability and convergence analysis so as to guarantee the efficiency and performance of the methodology. Numerical examples are demonstrated to verify the convergence and it reveals the validity of the presented numerical technique. Numerical results are tabulated and examined by comparing the obtained approximate solutions with the known exact solutions. Graphical representations of the exact and acquired approximate fuzzy solutions clarify the accuracy of the approach.

5. Solving delay differential equations in S-ADAPT by method of steps.

Science.gov (United States)

Bauer, Robert J; Mo, Gary; Krzyzanski, Wojciech

2013-09-01

6. Killing vector fields in three dimensions: a method to solve massive gravity field equations

Energy Technology Data Exchange (ETDEWEB)

Guerses, Metin, E-mail: gurses@fen.bilkent.edu.t [Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara (Turkey)

2010-10-21

Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.

7. Algorithms to solve coupled systems of differential equations in terms of power series

International Nuclear Information System (INIS)

Ablinger, Jakob; Schneider, Carsten

2016-08-01

Using integration by parts relations, Feynman integrals can be represented in terms of coupled systems of differential equations. In the following we suppose that the unknown Feynman integrals can be given in power series representations, and that sufficiently many initial values of the integrals are given. Then there exist algorithms that decide constructively if the coefficients of their power series representations can be given within the class of nested sums over hypergeometric products. In this article we work out the calculation steps that solve this problem. First, we present a successful tactic that has been applied recently to challenging problems coming from massive 3-loop Feynman integrals. Here our main tool is to solve scalar linear recurrences within the class of nested sums over hypergeometric products. Second, we will present a new variation of this tactic which relies on more involved summation technologies but succeeds in reducing the problem to solve scalar recurrences with lower recurrence orders. The article works out the different challenges of this new tactic and demonstrates how they can be treated efficiently with our existing summation technologies.

8. Solving variational problems and partial differential equations that map between manifolds via the closest point method

Science.gov (United States)

King, Nathan D.; Ruuth, Steven J.

2017-05-01

Maps from a source manifold M to a target manifold N appear in liquid crystals, color image enhancement, texture mapping, brain mapping, and many other areas. A numerical framework to solve variational problems and partial differential equations (PDEs) that map between manifolds is introduced within this paper. Our approach, the closest point method for manifold mapping, reduces the problem of solving a constrained PDE between manifolds M and N to the simpler problems of solving a PDE on M and projecting to the closest points on N. In our approach, an embedding PDE is formulated in the embedding space using closest point representations of M and N. This enables the use of standard Cartesian numerics for general manifolds that are open or closed, with or without orientation, and of any codimension. An algorithm is presented for the important example of harmonic maps and generalized to a broader class of PDEs, which includes p-harmonic maps. Improved efficiency and robustness are observed in convergence studies relative to the level set embedding methods. Harmonic and p-harmonic maps are computed for a variety of numerical examples. In these examples, we denoise texture maps, diffuse random maps between general manifolds, and enhance color images.

9. A new modified conjugate gradient coefficient for solving system of linear equations

Science.gov (United States)

Hajar, N.; ‘Aini, N.; Shapiee, N.; Abidin, Z. Z.; Khadijah, W.; Rivaie, M.; Mamat, M.

2017-09-01

Conjugate gradient (CG) method is an evolution of computational method in solving unconstrained optimization problems. This approach is easy to implement due to its simplicity and has been proven to be effective in solving real-life application. Although this field has received copious amount of attentions in recent years, some of the new approaches of CG algorithm cannot surpass the efficiency of the previous versions. Therefore, in this paper, a new CG coefficient which retains the sufficient descent and global convergence properties of the original CG methods is proposed. This new CG is tested on a set of test functions under exact line search. Its performance is then compared to that of some of the well-known previous CG methods based on number of iterations and CPU time. The results show that the new CG algorithm has the best efficiency amongst all the methods tested. This paper also includes an application of the new CG algorithm for solving large system of linear equations

10. ADI as a preconditioning for solving the convection-diffusion equation

International Nuclear Information System (INIS)

Chin, R.C.Y.; Manteuffel, T.A.; De Pillis, J.

1984-01-01

The authors examine a splitting of the operator obtained from a steady convection-diffusion equation with variable coefficients in which the convection term dominates. The operator is split into a dominant and subdominant parts consistent with the inherent directional property of the partial differential equation. The equations involving the dominant parts should be easily solved. The authors accelerate the convergence of this splitting or the outer iteration by a Chebyshev semi-iterative method. When the dominant part has constant coefficients, it can be easily solved using alternating direction implicit (ADI) methods. This is called the inner iteration. The optimal parameters for a stationary two-parameter ADI method are obtained when the eigenvalues become complex. This corresponds to either the horizontal or the vertical half-grid Reynolds number larger than unity. The Chebyshev semi-iterative method is used to accelerate the convergence of the inner ADI iteration. A two-fold increase in speed is obtained when the ADI iteration matrix has real eigenvalues, and the increase is less significant when the eigenvalues are complex. If either the horizontal or the vertical half-grid Reynolds number is equal to one, the spectral radius of the optimal ADI iterative matrix is zero. However, a high degree of nilpotency impairs rapid convergence. This problem is removed by introducing a more implicit iterative method called ADI/Gauss-Seidel (ADI/GS). ADI/GS resolves the nilpotency and, thus, converges more rapidly for half-grid Reynolds number near 1. Finally, these methods are compared with several well-known schemes on test problems. 23 references, 5 figures

11. Solving the Sea-Level Equation in an Explicit Time Differencing Scheme

Science.gov (United States)

Klemann, V.; Hagedoorn, J. M.; Thomas, M.

2016-12-01

In preparation of coupling the solid-earth to an ice-sheet compartment in an earth-system model, the dependency of initial topography on the ice-sheet history and viscosity structure has to be analysed. In this study, we discuss this dependency and how it influences the reconstruction of former sea level during a glacial cycle. The modelling is based on the VILMA code in which the field equations are solved in the time domain applying an explicit time-differencing scheme. The sea-level equation is solved simultaneously in the same explicit scheme as the viscoleastic field equations (Hagedoorn et al., 2007). With the assumption of only small changes, we neglect the iterative solution at each time step as suggested by e.g. Kendall et al. (2005). Nevertheless, the prediction of the initial paleo topography in case of moving coastlines remains to be iterated by repeated integration of the whole load history. The sensitivity study sketched at the beginning is accordingly motivated by the question if the iteration of the paleo topography can be replaced by a predefined one. This study is part of the German paleoclimate modelling initiative PalMod. Lit:Hagedoorn JM, Wolf D, Martinec Z, 2007. An estimate of global mean sea-level rise inferred from tide-gauge measurements using glacial-isostatic models consistent with the relative sea-level record. Pure appl. Geophys. 164: 791-818, doi:10.1007/s00024-007-0186-7Kendall RA, Mitrovica JX, Milne GA, 2005. On post-glacial sea level - II. Numerical formulation and comparative reesults on spherically symmetric models. Geophys. J. Int., 161: 679-706, doi:10.1111/j.365-246.X.2005.02553.x

12. Special polynomials associated with some hierarchies

International Nuclear Information System (INIS)

Kudryashov, Nikolai A.

