WorldWideScience

Sample records for solvents methanol ethanol

  1. The effect of thermodynamic properties of solvent mixtures explains the difference between methanol and ethanol in C.antarctica lipase B catalyzed alcoholysis.

    Science.gov (United States)

    Sasso, Francesco; Kulschewski, Tobias; Secundo, Francesco; Lotti, Marina; Pleiss, Jürgen

    2015-11-20

    Kinetic modelling, molecular modelling, and experimental determination of the initial reaction velocity of lipase-catalyzed alcoholysis were combined to study the effect of the alcohol substrate to catalytic activity. The model system consisted of methanol or ethanol at varying concentrations, vinyl acetate as ester substrate 15.2% (v/v), toluene as organic solvent, water at a controlled thermodynamic activity of 0.09, and C. antarctica lipase B as enzyme. For both alcohol substrates, the initial reaction velocity increased sharply at low concentrations and reached a maximum at 0.7% (v/v) for methanol and 2% (v/v) for ethanol. For higher concentrations, the reaction rate decreased to a level of 74% and 60% of the peak value, respectively, due to substrate inhibition. The concentration dependency was described by a kinetic model, including a ping-pong bi-bi mechanism and competitive inhibition by the alcohol, and confirmed previous observations that methanol is more efficiently inhibiting the enzyme than ethanol. However, if the initial reaction velocity was expressed in terms of thermodynamic activity of the two alcohol substrates, the maximum of initial reaction velocity was similar for methanol (a MeOH(max)=0.19) and ethanol (a EtOH(max)=0.21). This was confirmed by molecular modelling which resulted in similar KM (0.22 and 0.19) and Ki values (0.44 and 0.49) for methanol and ethanol, respectively, if expressed in thermodynamic activities. Thus, the experimentally observed difference between methanol and ethanol is not due to differences in interaction with the enzyme but is a consequence of the thermodynamics of the substrate-solvent mixture. For low concentrations in toluene, the activity coefficient of methanol is 40% higher than the activity coefficient of ethanol (γ MeOH=8.5, γ EtOH=6.1). Copyright © 2015 Elsevier B.V. All rights reserved.

  2. A luminescent metal-organic framework for sensing methanol in ethanol solution.

    Science.gov (United States)

    Jin, Zhao; He, Hongming; Zhao, Huanyu; Borjigin, Tsolmon; Sun, Fuxing; Zhang, Daming; Zhu, Guangshan

    2013-10-07

    A new luminescent Zn-MOF has been synthesized under hydrothermal condition using a semi-rigid ligand H3pcoip (4-(2-carboxyphenoxy)isophthalic acid) is reported. The luminescence properties of 1 in methanol, ethanol, and water have been investigated. Interestingly, compound 1 has a unique response to methanol compared to ethanol and water. Moreover, 1 displays a turn-on switching property triggered by methanol solvent molecules and a high sensitivity towards methanol concentration as low as 2 × 10(-7) (V(MeOH)/V(total)) in ethanol solution. The results indicate that the Zn-MOF has potential application as a sensor for detecting methanol in ethanol solution with excellent selectivity and high sensitivity.

  3. Solubility measurement and correlation of 4-nitrophthalimide in (methanol, ethanol, or acetone) + N,N-dimethylformamide mixed solvents at temperatures from 273.15 K to 323.15 K

    International Nuclear Information System (INIS)

    Li, Rongrong; Han, Shuo; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 4-nitrophthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by four models. • The standard dissolution enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 4-nitrophthalimide in binary (methanol + N,N-dimethylformamide (DMF), ethanol + DMF) and (acetone + DMF) solvent mixtures were investigated by the isothermal dissolution equilibrium method under atmosphere pressure. These studies were carried out at different mass fractions of methanol, ethanol or acetone ranging from 0.1 to 0.9 at temperature T = (273.15–323.15) K. For the nine groups of each solvent mixture studied, the solubility of 4-nitrophthalimide in mixed solutions increased with increasing temperature and mass fraction of methanol, ethanol or acetone for the three systems including (methanol + DMF), (ethanol + DMF) and (acetone + DMF). At the same temperature and mass fraction of methanol, ethanol or acetone, the mole fraction solubility of 4-nitrophthalimide in (acetone + DMF) was greater than that in the other two binary solvents. In addition, the experimental mole fraction solubility was correlated by four models (Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model and Sun model). The Jouyban–Acree model gave best representation for the experimental solubility values. Furthermore, the standard molar enthalpies of 4-nitrophthalimide during the dissolving process (Δ sol H o ) were also obtained in this work, and the results show that the dissolution process is endothermic. The experimental solubility and the models used in this work will be helpful in separating 4-nitrophthalimide from its isomeric mixtures.

  4. Collection methodology evaluation and solvents analysis/mixtures solvents in the air in work ambient: methanol in MEG mixture (methanol 33%, ethanol 60% and gasoline 7%); Avaliacao de metodologia de coleta e analise de solventes/misturas de solventes no ar em ambiente de trabalho: metanol em mistura MEG (metanol 33%, etanol 60% e gasolina 7%)

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Luiza Maria Nunes

    1995-07-01

    This thesis presents a proposal for evaluation of collection and solvent/solvent mixtures analysis methodology for the air in the work environment by studying the following issues of present solvents: historical aspects; methanol - properties and toxicity; collection methodology evaluation, and gases and vapors analysis in the air; experimental data. The denominated mixture MEG - methanol, ethanol and gasoline is analyzed in terms of its chemical characteristics. The author concludes the work detaching that the methodology presented can only be used for short duration measurements in concentrations peaks studies.

  5. Measurements and modeling of quaternary (liquid + liquid) equilibria for mixtures of (methanol or ethanol + water + toluene + n-dodecane)

    International Nuclear Information System (INIS)

    Mohammad Doulabi, F.S.; Mohsen-Nia, M.; Modarress, H.

    2006-01-01

    The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol) (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography. The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents. The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents

  6. Thermodynamics of R-(+)-2-(4-Hydroxyphenoxy)propanoic Acid Dissolution in Methanol, Ethanol, and Methanol-Ethanol Mixture

    Science.gov (United States)

    Liu, Wei; Ma, Jinju; Yao, Xinding; Fang, Ruina; Cheng, Liang

    2018-05-01

    The solubilities of R-(+)-2-(4-hydroxyphenoxy)propanoic acid (D-HPPA) in methanol, ethanol and various methanol-ethanol mixtures are determined in the temperature range from 273.15 to 323.15 K at atmospheric pressure using a laser detecting system. The solubilities of D-HPPA increase with increasing mole fraction of ethanol in the methanol-ethanol mixtures. Experimental data were correlated with Buchowski-Ksiazczak λ h equation and modified Apelblat equation; the first one gives better approximation for the experimental results. The enthalpy, entropy and Gibbs free energy of D-HPPA dissolution in methanol, ethanol and methanol-ethanol mixtures were also calculated from the solubility data.

  7. A bioinspired color-changing polystyrene microarray as a rapid qualitative sensor for methanol and ethanol

    International Nuclear Information System (INIS)

    Kuo, Wen-Kai; Weng, Hsueh-Ping; Hsu, Jyun-Jheng; Yu, Hsin Her

    2016-01-01

    Polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion polymerization and arranged in an array of closely packed, opal-like photonic crystals by slow self-assembly through dip-coating. This periodic array of PS microspheres was then employed as a rapid qualitative sensor for methanol and ethanol. Both solvents could be detected rapidly based on the routes of their reflection coordinates in the chromaticity diagram or directly by the naked eye on the basis of the change in color within 1 min once a solvent sample had been placed on the PS photochromic sensor. This opal-like PS sensor can thus not only be employed as a rapid sensor for methanol and ethanol but can also be used as a powerful tool for the fast screening of illicit drugs and toxic chemicals during forensic investigations. - Highlights: • Opal-like array of polystyrene (PS) microspheres is synthesized by self-assembly. • This periodic PS array is used as a rapid sensor for methanol and ethanol. • Solvents are detected by routes of reflection coordinates in chromaticity diagram. • They are also detected directly by naked eye based on change in color of sensor. • The color change is irreversible for methanol but reversible for ethanol.

  8. A bioinspired color-changing polystyrene microarray as a rapid qualitative sensor for methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Wen-Kai, E-mail: wkkuo@nfu.edu.tw [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Weng, Hsueh-Ping, E-mail: sherry.weng7949@gmail.com [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Hsu, Jyun-Jheng, E-mail: k88520x@gmail.com [Graduate Institute of Electro-Optical and Materials Science, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China); Yu, Hsin Her, E-mail: hhyu@nfu.edu.tw [Department of Biotechnology, National Formosa University, 64 Wenhua Road, Huwei, Yunlin 63208, Taiwan (China)

    2016-04-15

    Polystyrene (PS) microspheres were synthesized by emulsifier-free emulsion polymerization and arranged in an array of closely packed, opal-like photonic crystals by slow self-assembly through dip-coating. This periodic array of PS microspheres was then employed as a rapid qualitative sensor for methanol and ethanol. Both solvents could be detected rapidly based on the routes of their reflection coordinates in the chromaticity diagram or directly by the naked eye on the basis of the change in color within 1 min once a solvent sample had been placed on the PS photochromic sensor. This opal-like PS sensor can thus not only be employed as a rapid sensor for methanol and ethanol but can also be used as a powerful tool for the fast screening of illicit drugs and toxic chemicals during forensic investigations. - Highlights: • Opal-like array of polystyrene (PS) microspheres is synthesized by self-assembly. • This periodic PS array is used as a rapid sensor for methanol and ethanol. • Solvents are detected by routes of reflection coordinates in chromaticity diagram. • They are also detected directly by naked eye based on change in color of sensor. • The color change is irreversible for methanol but reversible for ethanol.

  9. Vapor permeation-stepwise injection simultaneous determination of methanol and ethanol in biodiesel with voltammetric detection.

    Science.gov (United States)

    Shishov, Andrey; Penkova, Anastasia; Zabrodin, Andrey; Nikolaev, Konstantin; Dmitrenko, Maria; Ermakov, Sergey; Bulatov, Andrey

    2016-02-01

    A novel vapor permeation-stepwise injection (VP-SWI) method for the determination of methanol and ethanol in biodiesel samples is discussed. In the current study, stepwise injection analysis was successfully combined with voltammetric detection and vapor permeation. This method is based on the separation of methanol and ethanol from a sample using a vapor permeation module (VPM) with a selective polymer membrane based on poly(phenylene isophtalamide) (PA) containing high amounts of a residual solvent. After the evaporation into the headspace of the VPM, methanol and ethanol were transported, by gas bubbling, through a PA membrane to a mixing chamber equipped with a voltammetric detector. Ethanol was selectively detected at +0.19 V, and both compounds were detected at +1.20 V. Current subtractions (using a correction factor) were used for the selective determination of methanol. A linear range between 0.05 and 0.5% (m/m) was established for each analyte. The limits of detection were estimated at 0.02% (m/m) for ethanol and methanol. The sample throughput was 5 samples h(-1). The method was successfully applied to the analysis of biodiesel samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Gas chromatography/isotope ratio mass spectrometry: analysis of methanol, ethanol and acetic acid by direct injection of aqueous alcoholic and acetic acid samples.

    Science.gov (United States)

    Ai, Guomin; Sun, Tong; Dong, Xiuzhu

    2014-08-15

    Methanol, ethanol, and acetic acid are not easily extracted from aqueous samples and are susceptible to isotope fractionation in gas chromatography/isotope ratio mass spectrometry (GC/IRMS) analysis. Developing a direct dilution GC/IRMS method for aqueous samples, by adjusting the sample concentrations in common solvents to be similar to each other and using a fixed GC split ratio, is very convenient and important because any linearity effects caused by amount-dependent isotope fractionation can be avoided. The suitability of acetonitrile and acetone solvents for the GC/IRMS analysis of pure methanol, ethanol and acetic acid, and commercial liquor and vinegar samples was evaluated using n-hexane and water as control solvents. All the solvents including water were separated from the analyte on a HP-INNOWAX column and were diverted away from the combustion interface. The influence of liquor matrix on the ethanol GC/IRMS analyses was evaluated by adding pure ethanol to liquor samples. Acetonitrile and acetone gave similar δ(13) C values for pure ethanol and pure acetic acid to those obtained in water and n-hexane, and also gave similar δ(13) C values of ethanol in liquor and acetic acid in white vinegar to that obtained in water. For methanol analysis, acetonitrile and refined acetone gave similar δ(13) C values to that obtained in water, but n-hexane was not a suitable solvent. In addition, isotopic fractionation caused by solvent and solute interactions was observed. We recommend using acetonitrile for the GC/IRMS analysis of aqueous alcoholic samples, and acetone for the analysis of aqueous acetic acid samples. This direct dilution method can provide high accurate and precise GC/IRMS analysis of the relative changes in δ(13) C values of methanol, ethanol, and acetic acid. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Electron transport in ethanol & methanol absorbed defected graphene

    Science.gov (United States)

    Dandeliya, Sushmita; Srivastava, Anurag

    2018-05-01

    In the present paper, the sensitivity of ethanol and methanol molecules on surface of single vacancy defected graphene has been investigated using density functional theory (DFT). The changes in structural and electronic properties before and after adsorption of ethanol and methanol were analyzed and the obtained results show high adsorption energy and charge transfer. High adsorption happens at the active site with monovacancy defect on graphene surface. Present work confirms that the defected graphene increases the surface reactivity towards ethanol and methanol molecules. The presence of molecules near the active site affects the electronic and transport properties of defected graphene which makes it a promising choice for designing methanol and ethanol sensor.

  12. Effective visualization assay for alcohol content sensing and methanol differentiation with solvent stimuli-responsive supramolecular ionic materials.

    Science.gov (United States)

    Zhang, Li; Qi, Hetong; Wang, Yuexiang; Yang, Lifen; Yu, Ping; Mao, Lanqun

    2014-08-05

    This study demonstrates a rapid visualization assay for on-spot sensing of alcohol content as well as for discriminating methanol-containing beverages with solvent stimuli-responsive supramolecular ionic material (SIM). The SIM is synthesized by ionic self-assembling of imidazolium-based dication C10(mim)2 and dianionic 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) in water and shows water stability, a solvent stimuli-responsive property, and adaptive encapsulation capability. The rationale for the visualization assay demonstrated here is based on the combined utilization of the unique properties of SIM, including its water stability, ethanol stimuli-responsive feature, and adaptive encapsulation capability toward optically active rhodamine 6G (Rh6G); the addition of ethanol into a stable aqueous dispersion of Rh6G-encapsulated SIM (Rh6G-SIM) destructs the Rh6G-SIM structure, resulting in the release of Rh6G from SIM into the solvent. Alcohol content can thus be visualized with the naked eyes through the color change of the dispersion caused by the addition of ethanol. Alcohol content can also be quantified by measuring the fluorescence line of Rh6G released from Rh6G-SIM on a thin-layer chromatography (TLC) plate in response to alcoholic beverages. By fixing the diffusion distance of the mobile phase, the fluorescence line of Rh6G shows a linear relationship with alcohol content (vol %) within a concentration range from 15% to 40%. We utilized this visualization assay for on-spot visualizing of the alcohol contents of three Chinese commercial spirits and discriminating methanol-containing counterfeit beverages. We found that addition of a trace amount of methanol leads to a large increase of the length of Rh6G on TLC plates, which provides a method to identify methanol adulterated beverages with labeled ethanol content. This study provides a simple yet effective assay for alcohol content sensing and methanol differentiation.

  13. Transesterification of waste vegetable oil under pulse sonication using ethanol, methanol and ethanol–methanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Guerra, Edith; Gude, Veera Gnaneswar, E-mail: gude@cee.msstate.edu

    2014-12-15

    Highlights: • Pulse sonication effect on transesterification of waste vegetable oil was studied. • Effects of ethanol, methanol, and alcohol mixtures on FAMEs yield were evaluated. • Effect of ultrasonic intensity, power density, and its output rates were evaluated. • Alcohol mixtures resulted in higher biodiesel yields due to better solubility. - Abstract: This study reports on the effects of direct pulse sonication and the type of alcohol (methanol and ethanol) on the transesterification reaction of waste vegetable oil without any external heating or mechanical mixing. Biodiesel yields and optimum process conditions for the transesterification reaction involving ethanol, methanol, and ethanol–methanol mixtures were evaluated. The effects of ultrasonic power densities (by varying sample volumes), power output rates (in W), and ultrasonic intensities (by varying the reactor size) were studied for transesterification reaction with ethanol, methanol and ethanol–methanol (50%-50%) mixtures. The optimum process conditions for ethanol or methanol based transesterification reaction of waste vegetable oil were determined as: 9:1 alcohol to oil ratio, 1% wt. catalyst amount, 1–2 min reaction time at a power output rate between 75 and 150 W. It was shown that the transesterification reactions using ethanol–methanol mixtures resulted in biodiesel yields as high as >99% at lower power density and ultrasound intensity when compared to ethanol or methanol based transesterification reactions.

  14. 26 CFR 48.4041-19 - Exemption for qualified methanol and ethanol fuel.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Exemption for qualified methanol and ethanol....4041-19 Exemption for qualified methanol and ethanol fuel. (a) In general. Under section 4041(b)(2... or use of qualified methanol or ethanol fuel. (b) Qualified methanol or ethanol fuel defined. For...

  15. ESR study of the effects of water, methanol, and ethanol on gamma-irradiation of starch

    International Nuclear Information System (INIS)

    Henderson, A.M.; Rudin, A.

    1981-01-01

    This investigation deals with the nature and relative abundance of stable radicals formed by gamma-irradiation of wheat starch at room temperature. Additions of equal weights of water, methanol, and ethanol were equally effective in reducing the content of stable radicals in starch which contained about 12% water before the additions. When, however, the starting material was dried starch with 2.9% initial water content additional water and methanol were better radical scavengers than ethanol. This difference is attributed to the superior ability of water and methanol to permeate the starch structure. Superficially different ESR spectra were obtained in products made by irradiating starch and starch that contained added water or methanol. Computer simulation of these spectra showed that they could be matched by superposition of the spectra of the same four component radicals, with some adjustments of relative intensities and peak widths. The structure of these radicals have been deduced from the spectral assignments and relative effects of the three solvents used on the intensities of the respective ESR spectra

  16. 26 CFR 48.4041-20 - Partially exempt methanol and ethanol fuel.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Partially exempt methanol and ethanol fuel. 48... Partially exempt methanol and ethanol fuel. (a) In general. Under section 4041(m), the sale or use of partially exempt methanol or ethanol fuel is taxed at the rate of 41/2 cents per gallon of fuel sold or used...

  17. Interference from ordinarily used solvents in the outcomes of Artemia salina lethality test

    Directory of Open Access Journals (Sweden)

    Sahgal Geethaa

    2013-01-01

    Full Text Available Methanol, ethanol, Tween 20 and dimethyl sulfoxide (DMSO are widely used as dissolving agents in Artemia salina lethality test (aka brine shrimp lethality test [BSLT] to screen the pharmaceutical properties of natural products. Nevertheless, there is lack of toxicity level of these solvents against brine shrimp. High concentration of these organic solvent might be toxic for this zoology invertebrate and interfere in the experimental outcomes. To avoid this, permissible concentration of the solvents used in BSLT was identified. BSLT was performed to evaluate the toxicity effect of Tween 20, methanol, ethanol and DMSO at 24 h post-treatment time point against A. salina. The suggested maximum working concentration (v/v for DMSO, methanol, ethanol was found to be 1.25% and that for Tween 20 was 0.16%. LC 50 for the solvents were 8.5% (DMSO, 6.4% (methanol, 3.4% (ethanol and 2.5% (Tween 20. The findings have shown a toxicity level among the solvents in descending order as Tween 20 > ethanol > methanol > DMSO. DMSO is a safer solvent to be used in BSLT compared with other tested solvents, whereas Tween 20 has been shown to be the most stringent solvent among the tested solvents. The findings are resourcefully useful to avoid interference of solvents in the assessment of natural products using BSLT.

  18. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Science.gov (United States)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinacé, Estevam V.

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature.

  19. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  20. Methanol, Ethanol and Propanol in EHD liquid bridging

    International Nuclear Information System (INIS)

    Fuchs, Elmar C; Wexler, Adam D; Agostinho, Luewton L F; Ramek, Michael; Woisetschläger, Jakob

    2011-01-01

    When a high-voltage direct-current is applied to two beakers filled with water or polar liquid dielectrica, a horizontal bridge forms between the two beakers. In this work such bridges made of methanol, ethanol, 1-propanol and 2-propanol are investigated with polarimetry and thermography. Whereas methanol, ethanol and 1-propanol bridges become warm like a water bridge, a 2-propanol bridge cools down relative to the surroundings. It is shown how the different stability of the primary and secondary alcoholate ions and the resulting small difference in conductivity between 1-propanol and 2-propanol is responsible for this novel effect.

  1. Effect of ethanol and methanol on growth of ruminal bacteria Selenomonas ruminantium and Butyrivibrio fibrisolvens.

    Science.gov (United States)

    Patterson, J A; Ricke, S C

    2015-01-01

    The effect of ethanol and methanol on growth of several ruminal bacterial strains was examined. Ethanol concentrations as low as 0.2% had a significant, but moderate, inhibitory effect on lag time or growth over time and 3.3% ethanol significantly inhibited maximum optical density obtained by both Selenomonas ruminantium and Butyrivibrio fibrisolvens. Little growth of either strain occurred at 10% ethanol concentrations. Methanol concentrations below 0.5% had little effect on either growth or maximum optical density of Selenomonas ruminantium whereas methanol concentrations below 3.3% had little effect on growth or maximum optical density of Butyrivibrio fibrisolvens. Higher methanol concentrations increasingly inhibited growth of both strains and no growth occurred at a 10% methanol concentration. Concentrations of ethanol or methanol used to add hydrophobic compounds to culture media should be kept below 1%.

  2. Radioisotope tracer study of co-reactions of methanol with ethanol using 11C-labelled methanol over alumina and H-ZSM-5

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Kumar, N.; Salmi, T.; Murzin, D.Yu

    2005-01-01

    Complete text of publication follows. The transformation of methanol has been investigated over alumina and H-ZSM-5 in our previous experiments by 11 C-radioisotope tracing. The main product in methanol conversion over alumina was dimethyl ether due to Lewis acid sites while over H-ZSM-5 mostly hydrocarbons were formed due to both Lewis and Brrnsted acid sites. With increasing temperature first the ethanol was dehydrated to diethyl ether followed by ethene formation over alumina and H-ZSM-5. In this work, 11 C-labelled methanol as radioisotope tracer was added to non-radioactive methanol for investigation of co-reaction with non-radioactive ethanol over alumina and H- ZSM-5. The 11 C-methanol tracer was used to distinguish the methanol derivates and co-reaction derivates of methanol with ethanol against non-radioactive ethanol derivates. The yield of methyl ethyl ether as mixed ether and the influence of ethanol for the yields of C 1 -C 5 hydrocarbons were studied as a function of reaction temperature and contact time. The 11 C-methanol was formed by a radiochemical process from 11 CO 2 produced at cyclotron. The mixture of methanol and ethanol was added to 11 C-methanol and injected to the catalyst. The catalysis was carried out in a glass tube fixed-bed reactor after its pretreatment. The derivates were analyzed by radio-gas chromatography (gas chromatograph with thermal conductivity detector coupled on-line with a radioactivity detector). The comparative analysis of yields of radioactive and non-radioactive products as a function of reaction temperature gives information about the reaction pathways. Over alumina the yields of dimethyl ether and methyl ethyl ether (co-product) as radioactive and diethyl ether with ethene as non-radioactive main products were monitored as a function of reaction temperature and reaction time in the range of 513-593 K. Alongside ethanol derivates the ethene turns into main product in contrast with methyl ethyl ether and diethyl

  3. Cooling crystallization of Indomethacin from different organic solvents

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Qu, Haiyan

    , 25, 35, and 45 °C. The solvents with varying polarities (ethanol, methanol, ethyl acetate, acetone, acetonitrile, and dichloromethane) were used for solubility measurement. Maximum solubility of IMC was observed in acetone, while acetonitrile showed the lowest solubility. Solid phase analysis...... of excess solute with XRPD and Raman spectroscopy confirmed formation of IMC solvate in acetone, methanol and dichloromethane at 15 °C. Based on solubility of IMC, the solvents ethanol, ethyl acetate, acetone, and dichloromethane were selected for crystallization experiments. Nucleation kinetics of IMC...... in selected solvents was investigated through the measurement of induction time at 5 °C and 15 °C. Longer induction times were observed for IMC in ethanol at both temperatures compared to the one in acetone. Metastable α form of IMC was obtained from ethanol, while solvate of IMC was produced from acetone....

  4. Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Almir Oliveira; Dias, Ricardo R.; Tusi, Marcelo M.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-900 Sao Paulo, SP (Brazil)

    2007-03-30

    PtRu/C, PtSn/C and PtSnRu/C electrocatalysts were prepared by the alcohol reduction process using ethylene glycol as the solvent and reduction agent and Vulcan Carbon XC72 as the support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry. The electrochemical oxidation of methanol and ethanol were studied by chronoamperometry using a thin porous coating technique. The PtSn/C electrocatalyst prepared by this methodology showed superior performance compared to the PtRu/C and PtSnRu/C electrocatalysts for methanol and ethanol oxidation at room temperature. (author)

  5. Effect of some organic solvents on oxidative phosphorylation in rat liver mitochondria

    DEFF Research Database (Denmark)

    Syed, Muzeeb; Skonberg, Christian; Hansen, Steen Honoré

    2013-01-01

    The effect of acetone, acetonitrile, dimethyl sulfoxide (DMSO), ethanol and methanol on oxidative phosphorylation (ATP synthesis) in rat liver mitochondria has been studied. All the organic solvents inhibited the oxidative phosphorylation in a concentration dependent manner, but with differences...... in potencies. Among the tested organic solvents, acetonitrile and acetone were more potent than ethanol, methanol, and DMSO. There was no significant difference in oxidative phosphorylation, compared to controls, when the concentrations of acetone was below 1% (v/v), of acetonitrile below 2% (v/v), of DMSO...... below 10% (v/v), of ethanol below 5% or of methanol below 2%, respectively. There was complete inhibition of oxidative phosphorylation at 50% (v/v) of acetone, acetonitrile and ethanol. But in the case of DMSO and methanol there were some residual activities observed at the 50% concentration level. DMSO...

  6. Photonic crystal based sensor for organic solvents and for solvent-water mixtures.

    Science.gov (United States)

    Fenzl, Christoph; Hirsch, Thomas; Wolfbeis, Otto S

    2012-12-12

    Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v) of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v) results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  7. Photonic Crystal Based Sensor for Organic Solvents and for Solvent-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Otto S. Wolfbeis

    2012-12-01

    Full Text Available Monodisperse polystyrene nanoparticles with a diameter of 173 nm were incorporated into a polydimethylsiloxane matrix where they display an iridescent color that can be attributed to the photonic crystal effect. The film is of violet color if placed in plain water, but turns to red in the presence of the non-polar solvent n-hexane. Several solvents were studied in some detail. We show that such films are capable of monitoring the water content of ethanol/water mixtures, where only 1% (v/v of water leads to a shift of the peak wavelength of reflected light by 5 nm. The method also can be applied to determine, both visually and instrumentally, the fraction of methanol in ethanol/methanol mixtures. Here, a fraction of 1% of methanol (v/v results in a wavelength shift of 2 nm. The reflected wavelength is not influenced by temperature changes nor impeded by photobleaching. The signal changes are fully reversible and response times are <1 s.

  8. Vapor-liquid equilibria of a minute amount of furfural in water-methanol-ethanol system; Mizu-methanol-ethanol keichu no biryo no furfural no kieki heiko

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, A.; Hatate, Y.; Uemura, Y. [Kagoshima University, Kagoshima (Japan). Faculty of Engineering

    1997-01-10

    Vapor-liquid equilibria of a water-methanol-ethanol system containing a minute amount of furfural were measured at atmospheric pressure by use of an Othmer-type still. The experimental results are represented by four triangular diagrams against the liquid compositions of the major components (water, methanol and ethanol), in which three diagrams show the vapor composition of the major components, respectively, and one diagram shows the equilibrium ratio of the trace component (furfural). The curved surface of the equilibrium ratio of the trace component exhibits a gentle downward slope in most areas, but shows a half-saddle face in the neighborhood of the water-ethanol side. 4 refs., 10 figs., 3 tabs.

  9. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol.

    Science.gov (United States)

    Marfak, A; Trouillas, P; Allais, D P; Calliste, C A; Cook-Moreau, J; Duroux, J L

    2003-09-01

    In this study, we irradiated the antioxidant kaempferol in ethanol and methanol solutions with gamma rays at doses ranging from 0.2-20 kGy. NMR and ES-MS spectroscopy were used to identify radiolysis products. Two depsides, [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) methyl acetate and [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) ethyl acetate, were the major compounds of kaempferol degradation in methanol and in ethanol, respectively. Other products formed in low concentrations were identified as [4-hydroxyphenyl](oxo) methyl acetate, [4-hydroxyphenyl](oxo) ethyl acetate, and depside [2-[(4'-hydroxybenzoyl)oxy]-4,6-dihydroxyphenyl](oxo) acetic acid. The formation of the latter was observed in both solvents. We propose degradation mechanisms that suggest that (.)CH(2)OH and CH(3)(.)CHOH, produced by solvent radiolysis, react with the 3-OH kaempferol group because of its high H-donor capacity. pi-Electron delocalization in the flavonoxy formed after the first H-transfer leads to C-ring opening and consequently to the formation of depsides. G calculation of the degradation products and of (.)CH(2)OH and CH(3)(.)CHOH radicals confirmed the proposed mechanism of kaempferol radiolysis. The rate constants for the reaction between kaempferol and these free radicals were also calculated. Formation of depside has also been observed in many studies of the oxidation of flavonoids; those studying human metabolism have suggested similar redox transformation of flavonols. The antioxidant activities of radiolysis products were evaluated and compared to those of kaempferol.

  10. Effect of solvent and temperature on solution-crystallized terfenadine

    International Nuclear Information System (INIS)

    Leitao, M. Luisa P.; Canotilho, Joao; Ferreira, Simone C.R.; Sousa, Adriano T.; Simoes Redinha, J.

    2004-01-01

    The aim of this work was to understand the crystallization process of terfenadine in solution. Cooling of saturated solutions prepared at 50 deg. C at different temperatures, evaporating the solvent from nearly saturated solutions at a certain temperature, and exposing ethanol solutions of terfenadine to water vapour atmosphere were the techniques used for obtaining terfenadine specimens. The characterization of these specimens was carried out by thermal microscopy, differential thermal analysis, thermogravimetry and powder X-ray diffraction. Crystalline phases, amorphous solids, and solvates were identified. For the solvents used in the present study, the crystallinity degree of terfenadine decreases from ethanol-water to ethanol and from this to methanol. Decreasing the temperature promotes the formation of amorphous solid material; at low temperatures, methanol and ethanol solvates are also formed. Desolvation, following the terfenadine aggregation process in solution accounts for the different behaviour found for the solvents and for the effect of temperature on the structure. The role of the solvent as structure-mediator is explained on the grounds of the values previously published for the enthalpy of solution of terfenadine in the solvents under study

  11. Solubility of 3-Caffeoylquinic Acid in Different Solvents at 291-340 K

    Science.gov (United States)

    Wang, Y. T.; Zhang, C. L.; Cheng, X. L.; Zhao, J. H.; Wang, L. C.

    2017-12-01

    Using a laser monitoring observation technique the solubilities of 3-caffeoylquinic acid in pure solvents, water, methanol, ethanol, 1-propanol, 1-butanol, and two mixed solvents, methanol + water, ethanol + water have been determined at temperature range from 291-340 K. The experimental data were correlated by the modified Apelblat equation, λ h equation, and ideal model. The calculated solubilities were turned out very consistent with the experimental results, and the modified Apelblat equation shows the best agreement.

  12. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  13. Temperature dependence on mutual solubility of binary (methanol + limonene) mixture and (liquid + liquid) equilibria of ternary (methanol + ethanol + limonene) mixture

    International Nuclear Information System (INIS)

    Tamura, Kazuhiro; Li Xiaoli; Li Hengde

    2009-01-01

    Mutual solubility data of the binary (methanol + limonene) mixture at the temperatures ranging from 288.15 K close to upper critical solution temperature, and ternary (liquid + liquid) equilibrium (tie-lines) of the (methanol + ethanol + limonene) mixture at the temperatures (288.15, 298.15, and 308.15) K have been obtained. The experimental results have been represented accurately in terms of the extended and modified UNIQUAC models with binary parameters, compared with the UNIQUAC model. The temperature dependence of binary and ternary (liquid + liquid) equilibrium for the binary (methanol + limonene) and ternary (methanol + ethanol + limonene) mixtures could be calculated successfully using the extended and modified UNIQUAC model

  14. Methanol and ethanol vapor conversion in gas discharge with strongly non-uniform distribution of electric field on atmospheric pressure

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Kudin, D.V.; Rodionov, S.V.; Pis'menetskoj, A.S.; Dotsenko, Yu.V.

    2010-01-01

    The barrierless gas discharge of negative polarity with strongly non-uniform distribution of electrical field in the methanol and ethanol vapour was studied. It is shown that level of methanol and ethanol conversion depended from power consumed by the discharge and exposition time for gas mixture in discharge zone. The condition for deep conversion of the methanol and ethanol vapours were determined. The water and carbon dioxide are the end products for the methanol and ethanol conversion. Formaldehyde and formic acid are the intermediates products in the conversion of methanol. And ethanol has a number of different compounds, including acetic acid, acetaldehyde, etc.

  15. The use of organic solvents in mutagenicity testing.

    Science.gov (United States)

    Abbondandolo, A; Bonatti, S; Corsi, C; Corti, G; Fiorio, R; Leporini, C; Mazzaccaro, A; Nieri, R; Barale, R; Loprieno, N

    1980-10-01

    13 organic substances (dimethylsulfoxide, methanol, ethanol, n-propyl alcohol, sec-butyl alcohol, tert-butyl alcohol, dl-sec-amyl alcohol, ethylene glycol, ethylene glycol monomethyl ether, 1,4-diethylene dioxide, acetone, methyl acetate and formamide) were considered from the standpoint of their use as solvents for water-insoluble chemicals to be tested for mutagenicity. First, the effect of these solvents on cell survival was studied in the yeast Schizosaccharomyces pombe and in V79 Chinese hamster cells. 8 solvents showing relatively low toxicity on either cell system (dimethylsulfoxide, ethanol, ethylene glycol, ethylene glycol monomethyl ether, 1,4-diethylene dioxide, acetone, methyl acetate and formamide) were tested for their effect on aminopyrine demethylase. 4 solvents (ethanol, 1,4-diethylene dioxide, methyl acetate and formamide) showed a more or less pronounced adverse effect on the microsomal enzymic activity. The remaining 4 and methanol (whose effect on aminopyrine demethylase was not testable) were assayed for mutagenicity in S. pombe. They all gave negative results both with and without the post-mitochondrial fraction from mouse liver.

  16. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    Energy Technology Data Exchange (ETDEWEB)

    Wongyao, N. [The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, A., E-mail: apichai.the@kmutt.ac.t [Fuel Cell and Hydrogen Research and Engineering Center, Clean Energy System Group, PDTI, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand); Therdthianwong, S. [Department of Chemical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140 (Thailand)

    2011-07-15

    Research highlights: {yields} We examined the performance of direct alcohol fuel cells fed with mixed alcohol. {yields} PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. {yields} Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. {yields} PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  17. Performance of direct alcohol fuel cells fed with mixed methanol/ethanol solutions

    International Nuclear Information System (INIS)

    Wongyao, N.; Therdthianwong, A.; Therdthianwong, S.

    2011-01-01

    Research highlights: → We examined the performance of direct alcohol fuel cells fed with mixed alcohol. → PtRu-PtSn/C and PtRu/C as catalysts for mixed alcohol electrooxidation reaction. → Misplace adsorption of ethanol on PtRu/C caused the cell performance drop. → PtRu/C showed higher performance than PtRu-PtSn/C for mixed alcohol fuel. -- Abstract: In combining the advantages of both methanol and ethanol, direct alcohol fuel cells fed with mixed alcohol solutions (1 M methanol and 1 M ethanol in varying volume ratios) were tested for performance. Employing a PtRu-PtSn/C catalyst as anode, cell performance was found to diminish rapidly even at 2.5% by volume ethanol mixture. Further increase of ethanol exceeded 10%, the cell performance gradually decreased and finally approached that of direct ethanol fuel cells. The causes of the decrease in the cell performance were the slow electro-oxidation of ethanol and the misplaced adsorption of ethanol on PtRu/C. By comparing the PtRu-PtSn/C cell with the PtRu/C cell operated with mixed alcohol solutions, the cell using PtRu/C as an anode catalyst provided higher power density since more PtRu/C surface was available for methanol oxidation reaction and less ohmic resistance of PtRu/C than that of PtRu-PtSn/C. In order to reach optimization of DAFC performance fed with mixed alcohol, the electrocatalyst used for the anode must selectively adsorb an alcohol, especially ethanol.

  18. Effect of fumigation methanol and ethanol on the gaseous and particulate emissions of a direct-injection diesel engine

    Science.gov (United States)

    Zhang, Z. H.; Tsang, K. S.; Cheung, C. S.; Chan, T. L.; Yao, C. D.

    2011-02-01

    Experiments were conducted on a four-cylinder direct-injection diesel engine with methanol or ethanol injected into the air intake of each cylinder, to compare their effect on the engine performance, gaseous emissions and particulate emissions of the engine under five engine loads at the maximum torque speed of 1800 rev/min. The methanol or ethanol was injected to top up 10% and 20% of the engine loads under different engine operating conditions. The experimental results show that both fumigation methanol and fumigation ethanol decrease the brake thermal efficiency (BTE) at low engine load but improves it at high engine load; however the fumigation methanol has higher influence on the BTE. Compared with Euro V diesel fuel, fumigation methanol or ethanol could lead to reduction of both NOx and particulate mass and number emissions of the diesel engine, with fumigation methanol being more effective than fumigation ethanol in particulate reduction. The NOx and particulate reduction is more effective with increasing level of fumigation. However, in general, fumigation fuels increase the HC, CO and NO 2 emissions, with fumigation methanol leading to higher increase of these pollutants. Compared with ethanol, the fumigation methanol has stronger influence on the in-cylinder gas temperature, the air/fuel ratio, the combustion processes and hence the emissions of the engine.

  19. The Role of Solvent Polarity on Low-Temperature Methanol Synthesis Catalyzed by Cu Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ahoba-Sam, Christian [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway); Olsbye, Unni [Department of Chemistry, University of Oslo, Oslo (Norway); Jens, Klaus-Joachim, E-mail: Klaus.J.Jens@usn.no [Department of Process, Energy and Environmental Technology, University College of Southeast Norway, Porsgrunn (Norway)

    2017-07-14

    Methanol syntheses at low temperature in a liquid medium present an opportunity for full syngas conversion per pass. The aim of this work was to study the role of solvents polarity on low-temperature methanol synthesis reaction using eight different aprotic polar solvents. A “once through” catalytic system, which is composed of Cu nanoparticles and sodium methoxide, was used for methanol synthesis at 100°C and 20 bar syngas pressure. Solvent polarity rather than the 7–10 nm Cu (and 30 nm Cu on SiO{sub 2}) catalyst used dictated trend of syngas conversion. Diglyme with a dielectric constant (ε) = 7.2 gave the highest syngas conversion among the eight different solvents used. Methanol formation decreased with either increasing or decreasing solvent ε value of diglyme (ε = 7.2). To probe the observed trend, possible side reactions of methyl formate (MF), the main intermediate in the process, were studied. MF was observed to undergo two main reactions; (i) decarbonylation to form CO and MeOH and (ii) a nucleophilic substitution to form dimethyl ether and sodium formate. Decreasing polarity favored the decarbonylation side reaction while increasing polarity favored the nucleophilic substitution reaction. In conclusion, our results show that moderate polarity solvents, e.g., diglyme, favor MF hydrogenolysis and, hence, methanol formation, by retarding the other two possible side reactions.

  20. Determination of mangiferin solubility in solvents used in the biopharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Jhoany Acosta

    2016-04-01

    Full Text Available Context: Pharmacological properties and studies of methods of extraction of mangiferin have been reported, but there are not studies related to the solubility of mangiferin in the solvents used in the pharmaceutical industry. Aims: Study the solubility of mangiferin in different solvents used in the pharmaceutical industry. Methods: The mangiferin used had a purity of 97.3% determined by High-Performance Liquid Chromatographic (HPLC, and solubility measurements were made in ethanol, methanol, water, acetone, diethyl ether, and hexane at 5, 15, 30, 40, 50 and 600C of temperature. The mangiferin concentrations were determined by ultraviolet spectrometry at 254 nm. The experimental solubility data were correlated with the Van´t Hoff equation and the dissolution heat determined. Results: The solubility of mangiferin in pure solvents decreases with increasing of temperature and in the following order: ethanol>methanol>water>diethyl ether>acetone>n hexane. Conclusions: This results indicated that mangiferin is slightly soluble in ethanol, sparingly soluble in methanol and water and practically insoluble in diethyl ether, acetone, and n-hexane.

  1. Effect of extraction solvents on polyphenols and antioxidant activity of medicinal halophytes

    International Nuclear Information System (INIS)

    Qasim, M.; Aziz, I.; Gul, B.

    2016-01-01

    This study was conducted to determine the most effective solvent for extraction of polyphenols and antioxidant activity of medicinally important coastal halophytes (Thespesia populneoides, Salvadora persica, Ipomoea pes-caprae, Suaeda fruticosa and Pluchea lanceolata) known for high antioxidant potential. Five different solvents (water, 80% methanol, 80% ethanol, acetone and chloroform) were used to quantify polyphenols including total phenolic (TPC), total flavonoid (TFC) and proanthocyanidin contents (PC) and antioxidant capacity using DPPH radical scavenging and Ferric reducing antioxidant power (FRAP) activities. Among solvents of different polarities 80% methanol appeared most effective for polyphenol extraction. Thespesia populneoides had the highest polyphenols (TPC, TFC and PC) followed by Salvadora persica. Highest antioxidant activity was also found in T. populneoides and S. persica using the same solvent (80% methanol) which appeared better than synthetic antioxidants (BHA and BHT). The correlation analyses of each solvent showed strong to weak relationships among all studied parameters with maximum values (r and R2) in methanol followed by ethanol and water. Weaker correlation of acetone and chloroform indicates low capacity of these solvents both for polyphenol extraction and antioxidant activity. Our results reveal that aqueous methanol extracts of coastal halophytes had comparatively higher antioxidant activity than commercial antioxidants which indicate both their prospective efficacy and potential to replace synthetic derivatives from edible and medicinal products. (abstract)

  2. Solvent consumption in non-catalytic alcohol solvolysis of biorefinery lignin

    DEFF Research Database (Denmark)

    Nielsen, J. B.; Jensen, A.; Schandel, Christian Bækhøj

    2017-01-01

    Lignin solvolysis in supercritical alcohols provides a method for producing a deoxygenated liquid bio-oil. Solvent consumption is however inevitable and due to the high cost of alcohols, relative to a bio-oil product, it can hinder commercial viability. In order to investigate the reactions...... of solvent consumption we studied solvolysis of biorefinery lignin in several primary alcohols. Lignin solvolysis in methanol, ethanol, 1-propanol and 1-butanol performed similarly with respect to bio-oil composition; however, methanol gave much lower bio-oil yield. Solvent consumption increases...... with reaction temperature for all alcohols and from 10 wt% at 300 °C to 35 wt% at 400 °C when using ethanol. The mechanism for solvent consumption was found mainly to take place through three different reactions: direct decomposition to gas through decarbonylation, formation of light condensation products...

  3. Microbial Community Changes in Response to Ethanol or Methanol Amendments for U(VI) Reduction

    International Nuclear Information System (INIS)

    Vishnivetskaya, Tatiana A.; Brandt, Craig C.; Madden, Andrew; Drake, Meghan M.; Kostka, Joel; Akob, Denise M.; Kusel, Kirsten; Palumbo, Anthony Vito

    2010-01-01

    Microbial community responses to ethanol, methanol and methanol + humics amendments in relationship to uranium bioremediation were studied in laboratory microcosm experiments using sediments and ground water from a uranium-contaminated site in Oak Ridge, Tennessee. Ethanol addition always resulted in uranium reduction at rate of 0.8-1.0 mol l -1 d -1 while methanol addition did so occasionally at rate 0.95 mol l -1 d -1 . The type of carbon source added, the duration of incubation, and the sampling site influenced the bacterial community structure upon incubation. Analysis of 16S rRNA gene clone libraries indicated (1) bacterial communities found in ethanol- and methanol-amended samples with U(VI) reduction were similar due to presence of -Proteobacteria, and -Proteobacteria (members of the families Burkholderiaceae, Comamonadaceae, Oxalobacteraceae, and Rhodocyclaceae); (2) methanol-amended samples without U(VI) reduction exhibited the lowest diversity and the bacterial community contained 69.2-92.8% of the family Methylophilaceae; and (3) the addition of humics resulted in an increase of phylogenetic diversity of -Proteobacteria (Rodoferax, Polaromonas, Janthinobacterium, Methylophilales, unclassified) and Firmicutes (Desulfosporosinus, Clostridium).

  4. Quantification of methanol in the presence of ethanol by selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Chambers-Bédard, Catherine; Ross, Brian M

    The quantification of trace compounds in alcoholic beverages is a useful means to both investigate the chemical basis of beverage flavor and to facilitate quality control during the production process. One compound of interest is methanol which, due to it being toxic, must not exceed regulatory limits. The analysis of headspace gases is a desirable means to do this since it does not require direct sampling of the liquid material. One established means to conduct headspace analysis is selected ion flow tube mass spectrometry (SIFT-MS). The high concentration of ethanol present in the headspace of alcoholic drinks complicates the analysis, however, via reacting with the precursor ions central to this technique. We therefore investigated whether methanol could be quantified in the presence of a large excess of ethanol using SIFT-MS. We found that methanol reacted with ionized ethanol to generate product ions that could be used to quantify methanol concentrations and used this technique to quantify methanol in beverages containing different quantities of ethanol. We conclude that SIFT-MS can be used to quantify trace compounds in alcoholic beverages by determining the relevant reaction chemistry.

  5. Osmotic and activity coefficients in the binary solutions of 1-butyl-3-methylimidazolium chloride and bromide in methanol or ethanol at T = 298.15 K from isopiestic measurements

    International Nuclear Information System (INIS)

    Sardroodi, Jaber Jahanbin; Azamat, Jafar; Atabay, Maryam

    2011-01-01

    Highlights: → The osmotic coefficients of the solutions of 1-butyl-3-methylimidazolium chloride and bromide in ethanol and methanol have been measured. → Measured osmotic coefficients were correlated using NRTL and Pitzer models. → Vapor pressures were evaluated from the correlated osmotic coefficients. → Model parameters have been interpreted in terms of ion-ion and ion-solvent interactions. - Abstract: Osmotic coefficients of the binary solutions of two room-temperature ionic liquids (1-butyl-3-methylimidazolium chloride and bromide) in methanol and ethanol have been measured at T = 298.15 K by the isopiestic method. The experimental osmotic coefficient data have been correlated using a forth-order polynomial in terms of (molality) 0.5 , with both, ion interaction model of Pitzer and electrolyte non-random two liquid (e-NRTL) model of Chen. The values of vapor pressures of above-mentioned solutions have been calculated from the osmotic coefficients. The model parameters fitted to the experimental osmotic coefficients have been used for prediction of the mean ionic activity coefficients of those ionic liquids in methanol and ethanol.

  6. Ni hollow spheres as catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hu, Yonghong; Rong, Jianhua; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Jiang, San Ping [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2007-08-15

    In this paper, we successfully synthesized Ni hollow spheres consisting of needle-like nickel particles by using silica spheres as template with gold nanoparticles seeding method. The Ni hollow spheres are applied to methanol and ethanol electrooxidation in alkaline media. The results show that the Ni hollow spheres give a very high activity for alcohol electrooxidation at a very low nickel loading of 0.10 mg cm{sup -2}. The current on Ni hollow spheres is much higher than that on Ni particles. The onset potential and peak potential on Ni hollow spheres are more negative than that on Ni particles for methanol and ethanol electrooxidation. The Ni hollow spheres may be of great potential in alcohol sensor and direct alcohol fuel cells. (author)

  7. Analysis of transesterification comparing processes with methanol and ethanol for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna Leticia Montenegro Turtelli; Zorzeto, Thais Queiroz; Park, Kil Jin [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: annalets@feagri.unicamp.br; Bevilaqua, Gabriela [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Quimica

    2008-07-01

    The increasing demand for energy on the industrialized world stimulates researches in a renewable fuel. Biodiesel appears like an alternative and utilizes a vegetable oil or animal fat as raw material. The most common method for conversion of the raw material in fuel that can be utilized in Diesel engines is called transesterification. Brazil has a big agricultural potential to produce grains and oils. One of them is the peanut oil that is predominantly cultivated in the southeast of Brazil. There is a prevision that the peanut production reaches 232 thousand tons this year. In this work was evaluated the methanol transesterification and ethanol transesterification of peanut oil using a basic catalyst. The comparison between reactions with the two alcohols showed that methyl esters yield was greater than ethyl esters, with maximum yield of 88.04% for methanol and 84.64% for ethanol. Besides the higher yield, reactions with methanol are easily conducted than with ethanol, the biodiesel purification treatment of final product is quickly and the separation between esters and glycerol is instantaneous. (author)

  8. Study of intermolecular interactions in binary mixtures of 2-(dimethylamino)ethanol with methanol and ethanol at various temperatures

    International Nuclear Information System (INIS)

    Pandey, Puneet Kumar; Pandey, Vrijesh Kumar; Awasthi, Anjali; Nain, Anil Kumar; Awasthi, Aashees

    2014-01-01

    Graphical abstract: The densities and ultrasonic speeds of the binary mixtures over the entire composition range were measured at various temperatures at atmospheric pressure. The excess molar volumes, isentropic compressibilities, and molar isentropic compressions have been calculated. The variations of these parameters with composition and temperature are discussed. The IR spectra were recorded they further supported the conclusion drawn from excess parameters, which indicates the presence of intermolecular hydrogen bonding between the oxygen atom of DMAE molecules and hydrogen atom of methanol and ethanol molecules in these mixtures.. - Highlights: • The study reports density and ultrasonic velocity data of 2-(dimethylamino)ethanol + methanol/ethanol mixtures. • To elucidate the interactions in 2-(dimethylamino)ethanol + methanol/ethanol binary mixtures. • Provides information on nature and relative strength of interactions in these mixtures. • Correlates physicochemical properties with interactions in these mixtures. - Abstract: The densities, ρ and ultrasonic speeds, u of the binary mixtures of 2-(dimethylamino)ethanol (DMAE) with methanol/ethanol, including those of pure liquids, over the entire composition range were measured at 298.15, 308.15 and 318.15 K. From the experimental data, the excess molar volumes, V m E and excess isentropic compressibilities, κ s E have been calculated. The excess partial molar volumes, V ¯ m,1 E and V ¯ m,2 E and excess partial molar isentropic compressions, K ¯ s,m,1 E and K ¯ s,m,2 E over the whole composition range; and partial molar volumes, V ¯ m,1 ° and V ¯ m,2 ° , partial molar isentropic compressions, K ¯ s,m,1 ° and K ¯ s,m,2 ° , excess partial molar volumes, V ¯ m,1 °E and V ¯ m,2 °E , and excess partial molar isentropic compressions, K ¯ s,m,1 °E and K ¯ s,m,2 °E at infinite dilution have also been calculated. The variations of these parameters with composition and temperature are

  9. Transesterification of rapeseed and palm oils in supercritical methanol and ethanol

    International Nuclear Information System (INIS)

    Biktashev, Sh.A.; Usmanov, R.A.; Gabitov, R.R.; Gazizov, R.A.; Gumerov, F.M.; Gabitov, F.R.; Abdulagatov, I.M.; Yarullin, R.S.; Yakushev, I.A.

    2011-01-01

    The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. The studies were performed using the experimental setups which are working in batch and continuous regimes. The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. Also the effect of preliminary ultrasonic treatment (ultrasonic irradiation, emulsification of immiscible oil and alcohol mixture) of the initial reagents (emulsion preparation) on the stage before transesterification reaction conduction on the conversion yield was studied. We found that the preliminary ultrasonic treatment of the initial reagents increases considerably the conversion yield. Optimal technological conditions were determined to be as follows: pressure within 20-30 MPa, temperature within 573-623 K. The optimal values of the oil to alcohol ratio strongly depend on preliminary treatment of the reaction mixture. The study showed that the conversion yield at the same temperature with 96 wt.% of ethanol is higher than with 100 wt.% of methanol. -- Highlights: → The results of the rapeseed and palm oils transesterification with supercritical methanol and ethanol were presented. → The effect of reaction conditions (temperature, pressure, oil to alcohol ratio, reaction time) on the biodiesel production (conversion yield) was studied. → Transesterification of vegetable oil with supercritical alcohols. → Effect of temperature and pressure on conversion yield. → Preliminary ultrasonic treatment of the vegetable oil+methanol mixture.

  10. Effect of water-methanol mixed solvents on the ultrasonic relaxation of cadmium acetate

    International Nuclear Information System (INIS)

    Sree Rama Murthy, J.; Ramachandra Rao, B.

    1976-01-01

    Measurements of ultrasonic absorption have been made by pulse technique in 1 M solutions of cadmium acetate with water-methanol mixed solvents. Results are analysed by assuming a single relaxation mechanism. The characteristic frequency of relaxation is found to decrease with increasing composition of methanol in the solvent. It is proposed that the mechanism of relaxation may be perturbation of chemical equilibrium between complex CdAc + ions and Cd ++ , Ac - species by soundwaves. (author)

  11. Experimental measurement and modelling of solubility of inosine-5′-monophosphate disodium in pure and mixed solvents

    International Nuclear Information System (INIS)

    Zou, Fengxia; Zhuang, Wei; Wu, Jinglan; Zhou, Jingwei; Liu, Qiyan; Chen, Yong; Xie, Jingjing; Zhu, Chenjie; Guo, Ting; Ying, Hanjie

    2014-01-01

    Graphical abstract: - Highlights: • Solubility of 5′-IMPNa 2 in various solvents was studied for the first time. • The solubility could be ranked as follows: water > methanol > ethanol > acetone. • Modified Apelblat equation gave the best correlating results. • Mixing Gibbs free energies, enthalpies, and entropies were predicted. • Solubility data and equations can optimise the crystallization conditions. - Abstract: The solubility of biological chemicals in solvents provide important fundamental data and is generally considered as an essential factor in the design of crystallization processes. The equilibrium solubility data of inosine-5′-monophosphate disodium (5′-IMPNa 2 ) in water, methanol, ethanol, acetone, as well as in the solvent mixtures (methanol + water, ethanol + water, acetone + water), were measured by an isothermal method at temperatures ranging from (293.15 to 313.15) K. The measured data in pure and mixed solvents were then modelled using the modified Apelblat equation, van’t Hoff equation, λh equation, ideal model and the Wilson model. The modified Apelblat equation showed the best modelling results, and it was therefore used to predict the mixing Gibbs free energies, enthalpies, and entropies of 5′-IMPNa 2 in pure and binary solvents. The positive values of the calculated partial molar Gibbs free energies indicated the variations in the solubility trends of 5′-IMPNa 2 . Water and ethanol (in the binary mixture with water) were found to be the most effective solvent and anti-solvent, respectively

  12. Free radical scavenging capacity and antioxidant activity of methanolic and ethanolic extracts of plum (Prunus domestica L. in both fresh and dried samples

    Directory of Open Access Journals (Sweden)

    Amin Morabbi Najafabad

    2014-09-01

    Full Text Available Objectives: Consumption of fruits, such as plums and prunes, is useful in treating blood circulation disorder, measles, digestive disorder, and prevention of cancer, diabetes, and obesity. The paper presents a description of antioxidant and antiradical capacity of plum (Prunus domestica L. in both fresh and dried samples. Materials and Methods: Samples were mixed with methanol and ethanol (as solvents and were extracted on magnetic shaker, separately. The experiments were carried out to measure the Total Phenolic Content (TPC, Total Flavonoid Content (TFC, Total Antioxidant Capacity (TAC, Reducing Power Assay (RPA, Chain Breaking Activity (CBA, and quantity of Malondialdehyde (MDA, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH,Nitric Oxide (NO,Hydrogen peroxide (H2O2 and superoxide(O2- radicals inhibition. Results: The results showed that the highest values for the TPC, TFC,TAC, RPA, CBA, DPPH, and NO were related to ethanolic extractsof dried sample which showed statistically significant differences (p2O2 and O2-were related to ethanolic extracts of fresh sample. The correlations data were analyzed among all parameters and the TPC and TFC had a significant correlation (r2=0.977. Moreover, it was found that methanol was more successful in extraction procedure than ethanol (p

  13. Proceedings of the international symposium on alcohol fuel technology: methanol and ethanol

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    The papers presented dealt with the following topics: international situation and economic and political aspects, use of alcohol fuels as automotive fuels, production of methanol and methyl fuels, production of ethanol, methanol application and modeling, alcohol fuel optimization, and environmental considerations. Each paper was prepared for introduction into the EDB data base. (JSR)

  14. Anti-inflammatory and cytotoxic effects of methanol, ethanol, and water extracts of Angelicae Dahuricae Radix.

    Science.gov (United States)

    Wang, Myeong-Hyeon; Jeong, Su-Hyeon; Guo, Huifang; Park, Jun-Beom

    2016-01-01

    Angelicae Dahuricae Radix has been used for the treatment of headaches, rhinitis, and colds in traditional medicine. Methanol, ethanol, and water extracts of Angelicae Dahuricae Radix were collected. A statistically significant reduction in the cellular viability of the mouse leukemic monocyte macrophage cell line was noted after treatment with water extracts of Angelicae Dahuricae Radix. Stimulation with lipopolysaccharides (LPS) for 24 h led to a robust increase in nitric oxide production, but Angelicae Dahuricae Radix at 400 μg/mL concentration significantly suppressed nitric oxide produced by the LPS-stimulated RAW 264.7 cells in 70% ethanol, absolute ethanol, 70% methanol, absolute methanol, and boiling water groups (P ethanol extract of Angelicae Dahuricae Radix suppressed the LPS-stimulated inducible nitric oxide synthase, interleukin-1β, and cycloxygenase-2 expression. Angelicae Dahuricae Radix showed significant cytotoxic effects on the human adenocarcinoma cell line and keratin-forming cell line. (J Oral Sci 58, 125-131, 2016).

  15. Effect of alkanolammonium formates ionic liquids on vapour liquid equilibria of binary systems containing water, methanol, and ethanol

    International Nuclear Information System (INIS)

    Li Xuemei; Shen Chong; Li Chunxi

    2012-01-01

    Highlights ► Vapour pressures for six ternary systems containing an IL were measured. ► Components studied were water, ethanol, methanol, and alkanolammonium formates. ► The isobaric VLE were predicted using the fitted binary NRTL parameters. ► The ILs studied can generate a promising salt effect on VLE of azeotrope. ► [HMEA][HCOO] might be used as a potential entrainer in extractive distillation. - Abstract: Vapour pressures were measured using a quasi-static ebulliometer for the pseudo-binary mixtures of (water + ethanol), (water + methanol), and (methanol + ethanol) containing an alkanolammonium-based ionic liquid (IL), namely, mono-ethanolammonium formate ([HMEA][HCOO]) and di-ethanolammonium formate ([HDEA][HCOO]), respectively, with fixed IL mass fraction of 0.30 and over the temperature ranges of (292.12 to 371.13) K. The vapour pressures of the IL-containing ternary systems were favourably correlated using the NRTL model with an overall average absolute relative deviation (AARD) of 0.0082. Further, the salt effects of [HMEA][HCOO] and [HDEA][HCOO] on isobaric vapour liquid equilibria (VLE) of azeotrope and close boiling mixture, especially for the mixtures of (water + ethanol) and (methanol + ethanol), were investigated and compared with other ILs in terms of the x′–y phase diagrams predicted with the binary NRTL parameters. It is demonstrated that the relative volatilities of ethanol to water and ethanol to methanol are enhanced, and [HMEA][HCOO] might be used as a promising entrainer for the efficient separation of ethanol aqueous solution by special rectification.

  16. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Science.gov (United States)

    Zhao, Xin-Mei; Wang, Zhang-Qian; Shu, Shao-Hua; Wang, Wen-Juan; Xu, Hai-Jie; Ahn, Young-Joon; Wang, Mo; Hu, Xuebo

    2013-01-01

    Huperzine A (HupA) is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment) coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  17. Equilibrium data on ethanol-water-solvent ternaries

    Directory of Open Access Journals (Sweden)

    I. Kirbaslar

    2000-06-01

    Full Text Available Experimental liquid-liquid equilibria of water-ethanol-1-nonanol and water-ethanol-1-decanol systems were investigated at 303.16± 0.20 K. The reliability of the experimental tie-line data was ascertained by using Othmer-Tobias and Hand plots. Distribution coefficients (Di and separation factors (S were evaluated for the immiscibility region. It is concluded that the solvents with high boiling point, 1-nonanol and 1-decanol, are suitable separating agents for dilute aqueous ethyl alcohol solutions.

  18. Simultaneous determination of methanol, acetaldehyde, acetone, and ethanol in human blood by gas chromatography with flame ionization detection.

    Science.gov (United States)

    Schlatter, J; Chiadmi, F; Gandon, V; Chariot, P

    2014-01-01

    Methanol, acetaldehyde, acetone, and ethanol, which are commonly used as biomarkers of several diseases, in acute intoxications, and forensic settings, can be detected and quantified in biological fluids. Gas chromatography (GC)-mass spectrometry techniques are complex, require highly trained personnel and expensive materials. Gas chromatographic determinations of ethanol, methanol, and acetone have been reported in one study with suboptimal accuracy. Our objective was to improve the assessment of these compounds in human blood using GC with flame ionization detection. An amount of 50 µl of blood was diluted with 300 µl of sterile water, 40 µl of 10% sodium tungstate, and 20 µl of 1% sulphuric acid. After centrifugation, 1 µl of the supernatant was injected into the gas chromatograph. We used a dimethylpolysiloxane capillary column of 30 m × 0.25 mm × 0.25 µm. We observed linear correlations from 7.5 to 240 mg/l for methanol, acetaldehyde, and acetone and from 75 to 2400 mg/l for ethanol. Precision at concentrations 15, 60, and 120 mg/l for methanol, acetaldehyde, and acetone and 150, 600, and 1200 mg/ml for ethanol were 0.8-6.9%. Ranges of accuracy were 94.7-98.9% for methanol, 91.2-97.4% for acetaldehyde, 96.1-98.7% for acetone, and 105.5-111.6% for ethanol. Limits of detection were 0.80 mg/l for methanol, 0.61 mg/l for acetaldehyde, 0.58 mg/l for acetone, and 0.53 mg/l for ethanol. This method is suitable for routine clinical and forensic practices.