2008-01-01

Special polynomials associated with rational solutions of a hierarchy of equations of Painleve type are introduced. The hierarchy arises by similarity reduction from the Fordy-Gibbons hierarchy of partial differential equations. Some relations for these special polynomials are given. Differential-difference hierarchies for finding special polynomials are presented. These formulae allow us to obtain special polynomials associated with the hierarchy studied. It is shown that rational solutions of members of the Schwarz-Sawada-Kotera, the Schwarz-Kaup-Kupershmidt, the Fordy-Gibbons, the Sawada-Kotera and the Kaup-Kupershmidt hierarchies can be expressed through special polynomials of the hierarchy studied

13. Mirror symmetry, toric branes and topological string amplitudes as polynomials

Energy Technology Data Exchange (ETDEWEB)

2009-07-13

The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

14. Mirror symmetry, toric branes and topological string amplitudes as polynomials

International Nuclear Information System (INIS)

2009-01-01

The central theme of this thesis is the extension and application of mirror symmetry of topological string theory. The contribution of this work on the mathematical side is given by interpreting the calculated partition functions as generating functions for mathematical invariants which are extracted in various examples. Furthermore the extension of the variation of the vacuum bundle to include D-branes on compact geometries is studied. Based on previous work for non-compact geometries a system of differential equations is derived which allows to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these equations allow the computation of the full quantum corrected superpotentials which are induced by the D-branes. Based on the holomorphic anomaly equation, which describes the background dependence of topological string theory relating recursively loop amplitudes, this work generalizes a polynomial construction of the loop amplitudes, which was found for manifolds with a one dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension of the deformation space. The polynomial generators are determined and it is proven that the higher loop amplitudes are polynomials of a certain degree in the generators. Furthermore, the polynomial construction is generalized to solve the extension of the holomorphic anomaly equation to D-branes without deformation space. This method is applied to calculate higher loop amplitudes in numerous examples and the mathematical invariants are extracted. (orig.)

15. Markovian Monte Carlo program EvolFMC v.2 for solving QCD evolution equations

Science.gov (United States)

Jadach, S.; Płaczek, W.; Skrzypek, M.; Stokłosa, P.

2010-02-01

We present the program EvolFMC v.2 that solves the evolution equations in QCD for the parton momentum distributions by means of the Monte Carlo technique based on the Markovian process. The program solves the DGLAP-type evolution as well as modified-DGLAP ones. In both cases the evolution can be performed in the LO or NLO approximation. The quarks are treated as massless. The overall technical precision of the code has been established at 5×10. This way, for the first time ever, we demonstrate that with the Monte Carlo method one can solve the evolution equations with precision comparable to the other numerical methods. New version program summaryProgram title: EvolFMC v.2 Catalogue identifier: AEFN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including binary test data, etc.: 66 456 (7407 lines of C++ code) No. of bytes in distributed program, including test data, etc.: 412 752 Distribution format: tar.gz Programming language: C++ Computer: PC, Mac Operating system: Linux, Mac OS X RAM: Less than 256 MB Classification: 11.5 External routines: ROOT ( http://root.cern.ch/drupal/) Nature of problem: Solution of the QCD evolution equations for the parton momentum distributions of the DGLAP- and modified-DGLAP-type in the LO and NLO approximations. Solution method: Monte Carlo simulation of the Markovian process of a multiple emission of partons. Restrictions:Limited to the case of massless partons. Implemented in the LO and NLO approximations only. Weighted events only. Unusual features: Modified-DGLAP evolutions included up to the NLO level. Additional comments: Technical precision established at 5×10. Running time: For the 10 6 events at 100 GeV: DGLAP NLO: 27s; C-type modified DGLAP NLO: 150s (MacBook Pro with Mac OS X v.10

16. Nodal approximations of varying order by energy group for solving the diffusion equation

International Nuclear Information System (INIS)

Broda, J.T.

1992-02-01

The neutron flux across the nuclear reactor core is of interest to reactor designers and others. The diffusion equation, an integro-differential equation in space and energy, is commonly used to determine the flux level. However, the solution of a simplified version of this equation when automated is very time consuming. Since the flux level changes with time, in general, this calculation must be made repeatedly. Therefore solution techniques that speed the calculation while maintaining accuracy are desirable. One factor that contributes to the solution time is the spatial flux shape approximation used. It is common practice to use the same order flux shape approximation in each energy group even though this method may not be the most efficient. The one-dimensional, two-energy group diffusion equation was solved, for the node average flux and core k-effective, using two sets of spatial shape approximations for each of three reactor types. A fourth-order approximation in both energy groups forms the first set of approximations used. The second set used combines a second-order approximation with a fourth-order approximation in energy group two. Comparison of the results from the two approximation sets show that the use of a different order spatial flux shape approximation results in considerable loss in accuracy for the pressurized water reactor modeled. However, the loss in accuracy is small for the heavy water and graphite reactors modeled. The use of different order approximations in each energy group produces mixed results. Further investigation into the accuracy and computing time is required before any quantitative advantage of the use of the second-order approximation in energy group one and the fourth-order approximation in energy group two can be determined

17. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

Directory of Open Access Journals (Sweden)

Farshid Mirzaee

2014-06-01

Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

18. Tensor calculus in polar coordinates using Jacobi polynomials

Science.gov (United States)

Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.

2016-11-01

Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.

19. An accurate anisotropic adaptation method for solving the level set advection equation

International Nuclear Information System (INIS)

Bui, C.; Dapogny, C.; Frey, P.

2012-01-01

In the present paper, a mesh adaptation process for solving the advection equation on a fully unstructured computational mesh is introduced, with a particular interest in the case it implicitly describes an evolving surface. This process mainly relies on a numerical scheme based on the method of characteristics. However, low order, this scheme lends itself to a thorough analysis on the theoretical side. It gives rise to an anisotropic error estimate which enjoys a very natural interpretation in terms of the Hausdorff distance between the exact and approximated surfaces. The computational mesh is then adapted according to the metric supplied by this estimate. The whole process enjoys a good accuracy as far as the interface resolution is concerned. Some numerical features are discussed and several classical examples are presented and commented in two or three dimensions. (authors)

20. Program to solve the multigroup discrete ordinates transport equation in (x,y,z) geometry

International Nuclear Information System (INIS)

Lathrop, K.D.

1976-04-01

Numerical formulations and programming algorithms are given for the THREETRAN computer program which solves the discrete ordinates, multigroup transport equation in (x,y,z) geometry. An efficient, flexible, and general data-handling strategy is derived to make use of three hierarchies of storage: small core memory, large core memory, and disk file. Data management, input instructions, and sample problem output are described. A six-group, S 4 , 18 502 mesh point, 2 800 zone, k/sub eff/ calculation of the ZPPR-4 critical assembly required 144 min of CDC-7600 time to execute to a convergence tolerance of 5 x 10 -4 and gave results in good qualitative agreement with experiment and other calculations. 6 references

1. The fast algorithm solving the one-dimensional time-dependent Schroedinger equation for teaching purposes

International Nuclear Information System (INIS)

Skoczen, A.; Machowski, W.; Kaprzyk, S.

1990-07-01

Computer program aiming at application in quantum mechanics didactics has been proposed. This program can generate the moving pictures of one-dimensional quantum mechanics scattering phenomena. Constructions of this program provide two options. In the first option the wave packet is generated in infinite one-dimensional well which has walls on the borders of graphic window. In the second option the square potential barrier is located in this well and transmission and reflection of wave packet are shown. We have selected a Gaussian wave packet to represent the initial state of the particle. The wave equation is solved numerically by a method discussed in detail. Solutions for the succesive time moments are graphically presented on the monitor screen. In this way observer can watch whole time-development of physical system. Graphically presented results are physically realistic when program parameters satisfy conditions discussed in this paper. (author)

2. A dynamical regularization algorithm for solving inverse source problems of elliptic partial differential equations

Science.gov (United States)

Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten

2018-06-01

This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.

3. Transmission probability method for solving neutron transport equation in three-dimensional triangular-z geometry

Energy Technology Data Exchange (ETDEWEB)

Liu Guoming [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)], E-mail: gmliusy@gmail.com; Wu Hongchun; Cao Liangzhi [Department of Nuclear Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

2008-09-15

This paper presents a transmission probability method (TPM) to solve the neutron transport equation in three-dimensional triangular-z geometry. The source within the mesh is assumed to be spatially uniform and isotropic. At the mesh surface, the constant and the simplified P{sub 1} approximation are invoked for the anisotropic angular flux distribution. Based on this model, a code TPMTDT is encoded. It was verified by three 3D Takeda benchmark problems, in which the first two problems are in XYZ geometry and the last one is in hexagonal-z geometry, and an unstructured geometry problem. The results of the present method agree well with those of Monte-Carlo calculation method and Spherical Harmonics (P{sub N}) method.

4. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

CERN Document Server

Golec-Biernat, K; Placzek, W; Skrzypek, M

2009-01-01

This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

5. New extended (G'/G)-expansion method to solve nonlinear evolution equation: the (3 + 1)-dimensional potential-YTSF equation.

Science.gov (United States)

Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum

2014-01-01

In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.

6. Spectral finite element methods for solving fractional differential equations with applications in anomalous transport

Energy Technology Data Exchange (ETDEWEB)

Carella, Alfredo Raul

2012-09-15

Quantifying species transport rates is a main concern in chemical and petrochemical industries. In particular, the design and operation of many large-scale industrial chemical processes is as much dependent on diffusion as it is on reaction rates. However, the existing diffusion models sometimes fail to predict experimentally observed behaviors and their accuracy is usually insufficient for process optimization purposes. Fractional diffusion models offer multiple possibilities for generalizing Flick's law in a consistent manner in order to account for history dependence and nonlocal effects. These models have not been extensively applied to the study of real systems, mainly due to their computational cost and mathematical complexity. A least squares spectral formulation was developed for solving fractional differential equations. The proposed method was proven particularly well-suited for dealing with the numerical difficulties inherent to fractional differential operators. The practical implementation was explained in detail in order to enhance reproducibility, and directions were specified for extending it to multiple dimensions and arbitrarily shaped domains. A numerical framework based on the least-squares spectral element method was developed for studying and comparing anomalous diffusion models in pellets. This simulation tool is capable of solving arbitrary integro-differential equations and can be effortlessly adapted to various problems in any number of dimensions. Simulations of the flow around a cylindrical particle were achieved by extending the functionality of the developed framework. A test case was analyzed by coupling the boundary condition yielded by the fluid model with two families of anomalous diffusion models: hyperbolic diffusion and fractional diffusion. Qualitative guidelines for determining the suitability of diffusion models can be formulated by complementing experimental data with the results obtained from this approach.(Author)

7. Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma

Science.gov (United States)

Tokar, Mikhail Z.

2017-12-01

The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation , being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 . Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations , done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.

8. Polynomial pseudosupersymmetry underlying a two-level atom in an external electromagnetic field

International Nuclear Information System (INIS)

Samsonov, B.F.; Shamshutdinova, V.V.; Gitman, D.M.

2005-01-01

Chains of transformations introduced previously were studied in order to obtain electric fields with a time-dependent frequency for which the equation of motion of a two-level atom in the presence of these fields can be solved exactly. It is shown that a polynomial pseudosupersymmetry may be associated to such chains

9. A Gradient Weighted Moving Finite-Element Method with Polynomial Approximation of Any Degree

Directory of Open Access Journals (Sweden)

Ali R. Soheili

2009-01-01

Full Text Available A gradient weighted moving finite element method (GWMFE based on piecewise polynomial of any degree is developed to solve time-dependent problems in two space dimensions. Numerical experiments are employed to test the accuracy and effciency of the proposed method with nonlinear Burger equation.

10. Application of Least-Squares Spectral Element Methods to Polynomial Chaos

NARCIS (Netherlands)

Vos, P.E.J.; Gerritsma, M.I.

2006-01-01

This papers describes the use of the Least-Squares Spectral Element Method to polynomial Chaos to solve stochastic partial differential equations. The method will be described in detail and a comparison will be presented between the least-squares projection and the conventional Galerkin projection.

11. Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations

Science.gov (United States)

Jupri, Al; Sispiyati, R.

2017-02-01

Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.

12. Parallel Construction of Irreducible Polynomials

DEFF Research Database (Denmark)

Frandsen, Gudmund Skovbjerg

Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...... of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p....

13. Solution of Differential Equations with Polynomial Coefficients with the Aid of an Analytic Continuation of Laplace Transform

Directory of Open Access Journals (Sweden)

Tohru Morita

2016-03-01

Full Text Available In a series of papers, we discussed the solution of Laplace’s differential equation (DE by using fractional calculus, operational calculus in the framework of distribution theory, and Laplace transform. The solutions of Kummer’s DE, which are expressed by the confluent hypergeometric functions, are obtained with the aid of the analytic continuation (AC of Riemann–Liouville fractional derivative (fD and the distribution theory in the space D′R or the AC of Laplace transform. We now obtain the solutions of the hypergeometric DE, which are expressed by the hypergeometric functions, with the aid of the AC of Riemann–Liouville fD, and the distribution theory in the space D′r,R, which is introduced in this paper, or by the term-by-term inverse Laplace transform of AC of Laplace transform of the solution expressed by a series.

14. A simple method for solving the Bussian equation for electrical conduction in rocks

Directory of Open Access Journals (Sweden)

P. W. J. Glover

2010-09-01

Full Text Available One of the most general and effective models for calculating the complex electrical conductivity and relative dielectric permittivity of rocks saturated with pore fluids is that of Bussian. Unlike most models, it is non-linear and cannot be solved algebraically. Consequently, researchers use reiterating numerical routines to obtain a solution of the equation, and then only for the real part of the solution. Here we present a different approach to the solution that uses conformal mapping in the complex plane, and implements it within MapleTM. The method is simple and elegant in that it requires, for example, only 3 lines of code in MapleTM 11 and little programming experience. The approach has been shown to be as precise as using the classical reiterating bisection method for real data implemented in C++ on an ordinary desktop computer to within a probability over 1 in 109. However, the conformal mapping approach is 52 times as fast. We show once more that the Bussian equation breaks down for low fluid conductivities, but recommend it (with the modified Archie's law for use with rocks saturated with high salinity fluids when the matrix is conductive.

15. LOCFES-B: Solving the one-dimensional transport equation with user-selected spatial approximations

International Nuclear Information System (INIS)

Jarvis, R.D.; Nelson, P.