  19. Antioxidant Activities of Methanol Extract and Solvent Fractions of ...

    African Journals Online (AJOL)

    Purpose: To determine the antioxidant activity of methanol extract (ME) and solvent fractions of Avrainvillea erecta as well as their total phenolic and flavonoid contents. Methods: The antioxidant activities of ME as well as its chloroform, butanol, and aqueous fractions (CF, BF and WF, respectively) of A. erecta were ...

  20. Mixed methanol/ethanol on transesterification of waste cooking oil using Mg/Al hydrotalcite catalyst

    International Nuclear Information System (INIS)

    Ma, Yingqun; Wang, Qunhui; Zheng, Lu; Gao, Zhen; Wang, Qiang; Ma, Yuhui

    2016-01-01

    Biodiesel production from waste cooking oil using calcined Mg/Al HT (hydrotalcite) as heterogeneous catalyst was investigated. This study describes the calcined Mg/Al HT prepared under optimal conditions to catalyse waste cooking oil for biodiesel preparation and proposes a plausible catalysis mechanism. The catalysts were characterised by Fourier Transform-Infrared, X-ray diffraction, Thermal Gravity Analysis-Differential thermal gravity and Brunner−Emmet−Teller measurements. Hydrotalcite with Mg/Al ratio of 3:1 showed a uniform mesoporous structure, excellent crystallinity, high surface area (270.5 m 2 /g) and good catalytic activity (at 500 °C calcination). The highest biodiesel yield obtained was 95.2% under optimised conditions of alcohol/oil molar ratio of 6:1, methanol/ethanol molar ratio of 4:2, catalyst content of 1.5%, reaction time of 2.5 h, reaction temperature of 80 °C. Mixed methanol/ethanol showed good synergistic effects as an ester exchange agent, and the catalyst was easily separated and recycled. Therefore, Mg/Al hydrotalcite can effectively catalyse waste cooking oil for biodiesel preparation with mixed methanol/ethanol. - Highlights: • Mg/Al hydrotalcite filtered and stirred with acetone has the better dispersion. • Mg/Al hydrotalcite used as catalyst to prepare biodiesel. • Catalytic mechanism of Mg/Al hydrotalcite was investigated. • Mixed Methanol/Ethanol used as transesterification agent to prepare biodiesel. • Regenerative catalyst was assessed to make catalyst reuse well.

  1. Effect of solvent-induced structural modifications on optical ...

    Indian Academy of Sciences (India)

    Administrator

    use of methanol as solvent leads to a strong enhancement of PL intensity of CdS quantum dots for use in opto- electronic ... obtain a clearer understanding of the relative importance ... deionized water and ethanol several times and dried in.

  2. Methanol and ethanol from lignocellulosic Swedish wood fuels. Appendices. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-01-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value

  3. Ethanol and methanol can improve huperzine A production from endophytic Colletotrichum gloeosporioides ES026.

    Directory of Open Access Journals (Sweden)

    Xin-Mei Zhao

    Full Text Available Huperzine A (HupA is a plant alkaloid that is of great interest as a therapeutic candidate for the treatment of Alzheimer's disease. However, the current production of HupA from plants in large quantity is unsustainable because the plant resource is scarce and the content of HupA in plants is extremely low. Surprisingly, this compound was recently found to be produced by various endophytic fungi, which are much more controllable than the plants due to simpler genetics and ease of manipulation. However, it might be due to the innate properties of endophytic symbiosis, that production of this chemical in large quantity from endophytes has not yet been put into practice. Endophytic Colletotrichum gloeosporioides ES026 was previously isolated from a HupA producing plant and the fungi also proved to produce HupA. In this study, various fermentation conditions were tried to optimize the production of HupA from C. gloeosporioides ES026. Optimization of these parameters resulted in a 25.58% increase in HupA yield. Potato extracts supplemented with glucose or sucrose but not maltose facilitated HupA producing from the fungi. A final concentration of 0.5-2% ethanol stimulated the growth of fungi while methanol with the same treatment slightly inhibited the growth. However, both methanol and ethanol greatly increased the HupA production with the highest yield of HupA (51.89% increment coming from ethanol treatment. Further analysis showed that both ethanol and methanol were strong inducers of HupA production, while ethanol was partially used as a carbon source during fermentation. It was noticed that the color of that ethanol treated mycelia gradually became dark while methanol treated ones stayed grey during fermentation. The present study sheds light on the importance of optimizing the fermentation process, which, combined with effective inducers, maximizes production of chemicals of important economic interest from endophytic fungi.

  4. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Changwei; Cheng, Liqiang; Liu, Yingliang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Shen, Peikang [State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2007-05-15

    Noble metal (Pt, Pd) electrocatalysts supported on carbon microspheres (CMS) are used for methanol and ethanol oxidation in alkaline media. The results show that noble metal electrocatalysts supported on carbon microspheres give better performance than that supported on carbon black. It is well known that palladium is not a good electrocatalyst for methanol oxidation, but it shows excellently higher activity and better steady-state electrolysis than Pt for ethanol electrooxidation in alkaline media. The results show a synergistic effect by the interaction between Pd and carbon microspheres. The Pd supported on carbon microspheres in this paper possesses excellent electrocatalytic properties and may be of great potential in direct ethanol fuel cells. (author)

  5. Effects of concentration, temperature and solvent composition on density and apparent molar volume of the binary mixtures of cationic-anionic surfactants in methanol-water mixed solvent media.

    Science.gov (United States)

    Bhattarai, Ajaya; Chatterjee, Sujeet Kumar; Niraula, Tulasi Prasad

    2013-01-01

    The accurate measurements on density of the binary mixtures of cetyltrimethylammonium bromide and sodium dodecyl sulphate in pure water and in methanol(1) + water (2) mixed solvent media containing (0.10, 0.20, and 0.30) volume fractions of methanol at 308.15, 318.15, and 323.15 K are reported. The concentrations are varied from (0.03 to 0.12) mol.l(-1) of sodium dodecyl sulphate in presence of ~ 5.0×10(-4) mol.l(-1) cetyltrimethylammonium bromide. The results showed almost increase in the densities with increasing surfactant mixture concentration, also the densities are found to decrease with increasing temperature over the entire concentration range, investigated in a given mixed solvent medium and these values are found to decrease with increasing methanol content in the solvent composition. The concentration dependence of the apparent molar volumes appear to be negligible over the entire concentration range, investigated in a given mixed solvent medium and the apparent molar volumes increase with increasing temperature and are found to decrease with increasing methanol content in the solvent composition.

  6. Changes in total phenol, flavonoid contents and anti-Lactobacillus activity of Callisia fragrans due to extraction solvent

    Science.gov (United States)

    Le, Thom; Cao, Diem Kieu; Pham, Thanh Vy; Huynh, Tan Dat; Ta, Nhat Thuy Anh; Nguyen, Ngoc Thao Linh; Nguyen, Huu Thanh; Le, Hue Huong; Bui, Anh Vo; Truong, Dieu-Hien

    2018-04-01

    Callisia fragrans is a wonder herb with many medicinal properties such as burn, dental diseases, cancer diseases and arthritis in folk medicine. It is noted that the phytochemical constituents and antimicrobial activity of traditional plants depend on not only the extracting method but also the solvent used for extraction. In this study, the effect of five extraction solvents (i.e., distilled water, 80% methanol, 80% ethanol, 80% ethyl acetate, and 80% chloroform) on yield, total phenolic content (TPC) and total flavonoid content (TFC) of Callisia leaves was determined. Besides, changes in anti-Lactobacillus fermentum activity of C. fragrans freeze-dried extract was also evaluated using disk-diffusion method. The recovery percentage of extractable yield of fresh leaves are ranged from 11.93% w/w for distilled water extract to 16.60% w/w for aqueous ethanol extracts. The yield of 80% aqueous methanol extract (16.27% w/w) is only slightly less than that of the ethanol extract. Significant differences were observed among TPC and TFC obtaining by 80% methanol (0.0522% and 0.0335% w/w, respectively) compared to other solvents (p < 0.05). TPC and TFC of C. fragrans extracts increase in the following order: distilled water < 80% chloroform < 80% ethyl acetate < 80% ethanol < 80% methanol. The results revealed that 80% aqueous methanol Calissia extracts has moderate inhibition (9.0 mm of inhibition zone for 1.5 mg/mL of extracts) of L. fermentum compared to standard antibacterial agent. Based on the study results, it can be concluded that the yield, TPC and TFC of C. frgrans extract varied with the extracting solvent. It also showed that Callisia extracts can prevent dental caries by inhibiting the growth of L. fermentum, towards new insights for treatment of dental caries.

  7. A Novel Mechanism for Chemical Sensing Based on Solvent-Fluorophore-Substrate Interaction: Highly Selective Alcohol and Water Sensor with Large Fluorescence Signal Contrast.

    Science.gov (United States)

    Chung, Kyeongwoon; Yang, Da Seul; Jung, Jaehun; Seo, Deokwon; Kwon, Min Sang; Kim, Jinsang

    2016-10-06

    Differentiation of solvents having similar physicochemical properties, such as ethanol and methanol, is an important issue of interest. However, without performing chemical analyses, discrimination between methanol and ethanol is highly challenging due to their similarity in chemical structure as well as properties. Here, we present a novel type of alcohol and water sensor based on the subtle differences in interaction among solvent analytes, fluorescent organic molecules, and a mesoporous silica gel substrate. A gradual change in the chemical structure of the fluorescent diketopyrrolopyrrole (DPP) derivatives alters their interaction with the substrate and solvent analyte, which creates a distinct intermolecular aggregation of the DPP derivatives on the silica gel substrate depending on the solvent environment and produces a change in the fluorescence color and intensity as a sensory signal. The devised sensor device, which is fabricated with simple drop-casting of the DPP derivative solutions onto a silica gel substrate, exhibited a completely reversible fluorescence signal change with large fluorescence signal contrast, which allows selective solvent detection by simple optical observation with the naked eye under UV light. Superior selectivity of the alcohol and water sensor system, which can clearly distinguish among ethanol, methanol, ethylene glycol, and water, is demonstrated.

  8. Under the influence of alcohol: The effect of ethanol and methanol on lipid bilayers

    NARCIS (Netherlands)

    Patra, M.; Salonen, E.; Terama, E.; Vattulainen, I.; Faller, R.; Lee, B.W.; Holopainen, J.M.; Karttunen, M.E.J.

    2006-01-01

    Extensive microscopic molecular dynamics simulations have been performed to study the effects of short-chain alcohols, methanol and ethanol, on two different fully hydrated lipid bilayer systems (POPC and DPPC) in the fluid phase at 323 K. It is found that ethanol has a stronger effect on the

  9. Ethanol and water adsorption in methanol-derived ZIF-71

    KAUST Repository

    Lively, Ryan P.; Dose, Michelle E.; Thompson, Joshua A.; McCool, Benjamin A.; Chance, Ronald R.; Koros, William J.

    2011-01-01

    A room temperature method for synthesizing zeolitic imidizolate framework 71 (ZIF-71) is described. The methanol-based synthesis results in >95% yields (based on Zn) and produces crystals with 70% greater surface area than reported earlier. Ethanol uptake into the ZIF compares favorably with a recent modeling-based study. Water uptake was significantly higher than model predictions. © The Royal Society of Chemistry 2011.

  10. Organic solvents impair life-traits and biomarkers in the New Zealand mudsnail Potamopyrgus antipodarum (Gray) at concentrations below OECD recommendations

    International Nuclear Information System (INIS)

    Lecomte, V.; Noury, P.; Tutundjian, R.; Buronfosse, T.; Garric, J.; Gust, M.

    2013-01-01

    Highlights: •Acetone (20 μl l −1 ) accelerates embryonic development in Potamopyrgus antipodarum. •Ethanol (20 μl l −1 ) decreases growth in juvenile mudsnails. •Acetone, ethanol, methanol and DMSO increase E2 levels in snails. •Carrier solvents impair gene expression. •DMSO is to be preferred. -- Abstract: Potamopyrgus antipodarum is a gastropod mollusk proposed for use in the development of reproduction tests within the Organization for Economic Cooperation and Development (OECD). Numerous chemicals, including endocrine disrupters, are relatively water-insoluble, and water-miscible solvents are currently used for testing them. OECD recommends a maximum concentration of 100 μl l −1 . As several studies highlighted effects of lower concentrations of solvents, this study assessed the effects of 20 μl l −1 acetone, ethanol, methanol and dimethylsulfoxide (DMSO) on juvenile and adult snails during 42 days. Ethanol decreased juvenile growth, while acetone increased the rate of embryonic development. All solvents increased estradiol-like levels in adult snails. DMSO only increased mRNA expression of vitellogenin-like gene, while acetone, ethanol and methanol decreased mRNA expression of three nuclear receptor (estrogen receptor-like, ecdysone-induced protein and chicken ovalbumin upstream promoter transcription factor) genes as well as of genes encoding proteins involved in genomic (prohibitin-2) and non-genomic (striatin) pathways of estrogens activity in vertebrates. This study highlights the confounding effects of low concentrations of solvents and recommends avoiding their use. Where solvent use is inevitable, their concentrations and type should be investigated for suitability for the measured endpoints prior to use in chemical testing strategies

  11. Organic solvents impair life-traits and biomarkers in the New Zealand mudsnail Potamopyrgus antipodarum (Gray) at concentrations below OECD recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Lecomte, V.; Noury, P.; Tutundjian, R. [Irstea, UR MAEP, Laboratoire d’écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex (France); Buronfosse, T. [VetAgro-Sup, Campus vétérinaire, Endocrinology Laboratory, 69280 Marcy l’Etoile (France); Garric, J. [Irstea, UR MAEP, Laboratoire d’écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex (France); Gust, M., E-mail: marion.gust@irstea.fr [Irstea, UR MAEP, Laboratoire d’écotoxicologie, 5 rue de la Doua, CS70077, 69626 Villeurbanne Cedex (France)

    2013-09-15

    Highlights: •Acetone (20 μl l{sup −1}) accelerates embryonic development in Potamopyrgus antipodarum. •Ethanol (20 μl l{sup −1}) decreases growth in juvenile mudsnails. •Acetone, ethanol, methanol and DMSO increase E2 levels in snails. •Carrier solvents impair gene expression. •DMSO is to be preferred. -- Abstract: Potamopyrgus antipodarum is a gastropod mollusk proposed for use in the development of reproduction tests within the Organization for Economic Cooperation and Development (OECD). Numerous chemicals, including endocrine disrupters, are relatively water-insoluble, and water-miscible solvents are currently used for testing them. OECD recommends a maximum concentration of 100 μl l{sup −1}. As several studies highlighted effects of lower concentrations of solvents, this study assessed the effects of 20 μl l{sup −1} acetone, ethanol, methanol and dimethylsulfoxide (DMSO) on juvenile and adult snails during 42 days. Ethanol decreased juvenile growth, while acetone increased the rate of embryonic development. All solvents increased estradiol-like levels in adult snails. DMSO only increased mRNA expression of vitellogenin-like gene, while acetone, ethanol and methanol decreased mRNA expression of three nuclear receptor (estrogen receptor-like, ecdysone-induced protein and chicken ovalbumin upstream promoter transcription factor) genes as well as of genes encoding proteins involved in genomic (prohibitin-2) and non-genomic (striatin) pathways of estrogens activity in vertebrates. This study highlights the confounding effects of low concentrations of solvents and recommends avoiding their use. Where solvent use is inevitable, their concentrations and type should be investigated for suitability for the measured endpoints prior to use in chemical testing strategies.

  12. Enhancement of gamma-ray-induced mutation frequency in rice by post-treatment with chloral hydrate, methanol and their mixtures with ethanol

    International Nuclear Information System (INIS)

    Reddy, T.P.; Vaidyanath, K.

    1979-01-01

    An evaluation has been made of the mutagenic activity of ethanol, chlorate hydrate (CH) and methanol on rice seed. In independent treatments with ethanol, methanol, CH and four aqueous mixtures of these chemicals, chlorophyll-deficient mutants were not recovered in the M 2 generation. However, in sequential treatments with gamma rays + CH, gamma rays + methanol and gamma rays + aqueous mixtures of these chemicals, significant increases in the yields of chlorophyll mutations were observed as compared to that of a 30 kR gamma ray treatment. In contrast, post-irradiation treatment with ethanol failed to provoke any increase in the frequency of chlorophyll mutants in the M 2 generation. The results indicate that CH and methanol alone and mixed with ethanol can potentiate gamma ray-induced genetic lesions in rice seed. (author)

  13. How bimetallic electrocatalysts does work for reactions involved in fuel cells? Example of ethanol oxidation and comparison to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Leger, J.-M.; Rousseau, S.; Coutanceau, C.; Hahn, F.; Lamy, C. [UMR 6503, Electrocatalysis Group, CNRS - University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)

    2005-09-05

    Carbon-supported Pt-based nanosized electrocatalysts can be synthesized for methanol and ethanol electrooxidation. The electrocatalytic activity of Pt can be greatly enhanced by using Pt-Ru/C for methanol oxidation or Pt-Sn/C for ethanol oxidation. In situ IR reflectance spectroscopy is a convenient tool to better understand the importance of the different adsorption steps involved in the mechanisms of electrooxidation. With Pt/C, it appears clearly that linearly adsorbed CO is the poisoning species formed during methanol and ethanol oxidation. In the case of methanol, even with Pt-Ru/C (the most active catalyst), adsorbed CO is also a reactive intermediate. The enhancement of activity observed in such a case is due to the possibility to activate water at lower potentials in the presence of Ru. With Pt-Sn/C, the mechanism of the electrooxidation of ethanol is strongly modified. If at low potentials, poisoning with adsorbed CO still exists (as with Pt/C), the oxidation of ethanol at potentials greater than 0.4 V versus RHE occurs through an adsorbed acetyl species which can lead to the formation of acetaldehyde and acetic acid as final products in addition to carbon dioxide. (author)

  14. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy.

    Science.gov (United States)

    Seo, Jongkwon; Lee, Soojung; Elam, Marcus L; Johnson, Sarah A; Kang, Jonghoon; Arjmandi, Bahram H

    2014-03-01

    The effects of guava leaves extracted using solvents of water, ethanol, methanol, and different concentrations of hydroethanolic solvents on phenolic compounds and flavonoids, and antioxidant properties have been investigated. The antioxidant capability was assessed based on 2,2-diphenyl-1-picrylhydrazyl radical and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radical-scavenging abilities, reducing power, and nitric oxide-and nitrate-scavenging activities. The results demonstrated that the antioxidant ability of guava leaf extracts has a strong relationship with phenolic compound content rather than flavonoid content. Phenolic compound content of water extracted guava leaves was higher compared to pure ethanol and methanol extracts. However, phenolic compound content extracted using hydroethanolic solvent was higher than water, whereas 50% hydroethanolic was observed to be the most effective solvent showing high antioxidant ability.

  15. Effects of Extraction Solvents on the Quantification of Free Amino Acids in Lyophilised Brewer’s Yeast

    Directory of Open Access Journals (Sweden)

    Andreea STĂNILĂ

    2018-05-01

    Full Text Available The aim of this work was to test some solvents in order to improve the free amino acids extraction from lyophilised brewer’s yeast. The brewer’ yeast was treated with four types of extraction solvents: Solvent I – acetonitrile 25%/HCl 0.01M (ACN; Solvent II – ethanol 80%; solvent III – HCl 0.05M/deionized water (1/1 volume; Solvent IV – HCl 0.05M/ethanol 80% (1/1 volume. The supernatants were analysed by HPLC-DAD-ESI-MS method. Acetonitrile provided the less quantities and number of amino acids extracted due to its weaker polarity. Solvent II and IV (ethanol, respectively acidified ethanol, which have an increased polarity, extracted 15 amino acids due to the addition of HCl in solvent IV. Solvent III (acidified water proved to be the best extraction solvent for the amino acids from brewer’s yeast providing the separation of 17 compounds: GLN, ASN, SER, GLY, ALA, ORN, PRO, HIS, LYS, GLU, TRP, LEU, PHE, ILE, AAA, HPHE, TYR.

  16. Discrimination of methanol and ethanol vapors by the use of a single optical sensor with a microporous sensitive layer.

    Science.gov (United States)

    Kieser, Birgit; Dieterle, Frank; Gauglitz, Günter

    2002-09-15

    The sorption of methanol and ethanol vapors by a microporous glassy polycarbonate is studied. The increase of the refractive index of the polymer during analyte sorption is measured by surface plasmon resonance. Both analytes are sorbed into the micropores of the polymer showing different diffusion kinetics. The sensor response during analyte exposure is subdivided into different time channels. By evaluating this additional data dimension by neural networks, a simultaneous multicomponent analysis of binary mixtures of ethanol and methanol vapors is possible using the sensor response of only one single sensor. A feature extraction results in an interpretable model and an improved prediction with errors of 2.0% for methanol and 2.4% for ethanol.

  17. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames

    Energy Technology Data Exchange (ETDEWEB)

    Veloo, Peter S.; Wang, Yang L.; Egolfopoulos, Fokion N. [Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1453 (United States); Westbrook, Charles K. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2010-10-15

    Laminar flame speeds and extinction strain rates of premixed methanol, ethanol, and n-butanol flames were determined experimentally in the counterflow configuration at atmospheric pressure and elevated unburned mixture temperatures. Additional measurements were conducted also to determine the laminar flame speeds of their n-alkane/air counterparts, namely methane, ethane, and n-butane in order to compare the effect of alkane and alcohol molecular structures on high-temperature flame kinetics. For both propagation and extinction experiments the flow velocities were determined using the digital particle image velocimetry method. Laminar flame speeds were derived through a non-linear extrapolation approach based on direct numerical simulations of the experiments. Two recently developed detailed kinetics models of n-butanol oxidation were used to simulate the experiments. The experimental results revealed that laminar flame speeds of ethanol/air and n-butanol/air flames are similar to those of their n-alkane/air counterparts, and that methane/air flames have consistently lower laminar flame speeds than methanol/air flames. The laminar flame speeds of methanol/air flames are considerably higher compared to both ethanol/air and n-butanol/air flames under fuel-rich conditions. Numerical simulations of n-butanol/air freely propagating flames, revealed discrepancies between the two kinetic models regarding the consumption pathways of n-butanol and its intermediates. (author)

  18. Solvent Effects in the Electroreduction of Ferrocene at Pt in the Temperature Range 200-300 K

    Science.gov (United States)

    1991-03-20

    been obtained at iow temperatures downto 92 K ata P ulramcroeectode(dimete, 2 pm inthree alcohol solvents, namely, methanol, ethanol , and n-propanol. In...In this aree.-doutee-eace&4 Kinetic parameters for the electrooxidation of ferrocene have been obtained at low temperatures down to 193 ’K at a Pt...with solvent nature. tnsvetsiky of~aitm Davis, CA 95616 Kinetic data obtained in mteehanol, ethanol . and I1- propanol as a function of temperature

  19. A thermodynamic study of complexation process between N, N'-dipyridoxylidene(1,4-butanediamine) and Cd2+ in some binary mixed solvents using conductometry

    Science.gov (United States)

    Ebrahimpoor, Sonia; Khoshnood, Razieh Sanavi; Beyramabadi, S. Ali

    2016-12-01

    Complexation of the Cd2+ ion with N, N'-dipyridoxylidene(1,4-butanediamine) Schiff base was studied in pure solvents including acetonitrile (AN), ethanol (EtOH), methanol (MeOH), tetrahydrofuran (THF), dimethylformamide (DMF), water (H2O), and various binary solvent mixtures of acetonitrile-ethanol (AN-EtOH), acetonitrile-methanol (AN-MeOH), acetonitrile-tetrahydrofuran (AN-THF), acetonitrile-dimethylformamide (AN-DMF), and acetonitrile-water (AN-H2O) systems at different temperatures using the conductometric method. The conductance data show that the stoichiometry of complex is 1: 1 [ML] in all solvent systems. A non-linear behavior was observed for changes of log K f of [Cd( N, N'-dipyridoxylidene(1,4-butanediamine)] complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions. The results show that the thermodynamics of complexation reaction is affected by the nature and composition of the mixed solvents.

  20. Methanol and ethanol from lignocellulosic Swedish wood fuels - Main report. Comparison of the costs of alcohols from biomass

    International Nuclear Information System (INIS)

    Elam, N.; Ekstroem, C.; Oestman, A.; Rensfelt, E.

    1994-06-01

    Swedish wood fuel has a considerable volume and, apart from the utilization today, its use in year 2010 is estimated to amount to 75 TWh/year. Wood fuel can be converted to the alcohols methanol or ethanol and, as such, can be utilized as fuels or components capable of replacing petrol or diesel. This comparison of costs in producing methanol or ethanol from 250 000 tonnes DM of wood fuel using technology available today, or similar levels of technology, shows that methanol can be produced for about 2 SEK/1 (about 450 SEK/MWh) and ethanol for about 4,85 SEK/1 (825 SEK/MWh). The world market price today is around 1 SEK/1 for methanol and 2.60-2.80 SEK/1 for ethanol. Investment and production costs for the two types of production plants do not differ to any particular extent. The investment cost in the methanol plant is about 20 per cent higher, whereas production and maintenance costs are more than 20 per cent higher for ethanol. The explanation of considerable difference in production costs is, instead, primarily the difference in alcohol yield and secondarily the difference in the total efficiency. The valuation of secondary products, particularly lignin fuel from the ethanol process, is also important. The alcohols can be used as propellant fuels in several different ways as admixture components or as pure fuels. It is concluded that there are quality differences between the alcohols that can influence the driving capacity, emissions and which also affect the value of the alcohols. Among the uncertainties that particularly require more penetrating studies are questions dealing with health aspects related to the higher emissions of formaldehyde when used as an engine fuel, total environmental and health influence of ethanol emission, and the contents of polluting substances in lignin fuel that affect its range of use and its value. 25 figs, 29 tabs

  1. 11C-radioisotope study of methanol co-reaction with ethanol over Ni-MCM-41 silica-alumina and Ni-alumina

    International Nuclear Information System (INIS)

    Sarkadi-Priboczki, E.; Kovacs, Z.; Tsoncheva, T.; Kumar, N.; Murzin, D.Yu.

    2009-01-01

    Complete text of publication follows. The Ni modifies the properties of acidic alumina and light acidic MCM-41 silica-alumina supports. The radioisotopic method is a suitable tool for distinction of the 11 Cradioisotopic methanol and its co-derivates from derivates of non-radioactive ethanol on these catalysts. Experimental. The Ni/A l 2O 3 (5 wt % Ni) is commercially available while H-MCMN-41 (Si/Al=20) and Ni-ion-exchanged MCM-41 silica-alumina (5 wt % Ni) were prepared and characterized in previous works. Before catalysis the Ni/Al 2 O 3 and Ni-MCM-41 were pre-reduced. The 11 C-methanol was formed by a radiochemical process from 11 C-carbon dioxide produced at cyclotron (T 1/2 = 20.4 min). The mixture of equivalent volume of radioactive methanol and non-radioactive ethanol was introduced into glass tube micro-flow reactor at ambient temperature. After adsorption, the valves were closed and the catalyst was heated up to the required temperatures. The desorption rate of the remaining 11 C-derivatives on catalysts were continuously followed by radiodetectors and the derivatives of methanol with ethanol were analyzed by Radio/FID-gas chromatography (FID is coupled on-line with a radiodetector). The ethanol and its derivates were identified by FID while the 11 C-methanol and its co-derivates (with ethanol) were detected by both of FID and radiodetector. Results The 11 C-dimethyl ether was the common product of the single 11 C-methanol transformation on H-MCM-41, Ni-MCM-41 and Ni- Al 2 O 3 at low temperature (200-280 degC) due to middle strong acid sites. At higher temperature (280-350 degC), the dimethyl ether and hydrocarbons were the dominant products on H-MCM-41 while dimethyl ether selectivity decreased on Ni-alumina and Ni-MCM-41 in favor of methane. The selectivities of methanol to formaldehyde and methane were the highest on Ni-MCM-41. During co-reaction of 11 C-methanol with non-radioactive ethanol, the 11 C-labeled coethers, namely 11 C-methyl ethyl ether

  2. Reference value standards and primary standards for pH measurements in D2O and aqueous-organic solvent mixtures: new accessions and assessments

    International Nuclear Information System (INIS)

    Mussini, P.R.; Mussini, T.; Rondinini, S.

    1997-01-01

    Recommended Reference Value Standards based on the potassium hydro-genphthalate buffer at various temperatures are reported for pH measurements in various binary solvent mixtures of water with eight organic solvents: methanol, ethanol, 2-propanol, 1,2-ethanediol, 2-methoxyethanol (''methylcellosolve''), acetonitrile, 1,4-dioxane, and dimethyl sulfoxide, together with Reference Value Standard based on the potassium deuterium phthalate buffer for pD measurements in D 2 O. In addition are reported Primary Standards for pH based on numerous buffers in various binary solvent mixtures of water with methanol, ethanol, and dimethyl sulfoxide, together with Primary Standards for pD in D 2 O based on the citrate, phosphate and carbonate buffers. (author)

  3. The Effect of Acetone Amount Ratio as Co-Solvent to Methanol in Transesterification Reaction of Waste Cooking Oil

    Science.gov (United States)

    Julianto, T. S.; Nurlestari, R.

    2018-04-01

    The production of biodiesel from waste cooking oil by transesterification reaction using acetone as co-solvent has been carried out. This research studied the optimal amount ratio of acetone as co-solvent to methanol in the transesterification process using homogeneous alkaline catalyst KOH 1% (w/w) of waste cooking oil at room temperature for 15 minutes of reaction time. Mole ratio of waste cooking oil to methanol is 1:12. Acetone was added as co-solvent in varied amount ratio to methanol are 1:4, 1:2, and 1:1, respectively. The results of fatty acid methyl esters (FAME) were analysed using GC-MS instrument. The results showed that the optimal ratio is 1:4 with 99.93% of FAME yield.

  4. Ultrasound-Assisted Extraction: Effect of Extraction Time and Solvent ...

    African Journals Online (AJOL)

    Purpose: To investigate the influence of extraction conditions assisted by ultrasound on the quality of extracts obtained from Mesembryanthemum edule shoots. Methods: The extraction procedure was carried out in an ultrasonic bath. The effect of two solvents (methanol and ethanol) and two extraction times (5 and 10 min) ...

  5. Preliminary study on fractions' activities of red betel vine (Piper crocatum Ruiz & Pav) leaves ethanol extract toward Mycobacterium tuberculosis

    Science.gov (United States)

    Rachmawaty, Farida Juliantina; Julianto, Tatang Shabur; Tamhid, Hady Anshory

    2018-04-01

    This research aims to identify the antimycobacterial activity of fraction of red betel vine leaves ethanol extract (methanol fraction, ethyl acetate, and chloroform) toward M. tuberculosis. Red betel vine leaves ethanol extract was made with maceration method using ethanol solvent 70%. Resulted extract was then fractionated using Liquid Vacuum Chromatography (LVC) with methanol, ethyl acetate, and chloroform solvent. Each fractionation was exposed to M. tuberculosis with serial dilution method. Controls of fraction, media, bacteria, and isoniazid as standard drug were included in this research. The group of compound from the most active fraction was then identified. The research found that the best fraction for antimycobacterial activity toward M. tuberculosisis chloroform fraction. The compound group of chloroform fraction was then identified. The fraction contains flavonoid, tannin, alkaloid, and terpenoid. The fraction of methanol, ethyl acetate, and chloroform from red betel vine leaves has antimycobacterial activity toward M. tuberculosis. Chloroform fraction has the best antimycobacterial activity and it contains flavonoid, tannin, alkaloid, and terpenoid.

  6. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    DEFF Research Database (Denmark)

    Kappel, Jannik; Mathiesen, Brian Vad

    efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization...

  7. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, R.G.; Santos, M.C.; Oliveira, R.T.S.; Bulhoes, L.O.S.; Pereira, E.C. [Laboratorio Interdisciplinar de Eletroquimica e Ceramica, Centro Multidisciplinar para o Desenvolvimento de Materiais Ceramicos, Departamento de Quimica. Universidade Federal de Sao Carlos, C.P. 676, CEP 13565-905, Sao Carlos, SP (Brazil)

    2006-07-14

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600{sup o}C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (420) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (200) and (420) were displaced by approximately -0.3{sup o}. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1M HClO{sub 4} showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk. (author)

  8. Methanol and ethanol electroxidation using Pt electrodes prepared by the polymeric precursor method

    Science.gov (United States)

    Freitas, R. G.; Santos, M. C.; Oliveira, R. T. S.; Bulhões, L. O. S.; Pereira, E. C.

    The results of methanol and ethanol oxidation in acidic medium on Pt electrodes deposited on Ti substrate using the Pechini method are presented. In this route the metallic salts were dissolved in a mixture of ethylene glycol (EG) and citric acid (CA) forming a polyester network, which is painted onto a Ti substrate and then heat treated at 600 °C in order to obtain the metallic Pt thin films. The X-ray diffraction analysis showed the presence of Pt pattern peaks. The presence of the (4 2 0) plane in a higher amount compared to bulk Pt was observed and the peak position of the planes (2 0 0) and (4 2 0) were displaced by approximately -0.3°. The roughness data presented almost the same values for Ti and Ti/Pt. The electrochemical characterization of the electrodes in 0.1 M HClO 4 showed a typical Pt voltammetric profile. Although the voltammetric profiles of Ti/Pt and bulk Pt were the same, the electrocatalytical behavior for methanol oxidation showed an enhancement of the oxidation current density peak, which increased by 170% compared to bulk platinum. Although, the current density peak for ethanol oxidation on Ti/Pt is smaller than for Pt, it began at 0.11 V less positive than the same process on bulk Pt. The chronoamperometric experiments for methanol and ethanol oxidation on Ti/Pt increased by almost 934% and 440%, respectively, compared with Pt bulk.

  9. High throughput research and evaporation rate modeling for solvent screening for ethylcellulose barrier membranes in pharmaceutical applications.

    Science.gov (United States)

    Schoener, Cody A; Curtis-Fisk, Jaime L; Rogers, True L; Tate, Michael P

    2016-10-01

    Ethylcellulose is commonly dissolved in a solvent or formed into an aqueous dispersion and sprayed onto various dosage forms to form a barrier membrane to provide controlled release in pharmaceutical formulations. Due to the variety of solvents utilized in the pharmaceutical industry and the importance solvent can play on film formation and film strength it is critical to understand how solvent can influence these parameters. To systematically study a variety of solvent blends and how these solvent blends influence ethylcellulose film formation, physical and mechanical film properties and solution properties such as clarity and viscosity. Using high throughput capabilities and evaporation rate modeling, thirty-one different solvent blends composed of ethanol, isopropanol, acetone, methanol, and/or water were formulated, analyzed for viscosity and clarity, and narrowed down to four solvent blends. Brookfield viscosity, film casting, mechanical film testing and water permeation were also completed. High throughput analysis identified isopropanol/water, ethanol, ethanol/water and methanol/acetone/water as solvent blends with unique clarity and viscosity values. Evaporation rate modeling further rank ordered these candidates from excellent to poor interaction with ethylcellulose. Isopropanol/water was identified as the most suitable solvent blend for ethylcellulose due to azeotrope formation during evaporation, which resulted in a solvent-rich phase allowing the ethylcellulose polymer chains to remain maximally extended during film formation. Consequently, the highest clarity and most ductile films were formed. Employing high throughput capabilities paired with evaporation rate modeling allowed strong predictions between solvent interaction with ethylcellulose and mechanical film properties.

  10. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  11. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  12. Measurement and correlation of solubility of thiourea in two solvent mixtures from T = (283.15 to 313.15) K

    International Nuclear Information System (INIS)

    Wang, Yanmeng; Yin, Qiuxiang; Sun, Xiaowei; Bao, Ying; Gong, Junbo; Hou, Baohong; Wang, Yongli; Zhang, Meijing; Xie, Chuang; Hao, Hongxun

    2016-01-01

    Highlights: • Solubility of thiourea in methanol + ethanol and methanol + propanol was studied. • Experimental and calculated (NIBS/R-K) data are in a good agreement. • Interaction between solute and solvent are calculated by Molecular simulation. • Thermodynamic properties of both dissolving and mixing process are calculated. - Abstract: The solubility data of thiourea in methanol + ethanol mixtures and methanol + n-propanol mixtures were determined from T = (283.15 to 313.15) K by gravimetric method under atmospheric pressure. Effects of solvent composition and temperature on solubility of thiourea were discussed. Molecular simulation results indicate that solubility of thiourea will be influenced by interaction energy and a quantitative conclusion can be drawn from the modeling result. To extend the applicability of the solubility data, experimental solubility data in two kinds of binary solvent mixtures were correlated by the modified Apelblat equation, λ–h equation and (NIBS)/Redlich–Kister model. It was found that all the three models could satisfactorily correlate the experimental data and the (NIBS)/Redlich–Kister model could give better correlation results. Furthermore, thermodynamic properties of dissolving and mixing process of thiourea, including the enthalpy, the Gibbs energy and the entropy, were also calculated and analyzed.

  13. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.; Devaraj, Sappani; Balaya, Palani

    2014-01-01

    nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient

  14. Conformation Analysis of T1 Lipase on Alcohols Solvent using Molecular Dynamics Simulation

    Science.gov (United States)

    Putri, A. M.; Sumaryada, T.; Wahyudi, S. T.

    2017-07-01

    Biodiesel usually is produced commercially via a transesterification reaction of vegetable oil with alcohol and alkali catalyst. The alkali catalyst has some drawbacks, such as the soap formation during the reaction. T1 Lipase enzyme had been known as a thermostable biocatalyst which is able to produce biodiesel through a cleaner process. In this paper the performance of T1 lipase enzyme as catalyst for transesterification reaction in pure ethanol, methanol, and water solvents were studied using a Molecular Dynamics (MD) Simulation at temperature of 300 K for 10 nanoseconds. The results have shown that in general the conformation of T1 lipase enzyme in methanol is more dynamics as shown by the value of root mean square deviation (RMSD), root mean squared fluctuation (RMSF), and radius of gyration. The highest solvent accessible surface area (SASA) total was also found in methanol due to the contribution of non-polar amino acid in the interior of the protein. Analysis of MD simulation has also revealed that the enzyme structure tend to be more rigid in ethanol environment. The analysis of electrostatic interactions have shown that Glu359-Arg270 salt-bridge pair might hold the key of thermostability of T1 lipase enzyme as shown by its strong and stable binding in all three solvents.

  15. The effect of non-aqueous solvents on spectrophotometric analysis of lead (II)

    International Nuclear Information System (INIS)

    Ramadan, A.A.; Bahbouh, M.; Kamuah, M.

    1992-01-01

    The effect of the following non-aqueous solvents: Methanol, Ethanol, Propanol, iso-propanol, dimethylsulfoxide, dimethylformamide and acetonitrile on spectrophotometric analysis of lead (II) was studied. One absorption peak at range 220-340 nm was observed. The values of maximum wave length (λ max ) and maximum molar absorptivity coefficient (ε max ) vary in accordance with the above solvents and the concentration of HC1. the analytical curves, A=f(C Pb 2+ ), for the determination of lead (II) in presence 5 M HC1 (in methanol) and 7 M HC1 (in other solvents) showed linear proportionality over the concentration range 2.5x10 -5 - 2.0x10 -4 M Pb 2+ . (author). 16 Refs., 4 figs., 2 Tabs

  16. Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak.

    Science.gov (United States)

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Komarc, Martin; Eddleston, Michael; Hovda, Knut Erik

    2015-01-01

    Mass or cluster methanol poisonings are frequently reported from around the world. The comparative effectiveness of ethanol and fomepizole as antidotes for methanol poisoning is unknown due to the difficulty of performing a randomized controlled trial. During an outbreak of mass poisonings in the Czech Republic in 2012-2014, we compared the effects of antidotes on the frequency of health sequelae and mortality. The study was designed as a cross-sectional case series and quasi-case-control study. Patients with a diagnosis of methanol poisoning on admission to hospitals were identified for the study. Diagnosis was established when (i) a history of recent ingestion of illicit spirits was available and serum methanol was higher than 6.2 mmol/L (20 mg/dL), or (ii) there was a history/clinical suspicion of methanol poisoning, and serum methanol was above the limit of detection with at least two of the following: pH poisoning and other key parameters, was selected. Data were obtained from 100 hospitalized patients with confirmed poisoning: 25 patients treated with fomepizole were compared with 68 patients receiving ethanol (seven patients did not receive any antidote). More severely acidotic (p 12 h; p = 0.028) patients received fomepizole more often than ethanol, as reflected in the higher number of fomepizole-treated patients being intubated (p = 0.009). No association was found between the type of antidote and the survival in either the case series (p = 0.205) or the quasi-control groups (p = 0.705) in which patients were very closely matched to minimize confounding by allocation. In the multivariate analysis, positive serum ethanol (odds ratio [OR], 10.8; 95% confidence interval [CI], 2.9-39.9) and arterial blood pH (OR, 3.7; 95% CI, 1.3-10.5) on admission were the only independent variables for the survival. The median intensive care unit length of stay was 6 (range, 2-22) days in the fomepizole group and 4 (range, 1-33) days in the ethanol group (p = 0.131). There

  17. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  18. Phase behaviour of heavy petroleum fractions in pure propane and n-butane and with methanol as co-solvent

    International Nuclear Information System (INIS)

    Canziani, D.; Ndiaye, P.M.; Franceschi, Elton; Corazza, Marcos L.; Vladimir Oliveira, J.

    2009-01-01

    This work reports phase equilibrium experimental results for heavy petroleum fractions in pure propane and n-butane as primary solvents and using methanol as co-solvent. Three kinds of oils were investigated from Marlim petroleum: a relatively light fraction coming from the first distillation of crude petroleum at atmospheric pressure (GOP - heavy gas oil of petroleum), the residue of such distillation (RAT) and the crude petroleum sample. Phase equilibrium measurements were performed in a high-pressure, variable-volume view cell, following the static synthetic method, over the temperature range of 323 K to 393 K, pressures up to 10 MPa and overall compositions of heavy component varying from 1 wt% to 40 wt%. Transition pressures for low methanol and oil concentrations were very close for GOP, RAT, and crude Marlim when using propane as the primary solvent. Close to propane critical temperature, two and three-phase transitions were observed for GOP and Marlim when methanol was increased. When n-butane was used as primary solvent, all transitions observed were of (vapour + liquid) type with transition pressure values smaller than those obtained for propane.

  19. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme

    DEFF Research Database (Denmark)

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling

    2016-01-01

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co...... the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme......-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed...

  20. Screening of tank-to-wheel efficiencies for CNG, DME and methanol-ethanol fuel blends in road transport

    Energy Technology Data Exchange (ETDEWEB)

    Kappel, J.; Vad Mathiesen, B.

    2013-04-15

    The purpose of this report is to evaluate the fuel efficiency of selected alternative fuels based on vehicle performance in a standardised drive cycle test. All studies reviewed are either based on computer modelling of current or future vehicles or tests of just one alternative fuel, under different conditions and concentrations against either petrol or diesel. No studies were found testing more than one type of alternative fuel in the same setup. Due to this one should be careful when comparing results on several alternative fuels. Only few studies have been focused on vehicle energy efficiency. This screening indicates methanol, methanol-ethanol blends and CNG to be readily availability, economic feasible and with the introduction of the DISI engine not technologically challenging compared to traditional fuels. Studies across fuel types indicate a marginally better fuel utilization for methanol-ethanol fuel mixes. (Author)

  1. High catalytic activity of ultrafine nanoporous palladium for electro-oxidation of methanol, ethanol, and formic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoguang; Wang, Weimin; Qi, Zhen; Zhao, Changchun; Ji, Hong; Zhang, Zhonghua [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (MOE), School of Materials Science and Engineering, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-10-15

    Nanoporous palladium (NPPd) with ultrafine ligament size of 3-6 nm was fabricated by dealloying of an Al-Pd alloy in an alkaline solution. Electrochemical measurements indicate that NPPd exhibits significantly high electrochemical active specific surface area (23 m{sup 2} g{sup -1}), and high catalytic activity for electro-oxidation of methanol, ethanol, and formic acid. Mass activities can reach 149, 148, 262 mA mg{sup -1} for the oxidation of methanol, ethanol and formic acid, respectively. Moreover, superior steady-state activities can be observed for all the electro-oxidation processes. NPPd will be a promising candidate for the anode catalyst for direct alcohol or formic acid fuel cells. (author)

  2. Adsorption of methanol, ethanol and water on well-characterized PtSn surface alloys

    Science.gov (United States)

    Panja, Chameli; Saliba, Najat; Koel, Bruce E.

    1998-01-01

    Adsorption and desorption of methanol (CH 3OH), ethanol (C 2H 5OH) and water on Pt(111) and two, ordered, PtSn alloys has been studied primarily using temperature-programmed desorption (TPD) mass spectroscopy. The two alloys studied were the {p(2 × 2) Sn}/{Pt(111) } and (√3 × √3) R30° {Sn}/{Pt(111) } surface alloys prepared by vapor deposition of Sn on Pt(111), with θSn = 0.25 and 0.33, respectively. All three molecules are weakly bonded and reversibly adsorbed under UHV conditions on all three surfaces, molecularly desorbing during TPD without any decomposition. The two PtSn surface alloys were found to chemisorb both methanol and ethanol slightly more weakly than on the Pt(111) surface. The desorption activation energies measured by TPD, and hence the adsorption energies, of both methanol and ethanol progressively decrease as the surface concentration of Sn increases, compared with Pt(111). The decreased binding energy leads one to expect a lower reactivity for these alcohols on the two alloys. The sticking coefficients and the monolayer coverages of these alcohols on the two alloys were identical to that on Pt(111) at 100 K, independent of the amount of Sn present in the surface layer. Alloying Sn in Pt(111) also slightly weakens the adsorption energy of water. Water clusters are formed even at low coverages on all three surfaces, eventually forming a water bilayer prior to the formation of a condensed ice phase. These results are relevant to a molecular-level explanation for the reactivity of Sn-promoted Pt surfaces that have been used in the electro-oxidation of simple organic molecules.

  3. Comparison of methanol and isopropanol as wash solvents for determination of hair cortisol concentration in grizzly bears and polar bears.

    Science.gov (United States)

    Kroshko, Thomas; Kapronczai, Luciene; Cattet, Marc R L; Macbeth, Bryan J; Stenhouse, Gordon B; Obbard, Martyn E; Janz, David M

    2017-01-01

    Methodological differences among laboratories are recognized as significant sources of variation in quantification of hair cortisol concentration (HCC). An important step in processing hair, particularly when collected from wildlife, is the choice of solvent used to remove or "wash" external hair shaft cortisol prior to quantification of HCC. The present study systematically compared methanol and isopropanol as wash solvents for their efficiency at removing external cortisol without extracting internal hair shaft cortisol in samples collected from free-ranging grizzly bears and polar bears. Cortisol concentrations in solvents and hair were determined in each of one to eight washes of hair with each solvent independently. •There were no significant decreases in internal hair shaft cortisol among all eight washes for either solvent, although methanol removed detectable hair surface cortisol after one wash in grizzly bear hair whereas hair surface cortisol was detected in all eight isopropanol washes.•There were no significant differences in polar bear HCC washed one to eight times with either solvent, but grizzly bear HCC was significantly greater in hair washed with isopropanol compared to methanol.•There were significant differences in HCC quantified using different commercial ELISA kits commonly used for HCC determinations.

  4. Antioxidative Polyphenols from Defatted Oilseed Cakes: Effect of Solvents

    Directory of Open Access Journals (Sweden)

    Sue-Siang Teh

    2014-02-01

    Full Text Available Defatted hemp, flax and canola seed cakes were extracted with different solvent systems namely methanol, ethanol, acetone, methanol 80%, acetone 80% and mixed solvent of methanol:acetone:water (MAW, 7:7:6, v/v/v. Each extract was analyzed for antioxidant capacity using ferric reducing/antioxidant power (FRAP and 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assays. MAW exhibited the highest extraction of phenolic and flavonoid contents in the seed cakes, followed by acetone 80% and methanol 80%. The antioxidant capacity was proportional to the polyphenols recovery in the extracts. Canola seed cakes possessed the highest recovery of polyphenols and antioxidant capacity, followed by hemp and flax seed cakes. MAW extract of canola contained total phenolic content, 2104.67 ± 2.52 mg GAE/100 g fresh weight; total flavonoids, 37.79 ± 0.04 mg LUE/100 g fresh weight; percentage inhibition of DPPH•, 33.03 ± 0.38%; FRAP assay, 8.78 ± 0.07 μmol Fe (II/g fresh weight. Identification of individual polyphenol compounds were performed HPLC. MAW extract of canola had the highest (P < 0.05 concentration of all individual polyphenols except gallic acid and catechin. Highest concentration of quercetin and luteolin in MAW extract of hemp was obtained among all solvent systems.

  5. Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

    Science.gov (United States)

    Farajtabar, Ali; Jaberi, Fatemeh; Gharib, Farrokh

    2011-12-01

    The solvatochromic properties of the free base and the protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) were studied in pure water, methanol, ethanol (protic solvents), dimethylsulfoxide, DMSO, (non-protic solvent), and their corresponding aqueous-organic binary mixed solvents. The correlation of the empirical solvent polarity scale ( ET) values of TPPS with composition of the solvents was analyzed by the solvent exchange model of Bosch and Roses to clarify the preferential solvation of the probe dyes in the binary mixed solvents. The solvation shell composition and the synergistic effects in preferential solvation of the solute dyes were investigated in terms of both solvent-solvent and solute-solvent interactions and also, the local mole fraction of each solvent composition was calculated in cybotactic region of the probe. The effective mole fraction variation may provide significant physico-chemical insights in the microscopic and molecular level of interactions between TPPS species and the solvent components and therefore, can be used to interpret the solvent effect on kinetics and thermodynamics of TPPS. The obtained results from the preferential solvation and solvent-solvent interactions have been successfully applied to explain the variation of equilibrium behavior of protonation of TPPS occurring in aqueous organic mixed solvents of methanol, ethanol and DMSO.

  6. Hepatoprotective activity of methanolic extract of Barleria montana leaves in ethanol treated rats

    Directory of Open Access Journals (Sweden)

    Shanaz Banu

    2012-10-01

    Full Text Available Objective: The present study was undertaken to investigate the protective effect and possible mechanism of methanolic extract of Barleria montana (BM on ethanol-induced rat hepatic injury. Method: This respective activity was assessed through monitoring liver function tests through the measurement of triglycerides, cholesterol, total protein, total bilirubin, serum enzymes like SGOT and SGPT and in vivo antioxidant parameters like lipid peroxidase, Superoxide dismutase(SOD and catalase,. Further, hepatic tissues were also subjected to histopathological studies. Result: Pretreatment of BM methanolic extract (500mg/kg reduced the fatty liver symptoms and significantly (p<0.001 inhibited the increase of respective serum enzyme levels. Conclusions: The results of the present study indicated that BM methanolic extract possess hepatoprotective effects which could act as an effective treatment for acute hepatic diseases.

  7. Combination pulsed electric field with ethanol solvent for Nannochloropsis sp. extraction

    Science.gov (United States)

    Nafis, Ghazy Ammar; Mumpuni, Perwitasari Yekti; Indarto, Budiman, Arief

    2015-12-01

    Nowadays, energy is one of human basic needs. As the human population increased, energy consumption also increased. This condition causes energy depletion. In case of the situation, alternative energy is needed to replace existing energy. Microalgae is chosen to become one of renewable energy resource, especially biodiesel, because it contains high amount of lipid instead of other feedstock which usually used. Fortunately, Indonesia has large area of water and high intensity of sunlight so microalgae cultivation becomes easier. Nannochloropsis sp., one of microalgae species, becomes the main focus because of its high lipid content. Many ways to break the cell wall of microalgae so the lipid content inside the microalgae will be released, for example conventional extraction, ultrasonic wave extraction, pressing, and electrical method. The most effective way for extraction is electrical method such as pulsed electric field method (PEF). The principal work of this method is by draining the electrical current into parallel plate. Parallel plate will generate the electrical field to break microalgae cell wall and the lipid will be released. The aim of this work is to evaluate two-stage procedure for extraction of useful components from microalgae Nannochloropsis sp. The first stage of this procedure includes pre-treatment of microalgae by ethanol solvent extraction and the second stage applies the PEF extraction using a binary mixture of water and ethanol solvent. Ethanol is chosen as solvent because it's safer to be used and easier to be handled than other solvent. Some variables that used to study the most effective operation conditions are frequency and duty cycle for microalgae. The optimum condition based on this research are at frequency 1 Hz and duty cycle 13%.

  8. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    Energy Technology Data Exchange (ETDEWEB)

    Wang Junfeng [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)], E-mail: Licx@mail.buct.edu.cn; Li Xuemei; Meng Hong [College of Chem. Eng.., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Li Chunxi [State Key Lab. of Chem. Resource Eng, College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China); Wang Zihao [College of Chem. Eng., Beijing Univ. of Chem. Tech. Beijing 100029 (China)

    2009-02-15

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration.

  9. Boiling temperature measurement for water, methanol, ethanol and their binary mixtures in the presence of a hydrochloric or acetic salt of mono-, di- or tri-ethanolamine at 101.3 kPa

    International Nuclear Information System (INIS)

    Wang Junfeng; Li Xuemei; Meng Hong; Li Chunxi; Wang Zihao

    2009-01-01

    The boiling temperature at atmospheric pressure were measured for 12 binary systems within the range T = (316 to 379) K and 7 ternary systems using a dual circulation. The systems studied contained water, methanol or ethanol with the following ionic liquids (ILs): monoethanolammonium acetate ([HEMA][Ac]), diethanolammonium acetate ([HDEA][Ac]), triethanolammonium acetate ([HTEA][Ac]) and diethanolammonium chloride ([HDEA]Cl). The experimental VLE results of the IL-containing binary systems were correlated by NRTL equation, and the binary NRTL parameters were used for the prediction of VLE of ternary systems with average absolute deviation of 0.73 K in boiling temperature. The results indicate that [HDEA]Cl can be used as an efficient solvent for the extractive distillation of (ethanol + water) mixture due to its notable salting-out effect, which lower the vapour pressure of water, increase the volatility of ethanol and eliminate the azeotropic phenomenon of the (water + ethanol) mixture at definite IL concentration

  10. Experimental and theoretical IR study of methanol and ethanol converson over H-SAPO-34

    NARCIS (Netherlands)

    Hemelsoet, K.L.J.; Ghysels, A.; Mores, D.; De Wispelaere, K.; Van Speybroeck, V.; Weckhuysen, B.M.; Waroquier, M.

    2011-01-01

    Theoretical and experimental IR data are combined to gain insight into the methanol and ethanol conversion over an acidic H-SAPO-34 catalyst. The theoretical simulations use a large finite cluster and the initial physisorption energy of both alcohols is calculated. Dispersive contributions turn out

  11. Crystal structure of di-μ-chlorido-bis[dichloridobis(methanol-κOiridium(III] dihydrate: a surprisingly simple chloridoiridium(III dinuclear complex with methanol ligands

    Directory of Open Access Journals (Sweden)

    Joseph S. Merola

    2015-05-01

    Full Text Available The reaction between IrCl3·xH2O in methanol led to the formation of small amounts of the title compound, [Ir2Cl6(CH3OH4]·2H2O, which consists of two IrCl4O2 octahedra sharing an edge via chloride bridges. The molecule lies across an inversion center. Each octahedron can be envisioned as being comprised of four chloride ligands in the equatorial plane with methanol ligands in the axial positions. A lattice water molecule is strongly hydrogen-bonded to the coordinating methanol ligands and weak interactions with coordinating chloride ligands lead to the formation of a three-dimensional network. This is a surprising structure given that, while many reactions of iridium chloride hydrate are carried out in alcoholic solvents, especially methanol and ethanol, this is the first structure of a chloridoiridium compound with only methanol ligands.

  12. Photoluminescence Spectroscopy of Rhodamine 800 Aqueous Solution and Dye-Doped Polymer Thin-Film: Concentration and Solvent Effects

    Science.gov (United States)

    Le, Khai Q.; Dang, Ngo Hai

    2018-05-01

    This paper investigates solvent and concentration effects on photoluminescence (PL) or fluorescence properties of Rhodamine 800 (Rho800) dyes formed in aqueous solution and polymer thin-film. Various commonly used organic solvents including ethanol, methanol and cyclopentanol were studied at a constant dye concentration. There were small changes in the PL spectra for the different solvents in terms of PL intensity and peak wavelength. The highest PL intensity was observed for cyclopentanol and the lowest for ethanol. The longest peak wavelength was found in cyclopentanol (716 nm) and the shortest in methanol (708 nm). Dissolving the dye powder in the methanol solvent and varying the dye concentration in aqueous solution from the high concentrated solution to highly dilute states, the wavelength tunability was observed between about 700 nm in the dilute state and 730 nm at high concentration. Such a large shift may be attributed to the formation of dye aggregates. Rho800 dye-doped polyvinyl alcohol (PVA) polymer thin-film was further investigated. The PL intensity of the dye in the form of thin-film is lower than that of the aqueous solution form whereas the peak wavelength is redshifted due to the presence of PVA. This paper, to our best knowledge, reports the first study of spectroscopic properties of Rho800 dyes in various forms and provides useful guidelines for production of controllable organic luminescence sources.

  13. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    Science.gov (United States)

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Evaluation of the antioxidant and antibacterial properties of various solvents extracts of Annona squamosa L. leaves

    Directory of Open Access Journals (Sweden)

    Ghadir A. El-Chaghaby

    2014-04-01

    Full Text Available The present work was conducted aiming to evaluate the effect of different solvent extracts on the antioxidant and antibacterial activities of Annona squamosa L. leaves. Four solvents were chosen for the study namely; methanol 80%, acetone 50%, ethanol 50% and boiling water. Acetone and boiling water gave the highest extraction yields as compared to methanol and ethanol. Total phenolic contents of the four extracts were significantly different with acetone being the most efficient solvent and water being the least efficient one. Correlation coefficient between the total antioxidant and total phenolic content was found to be R2 = 0.89 suggesting the contribution of phenolic compounds of the extract by 89% to its total antioxidant activity. The extracts were capable of scavenging H2O2 in a range of 43–54%. Reducing power of the extracts increased by increasing their concentration. The extracts were found to exert low to moderate antibacterial activity compared to a standard antibacterial agent. The bacterial inhibition of the extracts was found to positively correlate with their phenolic contents.

  15. Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite

    NARCIS (Netherlands)

    Derouane, E.G.; Nagy, J.B.; Dejaifve, P.; Hooff, van J.H.C.; Spekman, B.P.A.; Védrine, J.C.; Naccache, C.

    1978-01-01

    13C nuclear magnetic resonance and vapor-phase chromatography have been used to investigate the conversions of methanol and ethanol to hydrocarbons on a synthetic zeolite of the type H-ZSM-5 as described by Mobil. Methanol is first dehydrated to dimethyl ether and ethylene. Then the reaction

  16. Quantitative NMR spectroscopy of binary liquid mixtures (aldehyde + alcohol) Part I: Acetaldehyde + (methanol or ethanol or 1-propanol)

    International Nuclear Information System (INIS)

    Jaubert, Silke; Maurer, Gerd

    2014-01-01

    Highlights: • Formation of hemiacetal/poly(oxymethylene) hemiacetals in liquid binary mixtures. • Acetaldehyde and a low molecular alcohol (methanol or ethanol or 1-propanol). • Quantitative 13 C NMR spectroscopy at temperatures between (255 and 295) K. • Hemiacetals are the predominant species. • (Acetaldehyde + methanol (50 + 50)) at 255 K: hemiacetal (polymers) >80% (≈10%). -- Abstract: Aldehydes react with alcohols to hemiacetals and poly(oxymethylene) hemiacetals. The chemical reaction equilibria of such reactions, in particular in the liquid state, can have an essential influence on the thermodynamic properties and related phenomena like, for example, on the vapour + liquid phase equilibrium. Therefore, thermodynamic models that aim to describe quantitatively such phase equilibria have to consider the chemical reaction equilibrium in the coexisting phases. This is well known in the literature for systems such as, for example, formaldehyde and methanol. However, experimental information on the chemical reaction equilibria in mixtures with other aldehydes (than formaldehyde) and alcohols is extremely scarce. Therefore, quantitative NMR spectroscopy was used to investigate the chemical reaction equilibria in binary mixtures of acetaldehyde and a single alcohol (here either methanol, ethanol or 1-propanol) at temperatures between (255 and 295) K. The results reveal that the majority of the constituents of the mixture is present as hemiacetal and the first two poly(oxymethylene) hemiacetals: in an equimolar mixture of (acetaldehyde + methanol or ethanol or 1-propanol), between about 90% at T = 255 K and about 75% at 295 K. The mole-fraction based chemical reaction equilibrium constants for the formation of those species were determined and some derived properties are reported

  17. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  18. Effect of operating conditions on direct liquefaction of low-lipid microalgae in ethanol-water co-solvent for bio-oil production

    International Nuclear Information System (INIS)

    Ji, Changhao; He, Zhixia; Wang, Qian; Xu, Guisheng; Wang, Shuang; Xu, Zhixiang; Ji, Hengsong

    2017-01-01

    Highlights: • Low-lipid microalgae was selected as feedstock for DL in ethanol-water co-solvent. • Operating conditions had great influence on product yields and conversion rate. • Bio-oil could be obtained from all three main components. • Ethanol and water showed obviously synergistic effect during the DL of microalgae. • Bio-oil composition from DL of microalgae was different from lignocellulose biomass. - Abstract: In this work, the direct liquefaction (DL) of low-lipid microalgae Spirulina was investigated in a 50 ml autoclave reactor with ethanol and water as co-solvent. The objective of this research was carried out to examine the effect of operating conditions such as reaction temperature, reaction time, solvent/microalgae (S/M) ratio and ethanol-water co-solvent (EWCS) composition on product distribution and bio-oil characterization. The results revealed that the optimal operating conditions for bio-oil yield and conversion rate were reaction temperature of 300 °C, reaction time of 45 min, ethanol content of 50 vol.% and S/M ratio of 40/4 ml/g, which gave the bio-oil yield of 59.5% and conversion rate of 94.73%. Conversion rate in EWCS was significantly higher than that in pure water or ethanol, suggesting the synergistic effect between ethanol and water during microalgae DL. Distinct difference in composition and relative content of compound among bio-oils in different solvents were observed by GC–MS and FT-IR. Compared with hydrothermal liquefaction, the most abundant compounds in bio-oil from both EWCS and pure ethanol were esters. The presence of ethanol could enhance the bio-oil yield and improve bio-oil quality by promoting the formation of esters.