1993-01-01

Closed linear one-cell functional (CLOF) methods constitute an abstractly defined class of spatial approximations to the one-dimensional discrete ordinates equations of linear particle transport that encompass, as specific instances, the vast majority of the spatial approximations that have been either used or suggested in the computational solution of these equations. A specific instance of the class of CLOF methods is defined by a (typically small) number of functions of the cell width, total cross section, and direction cosine of particle motion. The LOCFES code takes advantage of the latter observation by permitting the use, within a more-or-less standard source iteration solution process, of an arbitrary CLOF method as defined by a user-supplied subroutine. The design objective of LOCFES was to provide automated determination of the order of accuracy (i.e., order of the discretization error) in the fine-mesh limit for an arbitrary user-selected CLOF method. This asymptotic order of accuracy is one widely used measure of the merit of a spatial approximation. This paper discusses LOCFES-B, which is a code that uses methods developed in LOCFES to solve one-dimensional linear particle transport problems with any user-selected CLOF method. LOCFES-B provides automatic solution of a given problem to within an accuracy specified by user input and provides comparison of the computational results against results from externally provided benchmark results

16. Scilab software as an alternative low-cost computing in solving the linear equations problem

Science.gov (United States)

Agus, Fahrul; Haviluddin

2017-02-01

Numerical computation packages are widely used both in teaching and research. These packages consist of license (proprietary) and open source software (non-proprietary). One of the reasons to use the package is a complexity of mathematics function (i.e., linear problems). Also, number of variables in a linear or non-linear function has been increased. The aim of this paper was to reflect on key aspects related to the method, didactics and creative praxis in the teaching of linear equations in higher education. If implemented, it could be contribute to a better learning in mathematics area (i.e., solving simultaneous linear equations) that essential for future engineers. The focus of this study was to introduce an additional numerical computation package of Scilab as an alternative low-cost computing programming. In this paper, Scilab software was proposed some activities that related to the mathematical models. In this experiment, four numerical methods such as Gaussian Elimination, Gauss-Jordan, Inverse Matrix, and Lower-Upper Decomposition (LU) have been implemented. The results of this study showed that a routine or procedure in numerical methods have been created and explored by using Scilab procedures. Then, the routine of numerical method that could be as a teaching material course has exploited.

17. Augmented Lagrangian methods to solve Navier-Stokes equations for a Bingham fluid flow

International Nuclear Information System (INIS)

Boscardin, Laetitia

1999-01-01

The objective of this research thesis is to develop one or more methods for the numerical resolution of equations of movement obtained for a Bingham fluid. The resolution of Navier-Stokes equations is processed by splitting elliptic and hyperbolic operators (Galerkin transport). In this purpose, the author first studied the Stokes problem, and then addressed issues of stability and consistency of the global scheme. The variational formulation of the Stokes problem can be expressed under the form of a minimisation problem under the constraint of non linear and non differentiable functions. Then, the author proposes a discretization of the Stokes problem based on a hybrid finite element method. Then he extends the demonstrations of stability and consistency of the Galerkin-transport scheme which have been established for a Newtonian fluid, to the case of a Bingham fluid. A relaxation algorithm and a Newton-GMRES algorithm are developed to solve the problem, and their convergence is studied. To ensure this convergence, some constraints must be verified. In order to do so, a specific speed element has been developed [fr

18. A numerical spectral approach to solve the dislocation density transport equation

International Nuclear Information System (INIS)

Djaka, K S; Taupin, V; Berbenni, S; Fressengeas, C

2015-01-01

A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme. (paper)

19. On an adaptive time stepping strategy for solving nonlinear diffusion equations

International Nuclear Information System (INIS)

Chen, K.; Baines, M.J.; Sweby, P.K.

1993-01-01

A new time step selection procedure is proposed for solving non- linear diffusion equations. It has been implemented in the ASWR finite element code of Lorenz and Svoboda  for 2D semiconductor process modelling diffusion equations. The strategy is based on equi-distributing the local truncation errors of the numerical scheme. The use of B-splines for interpolation (as well as for the trial space) results in a banded and diagonally dominant matrix. The approximate inverse of such a matrix can be provided to a high degree of accuracy by another banded matrix, which in turn can be used to work out the approximate finite difference scheme corresponding to the ASWR finite element method, and further to calculate estimates of the local truncation errors of the numerical scheme. Numerical experiments on six full simulation problems arising in semiconductor process modelling have been carried out. Results show that our proposed strategy is more efficient and better conserves the total mass. 18 refs., 6 figs., 2 tabs

20. An extended step characteristic method for solving the transport equation in general geometries

International Nuclear Information System (INIS)

DeHart, M.D.; Pevey, R.E.; Parish, T.A.

1994-01-01

A method for applying the discrete ordinates method to solve the Boltzmann transport equation on arbitrary two-dimensional meshes has been developed. The finite difference approach normally used to approximate spatial derivatives in extrapolating angular fluxes across a cell is replaced by direct solution of the characteristic form of the transport equation for each discrete direction. Thus, computational cells are not restricted to the geometrical shape of a mesh element characteristic of a given coordinate system. However, in terms of the treatment of energy and angular dependencies, this method resembles traditional discrete ordinates techniques. By using the method developed here, a general two-dimensional space can be approximated by an irregular mesh comprised of arbitrary polygons. Results for a number of test problems have been compared with solutions obtained from traditional methods, with good agreement. Comparisons include benchmarks against analytical results for problems with simple geometry, as well as numerical results obtained from traditional discrete ordinates methods by applying the ANISN and TWOTRAN-II computer programs

1. Convergence properties of iterative algorithms for solving the nodal diffusion equations

International Nuclear Information System (INIS)

Azmy, Y.Y.; Kirk, B.L.

1990-01-01

We drive the five point form of the nodal diffusion equations in two-dimensional Cartesian geometry and develop three iterative schemes to solve the discrete-variable equations: the unaccelerated, partial Successive Over Relaxation (SOR), and the full SOR methods. By decomposing the iteration error into its Fourier modes, we determine the spectral radius of each method for infinite medium, uniform model problems, and for the unaccelerated and partial SOR methods for finite medium, uniform model problems. Also for the two variants of the SOR method we determine the optimal relaxation factor that results in the smallest number of iterations required for convergence. Our results indicate that the number of iterations for the unaccelerated and partial SOR methods is second order in the number of nodes per dimension, while, for the full SOR this behavior is first order, resulting in much faster convergence for very large problems. We successfully verify the results of the spectral analysis against those of numerical experiments, and we show that for the full SOR method the linear dependence of the number of iterations on the number of nodes per dimension is relatively insensitive to the value of the relaxation parameter, and that it remains linear even for heterogenous problems. 14 refs., 1 fig

2. Solving the Bateman equations in CASMO5 using implicit ode numerical methods for stiff systems

International Nuclear Information System (INIS)

Hykes, J. M.; Ferrer, R. M.

2013-01-01

The Bateman equations, which describe the transmutation of nuclides over time as a result of radioactive decay, absorption, and fission, are often numerically stiff. This is especially true if short-lived nuclides are included in the system. This paper describes the use of implicit numerical methods for o D Es applied to the stiff Bateman equations, specifically employing the Backward Differentiation Formulas (BDF) form of the linear multistep method. As is true in other domains, using an implicit method removes or lessens the (sometimes severe) step-length constraints by which explicit methods must abide. To gauge its accuracy and speed, the BDF method is compared to a variety of other solution methods, including Runge-Kutta explicit methods and matrix exponential methods such as the Chebyshev Rational Approximation Method (CRAM). A preliminary test case was chosen as representative of a PWR lattice depletion step and was solved with numerical libraries called from a Python front-end. The Figure of Merit (a combined measure of accuracy and efficiency) for the BDF method was nearly identical to that for CRAM, while explicit methods and other matrix exponential approximations trailed behind. The test case includes 319 nuclides, in which the shortest-lived nuclide is 98 Nb with a half-life of 2.86 seconds. Finally, the BDF and CRAM methods were compared within CASMO5, where CRAM had a FOM about four times better than BDF, although the BDF implementation was not fully optimized. (authors)

3. Solving the radiation diffusion and energy balance equations using pseudo-transient continuation

International Nuclear Information System (INIS)

Shestakov, A.I.; Greenough, J.A.; Howell, L.H.

2005-01-01

We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks

4. A fast, parallel algorithm to solve the basic fluvial erosion/transport equations

Science.gov (United States)

Braun, J.

2012-04-01

Quantitative models of landform evolution are commonly based on the solution of a set of equations representing the processes of fluvial erosion, transport and deposition, which leads to predict the geometry of a river channel network and its evolution through time. The river network is often regarded as the backbone of any surface processes model (SPM) that might include other physical processes acting at a range of spatial and temporal scales along hill slopes. The basic laws of fluvial erosion requires the computation of local (slope) and non-local (drainage area) quantities at every point of a given landscape, a computationally expensive operation which limits the resolution of most SPMs. I present here an algorithm to compute the various components required in the parameterization of fluvial erosion (and transport) and thus solve the basic fluvial geomorphic equation, that is very efficient because it is O(n) (the number of required arithmetic operations is linearly proportional to the number of nodes defining the landscape), and is fully parallelizable (the computation cost decreases in a direct inverse proportion to the number of processors used to solve the problem). The algorithm is ideally suited for use on latest multi-core processors. Using this new technique, geomorphic problems can be solved at an unprecedented resolution (typically of the order of 10,000 X 10,000 nodes) while keeping the computational cost reasonable (order 1 sec per time step). Furthermore, I will show that the algorithm is applicable to any regular or irregular representation of the landform, and is such that the temporal evolution of the landform can be discretized by a fully implicit time-marching algorithm, making it unconditionally stable. I will demonstrate that such an efficient algorithm is ideally suited to produce a fully predictive SPM that links observationally based parameterizations of small-scale processes to the evolution of large-scale features of the landscapes on

5. The circle equation over finite fields

DEFF Research Database (Denmark)

Aabrandt, Andreas; Hansen, Vagn Lundsgaard

2017-01-01

Interesting patterns in the geometry of a plane algebraic curve C can be observed when the defining polynomial equation is solved over the family of finite fields. In this paper, we examine the case of C the classical unit circle defined by the circle equation x2 + y2 = 1. As a main result, we es...

6. An Explicit Upwind Algorithm for Solving the Parabolized Navier-Stokes Equations

Science.gov (United States)

Korte, John J.

1991-01-01

An explicit, upwind algorithm was developed for the direct (noniterative) integration of the 3-D Parabolized Navier-Stokes (PNS) equations in a generalized coordinate system. The new algorithm uses upwind approximations of the numerical fluxes for the pressure and convection terms obtained by combining flux difference splittings (FDS) formed from the solution of an approximate Riemann (RP). The approximate RP is solved using an extension of the method developed by Roe for steady supersonic flow of an ideal gas. Roe's method is extended for use with the 3-D PNS equations expressed in generalized coordinates and to include Vigneron's technique of splitting the streamwise pressure gradient. The difficulty associated with applying Roe's scheme in the subsonic region is overcome. The second-order upwind differencing of the flux derivatives are obtained by adding FDS to either an original forward or backward differencing of the flux derivative. This approach is used to modify an explicit MacCormack differencing scheme into an upwind differencing scheme. The second order upwind flux approximations, applied with flux limiters, provide a method for numerically capturing shocks without the need for additional artificial damping terms which require adjustment by the user. In addition, a cubic equation is derived for determining Vegneron's pressure splitting coefficient using the updated streamwise flux vector. Decoding the streamwise flux vector with the updated value of Vigneron's pressure splitting improves the stability of the scheme. The new algorithm is applied to 2-D and 3-D supersonic and hypersonic laminar flow test cases. Results are presented for the experimental studies of Holden and of Tracy. In addition, a flow field solution is presented for a generic hypersonic aircraft at a Mach number of 24.5 and angle of attack of 1 degree. The computed results compare well to both experimental data and numerical results from other algorithms. Computational times required

7. A new scheme for solving inhomogeneous Boltzmann equation for electrons in weakly ionised gases

International Nuclear Information System (INIS)

Mahmoud, M.O.M.; Yousfi, M.

1995-01-01

In the case of weakly ionized gases, the numerical treatment of non-hydrodynamic regime involving spatial variation of distribution function due to boundaries (walls, electrodes, electron source, etc hor-ellipsis) by using direct Boltzmann equation always constitute a challenge if the main collisional processes occurring in non thermal plasmas are to be considered (elastic, inelastic and super-elastic collisions, Penning ionisation, Coulomb interactions, etc hor-ellipsis). In the non-thermal discharge modelling, the inhomogeneous electron Boltzmann equation is needed in order to be coupled for example to a fluid model to take into account the electron non-hydrodynamic effects. This is for example the case of filamentary discharge, in which the space charge electric field due to streamer propagation has a very sharp spatial profile thus leading to important space non-hydrodynamic effects. It is also the case of the cathodic zone of glow discharge where electric field has a rapid spatial decrease until the negative glow. In the present work, a new numerical scheme is proposed to solve the inhomogeneous Boltzmann equation for electrons in the framework of two-term approximation (TTA) taking into account elastic and inelastic processes. Such a method has the usual drawbacks associated with the TTA i.e. not an accurate enough at high E/N values or in presence of high inelastic processes. But the accuracy of this method is considered sufficient because in a next step it is destinated to be coupled to fluid model for charged particles and a chemical kinetic model where the accuracy is of the same order of magnitude or worse. However there are numerous advantages of this method concerning time computing, treatment of non-linear collision processes (Coulomb, Penning, etc hor-ellipsis)

8. A rapid numerical method for solving Serre-Green-Naghdi equations describing long free surface gravity waves

Science.gov (United States)

Favrie, N.; Gavrilyuk, S.

2017-07-01

A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.

9. From stochastic processes to numerical methods: A new scheme for solving reaction subdiffusion fractional partial differential equations

Energy Technology Data Exchange (ETDEWEB)

Angstmann, C.N.; Donnelly, I.C. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Henry, B.I., E-mail: B.Henry@unsw.edu.au [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia); Jacobs, B.A. [School of Computer Science and Applied Mathematics, University of the Witwatersrand, Johannesburg, Private Bag 3, Wits 2050 (South Africa); DST–NRF Centre of Excellence in Mathematical and Statistical Sciences (CoE-MaSS) (South Africa); Langlands, T.A.M. [Department of Mathematics and Computing, University of Southern Queensland, Toowoomba QLD 4350 (Australia); Nichols, J.A. [School of Mathematics and Statistics, UNSW Australia, Sydney NSW 2052 (Australia)

2016-02-15

We have introduced a new explicit numerical method, based on a discrete stochastic process, for solving a class of fractional partial differential equations that model reaction subdiffusion. The scheme is derived from the master equations for the evolution of the probability density of a sum of discrete time random walks. We show that the diffusion limit of the master equations recovers the fractional partial differential equation of interest. This limiting procedure guarantees the consistency of the numerical scheme. The positivity of the solution and stability results are simply obtained, provided that the underlying process is well posed. We also show that the method can be applied to standard reaction–diffusion equations. This work highlights the broader applicability of using discrete stochastic processes to provide numerical schemes for partial differential equations, including fractional partial differential equations.