  19. Determination of microquantities of methanol and ethanol in toluene by gas chromatography

    International Nuclear Information System (INIS)

    Perez, M. M.

    1970-01-01

    A study is made of the detection of methanol and ethanol in toluene by means of gas chromatography, using Porapak Q columns, 1 m long at 189 degree centigree, employing a flame ionization detector, with propanol as an internal standard. The variation od the detector absolute and relative response was found to be linear within the range of concentration studied, that is, from 5 to 1000 ppm. The limit of sensitivity for the detection of ethanol in a column of 2% Ucon, over Chromosorob G deactivated with 0,1% Carbowax 400, was 20 ppm, which was four times higher than the limit of sensitivity of the Porapak Q column. Also in this case, the absolute and relative response of the detector was linear. (Author) 3 refs

  20. Evaluation of food grade solvents for lipid extraction and impact of storage temperature on fatty acid composition of edible seaweeds Laminaria digitata (Phaeophyceae) and Palmaria palmata (Rhodophyta).

    Science.gov (United States)

    Schmid, Matthias; Guihéneuf, Freddy; Stengel, Dagmar B

    2016-10-01

    This study evaluated the impact of different food- and non-food grade extraction solvents on yield and fatty acid composition of the lipid extracts of two seaweed species (Palmaria palmata and Laminaria digitata). The application of chloroform/methanol and three different food grade solvents (ethanol, hexane, ethanol/hexane) revealed significant differences in both, extraction yield and fatty acid composition. The extraction efficiency, in terms of yields of total fatty acids (TFA), was in the order: chloroform/methanol>ethanol>hexane>ethanol/hexane for both species. Highest levels of polyunsaturated fatty acids (PUFA) were achieved by the extraction with ethanol. Additionally the effect of storage temperature on the stability of PUFA in ground and freeze-dried seaweed biomass was investigated. Seaweed samples were stored for a total duration of 22months at three different temperatures (-20°C, 4°C and 20°C). Levels of TFA and PUFA were only stable after storage at -20°C for the two seaweed species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. UNSAPONIFIABLE MATTER FROM SUGAR CANE FILTER CAKE USING ETHANOL AS SOLVENT

    Directory of Open Access Journals (Sweden)

    Inés María San Anastacio Rebollar

    2016-07-01

    Full Text Available In this paper, we propose a methodology for the obtaining of unsaponificable matter starting from the sugar cane filter cake, in the one that only ethanol 96 °GL is used as solvent. The wax is extracted of the mud with ethanol (with a purity of 96 ºGL by means of a leaching out process using a mud/ethanol ratio of 0.05 kg/L to 70 ºC, atmospheric pressure, agitation speed of 700 rpm and extraction time of 2,5 hours. Under these conditions 86.21 % of extraction is obtained. Then, the obtained extract reacts with alcoholic NaOH to 70 ºC during 75 minutes to atmospheric pressure and shaking to 200 rpm. The employment of the proposed methodology allows to obtain 1.942 g of impure unsaponifiable matter starting from 50 g of mud and 1.05 L of ethanol 96 °GL.

  2. Recovery of Acetic Acid from An Ethanol Fermentation Broth by Liquid-Liquid Extraction (LLE) Using Various Solvents

    International Nuclear Information System (INIS)

    Pham, Thi Thu Huong; Kim, Tae Hyun; Um, Byung Hwan

    2015-01-01

    Liquid-liquid extraction (LLE) using various solvents was studied for recovery of acetic acid from a synthetic ethanol fermentation broth. The microbial fermentation of sugars presented in hydrolyzate gives rise to acetic acid as a byproduct. In order to obtain pure ethanol for use as a biofuel, fermentation broth should be subjected to acetic acid removal step and the recovered acetic acid can be put to industrial use. Herein, batch LLE experiments were carried out at 25°C using a synthetic fermentation broth comprising 20.0 g l -1 acetic acid and 5.0 g l -1 ethanol. Ethyl acetate (EtOAc), tri-n-octylphosphine oxide (TOPO), tri-n-octylamine (TOA), and tri-n-alkylphosphine oxide (TAPO) were utilized as solvents, and the extraction potential of each solvent was evaluated by varying the organic phase-to-aqueous phase ratios as 0.2, 0.5, 1.0, 2.0, and 4.0. The highest acetic acid extraction yield was achieved with TAPO; however, the lowest ethanol-to-acetic acid extraction ratio was obtained using TOPO. In a single-stage batch extraction, 97.0 % and 92.4 % of acetic acid could be extracted using TAPO and TOPO when the ratio of organic-to-aqueous phases is 4:1 respectively. A higher solvent-to-feed ratio resulted in an increase in the ethanol-to-acetic acid ratio, which decreased both acetic acid purity and acetic acid extraction yield.

  3. Separation of ethanol and water by extractive distillation with salt and solvent as entrainer: process simulation

    Directory of Open Access Journals (Sweden)

    I. D. Gil

    2008-03-01

    Full Text Available The aim of this work is to simulate and analyze an extractive distillation process for azeotropic ethanol dehydration with ethylene glycol and calcium chloride mixture as entrainer. The work was developed with Aspen Plus® simulator version 11.1. Calculation of the activity coefficients employed to describe vapor liquid equilibrium of ethanol - water - ethylene glycol - calcium chloride system was done with the NRTL-E equation and they were validated with experimental data. The dehydration process used two columns: the main extractive column and the recovery column. The solvent to feed molar ratio S/F=0.3, molar reflux ratio RR=0.35, number of theoretical stages Ns=18, feed stage Sf=12, feed solvent stage SS=3, and feed solvent temperature TS=80 ºC, were determined to obtain a distillate with at least 99.5 % mole of ethanol. A substantial reduction in the energy consumption, compared with the conventional processes, was predicted by using ethylene glycol and calcium chloride as entrainer.

  4. Process for producing ethanol from syngas

    Science.gov (United States)

    Krause, Theodore R; Rathke, Jerome W; Chen, Michael J

    2013-05-14

    The invention provides a method for producing ethanol, the method comprising establishing an atmosphere containing methanol forming catalyst and ethanol forming catalyst; injecting syngas into the atmosphere at a temperature and for a time sufficient to produce methanol; and contacting the produced methanol with additional syngas at a temperature and for a time sufficient to produce ethanol. The invention also provides an integrated system for producing methanol and ethanol from syngas, the system comprising an atmosphere isolated from the ambient environment; a first catalyst to produce methanol from syngas wherein the first catalyst resides in the atmosphere; a second catalyst to product ethanol from methanol and syngas, wherein the second catalyst resides in the atmosphere; a conduit for introducing syngas to the atmosphere; and a device for removing ethanol from the atmosphere. The exothermicity of the method and system obviates the need for input of additional heat from outside the atmosphere.

  5. Total electron scattering cross sections for methanol and ethanol at intermediate energies

    International Nuclear Information System (INIS)

    Silva, D G M; Tejo, T; Lopes, M C A; Muse, J; Romero, D; Khakoo, M A

    2010-01-01

    Absolute total cross section (TCS) measurements of electron scattering from gaseous methanol and ethanol molecules are reported for impact energies from 60 to 500 eV, using the linear transmission method. The attenuation of intensity of a collimated electron beam through the target volume is used to determine the absolute TCS for a given impact energy, using the Beer-Lambert law to first approximation. Besides these experimental measurements, we have also determined TCS using the additivity rule.

  6. Isothermal (vapour + liquid) equilibrium for binary mixtures of polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, or 2-propanol

    International Nuclear Information System (INIS)

    Khoiroh, Ianatul; Lee, Ming-Jer

    2011-01-01

    Highlights: → An autoclave apparatus was used for binary (vapour + liquid) equilibrium data measurement. → The studied systems are polyethylene glycol mono-4-nonylphenyl ether with alcohols. → The saturated pressure data were fitted accurately to the Antoine equation. → The NRTL model correlated well the phase equilibrium data. → The solvent activities have been calculated. - Abstract: Saturated pressures of three binary systems of oligomeric polyethylene glycol mono-4-nonylphenyl ether (PEGNPE) with methanol, ethanol, and 2-propanol have been measured by using an autoclave (vapour + liquid) equilibrium (VLE) apparatus at temperatures ranging from (340 to 455) K and the oligomer content ranging from 0.100 to 0.400 in mole fraction. With a given feed composition, equilibrium pressures were measured at various temperatures to obtain VLE data. The experimental data were fitted to the Antoine equation and also correlated with activity coefficient models, the NRTL and the UNIQUAC. The correlation results showed good agreement between the calculated values and the experimental data. In general, the NRTL model yielded better results. Additionally, the solvent activities were evaluated from the experimental results and were compared with those from the NRTL and the UNIQUAC models.

  7. Dissolution behavior of silk fibroin in a low concentration CaCl2-methanol solvent: From morphology to nanostructure.

    Science.gov (United States)

    Shen, Tingting; Wang, Tao; Cheng, Guotao; Huang, Lan; Chen, Lei; Wu, Dayang

    2018-02-05

    Regenerated Silk biomaterials are usually pre-formed from silk fibroin solutions. However, the dissolution of silk fibroin in proper solvents by a simple and low cost way is still a challenge. Here, we employed a CaCl 2 -methanol solvent system with a very low CaCl 2 concentration of 6wt% to dissolve silk fibroin. During the dissolution process, the evaporation of methanol cause the changing of solvation sheath of ions in the solvent. The remaining solvent with the incomplete solvation sheath is absorbed by the silk fiber and interacts with fibroin chains to complete the solvation sheath, which accounts for the dissolution of silk fibroin. Silk fibroin dissolution stops as all the solvation sheaths are complete. The final CaCl 2 concentration is ca. 26% and silk fibroin is completely dissolved with a yield of about 90%. Silk fibroin is dissolved into multi-scale nanofibrils solution which is potential for producing regenerated silk fibroin materials for functional applications. Copyright © 2018. Published by Elsevier B.V.

  8. Fluctuations in serum ethanol concentration in the treatment of acute methanol poisoning: a prospective study of 21 patients

    Czech Academy of Sciences Publication Activity Database

    Zakharov, S.; Navrátil, Tomáš; Salek, T.; Kurcová, I.; Pelclová, D.

    2015-01-01

    Roč. 159, č. 4 (2015), s. 666-676 ISSN 1213-8118 Institutional support: RVO:61388955 Keywords : methanol poisoning * ethanol * antidote Subject RIV: CG - Electrochemistry Impact factor: 0.924, year: 2015

  9. Temperature Induced Solubility Transitions of Various Poly(2-oxazolines in Ethanol-Water Solvent Mixtures

    Directory of Open Access Journals (Sweden)

    Hanneke M. L. Lambermont-Thijs

    2010-08-01

    Full Text Available The solution behavior of a series of poly(2-oxazolines with different side chains, namely methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, phenyl and benzyl, are reported in ethanol-water solvent mixtures based on turbidimetry investigations. The LCST transitions of poly(2-oxazolines with propyl side chains and the UCST transitions of the poly(2-oxazolines with more hydrophobic side chains are discussed in relation to the ethanol-water solvent composition and structure. The poly(2-alkyl-2-oxazolines with side chains longer than propyl only dissolved during the first heating run, which is discussed and correlated to the melting transition of the polymers.

  10. Fluorescence spectroscopy of Rhodamine 6G: concentration and solvent effects.

    Science.gov (United States)

    Zehentbauer, Florian M; Moretto, Claudia; Stephen, Ryan; Thevar, Thangavel; Gilchrist, John R; Pokrajac, Dubravka; Richard, Katherine L; Kiefer, Johannes

    2014-01-01

    Rhodamine 6G (R6G), also known as Rhodamine 590, is one of the most frequently used dyes for application in dye lasers and as a fluorescence tracer, e.g., in the area of environmental hydraulics. Knowing the spectroscopic characteristics of the optical emission is key to obtaining high conversion efficiency and measurement accuracy, respectively. In this work, solvent and concentration effects are studied. A series of eight different organic solvents (methanol, ethanol, n-propanol, iso-propanol, n-butanol, n-pentanol, acetone, and dimethyl sulfoxide (DMSO)) are investigated at constant dye concentration. Relatively small changes of the fluorescence spectrum are observed for the different solvents; the highest fluorescence intensity is observed for methanol and lowest for DMSO. The shortest peak wavelength is found in methanol (568 nm) and the longest in DMSO (579 nm). Concentration effects in aqueous R6G solutions are studied over the full concentration range from the solubility limit to highly dilute states. Changing the dye concentration provides tunability between ∼550 nm in the dilute case and ∼620 nm at high concentration, at which point the fluorescence spectrum indicates the formation of R6G aggregates. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Mercuric iodide crystals obtained by solvent evaporation using ethanol

    International Nuclear Information System (INIS)

    Ugucioni, J.C.; Ghilardi Netto, T.; Mulato, M.

    2010-01-01

    Millimeter-sized mercuric iodide crystals were fabricated by the solvent evaporation technique using pure ethanol as a solvent. Three different conditions for solution evaporation were tested: (i) in the dark at room temperature; (ii) in the presence of light at room temperature and (iii) in an oven at 40 deg. C. Morphology, structure, optical and electrical properties were investigated using several techniques. Crystals fabricated in the dark show better properties and stability than others, possibly because the larger the energy of the system, the larger the number of induced growth defects. The crystals fabricated in the dark have adequate structure for higher resistivity and activation energy close to half the optical band-gap, as desired. With proper encapsulation these crystals might be good candidates for the development of ionizing radiation sensors.

  12. Determination and modeling of the solubility of (limonin in methanol or acetone + water) binary solvent mixtures at T = 283.2 K to 318.2 K

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Zheng, Bing; Liao, Dan-Dan; Yu, Jia-Xin; Cao, Ya-Hui; Zhang, Xue-Hong; Zhu, Jian-Hang

    2016-01-01

    Highlights: • The solubilities of limonin were measured in the binary solvent mixtures methanol + water and acetone + water. • The solubility data were correlated by nine models. • The solubility of limonin had a maximum point at 0.9 mol fraction of acetone in acetone + water mixtures. - Abstract: The solubility of limonin in the binary solvent mixtures (methanol + water) and (acetone + water) with various initial mole fractions of methanol or acetone was measured by high-performance liquid chromatography (HPLC) at different temperatures ranging from 283.2 K to 318.2 K. The solubility of limonin increased with increasing initial mole fraction of methanol in (methanol + water) mixtures, whereas it had a maximum point at 0.9 mol fraction of acetone in (acetone + water) mixtures. The solubility of limonin increased with increasing temperature in the two binary solvent mixtures. The solubility of limonin was correlated with temperature by the van’t Hoff model and the modified Apelblat model, and the fitting results showed that the modified Apelblat model had better correlation. The CNIBS/Redlich–Kister model and the simplified CNIBS/Redlich–Kister model were used to correlate the solubility data with the initial solvent composition, the results show that the CNIBS/Redlich–Kister model reveals better agreement with the experimental values. Furthermore, to illustrate the effects of both temperature and initial solvent composition on the changes in the solubility of limonin, the solubility values were fitted by the Jouyban–Acree, van’t Hoff–Jouyban–Acree, modified Apelblat–Jouyban–Acree, Ma and Sun models. Among the five models, the Jouyban–Acree model give the best correlation results for (methanol + water) binary solvent mixtures, while the experimental solubility in the (acetone + water) system was most accurately correlated by the van’t Hoff–Jouyban–Acree model.

  13. Thermodynamic models for determination of 3-chloro-N-phenylphthalimide solubility in binary solvent mixtures of (acetone, ethyl acetate or 1,4-dioxane + methanol)

    International Nuclear Information System (INIS)

    Xie, Yong; Shi, Hongwei; Du, Cunbin; Cong, Yang; Wang, Jian; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents were determined. • Solubility data were correlated and calculated by five models. • The standard molar enthalpy for the dissolution processes were calculated. - Abstract: The solubility of 3-chloro-N-phenylphthalimide in binary mixed solvents of (acetone + methanol, ethyl acetate + methanol and 1,4-dioxane + methanol) were determined experimentally by using the isothermal dissolution equilibrium method within the temperature range from (288.15 to 323.15) K under atmosphere pressure. For the binary systems of (acetone + methanol) and (1,4-dioxane + methanol), the solubility of 3-chloro-N-phenylphthalimide increased with increasing temperature and mass fraction of acetone or 1,4-dioxane; and for the (ethyl acetate + methanol) system, at a given composition of ethyl acetate, the solubility of 3-chloro-N-phenylphthalimide increased with an increase in temperature; nevertheless at the same temperature, they increased at first and then decreased with increasing mass fraction of 1,4-dioxane. At the same temperature and mass fraction of acetone, ethyl acetate or 1,4-dioxane, the solubility of 3-chloro-N-phenylphthalimide was greater in (1,4-dioxane + methanol) than in the other two mixed solvents. The solubility values were correlated by employing the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, Apelblat–Jouyban–Acree model, Ma model, and Sun model. On the whole, the Ma model and Sun model were proven to provide good representation of the experimental solubility results. Furthermore, the dissolution enthalpies of the dissolution process were calculated. The dissolution process of 3-chloro-N-phenylphthalimide in these mixed solvents is endothermic. The experimental solubility and the models in this study could be helpful in purifying 3-chloro-N-phenylphthalimide.

  14. Evidences for decarbonation and exfoliation of layered double hydroxide in N,N-dimethylformamide-ethanol solvent mixture

    International Nuclear Information System (INIS)

    Gordijo, Claudia R.; Leopoldo Constantino, Vera R.; Oliveira Silva, Denise de

    2007-01-01

    The behavior of a Hydrotalcite-like material (carbonate-containing Mg,Al-layered double hydroxide) in N,N-dimethylformamide (DMF)-ethanol mixture, at ambient temperature, has been investigated. The releasing of CO 2 and production of a formate-containing material occurred mainly for 1:1 (v/v) solvent mixture. Decarbonation of Hydrotalcite is promoted by DMF hydrolysis followed by neutralization of brucite-like layers through HCOO - intercalation. Translucent colloidal dispersion of LDH nanoparticles from the formate-containing phase was characterized by transmission electron (TEM) and atomic force (AFM) microscopies. The absence of (00l) reflection at X-ray diffraction (XRD) pattern for dried colloidal dispersion indicated delamination of Hydrotalcite. The restacked sample exhibited broad reflections and typical hydroxide ordered layers non-basal (110) diffraction peaks. A LDH-HCOO - material was also prepared and characterized by FTIR and FT-Raman spectroscopies. Decarbonation and exfoliation of Hydrotalcite in N,N-dimethylformamide-ethanol mixed solvent provide an interesting method for preparation of new intercalated LDH materials. - Graphical abstract: Hydrotalcite suspended in 1:1 (v/v) N,N-dimethylformamide-ethanol solvent mixture, at ambient temperature, undergoes decarbonation and exfoliation. The process is promoted by DMF hydrolysis. Restacking of LDH layers is achieved by evaporating the solvent

  15. Analysis of organic solvents and liquid mixtures using a fiber-tip evaporation sensor

    Science.gov (United States)

    Preter, Eyal; Donlagic, Denis; Artel, Vlada; Katims, Rachel A.; Sukenik, Chaim N.; Zadok, Avi

    2014-05-01

    The instantaneous size and rate of evaporation of pendant liquid droplets placed on the cleaved facet of a standard fiber are reconstructed based on reflected optical power. Using the evaporation dynamics, the relative contents of ethanol in ethanol-water binary mixtures are assessed with 1% precision and different blends of methanol in gasoline are properly recognized. The latter application, in particular, is significant for the use of alternative fuels in the automotive sector. Also, ten organic solvents are identified based on their evaporation from a fiber facet coated with a hydrophobic, selfassembled monolayer.

  16. Solvent extraction of organic acids from stillage for its re-use in ethanol production process.

    Science.gov (United States)

    Castro, G A; Caicedo, L A; Alméciga-Díaz, C J; Sanchez, O F

    2010-06-01

    Stillage re-use in the fermentation stage in ethanol production is a technique used for the reduction of water and fermentation nutrients consumption. However, the inhibitory effect on yeast growth of the by-products and feed components that remains in stillage increases with re-use and reduces the number of possible recycles. Several methods such as ultrafiltration, electrodialysis and advanced oxidation processes have been used in stillage treatment prior its re-use in the fermentation stage. Nevertheless, few studies evaluating the effect of solvent extraction as a stillage treatment option have been performed. In this work, the inhibitory effect of serial stillage recycling over ethanol and biomass production was determined, using acetic acid as a monitoring compound during the fermentation and solvent extraction process. Raw palm oil methyl ester showed the highest acetic acid extraction from the aqueous phase, presenting a distribution coefficient of 3.10 for a 1:1 aqueous phase mixture:solvent ratio. Re-using stillage without treatment allowed up to three recycles with an ethanol production of 53.7 +/- 2.0 g L(-1), which was reduced 25% in the fifth recycle. Alternatively, treated stillage allowed up to five recycles with an ethanol final concentration of 54.7 +/- 1.3 g L(- 1). These results show that reduction of acetic acid concentration by an extraction process with raw palm oil methyl ester before re-using stillage improves the number of recycles without a major effect on ethanol production. The proposed process generates a palm oil methyl ester that contains organic acids, among other by-products, that could be used for product recovery and as an alternative fuel.

  17. Studies of catalyst material for the electro-oxidation of methanol, ethanol, formaldehyde and formic acid

    International Nuclear Information System (INIS)

    Bajwa, S.Z.; Ahmed, R.

    2007-01-01

    Fuel cell is an electrochemical device that converts the chemical energy of reaction directly into the electrical energy. It is highly efficient and environment friendly device. Normally used fuel in fuel cells is hydrogen, but due to the convenience in handling some other liquid fuels are also used and now direct methanol fuel cells are available in the market. Rapid electro-oxidation of the fuel at the fuel cell electrode is necessary for its optimum use. In addition to the methanol, other liquid fuels can also be used in the fuel cell. In this work, cyclic voltammetric studies have been done for the electro-oxidation of the methanol, ethanol, formic acid and formaldehyde on fuel cell catalyst. Platinum electrode is characterized by the measurement of active surface area and roughness factor. Classical electrochemical equations have been employed to find out rate constants for electro-oxidation of methanol fuel and calculations have been carried out to find out thermodynamic parameters. Exchange current density has been evaluated with reference to catalyst by drawing polarization curves. (author)

  18. Platinum nanocube catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Beom; Song, You-Jung; Lee, Jong-Min; Kim, Jy-Yeon; Park, Kyung-Won [Department of Chemical and Environmental Engineering, Soongsil University, Seoul 156-743 (Korea)

    2008-07-15

    We prepared Pt nanocube catalyst with about 3.6 nm in size by a polyol process in the presence of PVP as a stabilizer and Fe ion as a kinetic controller. The crystal structure of Pt nanocube with {l_brace}1 0 0{r_brace} faces was confirmed by field-emission transmission electron microscopy. In a cyclic voltammogram, we found that the Pt nanocube catalyst showed relatively high ratio of the forward anodic peak current to the reverse anodic peak current resulting in less accumulation of residues on the catalyst. The Pt nanocube catalyst with the edge of stepped {l_brace}1 0 0{r_brace} faces was preferable to breakage of CH{sub 3}OH and CH{sub 3}CH{sub 2}OH compared to polycrystalline Pt nanocatalyst. In an electrochemical measurement for methanol and ethanol electrooxidation, the Pt nanocube catalyst showed an excellent catalytic activity, i.e., lower onset potential and higher current density, compared to the polycrystalline Pt nanocatalyst. (author)

  19. Gasoline, Ethanol and Methanol (GEM) Ternary Blends utilization as an Alternative to Conventional Iraqi Gasoline to Suppress Emitted Sulfur and Lead Components to Environment

    OpenAIRE

    Miqdam Tariq Chaichan

    2016-01-01

    Iraqi conventional gasoline characterized by its low octane number not exceed 82 and high lead and sulfur content. In this paper tri-component or ternary, blends of gasoline, ethanol, and methanol presented as an alternative fuel for Iraqi conventional gasoline. The study conducted by using GEM blend that equals E85 blend in octane rating. The used GEM selected from Turner, 2010 collection. G37 E20 M43 (37% gasoline + 20% ethanol+ 43% methanol) was chosen as GEM in present study. This blend u...

  20. Effects of solvents on the early stage stiffening rate of demineralized dentin matrix.

    Science.gov (United States)

    Garcia, Fernanda C P; Otsuki, Masayuki; Pashley, David H; Tay, Franklin R; Carvalho, Ricardo M

    2005-05-01

    To monitor the stiffening rate of demineralized dentin matrix at the early stages after exposure to different neat solvents. Dentin beams approximately 0.8x0.7x8.0 mm were obtained from human third molars. After covering their ends with resin composite, the middle exposed length of 4.0mm (gauge-length) was demineralized in 0.5 M EDTA (pH 7.0) for 7 days. The specimens were gripped by a testing machine, pre-loaded to 10 g and cyclically stressed in tension to 5% strain, for 30 repeated cycles (total 20 min) at 0.6 mm/min while immersed in water (control). Then, water was replaced by either 100% acetone, methanol, ethanol, propanol, HEMA or air and the specimens subjected to the same cyclic protocol. The maximum apparent modulus of elasticity (E(Max)) was calculated for every cycle, plotted as a function of time and subjected to regression analysis. Stiffening rate was calculated as changes in E (min). Regression analysis examined the relationship between E and time for each solvent. Data were analyzed by one-way ANOVA and Student-Newman-Keuls test at alpha=0.05. Regression analysis showed that E increased significantly with time in all water-free solvents (R2=0.8-0.99). Stiffening rate was higher for acetone (0.9 MPa/min) and ethanol (0.8 MPa/min), intermediate for air (0.7 MPa/min), methanol (0.6 MPa/min) and propanol (0.5 MPa/min), lower for HEMA (0.2 MPa/min) and practically none for water (0.07 MPa/min) with prate of demineralized dentin matrix is both time and solvent-dependent. The ability of solvents to promptly stiffen the demineralized dentin matrix may be important in maintaining the resin-infiltrated matrix expanded during the solvent evaporation stage of resin bonding.

  1. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review.

    Science.gov (United States)

    Zhang, Ke; Pei, Zhijian; Wang, Donghai

    2016-01-01

    Lignocellulosic biomass represents the largest potential volume and lowest cost for biofuel and biochemical production. Pretreatment is an essential component of biomass conversion process, affecting a majority of downstream processes, including enzymatic hydrolysis, fermentation, and final product separation. Organic solvent pretreatment is recognized as an emerging way ahead because of its inherent advantages, such as the ability to fractionate lignocellulosic biomass into cellulose, lignin, and hemicellulose components with high purity, as well as easy solvent recovery and solvent reuse. Objectives of this review were to update and extend previous works on pretreatment of lignocellulosic biomass for biofuels and biochemicals using organic solvents, especially on ethanol, methanol, ethylene glycol, glycerol, acetic acid, and formic acid. Perspectives and recommendations were given to fully describe implementation of proper organic solvent pretreatment for future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Solvents effects on crystallinity and dissolution of β-artemether.

    Science.gov (United States)

    Xu, Jianghui; Singh, Vikramjeet; Yin, Xianzhen; Singh, Parbeen; Wu, Li; Xu, Xiaonan; Guo, Tao; Sun, Lixin; Gui, Shuangying; Zhang, Jiwen

    2017-03-01

    β-artemether (ARM) is a widely used anti-malarial drug isolated from the Chinese antimalarial plant, Artemisia annua. The solvent effects on crystal habits and dissolution of ARM were thoroughly investigated and discussed herein. The ARM was recrystallized in nine different solvents of varied polarity, namely, methanol, ethanol, isopropanol, tetrahydrofuran, dichloromethane, trichloromethane, ethyl acetate, acetone and hexane by solvent evaporation method. The obtained crystals were morphologically characterized using scanning electron microscope (SEM). The average sizes of crystals were 1.80-2.64 μm calculated from microscopic images using Image-Pro software. No significant change in chemical structure was noticed after recrystallization and the specific band at 875 cm -1 wavenumber (C-O-O-C) confirmed the presence of most sensitive functional group in the ARM chemical structure. The existence and production of two polymorphic forms, polymorph A and polymorph B, was confirmed by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The data suggested that the fabrication of polymorph B can be simply obtained from the recrystallization of ARM in a specific solvent. Significant effects of solvent polarity, crystals shapes and sizes on drug dissolution were noticed during in vitro dissolution test. The release kinetics were calculated and well fitted by the Higuchi and Hixon-Crowell models. The ARM-methanol and ARM-hexane showed highest and slowest dissolution, respectively, due to the effects of solvent polarity and crystal morphologies. Overall, proper selection of the solvents for the final crystallization of ARM helps to optimize dissolution and bioavailability for a better delivery of anti-malarial drug.

  3. Mass Proportion, Bioactive Compounds and Antioxidant Capacity of Carrot Peel as Affected by Various Solvents

    Directory of Open Access Journals (Sweden)

    Van Tang Nguyen

    2016-11-01

    Full Text Available The aim of this study was to determine the mass proportion of carrot root and the effects of four various solvents (methanol, water, ethanol and hexane on the contents of total phenolics and saponins as well as antioxidant capacity of carrot peel to identify an optimal solvent for effective extraction of bioactive compounds from carrot peel for further investigation. The results showed that carrot root consisted of body, heads and peel with their mass proportion of 83.19%, 5.01% and 14.19% by fresh weight, respectively. Among four solvents tested, methanol obtained the highest levels of extraction yield (54.02% by dry weight, total phenolic content (9.02 mg GAE/g dry weight and antioxidant capacity (DPPH radical scavenging capacity, cupric ion reducing antioxidant capacity, and ferric reducing antioxidant power from carrot peel, while water extracted the highest content of saponins (272.9 mg EE/g dry weight and possessed the maximum ABTS radical scavenging capacity. Therefore, methanol and water are considered for effective extraction of phenolics and saponins from carrot peel, respectively. The phenolic/saponin-enriched extracts are potential sources for further applications in the healthy food and/or pharmaceutical industries.

  4. Homologation of methanol catalyzed by transition metal complexes in the presence of tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masato; Ogata, Ikuei

    1987-12-18

    This paper describes the homologation of methanol by transition metal carbonyl catalysts in the presence of tertiary amines. Methanol was reacted with amine using a catalyst at 180/sup 0/C under 100 atm in the atmosphere of CO and H/sub 2/ mixed at the ratio of 4 in an autoclave. The reaction activities and selectivities of ethanol using iron carbonyl and Co carbonyl catalysts are superior. Only the iron catalyst was used hereafter because phosphine is required for the latter catalyst. N-methyl- piperidine, a cyclic amine, is superior to the other amines. The selectivity of ethanol is higher under higher partial pressure of H/sub 2/ and lower partial pressure of CO. The conversion rate is optimum at 180/sup 0/ and it goes down with increasing the temperature from it. Since the selectivity is markedly decreased with increasing amine, the reaction activity must be balanced with the amount of amine. The presence of solvent affects it. (3 figs, 6 tabs, 15 refs)

  5. Chetoui olive leaf extracts: influence of the solvent type on the phenolics and antioxidant activities

    Energy Technology Data Exchange (ETDEWEB)

    Abaza, L.; Ben Youssef, N.; Manai, H.; Haddada, F.M.; Methenni, K.; Zarrouk, M.

    2011-07-01

    The aim of this study was to investigate the influence of the solvent type on the extraction of phenolics and the antioxidant properties of the extracts obtained from Chetoui olive leaves. Extraction was conducted at room temperature using four solvents: deionized water (ddH2O), 80% methanol (80% MeOH), 70% ethanol (70% EtOH), and 80% acetone. Total phenols and total flavonoids were measured using the Folin-Ciocalteau and aluminum chloride colorimetric methods, respectively. The antioxidant properties have been determined by two scavenging activity methods, DPPH and ABTS. (Author).

  6. Measurement and correlation of solubility of trans-resveratrol in 11 solvents at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K

    Energy Technology Data Exchange (ETDEWEB)

    Sun Xilan; Peng Bin [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China); Yan Weidong [Department of Chemistry, Zhejiang University, Hangzhou 310027 (China)], E-mail: yanweidong@zju.edu.cn

    2008-04-15

    The solubilities of trans-resveratrol in methanol, ethanol, 1-propanol, 2- propanol, 1-butanol, 1-pentanol, 1-hexanol, ethyl acetate, tetrahydrofuran, acetone, and water (pH 6.0) solvents were measured at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K. The solubilities of trans-resveratrol in selected solvents increase with temperature, but decrease with increasing the number of carbon in alcohol solvents. The experimental data were correlated using a thermodynamic equation.

  7. Measurement and correlation of solubility of trans-resveratrol in 11 solvents at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K

    International Nuclear Information System (INIS)

    Sun Xilan; Peng Bin; Yan Weidong

    2008-01-01

    The solubilities of trans-resveratrol in methanol, ethanol, 1-propanol, 2- propanol, 1-butanol, 1-pentanol, 1-hexanol, ethyl acetate, tetrahydrofuran, acetone, and water (pH 6.0) solvents were measured at T = (278.2, 288.2, 298.2, 308.2, and 318.2) K. The solubilities of trans-resveratrol in selected solvents increase with temperature, but decrease with increasing the number of carbon in alcohol solvents. The experimental data were correlated using a thermodynamic equation

  8. Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction

    Science.gov (United States)

    Niyitanga, Theophile; Jeong, Hae Kyung

    2018-05-01

    Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.

  9. COMPARISON OF SORPTION ENERGTICS FOR HYDROPHOBIC ORGANIC CHEMICALS BY SYNTHETIC AND NATURAL SORBENTS FROM METHANOL/WATER SOLVENT MIXTURES

    Science.gov (United States)

    Reversed-phase liquid chromatography (RPLC) was used to investigate the thermodynamics and mechanisms of hydrophobic organic chemical (HOC) retention from methanol/water solvent mixtures. The enthalpy-entropy compensation model was used to infer that the hydro- phobic sorptive me...

  10. Optimal Concentration of Organic Solvents to be Used in the Broth Microdilution Method to Determine the Antimicrobial Activity of Natural Products Against Paenibacillus Larvae

    Directory of Open Access Journals (Sweden)

    Cugnata Noelia Melina

    2017-06-01

    Full Text Available American Foulbrood (AFB is a bacterial disease, caused by Paenibacillus larvae, that affects honeybees (Apis mellifera. Alternative strategies to control AFB are based on the treatment of the beehives with antimicrobial natural substances such as extracts, essential oils and/or pure compounds from plants, honey by-products, bacteria and moulds. The broth microdilution method is currently one of the most widely used methods to determine the minimum inhibitory concentration (MIC of a substance. In this regard, the fact that most natural products, due to their lipophilic nature, must be dissolved in organic solvents or their aqueous mixtures is an issue of major concern because the organic solvent becomes part of the dilution in the incubation medium, and therefore, can interfere with bacterial viability depending on its nature and concentration. A systematic study was carried out to determine by the broth microdilution method the MIC and the maximum non inhibitory concentration (MNIC against P. larvae of the most common organic solvents used to extract or dissolve natural products, i.e. ethanol, methanol, acetonitrile, n-butanol, dimethylsulfoxide, and acidified hydromethanolic solutions. From the MIC and MNIC for each organic solvent, recommended maximum concentrations in contact with P. larvae were established: DMSO 5% (v/v, acetonitrile 7.5% (v/v, ethanol 7.5% (v/v, methanol 12% (v/v, n-butanol 1% (v/v, and methanol-water-acetic acid (1.25:98.71:0.04, v/v/v.

  11. ANALYSIS OF THE KINETICS OF SOLVOLYSIS OF P-NITROPHENYLSULFONYLMETHYL PERCHLORATE IN BINARY ALCOHOLIC MIXTURES IN TERMS OF THE THERMODYNAMIC PROPERTIES OF THE SOLVENT MIXTURES

    NARCIS (Netherlands)

    Wijnen, J W; Engberts, J B F N; Blandamer, Michael J

    Rate constants are reported for the solvolysis of p-nitrophenylsulfonylmethyl perchlorate in binary ethanolic and methanolic mixtures at 298.2 K. Co-solvents include hydrocarbons, chlorinated hydrocarbons and 1,4-dioxane. The kinetic data are examined in terms of the effect of decreasing mole

  12. A rapid method for simultaneously determining ethanol and methanol content in wines by full evaporation headspace gas chromatography.

    Science.gov (United States)

    Zhang, Chun-Yun; Lin, Neng-Biao; Chai, Xin-Sheng; Zhong-Li; Barnes, Donald G

    2015-09-15

    This work reports on a full evaporation headspace gas chromatographic (FE HS-GC) method for simultaneously determining the ethanol (EtOH) and methanol (MeOH) content in wines. A small sample (10μL) was placed in a headspace sample vial, and a near-complete mass transfer of ethanol and methanol from the liquid sample to the vapor phase was obtained within three minutes at a temperature of 105°C, which allowed the measurement of the EtOH and MeOH content in the sample by GC. The results showed excellent precision and accuracy, as shown by the reproducibilities of 1.02% and 2.11% for EtOH and MeOH, respectively, and recoveries that ranged from 96.1% to 104% for both alcohols. The method is efficient, accurate and suitable for the determination of EtOH and MeOH in wine production and quality control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Study of intermolecular interactions in binary mixtures of ethanol in methanol

    Science.gov (United States)

    Maharolkar, Aruna P.; Khirade, P. W.; Murugkar, A. G.

    2016-05-01

    Present paper deals with study of physicochemical properties like viscosity, density and refractive index for the binary mixtures of ethanol and methanol over the entire concentration range were measured at 298.15 K. The experimental data further used to determine the excess properties viz. excess molar volume, excess viscosity, excess molar refraction. The values of excess properties further fitted with Redlich-Kister (R-K Fit) equation to calculate the binary coefficients and standard deviation. The resulting excess parameters are used to indicate the presence of intermolecular interactions and strength of intermolecular interactions between the molecules in the binary mixtures. Excess parameters indicate structure making factor in the mixture predominates in the system.

  14. Pt hierarchical structure catalysts on BaTiO{sub 3}/Ti electrode for methanol and ethanol electrooxidations

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Chenguo; He, Xiaoshan; Xia, Chuanhui [Department of Applied Physics, Chongqing University, Chongqing 400044 (China)

    2010-03-15

    Electrooxidations of methanol and ethanol have been investigated on different Pt catalytic titanium-supported electrodes in both acidic and alkaline media using cyclic voltammetry. BaTiO{sub 3} is used for the first time to make a nanoscaled roughness on the surface of Ti foil in order to effectively deposit Pt hierarchical structure and block foulness in solution reactions. The morphology of BaTiO{sub 3} nanocube on Ti foil, Pt catalysts deposited on BaTiO{sub 3}/Ti and Ti foil electrodes are characterized by field emission scanning electron microscopy. The results indicate that Pt nanoflowers can be effectively grown on the Ti foil covered with 1 {mu}m layer of BaTiO{sub 3} nanocubes and the catalytic oxidation behaviors to methanol and ethanol are much better than those of the Pt/Ti electrode as Pt nanoparticles can hardly be deposited on the smooth surface of the Ti foil. The Pt/BaTiO{sub 3}/Ti electrode could be adopted as excellent catalytic anode in fuel cells. (author)

  15. Influence of organic solvent treatment on elasticoluminescent property of europium-doped strontium aluminates

    International Nuclear Information System (INIS)

    Fujio, Yuki; Xu, Chao-Nan; Terasaki, Nao; Ueno, Naohiro

    2014-01-01

    The influence of an organic solvent treatment on elasticoluminescent (ELS) characteristics of mechanoluminescent (ML) sensor using the composite film consisting of an ELS material and epoxy resin was investigated. We used strontium aluminate doped with a small amount of europium (SrAl 2 O 4 :Eu, SAOE) as an ELS material in this study. After evaluating the ELS characteristics of the fabricated ML sensors using SAOE treated with/without various organic solvents, SAOE treated with methanol and ethanol showed lower ELS intensities than that of untreated SAOE. In contrast, the ELS response curves against strain for the ML sensors using SAOE treated with acetone and toluene, overlapped with that of untreated SAOE. From the characterization of SAOE treated with alcohols, such as methanol and ethanol, we can hypothesize that poor ELS characteristics is due to the degradation of the SAOE grain surfaces by the hydrolyze reaction of SAOE with hydroxyl group of alcohol. Thus, on the basis of the obtained results, we can conclude that the selection of organic solvent used in the preparation of SAOE film is of considerable importance in the development of ML sensor with a highly-reliable ELS characteristic. -- Highlights: • Influence of organic solution treatment on the sensing characteristics of a mechanoluminescent (ML) sensor using SrAl 2 O 4 :Eu has been investigated. • An alcohol treatment of SAOE powder has considerable effect on its ML characteristic. • There is almost no influence of acetone and toluene treatments on ML characteristics

  16. Apparent Molal Volumes of Sodium Fluoride in Mixed Aqueous-Ethanol Solvents

    Directory of Open Access Journals (Sweden)

    E. Gomaa

    2010-09-01

    Full Text Available The densities of different molal concentrations of sodium fluoride at ethanol-water mixtures, as solvent, have been measured over the whole composition range at three different temperatures, 293.15, 303.15 and 313.15oK. From the measured densities, the apparent and limiting molal volumes of the electrolytes have been evaluated. The limiting molal volumes for sodium and fluoride ions were estimated by splitting the ionic contributions as an asymmetric assumption.

  17. Enhanced Crystallization by Methanol Additive in Anti-solvent for Achieving High-quality MAPbI3 Perovskite Films in Humid Atmosphere.

    Science.gov (United States)

    Yang, Fu; Kamarudin, Muhammad Akmal; Zhang, PuTao; Kapil, Gaurav; Ma, Tingli; Hayase, Shuzi

    2018-05-04

    Perovskite solar cells have attracted considerable attention owing to easy and low-cost solution manufacturing process with high power conversion efficiency. However, the fabrication process is usually performed inside glovebox to avoid the moisture, as organometallic halide perovskite is easily dissolved in water. In this study, we propose one-step fabrication of high-quality MAPbI3 perovskite films in 50 % RH humid ambient air by using diethyl ether as an anti-solvent and methanol as an additive into this anti-solvent. Because of the existence of methanol, the water molecules can be efficiently removed from the gaps of perovskite precursors and the perovskite film formation can be slightly controlled leading to pinhole-free and low roughness film. Concurrently, methanol can modify a proper DMSO ratio in the intermediate perovskite phase to regulate perovskite formation. Planar solar cells fabricated by using this method exhibited the best efficiency of 16.4 % with a reduced current density-voltage hysteresis. This efficiency value is approximately 160 % higher than the devices fabrication by using only diethyl ether treatment. From the impedance measurement, it is also found that the recombination reaction has been suppressed when the device prepared with additive anti-solvent way. This method presents a new path for controlling the growth and morphology of perovskite films in the humid climates and uncontrolled laboratories. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Net expansion of dried demineralized dentin matrix produced by monomer/alcohol saturation and solvent evaporation.

    Science.gov (United States)

    Agee, Kelli A; Becker, Thomas D; Joyce, Anthony P; Rueggeberg, Frederick A; Borke, James L; Waller, Jennifer L; Tay, Franklin R; Pashley, David H

    2006-11-01

    The purpose of this work was to determine if nonaqueous methacrylate monomer/alcohol mixtures could expand dried collapsed demineralized dentin matrix. Thin disks (ca. 200 microm) of human dentin were demineralized and placed in wells beneath contact probes of linear variable differential transformers. The probes were placed on water-saturated expanded matrices to record the shrinkage associated with drying. Monomer mixtures containing hydroxyethyl methacrylate, 2,2-bis[4-(2-hydroxy-3 methacryloyloxy)propoxyphenyl] propane, or triethyleneglycol dimethacrylate were mixed with methanol or ethanol at alcohol/monomer mass fraction % of 90/10, 70/30, 50/50, or 30/70. They were randomly applied to the dried matrices to determine the rate and magnitude of expansion; then shrinkage was recorded during evaporation of the alcohols. The results indicated that matrix expansion was positively correlated with the Hoy's solubility parameters for hydrogen bonding forces (delta(h)) of the monomer/solvent mixtures (p methanol-containing than with ethanol-containing monomer mixtures. For the test solutions, triethyleneglycol dimethacrylate-containing mixtures produced the slowest rate of matrix expansion and hydroxyethyl methacrylate-containing mixtures the most rapid expansion. When the solvents were evaporated, the matrix shrank in proportion to the solvent content and the delta(h) of the monomer-solvent mixtures. The results indicate that expansion of dried, collapsed dentin matrices requires that the delta(h) of the mixtures be larger than 17 (J/cm(3))(1/2). The greater the delta(h) of the monomer solutions, the greater the rate and extent of expansion.

  19. Molar extinction coefficients of some commonly used solvents

    International Nuclear Information System (INIS)

    Kumar, Ashok; Singh, Sukhpal; Singh Mudahar, Gurmel; Singh Thind, Kulwant

    2006-01-01

    Molar extinction coefficients of some commonly used solvents (ethanol (C 2 H 5 OH), methanol (CH 3 OH), propanol (C 3 H 7 OH), butanol (C 4 H 9 OH), water (H 2 O), toluene (C 7 H 8 ), benzene (C 6 H 6 ), carbontetrachloride (CCl 4 ), acetonitrile (C 4 H 3 N), chlorobenzene (C 6 H 5 Cl), diethylether (C 4 H 1 O) and dioxane (C 4 H 8 O 2 )) have been determined by a well-collimated narrow beam transmission geometry at 279, 356, 662, 1173, 1252 and 1332 keV γ rays. The total γ ray interaction cross sections of these solvents have also been determined. A good agreement has been obtained between the experimental results with the theoretical values evaluated through XCOM calculations

  20. Effect of White Turmeric Extract (Curcuma zedoaria Using Zam-zam Solvent Compare with Ethanol Solvent Against Breast Cancer Cell T47D

    Directory of Open Access Journals (Sweden)

    Isna Hudaya

    2016-01-01

    Full Text Available Introduction: Curcuma zedoaria is one of the herbal plants potentially protects and cures many diseases, particularly as anti-cancer and anti-tumor. Anti-cancer active compounds of it are flavonoid, phenolic, and saponin. Objectives: This study aimed to explore the cytotoxicity of Curcuma zedoria extract (CZE. Methods: Experimental Quasi with post test non equivalent control group design on T47D cell line at Biology laboratory, Faculty of Medicine, Sultan Agung Islamic University, Semarang. The research was consisted of 2 groups, namely: intervention group with CZE zam-zam solvent and intervention group with CZE ethanol solvent given 10 different dosages each for 1.000 μg/mL; 500 μg/mL; 250 μg/mL; 125 μg/mL; 62.5 μg/mL; 31.25 μg/mL; 15.62 μg/mL; 7.81 μg/mL; 3.90 μg/mL; 1.95 μg/mL. Cytotoxicity test of IC50 using direct counting method and analyzed by probit analysis. Results: IC50 value of CZE in zam-zam and ethanol solvent were 28.24 μg/ml and 13.71 µg/ml respectively at the same 24 hours incubation period. Chi-square test revealed p value was 0.000 (α = 0.05, meaning that there was significant relationship. Conclusion: CZE activity using ethanol is highly active while CZE using zam-zam water is moderate and both of them have the toxicity on breast cancer cell. As the result, apoptosis process may occur.

  1. Plasma-polymerized films providing selective affinity to the polarity of vaporized organic solvents

    International Nuclear Information System (INIS)

    Akimoto, Takuo; Ikeshita, Yusuke; Terashima, Ryo; Karube, Isao

    2009-01-01

    Plasma-polymerized films (PPFs) were fabricated as recognition membranes for a vapor-sensing device, and their affinity to vaporized organic solvents was evaluated with surface plasmon resonance. The affinity we intended to create is the selective sorption of the vaporized organic solvents depending on their polarity. For this purpose, acetonitrile, ethylenediamine (EDA), styrene, hexamethyldisiloxane (HMDSO), and hexamethyldisilazane were used to fabricate PPFs. Vaporized methanol, ethanol, and 1-propanol were used as high-polar solvents to be analyzed. Hexane, toluene, and p-xylene were used as low-polar solvents. As a result, the HMDSO-PPF with 97.3 o of contact angle was found to provide affinity to the low-polar solvents. In contrast, the EDA-PPF with 7.1 o of contact angle provided affinity to the high-polar solvents. Observations of the surface morphology of the HMDSO- and EDA-PPFs with a scanning electron microscope revealed that they are composed of nano-scale islands.

  2. Influence of different water-ethanol solvent systems on the spectroscopic and physico-chemical properties of the macrocyclic compounds pheophytin and chlorophyll a

    International Nuclear Information System (INIS)

    Moreira, Leonardo M.; Rodrigues, Maira R.; Oliveira, Hueder P. M. de; Lima, Adriana; Soares, Rafael R. S.; Batistela, Vagner R.; Gerola, Adriana P.; Hioka, Noboru; Severino, Divinomar; Baptista, Mauricio S.; Machado, Antonio Eduardo da Hora

    2010-01-01

    This work focus on the influence of solvent on the photophysical properties of chlorophyll a and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds. (author)

  3. Matlab Source Code for Species Transport through Nafion Membranes in Direct Ethanol, Direct Methanol, and Direct Glucose Fuel Cells

    OpenAIRE

    JH, Summerfield; MW, Manley

    2016-01-01

    A simple simulation of chemical species movement is presented. The species traverse a Nafion membrane in a fuel cell. Three cells are examined: direct methanol, direct ethanol, and direct glucose. The species are tracked using excess proton concentration, electric field strength, and voltage. The Matlab computer code is provided.

  4. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    OpenAIRE

    Teresa J. Leo; Miguel A. Raso; Emilio Navarro; Eleuterio Mora

    2013-01-01

    The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent opera...

  5. Thermodynamic modelling of the absorption of acid gas in mixed solvent (water-di-ethanolamine-methanol); Modelisation thermodynamique de l'absorption des gaz acides dans un solvant mixte (eau-diethanolamine-methanol)

    Energy Technology Data Exchange (ETDEWEB)

    Habchi tounsi, K.N.

    2003-10-01

    This work is related to the development of new processes about gas sweetening with mixed solvent coupling a chemical one (aqueous solution of di-ethanolamine) and a physical one (Methanol). These systems are electrolyte solutions constituted by ions and molecular species related each others by chemical reactions. This work is also relevant to the problematic of solvent mixtures (water-methanol). In a first stage we focus our interest over the measurement of original data covering a large experimental interval: five compositions in condition of pressures and temperatures up to 30 and 120 deg C respectively. In a second stage the simultaneous representation of chemical and phase equilibrium was successfully realised. The non stoichiometric method is used for the determination of chemical equilibrium. The heterogeneous method (Peng Robinson + NRTL electrolyte) is used for the representation of vapour liquid equilibrium. (author)

  6. Facile synthesis of palladium–graphene nanocomposites and their catalysis for electro-oxidation of methanol and ethanol

    International Nuclear Information System (INIS)

    Zhang, Yuting; Shu, Honghui; Chang, Gang; Ji, Kai; Oyama, Munetaka; Liu, Xiong; He, Yunbin

    2013-01-01

    Highlights: • Pd nanoparticles/graphene (PdNPs/graphene) was synthesized within one-step process. • Environment friendly ascorbic acid was chosen as the reductant. • The synthesized PdNPs/graphene shows superior electrocatalytic activity to both methanol and ethanol. • PdNPs/graphene shows superior electrocatalytic stability in methanol and ethanol electro-oxidation. -- Abstract: Well-dispersed Pd nanoparticles (PdNPs) supported on graphene sheets were successfully prepared by a simple one-pot process, in which the reduction of Poly Vingl Pyrrolidone-functionalized graphite oxide and Pd precursor was carried out simultaneously using ascorbic acid as a soft reductant. The Pd nanoparticles decorated graphene composite (PdNPs/PVP-graphene) was characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Morphology and structure characterizations directly showed that Pd nanoparticles with crystallite size of about 8.5 nm were evenly formed on graphene. Catalysis activity as in fuel cells was investigated by further electrochemical experiments including cyclic voltammograms and chronoamperometric measurements. Compared to the commercial Vulcan XC-72 supported Pd nanoparticles, PdNPs/PVP-graphene exhibits superior electrocatalytic activity and stability toward electro-oxidation of alcohols, showing its potential use as new electrode material for direct alcohol fuel cells (DAFCs)

  7. Ultrasound assisted extraction of natural dye from jackfruit's wood (Artocarpus heterophyllus): The effect of ethanol concentration as a solvent

    Science.gov (United States)

    Febriana, Ike Dayi; Gala, Selfina; Mahfud, Mahfud

    2017-05-01

    Azo dye are synthetic organic dyes which has an azo group (- N = N -) as chromophore. Azo dye is resistand to decomposition process and harmfull for the environment and human being. Natural dye can be used as substitution of azo dye at textile industry. Natural dye are eco - friendly and can be applied for dyeing of fibrous material. Natural dye can be obtained from natural origin such as leaves, wood, or roots. The wood of jackfruit (Artocarpus heterophyllus) can used as natural source of natural dye. Ultrasound assisted extraction (UAE) is a new method that can be used to extract natural dye from jackfruit's wood. The aim of this research are to study about influence of ethanol concentration as solvent and extraction kinetic. Jackfruit's wood dust from sawmill used for the experimentation were sifted by sieve 35 mesh. Ethanol 96% used as solvent of this experiment and varied the concentration in volume to volume ratio (v/v). Experiment were carried out from 20 to 50 minutes. The result of this experiment shows that ethanol concentration influenced yield of extraction from jackfruit's wood. Concentration of ethanol will be affected polarity of solvent. The Peleg model was used to describe about kinetic model of natural dye extraction. Value of k1 and k2 constant are 0.003835 and 0.04186 respectively.

  8. The Effect of Solvents, Acetone, Water, and Ethanol, on the Morphological and Optical Properties of ZnO Nanoparticles Prepared by Microwave

    Directory of Open Access Journals (Sweden)

    Phindile B. Khoza

    2012-01-01

    Full Text Available HDA-capped ZnO nanoparticles were prepared by solvothermal method using solvents of different polarities. A number of parameters were kept constant such as temperature, pressure, time, and pH while solvents were varied, that is, water, ethanol, and acetone. The TEM was used for the structural properties and morphologies such as spheres, mixture of rods, and spheres and stars were obtained in ethanol, acetone, and water, respectively, in a given reaction time of 15 minutes. Both ethanol and acetone gave rods with high aspect ratio primarily because of the lengths of the rods. Water and ethanol have the hydroxyl groups which interact with nanoparticles from nucleation, growth, and termination giving rise to nonspherical shapes. The hydroxyl group promotes growth in a nonuniform way resulting in stars and rods. The optical features were typical of ZnO nanoparticles with excitonic peaks in the range 368 to 374 nm from their absorption spectra. The XRD patterns of the particles gave the most stable form of ZnO which is the hexagonal phase, with high degree of crystallinity and with the 101 plane predominant in all solvents.

  9. Measurement and correlation of solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in seven solvents at different temperatures

    International Nuclear Information System (INIS)

    Xiao Min; Shao Yundong; Yan Weidong; Zhang Zizhang

    2011-01-01

    The solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in water, methanol, ethanol, 1-propanol, 1-butanol, acetone, and ethyl acetate from T = (288.2 to 328.2) K were measured. The solubilities of apigenin and apigenin 7-O-rhamnosylglucoside in selected solvents increase with increasing temperature, respectively. The experimental solubility data were correlated by a simplified thermodynamic equation and a three-parameter empirical equation.

  10. Separation of benzene from mixtures with water, methanol, ethanol, and acetone: highlighting hydrogen bonding and molecular clustering influences in CuBTC

    NARCIS (Netherlands)

    Gutiérrez-Sevillano, J.J.; Calero, S.; Krishna, R.

    2015-01-01

    Configurational-bias Monte Carlo (CBMC) simulations are used to establish the potential of CuBTC for separation of water/benzene, methanol/benzene, ethanol/benzene, and acetone/benzene mixtures. For operations under pore saturation conditions, the separations are in favor of molecules that partner

  11. Role of α-Helical Structure in Organic Solvent-Activated Homodimer of Elastase Strain K

    Directory of Open Access Journals (Sweden)

    Chee Fah Wong

    2011-09-01

    Full Text Available Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3 was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.

  12. Use of natural gas, methanol, and ethanol fuel emulsions as environmentally friendly energy carriers for mobile heat power plants

    Science.gov (United States)

    Likhanov, V. A.; Lopatin, O. P.

    2017-12-01

    The need for using environmentally friendly energy carriers for mobile heat power plants (HPPs) is grounded. Ecologically friendly sources of energy, such as natural gas as well as renewable methyl and ethyl alcohols, are investigated. In order to develop, determine, and optimize the composition of environmentally friendly energy carriers for an HPP, the latter has been tested when working on diesel fuel (DF), compressed natural gas (CNG), and methanol and ethanol fuel emulsions (MFE, EFE). It has been experimentally established that, for the application of environmentally friendly energy carriers for a 4Ch 11.0/12.5 diesel engine of a mobile fuel and power plant, it is necessary to maintain the following ratio of components when working on CNG: 80% gas and 20% DF primer portion. When working on an alcohol mixture, emulsions of the following composition were used: 25% alcohol (methanol or ethanol), 0.5% detergent-dispersant additive succinimide C-5A, 7% water, and 67.5% DF. When this diesel passed from oil DF to environmentally friendly energy sources, it allowed for the reduction of the content of exhaust gases (EG) (1) when working on CNG with recirculation of exhaust gases (EGR) (recirculation was used to eliminate the increased amount of nitric oxides by using CNG): carbon black by 5.8 times, carbon dioxide by 45.9%, and carbon monoxide by 23.8%; (2) when working on MFE: carbon black by 6.4 times, nitrogen oxides by 29.6%, carbon dioxide by 10.1%, and carbon oxide by 47.6%; (3) when working on EFE: carbon black by 4.8 times; nitrogen oxides by 40.3%, carbon dioxide by 26.6%, and carbon monoxide by 28.6%. The prospects of use of environmentally friendly energy carriers in diesels of mobile HPPs, such as natural gas, ethanol, and methanol, has been determined.

  13. Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents.

    Science.gov (United States)

    Sutton, Adam T; Fraige, Karina; Leme, Gabriel Mazzi; da Silva Bolzani, Vanderlan; Hilder, Emily F; Cavalheiro, Alberto J; Arrua, R Dario; Funari, Cristiano Soleo

    2018-06-01

    Over the past six decades, acetonitrile (ACN) has been the most employed organic modifier in reversed-phase high-performance liquid chromatography (RP-HPLC), followed by methanol (MeOH). However, from the growing environmental awareness that leads to the emergence of "green analytical chemistry," new research has emerged that includes finding replacements to problematic ACN because of its low sustainability. Deep eutectic solvents (DES) can be produced from an almost infinite possible combinations of compounds, while being a "greener" alternative to organic solvents in HPLC, especially those prepared from natural compounds called natural DES (NADES). In this work, the use of three NADES as the main organic component in RP-HPLC, rather than simply an additive, was explored and compared to the common organic solvents ACN and MeOH but additionally to the greener ethanol for separating two different mixtures of compounds, one demonstrating the elution of compounds with increasing hydrophobicity and the other comparing molecules of different functionality and molar mass. To utilize NADES as an organic modifier and overcome their high viscosity monolithic columns, temperatures at 50 °C and 5% ethanol in the mobile phase were used. NADES are shown to give chromatographic performances in between those observed for ACN and MeOH when eluotropic strength, resolution, and peak capacity were taken into consideration, while being less environmentally impactful as shown by the HPLC-Environmental Assessment Tool (HPLC-EAT) metric. With the development of proper technologies, DES could open a new class of mobile phases increasing the possibilities of new separation selectivities while reducing the environmental impact of HPLC analyses. Graphical abstract Natural deep eutectic solvents versus traditional solvents in HPLC.

  14. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents

    Science.gov (United States)

    Zheng, Yi; Chen, Yin-Shan; Lu, Hai-Sheng

    2001-12-01

    Three different solvents viz ethanol, acetone and methanol-toluene (3:1) were used to extract antibiotics from 23 species of marine algae belonging to the Chlorophyta, Phaeophyta and Rhodophyta. Their crude extracts were tested for antibacterial and antifungal activities. Among them, the ethanol extract showed the strongest activity against the bacteria and fungi tested. Four species of the Rhodophyta ( Laurencia okamurai, Dasya scoparia, Grateloupia filicina and plocamium telfairiae) showed a wide spectrum of antibacterial activity. Every solvent extract from the four species was active against all the bacteria tested. The test bacterium Pseudomonas solancearum and the fungus Penicilium citrinum were most sensitive to the extracts of marine algae. In general, the extracts of seaweeds inhibited bacteria more strongly than fungi and species of the Rhodophyta showed the greatest activity against the bacteria and fungi tested.

  15. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    International Nuclear Information System (INIS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-01-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism

  16. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Science.gov (United States)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  17. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Elkins, Madeline H.; Williams, Holly L. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Neumark, Daniel M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  18. Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors

    DEFF Research Database (Denmark)

    Torresi, Elena; Escolà Casas, Mònica; Polesel, Fabio

    2017-01-01

    of venlafaxine, carbamazepine, sulfamethoxazole and sulfamethizole could be described with a cometabolic model. Analyses of the microbial composition in the biofilms using 16S rRNA amplicon sequencing revealed that the methanol-dosed MBBR contained higher microbial richness than the one dosed with ethanol...

  19. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    Science.gov (United States)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  20. Estimation of the nucleation kinetics for the anti-solvent crystallisation of paracetamol in methanol/water solutions

    Science.gov (United States)

    Ó'Ciardhá, Clifford T.; Frawley, Patrick J.; Mitchell, Niall A.

    2011-08-01

    In this work the primary nucleation kinetics have been estimated for the anti-solvent crystallisation of paracetamol in methanol-water solutions from metastable zone widths (MSZW) and induction times at 25 °C. Laser back-scattering via a focused beam reflectance Measurement (FBRM ®) is utilised to detect the onset of nucleation. The theoretical approach of Kubota was employed to estimate the nucleation kinetics, which accounts for the sensitivity of the nucleation detection technique. This approach is expanded in this work to analyse the induction time for an anti-solvent crystallisation process. Solvent composition is known to have a significant impact on the measured induction times and MSZW. The induction time in this paper was measured from 40% to 70% mass water and the MSZW is measured from 40% to 60% mass water. The primary focus of the paper was to gauge the extent of how solvent composition affects nucleation kinetics so that this effect may be incorporated into a population balance model. Furthermore, the effects of solvent composition on the estimated nucleation rates are investigated. The primary nucleation rates were found to decrease with dynamic solvent composition, with the extent of their reduction linked to the gradient of the solubility curve. Finally, both MSZW and induction time methods have been found to produce similar estimates for the nucleation parameters.

  1. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects.

    Science.gov (United States)

    Raducan, Adina; Cantemir, Anca Ruxandra; Puiu, Mihaela; Oancea, Dumitru

    2012-11-01

    The effect of water-alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme-substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

  2. Structural transition of a homopolymer in solvents mixture

    International Nuclear Information System (INIS)

    Guettari, Moez; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh

    2008-01-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M w = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X A is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X A = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture

  3. Solvent optimization extraction of antioxidants from foxtail millet species' insoluble fibers and their free radical scavenging properties.

    Science.gov (United States)

    Bangoura, Mohamed Lamine; Nsor-Atindana, John; Ming, Zhou Hui

    2013-11-15

    In this study, water and 80% of four organic solvents were employed to optimize the extraction of antioxidants from two species of foxtail millet's insoluble fibers under the same temperature, time, and solid/solvent ratio. The results showed that the acetone was able to extract the maximum amount of antioxidants (2.32 mg/g fiber for white specie and 3.86 mg/g fiber for yellow specie) followed by methanol and propanol from both samples. The neutral and the ethanol on the other hand extracted small amount of the antioxidants from the two fiber materials. While considerable level of Total Polyphenols Content (TPC) was recorded in both the water and the organic solvents' extracts, only traces of Total Flavonoid content (TFC) were observed in water, methanol and ethanol extracts. Propanol and acetone extracts was negative to the TFC test. The potency of both white and yellow foxtail millets' insoluble fibers antioxidant extracts was investigated using five different in vitro tests. It was realized that there was a variation in their capacities to quench DPPH and ABTS(+) radicals for the time running of 0-60 min. The samples from the yellow cereal exhibited high inhibition capacity against ABTS(+). No correlation was observed between TPC and radical scavenging capacities for DPPH and ABTS(+). In general, the yellow species contained more antioxidants in comparison with the white one and this accounted for its high antioxidant activity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. High-yield exfoliation of graphene using ternary-solvent strategy for detecting volatile organic compounds

    Science.gov (United States)

    Zhang, Shao-Lin; Zhang, Zhijun; Yang, Woo-Chul

    2016-01-01

    Despite the great progress in the theory and experimental verification we made in past decade, the practical application of graphene is still hindered by the lack of efficient, economical, scalable, ease-processing exfoliation method. Herein, we propose a facile, low-cost, and efficient liquid-phase exfoliation process using low boiling-temperature solvent mixture to fabricate few-layer graphene in large scale. The Hansen solubility parameter theory was applied to help optimize the composition of solvent mixture. Aqueous-based ternary-solvent mixture, for the first time, was adapted to exfoliate graphene. We demonstrate that the exfoliation efficiency using ternary-solvent mixture surpasses that from binary-solvent approach. The final product concentration after optimization was over 260 μg/ml. The concentrated graphene dispersion was used to fabricate gas sensor for detecting volatile organic gases. Taking advantage of large surface area, large number of adsorption sites, and well-preserved basal plane, the mass-produced graphene nanosheets exhibited promising sensing potential toward ethanol and methanol vapors.

  5. New Polymeric Membranes for Organic Solvent Nanofiltration

    KAUST Repository

    Aburabie, Jamaliah

    2017-05-01

    The focus of this dissertation was the development, synthesis and modification of polymers for the preparation of membranes for organic solvent nanofiltration. High chemical stability in a wide range of solvents was a key requirement. Membranes prepared from synthesized polymers as well as from commercial polymers were designed and chemically modified to reach OSN requirements. A solvent stable thin-film composite (TFC) membrane is reported, which is fabricated on crosslinked polythiosemicarbazide (PTSC) as substrate. The membranes exhibited high fluxes towards solvents like THF, DMF and DMSO ranging around 20 L/m2 h at 5 bar with a MWCO of around 1000 g/mol. Ultrafiltration PTSC membranes were prepared by non-solvent induced phase separation and crosslinked with GPTMS. The crosslinking reaction was responsible for the formation of an inorganic-type-network that tuned the membrane pore size. The crosslinked membranes acquired high solvent stability in DMSO, DMF and THF with a MWCO above 1300 g/mol. Reaction Induced Phase Separation (RIPS) was introduced as a new method for the preparation of skinned asymmetric membranes. These membranes have two distinctive layers with different morphologies both from the same polymer. The top dense layer is composed of chemically crosslinked polymer chains while the bottom layer is a porous structure formed by non-crosslinked polymer chains. Such membranes were tested for vitamin B12 in solvents after either crosslinking the support or dissolving the support and fixing the freestanding membrane on alumina. Pebax® 1657 was utilized for the preparation of composite membranes by simple coating. Porous PAN membranes were coated with Pebax® 1657 which was then crosslinked using TDI. Crosslinked Pebax® membranes show high stability towards ethanol, propanol and acetone. The membranes were also stable in DMF once crosslinked PAN supports were used. Sodium alginate polymer was investigated for the preparation of thin film composite

  6. Long Term Performance Study of a Direct Methanol Fuel Cell Fed with Alcohol Blends

    Directory of Open Access Journals (Sweden)

    Eleuterio Mora

    2013-01-01

    Full Text Available The use of alcohol blends in direct alcohol fuel cells may be a more environmentally friendly and less toxic alternative to the use of methanol alone in direct methanol fuel cells. This paper assesses the behaviour of a direct methanol fuel cell fed with aqueous methanol, aqueous ethanol and aqueous methanol/ethanol blends in a long term experimental study followed by modelling of polarization curves. Fuel cell performance is seen to decrease as the ethanol content rises, and subsequent operation with aqueous methanol only partly reverts this loss of performance. It seems that the difference in the oxidation rate of these alcohols may not be the only factor affecting fuel cell performance.

  7. Virtual colorimetric sensor array: single ionic liquid for solvent discrimination.

    Science.gov (United States)

    Galpothdeniya, Waduge Indika S; Regmi, Bishnu P; McCarter, Kevin S; de Rooy, Sergio L; Siraj, Noureen; Warner, Isiah M

    2015-04-21

    There is a continuing need to develop high-performance sensors for monitoring organic solvents, primarily due to the environmental impact of such compounds. In this regard, colorimetric sensors have been a subject of intense research for such applications. Herein, we report a unique virtual colorimetric sensor array based on a single ionic liquid (IL) for accurate detection and identification of similar organic solvents and mixtures of such solvents. In this study, we employ eight alcohols and seven binary mixtures of ethanol and methanol as analytes to provide a stringent test for assessing the capabilities of this array. The UV-visible spectra of alcoholic solutions of the IL used in this study show two absorption bands. Interestingly, the ratio of absorbance for these two bands is found to be extremely sensitive to alcohol polarity. A virtual sensor array is created by using four different concentrations of IL sensor, which allowed identification of these analytes with 96.4-100% accuracy. Overall, this virtual sensor array is found to be very promising for discrimination of closely related organic solvents.

  8. Structural transition of a homopolymer in solvents mixture

    Energy Technology Data Exchange (ETDEWEB)

    Guettari, Moez [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)], E-mail: gtarimoez@yahoo.fr; Aschi, Adel; Gomati, Riadh; Gharbi, Abdelhafidh [Laboratoire de Physique de la Matiere Molle, Faculte des Sciences de Tunis, Campus Universitaire, 2092 Tunisia (Tunisia)

    2008-07-01

    The present work is aimed at studying the thermodynamic behaviour of a polymer in solvents mixture. Dynamic light scattering is used to measure the hydrodynamic radius of polyvinylpyrrolidone (M{sub w} = 360,000 g/mol), in water/methanol solvents mixture, versus the mixed solvents composition at 25 deg. C. Then, we show that the polymer conformation adopts the Coil-Globule-Coil structure when the methanol molar fraction X{sub A} is varied. This transition is attributed to solvent quality change which result from water and methanol complex formation. The polymer contraction rate calculated for each composition takes its maximum value at X{sub A} = 0.17. Hildebrand theory assuming the solvents mixture as an equivalent solvent was used to analyze the change in mixed solvents quality. These changes can be attributed to dispersive forces in solvents mixture.

  9. Effect of solvent composition on the limiting current of anodic dissolution of tungsten in aqueous-ethanol solutions of alkali

    International Nuclear Information System (INIS)

    Konoplyantseva, N.A.; L'vova, L.A.; Davydov, A.D.; AN SSSR, Moscow. Inst. Ehlektrokhimii)

    1987-01-01

    The effect of quantitative composition of solvent on tungsten anodic dissolution in aqueous-ethanol solutions of KOH is studied. It is shown that with an increase in ethanol content in aqueous-ethanol solutions of alkali the limiting current of tungsten anodic dissolution decreases. An increase in KOH concentration in certain limits (in ethanol solutions it is the range between 0.75 and 1.0 M KOH) results in the increase of the limiting current; with further increase in solution concentration the limiting current decreases, which can be related to the change of the limiting stage. An assumption is made that total reaction of tungsten anodic dissolution and the main reasons for the limiting current appearance do not change from aqueous to aqueous-ethanol and ethanol solutions of alkali

  10. Esterase Active in Polar Organic Solvents from the Yeast Pseudozyma sp. NII 08165

    Directory of Open Access Journals (Sweden)

    Deepthy Alex

    2014-01-01

    Full Text Available Esterases/lipases active in water miscible solvents are highly desired in biocatalysis where substrate solubility is limited and also when the solvent is desired as an acyl acceptor in transesterification reactions, as with the case of biodiesel production. We have isolated an esterase from the glycolipid producing yeast-Pseudozyma sp. NII 08165 which in its crude form was alkali active, thermo stable, halo tolerant and also capable of acting in presence of high methanol concentration. The crude enzyme which maintained 90% of its original activity after being treated at 70°C was purified and the properties were characterized. The partially purified esterase preparation had temperature and pH optima of 60°C and 8.0 respectively. The enzyme retained almost complete activity in presence of 25% methanol and 80% activity in the same strength of ethanol. Conditions of enzyme production were optimized, which lead to 9 fold increase in the esterase yield. One of the isoforms of the enzyme LIP1 was purified to homogeneity and characterized. Purified LIP1 had a Km and Vmax of 0.01 and 1.12, respectively. The purified esterase lost its thermo and halo tolerance but interestingly, retained 97% activity in methanol.

  11. Methanolic extract of Morinda citrifolia L. (noni unripe fruit attenuates ethanol-induced conditioned place preferences in mice

    Directory of Open Access Journals (Sweden)

    Yasmin Khan

    2016-09-01

    Full Text Available Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC, on compulsive ethanol-seeking behaviour using the mouse conditioned place preference (CPP test. CPP was established by injections of ethanol (2g/kg, i.p. in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM, on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3 and 5g/kg and ACAM (300 mg/kg 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction, during which the treatment groups received MMC (1, 3 and 5g/kg, p.o. or ACAM (300 mg/kg, p.o.. Finally, a priming injection of a low dose of ethanol (0.4g/kg, i.p. in the home cage (Reinstatement was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5g/kg, p.o and ACAM (300 mg/kg, p.o. significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.

  12. Effect of using ethanol and methanol on thermal performance of a closed loop pulsating heat pipe (CLPHP) with different filling ratios

    Science.gov (United States)

    Rahman, Md. Lutfor; Salsabil, Zaimaa; Yasmin, Nusrat; Nourin, Farah Nazifa; Ali, Mohammad

    2016-07-01

    This paper presents an experimental study of a closed loop Pulsating Heat Pipe (CLPHP) as the demand of smaller and effective heat transfer devices is increasing day by day. PHP is a two phase heat transfer device suited for heat transfer applications, especially suited for handling moderate to high heat fluxes in different applications. A copper made Pulsating Heat Pipe (PHP) of 250 mm length is used in this experimental work with 2 mm ID and 3 mm OD, closed end-to-end in 8 looped, evacuated and then partially filled with working fluids. The evaporation section is 50 mm, adiabatic section is 120 mm and condensation section is 80 mm. The performance characterization is done for two working fluids at Vertical (0°) orientations. The working fluids are Methanol and Ethanol and the filling ratios are 40%, 50%, 60% & 70% based on total volume, respectively. The results show that the influence of various parameters, the heat input flux, and different filling ratios on a heat transfer performance of CLPHP. Methanol shows better performance as working fluid in PHP than ethanol at present orientation for a wide range of heat inputs and can be used at high heat input conditions. Ethanol is better choice to be used in low heat input conditions.

  13. Investigation of diesel-ethanol blended fuel properties with palm methyl ester as co-solvent and blends enhancer

    Directory of Open Access Journals (Sweden)

    Mat Taib Norhidayah

    2017-01-01

    Full Text Available Diesel engine is known as the most efficient engine with high efficiency and power but always reported as high fuel emission. Malaysia National Automotive Policy (NAP was targeting to improve competitive regional focusing on green technology development in reducing the emission of the engine. Therefore, ethanol was introduced to reduce the emission of the engine and while increasing its performance, Palm methyl ester was introduced as blend enhancer to improve engine performance and improve diesel-ethanol blends stability. This paper aimed to study the characteristics of the blends and to prove the ability of palm-methyl-ester as co-solvent in ethanol-diesel blends. Stability and thermophysical test were carried out for different fuel compositions. The stability of diesel-ethanol blended was proved to be improved with the addition of PME at the longer period and the stability of the blends changed depending on temperature and ethanol content. Density and viscosity of diesel-ethanol-PME blends also give higher result than diesel-ethanol blends and it's proved that PME is able to increase density and viscosity of blends. Besides, heating value of the blends also increases with the increasing PME in diesel-ethanol blends.

  14. Preferential solvation of single ions in mixed solvents: Part 1. New experimental approach and solvation of monovalent ions in methanol-water and acetonitrile-water mixture. Part 2. Theoretical computation and comparison with experimental data

    International Nuclear Information System (INIS)

    Rege, Aarti C.; Venkataramani, B.; Gupta, A.R.

    1999-06-01

    Preferential solvation of single ion solutions has been studied with Li + , Na + , K + and Ag +- forms of Dowex 50W resins of different cross-linkings in methanol-water and acetonitrile (AN)- water mixtures. The solvent uptake by this alkali metal ionic forms of Dowex 50W resins was studied in an isopiestic set-up using 2,4,6 and 8 m LiCl solutions in 11.0, 20.8, 44.3 and 70.2 % (w/w) methanol-water mixtures and that of Na +- and Ag +- forms using 14.6 to 94.3 % (w/w) AN - water mixtures. The solvent sorbed in the resin phase was extracted by Rayleigh-type distillation and analysed gas chromatographically. The data were analysed by the N s (mole fraction of the organic solvent in the resin phase) vs n t au (total solvent content in the resin phase) plots and separation factor, alpha(ratio of mole fraction of the solvents in the resin and solution phases) or N s vs m (molality in the resin phase) plots. The limiting values of these plots gave the composition of the solvent in the primary solvation shell around the single ion. The compositions of the primary solvation shell around Li + , Na + , and K + in methanol-water mixtures and Na + and Ag + in acetonitrile (AN) - water mixtures have been computed using Franks equation and the approach of Marcus and compared with the experimental results obtained with the above mentioned ionic forms of Dowex 50W resins in different mixed solvents. The experimental results for Li + showed good agreement with the values computed using Franks equation for all methanol-water composition. However, in the case of Na + and K + in methanol-water mixtures and Na + in AN-water mixtures, there was agreement only at lower organic solvent content and the Franks equation predicted higher values for the organic solvent in the primary solvation shell around the cation at higher organic solvent content as compared to experimental results

  15. Flow of CO2 ethanol and of CO2 methanol in a non-adiabatic microfluidic T-junction at high pressures

    NARCIS (Netherlands)

    Blanch Ojea, R.; Tiggelaar, Roald M.; Pallares, J.; Grau, F.X.; Gardeniers, Johannes G.E.

    2012-01-01

    In this work, an experimental investigation of the single- and multiphase flows of two sets of fluids, CO2–ethanol and CO2–methanol, in a non-adiabatic microfluidic T-junction is presented. The operating conditions ranged from 7 to 18 MPa, and from 294 to 474 K. The feed mass fraction of CO2 in the

  16. Endogenous Methanol Regulates Mammalian Gene Activity

    Science.gov (United States)

    Komarova, Tatiana V.; Petrunia, Igor V.; Shindyapina, Anastasia V.; Silachev, Denis N.; Sheshukova, Ekaterina V.; Kiryanov, Gleb I.; Dorokhov, Yuri L.

    2014-01-01

    We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH) converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP) and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis. PMID:24587296

  17. Endogenous methanol regulates mammalian gene activity.

    Directory of Open Access Journals (Sweden)

    Tatiana V Komarova

    Full Text Available We recently showed that methanol emitted by wounded plants might function as a signaling molecule for plant-to-plant and plant-to-animal communications. In mammals, methanol is considered a poison because the enzyme alcohol dehydrogenase (ADH converts methanol into toxic formaldehyde. However, the detection of methanol in the blood and exhaled air of healthy volunteers suggests that methanol may be a chemical with specific functions rather than a metabolic waste product. Using a genome-wide analysis of the mouse brain, we demonstrated that an increase in blood methanol concentration led to a change in the accumulation of mRNAs from genes primarily involved in detoxification processes and regulation of the alcohol/aldehyde dehydrogenases gene cluster. To test the role of ADH in the maintenance of low methanol concentration in the plasma, we used the specific ADH inhibitor 4-methylpyrazole (4-MP and showed that intraperitoneal administration of 4-MP resulted in a significant increase in the plasma methanol, ethanol and formaldehyde concentrations. Removal of the intestine significantly decreased the rate of methanol addition to the plasma and suggested that the gut flora may be involved in the endogenous production of methanol. ADH in the liver was identified as the main enzyme for metabolizing methanol because an increase in the methanol and ethanol contents in the liver homogenate was observed after 4-MP administration into the portal vein. Liver mRNA quantification showed changes in the accumulation of mRNAs from genes involved in cell signalling and detoxification processes. We hypothesized that endogenous methanol acts as a regulator of homeostasis by controlling the mRNA synthesis.

  18. Sorption behaviour of uranium and thorium on hydrous tin oxide from aqueous and mixed-solvent HNO3 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salama, H.N.; El-Naggar, I.M.

    1983-01-01

    In aqueous nitric acid, uranyl and thorium ions seem to be sorbed on hydrous tin oxide mainly by a cation exchange mechanism. In 10 - 3 M aqueous solutions, the hydrous oxide prefers thorium to uranium at the relative low pH values, while the reverse is true at the higher pH values. The exchange of uranium is particle diffusion controlled while that of thorium is chemically controlled, and the isotherms point to the presence of different-energy sites in the hydrous oxide. Except for the solutions containing 80% of methanol, ethanol, or acetone, cation exchange is probably still the main mechanism of sorption of uranium. Anionic sorption of thorium seems to occur in all the mixed-solvent solutions and is perhaps the main mechanism in 80% ethanol. The equilibrium distribution coefficient K sub (d) increases almost in all cases with organic solvent content, probably due to dehydration of sorbed ions and to increasing superposition on anionic sorption. Unlike the aqueous medium, large U/Th separation factors are achieved in many of the mixed-solvent solutions and separation schemes are suggested. (Authors)

  19. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Impact of drying methods and extraction solvents on the steroidal saponians content of tibullus terresteris grown in the peshawar valley of khyberpakhtunkhwa, pakistan

    International Nuclear Information System (INIS)

    Hanif, M.; Khattak, M.K.; Rehman, M.U.; Ramzan, M.; Ali, S.A.

    2017-01-01

    The experiments were conducted to see the impact of drying methods and extraction solvents on the yield of steroidal saponins of Tribulus terrestris. The plant was dried by three different drying methods namely, solar collector drying, open sun drying and shade drying. After drying different levels (25-100%) of extracting solvent in the form of ethanol, methanol and distilled water were used for extraction. Soxhlet apparatus was used for extraction, while the gas chromatography apparatus was used in the experiment for detecting steroidal saponins in Tribulus terrestris. After extraction, four saponins identified were Tigogenin, Gitogenin, Hecogenin and Neohecogenin. The maximum yield of 61.2% was recorded for flat plate solar drying with 75% ethanol solution, followed 49.5% in shade drying with the same extraction solvent level. The lowest value of 3.1% yield was recorded for distilled water with open sun drying method. It was concluded that Both the drying methods and extraction solvent have a direct effect on the yield of steroidal saponins extracted from Tribulus terrestris. A maximum yield of almost 60% saponins may be achieved, if Tribulus terrestris is dried using a flat plate solar collector and extorted with 75% ethanol solution using GC-MS technique. Open sun drying minimizes saponins in Tribulus terrestris, while distilled water is the worse extracting solvent for extraction of steroidal saponins from Tribulus terrestris. (author)

  1. Effect of sorbitol and glycerol on the stability of trypsin and difference between their stabilization effects in the various solvents.

    Science.gov (United States)

    Pazhang, Mohammad; Mehrnejad, Faramarz; Pazhang, Yaghub; Falahati, Hanieh; Chaparzadeh, Nader

    2016-01-01

    The effect of glycerol and sorbitol on the stability of porcine pancreas trypsin was investigated in this work. Molecular dynamics simulation and thermostability results showed that trypsin has two flexible regions, and polyols (sorbitol and glycerol) stabilize the enzyme by decreasing the flexibility of these regions. Radial distribution function results exhibited that sorbitol and glycerol were excluded from the first water layer of the enzyme, therefore decrease the flexibility of the regions by preferential exclusion. Also, results showed that the stabilization effect of sorbitol is more than glycerol. This observation could be because of the larger decrease in the fluctuations of trypsin in the presence of sorbitol. We also examined the role of solvent's hydrophobicity in enzyme stabilization by sorbitol and glycerol. To do so, the thermostability of trypsin was evaluated in the presence of solvents with different hydrophobicity (methanol, ethanol, isopropanol and n-propanol) in addition to the polyols. Our results depicted that glycerol is a better stabilizer than sorbitol in the presence of hydrophobic solvents (n-propanol), whereas sorbitol is a better stabilizer than glycerol in the presence of hydrophilic solvents (methanol). © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  2. FORMALDEHYDE DISMUTASE ACTIVITIES IN GRAM-POSITIVE BACTERIA OXIDIZING METHANOL

    NARCIS (Netherlands)

    BYSTRYKH, LV; GOVORUKHINA, NI; VANOPHEM, PW; HEKTOR, HJ; DIJKHUIZEN, L; DUINE, JA; Govorukhina, Natalya; Ophem, Peter W. van; Duine, Johannis A.

    Extracts of methanol-grown cells of Amycolatopsis methanolica and Mycobacterium gastri oxidized methanol and ethanol with concomitant reduction of N,N'-dimethyl-4-nitrosoaniline (NDMA). Anion-exchange chromatography revealed the presence of a single enzyme able to catalyse this activity in methanol-

  3. Online stable carbon isotope ratio measurement in formic acid, acetic acid, methanol and ethanol in water by high performance liquid chromatography-isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Tagami, Keiko; Uchida, Shigeo

    2008-01-01

    A suitable analysis condition was determined for high performance liquid chromatography-isotope ratio mass spectrometry (HPLC-IRMS) while making sequential measurements of stable carbon isotope ratios of δ 13 C in formic acid, acetic acid, methanol and ethanol dissolved in water. For this online column separation method, organic reagents are not applicable due to carbon contamination; thus, water and KH 2 PO 4 at low concentrations were tested as mobile phase in combination with a HyPURITY AQUASTAR TM column. Formic acid, acetic acid, methanol and ethanol were separated when 2 mM KH 2 PO 4 aqueous solution was used. Under the determined analysis condition for HPLC-IRMS, carbon concentrations could be measured quantitatively as well as carbon isotope ratio when carbon concentration was higher than 0.4 mM L for each chemical

  4. Model studies for evaluating the acute neurobehavioral effects of complex hydrocarbon solvents. I. Validation of methods with ethanol

    NARCIS (Netherlands)

    McKee, R.H.; Lammers, J.H.C.M.; Hoogendijk, E.M.G.; Emmen, H.H.; Muijser, H.; Barsotti, D.A.; Owen, D.E.; Kulig, B.M.

    2006-01-01

    As a preliminary step to evaluating the acute neurobehavioral effects of hydrocarbon solvents and to establish a working model for extrapolating animal test data to humans, joint neurobehavioral/toxicokinetic studies were conducted which involved administering ethanol to rats and volunteers. The

  5. Measurement of methanol diffusion coefficient in polymer electrode membrane by small NMR sensor. 1st report. Development of method of measure methanol diffusion coefficient and evaluation of measured results

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki; Ito, Kohei

    2010-01-01

    A method for measuring the diffusion coefficient of methanol in a polymer electrolyte membrane (PEM) was developed using the NMR method. A circular coil of 0.6mm inside diameter was used as a small NMR sensor. The PEM was inserted in a penetration cell, where methanol solvent is supplied to one side of the PEM and nitrogen gas is supplied to the other side of the PEM. The small NMR sensor was placed on the nitrogen gas side of the PEM. The small NMR sensor detects the NMR signal from the methanol solvent which permeates the PEM. The CH and OH components of the methanol solvent were obtained from the NMR signal by spectral analysis. The methanol concentration in the PEM was determined by the ratio of CH to OH components. The methanol concentration was acquired at intervals of 30s and was measured for 2000s. After 1500 seconds, the methanol concentration in the PEM reaches a steady state. The final methanol concentration was about 20% of the methanol concentration of the solvent. It assumed that the diffusion phenomenon of methanol in a PEM was a one-dimensional transport phenomenon, and the time-dependent change of methanol concentration was analyzed by parameterizing the diffusion coefficient. The diffusion coefficient of methanol in a PEM was determined by comparison with the measurement result of the time change of methanol concentration and the analysis results. The concentration difference diffusion coefficient of methanol in PEM obtained using this method was 3.5 * 10 -10 m 2 /s. (author)

  6. Solution thermodynamics of creatine monohydrate in binary (water + ethanol) solvent systems at T = (278.15 to 328.15) K

    International Nuclear Information System (INIS)

    Song, Liangcheng; Wei, Lihua; Si, Tao; Guo, Huai; Yang, Chunhui

    2016-01-01

    Highlights: • The solubilities of creatine monohydrate in (ethanol + water) mixtures were investigated. • The solubility data were well correlated by Jouyban–Acree model. • Solution thermodynamic properties were calculated. • The dissolving process of creatine monohydrate in was endothermic and entropy-driven. - Abstract: In order to optimize the crystallization process of creatine monohydrate, the solubility of creatine monohydrate in the binary (water + ethanol) mixture was measured at temperatures ranging from 278.15 K to 328.15 K using the laser monitoring technique. The solubility increased with both the temperature and the mole fraction of water in the solvent mixture. The experimental solubility was well correlated by the Jouyban–Acree model, which generated a sensitive solubility surface for creatine monohydrate. Furthermore, the thermodynamic parameters of this dissolution process were also estimated. The results showed that the dissolution process of creatine monohydrate in each solvent mixture was endothermic and entropy-driven, and that the dissolution of creatine monohydrate became much easier when the mole fraction of water in the solvent mixture increased.

  7. Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition

    International Nuclear Information System (INIS)

    Zhang, Miao; Xu, Kai; Jiang, Xishun; Yang, Lei; He, Gang; Song, Xueping; Sun, Zhaoqi; Lv, Jianguo

    2014-01-01

    Highlights: • Different surface morphologies of ZnO films were prepared by cathodic electrodeposition. • The surface morphologies are controlled through add different ratio methanol to electrolyte. • The morphology changes from nanorods with hexagonal structure to net-like nanostructure. • The wettability of films shows obvious change with increasing methanol ratio. • The maximum light-induced CA change has been observed with the methanol ratio of 0.8. - Abstract: ZnO thin films were prepared in the electrolyte with different methanol ratio by cathodic electrodeposition method. Microstructure, surface morphology, optical properties and wettability of the thin films were investigated by X-ray diffractometer, field-emission scanning electron microscope, ultraviolet–visible spectroscope, fluorescence spectrometer and water contact angle apparatus. Increase of methanol ratio in the solvents may restrain the (0 0 2) plane preferential orientation in some extent. Change of current density curves with the ratio of methanol in the solution play a vital role on electrochemical reaction kinetics, microstructure and/or surface morphology of ZnO thin films. With the methanol ratio increase from 0 to 0.8, the surface morphology changes from nanorods to net-like nanostructure. The adsorbed NO 3 − ions on the polar planes hinder the crystal growth along the c-axis and redirect the growth direction along the nonpolar planes. The maximum and minimum band gaps have been obtained in the ZnO thin films with the methanol ratio of 0.4 and 0.6, respectively. Change of contact angle before UV irradiation may be related to surface morphology and oxygen vacancies. The maximum light-induced water contact angle change has been observed in the sample with the methanol ratio of 0.8. The results may be attributed to the higher surface roughness and net-like morphology

  8. Effect of methanol ratio in mixed solvents on optical properties and wettability of ZnO films by cathodic electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Miao; Xu, Kai; Jiang, Xishun; Yang, Lei; He, Gang; Song, Xueping [School of Physics and Material Science, Anhui University, Hefei 230601 (China); Sun, Zhaoqi, E-mail: szq@ahu.edu.cn [School of Physics and Material Science, Anhui University, Hefei 230601 (China); Lv, Jianguo, E-mail: lvjg1@163.com [School of Electronic and Information Engineering, Hefei Normal University, Hefei 230601 (China)

    2014-12-05

    Highlights: • Different surface morphologies of ZnO films were prepared by cathodic electrodeposition. • The surface morphologies are controlled through add different ratio methanol to electrolyte. • The morphology changes from nanorods with hexagonal structure to net-like nanostructure. • The wettability of films shows obvious change with increasing methanol ratio. • The maximum light-induced CA change has been observed with the methanol ratio of 0.8. - Abstract: ZnO thin films were prepared in the electrolyte with different methanol ratio by cathodic electrodeposition method. Microstructure, surface morphology, optical properties and wettability of the thin films were investigated by X-ray diffractometer, field-emission scanning electron microscope, ultraviolet–visible spectroscope, fluorescence spectrometer and water contact angle apparatus. Increase of methanol ratio in the solvents may restrain the (0 0 2) plane preferential orientation in some extent. Change of current density curves with the ratio of methanol in the solution play a vital role on electrochemical reaction kinetics, microstructure and/or surface morphology of ZnO thin films. With the methanol ratio increase from 0 to 0.8, the surface morphology changes from nanorods to net-like nanostructure. The adsorbed NO{sub 3}{sup −} ions on the polar planes hinder the crystal growth along the c-axis and redirect the growth direction along the nonpolar planes. The maximum and minimum band gaps have been obtained in the ZnO thin films with the methanol ratio of 0.4 and 0.6, respectively. Change of contact angle before UV irradiation may be related to surface morphology and oxygen vacancies. The maximum light-induced water contact angle change has been observed in the sample with the methanol ratio of 0.8. The results may be attributed to the higher surface roughness and net-like morphology.

  9. Probing the evaporation of ternary ethanol-methanol-water droplets by cavity enhanced Raman scattering.

    Science.gov (United States)

    Howle, Chris R; Homer, Chris J; Hopkins, Rebecca J; Reid, Jonathan P

    2007-10-21

    Cavity enhanced Raman scattering is used to characterise the evolving composition of ternary aerosol droplets containing methanol, ethanol and water during evaporation into a dry nitrogen atmosphere. Measurements made using non-linear stimulated Raman scattering from these ternary alcohol-water droplets allow the in situ determination of the concentration of the two alcohol components with high accuracy. The overlapping spontaneous Raman bands of the two alcohol components, arising from C-H stretching vibrational modes, are spectrally-resolved in stimulated Raman scattering measurements. We also demonstrate that the evaporation measurements are consistent with a quasi-steady state evaporation model, which can be used to interpret the evaporation dynamics occurring at a range of pressures at a particular evaporation time.

  10. Adding Value to Bioethanol through a Purification Process Revamp

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Mauricio Iglesias, Miguel; Huusom, Jakob Kjøbsted

    2017-01-01

    distillation columns and a dehydration step using molecular sieves. This separation unit did not permit sufficient removal of crotonaldehyde and methanol for obtaining solvent-grade ethanol. Therefore, an additional distillation column after the dehydration step was investigated by simulation. It is operated...... at subatmospheric pressure and enables simultaneous removal of methanol, crotonaldehyde, and water in the distillate. The distillate meets the fuel-grade ethanol specifications, while the bottom product meets the solvent-grade specifications. It enables around 70% solvent-grade ethanol production and employs...... analyzed experimentally: Acetaldehyde, 1-propanal, 1-butanal, crotonaldehyde, benzaldehyde, ethyl acetate, methanol, 1-propanol, 1-butanol, 2-butanol, 2-methyl-l-propanol, 2-methyl-l-butanol, and 3-methyl-1-butanol. A simulation platform was established and evaluated with excellent agreement compared...

  11. Methanol as fuel: evaluation of atmosphere contamination

    International Nuclear Information System (INIS)

    Alonso, C.D.; Romano, J.; Guardani, M.L.G.

    1991-01-01

    With the beginning of methanol use as automotive fuel in Sao Paulo city, 1990, were realized special measurements of methanol, formaldehyde, ethanol and acetaldehyde in atmosphere. Other indicators of air quality as carbon and ozone monoxide were also observed in this study. (C.M.)

  12. “Bligh and Dyer” and Folch Methods for Solid–Liquid–Liquid Extraction of Lipids from Microorganisms. Comprehension of Solvatation Mechanisms and towards Substitution with Alternative Solvents

    Directory of Open Access Journals (Sweden)

    Cassandra Breil

    2017-03-01

    Full Text Available Bligh and Dyer (B & D or Folch procedures for the extraction and separation of lipids from microorganisms and biological tissues using chloroform/methanol/water have been used tens of thousands of times and are “gold standards” for the analysis of extracted lipids. Based on the Conductor-like Screening MOdel for realistic Solvatation (COSMO-RS, we select ethanol and ethyl acetate as being potentially suitable for the substitution of methanol and chloroform. We confirm this by performing solid–liquid extraction of yeast (Yarrowia lipolytica IFP29 and subsequent liquid–liquid partition—the two steps of routine extraction. For this purpose, we consider similar points in the ternary phase diagrams of water/methanol/chloroform and water/ethanol/ethyl acetate, both in the monophasic mixtures and in the liquid–liquid miscibility gap. Based on high performance thin-layer chromatography (HPTLC to obtain the distribution of lipids classes, and gas chromatography coupled with a flame ionisation detector (GC/FID to obtain fatty acid profiles, this greener solvents pair is found to be almost as effective as the classic methanol–chloroform couple in terms of efficiency and selectivity of lipids and non-lipid material. Moreover, using these bio-sourced solvents as an alternative system is shown to be as effective as the classical system in terms of the yield of lipids extracted from microorganism tissues, independently of their apparent hydrophilicity.

  13. Experimental study and thermodynamic modeling for determining the effect of non-polar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris.

    Science.gov (United States)

    Malekzadeh, Mohammad; Abedini Najafabadi, Hamed; Hakim, Maziar; Feilizadeh, Mehrzad; Vossoughi, Manouchehr; Rashtchian, Davood

    2016-02-01

    In this research, organic solvent composed of hexane and methanol was used for lipid extraction from dry and wet biomass of Chlorella vulgaris. The results indicated that lipid and fatty acid extraction yield was decreased by increasing the moisture content of biomass. However, the maximum extraction efficiency was attained by applying equivolume mixture of hexane and methanol for both dry and wet biomass. Thermodynamic modeling was employed to estimate the effect of hexane/methanol ratio and moisture content on fatty acid extraction yield. Hansen solubility parameter was used in adjusting the interaction parameters of the model, which led to decrease the number of tuning parameters from 6 to 2. The results indicated that the model can accurately estimate the fatty acid recovery with average absolute deviation percentage (AAD%) of 13.90% and 15.00% for the two cases of using 6 and 2 adjustable parameters, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Methanol and carbonylation

    Energy Technology Data Exchange (ETDEWEB)

    Gauthier-Lafaye, J.; Perron, R.

    1987-01-01

    The overall focus of the book is on homogeneous catalysed processes which were seen to offer the most promising routes to C/sub 2/ oxygenates. The first three chapters review the industrial synthesis and applications of carbon monoxide such as in the manufacture of gasoline (e.g. Fischer-Tropsch, Mobil processes), organic chemicals (e.g. ethanol, acetic acid, etc.), industrial importance of C/sub 2/ oxygenates, and use of methanol as a future feedstock are discussed. The next six chapters are each concerned with the production of a particular C/sub 2/ oxygenate and a detailed analysis of the methods and catalysts used. The hydrocarbonylation of methanol occupies a large chapter (136 references) with a comparative examination of the catalysts available, and their modification to increase selectivity to either acetylaldehyde or ethanol. Following chapters examine the synthesis of ethyl acetate, acetic acid, acetic anhydride, vinyl acetate, ethylene glycol and oxalic acid.

  15. Methanol toxicity secondary to inhalant abuse in adult men.

    Science.gov (United States)

    Wallace, Erik A; Green, Adam S

    2009-03-01

    The purpose of this report is to evaluate the presentation, treatment, and outcomes of adults with methanol toxicity from inhalation of carburetor cleaning fluid fumes. Retrospective chart review of adults with positive serum volatile screen for methanol and history of carburetor cleaning fluid fume inhalation. Sixteen patients were admitted 68 times. Eleven Native American patients accounted for 90% of admissions. Sixty-five cases presented with nausea/vomiting; 27 with intoxication or altered mental status; 21 with specific visual complaints. About 93% had a pH or=10 mOsm/L, and 69% had anion gap >16. Ten had an initial serum methanol level or=50 mg/dL. Six patients had a measurable serum ethanol level. Of the 29 patients with a methanol level of 20-49 mg/dL, 20 received intravenous antidote (ethanol or fomepizole); three received an antidote and hemodialysis. All who presented with a serum methanol level >or=50 mg/dL received intravenous ethanol or fomepizole. All visual symptoms resolved before discharge and all patients survived without sequelae. Discussion. This is the largest reported number of cases of methanol toxicity from the inhalation of carburetor cleaning fluid fumes and demonstrates a problem with recurrent abuse among some older Native American men. Intentional inhalation of methanol fumes may produce toxicity. Clinicians need to question patients, especially older Native American men, regarding the possible inhalation of carburetor cleaning fluid fumes in those who present with an unexplained metabolic anion gap acidosis.

  16. Thermophysical properties of binary mixtures of {ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol)}

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Martin-Pastor, Manuel; Aznar, Martin; Iglesias, Miguel

    2011-01-01

    Research highlights: → This paper reports the density and speed of sound data of binary mixtures {2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol)} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. → The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. → The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol)} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  17. Antimicrobial Effect of Aqueous, Ethanol, Methanol and Glycerin Extracts of Satureja bachtiarica on Streptococcus pyogenes, Pseudomonas aeruginosa and Staphylococcus epidermidis

    OpenAIRE

    Maryam Heidari-Sureshjani; Faride Tabatabaei-Yazdi; Behrooz Alizadeh-Behbahani; Ali Mortazavi

    2015-01-01

    Background: The Iranian medicinal plants, such as Satureja bachtiarica have been utilized as traditional medicines by the indigenous people of Chaharmahal and Bakhtiari in Iran. Objectives: According to biologically active compounds and traditional use of the Satureja bachtiarica, seem that this plant has significant antimicrobial effects. Materials and Methods: In this experimental study, Satureja bachtiarica after extraction with watery, ethanol 96%, methanol 96% and 20% glycerin anti...

  18. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods.

    Science.gov (United States)

    Celik, Saliha Esin; Ozyürek, Mustafa; Güçlü, Kubilay; Apak, Reşat

    2010-06-15

    Antioxidants are health beneficial compounds that can protect cells and macromolecules (e.g., fats, lipids, proteins, and DNA) from the damage of reactive oxygen species (ROS). Solvent effect is a crucial parameter on the chemical behaviour of antioxidant compounds but there has been limited information regarding its role on antioxidant capacity and its assays. Therefore, the present study was undertaken to investigate the total antioxidant capacity (TAC) of some certain lipophilic and hydrophilic antioxidants, measured in different solvent media such as ethanol (EtOH) (100%), methanol (MeOH) (100%), methanol/water (4:1, v/v), methanol/water (1:1, v/v), dichloromethane (DCM)/EtOH (9:1, v/v). The cupric reducing antioxidant capacity (CUPRAC) values of selected antioxidants were experimentally reported in this work as trolox equivalent antioxidant capacity (TEAC), and compared to those found by reference TAC assays, i.e., 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)/persulphate (ABTS/persulphate) and ferric reducing antioxidant power (FRAP) methods. The TAC values of synthetic mixtures of antioxidants were experimentally measured as trolox equivalents and compared to those theoretically found by making use of the principle of additivity of absorbances assuming no chemical interaction between the mixture constituents. Possible synergistic (e.g., BHT and BHA in DCM/EtOH) or antagonistic behaviours of these synthetic mixtures were investigated in relation to solvent selection.

  19. Influence of solvent type on microwave-assisted liquefaction of bamboo

    Science.gov (United States)

    Jiulong Xie; Chung Hse; Todd F. Shupe; Tingxing Hu

    2016-01-01

    Microwave-assisted liquefaction of bamboo in glycerol, polyethylene glycerol (PEG), methanol, ethanol, and water were comparatively investigated by evaluating the temperature-dependence for conversion and liquefied residue characteristics. The conversion for the liquefaction in methanol, ethanol, and water increased with an increase in reaction temperature, while that...

  20. Developmental and Reproductive Toxicology of Methanol

    Science.gov (United States)

    Methanol is a high production volume chemical used as a feedstock for chemical syntheses and as a solvent and fuel additive. Methanol is acutely toxic to humans, causing acidosis, blindness in death at high dosages, but its developmental and reproductive toxicity in humans is poo...

  1. Electrooxidation of methanol and ethylene glycol mixture on platinum and palladium in alkaline medium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.Y.; Liang, Y.J.; Shan, X.D.; Lin, M.L.; Xu, C.W. [School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou (China); Jiang, S.P. [Department of Chemical Engineering, Faculty of Science and Engineering, Curtin University, Perth, WA (Australia)

    2012-08-15

    The performance of mixture of methanol and ethylene glycol (EG) oxidation has been studied on both Pt and Pd electrodes in alkaline medium. The activity of EG oxidation is better than that of methanol oxidation and the stability of EG oxidation is better than that of methanol and ethanol oxidation on the Pd electrode. The onset potential for ethanol oxidation is more negative 200 mV than that of EG, however the stability of EG oxidation on the Pd electrode is better than that of ethanol oxidation. The performance of methanol oxidation improves pronouncedly by adding a small amount of EG on both Pt and Pd electrodes. The onset potential and peak potential of mixture of methanol and EG oxidation are close to or more negative than that of sole methanol and EG oxidation on the Pd electrode. The mixture of methanol and EG is more easily to be electrochemically oxidized and gives a better performance than sole methanol and EG on the Pd electrode. The results show that the mixture of methanol and EG is a promising candidate as fuel in direct alcohol fuel cells. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. The use of methanol as a fuel for transportation

    Energy Technology Data Exchange (ETDEWEB)

    Egebaeck, K E [Luleaa Univ. of Technology (Sweden); Walsh, M P [Arlington, VA (United States); Westerholm, R [Stockholm Univ. (Sweden)

    1997-06-01

    The aim of the project was to collect and report international experiences concerning the use of methanol as an automotive fuel. The method has been to study the literature which covers the subject and most of the information has been collected that way. The project started with a participation in a conference and a visit to people who have been involved in activities concerning the use of automotive alcohols. Car manufacturers, environmental authorities and users of alcohol fuels i.e. representatives of bus companies, were interviewed. The different applications for the use of methanol as an automotive fuel has been described in the report as well as the production of methanol. Some results, mostly in form of emission data and other experiences derived from the use of alcohol fuels, have also been presented. The use of ethanol and methanol has been compared and based on information from engine manufacturers and users of alcohol fueled vehicles there seems to be a preference for the use of ethanol. However, the question `methanol or ethanol` has not been answered as the decision which of the two is to be used seems to depend more on economic factors, such as cost of the production of the fuel etc., than on other factors. 165 refs, 15 figs, 14 tabs

  3. Glycerol-based deep eutectic solvents as extractants for the separation of MEK and ethanol via liquid-liquid extraction

    NARCIS (Netherlands)

    Rodriguez, N.R.; Ferré Güell, J.; Kroon, M.C.

    2016-01-01

    Four different glycerol-based deep eutectic solvents (DESs) were tested as extracting agents for the separation of the azeotropic mixture {methyl ethyl ketone + ethanol} via liquid-liquid extraction. The selected DESs for this work were: glycerol/choline chloride with molar ratios (4:1) and (2:1),

  4. Influences of surface and solvent on retention of HEMA/mixture components after evaporation.

    Science.gov (United States)

    Garcia, Fernanda C P; Wang, Linda; Pereira, Lúcia C G; de Andrade e Silva, Safira M; Júnior, Luiz M; Carrilho, Marcela Rocha de Oliveira

    2010-01-01

    This study examined the retention of solvents within experimental HEMA/solvent primers after two conditions for solvent evaporation: from a free surface or from dentine surface. Experimental primers were prepared by mixing 35% HEMA with 65% water, methanol, ethanol or acetone (v/v). Aliquots of each primer (50 microl) were placed on glass wells or they were applied to the surface of acid-etched dentine cubes (2mm x 2mm x 2mm) (n=5). For both conditions (i.e. from free surface or dentine cubes), change in primers mass due to solvent evaporation was gravimetrically measured for 10min at 51% RH and 21 degrees C. The rate of solvent evaporation was calculated as a function of loss of primers mass (%) over time. Data were analysed by two-way ANOVA and Student-Newman-Keuls (pevaporation rate (%/min) depending on the solvent present in the primer and the condition for evaporation (from free surface or dentine cubes) (pevaporation for HEMA/acetone primer was almost 2- to 10-times higher than for HEMA/water primer depending whether evaporation occurred, respectively, from a free surface or dentine cubes. The rate of solvent evaporation varied with time, being in general highest at the earliest periods. The rate of solvent evaporation and its retention into HEMA/solvent primers was influenced by the type of the solvent and condition allowed for their evaporation.

  5. Solvation of graphite oxide in water-methanol binary polar solvents

    Energy Technology Data Exchange (ETDEWEB)

    You, Shujie; Yu, Junchun; Sundqvist, Bertil; Talyzin, Alexandr V. [Department of Physics, Umeaa University, SE-901 87 Umeaa (Sweden)

    2012-12-15

    The phase transition between two solvated phases was studied by DSC for graphite oxide (GO) powders immersed in water-methanol mixtures of various compositions. GO forms solid solvates with two different compositions when immersed in methanol. Reversible phase transition between two solvate states due to insertion/desertion of methanol monolayer occurs upon temperature variations. The temperature point and the enthalpy ({Delta}H) of the phase transition are maximal for pure methanol and decrease linearly with increase of water fraction up to 30%. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Measurement and correlation of solubility of xylitol in binary water+ethanol solvent mixtures between 278.00 K and 323.00K

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhanzhong; Wang, Qian; Liu, Xiangshan; Fang, Wenzhi; Li, Yan; Xiao, Huazhi [Tianjin University, Tianjin (China)

    2013-04-15

    The solubility of xylitol in ethanol+water solvent mixtures was measured at temperatures ranging from 278.00 K to 323.00 K at atmospheric pressure by using a laser technique. The results of these measurements were correlated by the combined nearly ideal binary solvent CNIBS/Redlich-Kister equation. The experimental solubility and correlation equation in this work can be used as essential data and models in the purification process of xylitol. The variant 2 in the CNIBS/R-K models was confirmed to be more adaptable to predict solubility of xylitol in binary ethanol+water system. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of xylitol, such as Gibbs energy, molar enthalpy of dissolution, and molar entropy of dissolution, were calculated.

  7. Suicide attempt using pure methanol with hospitalization of the patient soon after ingestion: case report.

    Science.gov (United States)

    Bucaretchi, Fábio; De Capitani, Eduardo Mello; Madureira, Paulo Roberto de; Cesconetto, Danielle Menezes; Lanaro, Rafael; Vieira, Ronan José

    2009-05-01

    Most patients with methanol poisoning typically show up one to several days after ingestion, presenting severe acidosis, visual disorders, or both. Reports of hospitalization less than 6 h after exposure are unusual. We describe a case of attempted suicide using methanol admitted 3 h after ingestion. A 52-year-old male was hospitalized 3 h after intentional ingestion of 150 ml of 99.9% methanol with no co-ingestion of ethanol. He was alert and cooperative, presenting nausea and vertigo, and reporting six episodes of vomiting. Physical examination showed no remarkable features. A blood sample for methanol and ethanol determination was obtained 4 h after ingestion. The result (available 10 h after ingestion) showed 70 mg/dl of methanol, without detectable ethanol. He was treated with a loading dose of 10% ethanol solution (7 ml/kg, intravenously), followed by a maintenance dose of 0.9-1.0 ml/kg/h intravenously (10 to 51 h); hemodialysis (19 to 27 h, together with 2.1 ml/kg/h of 10% ethanol intravenously); and folinic acid intravenously (50 mg every 6 h, from 4 to 51 h). He developed mild/moderate metabolic acidosis without acidemia and was discharged on day four after ophthalmological evaluation and cerebral computed tomography scan, without abnormalities. Follow-up revealed no sequelae. This could be classified as a potentially severe case of methanol poisoning, according to the amount and concentration of methanol ingested, and blood methanol concentration at 4 h. The good outcome was attributable to early hospitalization and early antidotal therapy with hemodialysis, starting at 10 and 19 h, respectively.

  8. Antimicrobial effect of Satureja bachtiarica extracts aqueous, ethanol, methanol and glycerin on streptococcus pyogenes, pseudomonas aeruginosa and staphylococcus epidermidis

    OpenAIRE

    Maryam Heidari Sureshjani; Farideh Tabatabaei Yazdi; Ali Mortazavi; Fakhri Shahidi; Behrooz Alizadeh Behbahani

    2013-01-01

    The Iranian medicinal plants, such as Satureja bachtiarica have been utilized as traditional medicines by the indigenous people of Chaharmahal va Bakhtiari in Iran. In this study, Satureja bachtiarica were dried in suitable condition (in shadow) after extraction with watery, ethanol 96 %, methanol 96% and 20% glycerin antimicrobial effect of extract were determined by “screening antimicrobial activity” and “disk agar diffusion test” in 10, 20, 30 and 40 mg/ml concentration of the extract agai...

  9. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    Science.gov (United States)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  10. A study of photon interaction parameters in some commonly used solvents

    International Nuclear Information System (INIS)

    Singh, Tejbir; Kaur, Paramjeet; Singh, Parjit S

    2007-01-01

    Various parameters of dosimetric interest such as mass attenuation coefficients, effective atomic numbers and electron densities of some commonly used solvents such as acetonitrile (C 4 H 3 N), butanol (C 4 H 9 OH), chlorobenzene (C 6 H 5 Cl), diethylether (C 4 H 10 O), ethanol (C 2 H 5 OH), methanol (CH 3 OH), propanol (C 3 H 7 OH) and water (H 2 O) were computed in the wide energy range of 10 keV-100 GeV. A comparative study of two different methods used to compute effective atomic numbers has been done. It is observed that in the intermediate energy region (0.1-5 MeV), the mass attenuation coefficient values becomes almost the same for all the solvents, and the effective atomic number and electron density show almost constant values, whereas significant variation is observed in both lower (10-100 keV) and higher (5 MeV-100 GeV) energy regions for all the solvents, which may be due to the dominance of different partial interaction processes in different energy regions

  11. Surface modification of PTMSP membranes by plasma treatment: Asymmetry of transport in organic solvent nanofiltration.

    Science.gov (United States)

    Volkov, A V; Tsarkov, S E; Gilman, A B; Khotimsky, V S; Roldughin, V I; Volkov, V V

    2015-08-01

    For the first time, the effect of asymmetry of the membrane transport was studied for organic solvents and solutes upon their nanofiltration through the plasma-modified membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP). Plasma treatment is shown to provide a marked hydrophilization of the hydrophobic PTMSP surface (the contact angle of water decreases from 88 down to 20°) and leads to the development of a negative charge of -5.2 nC/cm(2). The XPS measurements prove the formation of the oxygen-containing groups (Si-O and C-O) due to the surface modification. The AFM images show that the small-scale surface roughness of the plasma-treated PTMSP sample is reduced but the large-scale surface heterogeneities become more pronounced. The modified membranes retain their hydrophilic surface properties even after the nanofiltration tests and 30-day storage under ambient conditions. The results of the filtration tests show that when the membrane is oriented so that its modified layer contacts the feed solution, the membrane permeability for linear alcohols (methanol-propanol) and acetone decreases nearly two times. When the modified membrane surface faces the permeate, the membrane is seen to regain its transport characteristics: the flux becomes equal to that of the unmodified PTMSP. The well-pronounced effect of the transport asymmetry is observed for the solution of the neutral dye Solvent Blue 35 in methanol, ethanol, and acetone. For example, the initial membrane shows the negative retention for the Solvent Blue 35 dye (-16%) upon its filtration from the ethanol solution whereas, for the modified PTMSP membrane, the retention increases up to 17%. Various effects contributing to the asymmetry of the membrane transport characteristics are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Solubility and solution thermodynamics of 2-methyl-6-nitroaniline in ten organic solvents at elevated temperatures

    International Nuclear Information System (INIS)

    Cong, Yang; Wang, Jian; Du, Cunbin; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 2-methyl-6-nitroaniline in ten solvents were determined. • The solubility were correlated with four thermodynamic models. • Standard dissolution enthalpy and excess enthalpy of the solutions were computed. - Abstract: Knowledge of solubility for 2-methyl-6-nitroaniline in different solvents is essential for its purification and further theoretical studies. In this paper, the solid-liquid equilibrium for 2-methyl-6-nitroaniline in ten pure organic solvents (methanol, ethanol, n-propanol, isopropanol, toluene, ethyl acetate, acetonitrile, acetone, cyclohexane and 1,4-dioxane) was established using the isothermal saturation method at temperatures T = (278.15–313.15) K under pressure of 101.2 kPa, and the solubility of 2-methyl-6-nitroaniline in these solvents were determined by a high-performance liquid chromatography (HPLC). In general, the mole fraction solubility followed the following order from high to low in different solvents: 1,4-dioxane (0.1799–0.3390) > acetone (0.1128–0.3010) > ethyl acetate (0.08414–0.2654) > acetonitrile (0.04179–0.2027) > toluene (0.02367–0.1104) > n-propanol (0.01080–0.04514) > ethanol (0.01020–0.04202) > isopropanol (0.008595–0.03763) > methanol (0.007391–0.03198) > cyclohexane (0.001027–0.005617). The modified Apelblat equation, λh equation, Wilson model and NRTL model were employed to correlate the measured solubility data of 2-methyl-6-nitroaniline in the selected solvents. Results indicated that the largest values of RAD and RMSD acquired by the four models were less than 0.76% and 9.13 × 10"−"4, respectively. The modified Apelblat equation provided better results than the other three models. Furthermore, the standard dissolution enthalpy and excess enthalpy of the solutions were computed from the solubility values. The standard dissolution enthalpies vary within the range from (14.88 to 45.57) kJ·mol"−"1 and are all positive, the dissolution process of 2-methyl-6

  13. Influence of different water-ethanol solvent systems on the spectroscopic and physico-chemical properties of the macrocyclic compounds pheophytin and chlorophyll a; Influencia de diferentes sistemas de solvente agua-etanol sobre as propriedades fisico-quimicas e espectroscopicas dos compostos macrociclicos feofitina e clorofila a

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Leonardo M.; Rodrigues, Maira R.; Oliveira, Hueder P. M. de [Universidade Camilo Castelo Branco, Sao Jose dos Campos, SP (Brazil); Lima, Adriana [Universidade do Vale do Paraiba, Sao Jose dos Campos, SP (Brazil); Soares, Rafael R. S.; Batistela, Vagner R.; Gerola, Adriana P.; Hioka, Noboru [Universidade Estadual de Maringa (UEM), PR (Brazil). Dept. de Quimica; Severino, Divinomar; Baptista, Mauricio S. [Universidade de Sao Paulo, (USP), SP (Brazil). Inst. de Quimica; Machado, Antonio Eduardo da Hora [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Quimica

    2010-07-01

    This work focus on the influence of solvent on the photophysical properties of chlorophyll a and pheophytin. Both compounds are related to the photosynthesis process and are considered prototypes of photosensitizers in Photodynamic Therapy. Fluorescence measurements were developed using water/ethanol mixtures at different compositions, since both solvents could be employed in biological applications. The spectroscopic properties of these compounds undergo profound changes depending on water content in the ethanol due to auto-aggregation processes. The major hydrophobicity and the lower dielectric constant of ethanol when compared with water precluded significantly the auto-aggregation process of these compounds. (author)

  14. Suicide attempt using pure methanol with hospitalization of the patient soon after ingestion: case report

    Directory of Open Access Journals (Sweden)

    Fábio Bucaretchi

    Full Text Available CONTEXT: Most patients with methanol poisoning typically show up one to several days after ingestion, presenting severe acidosis, visual disorders, or both. Reports of hospitalization less than 6 h after exposure are unusual. We describe a case of attempted suicide using methanol admitted 3 h after ingestion. CASE REPORT: A 52-year-old male was hospitalized 3 h after intentional ingestion of 150 ml of 99.9% methanol with no co-ingestion of ethanol. He was alert and cooperative, presenting nausea and vertigo, and reporting six episodes of vomiting. Physical examination showed no remarkable features. A blood sample for methanol and ethanol determination was obtained 4 h after ingestion. The result (available 10 h after ingestion showed 70 mg/dl of methanol, without detectable ethanol. He was treated with a loading dose of 10% ethanol solution (7 ml/kg, intravenously, followed by a maintenance dose of 0.9-1.0 ml/kg/h intravenously (10 to 51 h; hemodialysis (19 to 27 h, together with 2.1 ml/kg/h of 10% ethanol intravenously; and folinic acid intravenously (50 mg every 6 h, from 4 to 51 h. He developed mild/moderate metabolic acidosis without acidemia and was discharged on day four after ophthalmological evaluation and cerebral computed tomography scan, without abnormalities. Follow-up revealed no sequelae. CONCLUSION: This could be classified as a potentially severe case of methanol poisoning, according to the amount and concentration of methanol ingested, and blood methanol concentration at 4 h. The good outcome was attributable to early hospitalization and early antidotal therapy with hemodialysis, starting at 10 and 19 h, respectively.

  15. [Simultaneous determination of seven residual solvents in bovis calculus artifactus by headspace gas chromatography].

    Science.gov (United States)

    Chi, Shuyao; Wu, Dike; Sun, Jinhong; Ye, Ruhan; Wang, Xiaoyan

    2014-05-01

    A headspace gas chromatography (HS-GC) method was developed for the simultaneous determination of seven residual solvents (petroleum ether (60-90 degrees C), acetone, ethyl acetate, methanol, methylene chloride, ethanol and butyl acetate) in bovis calculus artifactus. The DB-WAX capillary column and flame ionization detector (FID) were used for the separation and detection of the residual solvents, and the internal standard method was used for the quantification. The chromatographic conditions, such as equilibrium temperature and equilibrium time, were optimized. Under the optimized conditions, all of the seven residual solvents showed good linear relationships with good correlation coefficients (not less than 0.999 3) in the prescribed concentration range. At three spiked levels, the recoveries for the seven residual solvents were 94.7%-105.2% with the relative standard deviations (RSDs) less than 3.5%. The limits of detection (LODs) of the method were 0.43-5.23 mg/L, and the limits of quantification (LOQs) were 1.25-16.67 mg/L. The method is simple, rapid, sensitive and accurate, and is suitable for the simultaneous determination of the seven residual solvents in bovis calculus artifactus.

  16. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    International Nuclear Information System (INIS)

    Singh, Parjit S.; Singh, Tejbir; Kaur, Paramjeet

    2008-01-01

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C 4 H 3 N), butanol (C 4 H 9 OH), chlorobenzene (C 6 H 5 Cl), diethyl ether (C 4 H 10 O), ethanol (C 2 H 5 OH), methanol (CH 3 OH), propanol (C 3 H 7 OH) and water (H 2 O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor

  17. Determination of total phenolic compound contents and antioxidant capacity of persimmon skin

    Directory of Open Access Journals (Sweden)

    M Mohamadi

    2012-05-01

    Full Text Available Due to the adverse side effects of synthetic antioxidants, the search for natural and safe antioxidants has become crucial. In this study, the total phenolic compound contents and antioxidants activity of persimmon skin was investigated. The extraction was carried out by means of maceration method using ethanol and methanol solvents with ratio of 1 part persimmon skin to 5 parts of solvents. Afterwards, the total phenolic compounds and antioxidants activity was measured. According to the results, ethanolic and methanolic extracts contained 255.6 and 214.15 mg gallic acid per 100 g of persimmon skin, respectively. Moreover, ethanolic extracts showed a higher activity for scavenging free radicals compared to methanolic extracts.

  18. A rare presentation of methanol toxicity

    Directory of Open Access Journals (Sweden)

    Nikhil Gupta

    2013-01-01

    Full Text Available Methanol is a highly toxic alcohol resembling ethanol in smell and taste. Methanol poisoning is a lethal form of poisoning that can cause severe metabolic acidosis, visual disturbances, and neurological deficit. Brain lesions typically described in methanol toxicity are in the form of hemorrhagic and non-hemorrhagic necrosis of the basal ganglia and sub-cortical white matter. To our knowledge, lesions in the parietal, temporal, or frontal areas of cerebrum and cerebellar hemispheres have been rarely reported so far. We herewith report this rare presentation.