10. A nearly orthogonal 2D grid system in solving the shallow water equations in the head bay of Bengal

International Nuclear Information System (INIS)

Roy, G.D. . E.mail: roy_gd@hotmail.com; Hussain, Farzana . E.mail: farzana@sust.edu

2001-11-01

A typical nearly orthogonal grid system is considered to solve the shallow water equations along the head bay of Bengal. A pencil of straight lines at uniform angular distance through a suitable origin, O at the mean sea level (MSL), are considered as a system of grid lines. A system of concentric and uniformly distributed ellipses with center at O is considered as the other system of grid lines. In order to solve the shallow water equations numerically, a system of transformations is applied so that the grid system in the transformed domain becomes a rectangular one. Shallow water equations are solved using appropriate initial and boundary conditions to estimate the water level due to tide and surge. The typical grid system is found to be suitable in incorporating the bending of the coastline and the island boundaries accurately in the numerical scheme along the coast of Bangladesh. (author)

11. Parallel assembling and equation solving via graph algorithms with an application to the FE simulation of metal extrusion processes

CERN Document Server

Unterkircher, A

2005-01-01

We propose methods for parallel assembling and iterative equation solving based on graph algorithms. The assembling technique is independent of dimension, element type and model shape. As a parallel solving technique we construct a multiplicative symmetric Schwarz preconditioner for the conjugate gradient method. Both methods have been incorporated into a non-linear FE code to simulate 3D metal extrusion processes. We illustrate the efficiency of these methods on shared memory computers by realistic examples.

12. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: Basic theories and features

Science.gov (United States)

Nakatsuji, Hiroshi; Nakashima, Hiroyuki

2015-02-01

The free-complement (FC) method is a general method for solving the Schrödinger equation (SE): The produced wave function has the potentially exact structure as the solution of the Schrödinger equation. The variables included are determined either by using the variational principle (FC-VP) or by imposing the local Schrödinger equations (FC-LSE) at the chosen set of the sampling points. The latter method, referred to as the local Schrödinger equation (LSE) method, is integral-free and therefore applicable to any atom and molecule. The purpose of this paper is to formulate the basic theories of the LSE method and explain their basic features. First, we formulate three variants of the LSE method, the AB, HS, and HTQ methods, and explain their properties. Then, the natures of the LSE methods are clarified in some detail using the simple examples of the hydrogen atom and the Hooke's atom. Finally, the ideas obtained in this study are applied to solving the SE of the helium atom highly accurately with the FC-LSE method. The results are very encouraging: we could get the world's most accurate energy of the helium atom within the sampling-type methodologies, which is comparable to those obtained with the FC-VP method. Thus, the FC-LSE method is an easy and yet a powerful integral-free method for solving the Schrödinger equation of general atoms and molecules.

13. Numerical solving of equations in the work of José Mariano Vallejo

Science.gov (United States)

Pacheco Castelao, José-Miguel; Pérez-Fern; ández, F. Javier; Suárez Alemán, Carlos-Oswaldo

2007-09-01

The progress of Mathematics during the nineteenth century was characterised both by an enormous acquisition of new knowledge and by the attempts to introduce rigour in reasoning patterns and mathematical writing. Cauchy's presentation of Mathematical Analysis was not immediately accepted, and many writers, though aware of that new style, did not use it in their own mathematical production. This paper is devoted to an episode of this sort that took place in Spain during the first half of the century: It deals with the presentation of a method for numerically solving algebraic equations by José Mariano Vallejo, a late Spanish follower of the Enlightenment ideas, politician, writer, and mathematician who published it in the fourth (1840) edition of his book Compendio de Mathemáticas Puras y Mistas, claiming to have discovered it on his own. Vallejo's main achievement was to write down the whole procedure in a very careful way taking into account the different types of roots, although he paid little attention to questions such as convergence checks and the fulfilment of the hypotheses of Rolle's Theorem. For sure this lack of mathematical care prevented Vallejo to occupy a place among the forerunners of Computational Algebra.

14. Solving very large scattering problems using a parallel PWTD-enhanced surface integral equation solver

KAUST Repository

Liu, Yang

2013-07-01

The computational complexity and memory requirements of multilevel plane wave time domain (PWTD)-accelerated marching-on-in-time (MOT)-based surface integral equation (SIE) solvers scale as O(NtNs(log 2)Ns) and O(Ns 1.5); here N t and Ns denote numbers of temporal and spatial basis functions discretizing the current [Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003]. In the past, serial versions of these solvers have been successfully applied to the analysis of scattering from perfect electrically conducting as well as homogeneous penetrable targets involving up to Ns ≈ 0.5 × 106 and Nt ≈ 10 3. To solve larger problems, parallel PWTD-enhanced MOT solvers are called for. Even though a simple parallelization strategy was demonstrated in the context of electromagnetic compatibility analysis [M. Lu et al., in Proc. IEEE Int. Symp. AP-S, 4, 4212-4215, 2004], by and large, progress in this area has been slow. The lack of progress can be attributed wholesale to difficulties associated with the construction of a scalable PWTD kernel. © 2013 IEEE.

15. Guided waves dispersion equations for orthotropic multilayered pipes solved using standard finite elements code.

Science.gov (United States)

Predoi, Mihai Valentin

2014-09-01

The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.

16. An Immersed Boundary Method for Solving the Compressible Navier-Stokes Equations with Fluid Structure Interaction

Science.gov (United States)

Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

2016-01-01

An immersed boundary method for the compressible Navier-Stokes equation and the additional infrastructure that is needed to solve moving boundary problems and fully coupled fluid-structure interaction is described. All the methods described in this paper were implemented in NASA's LAVA solver framework. The underlying immersed boundary method is based on the locally stabilized immersed boundary method that was previously introduced by the authors. In the present paper this method is extended to account for all aspects that are involved for fluid structure interaction simulations, such as fast geometry queries and stencil computations, the treatment of freshly cleared cells, and the coupling of the computational fluid dynamics solver with a linear structural finite element method. The current approach is validated for moving boundary problems with prescribed body motion and fully coupled fluid structure interaction problems in 2D and 3D. As part of the validation procedure, results from the second AIAA aeroelastic prediction workshop are also presented. The current paper is regarded as a proof of concept study, while more advanced methods for fluid structure interaction are currently being investigated, such as geometric and material nonlinearities, and advanced coupling approaches.

17. Linear differential equations to solve nonlinear mechanical problems: A novel approach

OpenAIRE

2004-01-01

Often a non-linear mechanical problem is formulated as a non-linear differential equation. A new method is introduced to find out new solutions of non-linear differential equations if one of the solutions of a given non-linear differential equation is known. Using the known solution of the non-linear differential equation, linear differential equations are set up. The solutions of these linear differential equations are found using standard techniques. Then the solutions of the linear differe...

18. SOLVING THE HAMILTONIAN CYCLE PROBLEM USING SYMBOLIC DETERMINANTS

OpenAIRE

Ejov, V.; Filar, J. A.; Lucas, S. K.; Nelson, J. L.

2006-01-01

In this note we show how the Hamiltonian Cycle problem can be reduced to solving a system of polynomial equations related to the adjacency matrix of a graph. This system of equations can be solved using the method of Gröbner bases, but we also show how a symbolic determinant related to the adjacency matrix can be used to directly decide whether a graph has a Hamiltonian cycle.

19. Smoothing optimization of supporting quadratic surfaces with Zernike polynomials

Science.gov (United States)

Zhang, Hang; Lu, Jiandong; Liu, Rui; Ma, Peifu

2018-03-01

A new optimization method to get a smooth freeform optical surface from an initial surface generated by the supporting quadratic method (SQM) is proposed. To smooth the initial surface, a 9-vertex system from the neighbor quadratic surface and the Zernike polynomials are employed to establish a linear equation system. A local optimized surface to the 9-vertex system can be build by solving the equations. Finally, a continuous smooth optimization surface is constructed by stitching the above algorithm on the whole initial surface. The spot corresponding to the optimized surface is no longer discrete pixels but a continuous distribution.