  19. Anti-ulcerogenic effect of methanolic extracts from Enicosanthellum pulchrum (King) Heusden against ethanol-induced acute gastric lesion in animal models.

    Science.gov (United States)

    Nordin, Noraziah; Salama, Suzy Munir; Golbabapour, Shahram; Hajrezaie, Maryam; Hassandarvish, Pouya; Kamalidehghan, Behnam; Majid, Nazia Abdul; Hashim, Najihah Mohd; Omar, Hanita; Fadaienasab, Mehran; Karimian, Hamed; Taha, Hairin; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen

    2014-01-01

    A natural source of medicine, Enicosanthellum pulchrum is a tropical plant which belongs to the family Annonaceae. In this study, methanol extract from the leaves and stems of this species was evaluated for its gastroprotective potential against mucosal lesions induced by ethanol in rats. Seven groups of rats were assigned, groups 1 and 2 were given Tween 20 (10% v/v) orally. Group 3 was administered omeprazole 20 mg/kg (10% Tween 20) whilst the remaining groups received the leaf and stem extracts at doses of 150 and 300 mg/kg, respectively. After an additional hour, the rats in groups 2-7 received ethanol (95% v/v; 8 mL/kg) orally while group 1 received Tween 20 (10% v/v) instead. Rats were sacrificed after 1 h and their stomachs subjected to further studies. Macroscopically and histologically, group 2 rats showed extremely severe disruption of the gastric mucosa compared to rats pre-treated with the E. pulchrum extracts based on the ulcer index, where remarkable protection was noticed. Meanwhile, a significant percentage of inhibition was shown with the stem extract at 62% (150 mg/kg) and 65% (300 mg/kg), whilst the percentage with the leaf extract at doses of 150 and 300 mg/kg was 63% and 75%, respectively. An increase in mucus content, nitric oxide, glutathione, prostaglandin E2, superoxide dismutase, protein and catalase, and a decrease in malondialdehyde level compared to group 2 were also obtained. Furthermore, immunohistochemical staining of groups 4-7 exhibited down-regulation of Bax and up-regulation of Hsp70 proteins. The methanol extract from the leaves and the stems showed notable gastroprotective potential against ethanol.

  20. Staining of proteins in gels with Coomassie G-250 without organic solvent and acetic acid.

    Science.gov (United States)

    Lawrence, Ann-Marie; Besir, H Uuml Seyin

    2009-08-14

    In classical protein staining protocols using Coomassie Brilliant Blue (CBB), solutions with high contents of toxic and flammable organic solvents (Methanol, Ethanol or 2-Propanol) and acetic acid are used for fixation, staining and destaining of proteins in a gel after SDS-PAGE. To speed up the procedure, heating the staining solution in the microwave oven for a short time is frequently used. This usually results in evaporation of toxic or hazardous Methanol, Ethanol or 2-Propanol and a strong smell of acetic acid in the lab which should be avoided due to safety considerations. In a protocol originally published in two patent applications by E.M. Wondrak (US2001046709 (A1), US6319720 (B1)), an alternative composition of the staining solution is described in which no organic solvent or acid is used. The CBB is dissolved in bidistilled water (60-80 mg of CBB G-250 per liter) and 35 mM HCl is added as the only other compound in the staining solution. The CBB staining of the gel is done after SDS-PAGE and thorough washing of the gel in bidistilled water. By heating the gel during the washing and staining steps, the process can be finished faster and no toxic or hazardous compounds are evaporating. The staining of proteins occurs already within 1 minute after heating the gel in staining solution and is fully developed after 15-30 min with a slightly blue background that is destained completely by prolonged washing of the stained gel in bidistilled water, without affecting the stained protein bands.

  1. Thermodynamic functions for solubility of 3-nitro-o-toluic acid in nine organic solvents from T = (283.15 to 318.15) K and apparent thermodynamic properties of solutions

    International Nuclear Information System (INIS)

    Li, Xinbao; Wang, Mingju; Du, Cunbin; Cong, Yang; Zhao, Hongkun

    2017-01-01

    Highlights: • Solubilities of 3-nitro-o-toluic acid in nine organic solvents were determined. • The solubilities were correlated by using four thermodynamic models. • The mixing properties of solution were computed based on Wilson model. - Abstract: Separation of 3-nitro-o-toluic acid from its isomeric mixtures has essential significance in industry. In this work, by using isothermal saturation method, the solid-liquid equilibrium for 3-nitro-o-toluic acid in nine organic solvents (acetonitrile, methanol, ethanol, n-propanol, isopropanol, ethyl acetate, acetone, 1,4-dioxane and 2-butanone) were obtained experimentally within a temperature range from (283.15 to 318.15) K under atmosphere pressure of 101.2 kPa, and the solubility values of 3-nitro-o-toluic acid in these solvents were determined by a high-performance liquid chromatography. Within the studied temperature range, the mole fraction solubility of 3-nitro-o-toluic acid in selected organic solvents increased with increasing temperature. Except for ethyl acetate, the descending order of the mole fraction solubility values were as follow: 1,4-dioxane > acetone > 2-butanone > methanol > ethanol > isopropanol > n-propanol > acetonitrile. The solubility values determined for 3-nitro-o-toluic acid in the selected solvents were correlated and back calculated with the modified Apelblat equation, λh equation, Wilson model and NRTL model. The largest values of RAD and RMSD obtained with the four models were 0.67% and 4.02 × 10 −4 , respectively. In general, the four thermodynamic models were all acceptable for describing the solubility behaviour of 3-nitro-o-toluic acid in these solvents. In addition, the apparent mixing Gibbs energy, mixing enthalpy, mixing entropy, activity coefficient at infinitesimal concentration and reduced excess enthalpy were calculated. The acquired solubility data and thermodynamic studies would be very important in optimizing the separation process of 3-nitro-o-toluic acid from

  2. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis

    Directory of Open Access Journals (Sweden)

    Moussa Yabré

    2018-05-01

    Full Text Available The greening of analytical methods has gained increasing interest in the field of pharmaceutical analysis to reduce environmental impacts and improve the health safety of analysts. Reversed-phase high-performance liquid chromatography (RP-HPLC is the most widely used analytical technique involved in pharmaceutical drug development and manufacturing, such as the quality control of bulk drugs and pharmaceutical formulations, as well as the analysis of drugs in biological samples. However, RP-HPLC methods commonly use large amounts of organic solvents and generate high quantities of waste to be disposed, leading to some issues in terms of ecological impact and operator safety. In this context, greening HPLC methods is becoming highly desirable. One strategy to reduce the impact of hazardous solvents is to replace classically used organic solvents (i.e., acetonitrile and methanol with greener ones. So far, ethanol has been the most often used alternative organic solvent. Others strategies have followed, such as the use of totally aqueous mobile phases, micellar liquid chromatography, and ionic liquids. These approaches have been well developed, as they do not require equipment investments and are rather economical. This review describes and critically discusses the recent advances in greening RP-HPLC methods dedicated to pharmaceutical analysis based on the use of alternative solvents.

  3. Biodiesel production from ethanolysis of palm oil using deep eutectic solvent (DES) as co-solvent

    Science.gov (United States)

    Manurung, R.; Winarta, A.; Taslim; Indra, L.

    2017-06-01

    Biodiesel produced from ethanolysis is more renewable and have better properties (higher oxidation stability, lower cloud and pour point) compared to methanolysis, but it has a disadvantage such as complicated purification. To improve ethanolysis process, deep eutectic solvent (DES) can be prepared from choline chloride and glycerol and used as co-solvent in ethanolysis. The deep eutectic solvent is formed from a quaternary ammonium salt (choline chloride) and a hydrogen bond donor (Glycerol), it is a non-toxic, biodegradable solvent compared to a conventional volatile organic solvent such as hexane. The deep eutectic solvent is prepared by mixing choline chloride and glycerol with molar ratio 1:2 at temperature 80 °C, stirring speed 300 rpm for 1 hour. The DES is characterized by its density and viscosity. The ethanolysis is performed at a reaction temperature of 70 °C, ethanol to oil molar ratio of 9:1, potassium hydroxide as catalyst concentration of 1.2 wt. DES as co-solvent with concentration 0.5 to 3 wt. stirring speed 400 rpm, and a reaction time 1 hour. The obtained biodiesel is then characterized by its density, viscosity, and ester content. The oil - ethanol phase condition is observed in the reaction tube. The oil - ethanol phase with DES tends to form meniscus compared to without DES, showed that oil and ethanol become more slightly miscible, which favors the reaction. Using DES as co-solvent in ethanolysis showed increasing in yield and easier purification. The esters properties meet the international standards ASTM D6751, with the highest yield achieved 83,67 with 99,77 conversion at DES concentration 2 . Increasing DES concentration above 2 in ethanolysis decrease the conversion and yield, because of the excessive glycerol in the systems makes the reaction equilibrium moves to the reactant side.

  4. Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation

    International Nuclear Information System (INIS)

    Wei Lu; Fan Youjun; Wang Honghui; Tian Na; Zhou Zhiyou; Sun Shigang

    2012-01-01

    Highlights: ► The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps. ► The as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. ► The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size. - Abstract: The electrochemically shape-controlled synthesis in deep eutectic solvents (DESs) has been applied to produce the electrocatalyst of Pt nanoflowers. The uniform Pt nanoflowers with sharp single crystal petals and high density of atomic steps were characterized by SEM, TEM, XRD, XPS and electrochemical tests. The results illustrated that the as-prepared Pt nanoflowers exhibit higher electrocatalytic activity and stability than commercial Pt black catalyst toward ethanol electrooxidation. The growth of Pt nanoflowers in DESs by the simple electrochemical route is straightforward and controllable in terms of nanoflowers’ shape and size, which can be applied in shape-controlled synthesis of other noble metal nanoparticles with high catalytic activity.

  5. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Ksenia V., E-mail: zaitseva.ksenia@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation); Solomonov, Boris N., E-mail: boris.solomonov@ksu.ru [Chemical Institute, Kazan (Volga Region) Federal University, Kremlevskaya 18, Kazan 420008 (Russian Federation)

    2012-05-10

    Highlights: Black-Right-Pointing-Pointer Solution enthalpies and activity coefficients of amines in methanol were measured. Black-Right-Pointing-Pointer Thermodynamic functions of H-bonding of amines with methanol were determined. Black-Right-Pointing-Pointer Specific interaction entropy of amines in methanol can be about zero or positive. Black-Right-Pointing-Pointer Cooperativity of H-bonds in methanol media is smaller than in water solutions. Black-Right-Pointing-Pointer A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes 'methanol-amine' determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent-solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  6. Effect of the composition of a solution on the enthalpies of solvation of piperidine in methanol-acetonitrile and dimethylsulfoxide-acetonitrile mixed solvents

    Science.gov (United States)

    Kuz'mina, I. A.; Volkova, M. A.; Sitnikova, K. A.; Sharnin, V. A.

    2014-01-01

    Heat effects of dissolution of piperidine (ppd) are measured by calorimetry at 298.15 K over the range of composition of acetonitrile-methanol (AN-MeOH) mixed solvents. Based on the Δsol H ○(ppd)AN-MeOH values obtained using the literature data on Δsol H ○ (ppd) in acetonitrile-dimethylsulfoxide (AN-DMSO) mixed solvents and the vaporization enthalpy of ppd, the enthalpies of solvation of amine in AN-MeOH and AN-DMSO binary mixtures are calculated. A rise in the exothermicity of solvation of piperidine is observed upon the transition from AN to DMSO and MeOH, due mainly to the enhanced solvation of the amino group of ppd as a result of changes in the acid-base properties of the mixed solvent.

  7. Response of a direct methanol fuel cell to fuel change

    Energy Technology Data Exchange (ETDEWEB)

    Leo, T.J. [Dpto de Sistemas Oceanicos y Navales- ETSI Navales, Univ. Politecnica de Madrid, Avda Arco de la Victoria s/n, 28040 Madrid (Spain); Raso, M.A.; de la Blanca, E. Sanchez [Dpto de Quimica Fisica I- Fac. CC. Quimicas, Univ. Complutense de Madrid, Avda Complutense s/n, 28040 Madrid (Spain); Navarro, E.; Villanueva, M. [Dpto de Motopropulsion y Termofluidodinamica, ETSI Aeronauticos, Univ. Politecnica de Madrid, Pza Cardenal Cisneros 3, 28040 Madrid (Spain); Moreno, B. [Instituto de Ceramica y Vidrio, Consejo Superior de Investigaciones Cientificas, C/Kelsen 5, Campus de la UAM, 28049 Cantoblanco, Madrid (Spain)

    2010-10-15

    Methanol and ethanol have recently received much attention as liquid fuels particularly as alternative 'energy-vectors' for the future. In this sense, to find a direct alcohol fuel cell that able to interchange the fuel without losing performances in an appreciable way would represent an evident advantage in the field of portable applications. In this work, the response of a in-house direct methanol fuel cell (DMFC) to the change of fuel from methanol to ethanol and its behaviour at different ambient temperature values have been investigated. A corrosion study on materials suitable to fabricate the bipolar plates has been carried out and either 316- or 2205-duplex stainless steels have proved to be adequate for using in direct alcohol fuel cells. Polarization curves have been measured at different ambient temperature values, controlled by an experimental setup devised for this purpose. Data have been fitted to a model taking into account the temperature effect. For both fuels, methanol and ethanol, a linear dependence of adjustable parameters with temperature is obtained. Fuel cell performance comparison in terms of open circuit voltage, kinetic and resistance is established. (author)

  8. Solvent optimization on Taxol extraction from Taxus baccata L., using HPLC and LC-MS

    Directory of Open Access Journals (Sweden)

    H Sadeghi-aliabadi

    2009-10-01

    Full Text Available "nBackground and the purpose of the study: Taxol, a natural antitumor agent, was first isolated from the extract of the bark of Taxus brevifolia Nutt., which is potentially a limited source for Taxol. In the search of an alternative source, optimum and cost benefit extracting solvents, various solvents with different percentage were utilized to extract Taxol from needles of Taxus baccata. "nMethods: One g of the dried needles of Taxus baccata, collected from Torkaman and Noor cities of Iran, was extracted with pure ethanol or acetone and 50% and 20% of ethanol or acetone in water. Solvents were evaporated to dryness and the residues were dissolved in 5 ml of methanol and filtered. To one ml of the filtrate was added 50 μl of cinamyl acetate as the internal standard and 20 μl of the resulting solution was subjected to the HPLC to determine the extraction efficiencies of tested solvents. Five μl of filtrate was also subjected to the LC-MS using water/acetonitrile (10/90 as mobile phase and applying positive electrospray ionization (ESI to identify the authenticity of Taxol. "nResults: Results of this study indicated that Taxol extraction efficiency was enhanced as the percentage of ethanol or acetone was increased. HPLC analysis showed that Taxol could be quantified by UV detection using standard curve. The standard curve covering the concentration ranges of 7.8 - 500 μg/ml was linear (r2= 0.9992 and CV% ranged from 0.52 to 15.36. LC-MS analysis using ESI in positive-ion mode confirmed the authenticity of Taxol (m/z 854; M+H, as well as some adduct ions such as M+Na (m/z 876, M+K (m/z 892 and M+CH3CN+H2O (m/z 913. "nConclusions: The results suggest that 100% acetone is the best solvent for the extraction of Taxol from Taxus baccata needles.

  9. Waste Cooking Oil Conversion To Biodeisel Catalized By Egg Shell Of Purebred Chiken With Ethanol As A Solvent

    Directory of Open Access Journals (Sweden)

    Hellna Tehubijuluw

    2014-08-01

    Full Text Available The synthesis of biodiesel from the waste cooking oil was carried out using the catalyst from egg shell of purebred chiken with ethanol as a solvent. Synthesis of biodiesel was prepared in two steps, esterification and transesterification. Esterification was conducted in mol ratio of ethanol and waste cooking oil of  9:1 with H2SO4 as a catalyst. Mol ratio of ethanol and used cooking oil in the transesterification of  12:1 with the CaO catalyst of shell eggs. CaO catalyst was yielded by calcinations egg shell of purebred chicken on 1000 for two hours. Calcination product was characterized with XRD to determine of CaO. Result of biodiesel was characterized based on FTIR, H-NMR, dan ASTM (American Standard Testing of Materials. Theoretically,yielded of biodiesel was 58% and experiment was 36.779%.

  10. Effect of solvent on crystallization behavior of xylitol

    Science.gov (United States)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  11. Solvent-dependent deuterium isotope effects in the 15N NMR spectra of an ammonium ion

    International Nuclear Information System (INIS)

    Wielogorska, E.; Jackowski, K.

    2000-01-01

    Deuterium isotope effects on 15 N NMR chemical shifts and spin-spin coupling constants have been investigated for the 15 N enriched ammonium chloride (conc. 15 NH 4 + ion has been observed in water, methanol, ethanol and dimethylsulfoxide, while the 15 ND 4 + has been monitored in the analogous deuterated liquids. It is shown that the isotope effect in nitrogen chemical shifts ( 1 Δ 15 N( 2/1 H)), significantly different in various solvents, changes from -1.392 ppm in dimethylsulfoxide to -0.071 ppm in ethanol. The 1 J(N,H) and 1 J(N,D) coupling constants have been measured for acidic solutions under conditions of slow proton (or deuterium) exchange. The reduced coupling constants have been estimated to present isotope effects in the spin-spin coupling constants. The latter isotope effects are fairly small. (author)

  12. Measurement and correlation of the solubility of 2,3,4,5-tetrabromothiophene in different solvents

    International Nuclear Information System (INIS)

    Wang, Kai; Hu, Yonghong; Yang, Wenge; Guo, Song; Shi, Ying

    2012-01-01

    Highlights: ► The solubility of tetrabromothiophene in different solvents was investigated. ► The modified Apelblat equation was more accurate than the van’t Hoff equation and the λh equation. ► Ethyl acetate showed the potential as a better recrystallization solvent to replace trichloromethane. ► The solution process in the selected solvents was endothermic and nonspontaneous. - Abstract: The solubility of 2,3,4,5-tetrabromothiophene were measured in methanol, ethanol, propan-1-ol, butan-1-ol, toluene, ethyl formate, ethyl acetate, trichloromethane and oxolane within the temperature range between 278.05 K and 325.15 K under atmospheric pressure by gravimetric method. The solubility of 2,3,4,5-tetrabromothiophene in those selected solvents increased with increasing temperature. The solubility data were correlated with the van’t Hoff equation, the modified Apelblat equation and the λh equation. The thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis and the Gibbs equation. The experimental results showed that ethyl acetate had the potential as a better solvent in the re-crystallization process of 2,3,4,5-tetrabromothiophene.

  13. The Role of Interfacial Potential in Adsorbate Bonding: Electrode Potential-Dependent Infrared Spectra for Saturated CO Adlayers on Pt(110) and Related Electrochemical Surfaces in Varying Solvent Environments

    Science.gov (United States)

    1992-05-01

    as supporting electrolytes were recrystallized from methanol, water and ethanol , and water, respectively, and dried under vacuum at 110°C. Electrode...under these conditions 8,17 (vide infra). All measurements were performed at room temperature , 23±1*C. RESULTS AND DISCUSSION The experimental strategy...of interferometer scans during a suitably slow (2 mV s- ) positive-going potential sweep. For solvents containing traces of water, electrooxidative

  14. Emissions deterioration for three alternative fuel vehicle types: Natural gas, ethanol, and methanol vehicles

    International Nuclear Information System (INIS)

    Winebrake, J.J.; Deaton, M.L.

    1997-01-01

    Although there have been several studies examining emissions from in-use alternative fuel vehicles (AFVs), little is known about the deterioration of these emissions over vehicle lifetimes and how this deterioration compares with deterioration from conventional vehicles (CVs). This paper analyzes emissions data from 70 AFVs and 70 CVs operating in the federal government fleet to determine whether AFV emissions deterioration differs significantly from CV emissions deterioration. The authors conduct the analysis on three alternative fuel types (natural gas, methanol, and ethanol) and on five pollutants (carbon monoxide, carbon dioxide, total hydrocarbons, non-methane hydrocarbons, and nitrogen oxides). They find that for most cases they studied, deterioration differences are not statistically significant; however, several exceptions suggest that air quality planners and regulators must further analyze AFV emissions deterioration in order to properly include these technologies into broader air quality management schemes

  15. Validation of a UV Spectrometric Method for the Assay of Tolfenamic Acid in Organic Solvents

    Directory of Open Access Journals (Sweden)

    Sofia Ahmed

    2015-01-01

    Full Text Available The present study has been carried out to validate a UV spectrometric method for the assay of tolfenamic acid (TA in organic solvents. TA is insoluble in water; therefore, a total of thirteen commonly used organic solvents have been selected in which the drug is soluble. Fresh stock solutions of TA in each solvent in a concentration of 1 × 10−4 M (2.62 mg% were prepared for the assay. The method has been validated according to the guideline of International Conference on Harmonization and parameters like linearity, range, accuracy, precision, sensitivity, and robustness have been studied. Although the method was found to be efficient for the determination of TA in all solvents on the basis of statistical data 1-octanol, followed by ethanol and methanol, was found to be comparatively better than the other studied solvents. No change in the stock solution stability of TA has been observed in each solvent for 24 hours stored either at room (25±1°C or at refrigerated temperature (2–8°C. A shift in the absorption maxima has been observed for TA in various solvents indicating drug-solvent interactions. The studied method is simple, rapid, economical, accurate, and precise for the assay of TA in different organic solvents.

  16. Solvent Vapour Detection with Cholesteric Liquid Crystals—Optical and Mass-Sensitive Evaluation of the Sensor Mechanism

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2010-05-01

    Full Text Available Cholesteric liquid crystals (CLCs are used as sensitive coatings for the detection of organic solvent vapours for both polar and non-polar substances. The incorporation of different analyte vapours in the CLC layers disturbs the pitch length which changes the optical properties, i.e., shifting the absorption band. The engulfing of CLCs around non-polar solvent vapours such as tetrahedrofuran (THF, chloroform and tetrachloroethylene is favoured in comparison to polar ones, i.e., methanol and ethanol. Increasing solvent vapour concentrations shift the absorbance maximumto smaller wavelengths, e.g., as observed for THF. Additionally, CLCs have been coated on acoustic devices such as the quartz crystal microbalance (QCM to measure the frequency shift of analyte samples at similar concentration levels. The mass effect for tetrachloroethylene was about six times higher than chloroform. Thus, optical response can be correlated with intercalation in accordance to mass detection. The mechanical stability was gained by combining CLCs with imprinted polymers. Therefore, pre-concentration of solvent vapours was performed leading to an additional selectivity.

  17. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  18. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    Science.gov (United States)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  19. Evaluation of a new eastern blotting technique for the analysis of ginsenoside Re in American ginseng berry pulp extracts.

    Science.gov (United States)

    Morinaga, Osamu; Uto, Takuhiro; Yuan, Chun-Su; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2010-06-01

    A new eastern blotting technique has been established for ginsenoside Re (G-Re) contained in American ginseng berry pulp extracts. G-Re in American ginseng berry pulp was extracted using 100% methanol, 100% ethanol, 50% aqueous methanol, and 50% aqueous ethanol. The combined crude extracts were applied onto a polyethersulfone membrane and developed using the methanol-water-acetic acid solvent system (45:55:1 v/v). Separated components were immunostained using anti-G-Re monoclonal antibody. G-Re was first specifically detected and then quantitatively analyzed using NIH Imaging software. We also confirmed that the most suitable solvent was 50% aqueous methanol for extracting G-Re from American ginseng berry pulp. (c) 2009 Elsevier B.V. All rights reserved.

  20. Electro-catalytic biodiesel production from canola oil in methanolic and ethanolic solutions with low cost stainless steel and hybrid ion-exchange resin grafted electrodes

    Science.gov (United States)

    Allioux, Francois-Marie; Holland, Brendan J.; Kong, Lingxue; Dumée, Ludovic F.

    2017-07-01

    Biodiesel is a growing alternative to petroleum fuels and is produced by the catalysed transesterification of fats in presence of an alcohol base. Transesterification processes using homogeneous catalysts are considered to be amongst the most efficient methods but rely on the feedstock quality and low water content in order to avoid undesirable saponification reactions. In this work, the electro-catalytic conversion of canola oil to biodiesel in a 1% aqueous methanolic and ethanolic reaction mixture was performed without the addition of external catalyst or co-solvent. An inexpensive stainless steel electrode and a hybrid stainless steel electrode coated with an ion-exchange resin catalyst were used as cathode materials while the anode was composed of a plain carbon paper. The cell voltages were varied from 10 to 40 V and the reaction temperature maintained at 20 or 40°C. The canola oil conversion rates were found to be superior at 40°C without saponification reactions for cell voltages below 30 V. The conversion rates were as high as 87% for the hybrid electrode and 81% for the plain stainless steel electrode. This work could inspire new process development for the conversion of high water content feedstock for the production of second-generation biodiesel.

  1. The effect of organic water-miscible solvents on the extraction of uranium by TOA

    International Nuclear Information System (INIS)

    Shi Xiukun; Shen Xinghai; Pen Qixiu; Gao Hongchen

    1989-01-01

    The effect of organic water-miscible solvents, such as methanol, ethanol, acetone, dioxane, glycol, dimethylsulfoxide (DMSO), dimethylformamide (DMF), tetrahydrofurance (THF) in aqueous phase on the extraction of uranyl sulphate by tri-n-octylamine (TOA) has been investigated. All data obtained showed that the addition of alcohols, ketones etc. into aqueous phase brings about an increase of distribution ratio of uranium, whereas the addition of DMSO, DMF etc. brings about a decrease of distribution ratio of uranium. In the present study, the regularity and mechanism of extraction with TOA are further studied and discussed from the measurements of some physical properties, such as dielectric constant, interface tension etc

  2. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography.

    Science.gov (United States)

    Glenne, Emelie; Leek, Hanna; Klarqvist, Magnus; Samuelsson, Jörgen; Fornstedt, Torgny

    2017-05-05

    Strangely shaped overloaded bands were recently reported using a standard supercritical fluid chromatographic system comprising a diol column as the stationary phase and carbon dioxide with methanol as the mobile phase. Some of these overloaded elution profiles appeared strongly deformed and even had "anti-Langmuirian" shapes although their solute compounds had "Langmuirian" adsorption. To obtain a more complete understanding of the generality of these effects, the investigation was expanded to cover also other common co-solvents, such as ethanol, 2-propanol, and acetonitrile, as well as various stationary phase materials, such as silica, and 2-ethylpyridine. From this expanded study it could be confirmed that the effects of deformed overloaded solute band shapes, due to co-solvent adsorption, is general phenomena in supercritical fluid chromatographic. It could also be concluded that these effects as well as previously observed "solvent effects" or "plug effects" are entirely due to competition between the solute and solvent molecules for the adsorption sites on the stationary phase surface. Finally, guidelines were given for how to evaluate the risk of deformations occurring for a given solvent-column combination, based simply on testing retention times of solutes and co-solvent. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Angolan Cymbopogon citratus used for therapeutic benefits: nutritional composition and influence of solvents in phytochemicals content and antioxidant activity of leaf extracts.

    Science.gov (United States)

    Soares, Marta O; Alves, Rita C; Pires, Pedro C; Oliveira, M Beatriz P P; Vinha, Ana F

    2013-10-01

    Folk medicine is a relevant and effective part of indigenous healthcare systems which are, in practice, totally dependent on traditional healers. An outstanding coincidence between indigenous medicinal plant uses and scientifically proved pharmacological properties of several phytochemicals has been observed along the years. This work focused on the leaves of a medicinal plant traditionally used for therapeutic benefits (Angolan Cymbopogon citratus), in order to evaluate their nutritional value. The bioactive phytochemical composition and antioxidant activity of leaf extracts prepared with different solvents (water, methanol and ethanol) were also evaluated. The plant leaves contained ∼60% of carbohydrates, protein (∼20%), fat (∼5%), ash (∼4%) and moisture (∼9%). The phytochemicals screening revealed the presence of tannins, flavonoids, and terpenoids in all extracts. Methanolic extracts also contained alkaloids and steroids. Several methods were used to evaluate total antioxidant capacity of the different extracts (DPPH·, NO·, and H₂O₂ scavenging assays, reducing power, and FRAP). Ethanolic extracts presented a significantly higher antioxidant activity (p<0.05) except for FRAP, in which the best results were achieved by the aqueous extracts. Methanolic extracts showed the lowest radical scavenging activities for both DPPH· and NO· radicals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Thermodynamic functions of hydrogen bonding of amines in methanol derived from solution calorimetry data and headspace analysis

    International Nuclear Information System (INIS)

    Zaitseva, Ksenia V.; Varfolomeev, Mikhail A.; Solomonov, Boris N.

    2012-01-01

    Highlights: ► Solution enthalpies and activity coefficients of amines in methanol were measured. ► Thermodynamic functions of H-bonding of amines with methanol were determined. ► Specific interaction entropy of amines in methanol can be about zero or positive. ► Cooperativity of H-bonds in methanol media is smaller than in water solutions. ► A new view on analysis of specific interaction of solute with methanol is presented. - Abstract: Reactivity and equilibrium properties of organic molecules in self-associated liquids greatly depend on the hydrogen bonding with solvent. This work contains comprehensive thermodynamic analysis of hydrogen bonding of aliphatic and aromatic amines in self-associated solvent methanol. Enthalpies of solution at infinite dilution and limiting activity coefficients for the studied systems were measured experimentally. Enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol were determined. These values were found to be decreased compared with hydrogen bond energy in equimolar complexes “methanol–amine” determined in inert solvent or base media. A linear dependence between enthalpies and Gibbs energies of hydrogen bonding of amines with neat methanol was observed. It was firstly revealed that the entropy of specific interactions of amines with neat methanol can be about zero or positive. Disruption of solvent–solvent hydrogen bonds can be regarded as the most important step during dissolution of amine in methanol. It was found that the cooperative effect influences on the Gibbs energies of hydrogen bonding of amines in methanol, but in a lesser extent than in aqueous solutions. The new results show that the hydrogen bonding process in the self-associated solvents differs significantly from equimolar complexation in aprotic media.

  5. Antioxidant, Antimicrobial Properties and Phenolics of Different Solvent Extracts from Bark, Leaves and Seeds of Pongamia pinnata (L. Pierre

    Directory of Open Access Journals (Sweden)

    Khalid M. Alkharfy

    2012-03-01

    Full Text Available This study appraises the antioxidant and antimicrobial attributes of various solvent extracts (absolute methanol, aqueous methanol, absolute ethanol, aqueous ethanol, absolute acetone, aqueous acetone, and deionized water from bark, leaves and seeds of Pongamia pinnata (L. Pierre. Maximum extraction yield of antioxidant components from bark (16.31%, leaves (11.42% and seeds (21.51% of P. pinnata was obtained using aqueous methanol (20:80. Of the extracts tested, the bark extract, obtained with aqueous methanol, exhibited greater levels of total phenolics [6.94 g GAE/100 g dry weight (DW], total flavonoids (3.44 g CE/100 g DW, inhibition of linoleic acid peroxidation (69.23% and DPPH radical scavenging activity (IC50 value, 3.21 μg/mL, followed by leaves and seeds extracts. Bark extract tested against a set of bacterial and fungal strains also revealed the strongest antimicrobial activity with the largest inhibition zone and lowest minimum inhibitory concentration (MIC. HPLC analysis of aqueous methanol extracts from bark, leaves and seeds indicated the presence of protocatechuic, ellagic, ferulic, gallic, gentisic, 4-hydroxybenzoic and 4-hydroxycinnamic acids in bark (1.50–6.70 mg/100 g DW; sorbic, ferulic, gallic, salicylic and p-coumaric acids in leaves (1.18–4.71 mg/100 g DW; vanillic, gallic and tannic acids in seeds (0.52–0.65 mg/100 g DW as the main phenolic acids. The present investigation concludes that the tested parts of P. pinnata, in particular the bark, have strong potential for the isolation of antioxidant and antimicrobial agents for functional food and pharmaceutical uses.

  6. Enthalpies of solution of methylcalix[4]resorcinarene in non-aqueous solvents as a function of concentration and temperature

    International Nuclear Information System (INIS)

    Riveros, Diana C.; Martínez, Fleming; Vargas, Edgar F.

    2012-01-01

    Highlights: ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. ► The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. ► Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute–solvent interactions.

  7. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems

    Directory of Open Access Journals (Sweden)

    Shabnam Sepahpour

    2018-02-01

    Full Text Available This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH free radical scavenging assay and the ferric reducing antioxidant power (FRAP assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC. All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83–13.78% and FRAP (84.9–2.3 mg quercetin/g freeze-dried crude extract, followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively, for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract, 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  8. Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems.

    Science.gov (United States)

    Sepahpour, Shabnam; Selamat, Jinap; Abdul Manap, Mohd Yazid; Khatib, Alfi; Abdull Razis, Ahmad Faizal

    2018-02-13

    This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83-13.78%) and FRAP (84.9-2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used.

  9. Regeneration of furfural on activated carbon with methanol; Furufuraru kyuchakutan no metanoru ni yoru saisei

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Y. [Tokyo National College of Technology, Tokyo (Japan); Suzuki, M. [Tokyo Univ. (Japan). Inst. of Industrial Science

    1998-03-01

    Experiments of regenerating solvent from activated carbon are performed using furfural (1-phenyl-2-propane) as the absorbent and methanol as the solvent for regeneration. In 5 repeated adsorption-desorption cycles, the solvent becomes in dynamic stationary state after the second cycle with about 10% not desorption yet, and it is found that considerable number of repetition of furfural adsorbed carbon regeneration is possible by the use of methanol. The overall mass transfer coefficient of furfural and methanol in desorption is calculated. In addition, an experiment is carried out changing the adsorption ratio of furfural and the flow velocity of methanol to investigate desorption mechanism of furfural adsorbed carbon. Larger difference of adsorption equilibrium of furfural in aqueous solution and in methanol is efficient in desorption of furfural adsorbed carbon by methanol, but it is found that desorption rate is affected by mixed diffusion in the column and the surface diffusion is dominant in particles. 17 refs., 10 figs.

  10. Mössbauer study of iron carbide nanoparticles produced by laser ablation in alcohols

    Energy Technology Data Exchange (ETDEWEB)

    Amagasa, S., E-mail: B115608@ed.tus.ac.jp; Nishida, N. [Tokyo University of Science, Department of Chemistry (Japan); Kobayashi, Y. [The University of Electro-Communications, Graduate School of Informatics and Engineering (Japan); Yamada, Y. [Tokyo University of Science, Department of Chemistry (Japan)

    2016-12-15

    Iron carbide nanoparticles were synthesized by laser ablation of iron in alcohols (methanol and ethanol). A new cell, designed to allow the ablation to be conducted in a flowing solvent, enabled separation and collection of the nanoparticles immediately after production, thus preventing further photochemical reactions of the colloids. The nanoparticles were investigated using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. In methanol, they consisted of α-iron, γ-iron, iron carbide, and amorphous paramagnetic iron carbides, whereas in ethanol they consisted of iron carbides and amorphous paramagnetic iron carbides. The difference in products depending on the alcohol was attributed to the different carbon supplies for methanol and ethanol. For both solvents, the average particle size was found to be 16 nm, and the nanoparticles were dispersed in amorphous carbon. We also examined the effect of further laser irradiation of the colloids using stagnant solvent, and the particle size was found to increase and a very small amount of carbonization was observed.

  11. Solvent extraction of lanthanide ions with 1-Phenyl-3-Methyl-4-Benzoyl-Pyrazolone-5 (HPMBP), 2. Extraction of Erbium(III), Ytterbium(III) and Lutetium(III) by HPMBP from aqueous-methanol solutions

    International Nuclear Information System (INIS)

    Czakis-Sulikowska, D.M.; Kuznik, B.; Malinowska, A.

    1990-01-01

    The solvent extraction of lanthanides(III)(Ln = Er, Yb, Lu) by 1-phenyl-3-methyl-4-benzoyl-pyrazolone-5 (HL) in carbon tetrachloride from aqueous-methanol phase was investigated. The equilibrium constants for the extraction from aqueous-50 % (ν/ν) methanol phase (K ex ), two-phase stability constants of the complexes LnL 3 (β 3 * ) and stability constants of complexes LnL 2+ , LnL 2 + , LnL 3 (β n )(Ln = Yb, Lu) were calculated. It was confirmed that the addition of methanol to the aqueous phase causes a synergistic effect. The influence of methanol on the dissociation constant of HPMBP (K a ) and the distribution constant of HPMBP (p HL ) between carbon tetrachloride and water-methanol solutions was investigated. (Authors)

  12. Variation of energy absorption buildup factors with incident photon energy and penetration depth for some commonly used solvents

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parjit S. [Department of Physics, Punjabi University, Patiala 147 002 (India)], E-mail: dr_parjit@hotmail.com; Singh, Tejbir [Department of Physics, Lovely Professional University, Phagwara 144 402 (India); Kaur, Paramjeet [IAS and Allied Services Training Centre, Punjabi University, Patiala 147 002 (India)

    2008-06-15

    G.P. fitting method has been used to compute energy absorption buildup factor of some commonly used solvents such as acetonitrile (C{sub 4}H{sub 3}N), butanol (C{sub 4}H{sub 9}OH), chlorobenzene (C{sub 6}H{sub 5}Cl), diethyl ether (C{sub 4}H{sub 10}O), ethanol (C{sub 2}H{sub 5}OH), methanol (CH{sub 3}OH), propanol (C{sub 3}H{sub 7}OH) and water (H{sub 2}O) for the wide energy range (0.015-15.0 MeV) up to the penetration depth of 10 mean free path. The variation of energy absorption buildup factor with chemical composition as well as incident photon energy for the selected solvents has been studied. It has been observed that the maximum value of energy absorption buildup factors shifts to the slightly higher incident photon energy with the increase in equivalent atomic number of the solvent and the solvent with least equivalent atomic number possesses the maximum value of energy absorption buildup factor.

  13. Qualitative Analysis of Transesterification of Waste Pig Fat in Supercritical Alcohols

    Directory of Open Access Journals (Sweden)

    Jeeban Poudel

    2017-02-01

    Full Text Available In this work, the characteristics of waste pig fat degradation using supercritical alcohols have been studied. Comparative analysis of the influence of supercritical methanol and supercritical ethanol as solvents on the transesterification was the primary focus of this research. The experiments were carried out with waste pig fat to alcohol weight ratios of 1:1.5 (molar ratio: 1:40.5 for methanol and 1:28 for ethanol, 1:2.0 (molar ratio: 1:54 for methanol and 1:37.5 for ethanol and 1:2.5 (molar ratio: 1:67.5 for methanol and 1:47 for ethanol at transesterification temperatures 250, 270 and 290 °C for holding time 0, 15, 30, 45 and 60 min. Increase in the transesterification and holding time increased the conversion while increase in alcohol amount from 1:1.5 to 1:2.0 and 1:2.5 had minimal effect on the conversion. Further, majority of the ester composition in using SCM as solvent falls in the carbon range of C17:0, C19:1 and C19:2 while that for SCE falls in the carbon range of C18:0, C20:1 and C20:2. Glycerol was only present while using SCM as solvent.

  14. Evaluation of antibacterial activity of some selected green seaweed extracts from Muttam coastal areas, Kanyakumari, Tamil Nadu, India

    Directory of Open Access Journals (Sweden)

    Pushparaj Arunachalam

    2014-02-01

    Full Text Available Objective: To investigate the antimicrobial activity of the selected marine green algae Ulva lactuca (U. lactuca, Cheatomorpha linoides and Helimeda macroloba against six strains of Gram-positive bacteria [Staphylococcus aureus (S. aureus, Bacillus subtilis and Lactobacillus acidophilus (L. acidophilus] and Gram-negative bacteria [Escherichia coli, Pseudomonas aeruginosa (P. aeruginosa and Proteus mirabilis]. Methods: The selected green seaweed extracts were experimented with four different solvents (acetone, ethanol, methanol and chloroform against the selected pathogens by using agar disc diffusion method. Results: The maximum activity (7 mm was observed by the extract of U. lactuca against Proteus mirabilis by using methanol as a solvent and the lowest activity (2 mm was recorded by the extract of U. lactuca against L. acidophilus by using chloroform as a solvent and ethanol extract against P. aeruginosa. The lowest activity (2 mm was seen in the extract of Cheatomorpha linoides by using ethanol and methanol as a solvent against S. aureus. In Helimeda macroloba extract, the lowest activity was recorded against Escherichia coli by using chloroform as a solvent. The microbial strains S. aureus, P. aeruginosa, Bacillus subtilis and L. acidophilus were resistant to the chloroform and methanol of all selected seaweeds. Conclusions: Further study should be needed to identify the prime compound which is responsible for the activity against the selected pathogens especially those causing the human diseases.

  15. Study on the micro direct ethanol fuel cell (Micro-DEFC) performance

    Science.gov (United States)

    Saisirirat, Penyarat; Joommanee, Bordindech

    2018-01-01

    The direct ethanol fuel cell (DEFC) is selected for this research. DEFC uses ethanol in the fuel cell instead of the more toxic methanol. Ethanol is more attractive than methanol by many reasons. Ethanol is a hydrogen-rich liquid and it has a higher specific energy (8.0 kWh/kg) compared to that of methanol (6.1 kWh/kg). Ethanol can be obtained in great quantity from biomass through a fermentation process from renewable resources such as sugar cane, wheat, corn, and even straw. The use of ethanol would also overcome both the storage and infrastructure challenge of hydrogen for fuel cell applications. The experimental apparatus on the micro direct ethanol fuel cell for measuring the cell performance has been set for this research. The objective is to study the micro direct ethanol fuel cell performance for applying with the portable electronic devices. The cell performance is specified in the terms of cell voltage, cell current and power of the cell at room operating temperature and 1 atm for the pressure and also includes the ethanol fuel consumption. The effect of operating temperature change on the electrical production performance is also studied. The steady-state time for collecting each data value is about 5-10 minutes. The results show that with the increase of concentrations of ethanol by volume, the reactant concentration at the reaction sites increases so the electrochemical rate also increases but when it reaches the saturated point the performance gradually drops.

  16. Soil and groundwater remediation guidelines for methanol

    International Nuclear Information System (INIS)

    2010-12-01

    Methanol is used by oil and gas operators to inhibit hydrate formation in the recovery of heavy oils, in natural gas production and transport, as well as in various other production applications. Emissions from methanol primary occur from miscellaneous solvent usage, methanol production, end-product manufacturing, and storage and handling losses. This document provided soil and groundwater remediation guidelines for methanol releases into the environment. The guidelines were consistent with the Alberta Environment tier 1 soil and groundwater framework. The chemical and physical properties of methanol were reviewed. The environmental fate and behavior of methanol releases was discussed, and the behaviour and effects of methanol in terrestrial and aquatic biota were evaluated. The toxicity of methanol and its effects in humans and mammalian species were reviewed. Soil quality and ground water quality guidelines were presented. Surface water and soil guideline calculation methods were provided, and ecological exposure and ground water pathways were discussed. Management limits for methanol concentrations were also provided. 162 refs., 18 tabs., 4 figs.

  17. An Electrochemical Investigation of Methanol Oxidation on Nickel ...

    African Journals Online (AJOL)

    NICO

    Cyclic voltammetry, electrooxidation, glassy carbon electrode, methanol, nickel hydroxide nanoparticles. 1. ... substrate at room temperature without templates. Recently, we ... placed in ethanol and sonicated to remove adsorbed particles.

  18. Effect of the solvent in the catalyst ink preparation on the properties and performance of unsupported PtRu catalyst layers in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Alcaide, Francisco; Álvarez, Garbiñe; Cabot, Pere L.; Genova-Koleva, Radostina; Grande, Hans-Jürgen; Miguel, Oscar

    2017-01-01

    The effect of the organic solvent polarity on the properties of unsupported PtRu catalyst inks and on the performance of the catalyst layers prepared with them for the methanol electrooxidation, has been studied. The light scattering results indicate that the PtRu-Nafion ® aggregates in the inks prepared with n-butyl acetate (NBA) are larger than those prepared with 2-propanol (IPA). The lower polarity of the former favours the aggregation of Nafion ® and nanoparticles. The electron microscopy images and porosimetry measurements of the catalyst layers show that the secondary pore volume between the agglomerates is larger for NBA. The linear sweep voltammetry and eis results for the methanol electrooxidation in the three-electrode cell denote the higher active surface area for NBA and comparable specific oxidation rates of the intermediates in both catalysts layers. The current densities for PtRu anode catalyst layers in single DMFC are higher when the solvent is NBA, the mass transport limitations being much more apparent with IPA. The adapted transmission line equivalent circuit to interpret the impedance results in single DMFC indicates that the proton resistance for NBA is significantly lower than for IPA, thus suggesting that the greater number of accessible active sites for methanol oxidation in the former are well connected to the Nafion ® ionomers and easier transported to the membrane.

  19. Solvent and ion-pairing effects on the chlorine kinetic isotope effect of t-butyl chloride

    International Nuclear Information System (INIS)

    McCord, B.R.

    1986-01-01

    The solvolysis of t-butyl chloride and 1-adamantyl chloride was measured in mixtures of aqueous 2,2,2-trifluoroethanols and in mixtures of aqueous ethanols. The KIEs for t-butyl chloride at 25 0 C in 94% TFE/water, and 60% ethanol/water (solvent mixtures with similar polarity) were 1.0097 and 1.0104 respectively. Further investigations showed a KIE of 1.0104 in 50% ethanol/water and 1.0105 in 100% ethanol while the isotope effect in the fluorinated ethanols rose from 1.0094 in 99% TFE/water to 1.0101 in 70% ethanol/water. The KIE in all these solvents were shown to be directly proportional to the nucleophilicity of the solvent and indicates nucleophilic attack on an ion pair. The similar KIE of t-butyl chloride in the ethanol/water solvents was found to support the contention that solvent polarity exerts a minimal effect on the chlorine KIE

  20. Cooperative effects in (ethanol)3-water heterotetramers

    International Nuclear Information System (INIS)

    Mejia, Sol; Espinal, Juan F; Mondragon, Fanor

    2009-01-01

    Density Functional Theory (DFT: B3LYP/6-31 + G(d)) was used for the optimization of clusters on the potential energy surface of (ethanol)3-water heterotetramers. The tetramerization energies can reach values up to -21.00 kcal/ mol. This energy can not be obtained by just considering the contributions from interactions between two cluster molecules, which suggests of the presence of global cooperative effects (positive). These effects are reflected in smaller hydrogen bond distances and smaller oxygen-oxygen distances, as well as in greater elongations of the O-H proton donor bond with a stronger red-shift in the heterotetramers compared to the ethanol-water heterodimers and the ethanol dimer. The largest cooperativity effect was observed in the four hydrogen bonds arranged in the largest possible cyclic geometric pattern, where all the molecules act as proton acceptor and donor simultaneously. A similar analysis to the characterization of (ethanol)3-water heterotetramers was carried out on (methanol)3-water heterotetramers, and ethanol and methanol tetramers, whose comparison showed a great similarity between all evaluated parameters for the clusters with equal geometric pattern.

  1. The Hydrocarbon Pool in Ethanol-to-Gasoline over HZSM-5 Catalysts

    DEFF Research Database (Denmark)

    Johansson, Roger; Hruby, S.L.; Hansen, Jeppe Rass

    2009-01-01

    It is shown that the conversion of ethanol-to-gasoline over an HZSM-5 catalyst yields essentially the same product distribution as for methanol-to-gasoline performed over the same catalyst. Interestingly, there is a significant difference between the identity of the hydrocarbon molecules trapped...... inside the HZSM-5 catalyst when ethanol is used as a feed instead of methanol. In particular, the hydrocarbon pool contains a significant amount of ethylsubstituted aromatics when ethanol is used as feedstock, but there remains only methyl-substituted aromatics in the product slate....

  2. A Methanol Intoxication Outbreak From Recreational Ingestion of Fracking Fluid.

    Science.gov (United States)

    Collister, David; Duff, Graham; Palatnick, Wesley; Komenda, Paul; Tangri, Navdeep; Hingwala, Jay

    2017-05-01

    Single-patient methanol intoxications are a common clinical presentation, but outbreaks are rare and usually occur in settings in which there is limited access to ethanol and methanol is consumed as a substitute. In this case report, we describe an outbreak of methanol intoxications that was challenging from a public health perspective and discuss strategies for managing such an outbreak. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. Antioxidant and Antimicrobial Attributes and Phenolics of Different Solvent Extracts from Leaves, Flowers and Bark of Gold Mohar [Delonix regia (Bojer ex Hook. Raf.

    Directory of Open Access Journals (Sweden)

    Qaiser M. Khan

    2011-08-01

    Full Text Available This paper describes the antioxidant and antimicrobial activities and phenolic components of different solvent (absolute methanol, absolute ethanol, absolute acetone, 80% methanol, 80% ethanol, 80% acetone and deionized water extracts of leaves, flowers and bark of Gold Mohar [Delonix regia (Bojer ex Hook. Raf.]. The extract yields from leaves, flowers and bark ranged from 10.19 to 36.24, 12.97 to 48.47 and 4.22 to 8.48 g/100 g dry weight (DW, respectively. Overall, 80% methanol extract produced from the leaves exhibited significantly (P < 0.05 higher antioxidant activity, with high phenolic contents (3.63 g GAE/100 g DW, total flavonoid contents (1.19 g CE/100 g DW, inhibition of peroxidation (85.54%, DPPH scavenging capacity (IC50 value 8.89 μg/mL and reducing power (1.87. Similarly, this 80% methanol leaves extract also showed superior antimicrobial activity. HPLC analysis of the 80% methanol extracts for individual phenolics revealed the presence of gallic, protocatechuic and salicylic acid in leaves; gallic, protocatechuic, salicylic, trans-cinnamic and chlorogenic acid in flowers, and gallic acid in bark as the main (amount > 1.50 mg/100 g DW phenolic acids. Besides, small amounts ( < 1.50 mg/100 g DW of some other phenolic acids such as sorbic, sinapic, p-coumaric, m-coumaric, ferulic, caffeic, 3-hydroxybenzoic, 4-hydroxycinnamic and 4-hydroxybenzoic acids were also detected. The extracts of the tested parts of Gold Mohar, especially, the leaves, might be valuable for functional food and therapeutic applications.

  4. Polystyrene Microbeads by Dispersion Polymerization: Effect of Solvent on Particle Morphology

    Directory of Open Access Journals (Sweden)

    Lei Jinhua

    2014-01-01

    Full Text Available Polystyrene microspheres (PS were synthesized by dispersion polymerization in ethanol/2-Methoxyethanol (EtOH/EGME blend solvent using styrene (St as monomer, azobisisobutyronitrile (AIBN as initiator, and PVP (polyvinylpyrrolidone K-30 as stabilizer. The typical recipe of dispersion polymerization is as follows: St/Solvent/AIBN/PVP = 10 g/88 g/0.1 g/2 g. The morphology of polystyrene microspheres was characterized by the scanning electron microscopy (SEM and the molecular weights of PS particles were measured by the Ubbelohde viscometer method. The effect of ethanol content in the blend solvent on the morphology and molecular weight of polystyrene was studied. We found that the size of polystyrene microspheres increased and the molecular weight of polystyrene microspheres decreased with the decreasing of the ethanol content in the blend solvent from 100 wt% to 0 wt%. What is more, the size monodispersity of polystyrene microspheres was quite good when the pure ethanol or pure 2-Methoxyethanol was used; however when the blend ethanol/2-Methoxyethanol solvent was used, the polystyrene microspheres became polydisperse. We further found that the monodispersity of polystyrene microspheres can be significantly improved by adding a small amount of water into the blend solvent; the particles became monodisperse when the content of water in the blend solvent was up to 2 wt%.

  5. Modifications for use of methanol or methanol-gasoline blends in automotive vehicles, September 1976-January 1980

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, D.J.; Bolt, J.A.; Cole, D.E.

    1980-01-01

    Methanol or blends of methanol and gasoline as automotive fuels may be attractive means for extending the nation's petroleum reserves. The present study was aimed at identifying potential problems and solutions for this use of methanol. Retrofitting of existing vehicles as well as future vehicle design have been considered. The use of ethanol or higher alcohols was not addressed in this study but will be included at a later date. Several potentially serious problems have been identified with methanol use. The most attractive solutions depend upon an integrated combination of vehicle modifications and fuel design. No vehicle problems were found which could not be solved with relatively minor developments of existing technology providing the methanol or blend fuel was itself engineered to ameliorate the solution. Research needs have been identified in the areas of lubrication and materials. These, while apparently solvable, must precede use of methanol or methanol-gasoline blends as motor fuels. Because of the substantial costs and complexities of a retrofitting program, use of methanol must be evaluated in relation to other petroleum-saving alternatives. Future vehicles can be designed initially to operate satisfactorily on these alternate fuels. However a specific fuel composition must be specified around which the future engines and vehicles can be designed.

  6. Solvent extraction of hafnium(IV) by dinonylnaphthalene sulfonic acid from mixed aqueous-organic media

    International Nuclear Information System (INIS)

    Hala, J.; Piperkovova, H.

    1979-01-01

    The extraction of hafnium(IV) by heptane and toluene solutions of dinonylnaphthalene sulfonic acid (HD) from mixed aqueous-organic solutions has been studied. Alcohols, ketones, carboxylic acids, cyclic ethers, dimethylsulfoxide and dimethylformamide were used as the organic component of the mixed phase. Methanol, ethanol, formic acid and dioxane increased the extractability of Hf(IV) whereas other solvents showed only an antagonistic effect. The results were discussed from the point of view of the changes in micellar structure of HD, and compared with the uptake of Hf(IV) by resinous cation exchangers. The solubilization by HD of alcohols, carboxylic acids and dimethylsulfoxide was demonstrated by using the corresponding 14 C and 35 S labelled compounds. (author)

  7. The impact of anode design on fuel crossover of direct ethanol fuel cell

    Indian Academy of Sciences (India)

    than methanol due to the higher molecular weight of ethanol compared with methanol .... converted in the cathode side, hydrogen ions were then sent from the cathode to .... retard the ethanol crossover and possibly improve the dura- bility. ... [4] Wan C-H and Chen C-L 2009 Int. J. Hydrogen Energy 34. 9515. [5] Pethaiah ...

  8. Comparison of the production of solvent based on fossil and renewable raw material with regard to their VOC-emissions

    International Nuclear Information System (INIS)

    Moederl, U.

    1993-10-01

    There are three principle ways for the treatment of phytogenic raw materials: biotechnological processes, pyrolysis and gasification, and the utilisation of phytogenic oils and resins. Because of the last possibility the evaporation times of these compounds were modelled to be able to classify these emissions either natural or not. A rough estimation shows that α-Pinen as the main component of Austrian turpentine oil evaporates within one month - which is much faster than the minimum time for rot. The consequence is that the use of these solvents does not effect the total VOC-emissions because they may be considered as delayed biogenic emissions at different locations. The comparison of the biotechnological processes is done for the following solvents which are also most important basic chemicals for other organic technologies: methanol, ethanol, and methane. The emissions of the production of acetone and butanol can only be estimated in comparison to ethanol. The least amount of VOC-emissions for the production of ethanol is released by using sugar-beet as raw material. The emissions are only insignificantly higher by starting from crude-oil and setting the balance boundaries to Austria. Using wheat is worse and calculating all emissions of the crude-oil processes - including the emissions abroad - is worst. There is no significant difference between conventional and organic farming. (Suda)

  9. Enthalpies of solution of methylcalix[4]resorcinarene in non-aqueous solvents as a function of concentration and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Riveros, Diana C. [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia); Martinez, Fleming [Grupo de Investigaciones Farmaceutico-Fisicoquimicas, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota D.C. (Colombia); Vargas, Edgar F., E-mail: edvargas@uniandes.edu.co [Laboratorio de Termodinamica de Soluciones, Departamento de Quimica, Facultad de Ciencias, Universidad de los Andes, Bogota D.C. (Colombia)

    2012-11-20

    Highlights: Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols have been measured. Black-Right-Pointing-Pointer The solution enthalpies of methylcalix[4]resorcinarene in alcohols are endothermic. Black-Right-Pointing-Pointer Enthalpies of transference are interpreted in terms of proton donor capacity of alcohols. - Abstract: Enthalpies of solution of 2,8,14,20-tetramethyl-4,6,10,12,16,18,22,24-octahydroxyresorci[4]arene in methanol, ethanol and propanol as a function of molal concentration at (288.15, 298.15 and 308.15) K were measured calorimetrically. The enthalpies of solvation were estimated. Using propanol as the referent solvent, transfer properties to other alcohols were also calculated. In addition, temperature dependence of the enthalpy of solution at infinite dilution was also obtained. The data were interpreted in terms of solute-solvent interactions.

  10. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    Science.gov (United States)

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Sodium borohydride reduction of aromatic carboxylic acids via ...

    Indian Academy of Sciences (India)

    Unknown

    using a sodium borohydride–THF–methanol system. The alcohols ... rature using ethanol or methanol as solvent. Although, .... acids, phenylacetic acids, phenylpropanoic acid and cinnamic ... excess of reagent in water or alcohol, involved a.

  12. Continuous Acetone–Butanol–Ethanol (ABE) Fermentation with in Situ Solvent Recovery by Silicalite-1 Filled PDMS/PAN Composite Membrane

    DEFF Research Database (Denmark)

    Li, Jing; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    The pervaporation (PV) performance of a thin-film silicalite-1 filled PDMS/PAN composite membrane was investigated in the continuous acetone–butanol–ethanol (ABE) production by a fermentation–PV coupled process. Results showed that continuous removal of ABE from the broth at three different...... dilution rates greatly increased both the solvent productivity and the glucose utilization rate, in comparison to the control batch fermentation. The high solvent productivity reduced the acid accumulation in the broths because most acids were reassimilated by cells for ABE production. Therefore, a higher...... total solvent yield of 0.37 g/g was obtained in the fermentation–PV coupled process, with a highly concentrated condensate containing 89.11–160.00 g/L ABE. During 268 h of the fermentation–PV coupled process, the PV membrane showed a high ABE separation factor of more than 30 and a total flux of 486...

  13. Thermophysical properties of binary mixtures of {l_brace}ionic liquid 2-hydroxy ethylammonium acetate + (water, methanol, or ethanol){r_brace}

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Victor H. [School of Chemical Engineering, State University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Chemical Engineering Department, ETSE, University of Santiago de Compostela (USC), P.O. Box 15782, Santiago de Compostela (Spain); Mattedi, Silvana [Chemical Engineering Department, Polytechnic School, Federal University of Bahia (UFBA), 40210-630 Salvador-BA (Brazil); Martin-Pastor, Manuel [Unidade de Resonancia Magnetica, RIAIDT, edif. CACTUS, University of Santiago de Compostela (USC), P.O. Box 15706, Santiago de Compostela (Spain); Aznar, Martin [School of Chemical Engineering, State University of Campinas (UNICAMP), P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Iglesias, Miguel, E-mail: miguel.iglesias@usc.es [Chemical Engineering Department, ETSE, University of Santiago de Compostela (USC), P.O. Box 15782, Santiago de Compostela (Spain)

    2011-07-15

    Research highlights: > This paper reports the density and speed of sound data of binary mixtures {l_brace}2-hydroxy ethylammonium acetate + (water, or methanol, or ethanol){r_brace} measured between the temperatures (298.15 and 313.15) K at atmospheric pressure. > The aggregation, dynamic behavior, and hydrogen-bond network were studied using thermo-acoustic, X-ray, and NMR techniques. > The Peng-Robinson equation of state, coupled with the Wong-Sandler mixing rule using the COSMO-SAC model predicted the density of the solutions with relative mean deviations below than 3.0%. - Abstract: In this work, density and speed of sound data of binary mixtures of an ionic liquid consisting of {l_brace}2-hydroxy ethylammonium acetate (2-HEAA) + (water, methanol, or ethanol){r_brace} have been measured throughout the entire concentration range, from the temperature of (288.15 to 323.15) K at atmospheric pressure. The excess molar volumes, variations of the isentropic compressibility, the apparent molar volume, isentropic apparent molar compressibility, and thermal expansion coefficient were calculated from the experimental data. The excess molar volumes were negative throughout the whole composition range. Compressibility data in combination with low angle X-ray scattering and NMR measurements proved that the presence of micelles formed due to ion pair interaction above a critical concentration of the ionic liquid in the mixtures. The Peng-Robinson equation of state coupled with the Wong-Sandler mixing rule and COSMO-SAC model was used to predict densities and the calculated deviations were lower than 3%, for binary mixtures in all composition range.

  14. Enthalpies of solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Barannikov, Vladimir P., E-mail: vpb@isc-ras.ru [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation); Guseynov, Sabir S.; Vyugin, Anatoliy I. [Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045 (Russian Federation)

    2011-12-15

    Highlights: > Solvation enthalpy is found for ethylene oxide oligomers in chloroform and methanol. > Coefficients of solute-solute interaction are determined for oligomers in methanol. > Enthalpies of hydrogen bonding of oligomers with chloroform and water are estimated. > Additivity scheme is developed for describing enthalpies of solvation of oligomers. - Abstract: The enthalpies of solution and solvation of ethylene oxide oligomers CH{sub 3}O(CH{sub 2}CH{sub 2}O){sub n}CH{sub 3} (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute-solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute-solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ . mol{sup -1}. The values of group contributions and corrections are strongly influenced by solvent properties.

  15. Effect of methanol, urea, and other solutes on the action of papain

    NARCIS (Netherlands)

    Sluyterman, L.A.A.E.

    1967-01-01

    The activity of papain (EC 3.4.4.10) decreases with increasing methanol concentration. At relatively low concentrations (2–4%), methanol, a few other solvents and urea (2 M) exhibit apparently competitive inhibition. However, the extent of inhibition by methanol and urea is not the same for the two

  16. The reactivity of allyl and propargyl alcohols with solvated electrons: temperature and solvent effects

    International Nuclear Information System (INIS)

    Afanassiev, A.M.; Okazaki, K.; Freeman, G.R.

    1979-01-01

    The rate constants K 1 for the reaction of solvated electrons with allyl alcohol in a number of hydroxylic solvents differ by up to two orders of magnitude and decrease in the order tert-butyl alcohol > 2-propanol > l-propanol approximately ethanol > methanol approximately ethylene glycol > water. In methanol and ethylene glycol the rate constants (7 x 10 7 M -1 s -1 at 298 K) and activation energies (16 kJ/mol) are equal, in spite of a 32-fold difference in solvent viscosity (0.54 and 17.3 cP, respectively) and 3-fold difference in its activation energy (11 and 32 kJ/mol, respectively). The reaction in tert-butyl alcohol is nearly diffusion controlled and has a high activation energy that is characteristic of transport in that liquid (E 1 = 31 kJ/mol, E sub(eta) = 39 kJ/mol). The activation energies in the other alcohols are all 16 kJ/mol, and it is 14 kJ/mol in water. They do not correlate with transport properties. The solvent effect is connected primarily with the entropy of activation. The rate constants correlate with the solvated electron trap depth. When the electron affinity of the scavenger is small, a favorable configuration of solvent molecules about the electron/scavenger encounter pair is required for the electron jump to take place. The behavior of the rate parameters for propargyl alcohol is similar to that for allyl alcohol, but k 1 , A 1 , and E 1 are larger for the former. The ratio k(propargyl)/k(allyl) at 298 K equals 10.5 in water and decreases through the series, reaching 1.3 in tert-butyl alcohol. Rate parameters for several other scavengers are also reported. (author)

  17. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO(2)-Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors.

    Science.gov (United States)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-05-04

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO(2)) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO(2) and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO(2)-Pt) nanowire-nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO(2) sensors. The GaN/TiO(2) NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO(2) sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO(2)-Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol(-1) (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol(-1) (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential for

  18. Environmental impact of ethanol-methanol-gasoline fuel mixture

    International Nuclear Information System (INIS)

    Szwarc, A.

    1990-01-01

    The main information of Environmental impact study - The use of methanol as fuel are described, including the emissions, comparative evaluations with others fuels, the danger for the health and the toxicity. (C.G.C.)

  19. Effect of solvent content on resin hybridization in wet dentin bonding.

    Science.gov (United States)

    Wang, Yong; Spencer, Paulette; Yao, Xiaomei; Brenda, Bohaty

    2007-09-15

    With wet bonding techniques, the channels between the demineralized dentin collagen fibrils are filled with debris, solvent, and water. Commercial adhesives include solvents such as ethanol or acetone to facilitate resin-infiltration into this wet substrate. Under in vivo conditions, the solvent may be diluted because of repeated exposure of the material to the atmosphere, or concentrated because of separation of the bonding liquids into layers within the bottle. The purpose of this study was to investigate the effect of different concentrations of ethanol (10-50%) on infiltration of the adhesive resin and collagen fibril encapsulation in the adhesive/dentin interface using light microscopy, micro-Raman spectroscopy, and scanning electron microscopy. The results indicated that under wet bonding conditions the hybridization process was highly sensitive to the initial solvent concentration in the adhesive system. The staining and scanning electron microscopy results showed that the quality of the interfacial hybrid layer was poor at the lower (10%) or higher (50%) ethanol content. Micro-Raman analysis indicated that there was a distinct difference in the degree of adhesive penetration among adhesives containing different concentrations of ethanol. Adhesives containing 10 or 50% ethanol did not realize effective penetration; the penetration of the adhesive monomers increased dramatically when the initial ethanol content was 30%. The amount of solvents are essential for achieving effective bonding to dentin. Copyright 2007 Wiley Periodicals, Inc.

  20. Poly (p-phenylendiamine/TiO2) nanocomposite promoted Pt/C catalyst for methanol and ethanol electrooxidation in alkaline medium

    International Nuclear Information System (INIS)

    Rostami, Hussein; Rostami, Abbas Ali; Omrani, Abdollah

    2016-01-01

    In the present study, poly (p-phenylendiamine/titanium dioxide) (PpPDA/TiO 2 ) nanocomposites (NCs) were prepared by in situ polymerization of p-phenylenediamine monomer with of different TiO 2 loading. A facile method was developed to promote the electrocatalytic activity of commercial Pt/C catalyst by ultrasonically mixing Pt/C catalyst and PpPDA/TiO 2 NCs. The PpPDA/TiO 2 NC, Pt/C catalyst and composite catalyst of Pt/C + PpPDA/TiO 2 were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The surface morphology of Pt/C is significantly influenced by the presence of PpPDA/TiO 2 NC as confirmed by SEM observations. Cyclic voltammetry (CV) measurements showed that the PpPDA/TiO 2 NC leads to a significant improvement in the activity and stability of Pt/C for alcohol oxidation especially for ethanol oxidation in alkaline medium. For Pt/C + PpPDA/TiO 2 , the onset potentials shift to negative values by 30 and 160 mV compared to the onset potentials of Pt/C for methanol and ethanol oxidation, respectively. Chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) results also confirmed that this composite catalyst has superior catalytic performance towards ethanol oxidation compared to the pure Pt/C catalyst.

  1. Variation of the solvation number of Eu(III) in mixed system of methanol and water

    International Nuclear Information System (INIS)

    Suganuma, H.; Arisaka, M.; Omori, T.; Satoh, I.; Choppin, G.R.

    1999-01-01

    The stability constants (β 1 ) of the monofluoride complex of Eu(III) have been determined in mixed solvents of methanol and water at a 0.10 M ionic strength using a solvent extraction technique. The values of ln β 1 increase as the mole fraction of methanol in the mixed solvent system increases. The variation in the stability constants can be correlated with both the large effect due to the solvation of F and the small effect due to both (1) the solvation of cations in connection with complexation and (2) the electrostatic attraction between Eu 3+ and F - . Based on the variation in the sum of (1) and (2) in water and the mixed solvent solutions, it was determined that the coordination number (CN) of Eu(III) varied from a mixture of CN = 9 and 8 to CN = 8 at about a 0.03 mole fraction of methanol in the mixed solvent. (orig.)

  2. Optimization of flavanones extraction by modulating differential solvent densities and centrifuge temperatures.

    Science.gov (United States)

    Chebrolu, Kranthi K; Jayaprakasha, G K; Jifon, J; Patil, Bhimanagouda S

    2011-07-15

    Understanding the factors influencing flavonone extraction is critical for the knowledge in sample preparation. The present study was focused on the extraction parameters such as solvent, heat, centrifugal speed, centrifuge temperature, sample to solvent ratio, extraction cycles, sonication time, microwave time and their interactions on sample preparation. Flavanones were analyzed in a high performance liquid chromatography (HPLC) and later identified by liquid chromatography and mass spectrometry (LC-MS). The five flavanones were eluted by a binary mobile phase with 0.03% phosphoric acid and acetonitrile in 20 min and detected at 280 nm, and later identified by mass spectral analysis. Dimethylsulfoxide (DMSO) and dimethyl formamide (DMF) had optimum extraction levels of narirutin, naringin, neohesperidin, didymin and poncirin compared to methanol (MeOH), ethanol (EtOH) and acetonitrile (ACN). Centrifuge temperature had a significant effect on flavanone distribution in the extracts. The DMSO and DMF extracts had homogeneous distribution of flavanones compared to MeOH, EtOH and ACN after centrifugation. Furthermore, ACN showed clear phase separation due to differential densities in the extracts after centrifugation. The number of extraction cycles significantly increased the flavanone levels during extraction. Modulating the sample to solvent ratio increased naringin quantity in the extracts. Current research provides critical information on the role of centrifuge temperature, extraction solvent and their interactions on flavanone distribution in extracts. Published by Elsevier B.V.

  3. Development of nanosized electrocatalysts for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mohamedi, M. [Institut National de la Recherche Scientifique, Varennes, PQ (Canada). Centre de l' Energie, Materiaux et Telecommunications

    2008-07-01

    Fuel cells have been touted as a promising power supply for automotive, portable or stationary use. Although methanol is a strong contender as an alternative fuel, the extensive use of this toxic compound is not practical due to environmental hazards. Ethanol is a good substitute because it has a very positive environmental, health, and safety footprint with no major uncertainties or hazards. Ethanol is a hydrogen-rich liquid which has more energy density than methanol. The C-C bond has a determining effect on fuel cell efficiency and the theoretical energy yield. Therefore, a good electrocatalyst towards the complete oxidation of ethanol must activate the C-C bond breaking while avoiding the poisoning of the catalytic surface by carbon monoxide species that occurs with methanol oxidation. The objective of this study was to develop new catalyst nanoparticles of well-controlled shape, size, and composition with excellent stability and better electrocatalytic activity. This paper described the recent achievements regarding the development of a series of PtxSn100-x catalysts prepared by pulsed laser deposition (PLD). It reported on the effect of several deposition parameters on the structure and properties of the deposited catalysts. It also described how these deposition conditions affect the electrocatalytic response of the resulting materials toward ethanol oxidation. Some interesting periodic oscillations were observed at some catalysts during ethanol electrooxidation. 7 refs., 1 fig.

  4. Ethanol concentration determination using solvent extraction and refractometry

    Energy Technology Data Exchange (ETDEWEB)

    Lazarova, G; Genova, L; Kostov, V

    1987-01-01

    The feasibility to avoid the distillation in the case of refractometric determination of the ethanol concentration in fermentation samples is examined. The results obtained show that the ethanol concentration in the range 0 to 100 g.1/sup -1/ can be easily determined by means of benzyl alcohol extraction and refractometry.

  5. Management of poisoning with ethylene glycol and methanol in the UK: a prospective study conducted by the National Poisons Information Service (NPIS).

    Science.gov (United States)

    Thanacoody, Ruben H K; Gilfillan, Claire; Bradberry, Sally M; Davies, Jeremy; Jackson, Gill; Vale, Allister J; Thompson, John P; Eddleston, Michael; Thomas, Simon H L

    2016-01-01

    Poisoning with methanol and ethylene glycol can cause serious morbidity and mortality. Specific treatment involves the use of antidotes (fomepizole or ethanol) with or without extracorporeal elimination techniques. A prospective audit of patients with methanol or ethylene glycol poisoning reported by telephone to the National Poisons Information Service (NPIS) in the UK was conducted during the 2010 calendar year and repeated during the 2012 calendar year. The study was conducted to determine the frequency of clinically significant systemic toxicity and requirement for antidote use and to compare outcomes and rates of adverse reaction and other problems in use between ethanol and fomepizole. The NPIS received 1315 enquiries involving methanol or ethylene glycol, relating to 1070 individual exposures over the 2-year period. Of the 548 enquiries originating from hospitals, 329 involved systemic exposures (enteral or parenteral as opposed to topical exposure), of which 216 (66%) received an antidote (204 for ethylene glycol and 12 for methanol), and 90 (27%) extracorporeal treatment (86 for ethylene glycol and 4 for methanol). Comparing ethanol with fomepizole, adverse reactions (16/131 vs. 2/125, p methanol results in hospitalisation at least 2-3 times per week on average in the UK. No difference in outcome was detected between ethanol and fomepizole-treated patients, but ethanol was associated with more frequent adverse reactions.

  6. Thermophysical properties of biodiesel and related systems. Part I. Vapour–liquid equilibrium at low pressures of binary and ternary systems involving methanol, ethanol, glycerol, water and NaCl

    International Nuclear Information System (INIS)

    Veneral, Josamaique G.; Benazzi, Tassio; Mazutti, Marcio A.; Voll, Fernando A.P.; Cardozo-Filho, Lúcio; Corazza, Marcos L.; Guirardello, Reginaldo; Vladimir Oliveira, J.

    2013-01-01

    Highlights: ► Experimental vapour–liquid equilibrium data of multicomponent mixtures of biodiesel-related systems. ► Othmer-type ebulliometer in the pressure range of 6.7 to 66.7 kPa. ► Experimental data satisfactorily represented by the UNIQUAC model. -- Abstract: Experimental vapour–liquid equilibrium data of several binary mixtures (methanol + glycerol), (ethanol + glycerol) and (glycerol + water) and ternary (methanol + glycerol + water), (ethanol + glycerol + water) and (water + glycerol + NaCl) were obtained over the pressure range of 6.7 kPa to 66.7 kPa through an Othmer-type ebulliometer, allowing the construction of temperature – mass fraction and pressure – temperature diagrams. It is shown that the systems without NaCl were satisfactorily represented by the UNIQUAC model with good agreement between theory and experimental results. It was observed that alcohol concentrations lower than 10 wt% increase the phase transition temperature. The systems investigated show positive deviations in relation to Raoult’s law. Results presented in this work may be relevant in process design towards efficient recovering of components in the biodiesel down-stream processes

  7. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor

    NARCIS (Netherlands)

    Benito-Lopez, F.; Tiggelaar, Roald M.; Salblut, K.; Huskens, Jurriaan; Egberink, Richard J.M.; Reinhoudt, David; Gardeniers, Johannes G.E.; Verboom, Willem

    2007-01-01

    The esterification reaction of phthalic anhydride with methanol was performed at different temperatures in a continuous flow glass microreactor at pressures up to 110 bar and using supercritical CO2 as a co-solvent. The design is such that supercritical CO2 can be generated inside the microreactor.

  8. Ethanol and other oxygenateds from low grade carbonaceous resources

    Energy Technology Data Exchange (ETDEWEB)

    Joo, O.S.; Jung, K.D.; Han, S.H. [Korea Institute of Science and Technology, Seoul (Korea, Democratic People`s Republic of)] [and others

    1995-12-31

    Anhydrous ethanol and other oxygenates of C2 up can be produced quite competitively from low grade carbonaceous resources in high yield via gasification, methanol synthesis, carbonylation of methanol an hydrogenation consecutively. Gas phase carbonylation of methanol to form methyl acetate is the key step for the whole process. Methyl acetate can be produced very selectively in one step gas phase reaction on a fixed bed column reactor with GHSV over 5,000. The consecutive hydrogenation of methyl or ethyl acetate produce anhydrous ethanol in high purity. It is also attempted to co-produce methanol and DME in IGCC, in which low grade carbonaceous resources are used as energy sources, and the surplus power and pre-power gas can be stored in liquid form of methanol and DME during base load time. Further integration of C2 up oxygenate production with IGCC can improve its economics. The attempt of above extensive technology integration can generate significant industrial profitability as well as reduce the environmental complication related with massive energy consumption.

  9. Determination of methanol in Iranian herbal distillates.

    Science.gov (United States)

    Shirani, Kobra; Hassani, Faezeh Vahdati; Azar-Khiavi, Kamal Razavi; Moghaddam, Zohreh Samie; Karimi, Gholamreza

    2016-06-01

    Herbal distillates have been used as beverages, for flavoring, or as phytomedicines in many countries for a long time. Recently, the occurrence of blindness after drinking herbal distillates has created concerns in Iran. The aim of this study was to determine the concentrations of methanol in herbal distillates produced in Iran. Eighty-four most commonly used herbal distillates purchased from herbal distillate factories were analyzed for methanol contents by gas chromatography and flame ionization detection, with ethanol as internal standard. In 15 herbal distillates, the methanol concentration was below the limit of quantitation. The methanol concentrations in all samples ranged from 43 to 277 mg/L. Forty-five samples contained methanol in excess of the Iranian standard. The maximum concentration was found in an herbal distillate of Mentha piperita (factory E) (277±12), and the minimum in a distillate of Carum carvi (factory B) (42.6 ± 0.5). Since the 45 Iranian herbal distillates containing methanol levels were beyond the legal limits according to the Iranian standard, it seems necessary to monitor the amount of methanol and give a warning to watch out for the latent risk problem of methanol uptake, and establish a definitive relationship between the degree of intoxication observed and the accumulation of methanol in the blood.

  10. Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures

    International Nuclear Information System (INIS)

    Jozefowicz, Marek; Heldt, Janina R.

    2003-01-01

    Preferential solvation of fluorenone and 4-hydroxyfluorenone in binary solvent mixtures has been studied using steady-state spectroscopic measurements. This study concerns the solvent-induced shift of the absorption and fluorescence spectra of both molecules in two solvent mixtures, i.e., cyclohexane-tetrahydrofuran and cyclohexane-ethanol. The first system contains polar solute molecules, fluorenone and 4-hydroxyfluorenone, in a mixture of polar aprotic (tetrahydrofuran) and non-polar (cyclohexane) solvents. In the second solvents mixture, hydrogen bonding with solute molecules (ethanol) may occur. The results of spectroscopic measurements are analysed using theoretical models of Bakshiev, Mazurenko and Suppan which describe preferential solvation phenomena. In the case of cyclohexane-tetrahydrofuran mixtures, the deviation from linearity in the absorption and fluorescence solvatochromic shifts vs. the solution polarity is due to non-specific dipolar solvent-solute interactions. For cyclohexane-ethanol binary mixtures, both non-specific and specific (hydrogen bond and proton-relay tautomerization) interactions contribute to the observed solvatochromism

  11. Measurement and correlation of the solubility of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol in water and alcohols at temperatures from 292.15 K to 310.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shuqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiying [China Certification & Inspection (Group) Henan Co., Ltd., Zhengzhou, Henan 450000 (China); Shen, Le; Li, Huanxin; Mao, Zhendong [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiping, E-mail: huipingli@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China)

    2016-04-20

    Highlights: • The (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was successfully synthesized and characterized by IR and NMR. • The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol in water and alcohols were measured. • The experimental solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation and λh equation model. • The dissolution enthalpy of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was calculated by using the modified Apelblat equation. • The solubility data, correlation models, and the thermodynamic parameters were discussed in detail. - Abstract: The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol (BTZM) in water, methanol, ethanol, n-propanol, isopropanol, and n-butanol were measured at temperatures ranging from 292.15 K to 310.15 K by a dynamic method under normal atmospheric pressure. The results showed that it increased with the increasing temperature and the order of solvents was: order: methanol > ethanol > n-propanol > n-butanol > isopropanol > water except three points. The solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation, and λh equation. The average relative deviations (ARD) were 1.87%, 1.53%, and 1.71%, and the root-mean-square-deviations (RMSD) were 2.37 × 10{sup −2}, 1.51 × 10{sup −2}, and 2.12 × 10{sup −2}, respectively. It was found that the modified Apelblat equation gave the best correlation results. Furthermore, the dissolution enthalpy of BTZM was calculated by the modified Apelblat equation.

  12. Facile hydrothermal method for synthesizing nitrogen-doped graphene nanoplatelets using aqueous ammonia: dispersion, stability in solvents and thermophysical performances

    Science.gov (United States)

    Shafiah Shazali, Siti; Amiri, Ahmad; Zubir, Mohd. Nashrul Mohd; Rozali, Shaifulazuar; Zakuan Zabri, Mohd; Sabri, Mohd Faizul Mohd

    2018-03-01

    A simple and green approach has been developed to synthesize nitrogen-doped graphene nanoplatelets (N-doped GNPs) for mass production with a very high stability in different solvents e.g. water, ethylene glycol, methanol, ethanol, and 1-hexanol. The strategy is based on mild oxidation of GNPs using hydrogen peroxide and doping with nitrogen using hydrothermal process. The modification of N-doped GNPs was demonstrated by FTIR, TGA, XPS, Raman spectroscopy and high resolution-transmission electron microscope (HRTEM). Further study was carried out by using N-doped GNPs as an additive to prepare different colloidal dispersions. Water-based N-doped GNPs, methanol-based N-doped GNPs, ethanol-based N-doped GNPs, ethylene-glycol based N-doped GNPs and 1-hexanol-based N-doped GNPs dispersions at 0.01 wt.% shown great colloidal stabilities, indicating 17%, 29%, 33%, 18%, and 43% sedimentations after a 15-days period, respectively. The thermophysical properties e.g., viscosity and thermal conductivity of water-based N-doped GNP nanofluids were also evaluated for different weight concentrations of 0.100, 0.075, 0.050, and 0.025 wt.%. Through this, it is found that the obtained dispersions have great potential to be used as working fluids for industrial thermal systems.

  13. Necrosis and haemorrhage of the putamen in methanol poisoning shown on MRI

    International Nuclear Information System (INIS)

    Kuteifan, K.; Gutbub, A.M.; Laplatte, G.; Oesterle, H.; Tajahmady, T.

    1998-01-01

    Methanol, a highly toxic substance, is used as an industrial solvent and in automobile antifreeze. Acute methanol poisoning produces severe metabolic acidosis and serious neurologic sequelae. We describe a 50-year-old woman with accidental methanol intoxication who was in a vegetative state. MRI showed haemorrhagic necrosis of the putamina and oedema in the deep white matter. (orig.)

  14. Heat of Absorption of CO2 in Phase Change Solvents: 2-(Diethylamino)ethanol and 3-(Methylamino)propylamine

    DEFF Research Database (Denmark)

    Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    Heat of absorption of CO2 in phase change solvents containing 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA) were measured as a function of CO2 loading at different temperatures using a commercially available reaction calorimeter. The tested systems were aqueous single amines...... (5 M DEEA, 2 M MAPA, and 1 M MAPA) and aqueous amine mixtures (5 M DEEA + 2 M MAPA and 5 M DEEA + 1 M MAPA) which give two liquid phases on reacting with CO2. All parallel experiments have shown good repeatability. The measurements were taken isothermally at three different temperatures, (40, 80......, and 120) °C. The measured differential heat of absorption values were converted into integral values by integration. Heats of absorption of CO2 in aqueous single amines were affected by changing the solvent composition (large difference in concentrations) and CO2 feed pressure simultaneously. In addition...

  15. Thermodynamic models for determination of solid–liquid equilibrium of the 6-benzyladenine in pure and binary organic solvents

    International Nuclear Information System (INIS)

    Li, Tao; Deng, Renlun; Wu, Gang; Gu, Pengfei; Hu, Yonghong; Yang, Wenge; Yu, Yemin; Zhang, Yuhao; Yang, Chen

    2017-01-01

    Highlights: • The solubility increased with increasing temperature. • Data were fitted using the modified Apelblat equation and other models in pure solvents. • Data were fitted using the modified Apelblat equation and other models in binary solvent mixture. - Abstract: Data on corresponding solid–liquid equilibrium of 6-benzyladenine in different solvents are essential for a preliminary study of industrial applications. In this paper, the solid–liquid equilibrium of 6-benzyladenine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate, dimethyl formamide and tetrahydrofuran pure solvents and (dimethyl formamide + actone) mixture solvents was explored within the temperature range from (278.15 to 333.15) K under 0.1 MPa. For the temperature range investigated, the solubility of 6-benzyladenine in the solvents increased with increasing temperature. The solubility of 6-benzyladenine in dimethyl formamide is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model has more advantages than the other two models. The solubility results were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model, Jouyban-Acree model and Ma model in (dimethyl formamide + acetone) binary solvent mixture. Computational results showed that the modified Apelblat model is superior to the other equations.

  16. Determination and correlation thermodynamic models for solid–liquid equilibrium of the Nifedipine in pure and mixture organic solvents

    International Nuclear Information System (INIS)

    Wu, Gang; Hu, Yonghong; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Deng, Renlun; Li, Tao; Hong, Housheng

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation in pure solvents. • The data were fitted using the CNIBS/R-K model in binary solvent mixture. - Abstract: Knowledge of thermodynamic parameters on corresponding solid-liquid equilibrium of nifedipine in different solvents is essential for a preliminary study of pharmaceutical engineering and industrial applications. In this paper, a gravimetric method was used to correct the solid-liquid equilibrium of nifedipine in methanol, ethanol, 1-butanol, acetone, acetonitrile, ethyl acetate and tetrahydrofuran pure solvents as well as in the (tetrahydrofuran + acetonitrile) mixture solvents at temperatures from 278.15 K to 328.15 K under 0.1 MPa. For the temperature range investigation, the solubility of nifedipine in the solvents increased with increasing temperature. The solubility of nifedipine in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski-Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model stood out to be more suitable with the higher accuracy. The solubility values were fitted using a modified Apelblat model, a variant of the combined nearly ideal binary solvent/Redich-Kister (CNIBS/R-K) model and Jouyban-Acree model in (tetrahydrofuran + acetonitrile) binary solvent mixture. Computational results showed that the CNIBS/R-K model had more advantages than other models.

  17. Preliminary evaluation of anhydrous ethanol as a solvent in the oilseed extraction of Jatropha curcas L.; Evaluacion preliminar del etanol anhidro como solvente en la extraccion de aceite de semillas de jatrofa (Jatropha curcas L.)

    Energy Technology Data Exchange (ETDEWEB)

    Brossard-Gonzalez, C.; Ferrari, R. A.; Pighinelli, A. L.; Park, K. J.

    2010-07-01

    A preliminary evaluation was performed on anhydrous ethanol as a solvent for the extraction of oil from whole Jatropha curcas L. seeds (32.24 % lipids, 16.05 % proteins), supplied from Mato Grosso, Brazil. The methodology of factorial 2k designs was followed, which included a comparison between pressing and n-hexane extraction methods. The regression model corresponding to the comparison between ethanol and n-hexane, varying extraction time, did not have lack of fit and presented an R2 of 99%. The experimental design for the pressing method, varying press rotation speed and temperature, yielded a poorly fitted linear model. The oil composition extracted with ethanol was similar to those obtained by n-hexane and by pressing. The highest yield (36.7%) was obtained using ethanol for 4 hours. The excess of extracted material was attributed to additional solubilization of impurities that could be diminished by limiting the extraction time to 1 hour. The oil extracted with ethanol and by pressing have the same color. It is presumed that the purification steps for both oils should be similar. Further studies using mixtures of ethanol with small proportions of n-hexane are suggested. (Author) 20 refs.

  18. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    Energy Technology Data Exchange (ETDEWEB)

    Piña, M. Nieves, E-mail: neus.pinya@uib.es; López, Kenia A.; Costa, Antoni; Morey, Jeroni, E-mail: jeroni.morey@uib.es

    2013-10-10

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture.

  19. Critical solvent thermodynamic effect on molecular recognition: The case of the complex formation of carboxylates and ammonium-squaramido based receptors

    International Nuclear Information System (INIS)

    Piña, M. Nieves; López, Kenia A.; Costa, Antoni; Morey, Jeroni

    2013-01-01

    Graphical abstract: - Highlights: • The enthalpy–entropy compensation in the complex is independent of the spacer used. • The enthalpy–entropy compensation is dependent on the microscopic nature of the binary mixture. • The enthalpy–entropy compensation is dependent on the proportion of the components of the binary mixture. - Abstract: An isothermal titration microcalorimetry (ITC) study on the supramolecular complex formation between carboxylates and ammonium-squaramido based receptors at different ethanol:water proportions is reported. The results obtained show that the formation enthalpy sign of a supramolecular complex in a water–ethanol binary mixture can be influenced by the proportion of the cosolvent. Moreover there is an enthalpy–entropy compensation process in the supramolecular complex formation; in poor water mixtures the process is endothermic, whilst in reach water mixtures the process is exothermic. This behavior is mostly due to the intrinsic nature of the mixture between water and ethanol, and particularly the process of solvation and desolvation of receptor, substrate and complex. When this study is repeated with binary mixtures of water–methanol and water–DMSO it is observed that the nature of the organic solvent affects the results. While the mixture water–methanol has a behavior similar to water–ethanol mixture, the water–DMSO mixture shows clear differences. In order to check this compensation process, △Cp values are calculated at two different proportions water–ethanol, and they are consistent with an enthalpy–entropy compensation process similar to that described by the inclusion process for certain hydrophilic cyclodextrines. The results obtained show that the enthalpy–entropy compensation detected in the supramolecular complex formation between carboxylates and ammonium-squaramido receptors is independent of the spacer used, and more dependent on the microscopic nature and proportion of the binary mixture

  20. Conversion of Methane into Methanol and Ethanol over Nickel Oxide on Ceria-Zirconia Catalysts in a Single Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Okolie, Chukwuemeka [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Belhseine, Yasmeen F. [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Lyu, Yimeng [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA; Yung, Matthew M. [National Renewable Energy Laboratory, Golden CO 80401 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Kovarik, Libor [Environmental Molecular Sciences Laboratory, Pacific Northwest National Lab, Richland WA 99354 USA; Stavitski, Eli [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton NY 11973 USA; Sievers, Carsten [School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW Atlanta GA 30332 USA

    2017-09-26

    Direct conversion of methane into alcohols is a promising technology for converting stranded methane reserves into liquids that can be transported in pipelines and upgraded to value-added chemicals. We demonstrate that a catalyst consisting of small nickel oxide clusters supported on ceria-zirconia (NiO/CZ) can selectively oxidize methane to methanol and ethanol in a single, steady-state process at 723 K using O2 as an abundantly available oxidant. The presence of steam is required to obtain alcohols rather than CO2 as the product of catalytic combustion. The unusual activity of this catalyst is attributed to the synergy between the small Lewis acidic NiO clusters and the redox-active CZ support, which also stabilizes the small NiO clusters.

  1. Oxidation of Glycerol and Propanediols in Methanol over Heterogeneous Gold Catalysts

    DEFF Research Database (Denmark)

    Taarning, Esben; Madsen, Anders Theilgaard; Marchetti, Jorge

    2008-01-01

    Aerobic oxidation of glycerol over metal oxide supported gold nanoparticles in methanol results in the formation of dimethyl mesoxalate in selectivities up to 89% at full conversion. The oxidative esterification takes place in methanol, acting both as solvent and reactant, and in the presence of ...

  2. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica

    Directory of Open Access Journals (Sweden)

    Quy Diem Do

    2014-09-01

    Full Text Available Limnophila aromatica is commonly used as a spice and a medicinal herb in Southeast Asia. In this study, water and various concentrations (50%, 75%, and 100% of methanol, ethanol, and acetone in water were used as solvent in the extraction of L. aromatica. The antioxidant activity, total phenolic content, and total flavonoid content of the freeze-dried L. aromatica extracts were investigated using various in vitro assays. The extract obtained by 100% ethanol showed the highest total antioxidant activity, reducing power and DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity. The same extract also exhibited the highest phenolic content (40.5 mg gallic acid equivalent/g of defatted L. aromatica and the highest flavonoid content (31.11 mg quercetin equivalent/g of defatted L. aromatica. The highest extraction yield was obtained by using 50% aqueous acetone. These results indicate that L. aromatica can be used in dietary applications with a potential to reduce oxidative stress.

  3. Study of complexation process between 4'-nitrobenzo-15-crown-5 and yttrium(III) cation in binary mixed non-aqueous solvents using conductometric method

    Science.gov (United States)

    Habibi, N.; Rounaghi, G. H.; Mohajeri, M.

    2012-12-01

    The complexation reaction of macrocyclic ligand (4'-nitrobenzo-15C5) with Y3+ cation was studied in acetonitrile-methanol (AN-MeOH), acetonitrile-ethanol (AN-EtOH), acetonitrile-dimethylformamide (AN-DMF) and ethylacetate-methanol (EtOAc-MeOH) binary mixtures at different temperatures using conductometry method. The conductivity data show that in all solvent systems, the stoichiometry of the complex formed between 4'-nitrobenzo-15C5 and Y3+ cation is 1: 1 (ML). The stability order of (4'-nitrobenzo-15C5). Y3+ complex in pure non-aqueous solvents at 25°C was found to be: EtOAc > EtOH > AN ≈ DMF > MeOH, and in the case of most compositions of the binary mixed solvents at 25°C it was: AN≈MeOH ≈ AN-EtOH > AN-DMF > EtOAc-MeOH. But the results indicate that the sequence of the stability of the complex in the binary mixed solutions changes with temperature. A non-linear behavior was observed for changes of log K f of (4'-nitrobenzo-15C5 · Y3+) complex versus the composition of the binary mixed solvents, which was explained in terms of solvent-solvent interactions and also the hetero-selective solvation of the species involved in the complexation reaction. The values of thermodynamic parameters (Δ H {c/ℴ} and Δ S {c/ℴ}) for formation of the complex were obtained from temperature dependent of the stability constant using the van't Hoff plots. The results represent that in most cases, the complex is both enthalpy and entropy stabilized and the values and also the sign of thermodynamic parameters are influenced by the nature and composition of the mixed solvents.

  4. Evaluation of the antidiarrhoeal activity of 80% methanol extract and ...

    African Journals Online (AJOL)

    Lantana camara L. is one of the medicinal plants traditionally used for the treatment of diarrhoea in Ethiopia. The aim of this study was to evaluate antidiarrhoeal activity of the 80% methanol extract and solvent fractions using mice model of diarrhoea. The 80% methanol extract was prepared by maceration and the fractions ...

  5. Systematic Assessment of Seven Solvent and Solid-Phase Extraction Methods for Metabolomics Analysis of Human Plasma by LC-MS

    Science.gov (United States)

    Sitnikov, Dmitri G.; Monnin, Cian S.; Vuckovic, Dajana

    2016-12-01

    The comparison of extraction methods for global metabolomics is usually executed in biofluids only and focuses on metabolite coverage and method repeatability. This limits our detailed understanding of extraction parameters such as recovery and matrix effects and prevents side-by-side comparison of different sample preparation strategies. To address this gap in knowledge, seven solvent-based and solid-phase extraction methods were systematically evaluated using standard analytes spiked into both buffer and human plasma. We compared recovery, coverage, repeatability, matrix effects, selectivity and orthogonality of all methods tested for non-lipid metabolome in combination with reversed-phased and mixed-mode liquid chromatography mass spectrometry analysis (LC-MS). Our results confirmed wide selectivity and excellent precision of solvent precipitations, but revealed their high susceptibility to matrix effects. The use of all seven methods showed high overlap and redundancy which resulted in metabolite coverage increases of 34-80% depending on LC-MS method employed as compared to the best single extraction protocol (methanol/ethanol precipitation) despite 7x increase in MS analysis time and sample consumption. The most orthogonal methods to methanol-based precipitation were ion-exchange solid-phase extraction and liquid-liquid extraction using methyl-tertbutyl ether. Our results help facilitate rational design and selection of sample preparation methods and internal standards for global metabolomics.

  6. A robust whole-cell biocatalyst that introduces a thermo- and solvent-tolerant lipase into Aspergillus oryzae cells: characterization and application to enzymatic biodiesel production.

    Science.gov (United States)

    Adachi, Daisuke; Koh, FookHee; Hama, Shinji; Ogino, Chiaki; Kondo, Akihiko

    2013-05-10

    To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40-50°C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50°C and was maintained even after an incubation of 24-h at 60°C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50°C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Influence of the composition of aqueous-alcohol solvents on the thermodynamic characteristics of L-phenylalanine dissolution at 298.15 K

    International Nuclear Information System (INIS)

    Badelin, Valentin G.; Smirnov, Valeriy I.

    2011-01-01

    Highlights: ► Enthalpies of L-phenylalanine dissolution have been measured in aqueous methanol, ethanol, 1-propanol and 2-propanol. ► The measured data were reported as functions of composition of water + alcohol mixtures. ► Enthalpy coefficients of pair-wise interactions have been analyzed in terms of McMillan-Mayer theory. ► A comparative analysis of the characteristics of dissolution of L-phenylalanine and some other L-amino acids in the similar systems has been made. - Abstract: The enthalpies of L-phenylalanine dissolution in aqueous methanol, ethanol, 1-propanol and 2-propanol have been determined by calorimetry at 298.15 K and alcohol mole fractions up to x 2 ∼0.4. The standard enthalpies of solution Δ sol H° and transfer Δ tr H° from water to the mixed solvent as well as the enthalpy coefficients of L-phenylalanine–alcohol pair-wise interactions were calculated. The interrelation of the enthalpies of dissolution and transfer for L-phenylalanine with structural features of alcohols has been determined. A comparative analysis of the thermodynamic characteristics of dissolution of L-phenylalanine and some other amino acids (glycine, L-alanine, L-threonine and L-valine) in the mixtures studied has been made.

  8. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    NARCIS (Netherlands)

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the

  9. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  10. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  11. Ethylene glycol or methanol intoxication : Which antidote should be used, fomepizole or ethanol?

    NARCIS (Netherlands)

    Rietjens, S. J.; de Lange, D. W.; Meulenbelt, J.

    2014-01-01

    Ethylene glycol (EG) and methanol poisoning can cause life-threatening complications. Toxicity of EG and methanol is related to the production of toxic metabolites by the enzyme alcohol dehydrogenase (ADH), which can lead to metabolic acidosis, renal failure (in EG poisoning), blindness (in methanol

  12. Methanol utilizing Desulfotomaculum species utilizes hydrogen in a methanol-fed sulfate-reducing bioreactor.

    Science.gov (United States)

    Balk, Melike; Weijma, Jan; Goorissen, Heleen P; Ronteltap, Mariska; Hansen, Theo A; Stams, Alfons J M

    2007-01-01

    A sulfate-reducing bacterium, strain WW1, was isolated from a thermophilic bioreactor operated at 65 degrees C with methanol as sole energy source in the presence of sulfate. Growth of strain WW1 on methanol or acetate was inhibited at a sulfide concentration of 200 mg l(-1), while on H2/CO2, no apparent inhibition occurred up to a concentration of 500 mg l(-1). When strain WW1 was co-cultured under the same conditions with the methanol-utilizing, non-sulfate-reducing bacteria, Thermotoga lettingae and Moorella mulderi, both originating from the same bioreactor, growth and sulfide formation were observed up to 430 mg l(-1). These results indicated that in the co-cultures, a major part of the electron flow was directed from methanol via H2/CO2 to the reduction of sulfate to sulfide. Besides methanol, acetate, and hydrogen, strain WW1 was also able to use formate, malate, fumarate, propionate, succinate, butyrate, ethanol, propanol, butanol, isobutanol, with concomitant reduction of sulfate to sulfide. In the absence of sulfate, strain WW1 grew only on pyruvate and lactate. On the basis of 16S rRNA analysis, strain WW1 was most closely related to Desulfotomaculum thermocisternum and Desulfotomaculum australicum. However, physiological properties of strain WW1 differed in some aspects from those of the two related bacteria.

  13. Selecting ethanol as an ideal organic solvent probe in radiation chemistry γ-radiolysis of acetone-ethanol system and acetophenone-ethanol system

    International Nuclear Information System (INIS)

    Jin Haofang; Wu Jilan; Fang Xingwang; Zhang Xujia

    1995-01-01

    Radiolysis of acetone-ethanol solution and acetophenone-ethanol solution has been studied in this work. The dependences of G values of the final γ radiolysis products such as H 2 . 2,3-butanediol and acetaldehyde on additive concentration in liquid ethanol have been obtained. There are two kinds of new final products, isopropanol and 2-methyl-2,3-butanediol are detected in irradiated acetone-ethanol solution. As for acetophenone-ethanol system, more new final products are found. In addition, experiments of pulse radiolysis upon acetophenone-ethanol solution have also been performed. The absorption spectrum with λ max at 315nm and 440nm is observed, which is assigned to ketyl radical ion C 6 H 5 (CH 3 )CO - . And the reaction mechanism of the two systems is proposed respectively with a moderate success. (author)

  14. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    Science.gov (United States)

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Preparation of PtSn/C, PtRu/C, PtRh/C, PtRuRh/C and PtSnRh/C electrocatalysts using an alcohol-reduction process for methanol and ethanol oxidation

    International Nuclear Information System (INIS)

    Dias, Ricardo Rodrigues

    2009-01-01

    In this work, Pt/C, PtRh (90:10), PtRh/C (50:50), PtSn/C (50:50), PtRu (50:50)/C, PtRuRh/C (50:40:10) and PtSnRh/C (50:40:10) were prepared by an alcohol-reduction process with metal loading of 20 wt.% using H 2 PtCl 6 .6H 2 O (Aldrich), SnCl 2 .2H 2 O (Aldrich),and RhCl 2 .XH 2 O (Aldrich) as metals sources and Vulcan XC72 as support. The electrocatalysts were characterized by EDX, XRD and cyclic voltammetry (CV). The electro-oxidation of ethanol was studied by CV, chronoamperomety at room temperature in acid medium and tests at 100 deg C on a single cell of a direct methanol or ethanol fuel cell. The EDX analysis showed that the metal atomic ratios of the obtained electrocatalysts were similar to the nominal atomic ratios used in the preparation. The diffractograms of electrocatalysts prepared showed four peaks at approximately 2θ = 40 0 , 47 0 , 67 0 and 82 0 , which are associated with the (111), (200), (220) and (311) planes, respectively, of a face cubic-centered (fcc) structure characteristic of platinum and platinum alloys. The average crystallite sizes using the Scherrer equation and the calculated values were in the range of 2–3 nm. For PtSn/C and PtSnRh/C two additional peaks were observed at 2θ = 34 0 and 52 0 that were identified as a SnO 2 phase. PtSn/C (50:50) and PtSnRh/C (50:40:10) electrocatalyst showed the best performance for ethanol oxidation at room temperature. For methanol oxidation at room temperature PtRu/C, PtSn/C and PtRuRh/C electrocatalysts showed the best performance. Tests at 100 deg C on a single cell of a direct ethanol fuel cell PtSnRh/C showed the best performance, for methanol oxidation PtRuRh/C showed the best performance. (author)

  16. Solvent effects on stress corrosion cracking of zirconium and Zircaloy-4 in iodine

    International Nuclear Information System (INIS)

    Farina, Silvia B.; Duffo, Gustavo S.; Galvele, Jose R.

    2000-01-01

    Localized corrosion (pitting, intergranular attack and stress corrosion cracking) of Zircaloy-4 and its principal component, zirconium, was investigated in solutions of iodine in different alcohols (methanol, ethanol, 1-propanol, 1-butanol, 1-pentanol and 1-octanol). Intergranular attack was found in all of the solutions tested, and the attack velocity increases when the size of the alcohol molecule decreases. In some cases it was found that intergranular attack is accompanied by pitting. Slow strain-rate experiments showed that the propagation rate of stress corrosion cracks also depends on the size of the solvent molecule. From these results it may be inferred that the cause of the variation in the velocity is the steric hindrance of the alcohol molecules. The surface mobility SCC mechanism may account for these results. (author)

  17. Sulfonated poly(ether ether ketone) based membranes for direct ethanol fuel cells

    OpenAIRE

    Roelofs, K.S.

    2010-01-01

    The decreasing availability of fossil fuels and the increasing impact of greenhouse gases on the environment lead to an extensive development of more efficient or renewable energy sources. The direct alcohol fuel cell (DAFC) as a portable energy source is a promising and fast growing technology which meets these demands. Up to now, methanol is mostly studied as a fuel for these devices, however, applying ethanol has some evident advantages over methanol. The major challenges in direct ethanol...

  18. Effect of methanolic extract of Hibiscus sabdariffa in ethanol-induced ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the activity of Hibiscus sabdariffa on the liver of rats following repeated administration of ethanol. Hepatotoxicity was induced on the rats using ethanol and the levels of serum enzymes such as serum glutamic pyruvic transaminase (SGPT), serum glutamic oxaloacetic transaminase ...

  19. Determination of microquantities of methanol and ethanol in toluene by gas chromatography; Determinacion de microcantidades de metanol y de etanol en tolueno por cromatogrfia de gases

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M M

    1970-07-01

    A study is made of the detection of methanol and ethanol in toluene by means of gas chromatography, using Porapak Q columns, 1 m long at 189 degree centigree, employing a flame ionization detector, with propanol as an internal standard. The variation od the detector absolute and relative response was found to be linear within the range of concentration studied, that is, from 5 to 1000 ppm. The limit of sensitivity for the detection of ethanol in a column of 2% Ucon, over Chromosorob G deactivated with 0,1% Carbowax 400, was 20 ppm, which was four times higher than the limit of sensitivity of the Porapak Q column. Also in this case, the absolute and relative response of the detector was linear. (Author) 3 refs.

  20. Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation

    OpenAIRE

    Chen, W.S.; Ye, Y.; Steinbusch, K.J.J.; Strik, D.P.B.T.B.; Buisman, C.J.N.

    2016-01-01

    Chain elongation is an emerging mixed culture biotechnology converting acetate into valuable biochemicals by using ethanol as an external electron donor. In this study we proposed to test another potential electron donor, methanol, in chain elongation. Methanol can be produced through the thermochemical conversion of lignocellulosic biowaste. Use of methanol in chain elongation integrates the lignocellulosic feedstocks and the thermochemical platform technologies into chain elongation. After ...

  1. Preferential solvation of ions in mixed solvents. 6: Univalent anions in aqueous organic solvents according to the inverse Kirkwood-Buff integral (IKBI) approach

    International Nuclear Information System (INIS)

    Marcus, Yizhak

    2007-01-01

    The inverse Kirkwood-Buff integral (IKBI) approach is applied to the preferential solvation of F - , Cl - , Br - , I - , and ClO 4 - in aqueous mixtures of the co-solvents (S) methanol (MeOH), ethanol (EtOH), t-butanol (t-BuOH), 1,2-ethanediol (EG), glycerol (Gly), acetone (Me 2 CO), acetonitrile (MeCN), formamide (FA), N,N-dimethylformamide (DMF), N,N,N',N',N'',N''-hexamethyl phosphoric triamide (HMPT), and dimethylsulfoxide (DMSO), as far as the relevant data exist in the literature. Fluoride anions are selectively solvated by the water up to large mole fractions (x S ≥ 0.4) of S = EtOH, t-BuOH, Me 2 CO, MeCN, and DMF, and up to lower contents (x S ∼ 0.1) of MeOH, EG, FA, and DMSO. The other anions are preferentially solvated by water to diminishing extent as their sizes become larger, and the largest ones show some preference for S in water-rich mixtures of MeOH and FA, whereas in aqueous Gly even chloride is preferentially solvated by the Gly. The competition between the co-solvent and the anion for the hydrogen bonds that water molecules donate is the main cause for the observed preferential solvation behaviour

  2. Characterization of Chemical Compounds with Antioxidant and Cytotoxic Activities in Bougainvillea x buttiana Holttum and Standl, (var. Rose Extracts

    Directory of Open Access Journals (Sweden)

    Rodolfo Abarca-Vargas

    2016-12-01

    Full Text Available Bougainvillea is widely used in traditional Mexican medicine to treat several diseases. This study was designed to characterize the chemical constituents of B. x buttiana extracts with antioxidant and cytotoxic activities using different solvents. The extraction solvents used were as follows: distilled water (dH2O, methanol (MeOH, acetone (DMK, ethanol (EtOH, ethyl acetate (EtOAc, dichloromethane (DCM, and hexane (Hex (100% at an extraction temperature of 26 °C. Analysis of bioactive compounds present in the B. x buttiana extracts included the application of common phytochemical screening assays, GC-MS analysis, and cytotoxicity and antioxidant assays. The results show that the highest extraction yield was observed with water and methanol. The maximum total phenolic content amount and highest antioxidant potential were obtained when extraction with methanol was used. With the exceptions of water and ethanol extractions, all other extracts showed cytotoxicity ranging between 31% and 50%. The prevailing compounds in water, methanol, ethanol, and acetone solvents were as follows: 4H-pyran-4-one, 2,3-dihydro-3, 5-dihydroxy-6-methyl (2, 2-propenoic acid, 3-(2-hydrophenyl-(E- (3, and 3-O-methyl-d-glucose (6. By contrast, the major components in the experiments using solvents such as EtOH, DMK, EtOAc, DCM, and Hex were n-hexadecanoic acid (8, 9,12-octadecadienoic acid (Z,Z (12; 9-octadecenoic acid (E- (13, and stigmasta-5,22-dien-3-ol (28.

  3. Hemodiafiltration efficacy in treatment of methanol and ethylene glycol poisoning in a 2-year-old girl.

    Science.gov (United States)

    Szmigielska, Agnieszka; Szymanik-Grzelak, Hanna; Kuźma-Mroczkowska, Elżbieta; Roszkowska-Blaim, Maria

    2015-01-01

    Every year about 2.4 million people in USA are exposed to toxic substances. Many of them are children below 6 years of age. Majority of poisonings in children are incidental and related to household products including for example drugs, cleaning products or antifreeze products. Antifreeze solutions contain ethylene glycol and methanol. Treatment of these toxic substances involves ethanol administration, fomepizole, hemodialysis and correction of metabolic acidosis. The aim of the study was to check the efficacy of continuous venovenous hemodiagiltration in intoxication with ethylene glycol and methanol. One year and 7 months old girl after intoxication with ethylene glycol and methanol was treated with continuous venovenous hemodiafiltration instead of hemodialysis because of technical problems (circulatory instability). Intravenous ethanol infusion with hemodialtration resulted in rapid elimination of methanol from the body and significantly reduced blood ethylene glycol level. Continuous venovenous hemodiafiltration can be helpful in treatment of ethylene glycol and methanol intoxication.

  4. Extraction of Genistein from Sophora flavescens with Supercritical Carbon Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Han, Chang-Nam; Kang, Choon-Hyoung [Chonnam National University, Gwangju (Korea, Republic of)

    2015-08-15

    This study was directed to finding an optimum extraction condition of genistein from the S. flavescens with supercritical carbon dioxide as a solvent. In this effort, effects of the extraction conditions including pressure, temperature and a co-solvent on the extraction efficiency were investigated. The aqueous ethanol and methanol solutions were used as co-solvents while the tested operating pressure and temperature ranges were from 200 bar to 300 bar and from 308.15 K to 323.15 K, respectively. The concentration of genistein was determined by means of HPLC equipped with a UV detector. From the results, it was observed that an increase in pressure led to the higher extraction efficiency. Further, methanol showed better performance as a co-solvent than ethanol. The DPPH radical scavenging activities were measured to compare antioxidant activities of S. flavescens extracts.

  5. Potensi Ekstrak Tumbuhan Sebagai Pengawet Produk Pangan

    Directory of Open Access Journals (Sweden)

    I Nengah Kencana Putra

    2015-04-01

    Full Text Available Nowadays, the use of natural antimicrobials such as plants extracts to preserve food get much attention of the researchers. This is related to the increasing of public concern over synthetic chemical food preservatives. Various types of plants had been declared can produce extracts that effectively inhibited the growth of food-contaminating microbes, such as methanol and ethanol extracts of bark Saccoglottis gabonensis, effectively inhibited the growth of Leuconostoc mesenteroides and Lactobacillus plantarum; extracts of onion and red pepper inhibited Candida crucei and Candida utilis; ethanol and water extracts of Eugenia Jambos had antimicrobial properties against bacteria such as Staphylococcus aureus, Yersenia enterocolitica, Staphylococcus hominis, Staphylococcus cohnii, Staphylococcus warneri; Picung seed extract (Pagium edule inhibited the growth of Staphylococcus aureus; and ethanol extract of Salvia pratensis leaves inhibited Escherichia coli, Bacillus cereus and Saccharomyces cerevisiae. Extraction of antimicrobial compounds from plant material could be done by using different types of solvents. Among the various types of solvents, ethanol and methanol solvents are most commonly used.Keyword: antimicrobial, plant extract, food preservative

  6. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    International Nuclear Information System (INIS)

    Clark, Sue B.

    2016-01-01

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  7. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Sue B. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  8. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  9. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature

    International Nuclear Information System (INIS)

    Huang, Rui; Cheng, Jun; Qiu, Yi; Li, Tao; Zhou, Junhu; Cen, Kefa

    2015-01-01

    Highlights: • Ethanol and isopropanol were used for transesterification in wet microalgae cell. • Decreased droplet size and polarity of lipid were observed after transesterification. • Ethanol and isopropanol dosage needed for 95% FAAE yield were 75% of methanol dosage. • Crystallization temperature of crude biodiesel decreased from 2.08 °C to −3.15 °C. - Abstract: Renewable ethanol and isopropanol were employed for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature and reduce the alcohol volume needed for biodiesel production. Decreased droplet size and lipid polarity were observed after transesterification with alcohol in microalgae cells. Such decrease was beneficial in extracting lipid from microalgae with apolar hexane. The effects of reaction temperature, reaction time, and alcohol volume on microwave-assisted transesterification with ethanol and isopropanol were investigated, and results were compared with those with methanol. Microwave-assisted transesterification with ethanol and isopropanol, which were more miscible with lipid in cells, resulted in higher fatty acid alkyl ester (FAAE) yields than that with methanol when the reaction temperature was lower than 90 °C. The ethanol and isopropanol volumes in the transesterification with 95% FAAE yield were only 75% of the methanol volume. The crystallization temperatures (0.19 °C and −3.15 °C) of biodiesels produced from wet microalgae through lipid transesterification in cells with ethanol and isopropanol were lower than that with methanol (2.08 °C), which was favorable for biodiesel flow in cold districts and winter.

  10. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    KAUST Repository

    Nagaraju, Doddahalli H.

    2014-12-01

    Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl2. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells. © 2014 Elsevier Ltd.

  11. Impact of swelling characteristics on the permselective properties of multi-layer composite membranes for water removal from alcohols.

    Science.gov (United States)

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicati...

  12. Direct measurement for organic solvents diffusion using ultra-sensitive optical resonator

    Science.gov (United States)

    Ali, Amir R.; Elias, Catherine M.

    2017-06-01

    In this paper, novel techniques using ultra-sensitive chemical optical sensor based on whispering gallery modes (WGM) are proposed through two different configurations. The first one will use a composite micro-sphere, when the solvent interacts with the polymeric optical sensors through diffusion the sphere start to swallow that solvent. In turn, that leads to change the morphology and mechanical properties of the polymeric spheres. Also, these changes could be measured by tracking the WGM shifts. Several experiments were carried out to study the solvent induced WGM shift using microsphere immersed in a solvent atmosphere. It can be potentially used for sensing the trace organic solvents like ethanol and methanol. The second configuration will use a composite beam nitrocellulose composite (NC) structure that acts as a sensing element. In this configuration, a beam is anchored to a substrate in one end, and the other end is compressing the polymeric sphere causing a shift in its WGM. When a chemical molecule is attached to the beam, the resonant frequency of the cantilever will be changed for a certain amount. By sensing this certain resonant frequency change, the existence of a single chemical molecule can be detected. A preliminary experimental model is developed to describe the vibration of the beam structure. The resonant frequency change of the cantilever due to attached mass is examined imperially using acetone as an example. Breath diagnosis can use this configuration in diabetic's diagnosis. Since, solvent like acetone concentration in human breath leads to a quick, convenient, accurate and painless breath diagnosis of diabetics. These micro-optical sensors have been examined using preliminary experiments to fully investigate its response. The proposed chemical sensor can achieve extremely high sensitivity in molecular level.

  13. Density and speed of sound of lithium bromide with organic solvents: Measurement and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Zafarani-Moattar, Mohammed Taghi [Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Research Institute of Fundamental Sciences, Tabriz 51664 (Iran, Islamic Republic of)], E-mail: zafarani47@yahoo.com; Shekaari, Hemayat [Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51664 (Iran, Islamic Republic of); Research Institute of Fundamental Sciences, Tabriz 51664 (Iran, Islamic Republic of)

    2007-12-15

    Densities, {rho}, and speed of sound, u, of the solutions of LiBr with non-aqueous solvents (methanol, ethanol, 2-propanol, acetone, and acetonitrile) having a wide range of dielectric constants were measured at T = 298.15 K. Also, these measurements were made for the system (LiBr + N,N-dimethylacetamide) at T = 323.15 K. For the investigated systems, the limiting values for apparent molar volume, V{sub {phi}}{sup 0}, and the apparent molar isentropic compressibility, {kappa}{sub {phi}}{sup 0}, were obtained from the Redlich-Mayer and an abbreviated form of the Pitzer equations. The Pitzer and NRTL equations were satisfactorily used for the correlation of apparent molar volumes, V{sub {phi}}, and the apparent molar isentropic compressibility, {kappa}{sub {phi}}, values of the studied systems.

  14. Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants

    Directory of Open Access Journals (Sweden)

    Maria Doppler

    2016-06-01

    Full Text Available The evaluation of extraction protocols for untargeted metabolomics approaches is still difficult. We have applied a novel stable isotope-assisted workflow for untargeted LC-HRMS-based plant metabolomics , which allows for the first time every detected feature to be considered for method evaluation. The efficiency and complementarity of commonly used extraction solvents, namely 1 + 3 (v/v mixtures of water and selected organic solvents (methanol, acetonitrile or methanol/acetonitrile 1 + 1 (v/v, with and without the addition of 0.1% (v/v formic acid were compared. Four different wheat organs were sampled, extracted and analysed by LC-HRMS. Data evaluation was performed with the in-house-developed MetExtract II software and R. With all tested solvents a total of 871 metabolites were extracted in ear, 785 in stem, 733 in leaf and 517 in root samples, respectively. Between 48% (stem and 57% (ear of the metabolites detected in a particular organ were found with all extraction mixtures, and 127 of 996 metabolites were consistently shared between all extraction agent/organ combinations. In aqueous methanol, acidification with formic acid led to pronounced pH dependency regarding the precision of metabolite abundance and the number of detectable metabolites, whereas extracts of acetonitrile-containing mixtures were less affected. Moreover, methanol and acetonitrile have been found to be complementary with respect to extraction efficiency. Interestingly, the beneficial properties of both solvents can be combined by the use of a water-methanol-acetonitrile mixture for global metabolite extraction instead of aqueous methanol or aqueous acetonitrile alone.

  15. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  16. Separation of xylose oligomers using centrifugal partition chromatography with a butanol-methanol-water system.

    Science.gov (United States)

    Lau, Ching-Shuan; Clausen, Edgar C; Lay, Jackson O; Gidden, Jennifer; Carrier, Danielle Julie

    2013-01-01

    Xylose oligomers are the intermediate products of xylan depolymerization into xylose monomers. An understanding of xylan depolymerization kinetics is important to improve the conversion of xylan into monomeric xylose and to minimize the formation of inhibitory products, thereby reducing ethanol production costs. The study of xylan depolymerization requires copious amount of xylose oligomers, which are expensive if acquired commercially. Our approach consisted of producing in-house oligomer material. To this end, birchwood xylan was used as the starting material and hydrolyzed in hot water at 200 °C for 60 min with a 4 % solids loading. The mixture of xylose oligomers was subsequently fractionated by a centrifugal partition chromatography (CPC) with a solvent system of butanol:methanol:water in a 5:1:4 volumetric ratio. Operating in an ascending mode, the butanol-rich upper phase (the mobile phase) eluted xylose oligomers from the water-rich stationary phase at a 4.89 mL/min flow rate for a total fractionation time of 300 min. The elution of xylose oligomers occurred between 110 and 280 min. The yields and purities of xylobiose (DP 2), xylotriose (DP 3), xylotetraose (DP 4), and xylopentaose (DP 5) were 21, 10, 14, and 15 mg/g xylan and 95, 90, 89, and 68 %, respectively. The purities of xylose oligomers from this solvent system were higher than those reported previously using tetrahydrofuran:dimethyl sulfoxide:water in a 6:1:3 volumetric ratio. Moreover, the butanol-based solvent system improved overall procedures by facilitating the evaporation of the solvents from the CPC fractions, rendering the purification process more efficient.

  17. Solvent-dependent transformation of aflatoxin B1 in soil.

    Science.gov (United States)

    Starr, James M; Rushing, Blake R; Selim, Mustafa I

    2017-08-01

    To date, all studies of aflatoxin B 1 (AFB 1 ) transformation in soil or in purified mineral systems have identified aflatoxins B 2 (AFB 2 ) and G 2 (AFG 2 ) as the primary transformation products. However, identification in these studies was made using thin layer chromatography which has relatively low resolution, and these studies did not identify a viable mechanism by which such transformations would occur. Further, the use of methanol as the solvent delivery vehicle in these studies may have contributed to formation of artifactual transformation products. In this study, we investigated the role of the solvent vehicle in the transformation of AFB 1 in soil. To do this, we spiked soils with AFB 1 dissolved in water (93:7, water/methanol) or methanol and used HPLC-UV and HPLC-MS to identify the transformation products. Contrasting previous published reports, we did not detect AFB 2 or AFG 2 . In an aqueous-soil environment, we identified aflatoxin B 2a (AFB 2a ) as the single major transformation product. We propose that AFB 2a is formed from hydrolysis of AFB 1 with the soil acting as an acid catalyst. Alternatively, when methanol was used, we identified methoxy aflatoxin species likely formed via acid-catalyzed addition of methanol to AFB 1 . These results suggest that where soil moisture is adequate, AFB 1 is hydrolyzed to AFB 2a and that reactive organic solvents should be avoided when replicating natural conditions to study the fate of AFB 1 in soil.

  18. Anti-solvent co-crystallization of carbamazepine and saccharin.

    Science.gov (United States)

    Wang, In-Chun; Lee, Min-Jeong; Sim, Sang-Jun; Kim, Woo-Sik; Chun, Nan-Hee; Choi, Guang J

    2013-06-25

    The co-crystal approach has been investigated extensively over the past decade as one of the most promising methods to enhance the dissolution properties of insoluble drug substances. Co-crystal powders are typically produced by mechanical grinding (neat or wet) or a solution method (evaporation or cooling). In this study, high-purity carbamazepine-saccharin (CBZ-SAC) co-crystals were manufactured by a novel method, anti-solvent addition. Among various solvents, methanol was found to perform well with water as the anti-solvent for the co-crystallization of CBZ and SAC. When water was added to the methanol solution of CBZ and SAC at room temperature under agitation, nucleation of CBZ-SAC co-crystals occurred within 2-3 min. Co-crystallization was complete after 30 min, giving a solid yield as high as 84.5% on a CBZ basis. The effects of initial concentrations, focusing on the SAC/CBZ ratio, were examined to establish optimal conditions. The whole anti-solvent co-crystallization process was monitored at-line via ATR-FTIR analysis of regularly sampled solutions. The nucleation and crystal growth of CBZ-SAC co-crystals were detected by a significant increase in absorption in the range of 2400-2260 cm(-1), associated with the formation of hydrogen bonds between the carbonyl group in CBZ and the N-H of SAC. When CBZ hydrates were formed as impurities during anti-solvent co-crystallization, the hydrogen bonding between methanol and water was reduced greatly, primarily due to the incorporation of water molecules into the CBZ crystal lattice. In conclusion, an anti-solvent approach can be used to produce highly pure CBZ-SAC co-crystal powders with a high solid yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Measurements of the phase behavior of ternary systems of interest to the gas process: II : the system CO2 + methanol + prednisolone

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Tesauro, C.; Reverchon, E.; Peters, C.J.

    2012-01-01

    In this work, the phase behavior of the ternary system carbon dioxide + methanol + prednisolone has been studied experimentally. For this purpose, carbon dioxide has been chosen as the anti-solvent gas, methanol as the organic solvent, and prednisolone as the model drug that should be micronized

  20. Influence of solvent absorption on the migration of Irganox 1076 from LDPE

    NARCIS (Netherlands)

    Helmroth, I.E.; Dekker, M.; Hankemeier, T.