20. Complex Polynomial Vector Fields

DEFF Research Database (Denmark)

Dias, Kealey

vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...

1. New approach to solve fully fuzzy system of linear equations using ...

Known example problems are solved to illustrate the efficacy and ... The concept of fuzzy set and fuzzy number were first introduced by Zadeh .... (iii) Fully fuzzy linear systems can be solved by linear programming approach, Gauss elim-.

2. The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces

KAUST Repository

Piret, Cé cile

2012-01-01

Much work has been done on reconstructing arbitrary surfaces using the radial basis function (RBF) method, but one can hardly find any work done on the use of RBFs to solve partial differential equations (PDEs) on arbitrary surfaces. In this paper

3. LUCKY-TD code for solving the time-dependent transport equation with the use of parallel computations

Energy Technology Data Exchange (ETDEWEB)

Moryakov, A. V., E-mail: sailor@orc.ru [National Research Centre Kurchatov Institute (Russian Federation)

2016-12-15

An algorithm for solving the time-dependent transport equation in the P{sub m}S{sub n} group approximation with the use of parallel computations is presented. The algorithm is implemented in the LUCKY-TD code for supercomputers employing the MPI standard for the data exchange between parallel processes.

4. Instructional Supports for Representational Fluency in Solving Linear Equations with Computer Algebra Systems and Paper-and-Pencil

Science.gov (United States)

Fonger, Nicole L.; Davis, Jon D.; Rohwer, Mary Lou

2018-01-01

This research addresses the issue of how to support students' representational fluency--the ability to create, move within, translate across, and derive meaning from external representations of mathematical ideas. The context of solving linear equations in a combined computer algebra system (CAS) and paper-and-pencil classroom environment is…

5. Unbiased minimum variance estimator of a matrix exponential function. Application to Boltzmann/Bateman coupled equations solving

International Nuclear Information System (INIS)

Dumonteil, E.; Diop, C. M.

2009-01-01

This paper derives an unbiased minimum variance estimator (UMVE) of a matrix exponential function of a normal wean. The result is then used to propose a reference scheme to solve Boltzmann/Bateman coupled equations, thanks to Monte Carlo transport codes. The last section will present numerical results on a simple example. (authors)

6. Recurrence approach and higher order polynomial algebras for superintegrable monopole systems

Science.gov (United States)

Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong

2018-05-01

We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.

7. Application of discontinuous Galerkin method for solving a compressible five-equation two-phase flow model

Science.gov (United States)

Saleem, M. Rehan; Ali, Ishtiaq; Qamar, Shamsul

2018-03-01

In this article, a reduced five-equation two-phase flow model is numerically investigated. The formulation of the model is based on the conservation and energy exchange laws. The model is non-conservative and the governing equations contain two equations for the mass conservation, one for the over all momentum and one for the total energy. The fifth equation is the energy equation for one of the two phases that includes a source term on the right hand side for incorporating energy exchange between the two fluids in the form of mechanical and thermodynamical works. A Runge-Kutta discontinuous Galerkin finite element method is applied to solve the model equations. The main attractive features of the proposed method include its formal higher order accuracy, its nonlinear stability, its ability to handle complicated geometries, and its ability to capture sharp discontinuities or strong gradients in the solutions without producing spurious oscillations. The proposed method is robust and well suited for large-scale time-dependent computational problems. Several case studies of two-phase flows are presented. For validation and comparison of the results, the same model equations are also solved by using a staggered central scheme. It was found that discontinuous Galerkin scheme produces better results as compared to the staggered central scheme.

8. Methods and Algorithms for Solving Inverse Problems for Fractional Advection-Dispersion Equations

KAUST Repository

Aldoghaither, Abeer

2015-11-12

Fractional calculus has been introduced as an e cient tool for modeling physical phenomena, thanks to its memory and hereditary properties. For example, fractional models have been successfully used to describe anomalous di↵usion processes such as contaminant transport in soil, oil flow in porous media, and groundwater flow. These models capture important features of particle transport such as particles with velocity variations and long-rest periods. Mathematical modeling of physical phenomena requires the identification of pa- rameters and variables from available measurements. This is referred to as an inverse problem. In this work, we are interested in studying theoretically and numerically inverse problems for space Fractional Advection-Dispersion Equation (FADE), which is used to model solute transport in porous media. Identifying parameters for such an equa- tion is important to understand how chemical or biological contaminants are trans- ported throughout surface aquifer systems. For instance, an estimate of the di↵eren- tiation order in groundwater contaminant transport model can provide information about soil properties, such as the heterogeneity of the medium. Our main contribution is to propose a novel e cient algorithm based on modulat-ing functions to estimate the coe cients and the di↵erentiation order for space FADE, which can be extended to general fractional Partial Di↵erential Equation (PDE). We also show how the method can be applied to the source inverse problem. This work is divided into two parts: In part I, the proposed method is described and studied through an extensive numerical analysis. The local convergence of the proposed two-stage algorithm is proven for 1D space FADE. The properties of this method are studied along with its limitations. Then, the algorithm is generalized to the 2D FADE. In part II, we analyze direct and inverse source problems for a space FADE. The problem consists of recovering the source term using final

9. Polynomial approximation on polytopes

CERN Document Server

Totik, Vilmos

2014-01-01

Polynomial approximation on convex polytopes in \\mathbf{R}^d is considered in uniform and L^p-norms. For an appropriate modulus of smoothness matching direct and converse estimates are proven. In the L^p-case so called strong direct and converse results are also verified. The equivalence of the moduli of smoothness with an appropriate K-functional follows as a consequence. The results solve a problem that was left open since the mid 1980s when some of the present findings were established for special, so-called simple polytopes.

10. Homotopy perturbation method with Laplace Transform (LT-HPM) for solving Lane-Emden type differential equations (LETDEs).

Science.gov (United States)

2016-01-01

In this communication, we describe the Homotopy Perturbation Method with Laplace Transform (LT-HPM), which is used to solve the Lane-Emden type differential equations. It's very difficult to solve numerically the Lane-Emden types of the differential equation. Here we implemented this method for two linear homogeneous, two linear nonhomogeneous, and four nonlinear homogeneous Lane-Emden type differential equations and use their appropriate comparisons with exact solutions. In the current study, some examples are better than other existing methods with their nearer results in the form of power series. The Laplace transform used to accelerate the convergence of power series and the results are shown in the tables and graphs which have good agreement with the other existing method in the literature. The results show that LT-HPM is very effective and easy to implement.

11. Stable Numerical Approach for Fractional Delay Differential Equations

Science.gov (United States)

Singh, Harendra; Pandey, Rajesh K.; Baleanu, D.

2017-12-01

In this paper, we present a new stable numerical approach based on the operational matrix of integration of Jacobi polynomials for solving fractional delay differential equations (FDDEs). The operational matrix approach converts the FDDE into a system of linear equations, and hence the numerical solution is obtained by solving the linear system. The error analysis of the proposed method is also established. Further, a comparative study of the approximate solutions is provided for the test examples of the FDDE by varying the values of the parameters in the Jacobi polynomials. As in special case, the Jacobi polynomials reduce to the well-known polynomials such as (1) Legendre polynomial, (2) Chebyshev polynomial of second kind, (3) Chebyshev polynomial of third and (4) Chebyshev polynomial of fourth kind respectively. Maximum absolute error and root mean square error are calculated for the illustrated examples and presented in form of tables for the comparison purpose. Numerical stability of the presented method with respect to all four kind of polynomials are discussed. Further, the obtained numerical results are compared with some known methods from the literature and it is observed that obtained results from the proposed method is better than these methods.

12. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

Energy Technology Data Exchange (ETDEWEB)

Borchardt, Julia

2017-02-07

By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

13. A hybrid Eulerian–Lagrangian numerical scheme for solving prognostic equations in fluid dynamics

Directory of Open Access Journals (Sweden)

E. Kaas

2013-11-01

Full Text Available A new hybrid Eulerian–Lagrangian numerical scheme (HEL for solving prognostic equations in fluid dynamics is proposed. The basic idea is to use an Eulerian as well as a fully Lagrangian representation of all prognostic variables. The time step in Lagrangian space is obtained as a translation of irregularly spaced Lagrangian parcels along downstream trajectories. Tendencies due to other physical processes than advection are calculated in Eulerian space, interpolated, and added to the Lagrangian parcel values. A directionally biased mixing amongst neighboring Lagrangian parcels is introduced. The rate of mixing is proportional to the local deformation rate of the flow. The time stepping in Eulerian representation is achieved in two steps: first a mass-conserving Eulerian or semi-Lagrangian scheme is used to obtain a provisional forecast. This forecast is then nudged towards target values defined from the irregularly spaced Lagrangian parcel values. The nudging procedure is defined in such a way that mass conservation and shape preservation is ensured in Eulerian space. The HEL scheme has been designed to be accurate, multi-tracer efficient, mass conserving, and shape preserving. In Lagrangian space only physically based mixing takes place; i.e., the problem of artificial numerical mixing is avoided. This property is desirable in atmospheric chemical transport models since spurious numerical mixing can impact chemical concentrations severely. The properties of HEL are here verified in two-dimensional tests. These include deformational passive transport on the sphere, and simulations with a semi-implicit shallow water model including topography.

14. A differential transformation approach for solving functional differential equations with multiple delays

Science.gov (United States)

Rebenda, Josef; Šmarda, Zdeněk

2017-07-01

In the paper an efficient semi-analytical approach based on the method of steps and the differential transformation is proposed for numerical approximation of solutions of functional differential models of delayed and neutral type on a finite interval of arbitrary length, including models with several constant delays. Algorithms for both commensurate and non-commensurate delays are described, applications are shown in examples. Validity and efficiency of the presented algorithms is compared with the variational iteration method, the Adomian decomposition method and the polynomial least squares method numerically. Matlab package DDE23 is used to produce reference numerical values.

15. Use of fast Fourier transforms for solving partial differential equations in physics

CERN Document Server

Le Bail, R C

1972-01-01

The use of fast Fourier techniques for the direct solution of an important class of elliptic, parabolic, and hyperbolic partial differential equations in two dimensions is described. Extensions to higher-order and higher-dimension equations as well as to integrodifferential equations are presented, and several numerical examples with their resulting precision and timing are reported. (12 refs).

16. Recurrences and explicit formulae for the expansion and connection coefficients in series of Bessel polynomials

International Nuclear Information System (INIS)

Doha, E H; Ahmed, H M

2004-01-01

A formula expressing explicitly the derivatives of Bessel polynomials of any degree and for any order in terms of the Bessel polynomials themselves is proved. Another explicit formula, which expresses the Bessel expansion coefficients of a general-order derivative of an infinitely differentiable function in terms of its original Bessel coefficients, is also given. A formula for the Bessel coefficients of the moments of one single Bessel polynomial of certain degree is proved. A formula for the Bessel coefficients of the moments of a general-order derivative of an infinitely differentiable function in terms of its Bessel coefficients is also obtained. Application of these formulae for solving ordinary differential equations with varying coefficients, by reducing them to recurrence relations in the expansion coefficients of the solution, is explained. An algebraic symbolic approach (using Mathematica) in order to build and solve recursively for the connection coefficients between Bessel-Bessel polynomials is described. An explicit formula for these coefficients between Jacobi and Bessel polynomials is given, of which the ultraspherical polynomial and its consequences are important special cases. Two analytical formulae for the connection coefficients between Laguerre-Bessel and Hermite-Bessel are also developed

17. The generalized Yablonskii-Vorob'ev polynomials and their properties

International Nuclear Information System (INIS)

Kudryashov, Nikolai A.; Demina, Maria V.

2008-01-01

Rational solutions of the generalized second Painleve hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painleve hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials

18. A mixed Fourier–Galerkin–finite-volume method to solve the fluid dynamics equations in cylindrical geometries

International Nuclear Information System (INIS)

Núñez, Jóse; Ramos, Eduardo; Lopez, Juan M

2012-01-01

We describe a hybrid method based on the combined use of the Fourier Galerkin and finite-volume techniques to solve the fluid dynamics equations in cylindrical geometries. A Fourier expansion is used in the angular direction, partially translating the problem to the Fourier space and then solving the resulting equations using a finite-volume technique. We also describe an algorithm required to solve the coupled mass and momentum conservation equations similar to a pressure-correction SIMPLE method that is adapted for the present formulation. Using the Fourier–Galerkin method for the azimuthal direction has two advantages. Firstly, it has a high-order approximation of the partial derivatives in the angular direction, and secondly, it naturally satisfies the azimuthal periodic boundary conditions. Also, using the finite-volume method in the r and z directions allows one to handle boundary conditions with discontinuities in those directions. It is important to remark that with this method, the resulting linear system of equations are band-diagonal, leading to fast and efficient solvers. The benefits of the mixed method are illustrated with example problems. (paper)

19. Numerics made easy: solving the Navier-Stokes equation for arbitrary channel cross-sections using Microsoft Excel.

Science.gov (United States)

Richter, Christiane; Kotz, Frederik; Giselbrecht, Stefan; Helmer, Dorothea; Rapp, Bastian E

2016-06-01

The fluid mechanics of microfluidics is distinctively simpler than the fluid mechanics of macroscopic systems. In macroscopic systems effects such as non-laminar flow, convection, gravity etc. need to be accounted for all of which can usually be neglected in microfluidic systems. Still, there exists only a very limited selection of channel cross-sections for which the Navier-Stokes equation for pressure-driven Poiseuille flow can be solved analytically. From these equations, velocity profiles as well as flow rates can be calculated. However, whenever a cross-section is not highly symmetric (rectangular, elliptical or circular) the Navier-Stokes equation can usually not be solved analytically. In all of these cases, numerical methods are required. However, in many instances it is not necessary to turn to complex numerical solver packages for deriving, e.g., the velocity profile of a more complex microfluidic channel cross-section. In this paper, a simple spreadsheet analysis tool (here: Microsoft Excel) will be used to implement a simple numerical scheme which allows solving the Navier-Stokes equation for arbitrary channel cross-sections.

20. Polynomial intelligent states

International Nuclear Information System (INIS)

Milks, Matthew M; Guise, Hubert de

2005-01-01

The construction of su(2) intelligent states is simplified using a polynomial representation of su(2). The cornerstone of the new construction is the diagonalization of a 2 x 2 matrix. The method is sufficiently simple to be easily extended to su(3), where one is required to diagonalize a single 3 x 3 matrix. For two perfectly general su(3) operators, this diagonalization is technically possible but the procedure loses much of its simplicity owing to the algebraic form of the roots of a cubic equation. Simplified expressions can be obtained by specializing the choice of su(3) operators. This simpler construction will be discussed in detail