    2002-01-01

    The effect of solvent absorption on additive migration was studied by relating the diffusion coefficient (D) of Irganox 1076 to the maximum solvent absorption of different solvents in low-density polyethylene (LDPE) film. Solvents tested were ethanol, isopropanol, isooctane, ethylacetate,

  1. Extraction of pesticides in soil using supercritical carbon dioxide co-solvents

    International Nuclear Information System (INIS)

    Forero, Jose R; Castro, Henry I; Guerrero, Jairo A.

    2009-01-01

    In this study, three organic solvents (ethyl acetate, methanol and acetone) were used as co solvent in supercritical fluid extraction (SFE) of a mixture of pesticides with different physical and chemical properties present in soil. These pesticides were determined by gas chromatography with electronic micro capture detector μECD and nitrogen-phosphorus detector (NPD), coupled in parallel. The extractions were performed on spiked soil samples using supercritical carbon dioxide (CO 2 SC) as the extracting phase to 35 celsius degrade and 14 MPa, using 10 mL of each co solvent and it was found that methanol offers the greatest efficiency in the extraction process obtaining recovery values between 51.24 and 123.50%.

  2. Multiphoton photodegradation of indocyanine green: Solvent protolysis effect

    Energy Technology Data Exchange (ETDEWEB)

    Fuyuki, Masanori, E-mail: mn.fuyuki@kio.ac.jp

    2016-02-15

    The multiphoton photodegradation mechanism of indocyanine green (ICG) was investigated by using femtosecond near-infrared (NIR) pump and probe pulses. In the pump fluence region from 2 mJ/cm{sup 2} to 4 mJ/cm{sup 2}, the photodegradation rate was higher in acetic acid than in ethanol, and the rate was proportional to pump fluence to the 2.3th power in acetic acid and the 3.9th in ethanol. Considering that the degree of auto-protolysis of acetic acid is much higher than that of ethanol, the experimental results indicate that self-ionized solvent molecules played an essential role in the degradation of ICG molecules excited by NIR multiphoton process. - Highlights: • Photodegradation of ICG by femtosecond near-infrared pulses. • Photodegradation rate of ICG was higher in acetic acid than in ethanol. • Photodegradation rate was proportional to pump fluence to 2.3th power in acetic acid. • Photodegradation rate was proportional to pump fluence to 3.9th power in ethanol. • Self-ionized solvent molecules promoted ICG photodegradation in acetic acid.

  3. Effect of experimental factors on magnetic properties of nickel nanoparticles produced by chemical reduction method using a statistical design

    International Nuclear Information System (INIS)

    Vaezi, M.R.; Barzgar Vishlaghi, M.; Farzalipour Tabriz, M.; Mohammad Moradi, O.

    2015-01-01

    Highlights: • Superparamagnetic nickel nanoparticles are synthesized by wet chemical reduction. • Effects of synthesis parameters on magnetic properties are studied. • Central composite experimental design is used for building an empirical model. • Solvents ratio was more influential than reactants mixing rate. - Abstract: Nickel nanoparticles were synthesized by chemical reduction method in the absence of any surface capping agent. The effect of reactants mixing rate and the volume ratio of methanol/ethanol as solvent on the morphology and magnetic properties of nickel nanoparticles were studied by design of experiment using central composite design. X-ray diffraction (XRD) technique and Transmission Electron Microscopy (TEM) were utilized to characterize the synthesized nanoparticles. Size distribution of particles was studied by Dynamic Light Scattering (DLS) technique and magnetic properties of produced nanoparticles were investigated by Vibrating Sample Magnetometer (VSM) apparatus. The results showed that the magnetic properties of nickel nanoparticles were more influenced by volume ratio of methanol/ethanol than the reactants mixing rate. Super-paramagnetic nickel nanoparticles with size range between 20 and 50 nm were achieved when solvent was pure methanol and the reactants mixing rate was kept at 70 ml/h. But addition of more ethanol to precursor solvent leads to the formation of larger particles with broader size distribution and weak ferromagnetic or super-paramagnetic behavior

  4. Techno-economic Analysis for the Thermochemical Conversion of Lignocellulosic Biomass to Ethanol via Acetic Acid Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Jones, Susanne B.

    2009-04-01

    Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications. As a widely available biomass form, lignocellulosic biomass can have a major impact on domestic transportation fuel supplies and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). This study performs a techno-economic analysis of the thermo chemical conversion of biomass to ethanol, through methanol and acetic acid, followed by hydrogenation of acetic acid to ethanol. The conversion of syngas to methanol and methanol to acetic acid are well-proven technologies with high conversions and yields. This study was undertaken to determine if this highly selective route to ethanol could provide an already established economically attractive route to ethanol. The feedstock was assumed to be wood chips at 2000 metric ton/day (dry basis). Two types of gasification technologies were evaluated: an indirectly-heated gasifier and a directly-heated oxygen-blown gasifier. Process models were developed and a cost analysis was performed. The carbon monoxide used for acetic acid synthesis from methanol and the hydrogen used for hydrogenation were assumed to be purchased and not derived from the gasifier. Analysis results show that ethanol selling prices are estimated to be $2.79/gallon and $2.81/gallon for the indirectly-heated gasifier and the directly-heated gasifier systems, respectively (1stQ 2008$, 10% ROI). These costs are above the ethanol market price for during the same time period ($1.50 - $2.50/gal). The co-production of acetic acid greatly improves the process economics as shown in the figure below. Here, 20% of the acetic acid is diverted from ethanol production and assumed to be sold as a co-product at the prevailing market prices ($0.40 - $0.60/lb acetic acid), resulting in competitive ethanol production costs.

  5. Ethanolic carbon-11 chemistry: The introduction of green radiochemistry

    International Nuclear Information System (INIS)

    Shao, Xia; Fawaz, Maria V.; Jang, Keunsam; Scott, Peter J.H.

    2014-01-01

    The principles of green chemistry have been applied to a radiochemistry setting. Eleven carbon-11 labeled radiopharmaceuticals have been prepared using ethanol as the only organic solvent throughout the entire manufacturing process. The removal of all other organic solvents from the process simplifies production and quality control (QC) testing, moving our PET Center towards the first example of a green radiochemistry laboratory. All radiopharmaceutical doses prepared are suitable for clinical use. - Highlights: • We report application of the principles of green chemistry to a radiochemistry setting. • Radiopharmaceuticals are prepared using ethanol as the only organic solvent. • Green radiochemistry simplifies production and QC in busy clinical production laboratories. • Residual solvent analysis can be relegated to a quarterly or annual QC test

  6. Sorption behaviour of uranium and thorium on hydrons tin oxide from aqueous and mixed-solvent H2SO4 media

    International Nuclear Information System (INIS)

    Misak, N.Z.; Salema, H.N.; El-Naggar, J.M.

    1983-01-01

    At pH values > about 2 in 10 -3 -10 -2 M aqueous sulphate solutions, uranium seems to be sorbed by hydrous tin oxide mainly as cations, while thorium is sorced as cations and as the neutral complex. At pH values of about 1.1-1.4, both uranium and thorium seem to be mainly sorbed as the neutral complexes. while at lower pH values, sorption of anionic commplexes comes into play. The sorption of uranium generally increased progressively on addition of increasing amounts of methanol, ethanol or acetone. The sorption of thorium decreases a little at 0.01 N H 2 SO 4 and increases a little at 0.5 N H 2 SO 4 on adding the organic solvents. At 0.1 N H 2 SO 4 , the addition of 20percent of the organic solvents brings the sorption of thorium to almost negligible values, which seems to offer an attractive means for U/Th separation. (author)

  7. Methanol, ethanol and hydrogen sensing using metal oxide and metal (TiO2–Pt) composite nanoclusters on GaN nanowires: a new route towards tailoring the selectivity of nanowire/nanocluster chemical sensors

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Mulpuri, Rao V

    2012-01-01

    We demonstrate a new method for tailoring the selectivity of chemical sensors using semiconductor nanowires (NWs) decorated with metal and metal oxide multicomponent nanoclusters (NCs). Here we present the change of selectivity of titanium dioxide (TiO 2 ) nanocluster-coated gallium nitride (GaN) nanowire sensor devices on the addition of platinum (Pt) nanoclusters. The hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 and/or Pt nanoclusters (NCs) using the sputtering technique. This paper present the sensing characteristics of GaN/(TiO 2 –Pt) nanowire–nanocluster (NWNC) hybrids and GaN/(Pt) NWNC hybrids, and compare their selectivity with that of the previously reported GaN/TiO 2 sensors. The GaN/TiO 2 NWNC hybrids showed remarkable selectivity to benzene and related aromatic compounds, with no measurable response for other analytes. Addition of Pt NCs to GaN/TiO 2 sensors dramatically altered their sensing behavior, making them sensitive only to methanol, ethanol and hydrogen, but not to any other chemicals we tested. The GaN/(TiO 2 –Pt) hybrids were able to detect ethanol and methanol concentrations as low as 100 nmol mol −1 (ppb) in air in approximately 100 s, and hydrogen concentrations from 1 µmol mol −1 (ppm) to 1% in nitrogen in less than 60 s. However, GaN/Pt NWNC hybrids showed limited sensitivity only towards hydrogen and not towards any alcohols. All these hybrid sensors worked at room temperature and are photomodulated, i.e. they responded to analytes only in the presence of ultraviolet (UV) light. We propose a qualitative explanation based on the heat of adsorption, ionization energy and solvent polarity to explain the observed selectivity of the different hybrids. These results are significant from the standpoint of applications requiring room-temperature hydrogen sensing and sensitive alcohol monitoring. These results demonstrate the tremendous potential

  8. Effect of electrostatic interaction on thermochemical behavior of 12-crown-4 ether in various polar solvents

    International Nuclear Information System (INIS)

    Barannikov, Vladimir P.; Guseynov, Sabir S.; Vyugin, Anatoliy I.

    2010-01-01

    The enthalpies of solution of 12-crown-4 ether have been measured in chloroform, ethyl acetate, acetone, pyridine, acetonitrile and methanol at 298.15 K. The values of enthalpy of solvation and solute-solvent interaction were determined from the obtained results and similar literature data for 12-crown-4 in solvents of various polarities. It was shown that the certain correlation is observed between the enthalpy of solute-solvent interaction and the squared dipole moment of the solvent molecules for solutions in tetrachlormethane, ethyl acetate, pyridine, acetonitrile, DMF, DMSO and propylene carbonate. This means that the electrostatic interaction of 12-crown-4 with polar solvent molecules contributes significantly to the exothermic effect of solvation. The understated negative value was found for the enthalpy of interaction of 12-crown-4 with acetone that can be connected with domination of low polar conformer of the crown ether in acetone medium. The most negative values of enthalpy of solvation are observed for solutions in chloroform and water because of hydrogen bonding between O-atoms of crown ether and molecules of the indicated solvents. This effect is not observed for methanol. The negative coefficient of pairwise solute-solute interaction in methanol indicates that the effects of solvophobic solute-solute interaction and H-bonding of the ether molecule with chain associates of methanol are not evinced in the thermochemical behavior of 12-crown-4.

  9. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.

    Science.gov (United States)

    Li, Xingang; San, Xiaoguang; Zhang, Yi; Ichii, Takashi; Meng, Ming; Tan, Yisheng; Tsubaki, Noritatsu

    2010-10-25

    Ethanol was directly synthesized from dimethyl ether (DME) and syngas with the combined H-Mordenite and Cu/ZnO catalysts that were separately loaded in a dual-catalyst bed reactor. Methyl acetate (MA) was formed by DME carbonylation over the H-Mordenite catalyst. Thereafter, ethanol and methanol were produced by MA hydrogenation over the Cu/ZnO catalyst. With the reactant gas containing 1.0% DME, the optimized temperature for the reaction was at 493 K to reach 100% conversion. In the products, the yield of methanol and ethanol could reach 46.3% and 42.2%, respectively, with a small amount of MA, ethyl acetate, and CO(2). This process is environmentally friendly as the main byproduct methanol can be recycled to DME by a dehydration reaction. In contrast, for the physically mixed catalysts, the low conversion of DME and high selectivity of methanol were observed.

  10. N-terminal diproline and charge group effects on the stabilization of helical conformation in alanine-based short peptides: CD studies with water and methanol as solvent.

    Science.gov (United States)

    Goyal, Bhupesh; Srivastava, Kinshuk Raj; Durani, Susheel

    2017-06-01

    Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine-based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N-terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine-based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac-Pro-Pro-Ala-Lys-Ala-Lys-Ala-Lys-Ala-NH 2 ) is designed to assess the effect of N-terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac-Pro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) and A3 (Ac-dPro-Pro-Glu-Glu-Ala-Ala-Lys-Lys-Ala-NH 2 ) with N-terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i, i + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1, A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature-dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β-strand conformation, which is consistent with the previous studies. The results illuminate the effect of N-terminal diproline and charged side chains in dictating the preferences for extended-β, semi-extended PPII and helical conformation in alanine-based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide

  11. Structure and spectroscopic properties of N,S-coordinating 2-methylsulfanyl-N-[(1H-pyrrol-2-ylmethylidene]aniline methanol monosolvate

    Directory of Open Access Journals (Sweden)

    D. Douglas Richards

    2015-10-01

    Full Text Available The reaction of pyrrole-2-carboxaldehyde and 2-(methylsulfanylaniline in refluxing methanol gave an olive-green residue in which yellow crystals of the title compound, C12H12N2S·CH3OH, were grown from slow evaporation of methanol at 263 K. In the crystal, hydrogen-bonding interactions link the aniline molecule and a nearby methanol solvent molecule. These units are linked by a pair of weak C—H...Omethanol interactions, forming inversion dimers consisting of two main molecules and two solvent molecules.

  12. Phytochemical characterization of bioactive compounds on methanolic and ethanolic leaf extracts of Myrciaria sp.

    Directory of Open Access Journals (Sweden)

    Nathalia F. Naspolini

    2016-01-01

    Full Text Available Among the native species of importance in Braz il, jabuticabeira ( Myrciaria sp. is a native fruit tree from several Brazilian regions. Few studies report the chemical constituents of the leaves and its pharmacological and nutraceutical properties. The aim of this study was to identify the phenolic com pounds of the methanolic (MeOH and ethanolic (EtOH leaf extracts of Myrciaria sp. Phytochemical profile of the extracts was carried - out using High Performance Liquid Chromatography (HPLC analysis. Antioxidant potential was evaluated by radical scavengin g capacity with 2,2 - diphenyl - 1 - picryl - hydrazyl (DPPH and total phenolics were determined with Folin -Ciocalteau reagent. A total of nine different compounds were identified in the free and bound phenolics extractions: 2,4 dihydroxybenzoic, vanillin, p- coumaric, ferulic, sinapinic, rutin, epicatechin, trans- caffeic and myricetin. The extracts demonstrated high radical scavenging capacity (MeOH: 1.83 and EtOH: 8.05 mg/mL and high phenolic content (MeOH: 1.15; and EtOH: 1.04 mg/g dry matter. The wide variability of compounds revealed and the amount of peaks not identified, gives us a background of a potential plant matrix for further investigations in order to develop a nutraceutical agent.

  13. Phytochemical characterization of bioactive compounds on methanolic and ethanolic leaf extracts of Myrciaria sp.

    Directory of Open Access Journals (Sweden)

    Nathalia F. Naspolini

    2016-06-01

    Full Text Available Among the native species of importance in Brazil, jabuticabeira (Myrciaria sp. is a native fruit tree from several Brazilian regions. Few studies report the chemical constituents of the leaves and its pharmacological and nutraceutical properties. The aim of this study was to identify the phenolic compounds of the methanolic (MeOH and ethanolic (EtOH leaf extracts of Myrciaria sp. Phytochemical profile of the extracts was carried-out using High Performance Liquid Chromatography (HPLC analysis. Antioxidant potential was evaluated by radical scavenging capacity with 2,2-diphenyl-1-picryl-hydrazyl (DPPH and total phenolics were determined with Folin-Ciocalteau reagent. A total of nine different compounds were identified in the free and bound phenolics extractions: 2,4 dihydroxybenzoic, vanillin, p-coumaric, ferulic, sinapinic, rutin, epicatechin, trans-caffeic and myricetin. The extracts demonstrated high radical scavenging capacity (MeOH: 1.83 and EtOH: 8.05 mg/mL and high phenolic content (MeOH: 1.15; and EtOH: 1.04 mg/g dry matter. The wide variability of compounds revealed and the amount of peaks not identified, gives us a background of a potential plant matrix for further investigations in order to develop a nutraceutical agent.

  14. Electrical double layer structure at the gallium metals in a methanol solution of a surface-inactive electrolyte

    International Nuclear Information System (INIS)

    Emets, V.V.

    1997-01-01

    The structure of double electric layer on Ga-, In-Ga- and Tl-Ga-electrodes in methanol solutions of surface-inactive electrolyte has been studied. It is shown that in the absence of chemisorption interaction between metal and solvent, the distance of the nearest approach of methanol dipoles to the surface of Ga-, In-Ga- and Tl-Ga-electrodes is practically the same. Accordingly, the specificity of the metals contact with solvent is reduced solely to their chemisorption interaction. In the zero charge area and for negative charges the chemisorption interaction with methanol molecules increases in the sequence Tl-Ga< In-Ga< Ga. The growth correlates both with the metals acceptor ability towards electron, which is characterized by the work of metal electron escape to vacuum, and donor ability of the solvent characterized by its donor number

  15. Effect of solvent composition on dispersing ability of reaction sialon suspensions.

    Science.gov (United States)

    Xu, Xin; Oliveira, Marta; Ferreira, José M F

    2003-03-15

    This work focuses on the optimization of the rheological behavior of suspensions considering different solvent compositions. The effects of methyl ethyl ketone (MEK)/ethanol (E) solvent mixtures on reaction sialon suspensions were investigated by measuring sedimentation behavior, adsorption of dispersant, and flow behavior. It was shown that both the flow behavior and the sedimentation behavior strongly depended on selection of solvent composition. Using 3 wt% KD1 as dispersant, well-dispersed colloidal suspensions could be obtained in MEK-rich solvents. The suspensions with 60 vol% MEK/40 vol% E as solvent could be fitted to the Bingham model with very low yield stress, while suspensions with pure MEK or ethanol-rich mixtures as solvent showed pseudo plastic behavior with relatively high yield stress values. A model was proposed to explain the different flow behaviors of suspensions considering the different configurations of dispersant at particles' surfaces.

  16. Preferential solvation of ions in mixed solvents. 6: Univalent anions in aqueous organic solvents according to the inverse Kirkwood-Buff integral (IKBI) approach

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Yizhak [Department of Inorganic and Analytical Chemistry, Hebrew University of Jerusalem, Jerusalem 91904 (Israel)], E-mail: ymarcus@vms.huji.ac.il

    2007-10-15

    The inverse Kirkwood-Buff integral (IKBI) approach is applied to the preferential solvation of F{sup -}, Cl{sup -}, Br{sup -}, I{sup -}, and ClO{sub 4}{sup -} in aqueous mixtures of the co-solvents (S) methanol (MeOH), ethanol (EtOH), t-butanol (t-BuOH), 1,2-ethanediol (EG), glycerol (Gly), acetone (Me{sub 2}CO), acetonitrile (MeCN), formamide (FA), N,N-dimethylformamide (DMF), N,N,N',N',N'',N''-hexamethyl phosphoric triamide (HMPT), and dimethylsulfoxide (DMSO), as far as the relevant data exist in the literature. Fluoride anions are selectively solvated by the water up to large mole fractions (x{sub S} {>=} 0.4) of S = EtOH, t-BuOH, Me{sub 2}CO, MeCN, and DMF, and up to lower contents (x{sub S} {approx} 0.1) of MeOH, EG, FA, and DMSO. The other anions are preferentially solvated by water to diminishing extent as their sizes become larger, and the largest ones show some preference for S in water-rich mixtures of MeOH and FA, whereas in aqueous Gly even chloride is preferentially solvated by the Gly. The competition between the co-solvent and the anion for the hydrogen bonds that water molecules donate is the main cause for the observed preferential solvation behaviour.

  17. Thermodynamics of H+/Cs+ exchange on amorphous zirconium phosphate in mixed solvents

    International Nuclear Information System (INIS)

    Misak, N.Z.; Mikhail, E.M.

    1983-01-01

    In aqueous, 30% isopropanol and acetone, and up to 90% methanol, the H + /Cs + exchange on zirconium phosphate is entropy directed, while in 60% isopropanol and acetone it is enthalpy directed and a selectivity reversal occurs. ΔF 0 decreases in all cases with increasing addition of the organic solvent. ΔH 0 becomes appreciably negative (ΔH 0 = 0 in aqueous medium) and ΔS 0 decreases appreciably on addition of 30% organic solvent, but they increase with further addition. In presence of methanol, ion-solvent interaction effects are counteracted by effects of solid phase interactions but the former effects predominate and lead to decrease of ΔF 0 . On going from 30 to 90 % methanol, positive enthalpy and entropy changes occur due to solid phase interactions involving probably the dehydration of the ingoing Cs + . In presence of up to 60% acetone, ΔF 0 (or selectively constant) changes mainly due to ion-solvent interactions and can be theoretically calculated from the value in the aqueous medium by use of transfer thermodynamics data. This is probably due to a limited imbibition of acetone. (author)

  18. Acidic resin-catalysed conversion of fructose into furan derivatives in low boiling point solvents.

    Science.gov (United States)

    Zhu, Hong; Cao, Quan; Li, Chunhu; Mu, Xindong

    2011-09-27

    Conversion of fructose into furan derivatives 5-hydroxymethylfurfural (HMF) and 5-methoxymethylfurfural (MMF) is performed in tetrahydrofuran (THF) and methanol-organic solvent systems, catalysed by an acidic resin Amberlyst-15. The melted fructose can be converted into HMF on the surface of the solid resin catalyst in the presence of THF as an extracting phase, which is a good solvent for HMF and other by-products. The solid resin catalyst can be reused eleven times without losing its catalytic ability, with an average HMF yield of approximately 50%. Upon the addition of methanol, the generated HMF can further react with methanol to form MMF, and the total yield of HMF and MMF could be promoted to 65%. GC-MS analysis confirms the formation of a small amount of methyl levulinate in methanolorganic solvent system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Studies on the effect of solvents on self-assembly of thioctic acid and Mercaptohexanol on gold

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiguo; Niu Tianxing [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Zhang Zhenjiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006 (China); Feng Guiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping, E-mail: bisp@nju.edu.c [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)

    2011-04-29

    In this article we investigated the effect of solvents (CCl{sub 4}, CH{sub 3}CN, DMF, ethanol, ethanol-H{sub 2}O and H{sub 2}O) on self-assembly of Thioctic acid (TA) and Mercaptohexanol (MCH) on gold by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical characteristics of TA and MCH self-assembled monolayers (SAMs) formed in different solvents were evaluated by inspecting the ions permeability (interfacial capacitance C and phase angle {phi}{sub 1Hz}) and electron transfer capability (current density difference {Delta}i and charge transfer resistance R{sub ct}). Experimental results indicated that the ability of solvents availing the ordering of SAMs was: for TA, CCl{sub 4} > ethanol > CH{sub 3}CN > ethanol-H{sub 2}O > DMF; for MCH, H{sub 2}O > ethanol-H{sub 2}O {approx} CCl{sub 4} > ethanol {approx} CH{sub 3}CN > DMF. Through relating the C, {phi}{sub 1Hz}, {Delta}i and R{sub ct} of SAMs (TA and MCH) with parameters of solvent (polarity E{sub T}{sup N}, solubility parameter {delta} and octanol/water partition coefficients logP{sub ow}), it was found that solvents with bigger logP{sub ow} (smaller E{sub T}{sup N} and {delta}) availed the ordering of TA-SAMs but the effect of solvents on MCH self-assembly was complex and MCH-SAMs formed in H{sub 2}O (the biggest E{sub T}{sup N}, {delta} and the smallest logP{sub ow}) and CCl{sub 4} (the smallest E{sub T}{sup N}, {delta} and the biggest logP{sub ow}) were more ordered than in other solvents.

  20. Supercritical CO2 extraction of raw propolis and its dry ethanolic extract

    Directory of Open Access Journals (Sweden)

    L. C. Paviani

    2012-06-01

    Full Text Available Three types of propolis extract were prepared and analyzed with respect to their global extraction yields and with respect to the concentration of the following markers: 3,5-diprenyl-4-hydroxycinnamic acid; 3-prenyl-4-hydroxycinnamic acid; 4-hydroxycinnamic acid and 4-methoxy-3,5,7-trihydroxyflavone. The extract EEP (ethanolic extract of propolis was obtained by the conventional method from raw propolis using ethanol as solvent. The extracts (SFE were obtained by supercritical solvent extraction from the raw propolis using supercritical carbon dioxide (sc-CO2, with and without the addition of ethanol as a co-solvent. The fractionated supercritical extracts (FSCE were obtained by fractionation (extract and raffinate of the dry EEP with sc-CO2. EEP yields of 39.5% were obtained and maximum global extraction yields were 7.3% for SFE with no co-solvent, 51% for SFE with 15% ethanol and 18% for the FSCE extract fraction. The concentrations of the markers in the different extracts differed as a function of the operational parameters, indicating that the addition of co-solvent and the selectivity of sc-CO2 could be manipulated so as to obtain extracts with the yields and concentrations of interest.

  1. Effects of ethanol extract of Radix Sophorae Flavescentis on activity ...

    African Journals Online (AJOL)

    This paper mainly studied the inhibitory effect of total ethanol extract of Radix Sophorae Flavescentis on proliferation of colon cancer HT29 cells. By reflux extraction method and with ethanol as extraction solvent, different extracts were obtained at different ethanol concentrations, different solid-liquid ratios, and at different ...

  2. Optimization of soy isoflavone extraction with different solvents using the simplex-centroid mixture design.

    Science.gov (United States)

    Yoshiara, Luciane Yuri; Madeira, Tiago Bervelieri; Delaroza, Fernanda; da Silva, Josemeyre Bonifácio; Ida, Elza Iouko

    2012-12-01

    The objective of this study was to optimize the extraction of different isoflavone forms (glycosidic, malonyl-glycosidic, aglycone and total) from defatted cotyledon soy flour using the simplex-centroid experimental design with four solvents of varying polarity (water, acetone, ethanol and acetonitrile). The obtained extracts were then analysed by high-performance liquid chromatography. The profile of the different soy isoflavones forms varied with different extractions solvents. Varying the solvent or mixture used, the extraction of different isoflavones was optimized using the centroid-simplex mixture design. The special cubic model best fitted to the four solvents and its combination for soy isoflavones extraction. For glycosidic isoflavones extraction, the polar ternary mixture (water, acetone and acetonitrile) achieved the best extraction; malonyl-glycosidic forms were better extracted with mixtures of water, acetone and ethanol. Aglycone isoflavones, water and acetone mixture were best extracted and total isoflavones, the best solvents were ternary mixture of water, acetone and ethanol.

  3. Protective effects of Rutin against methanol induced acute toxic optic neuropathy: an experimental study

    Directory of Open Access Journals (Sweden)

    Nurdan Gamze Taşlı

    2018-05-01

    Full Text Available AIM: To determine the effects of Rutin on methanol induced optic neuropathy and compare the results with the effects of ethanol. METHODS: Totally 30 rats were divided into 5 groups, with 6 rats in each group as follows: healthy controls (C, methotrexate (MTX, methotrexate+methanol (MTM, methotrexate+methanol+ethanol (MTME and methotrexate+ methanol+Rutin (MTMR. In all rabbits except those of the control group, MTX, diluted in sterile serum physiologic, 0.3 mg/kg per oral was applied for 7d by the aid of a tube. After this procedure to the rats of MTM, MTME and MTMR groups, 20% methanol with a dose of 3 g/kg per oral was given by the aid of a tube. In MTME group, 4h after the application of methanol, 20% ethanol was applied by the same way with a dose of 0.5 g/kg. On the other hand, in MTMR group 4h after the application of methanol, Rutin, which was dissolved in distilled water, was applied by the same way with a dose of 50 mg/kg. RESULTS: There were statistically significant differences in tissue 8- hydroxy-2 deoxyguanine (8-OHdG, interleukin-1β (IL-1β, tumor necrosis factor-alpha (TNF-α, malondialdehyde (MDA, myeloperoxidase (MPO. glutathione peroxidase (tGSH and superoxide dismutase (SOD levels between groups (P<0.001. In MTMR group tissue 8-OHdG, IL-1β, MDA, and MPO levels were similar with the healthy controls but significantly different than the other groups. In histopathological evaluations, in MTX group there was moderate focal destruction, hemorrhage and decrease in number of astrocytes and oligodendrocytes; in MTM group there was severe destruction and edema with decrease in number of astrocytes and oligodendrocytes; in MTME group there was mild hemorrhage, mild edema, mildly dilated blood vessels with congestion while in MTMR group, optic nerve tissue was resembling the healthy controls. CONCLUSION: Rutin may prevent methanol-induced optic neuropathy via anti-inflammatory effects and decreasing the oxidative stress. New treatment

  4. Ultrasonication-Assisted Solvent Extraction of Quercetin Glycosides from ‘Idared’ Apple Peels

    Directory of Open Access Journals (Sweden)

    Gwendolyn M. Huber

    2011-11-01

    Full Text Available Quercetin and quercetin glycosides are physiologically active flavonol molecules that have been attributed numerous health benefits. Recovery of such molecules from plant matrices depends on a variety of factors including polarity of the extraction solvent. Among the solvents of a wide range of dielectric constants, methanol recovered the most quercetin and its glycosides from dehydrated ‘Idared’ apple peels. When ultra-sonication was employed to facilitate the extraction, exposure of 15 min of ultrasound wavelengths of dehydrated apple peel powder in 80% to 100% (v/v methanol in 1:50 (w:v solid to solvent ratio provided the optimum extraction conditions for quercetin and its glycosides. Acidification of extraction solvent with 0.1% (v/v or higher concentrations of HCl led to hydrolysis of naturally occurring quercetin glycosides into the aglycone as an extraction artifact.

  5. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  6. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  7. Anti-ulcerogenic activity of the methanol root bark extract of ...

    African Journals Online (AJOL)

    Cochlospermum planchonii (Hook f) is a common medicinal plant used in Nigeria traditional medicine for treatment of different ailments including ulcers. The anti ulcer activity of the root bark methanol extract of Cochlospermum planchonii was evaluated using different [ethanol, acetylsalicylic acid (aspirin), cold/restraint ...

  8. Ejection of solvated ions from electrosprayed methanol/water nanodroplets studied by molecular dynamics simulations.

    Science.gov (United States)

    Ahadi, Elias; Konermann, Lars

    2011-06-22

    The ejection of solvated small ions from nanometer-sized droplets plays a central role during electrospray ionization (ESI). Molecular dynamics (MD) simulations can provide insights into the nanodroplet behavior. Earlier MD studies have largely focused on aqueous systems, whereas most practical ESI applications involve the use of organic cosolvents. We conduct simulations on mixed water/methanol droplets that carry excess NH(4)(+) ions. Methanol is found to compromise the H-bonding network, resulting in greatly increased rates of ion ejection and solvent evaporation. Considerable differences in the water and methanol escape rates cause time-dependent changes in droplet composition. Segregation occurs at low methanol concentration, such that layered droplets with a methanol-enriched periphery are formed. This phenomenon will enhance the partitioning of analyte molecules, with possible implications for their ESI efficiencies. Solvated ions are ejected from the tip of surface protrusions. Solvent bridging prior to ion secession is more extensive for methanol/water droplets than for purely aqueous systems. The ejection of solvated NH(4)(+) is visualized as diffusion-mediated escape from a metastable basin. The process involves thermally activated crossing of a ~30 kJ mol(-1) free energy barrier, in close agreement with the predictions of the classical ion evaporation model.

  9. Thermodynamic characteristics of the acid dissociation of dopamine hydrochloride in water-ethanol solutions

    Science.gov (United States)

    Ledenkov, S. F.; Vandyshev, V. N.; Molchanov, A. S.

    2012-06-01

    Enthalpies of the interaction of protonated dopamine with a hydroxide ion in water-ethanol mixtures in the concentration range of 0-0.8 EtOH mole fractions are measured calorimetrically. The neutralization process of dopamine hydrochloride is shown to occur endothermally in solvents with an ethanol concentration of ≥0.5 mole fractions. Standard thermodynamic characteristics (Δr H ○, Δr G ○, and Δr S ○) of the first-step acid dissociation of dopamine hydrochloride in solutions are calculated with regard to the autoprotolysis enthalpy of binary solvents. It is found that dissociation enthalpies vary within 9.1-64.8 kJ/mol, depending on the water-ethanol solvent composition.

  10. Effect of Dielectric Properties of a Solvent-Water Mixture Used in Microwave-Assisted Extraction of Antioxidants from Potato Peels

    Directory of Open Access Journals (Sweden)

    Ashutosh Singh

    2014-02-01

    Full Text Available The dielectric properties of a methanol-water mixture were measured at different temperatures from 20 to 80 °C at two frequencies 915 MHz and 2450 MHz. These frequencies are most commonly used on industrial and domestic scales respectively. In this study, the dielectric properties of a methanol-water mixture were found to be dependent on temperature, solvent concentration, and presence of plant matrix. Linear and quadratic equations were developed to establish the dependency between factors. At 2450 MHz, the dielectric constant of methanol-water mixtures was significantly affected by concentration of methanol rather than by temperature, whereas the dielectric loss factor was significantly affected by temperature rather than by methanol concentration. Introduction of potato peel led to an increase in the effect of temperature on the dielectric properties of the methanol fractions. At 915 MHz, both the dielectric properties were significantly affected by the increase in temperature and solvent concentration, while the presence of potato peel had no significant effect on the dielectric properties. Statistical analysis of the dissipation factor at 915 and 2450 MHz revealed that both temperature and solvent concentration had a significant effect on it, whereas introduction of potato peels at 915 MHz reduced the effect of temperature as compared to 2450 MHz. The total phenolic yield of the microwave-assisted extraction process was significantly affected by the solvent concentration, the dissipation factor of the methanol-water mixture and the extraction time.

  11. Determination and correlation of pyridoxine hydrochloride solubility in different binary mixtures at temperatures from (278.15 to 313.15) K

    International Nuclear Information System (INIS)

    Han, Dandan; Li, Xiaona; Wang, Haisheng; Wang, Yan; Du, Shichao; Yu, Bo; Liu, Yumin; Xu, Shijie; Gong, Junbo

    2016-01-01

    Highlights: • Solubility of pyridoxine hydrochloride in three binary mixtures was determined. • Experimental solubility of pyridoxine hydrochloride was correlated by four models. • Mixing thermodynamics of pyridoxine hydrochloride were calculated and discussed. - Abstract: The solubility of pyridoxine hydrochloride in binary solvent mixtures, including (acetone + water), (methanol + water) and (ethanol + water), was measured over temperature range from (278.15 to 313.15) K by a gravimetric method at atmospheric pressure (P = 0.1 MPa). The solubility increased with increasing temperature in binary solvent mixtures at constant solvent composition. Besides, the dissolving capacity of pyridoxine hydrochloride in the three binary solvent mixtures at constant temperature ranked as (methanol + water > ethanol + water > acetone + water) in general, partly depending on the polarity of the solvents. Additionally, the modified Apelblat equation, van’t Hoff equation, CNIBS/R–K model and Jouyban–Acree model were used to correlate the solubility data in binary mixtures, it turned out that all the selected thermodynamic models could give satisfactory results. Furthermore, the mixing thermodynamic properties of pyridoxine hydrochloride in different binary solvent mixtures were also calculated and discussed. The results indicate that the mixing process of pyridoxine hydrochloride in the selected solvents is exothermic.

  12. Phenolic Extracts from Wild Olive Leaves and Their Potential as Edible Oils Antioxidants

    Directory of Open Access Journals (Sweden)

    Theodora-Ioanna Lafka

    2013-01-01

    Full Text Available The kinetics solid-liquid extraction of phenolics from wild olive leaves was elaborated using different mathematical models (Peleg, second order, Elovich, and power law model. As solvents, methanol, ethanol, ethanol:water 1:1, n-propanol, isopropanol and ethyl acetate were used. The second order model best described the solvent extraction process, followed by the Elovich model. The most effective solvent was ethanol with optimum phenol extraction conditions 180 min, solvent to sample ratio 5:1 v/w and pH 2. Ethanol extract exhibited the highest antiradical activity among solvent and supercritical fluid extraction (SFE extracts, which in addition showed the highest antioxidant capacity compared to synthetic and natural food antioxidants such as BHT, ascorbyl palmitate and vitamin E. Antioxidant potential of SFE extract was quite high, although its phenolic potential was not. Leaf extracts were proven to be good protectors for olive and sunflower oils at levels of 150 ppm.

  13. Performance of direct methanol fuel cell with a palladium–silica nanofibre/Nafion composite membrane

    International Nuclear Information System (INIS)

    Thiam, H.S.; Daud, W.R.W.; Kamarudin, S.K.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H.

    2013-01-01

    Highlights: • This study introduces Pd–SiO 2 Carbon Nano Fibre as an additive to Nafion membrane. • It investigates the effects of membrane annealing temperature and casting solvent. • Results show that Pd–SiO 2 fibre/Nafion performs lower methanol permeability. • This could effectively reduces methanol crossover in direct methanol fuel cell. - Abstract: Palladium–silica nanofibres (Pd–SiO 2 fibre) were adopted as an additive to Nafion recast membranes in order to reduce methanol crossover and improve the cell performance. The performance of a membrane electrode assembly (MEA) with fabricated composite membrane was evaluated through a passive air-breathing single cell direct methanol fuel cell (DMFC). The limiting crossover current density was measured to determine the methanol permeation in the DMFC. The effects of membrane annealing temperature and casting solvent of composite membrane on the cell performance were investigated and are discussed here. Compared to recast Nafion with the same thickness (150 μm), the Pd–SiO 2 fibre/Nafion composite membrane exhibited higher performance and lower methanol permeability. A maximum power density of 10.4 mW cm −2 was obtained with a 2 M methanol feed, outperforming the much thicker commercial Nafion 117 with a power density of 7.95 mW cm −2 under the same operating conditions. The experimental results showed that the Pd–SiO 2 fibre as inorganic fillers for Nafion could effectively reduce methanol crossover and improve the membrane performance in DMFC applications

  14. Fabrication 3 dimensional Pt catalysts via Na2Ti3O7 nanowires for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    He, X.; Hu, C. [Chongqing Univ., Chongqing (China). Dept. of Applied Physics

    2010-07-01

    This paper reported on a study in which platinum (Pt) nanoparticles deposited on Na{sub 2}Ti{sub 3}O{sub 7} nanowires were used for the electrooxidation of methanol and ethanol in acidic and alkaline media. The Na{sub 2}Ti{sub 3}O{sub 7} nanowires were used as 3D frames for loading Pt nanoparticles. The synthesized samples were characterized by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy. The analysis revealed that Pt nanoparticles are uniformly deposited on the Na{sub 2}Ti{sub 3}O{sub 7} nanowires. The electrochemical properties of the electrocatalysts were determined by cyclic voltammetry, linear sweep voltammetry and chronoamperometry. Compared to the Pt electrocatalyst, the Pt/Na{sub 2}Ti{sub 3}O{sub 7} electrocatalyst had better catalytic activity and stability, suggesting that it has potential to be an excellent catalytic anode in fuel cells.

  15. Solvent (acetone-butanol: ab) production

    Science.gov (United States)

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  16. Photodegradation of bifenthrin and deltamethrin-effect of copper amendment and solvent system.

    Science.gov (United States)

    Tariq, Saadia Rashid; Ahmed, Dildar; Farooq, Amna; Rasheed, Sonia; Mansoor, Mubarkah

    2017-02-01

    The photodegradation of bifenthrin and deltamethrin was studied in the presence of Cu salts and two different solvents, methanol and acetonitrile. Results of the study showed that in the absence of any metal salt, the two pesticides degraded more rapidly in acetonitrile than in methanol. After 24 h of UV irradiation, 70% of deltamethrin had degraded in acetonitrile, while only 41% bifenthrin degraded in this solvent. In methanol, bifenthrin degraded at a much enhanced rate than in acetonitrile while the rate of degradation of deltamethrin was comparable to that in acetonitrile. The photodegradation was further enhanced by the addition of copper to the solution of bifenthrin and deltamethrin in acetonitrile. The rate of photodegradation of deltamethrin increased from 2.4 × 10 -2 to 3.5 × 10 -2  h -1 in acetonitrile and 2.5 × 10 -2 to 3.4 × 10 -2  h -1 in methanol after the addition of copper. Similarly, the rate of photodegradation of bifenthrin was increased from 5.0 × 10 -3 to 9.0 × 10 -3  h -1 in acetonitrile and 7.0 × 10 -3 to 9.05 × 10 -3  h -1 in methanol with the addition of copper. Thus, copper has the potential to enhance the photodegradation of bifenthrin and deltamethrin in both the solvents.

  17. C1 Metabolism in Corynebacterium glutamicum: an Endogenous Pathway for Oxidation of Methanol to Carbon Dioxide

    Science.gov (United States)

    Witthoff, Sabrina; Mühlroth, Alice

    2013-01-01

    Methanol is considered an interesting carbon source in “bio-based” microbial production processes. Since Corynebacterium glutamicum is an important host in industrial biotechnology, in particular for amino acid production, we performed studies of the response of this organism to methanol. The C. glutamicum wild type was able to convert 13C-labeled methanol to 13CO2. Analysis of global gene expression in the presence of methanol revealed several genes of ethanol catabolism to be upregulated, indicating that some of the corresponding enzymes are involved in methanol oxidation. Indeed, a mutant lacking the alcohol dehydrogenase gene adhA showed a 62% reduced methanol consumption rate, indicating that AdhA is mainly responsible for methanol oxidation to formaldehyde. Further studies revealed that oxidation of formaldehyde to formate is catalyzed predominantly by two enzymes, the acetaldehyde dehydrogenase Ald and the mycothiol-dependent formaldehyde dehydrogenase AdhE. The Δald ΔadhE and Δald ΔmshC deletion mutants were severely impaired in their ability to oxidize formaldehyde, but residual methanol oxidation to CO2 was still possible. The oxidation of formate to CO2 is catalyzed by the formate dehydrogenase FdhF, recently identified by us. Similar to the case with ethanol, methanol catabolism is subject to carbon catabolite repression in the presence of glucose and is dependent on the transcriptional regulator RamA, which was previously shown to be essential for expression of adhA and ald. In conclusion, we were able to show that C. glutamicum possesses an endogenous pathway for methanol oxidation to CO2 and to identify the enzymes and a transcriptional regulator involved in this pathway. PMID:24014532

  18. In vitro antimicrobial potential of organic solvent extracts of novel ...

    African Journals Online (AJOL)

    SAM

    methanol and water extracts of selected promising actinomycetes strains were studied towards Gram- positive ... Glucose and all other chemicals were obtained from Himedia. (India). ..... acetate, benzene, n-butanol and ethanol to extract the.

  19. Combinatorial Analysis of Functional Interfaces and Surfaces Generated Via Dip-Pen Nanolithography

    National Research Council Canada - National Science Library

    Higgins, Thomas B

    2006-01-01

    .... Various chemical compounds spanning a range of hydrophobicities and meniscus solubilities were used as inks in DPN and deposited in a variety of solvent atmospheres such as ethanol, methanol, hexanes...

  20. Organic solvents from sugar cane molasses

    Energy Technology Data Exchange (ETDEWEB)

    Oeser, H

    1970-01-01

    The production of organic solvents by fermentation of low priced cane molasses is discussed. Processes described and illustrated in detail include the production of acetone, butanol, ethanol, acetic acid, ethyl acetate and butyl acetate.

  1. Statistical mixture design selective extraction of compounds with antioxidant activity and total polyphenol content from Trichilia catigua.

    Science.gov (United States)

    Lonni, Audrey Alesandra Stinghen Garcia; Longhini, Renata; Lopes, Gisely Cristiny; de Mello, João Carlos Palazzo; Scarminio, Ieda Spacino

    2012-03-16

    Statistical design mixtures of water, methanol, acetone and ethanol were used to extract material from Trichilia catigua (Meliaceae) barks to study the effects of different solvents and their mixtures on its yield, total polyphenol content and antioxidant activity. The experimental results and their response surface models showed that quaternary mixtures with approximately equal proportions of all four solvents provided the highest yields, total polyphenol contents and antioxidant activities of the crude extracts followed by ternary design mixtures. Principal component and hierarchical clustering analysis of the HPLC-DAD spectra of the chromatographic peaks of 1:1:1:1 water-methanol-acetone-ethanol mixture extracts indicate the presence of cinchonains, gallic acid derivatives, natural polyphenols, flavanoids, catechins, and epicatechins. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Sub/supercritical carbon dioxide induced phase switching for the reaction and separation in ILs/methanol

    Directory of Open Access Journals (Sweden)

    Jiayu Xin

    2016-07-01

    Full Text Available Separation of products from ionic liquid (IL solvents is one of the main challenges that hinder their utilizations. In this study, the production of γ-valerolactone (GVL by selective hydrogenation of α-angelica lactone (AL and separation of the products from the IL solvent were carried out by using subcritical CO2 as a “switch” at room temperature. After the mixture was separated into two phases by subcritical CO2, AL and nano Pd/C catalyst were only found in the lower IL-rich phase, GVL was produced with quantitative yield and enriched in the upper methanol-rich phase. Pure GVL can be obtained by depressurizing to release CO2 and evaporation to remove methanol of the upper phase, the lower phase containing IL, catalyst and methanol can be recycled for the next reaction. The strategy may provide a new approach to produce and separate products from IL solvents at mild conditions. Keywords: Separation, Ionic liquids, Selective hydrogenation, Mild condition, Subcritical CO2

  3. Improved rapeseed oil extraction yield and quality via cold separation of ethanol miscella

    Directory of Open Access Journals (Sweden)

    Citeau Morgane

    2018-03-01

    Full Text Available In the extraction of vegetable oils, the idea of using ethanol as a solvent, allowing solvent recycling without distillation, can be attested as early as 1948 (Beckel, yet it is now seldom envisaged. The development of organic farming and a growing demand for a more natural diet prompted us to revisit this approach, which takes advantage of the relatively low affinity of ethanol for lipids to produce pure crude oils and meal with higher protein content. This method is based on the change of oil solubility in ethanol with temperature. Rapeseed oil extraction was carried out by hot pressurized ethanol (subcritical extraction condition. Oil was then recovered by cooling the miscella and demixing of two phases, an oil-rich phase and a solvent-rich phase. This study, after verifying the kinetics of extraction, focused on the optimization of the demixing temperature based on the amount and quality of recovered oil. The results show that ethanol extraction followed by cold demixing of the miscella makes it possible to obtain a high quality oil, free of free fatty acids and phospholipids.

  4. Design and analysis of fuel ethanol production from raw glycerol

    International Nuclear Information System (INIS)

    Posada, J.A.; Cardona, C.A.

    2010-01-01

    Three configurations for fuel ethanol production from raw glycerol using Escherichia coli were simulated and economically assessed using Aspen Plus and Aspen Icarus, respectively. These assessments considered raw glycerol (60 wt%) purification to both crude glycerol (88 wt%) and pure glycerol (98 wt%). The highest purification cost (PC) was obtained using pure glycerol due to its higher energy consumption in the distillation stage. In addition, the remaining methanol in the raw glycerol stream was recovered and recycled, decreasing the purification costs. The E. coli strain is able to convert crude glycerol (at 10 g/L or 20 g/L), or pure glycerol (at 10 g/L) to ethanol. Among these three glycerol concentrations, the lowest bioconversion cost was obtained when crude glycerol was diluted at 20 g/L. Purification and global production costs were compared with the commercial prices of glycerol and fuel ethanol from corn and sugarcane. Purification costs of raw glycerol were lower than previously reported values due to the methanol recovery. Global production costs for fuel ethanol from glycerol were lower than the reported values for corn-based production and higher than those for cane-based production. (author)

  5. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. Influence of preparation techniques on particle characteristics and protein delivery.

    Science.gov (United States)

    Bezemer, J M; Radersma, R; Grijpma, D W; Dijkstra, P J; van Blitterswijk, C A; Feijen, J

    2000-07-03

    The entrapment of lysozyme in amphiphilic multiblock copolymer microspheres by emulsification and subsequent solvent removal processes was studied. The copolymers are composed of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks. Direct solvent extraction from a water-in-oil (w/o) emulsion in ethanol or methanol did not result in the formation of microspheres, due to massive polymer precipitation caused by rapid solvent extraction in these non-solvents. In a second process, microspheres were first prepared by a water-in-oil-in-water (w/o/w) emulsion system with 4% poly(vinyl alcohol) (PVA) as stabilizer in the external phase, followed by extraction of the remaining solvent. As non-solvents ethanol, methanol and mixtures of methanol and water were employed. However, the use of alcohols in the extraction medium resulted in microspheres which gave an incomplete lysozyme release at a non-constant rate. Complete lysozyme release was obtained from microspheres prepared by an emulsification-solvent evaporation method in PBS containing poly(vinyl pyrrolidone) (PVP) or PVA as stabilizer. PVA was most effective in stabilizing the w/o/w emulsion. Perfectly spherical microspheres were produced, with high protein entrapment efficiencies. These microspheres released lysozyme at an almost constant rate for approximately 28 days. The reproducibility of the w/o/w emulsion process was demonstrated by comparing particle characteristics and release profiles of three batches, prepared under similar conditions.

  6. Isolation Of Compounds Of Steroids Teripang Gamat (Stichopus variegatus With Various Types Of Solvents

    Directory of Open Access Journals (Sweden)

    Meydia Meydia

    2016-12-01

    Full Text Available Sea cucumber is one of the fisheries commodity that has an important economic value. Generally istraded in dried form (beche-de-mer. One of thebioactive substances contained in sea cucumber is steroidcompounds that serves as an aphrodisiac and sex reversal. The purpose of this study was to extract thesteroid of the gamma sea cucumber by using three types of solvents (methanol, ethyl acetate and hexaneand get the best solvent in producing the highest yield of the steroids. The study revealed that steroid ofgamma sea cucumber (Stichopus variegatus dissolved completely ethyl acetate (semi-polar solvent duringthe first phase, second phase and the third phase of extraction. In the methanol (polar solvent steroids onlydissolved in the first extraction phase, while using the hexane (non polar solvent steroid was undetectable.Fractionation by thin layer chromatography was obtained two fractions that identified as cholesterol (Rf =0.96 and testosterone (Rf = 0.91.

  7. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    The main focus of this thesis is zeolite catalyzed conversion of oxygenates to hydrocarbon fuels and chemicals. Furthermore, conversion of ethane to higher hydrocarbons has also been studied. After a brief introduction to the concept of “the methanol economy” in the first chapter, the second...... a commercial H-ZSM-5 zeolite impregnated with gallium and/or molybdenum is described. The object was to investigate if the presence of methanol in the feed could enhance the conversion of ethane, but in all cases the opposite is observed; the presence of methanol actually suppresses the conversion of ethane...... various zeolite catalysts is studied in Chapter 4. When 2-propanol or 1-butanol is converted over H-ZSM-5, the total conversion capacities of the catalyst are more than 25 times higher than for conversion of methanol and ethanol. Furthermore, for conversion of C3+ alcohols, the selectivity shifts during...

  8. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, D.H., E-mail: dhnagu@gmail.com [Department of Mechanical Engineering, 117 576 (Singapore); Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900 (Saudi Arabia); Devaraj, S. [Department of Mechanical Engineering, 117 576 (Singapore); School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401 (India); Balaya, P., E-mail: mpepb@nus.edu.sg [Department of Mechanical Engineering, 117 576 (Singapore); Engineering Science Program, National University of Singapore, 117 576 (Singapore)

    2014-12-15

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd{sup 2+} ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl{sub 2}. X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells.

  9. Palladium nanoparticles anchored on graphene nanosheets: Methanol, ethanol oxidation reactions and their kinetic studies

    International Nuclear Information System (INIS)

    Nagaraju, D.H.; Devaraj, S.; Balaya, P.

    2014-01-01

    Highlights: • Palladium nanoparticles decorated graphene is synthesized in a single step. • Electro-catalytic activity of Gra/Pd toward alcohol oxidation is evaluated. • 1:1 Gra/Pd exhibits good electro-catalytic activity and efficient electron transfer. - Abstract: Palladium nanoparticles decorated graphene (Gra/Pd nanocomposite) was synthesized by simultaneous chemical reduction of graphene oxide and palladium salt in a single step. The negatively charged graphene oxide (GO) facilitates uniform distribution of Pd 2+ ions onto its surface. The subsequent reduction by hydrazine hydrate provides well dispersed Pd nanoparticles decorated graphene. Different amount of Pd nanoparticles on graphene was synthesized by changing the volume to weight ratio of GO to PdCl 2 . X-ray diffraction studies showed FCC lattice of Pd with predominant (1 1 1) plane. SEM and TEM studies revealed that thin graphene nanosheets are decorated by Pd nanoparticles. Raman spectroscopic studies revealed the presence of graphene nanosheets. The electro-catalytic activity of Gra/Pd nanocomposites toward methanol and ethanol oxidation in alkaline medium was evaluated by cyclic voltammetric studies. 1:1 Gra/Pd nanocomposite exhibited good electro-catalytic activity and efficient electron transfer. The kinetics of electron transfer was studied using chronoamperometry. Improved electro-catalytic activity of 1:1 Gra/Pd nanocomposite toward alcohol oxidation makes it as a potential anode for the alcohol fuel cells

  10. Thermodynamic analysis of carbon formation in solid oxide fuel cells with a direct internal reformer fueled by ethanol, methanol, and methane

    International Nuclear Information System (INIS)

    Laosiripojana, N.; Assabumrungrat, S.; Pavarajarn, V.; Sangtongkitcharoen, W.; Tangjitmatee, A.; Praserthdam, P.

    2004-01-01

    'Full text:' This paper concerns a detailed thermodynamic analysis of carbon formation for a Direct Internal Reformer (DIR) Solid Oxide Fuel Cells (SOFC). The modeling of DIR-SOFC fueled by ethanol, methanol, and methane were compared. Two types of fuel cell electrolytes, i.e. oxygen-conducting and hydrogen-conducting, are considered. Equilibrium calculations were performed to find the ranges of inlet steam/fuel ratio where carbon formation is thermodynamically unfavorable in the temperature range of 500-1200 K. It was found that the key parameters determining the boundary of carbon formation are temperature, type of solid electrolyte and extent of the electrochemical reaction of hydrogen. The minimum requirements of H2O/fuel ratio for each type of fuel in which the carbon formation is thermodynamically unfavored were compared. At the same operating conditions, DIR-SOFC fueled by ethanol required the lowest inlet H2O/fuel ratio in which the carbon formation is thermodynamically unfavored. The requirement decreased with increasing temperature for all three fuels. Comparison between two types of the electrolytes reveals that the hydrogen-conducting electrolyte is impractical for use, regarding to the tendency of carbon formation. This is due mainly to the water formed by the electrochemical reaction at the electrodes. (author)

  11. EVALUATION OF SOLVENTS EFFICIENCY IN CONDENSATE BANKING REMOVAL

    OpenAIRE

    CORREA, TOMAS; TIAB, DJEBBAR; RESTREPO, DORA PATRICIA

    2009-01-01

    This work describes experimental design and tests performed to simulate gas condensate reservoir conditions below dew point in the laboratory using three different compositions of synthetic gas condensate. Methanol, propanol and methylene chloride are the solvents used to remove the condensate banking and improve the gas effective permeability near to the wellbore. Solvents are injected in Berea sandstone rock with similar petrophysical properties in order to compare the efficiency at removin...

  12. Ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Kolleurp, F; Daugulis, A J

    1985-05-01

    Extractive fermentation is a technique that can be used to reduce the effect of end-product inhibition through the use of a water-immiscible phase which removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation, and have developed a computer model predicting the productivity enhancement possible with this technique. The model predicts an ethanol productivity of 82.6 g/L-h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a dilution rate of 5.0 h . This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. In light of this, a systematic approach to extractive fermentation has been undertaken involving the screening of more than 1,000 solvents for their extractive properties. UNIFAC and UNIQUAC estimates of distribution coefficients and selectivities were compiled and ranked in a database, together with other important physical properties, such as density, surface tension and viscosity. Preliminary shake-flask and chemostat biocompatibility studies on the most promising solvents have been undertaken. The previous predictive, data base and experimental results are discussed.

  13. Biodiesel de babaçu (Orbignya sp. obtido por via etanólica Biodiesel from babassu (Orbignya sp. synthesized via ethanolic route

    Directory of Open Access Journals (Sweden)

    José Renato de Oliveira Lima

    2007-06-01

    Full Text Available Biodiesel was obtained by transesterification of babassu oil in anhydrous ethanol and methanol, employing NaOH as catalyst. The products obtained were characterized by physico-chemical and thermogravimetric analysis. It could be concluded that the properties of the two types of biodiesel (ethanolic and methanolic are very similar when compared with diesel oil.

  14. Dehydration of an ethanol/water azeotrope through alginate-DNA membranes cross-linked with metal ions by pervaporation.

    Science.gov (United States)

    Uragami, Tadashi; Banno, Masashi; Miyata, Takashi

    2015-12-10

    To obtain high dehydration membranes for an ethanol/water azeotrope, dried blend membranes prepared from mixtures of sodium alginate (Alg-Na) and sodium deoxyribonucleate (DNA-Na) were cross-linked by immersing in a methanol solution of CaCl2 or MaCl2. In the dehydration of an ethanol/water azeotropic mixture by pervaporation, the effects of immersion time in methanol solution of CaCl2 or MaCl2 on the permeation rate and water/ethanol selectivity through Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes were investigated. Alg-DNA/Mg(2+) cross-linked membrane immersed for 12h in methanol solution of MaCl2 exhibited the highest water/ethanol selectivity. This results from depressed swelling of the membranes by formation of a cross-linked structure. However, excess immersion in solution containing cross-linker led to an increase in the hydrophobicity of cross-linked membrane. Therefore, the water/ethanol selectivity of Alg-DNA/Mg(2+) cross-linked membranes with an excess immersion in cross-linking solution was lowered. The relationship between the structure of Alg-DNA/Ca(2+) and Alg-DNA/Mg(2+) cross-linked membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotropic mixture is discussed in detail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Real-time ESI-MS of enzymatic conversion: impact of organic solvents and multiplexing.

    Science.gov (United States)

    Scheerle, Romy K; Grassmann, Johanna; Letzel, Thomas

    2012-01-01

    Different enzymatic assays were characterized systematically by real-time electrospray ionization mass spectrometry (ESI-MS) in the presence of organic solvents as well as in multiplex approaches and in a combination of both. Typically, biological enzymatic reactions are studied in aqueous solutions, since most enzymes show their full activity solely in aqueous solutions. However, in recent years, the use of organic solvents in combination with enzymatic reactions has gained increasing interest due to biotechnological advantages in chemical synthesis, development of online coupled setups screening for enzyme regulatory compounds, advantages regarding mass spectrometric detection and others. In the current study, the influence of several common organic solvents (methanol, ethanol, isopropanol, acetone, acetonitrile) on enzymatic activity (hen egg white lysozyme, chitinase, α-chymotrypsin, elastase from human neutrophils and porcine pancreas, acetylcholinesterase) was tested. Moreover, multiplexing is a promising approach enabling fast and cost-efficient screening methods, e.g. for determination of inhibitors in complex mixtures or in the field of biomedical research. Although in multiplexed setups the enzymatic activity may be affected by the presence of other substrates and/or enzymes, the expected advantages possibly will predominate. To investigate those effects, we measured multiple enzymatic assays simultaneously. For all conducted measurements, the conversion rate of the substrate(s) was calculated, which reflects the enzymatic activity. The results provide an overview about the susceptibility of the selected enzymes towards diverse factors and a reference point for many applications in analytical chemistry and biotechnology.

  16. [Study of blood concentration analysis for formate in acute methanol poisoning].

    Science.gov (United States)

    Morikawa, Go; Okazawa, Katsuko; Shimizu, Takahiro; Otagiri, Sayoko; Fuwa, Fumiko; Nakagawa, Saori; Yamato, Susumu

    2015-09-01

    A 53-year-old woman ingested about 300 mL of 95% methanol. After immediate ethanol antagonist therapy and hemodialysis, she recovered completely. Few days later, the plasma concentration of methanol and formate was measured. A gas chromatography was used for the plasma methanol concentration measurement, and a colorimetric method was used for plasma formate concentration measurement (Formate Colorimetric Assay Kit; BioVision, California, USA). Patient's plasma methanol concentration before hemodialysis was 676.9 mg/dL and plasma formate concentration was 16.9 mg/dL. By removing blood methanol and formate using hemodialysis before formate accumulations in the body, the patient was discharged without any sequelae. We were able to obtain correlation between a gas chromatography and colorimetric method without gas chromatography-mass spectrometry, with good correlation coefficients. The sensitivity was sufficient for analyzing blood sample. Monitoring formate concentration is useful in determining the treatment and evaluating the prognosis of methanol poisoning. We suggest that this colorimetric method is useful in a facility with no access to a gas chromatography in order to measure a plasma formate concentration.

  17. Fuel options for the fuel cell vehicle: hydrogen, methanol or gasoline?

    International Nuclear Information System (INIS)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr.; Kuhn, I.F. Jr.

    2000-01-01

    Fuel cell vehicles can be powered directly by hydrogen or, with an onboard chemical processor, other liquid fuels such as gasoline or methanol. Most analysts agree that hydrogen is the preferred fuel in terms of reducing vehicle complexity, but one common perception is that the cost of a hydrogen infrastructure would be excessive. According to this conventional wisdom, the automobile industry must therefore develop complex onboard fuel processors to convert methanol, ethanol or gasoline to hydrogen. We show here, however, that the total fuel infrastructure cost to society including onboard fuel processors may be less for hydrogen than for either gasoline or methanol, the primary initial candidates currently under consideration for fuel cell vehicles. We also present the local air pollution and greenhouse gas advantages of hydrogen fuel cell vehicles compared to those powered by gasoline or methanol. (Author)

  18. Analysis of residual solvents in PET radiopharmaceuticals by GC

    International Nuclear Information System (INIS)

    Li Yungang; Zhang Xiaojun; Liu Jian; Tian Jiahe; Zhang Jinming

    2013-01-01

    The residual solvents in PET radiopharmaceuticals were analyzed by GC, which were acetonitrile, ethanol, N, N-dimethylethanolamine (DMEA), dimethylsulfoxide (DMSO). The standard curves were established with the AT-624 capillary column at GC, and the sensitivity of acetonitrile and ethanol were 0.004-0.320 g/L and 0.010-0.120 g/L respectively. The residual solvents of acetonitrile, ethanol, DMEA and DMSO in PET radio- pharmaceuticals were analyzed by GC. The linearity were 0.9994, 0.9999, 0.9997, 0.999 6 respectively. The residual of acetonitrile were (0.0313±0.0433), (0.0829±0.0668), (0.0156±0.0059), (0.0254±0.0266) g/L in 18 F-FDG, 18 F-FLT, 11 C-CFT, 11 C-PIB respectively. The residual of ethanol was (0.0505±0.00528) g/L in 18 F-FDG. The residual of DMSO were (0.0331±0.0180) g/L, (0.0238±0.0100) g/L in 18 F-W372 and 11 C-DTBZ respectively. The residual of DMEA was (0.0348±0.0022) g/L in 11 C-Choline. The survived of organic solvent in PET radiopharmaceuticals can be analyzed with GC directly. The results showed that the QC should be done in PET radiopharmaceuticals purity with semi-HPLC to avoid the high residual. (authors)

  19. Influence of solvent addition on the physicochemical properties of Brazilian gasoline

    Energy Technology Data Exchange (ETDEWEB)

    E.V. Takeshita; R.V.P. Rezende; S.M.A. Guelli; U. de Souza; A.A. Ulson de Souza [Federal University of Santa Catarina, Florianopolis (Brazil). Chemical Engineering Department

    2008-08-15

    The influence of several solvents (anhydrous ethanol, white spirit, alkylbenzene AB9, diesel) on the physicochemical parameters of gasoline was studied according to ASTM international standard methods. The parameters investigated (distillation curves, density, Reid vapor pressure) showed differentiated behavior, depending on the class of the solvent (oxygenated, light and heavy aliphatic, aromatic) and the quantity added to the gasoline. The azeotropic mixtures formed by ethanol and hydrocarbons showed a strong influence on the behavior of the distillation curves and the location of the point of a sudden change in temperature was shown to be a possible way to detect adulterations and determine the quantity of solvent added to the gasoline. 28 refs., 9 figs., 5 tabs.

  20. Solubility of β-carotene in ethanol- and triolein-modified CO2

    International Nuclear Information System (INIS)

    Araus, Karina A.; Canales, Roberto I.; Valle, Jose M. del; Fuente, Juan C. de la

    2011-01-01

    Highlights: → We measure solubility of β-carotene in pure CO 2 , and with ethanol and triolein as co-solvents. → We model the solubility of β-carotene in pure CO 2 , and with co-solvents. → The co-solvent effect of triolein over solubility of β-carotene in CO 2 was higher than ethanol. - Abstract: Modification of an experimental device and methodology improved speed and reproducibility of measurement of solubility of β-carotene in pure and modified SuperCritical (SC) CO 2 at (313 to 333) K. Solubilities of β-carotene in pure CO 2 at (17 to 34) MPa ranged (0.17 to 1.06) μmol/mol and agreed with values reported in literature. The solubility of β-carotene in CO 2 modified with (1.2 to 1.6) % mol ethanol increased by a factor of 1.7 to 3.0 as compared to its solubility in pure CO 2 under equivalent conditions. The concentration of triolein in equilibrated ternary (CO 2 + β-carotene + triolein) mixtures having excess triolein reached values (0.01 to 0.39) mmol/mol corresponding to its solubility in pure SC CO 2 under equivalent conditions. Under these conditions, the solubility of β-carotene in triolein-modified CO 2 increased by a factor of up to 4.0 in relation with its solubility in pure CO 2 at comparable system temperature and pressure, reaching an uppermost value of 3.3 μmol/mol at 333 K and 32 MPa. Unlike in the case of ethanol, where enhancements in solubility where relatively independent on system conditions, solubility enhancements using triolein as co-solvent increased markedly with system pressure, being larger than using (1.2 to 1.6) % mol ethanol at about (24 to 28) MPa, depending on system temperature. The increase in the solubility β-carotene in SC CO 2 as a result of using ethanol or triolein as co-solvent apparently does not depend on the increase in density associated with the dissolution of the co-solvent in CO 2 . Enhancements may be due to an increase in the polarizability of SC CO 2 , which possibly growths markedly as triolein

  1. DAYA HAMBAT EKSTRAK BUAH MAHKOTA DEWA (Phaleria macrocarpa L. DENGAN PELARUT ETHANOL DAN AQUADES TERHADAP BAKTERI STAPHYLOCOCCUS AUREUS PENYEBAB MASTITIS PADA SAPI PERAH

    Directory of Open Access Journals (Sweden)

    Wina Astriyani

    2017-08-01

    Full Text Available The purpose of this research was determined effect of inhibitory the Phaleria macrocarpa  L. fruits extract with ethanol and aquades solvents againts Staphylococcus aureus. Materials used was Staphylococcus aureus which isolated from mastitis milk. Phaleria macrocarpa  L. fruits powder were extracted using ethanol and aquades with concentration were 10%, 20%, 30% and 40%. Iodips was used as control. Inhibitory of bacteria effect test was done by well diffusion methods. Variable was inhibition zone of each concentration, both of ethanol and aquades solvent. Data was analyzed by using two way nested ANOVA and continued by Duncan Multiple Range Test (DMRT. Result showed that highly significantly (P<0.01 on inhibition zone of Staphylococcus aures. Diameters of inhibitory was the optimum inhibition with ethanol solvent (17.46±0.67mm and aquades solvent (11.14±0.30 mm. The best of  treatment of  Phaleria macrocarpa  L. fruits extract againts Staphylococcus aureus with ethanol and aquades solvent was 40%. The conclusion of this research is that mahkota dewa (Phaleria macrocarpa  L. fruits extract with ethanol and aquades solvent in concentration 40% had a high ability to inhibit the growth of Staphylococcus aureus. Phaleria macrocarpa  L. fruits extract with ethanol higher in inhibiting capability the Staphylococcus aureus bacteria compared to aquades solvent.

  2. Structure and spectroscopic properties of N,S-coordinating 2-methyl-sulfanyl-N-[(1H-pyrrol-2-yl)methyl-idene]aniline methanol monosolvate.

    Science.gov (United States)

    Richards, D Douglas; Ang, M Trisha C; McDonald, Robert; Bierenstiel, Matthias

    2015-10-01

    The reaction of pyrrole-2-carboxaldehyde and 2-(methyl-sulfan-yl)aniline in refluxing methanol gave an olive-green residue in which yellow crystals of the title compound, C12H12N2S·CH3OH, were grown from slow evaporation of methanol at 263 K. In the crystal, hydrogen-bonding inter-actions link the aniline mol-ecule and a nearby methanol solvent mol-ecule. These units are linked by a pair of weak C-H⋯Omethanol interactions, forming inversion dimers consisting of two main molecules and two solvent molecules.

  3. Ethanol production from biomass. Voorlopig nauwelijks ethanolproduktie uit biomassa

    Energy Technology Data Exchange (ETDEWEB)

    Van der Knijff, A; Wildschut, L R [Haskoning Koninklijk Ingenieurs- en Architectenbureau, Nijmegen (Netherlands); Williams, A [Technische Univ. Twente, Enschede (Netherlands)

    1991-04-01

    Fluid fuels, for instance ethanol and methanol, can be produced from agricultural materials and from waste materials. For 37 waste flows (among which scrap from the oil- and fat industry, waste potatoes, withdrawn vegetables, waste wood, straw, roadside grass, vegetables-, fruits- and garden wastes and beet tails) possibilities to produce fuels have been considered. In general, sacchariferous and farinaceous wastes, which could be used for ethanol production, are used for other purposes. Therefore ethanol production from these materials is expensive. Cellulose wastes (for instance straw, wood wastes and paper sludge) can be suitable in the future for ethanol production. But first a cheap method to decompose and hydrolize cellulose has to be developed. 2 figs., 2 ills., 3 refs.

  4. Thermodynamic models for determination of the solubility of omeprazole in pure and mixture organic solvents from T = (278.15 to 333.15) K

    International Nuclear Information System (INIS)

    Hu, Yonghong; Wu, Gang; Gu, Pengfei; Yang, Wenge; Wang, Chunxiao; Ding, Zhiwen; Cao, Yang

    2016-01-01

    Highlights: • The solubility increased with increasing temperature. • The data were fitted using the modified Apelblat equation and other models. • The Gibbs energy, enthalpy and entropy were calculated by the van’t Hoff analysis. - Abstract: Data on corresponding (solid + liquid) equilibrium of omeprazole in different solvents are essential for a preliminary study of industrial applications. In this paper, the (solid + liquid) equilibrium of omeprazole in water, methanol, ethanol, 1-butanol, acetonitrile, acetone, ethyl acetate, tetrahydrofuran pure solvents and (tetrahydrofuran + ethyl acetate) mixture solvents were explored within the temperatures from 278.15 K to 333.15 K under atmosphere pressure. For the temperature range investigated, the solubility of omeprazole in the solvents increased with increasing temperature. From (278.15 to 333.15) K, the solubility of omeprazole in tetrahydrofuran is superior to other selected pure solvents. The modified Apelblat model, the Buchowski–Ksiazaczak λh model, and the ideal model were adopted to describe and predict the change tendency of solubility. Computational results showed that the modified Apelblat model has advantages than the other two models. Numerical values of the solubility were fitted using a modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redich–Kister (CNIBS/R–K) model and Jouyban–Acree model in (tetrahydrofuran + ethyl acetate) binary solvent mixture. Computational results showed that the CNIBS/R–K model is superior to the other equations. In addition, the calculated thermodynamic parameters indicate that in each solvent studied the dissolution of omeprazole is endothermic, non-spontaneous and is an entropy-driven process.

  5. Determination of the average number of electrons released during the oxidation of ethanol in a direct ethanol fuel cell

    International Nuclear Information System (INIS)

    Majidi, Pasha; Pickup, Peter G.

    2015-01-01

    The energy efficiency of a direct ethanol fuel cell (DEFC) is directly proportional to the average number of electrons released per ethanol molecule (n-value) at the anode. An approach to measuring n-values in DEFC hardware is presented, validated for the oxidation of methanol, and shown to provide n-values for ethanol oxidation that are consistent with trends and estimates from full product analysis. The method is based on quantitative oxidation of fuel that crosses through the membrane to avoid the errors that would otherwise result from crossover. It will be useful for rapid screening of catalysts, and allows performances (polarization curves) and n-values to be determined simultaneously under well controlled transport conditions.

  6. Development of real-time measurement of methanol-concentration in polymer electrolyte membrane using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Ito, Kohei; Haishi, Tomoyuki

    2007-01-01

    A real-time sensor to measure methanol concentration in polymer electrolyte membrane (PEM) was developed for reducing methanol cross-over in Direct Methanol Fuel Cell (DMFC). The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 1.3 mm outside diameter. NMR signal from PEM being exposed to CH3OH solvent was measured using NMR sensor. Time-dependence changes of methanol concentration in PEM were obtained from analyzing spectrum of NMR signal. (author)

  7. Biodiesel synthesis by direct transesterification of microalga Botryococcus braunii with continuous methanol reflux.

    Science.gov (United States)

    Hidalgo, Pamela; Ciudad, Gustavo; Schober, Sigurd; Mittelbach, Martin; Navia, Rodrigo

    2015-04-01

    Direct transesterification of Botryococcus braunii with continuous acyl acceptor reflux was evaluated. This method combines in one step lipid extraction and esterification/transesterification. Fatty acid methyl esters (FAME) synthesis by direct conversion of microalgal biomass was carried out using sulfuric acid as catalyst and methanol as acyl acceptor. In this system, once lipids are extracted, they are contacted with the catalyst and methanol reaching 82%wt of FAME yield. To optimize the reaction conditions, a factorial design using surface response methodology was applied. The effects of catalyst concentration and co-solvent concentration were studied. Hexane was used as co-solvent for increasing lipid extraction performance. The incorporation of hexane in the reaction provoked an increase in FAME yield from 82% (pure methanol) to 95% when a 47%v/v of hexane was incorporated in the reaction. However, the selectivity towards non-saponifiable lipids such as sterols was increased, negatively affecting biodiesel quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. SCOPE OF VARIOUS SOLVENTS AND THEIR EFFECTS ON SOLVOTHERMAL SYNTHESIS OF Ni-BTC

    Directory of Open Access Journals (Sweden)

    Farrukh Israr

    2016-07-01

    Full Text Available Ni-BTC (BTC = 1,3,5-benzene tricarboxylate metal organic framework (MOF was synthesized using different solvent conditions. Solvent mixtures of water/N,N-dimethylformamide (DMF, water/ethanol, and water/ethanol/DMF were used for the reactions with or without a variety of bases at 160 ºC for 48 hours. Even with same green crystals, prepared MOFs show all different BET surface areas and different XRD patterns. The highest BET surface area of the crystals was 850 m2/g obtained from water/DMF solvent with NH4OH as a base. The measured surface areas of the crystals follows the order of Ni-BTC(water/DMF-NH4OH > Ni-BTC(water/DMF-TMA > Ni-BTC(water/DMF > Ni-BTC(water/DMF-Pyridine> Ni-BTC(water/ethanol> Ni-BTC(water/DMF-aniline> Ni-BTC(water/DMF-NaOH.

  9. Isolation Of Compounds Of Steroids Teripang Gamat (Stichopus variegatus With Various Types Of Solvents

    Directory of Open Access Journals (Sweden)

    Meydia Meydia

    2017-02-01

    Full Text Available AbstractSea cucumber is one of the fisheries commodity that has an important economic value. Generally is traded in dried form (beche-de-mer. One of thebioactive substances contained in sea cucumber is steroid compounds that serves as an aphrodisiac and sex reversal. The purpose of this study was to extract the steroid of the gamma sea cucumber by using three types of solvents (methanol, ethyl acetate and hexane and get the best solvent in producing the highest yield of the steroids. The study revealed that steroid of gamma sea cucumber (Stichopus variegatus dissolved completely ethyl acetate (semi-polar solvent during the first phase, second phase and the third phase of extraction. In the methanol (polar solvent steroids only dissolved in the first extraction phase, while using the hexane (non polar solvent steroid was undetectable. Fractionation by thin layer chromatography was obtained two fractions that identified as cholesterol (Rf = 0.96 and testosterone (Rf = 0.91.

  10. Crystal structure of trans-N,N′-bis(3,5-di-tert-butyl-2-hydroxyphenyloxamide methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Miguel-Ángel Velázquez-Carmona

    2016-07-01

    Full Text Available The here crystallized oxamide was previously characterized as an unsolvated species [Jímenez-Pérez et al. (2000. J. Organomet. Chem. 614–615, 283–293], and is now reported with methanol as a solvent of crystallization, C30H44N2O4·CH3OH, in a different space group. The introduction of the solvent influences neither the molecular symmetry of the oxamide, which remains centrosymmetric, nor the molecular conformation. However, the unsolvated molecule crystallized as an ordered system, while many parts of the solvated crystal are disordered. The hydroxy group in the oxamide is disordered over two chemically equivalent positions, with occupancies 0.696 (4:0.304 (4; one tert-butyl group is disordered by rotation about the C—C bond, and was modelled with three sites for each methyl group, each one with occupancy 1/3. Finally, the methanol solvent, which lies on a twofold axis, is disordered by symmetry. The disorder affecting hydroxy groups and the solvent of crystallization allows the formation of numerous supramolecular motifs using four hydrogen bonds, with N—H and O—H groups as donors and the oxamide and methanol molecule as acceptors.

  11. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    Energy Technology Data Exchange (ETDEWEB)

    D Banerjee; J Finkelstein; A Smirnov; P Forster; L Borkowski; S Teat; J Parise

    2011-12-31

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg{sub 4}(3,5-PDC){sub 4}(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite

  12. Production of methanol/DME from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenfeldt, J.; Birk Henriksen, U.; Muenster-Swendsen, J.; Fink, A.; Roengaard Clausen, L.; Munkholt Christensen, J.; Qin, K.; Lin, W.; Arendt Jensen, P.; Degn Jensen, A.

    2011-07-01

    methyl ester), ethanol from fermentation or gasification based synthesis of DME, methanol, Fisher Tropsch fuels etc. A comparison of these different methods to provide biomass based transport fuels has shown that the gasification based route is an attractive and efficient technology. (Author)

  13. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers.

    Science.gov (United States)

    Lovrić, Vanja; Putnik, Predrag; Kovačević, Danijela Bursać; Jukić, Marijana; Dragović-Uzelac, Verica

    2017-06-01

    This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays). The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70% aqueous solutions of ethanol and methanol), extraction time (5, 15 and 25 min) and extraction temperature (40, 50 and 60 °C) controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA) was used to evaluate the differences at a 95% confidence level (p≤0.05). The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols) than aqueous solution of methanol. The amount of phenolic compounds was higher in 70% aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50% aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval) has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.

  14. Effect of Microwave-Assisted Extraction on the Phenolic Compounds and Antioxidant Capacity of Blackthorn Flowers

    Directory of Open Access Journals (Sweden)

    Vanja Lovrić

    2017-01-01

    Full Text Available This research was undertaken to investigate the influence of extraction parameters during microwave-assisted extraction on total phenolic content, total flavonoids, total hydroxycinnamic acids and total flavonols of blackthorn flowers as well as to evaluate the antioxidant capacity by two different methods (2,2-diphenyl-1 picrylhydrazyl free radical scavenging capacity and ferric reducing antioxidant power assays. The investigated extraction parameters were: solvent type and volume fraction of alcohol in solvent (50 and 70 % aqueous solutions of ethanol and methanol, extraction time (5, 15 and 25 min and extraction temperature (40, 50 and 60 °C controlled by microwave power of 100, 200 and 300 W. Multivariate analysis of variance (MANOVA was used to evaluate the differences at a 95 % confidence level (p≤0.05. The obtained results show that aqueous solution of ethanol was more appropriate solvent for extraction of phenolic compounds (total flavonoids, total hydroxycinnamic acids and total flavonols than aqueous solution of methanol. The amount of phenolic compounds was higher in 70 % aqueous solution of ethanol or methanol, while higher antioxidant capacity was observed in 50 % aqueous solution of methanol. Higher temperature of extraction improved the amount of phenolic compounds and also antioxidant capacity determined by 2,2-diphenyl-1-picrylhydrazyl free radical scavenging capacity assay. Extensive duration of extraction (15- to 25-minute interval has a significant effect only on the increase of total phenolic content, while specific phenolic compound content and antioxidant capacity were the highest when microwave extraction time of 5 min was applied.

  15. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Ul Haq, Ihsan [Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320 (Pakistan); Zia, Muhammad, E-mail: ziachaudhary@gmail.com [Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2017-05-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  16. ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties

    International Nuclear Information System (INIS)

    Ali, Attarad; Ambreen, Sidra; Javed, Rabia; Tabassum, Saira; Ul Haq, Ihsan; Zia, Muhammad

    2017-01-01

    Zinc oxide (ZnO) nanostructures are synthesized in various organic solvents (acetone, chloroform, ethyl acetate, ethanol and methanol) and water via coprecipitation process using zinc acetate as precursor. The resultant ZnO nanoparticles, nano rods and nano sheets are characterized by UV–vis spectrophotometric analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), and energy dispersive X-ray spectroscopy (EDX). The variable size and geometry of nanoparticles depend upon medium used for synthesis. The synthesized ZnO nanostructures exhibit minor to moderate antioxidative (DPPH based free radical scavenging activity, total antioxidative potential and total reducing power) response. Mild to moderate antibacterial and antifungal activities, excellent antileishmanial potential (IC50 up to 3.76), and good cytotoxic perspective (LD50 up to 49.4) is also observed by the synthesized ZnO NPs. The nanoparticles also exhibit moderate α-amylase inhibition response. Furthermore the nanostructures are evaluated for methylene blue photodegradation response within 60 min time period. It is found that organic solvent alters shape, size and other physio-chemical properties of ZnO that ultimately modulate the biological, chemical, and environmental properties. - Highlights: • Zinc oxide nanoparticles are fabricated in different solvents using co-precipitation method • SEM, XRD and FTIR analysis confirms variation in physical and chemical characteristics of synthesized ZnO NPs • The synthesized ZnO demonstrates variation in biological, phytochemical and photodegradable properties.

  17. Spectral characteristics and colloidal properties of chlorophyll a{prime} in aqueous methanol

    Energy Technology Data Exchange (ETDEWEB)

    Oba, Toru [Ritsumeikan Univ., Kusatsu (Japan); Mimuro, Mamoru [National Inst. for Basic Biology, Okazaki (Japan); Wang, Z.Y.; Nozawa, Tsunenori [Tohoku Univ., Sendai (Japan); Yoshida, Shoichiro; Watanabe, Tadashi [Univ. of Tokyo (Japan)

    1997-04-17

    The `phase behavior` of chlorophyll a` (Chl a`, C13{sup 2}-epimer of Chl a) dissolved in aqueous methanol was examined in terms of the composition of the solvent. The study aimed at elucidating the property of Chl a`, the exotic pigment found in a photosynthetic reaction center complex, as well as at clarifying the nature of the Chl aggregation in aqueous media. Visible absorption, circular dichroism (CD), fluorescence and resonance Raman spectroscopies, dynamic light-scattering measurements, and electron microscopy were utilized. Chl a` formed either of two types of colloids depending on the solvent composition. The one formed over a wide methanol volume percentage (ca. 73-30%) commonly possessed a single microscopic structural unit that yielded the double-peaked absorption (ca. 690 and 715 nm) accompanied by a symmetric dispersed-type CD spectrum. Increasing methanol concentration within this solvent composition range enhanced the size of the colloid and finally caused critical opalescence, which was reminiscent of the critical behavior of the aqueous solution of nonionic surfactants. These findings indicate that the microscopic structure of the Chl a` aggregate was independent of the size and shape of the colloid. The difference between the aggregation behaviors of Chl a and a` suggests a narrower choice of possible molecular arrangements in the Chl a` aggregate as an inherent property of the pigment. 37 refs., 11 figs.

  18. Chromatographic-mass spectrometric analysis of ethanol extract of ...

    African Journals Online (AJOL)

    Purpose: This study analyzes the chemical composition of ethanol root extracts of Maesa perlaria var. formosana by .... obtained over a scanning range of 50 to 550 amu at 2 scans/s. .... 142.53 (2,2,6-Trimethyl-bicyclo[4.1.0]hept-1-yl)-methanol.

  19. Thermodynamics of ionic migration of simple and complex rare earth salts in mixed alcohol solvents

    International Nuclear Information System (INIS)

    Gorodyskij, A.V.; Fialkov, Yu.Ya.; Chernyj, D.B.

    1982-01-01

    The influence of the composition of double mixed solvents (water-methanol and methanol-propanol) on thermodynamic characteristics of electrolytic dissociation process-enthalpy and entropy, dissociation constants of chlorides and diphenanthroline chlorides of lanthanum, neodymium, europium and dysprosium, is analyzed. It is shown that when passing from water to methanol, that is, with decrease of dielectric permeability, the endothermicity of electrolytic dissociation process increases

  20. Thermodynamics of ionic migration of simple and complex rare earth salts in mixed alcohol solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gorodyskij, A.V.; Fialkov, Yu.Ya.; Chernyj, D.B. (AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; Kievskij Politekhnicheskij Inst. (Ukrainian SSR))

    1982-04-01

    The influence of the composition of double mixed solvents (water-methanol and methanol-propanol) on thermodynamic characteristics of electrolytic dissociation process-enthalpy and entropy, dissociation constants of chlorides and diphenanthroline chlorides of lanthanum, neodymium, europium and dysprosium, is analyzed. It is shown that when passing from water to methanol, that is, with decrease of dielectric permeability, the endothermicity of electrolytic dissociation process increases.

  1. The solvent effects on dimethyl phthalate investigated by FTIR characterization, solvent parameter correlation and DFT computation

    Science.gov (United States)

    Chen, Yi; Zhang, Hui; Zhou, Wenzhao; Deng, Chao; Liao, Jian

    2018-06-01

    This study set out with the aim of investigating the solvent effects on dimethyl phthalate (DMP) using FTIR characterization, solvent parameter correlation and DFT calculation. DMP exposed to 17 organic solvents manifested varying shift in the carbonyl stretching vibration frequency (νCdbnd O). Non-alkanols induced Band I and alkanols produced Band I and Band II. Through correlating the νCdbnd O with the empirical solvent scales including acceptor parameter (AN), Schleyer's linear free energy parameter (G), and linear free salvation energy relationships (LSER), Band I was mainly ascribed to non-specific effects from either non-alkanols or alkanol polymers ((alkanol)n). νCdbnd O of the latter indicated minor red shift and less variability compared to the former. An assumption was made and validated about the sequestering of hydroxyl group by the bulky hydrophobic chain in (alkanol)n, creating what we refer to as "screening effects". Ab initio calculation, on the other hand, provided insights for possible hydrogen binding between DMP and (ethanol)n or between ethanol monomers. The two components of Band I observed in inert solvents were assigned to the two Cdbnd O groups adopting differentiated conformations. This in turn prompted our consideration that hydrogen binding was highly selective in favor of lowly associated (alkanol)n and the particular Cdbnd O group having relatively less steric hindrance and stronger electron-donating capacity. Band II was therefore believed to derive from hydrogen-bond interactions mainly in manner of 1:1 and 1:2 DMP-(alkanol)n complexes.

  2. Biodiesel production by direct transesterification of microalgal biomass with co-solvent.

    Science.gov (United States)

    Zhang, Yan; Li, Ya; Zhang, Xu; Tan, Tianwei

    2015-11-01

    In this study, a direct transesterification process using 75% ethanol and co-solvent was studied to reduce the energy consumption of lipid extraction process and improve the conversion yield of the microalgae biodiesel. The addition of a certain amount of co-solvent (n-hexane is most preferable) was required for the direct transesterification of microalgae biomass. With the optimal reaction condition of n-hexane to 75% ethanol volume ratio 1:2, mixed solvent dosage 6.0mL, reaction temperature 90°C, reaction time 2.0h and catalyst volume 0.6mL, the direct transesterification process of microalgal biomass resulted in a high conversion yield up to 90.02±0.55wt.%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond in Vapor of Methanol-Based Liquid Solutions

    National Research Council Canada - National Science Library

    Tzeng, Yonhua

    2000-01-01

    .... Liquid solutions are prepared by mixing methanol with other carbon containing liquid compounds which contain a greater than one ratio of carbon to oxygen such as acetone, ethanol, and iso-propanol...

  4. Biodiesel production from waste coconut oil by esterification with ethanol: The effect of water removal by adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Joao Felipe G.; Lucena, Izabelly Larissa; Saboya, Rosana M. Alves; Rodrigues, Marcelo L.; Torres, Antonio Eurico B.; Fernandes, Fabiano A. Narciso; Cavalcante, Celio L. Jr. [Departamento de Engenharia Quimica, Universidade Federal do Ceara, Campus do Pici, Bl. 709, 60455-760, Fortaleza, CE (Brazil); Parente, Expedito Jose S. Jr. [Tecnologias Bioenergeticas (TECBIO), PARTEC, Rua Prof. Romulo Proenca, s/n, CEP 60455-700, Fortaleza, CE (Brazil)

    2010-11-15

    The production of biodiesel by esterification with ethanol using waste oil generated in the refining of coconut oil was investigated in this study. The reaction was performed with and without adsorption of water in order to verify the effect of removing water on the reaction conversion. Methanol was also evaluated as an esterification agent. For both ethanol and methanol, conversions over 99% mol were observed. Simultaneous water adsorption allowed the use of lower alcohol/oil molar ratios thus enabling better economics to a possible industrial process. (author)

  5. Dependence of enthalpies of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures at 298.15 K

    International Nuclear Information System (INIS)

    Smirnov, Valeriy I.; Badelin, Valentin G.

    2011-01-01

    Highlights: · Enthalpies of dissolution of β-alanyl-β-alanine are measured in aqueous methanol, ethanol, 1-propanol and 2-propanol by calorimetry. · Standard values of dissolution and transfer enthalpies of β-alanyl-β-alanine and enthalpy coefficients of pair-wise interactions are calculated. · Dependences of the thermodynamic characteristics of dissolution of β-alanyl-β-alanine on the composition of (water + alcohol) mixtures are determined. - Abstract: The dissolution enthalpies of β-alanyl-β-alanine in aqueous methanol, ethanol, 1-propanol and 2-propanol solutions with an alcohol content up to 0.4 mole fractions have been measured calorimetrically at T = 298.15 K. The standard enthalpies of dissolution, Δ sol H o and transfer, Δ tr H o , of β-alanyl-β-alanine from water into mixed solvents and the enthalpy coefficients of pair-wise interactions, h xy , of β-alanyl-β-alanine with alcohol solvent molecules have been calculated. The results are discussed in terms of solute-solute and solute-solvent interactions.

  6. Rapid evaporation at the superheat limit of methanol, ethanol, butanol and n-heptane on platinum films supported by low-stress SiN membranes.

    Science.gov (United States)

    Ching, Eric J; Avedisian, C Thomas; Cavicchi, Richard C; Chung, Do Hyun; Rah, Jeff; Carrier, Michael J

    2016-10-01

    The bubble nucleation temperatures of several organic liquids (methanol, ethanol, butanol, n-heptane) on stress-minimized platinum (Pt) films supported by SiN membranes is examined by pulse-heating the membranes for times ranging from 1 µs to 10 µs. The results show that the nucleation temperatures increase as the heating rates of the Pt films increase. Measured nucleation temperatures approach predicted superheat limits for the smallest pulse times which correspond to heating rates over 10 8 K/s, while nucleation temperatures are significantly lower for the longest pulse times. The microheater membranes were found to be robust for millions of pulse cycles, which suggests their potential in applications for moving fluids on the microscale and for more fundamental studies of phase transitions of metastable liquids.

  7. Deacidification of Soybean Oil Combining Solvent Extraction and Membrane Technology

    Directory of Open Access Journals (Sweden)

    M. L. Fornasero

    2013-01-01

    Full Text Available The aim of this work was to study the removal of free fatty acids (FFAs from soybean oil, combining solvent extraction (liquid-liquid for the separation of FFAs from the oil and membrane technology to recover the solvent through nanofiltration (NF. Degummed soybean oil containing 1.05 ± 0.10% w/w FFAs was deacidified by extraction with ethanol. Results obtained in the experiences of FFAs extraction from oil show that the optimal operating conditions are the following: 1.8 : 1 w : w ethanol/oil ratio, 30 minutes extraction time and high speed of agitation and 30 minutes repose time after extraction at ambient temperature. As a result of these operations two phases are obtained: deacidified oil phase and ethanol phase (containing the FFAs. The oil from the first extraction is subjected to a second extraction under the same conditions, reducing the FFA concentration in oil to 0.09%. Solvent recovery from the ethanol phase is performed using nanofiltration technology with a commercially available polymeric NF membrane (NF-99-HF, Alfa Laval. From the analysis of the results we can conclude that the optimal operating conditions are pressure of 20 bar and temperature of 35°C, allowing better separation performance: permeate flux of 28.3 L/m2·h and FFA retention of 70%.

  8. Photophysical and laser characteristics of pyrromethene 567 dye ...

    Indian Academy of Sciences (India)

    Narrow-band laser performance of alcohol solutions of pyrromethene 567 ... curves of each dye solution were obtained by scanning the wavelength of the dye ... solutions, using ethanol and methanol solvents, are summarized in table 1.

  9. Insecticidal and Repellent Properties of Subtropical Plant Extracts Against Pulse Beetle, Callosobruchus chinensis

    Directory of Open Access Journals (Sweden)

    H.T. AI Lawati

    2002-01-01

    Full Text Available Extracts of eight plants local to Oman, namely Qarat (Acacia nilotica, Mustafal (Annona squamosa, Shereesh (Azadirachta indica, Luban (Boswellia sacra, Kheshkhash (Crotolaria juncea, Zebrot (Jatropha dhofarica Yas, (Myrtus communis and Suwwad (Suaeda aegyptiaca were prepared by steeping shaded dried leaf/ seed powder of each plant in water and solvent (methanol or ethanol. The extracts were tested for their insecticidal and repellent properties against the pulse beetles, Callosobruchus chinensis. The extracts from the seeds of A. squamosa recorded l00% mortality of beetles within twenty and four hours of their exposure to methanol and ethanol extracts, respectively. The other extracts that caused high mortality were from A. nilotica, C. juncea, M. communis and S. aegzptiaca in methanol and B. sacra, J. dhofarica, S. aegptiaca and commercial neem in ethanol. Extracts of M. communis in methanol were highly repellent to the beetles compared to other extracts. Legume seeds treated with extracts of A. squamosa were not repellent, rather the beetles were attracted to them.

  10. A New Process for Co-production of Ammonia and Methanol

    International Nuclear Information System (INIS)

    Soliman, A.

    2004-01-01

    A new process for co-production of ammonia and methanol is proposed. The process involves the production of synthesis gas by oxygen blown auto thermal reformer (ATR) at a pressure of 40-100 bars, a methanol synthesis loop at a pressure of 50-100 bars and an ammonia synthesis loop at a pressure of 200-300 bars. The oxygen required for the ATR is supplied by an air separation plant. The synthesis gases from the ATR are cooled and compressed, in a first stage compression, to the required methanol loop pressure. The purge stream from the methanol loop is sent to an intermediate temperature shift converter ITSC followed by a physical solvent CO 2 removal unit and them purified in a pressure Swing Adsorber (PSA). The purified hydrogen from the PSA together with the almost pure nitrogen from the air separation plant are re compressed, in a second stage compression

  11. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Demetrio L Valle

    Full Text Available Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC and the minimum bactericidal concentrations (MBC of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus (VRE, extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn. Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant

  12. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Science.gov (United States)

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  13. Lipophilic Super-Absorbent Swelling Gels as Cleaners for Use on Weapons Systems and Platforms

    Science.gov (United States)

    2014-02-01

    Tetrahydrofuran (THF), isopropa- nol, acetonitrile, and dichloromethane were obtained from Acros Organics (Morris Plains, NJ). Dimethylsulfoxide ( DMSO ) and 1...1. In the following solvents , swelling degree did not change in both heating and cooling processes: water, DMSO , methanol, ethanol, isopropanol...available alkylstyrene copolymer (imbiber beads). The cleaning ability of the gels was compared with the standard solvent cleaner trichloroethylene

  14. Ethanol vapour sensing properties of screen printed WO3 thick films

    Indian Academy of Sciences (India)

    TECS

    trations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity ... methanol, acetone, isopropanol and acetic acid, have been reported .... maximum sensitivity was obtained at an operating tem-.

  15. Effect of the extraction solvent on the oleuropein content and antioxidant properties of olive leaf (cv. Oblica, Lastovka and Levantinka extracts

    Directory of Open Access Journals (Sweden)

    M. Gotovac

    2014-01-01

    Full Text Available In the last few decades numerous studies have proved that an olive leaf is a rich source of bioactive phenolic compounds, mainly oleuropein and its derivatives. The aim of this study was to investigate the influence of the extraction solvent on the phenolic and oleuropein content in the leaf extracts of Dalmatian autochthonic olive cultivars: Oblica, Lastovka and Levantinka. The antioxidant activity of leaf extracts was determined using FRAP method and by metal chelating activity evaluation. The recovery obtained using methanol and ethanol (50:50, v/v was higher than by use of water solvents. The highest share of total phenols and oleuropein was detected in ethanolic extract of Lastovka, while almost two-fold lower amounts were obtained using water extracts, both hot water and room temperature water. The extremely significant correlation between the FRAP and oleuropein/phenolic content points out the importance of these compounds in the total reducing activity of the extracts. All tested extracts provided good chelating activity probably due to the high concentrations of oleuropein but also the presence of other compounds with catechol structure, which is the most important structural feature of strong chelating activity. According to the obtained results it can be concluded that the extraction of polyphenols from olive leaves, especially from Lastovka cultivar, could present an interesting means of increasing the value of this cheap plant material that often remains unused after the harvest.

  16. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio; Vrabec, Jadran, E-mail: jadran.vrabec@uni-paderborn.de [Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn (Germany)

    2016-03-28

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impact on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.

  17. The DFT investigations of the electron injection in hydrazone-based sensitizers

    KAUST Repository

    Al-Sehemi, Abdullah G.; Irfan, Ahmad; Asiri, Abdullah M.

    2012-01-01

    solvent. The calculated absorption spectra in ethanol, acetonitrile, and methanol are in good agreement with experimental evidences. The absorption spectra are red shifted compared to System1. On the basis of electron injection and electronic coupling

  18. Methanol Kinetics in Chronic Kidney Disease After Fomepizole: A Case Report.

    Science.gov (United States)

    Maskell, Kevin F; Beckett, Sara; Cumpston, Kirk L

    Methanol is a common toxicant in the United States, especially from automotive products. Its kinetics have been described previously and typically involve little urinary excretion. We present a case of prolonged methanol half-life in a patient with chronic kidney disease. An 80-year-old male with a baseline glomerular filtration rate of 24 mL·min·1.73 m was transferred to our facility after unintentional methanol ingestion. The original facility had treated him with an oral ethanol load; upon arrival to our facility, he was immediately loaded with fomepizole. His initial serum methanol concentration was 66.1 mg/dL. After a risk/benefit discussion, we decided not to perform hemodialysis on the patient and he was treated with fomepizole and supportive care. After 6 days as an inpatient, the patient's methanol level had declined to 22 mg/dL, fomepizole was discontinued, and the patient was able to be discharged without apparent complications. Based on the exponential best fit line for the patient's methanol concentrations, his methanol half-life during fomepizole treatment was approximately 70 hours, significantly longer than the 30-50 hours typically reported. The reasons for this difference are unclear. This report is limited by being a single case. Further study on the kinetics of methanol in the setting of chronic kidney disease is needed.

  19. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    Science.gov (United States)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  20. Performance of the SMD and SM8 models for predicting solvation free energy of neutral solutes in methanol, dimethyl sulfoxide and acetonitrile

    Science.gov (United States)

    Zanith, Caroline C.; Pliego, Josefredo R.

    2015-03-01

    The continuum solvation models SMD and SM8 were developed using 2,346 solvation free energy values for 318 neutral molecules in 91 solvents as reference. However, no solvation data of neutral solutes in methanol was used in the parametrization, while only few solvation free energy values of solutes in dimethyl sulfoxide and acetonitrile were used. In this report, we have tested the performance of the models for these important solvents. Taking data from literature, we have generated solvation free energy, enthalpy and entropy values for 37 solutes in methanol, 21 solutes in dimethyl sulfoxide and 19 solutes in acetonitrile. Both SMD and SM8 models have presented a good performance in methanol and acetonitrile, with mean unsigned error equal or less than 0.66 and 0.55 kcal mol-1 in methanol and acetonitrile, respectively. However, the correlation is worse in dimethyl sulfoxide, where the SMD and SM8 methods present mean unsigned error of 1.02 and 0.95 kcal mol-1, respectively. Our results point out the SMx family of models need be improved for dimethyl sulfoxide solvent.

  1. Methanol-Sensing Property Improvement of Mesostructured Zinc Oxide Prepared by the Nanocasting Strategy

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2013-01-01

    Full Text Available The specific structure and morphology often play a critical role in governing the excellent intrinsic properties of the compound semiconductor. Herein, mesostructured ZnO with excellent methanol-sensing properties was prepared by a structure replication procedure through the incipient wetness technique. The investigation on the crystal structure and morphology of the resultant material shows that the product consists of hexagonally arranged mesopores and crystalline walls, and its structure is an ideal replication of CMK-3 template. Consequently, mesostructured ZnO was fabricated as a gas sensor for methanol. The excellent methanol-sensing performance was achieved at a relatively low operating temperature of 120°C. In comparison with the nonporous ZnO prepared through conventional coprecipitation approach, mesostructured ZnO material shows the higher sensitivity and stability. Furthermore, it shows the discrimination between methanol and ethanol sensitivity, which makes it a good candidate in fabricating selective methanol sensor in practice.

  2. Hydrogenation Reactions in Ionic Liquids. The Efficient Reduction of ...

    African Journals Online (AJOL)

    NJD

    2008-12-09

    Dec 9, 2008 ... Volatile organic solvents such as ethanol, methanol and THF are often used for the ... remained consistently high and only declined markedly on the fifth cycle. ... transferral of the viscous liquid from the hydrogenation reactor.

  3. Methanol leaf extract of Actinodaphne sesquipedalis (Lauraceae) enhances gastric defense against ethanol-induced ulcer in rats

    Science.gov (United States)

    Omar, Hanita; Nordin, Noraziah; Hassandarvish, Pouya; Hajrezaie, Maryam; Azizan, Ainnul Hamidah Syahadah; Fadaeinasab, Mehran; Abdul Majid, Nazia; Abdulla, Mahmood Ameen; Mohd Hashim, Najihah; Mohd Ali, Hapipah

    2017-01-01

    Actinodaphne sesquipedalis Hook. F. Var. Glabra (Kochummen), also known as “Medang payung” by the Malay people, belongs to the Lauraceae family. In this study, methanol leaf extract of A. sesquipedalis was investigated for their acute toxicity and gastroprotective effects to reduce ulcers in rat stomachs induced by ethanol. The rats were assigned to one of five groups: normal group (group 1), ulcer group (group 2), control positive drug group (group 3) and two experimental groups treated with 150 mg/kg (group 4) and 300 mg/kg (group 5) of leaf extract. The rats were sacrificed an hour after pretreatment with extracts, and their stomach homogenates and tissues were collected for further evaluation. Macroscopic and histological analyses showed that gastric ulcers in rats pretreated with the extract were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate of >70% was detected in rats treated with both doses of A. sesquipedalis extract, showing a notable protection of gastric layer. Severe destruction of gastric mucosa was prevented with a high production of mucus and pH gastric contents in both omeprazole-treated and extract-treated groups. Meanwhile, an increase in glycoprotein uptake was observed in pretreated rats through accumulation of magenta color in Periodic Acid Schiff staining assay. Analysis of gastric homogenate from pretreated rats showed a reduction of malondialdehyde and elevation of nitric oxide, glutathione, prostaglandin E2, superoxide dismutase and protein concentration levels in comparison with group 2. Suppression of apoptosis in gastric tissues by upregulation of Hsp70 protein and downregulation of Bax protein was also observed in rats pretreated with extract. Consistent results of a reduction of gastric ulcer and the protection of gastric wall were obtained for rats pretreated with A. sesquipedalis extract, which showed its

  4. Methanol leaf extract of Actinodaphne sesquipedalis (Lauraceae) enhances gastric defense against ethanol-induced ulcer in rats.

    Science.gov (United States)

    Omar, Hanita; Nordin, Noraziah; Hassandarvish, Pouya; Hajrezaie, Maryam; Azizan, Ainnul Hamidah Syahadah; Fadaeinasab, Mehran; Abdul Majid, Nazia; Abdulla, Mahmood Ameen; Mohd Hashim, Najihah; Mohd Ali, Hapipah

    2017-01-01

    Actinodaphne sesquipedalis Hook. F. Var. Glabra (Kochummen), also known as "Medang payung" by the Malay people, belongs to the Lauraceae family. In this study, methanol leaf extract of A. sesquipedalis was investigated for their acute toxicity and gastroprotective effects to reduce ulcers in rat stomachs induced by ethanol. The rats were assigned to one of five groups: normal group (group 1), ulcer group (group 2), control positive drug group (group 3) and two experimental groups treated with 150 mg/kg (group 4) and 300 mg/kg (group 5) of leaf extract. The rats were sacrificed an hour after pretreatment with extracts, and their stomach homogenates and tissues were collected for further evaluation. Macroscopic and histological analyses showed that gastric ulcers in rats pretreated with the extract were significantly reduced to an extent that it allowed leukocytes penetration of the gastric walls compared with the ulcer group. In addition, an ulcer inhibition rate of >70% was detected in rats treated with both doses of A. sesquipedalis extract, showing a notable protection of gastric layer. Severe destruction of gastric mucosa was prevented with a high production of mucus and pH gastric contents in both omeprazole-treated and extract-treated groups. Meanwhile, an increase in glycoprotein uptake was observed in pretreated rats through accumulation of magenta color in Periodic Acid Schiff staining assay. Analysis of gastric homogenate from pretreated rats showed a reduction of malondialdehyde and elevation of nitric oxide, glutathione, prostaglandin E2, superoxide dismutase and protein concentration levels in comparison with group 2. Suppression of apoptosis in gastric tissues by upregulation of Hsp70 protein and downregulation of Bax protein was also observed in rats pretreated with extract. Consistent results of a reduction of gastric ulcer and the protection of gastric wall were obtained for rats pretreated with A. sesquipedalis extract, which showed its prominent

  5. Justification of the solvent choice for the industrial amizon substance production

    Directory of Open Access Journals (Sweden)

    V. A. Georgiyants

    2014-08-01

    Full Text Available INTRODUCTION In recent years, the rapid development gets implementing principles of quality management in the pharmaceutical industry. It should be noted that instead of the mechanical control of the quality associated with the chemical characteristics of pharmaceutical substances and drugs innovative ways to ensure the quality associated primarily with the understanding of the processes occurring during the manufacturing process come. Objective: To study solvent selection for the industrial production of methiodide benzyl amide isonicotinic acid substance considering the conception “Quality by design”. MATERIALS AND METHODS Solution of 0.1 moles of isonicotinic acid in 0.12 moles of benzylamine was heated at 160-185°C during 4-5 hours while distilling off water and excess benzylamine. The resulting melt - cooled isonicotinic acid benzylamide was dissolved in acetone and filtered. It was used in further synthesis without further purification. 0.1 moles of isonicotinic acid benzylamide was dissolved in0.6 litersof a suitable solvent and 0.12 mole of methyl iodide was added to the solution at room temperature. The mixture was heated at 40-50 ° C for 3-4 hours, the reaction mixture was cooled, filtered the product was dried. After calculating the aim product was recrystallized from an appropriate solvent. Isonicotinic acid benzylamide iodomethylate quantitative content was determined by acid-base titration in non-aqueous medium (fixing the endpoint - potentiometrically. The impurity content benzylamide isonicotinic acid – by HPLC. RESULTS AND DISCUSSION When solvent have been chosen we took into account previously developed scheme of laboratory synthesis. We guided primarily data about security and efficiency. The least toxic solvents conventionally used in pharmaceutical production , included 2- propanol and ethanol (limit of residual amounts of these solvents, allowable HFC substances was 0.5 % and 1 %, respectively. Therefore, these

  6. Extraction of glutathione from EFB fermentation waste using methanol with sonication process

    Science.gov (United States)

    Muryanto, Muryanto; Alvin, Nurdin, Muhammad; Hanifah, Ummu; Sudiyani, Yanni

    2017-11-01

    Glutathione is important compound on the human body. Glutathione have a widely use at pharmacy and cosmetics as detoxification, skin whitening agent, antioxidant and many other. This study aims to obtain glutathione from Saccharomyces cerevisiae in fermentation waste of second generation bioethanol. The remaining yeast in the empty fruit bunch (EFB) fermentation was separated from the fermentation solution use centrifugation process and then extracted using a methanol-water solution. The extraction process was done by maceration which was assisted by sonication process. Solvent concentration and time of sonication were varied to see its effect on glutathione concentration. The concentration of glutathione from the extraction process was analyzed using alloxan method with UV-Vis spectrophotometer. The results show that the highest glutathione concentration was approximately 1.32 g/L obtained with methanol solvent at 90 minutes of maceration following with 15 minutes sonication.

  7. Methanol market slowly tightens as Brazil starts soaking up material

    International Nuclear Information System (INIS)

    Young, I.

    1992-01-01

    Although the US methanol market's response to mandated oxygen requirements in reformulated gasoline has been disappointing, the European market has surprisingly been tightening in recent weeks and looks set for a price rise in first-quarter 1993. The tightness is being felt mainly in the Mediterranean market, where the Libyan methanol plant is running at only 70% because of problems with gas feedstock supplies. More significantly, the Brazilian government has now given the go-ahead for a yearlong extension on imports of methanol for use as an ethanol replacement in fuel blending. The new authorization sets a monthly import limit of 48,000 m.t. during that period. Libya is an important supplier of methanol to the Brazilian market and has already shipped about 20,000 m.t. since the authorization was given. Another major supplier to Brazil is Russia, from its two giant 750,000-m.t./year plants at Gubakha and Tomsk. The material is shipped from the terminal at Yuzhnyy on the Black Sea, in Ukrainian territory since the collapse of the Soviet Union

  8. Green synthesis of Pt-on-Pd bimetallic nanodendrites on graphene via in situ reduction, and their enhanced electrocatalytic activity for methanol oxidation

    International Nuclear Information System (INIS)

    Cai, Zhi-xiong; Liu, Cong-cong; Wu, Geng-huang; Chen, Xiao-mei; Chen, Xi

    2014-01-01

    Graphical abstract: - Highlights: • Porous 3D dendrite-like structure of Pt-on-Pd bimetallic nanostructures supported on graphene were prepared. • The surface of nanostructures was very “clean” because of the surfactant-free formation process and the use of green reagent. • The hetero-nanostructures showed excellent electrocatalytic performance in methanol oxidation. - Abstract: A green synthesis of Pt-on-Pd bimetallic nanodendrites supported on graphene (GPtPdNDs) with a Pd interior and a dendrite-like Pt exterior was achieved using a two-step preparation, mixing graphene and PdCl 4 2− first, then adding PtCl 4 2− and ethanol without any other solvent. The morphology, structure and composition of the thus-prepared GPtPdNDs were characterized by transmission electron microscopy (TEM), high resolution TEM, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. Because no halide ions (refer in particular to Br - , I − ) or surfactant was involved in the synthesis, the prepared GPtPdNDs were directly modified onto a glassy carbon electrode and showed excellent electrocatalytic performance in methanol oxidation without any pretreatments. Moreover, with the special structure of PtPdNDs and the synergetic effects of Pt and Pd and the enhanced electron transfer by graphene, the GPtPdNDs composites exhibited higher electrocatalytic activity and better tolerance to Pt nanoparticles supported on graphene (GPtNPs) and Pt/C for methanol oxidation

  9. A Survey on the Methanol Content of Home Distilled Alcoholic Beverages in Transylvania (Romania

    Directory of Open Access Journals (Sweden)

    Md Croitoru

    2013-08-01

    Full Text Available Objective: Methanol appears in relatively high concentrations in alcoholic beverages obtained from fermented fruits distillates. These products are traditionally home made in many regions in Romania and other EU countries. The chronic use of products with high methanol concentration can be considered a health risk. The purpose of this work was to measure methanol concentration in a Romanian region where brandy-type alcoholic products are made from different fruits (plum, apple, pear, grapes, and to observe if there is a type of product that contains more methanol than the others. Methods: The content of methanol in the tested alcoholic beverages was determined using a gas chromatographic method. Results: Only 18% of the tested 56 samples met UE regulation regarding methanol content of alcoholic beverages (0.4% in alcoholic drinks containing 40% ethanol. The highest concentration of 2.39% was found in a plum brandy. Plum brandies contained significantly higher amounts of methanol than brandies made from other fruits (0.91 vs 0.52%, p = 0.01. Conclusions: Home distilled alcoholic beverages obtained from fruits are a health threat due to their high methanol content. Strict regulations and tests should be introduced for such products

  10. Enhanced Production and Characterization of a Solvent Stable Amylase from Solvent Tolerant Bacillus tequilensis RG-01: Thermostable and Surfactant Resistant

    Directory of Open Access Journals (Sweden)

    Soni Tiwari

    2014-01-01

    Full Text Available Ten bacterial strains isolated from the soil samples in the presence of cyclohexane were screened for amylase production. Among them, culture RG-01 was adjudged as the best amylase producer and was identified as Bacillus tequilensis from MTCC, Chandigarh. The isolate showed maximum amylase production (8100 U/mL in the presence of starch, peptone, and Ca2+ ions at 55°C pH 7.0 within 24 h of incubation. The enzyme was stable in the presence of n-dodecane, isooctane, n-decane, xylene, toluene, n-hexane, n-butanol, and cyclohexane, respectively. The presence of benzene, methanol, and ethanol marginally reduced the amylase stability, respectively. The enzyme was showed it 100% activity at 55°C and pH 7.0 with 119% and 127% stability at 55°C and pH 7.0, respectively. The enzyme was also stable in the presence of SDS, Tween-40, Tween-60, and Tween-80 (1% and was found stimulatory effect, respectively. Only Triton-X-100 showed a moderate inhibitory effect (5% on amylase activity. This isolate (Bacillus tequilensis RG-01 may be useful in several industrial applications owing to its thermotolerant and organic solvents and surfactants resistance characteristics.

  11. Solvents, Ethanol, Car Crashes and Tolerance: How Risky is Inhalation of Organic Solvents?

    Science.gov (United States)

    A research program in the National Health and Environmental Effects Research Laboratory of the U.S. EPA has led to some surprising considerations regarding the potential hazard of exposure to low concentrations of solvent vapors. This program involved conducting experiments to ch...

  12. Correlation of the rates of solvolysis of α-bromoisobutyrophenone using both simple and extended forms of the Grunwald-Winstein equation and the application of correlation analysis to related studies.

    Science.gov (United States)

    Kevill, Dennis Neil; Kim, Chang-Bae; D'Souza, Malcolm John

    2018-03-01

    A Grunwald-Winstein treatment of the specific rates of solvolysis of α-bromoisobutyrophenone in 100% methanol and in several aqueous ethanol, methanol, acetone, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) mixtures gives a good logarithmic correlation against a linear combination of N T (solvent nucleophilicity) and Y Br (solvent ionizing power) values. The l and m sensitivity values are compared to those previously reported for α-bromoacetophenone and to those obtained from parallel treatments of literature specific rate values for the solvolyses of several tertiary mesylates containing a C(=O)R group attached at the α-carbon. Kinetic data obtained earlier by Pasto and Sevenair for the solvolyses of the same substrate in 75% aqueous ethanol (by weight) in the presence of silver perchlorate and perchloric acid are analyzed using multiple regression analysis.

  13. Influence of polar solvents on the enhancement of light-ends in ...

    African Journals Online (AJOL)

    Crude oil 'micelle' can be dispersed into fuels, oil and resin/asphalthene components using some hydrocarbon solvents. This can be adapted towards influencing/enhancing its product slates during the processing of crude oils. This research was carried out to investigate the effect of polar solvents (ethanol and acetone) in ...

  14. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-01-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g−1 at 1.5 A g−1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g−1 at 1.5 A g−1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors. PMID:28989753

  15. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Anil Kumar, Yedluri; Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-09-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

  16. Radiolytic degradation of octachlorodibenzo-p-dioxin and octachlorodibenzofuran in organic solvents and treatment of dioxin-containing liquid wastes

    International Nuclear Information System (INIS)

    Zhao Changli; Hirota, Koichi; Taguchi, Mitsumasa; Takigami, Machiko; Kojima, Takuji

    2007-01-01

    Degradations of octachlorodibenzo-p-dioxin (OCDD) and octachlorodibenzofuran (OCDF) were studied by 60 Co γ-ray in organic solvents: ethanol, n-nonane, and toluene. Both OCDD and OCDF were degraded more efficiently in ethanol than in n-nonane or toluene. The degradation is mainly attributed to electrons and in part to solvent radicals. The addition of ethanol to dioxin-containing liquid wastes enhanced effectively the degradation of dioxins; the liquid wastes did not exhibit the dioxin toxicity at a dose of 100 kGy

  17. The workings of a molecular thermometer: the vibrational excitation of carbon tetrachloride by a solvent.

    Science.gov (United States)

    Graham, Polly B; Matus, Kira J M; Stratt, Richard M

    2004-09-15

    An intriguing energy-transfer experiment was recently carried out in methanol/carbon tetrachloride solutions. It turned out to be possible to watch vibrational energy accumulating in three of carbon tetrachloride's modes following initial excitation of O-H and C-H stretches in methanol, in effect making those CCl(4) modes "molecular thermometers" reporting on methanol's relaxation. In this paper, we use the example of a CCl(4) molecule dissolved in liquid argon to examine, on a microscopic level, just how this kind of thermal activation occurs in liquid solutions. The fact that even the lowest CCl(4) mode has a relatively high frequency compared to the intermolecular vibrational band of the solvent means that the only solute-solvent dynamics relevant to the vibrational energy transfer will be extraordinarily local, so much so that it is only the force between the instantaneously most prominent Cl and solvent atoms that will significantly contribute to the vibrational friction. We use this observation, within the context of a classical instantaneous-pair Landau-Teller calculation, to show that energy flows into CCl(4) primarily via one component of the nominally degenerate, lowest frequency, E mode and does so fast enough to make CCl(4) an excellent choice for monitoring methanol relaxation. Remarkably, within this theory, the different symmetries and appearances of the different CCl(4) modes have little bearing on how well they take up energy from their surroundings--it is only how high their vibrational frequencies are relative to the solvent intermolecular vibrational band edge that substantially favors one mode over another.

  18. Solubility of {beta}-carotene in ethanol- and triolein-modified CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Canales, Roberto I. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Valle, Jose M. del [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.cl [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-12-15

    Highlights: > We measure solubility of {beta}-carotene in pure CO{sub 2}, and with ethanol and triolein as co-solvents. > We model the solubility of {beta}-carotene in pure CO{sub 2}, and with co-solvents. > The co-solvent effect of triolein over solubility of {beta}-carotene in CO{sub 2} was higher than ethanol. - Abstract: Modification of an experimental device and methodology improved speed and reproducibility of measurement of solubility of {beta}-carotene in pure and modified SuperCritical (SC) CO{sub 2} at (313 to 333) K. Solubilities of {beta}-carotene in pure CO{sub 2} at (17 to 34) MPa ranged (0.17 to 1.06) {mu}mol/mol and agreed with values reported in literature. The solubility of {beta}-carotene in CO{sub 2} modified with (1.2 to 1.6) % mol ethanol increased by a factor of 1.7 to 3.0 as compared to its solubility in pure CO{sub 2} under equivalent conditions. The concentration of triolein in equilibrated ternary (CO{sub 2} + {beta}-carotene + triolein) mixtures having excess triolein reached values (0.01 to 0.39) mmol/mol corresponding to its solubility in pure SC CO{sub 2} under equivalent conditions. Under these conditions, the solubility of {beta}-carotene in triolein-modified CO{sub 2} increased by a factor of up to 4.0 in relation with its solubility in pure CO{sub 2} at comparable system temperature and pressure, reaching an uppermost value of 3.3 {mu}mol/mol at 333 K and 32 MPa. Unlike in the case of ethanol, where enhancements in solubility where relatively independent on system conditions, solubility enhancements using triolein as co-solvent increased markedly with system pressure, being larger than using (1.2 to 1.6) % mol ethanol at about (24 to 28) MPa, depending on system temperature. The increase in the solubility {beta}-carotene in SC CO{sub 2} as a result of using ethanol or triolein as co-solvent apparently does not depend on the increase in density associated with the dissolution of the co-solvent in CO{sub 2}. Enhancements may be due

  19. Effect of methanol, n-hexane and aqueous extract of Irvingia ...

    African Journals Online (AJOL)

    Bush mango leaf (Irvingia gabonensis) is commonly used locally to treat diarrhoea. The present study evaluated the anti-diarrhoea effect of this plant extract on albino rats induced with castor oil. Fresh tender leaf of this plant was collected, air-dried, powdered and percolated in n-hexane, methanol and aqueous solvents.

  20. International cooperation on methanol-based fuel cells

    International Nuclear Information System (INIS)

    2000-01-01

    An international agreement on co-operation to study the use of cars powered by methanol-based fuel cells was signed in September 2000. This indicates that gas will have to compete on the future fuel market. According to the agreement, measures will be taken to ease the introduction of such cars when they are commercialized. Methanol represents a fuel that can be distributed throughout most of the world within realistic economical bounds by means of the existing infrastructure. A global market analysis based on the assumption that there will be a billion cars in the world by 2020 shows the great potential for the use of fuel cells. In addition, they are environmentally sound. Technological developments of fuel cells during the latest decade may render traditional combustion engines obsolete. Methanol is a liquid at room temperature and can be stored in the fuel tank just like ordinary fuels. Petrol, liquefied petroleum gas, natural gas, ethanol and methanol can all be used in a fuel cell engine, but since the technology is based on chemical energy conversion, the most suitable fuel is one that is hydrogen-rich and easily stored. Many experts favour liquid hydrogen. However, liquid hydrogen has many problems in common with liquefied natural gas or cooled liquid natural gas: about 25% of the energy is used in keeping the fuel in the liquid state

  1. Cascade catalysis in membranes with enzyme immobilization for multienzymatic conversion of CO2 to methanol

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2015-01-01

    .e. by directing membrane fouling formation), without any addition of organic solvent. Such coimmobilization and sequential immobilization systems were examined for the production of methanol from CO2 with formate dehydrogenase (FDH), formaldehyde dehydrogenase (FaldDH) and alcohol dehydrogenase (ADH). Enzyme...... for multi-enzymatic cascade systems, but also reveals the reaction bottleneck and provides possible solutions for the bioconversion of CO2 to methanol....

  2. Batch extraction modeling of jatropha oil using ethanol and n-hexane

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, Alessandro Araujo; Martins, Marcio Aredes [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola], E-mail: aredes@ufv.br; Santos, Karine Tennis dos [Universidade Federal de Vicosa (DEQ/UFV), MG (Brazil). Dept. de Quimica; Carneiro, Angelica Cassia de Oliveira [Universidade Federal de Vicosa (DFT/UFV), MG (Brazil). Dept. de Fitotecnia; Perez, Ronaldo [Universidade Federal de Vicosa (DTA/UFV), MG (Brazil). Dept. de Tecnologia de Alimentos

    2008-07-01

    Jatropha curcas (Linnaeus.) has been considered as a promising alternative for rainfall regimes from 200 to over 1500 mm per annum. The seed and the oil have many applications, such as purgative, in the treatment of skin infections and rheumatism, in the control of insects, mollusks and fungi, for diesel engines lubricants, in soap and paint production, and mainly for biodiesel production. New technologies should be developed to accomplish the oil production in large scale, since the Brazilian Biodiesel Program stimulates the oilseeds productions. In large scale oil production, the oil is obtained using solvent extraction. The solvent widely used for oil extraction is the n-hexane mainly because of its low vaporization temperature and selectivity to the lipidic fraction. However, the use of n-hexane in small capacity plants makes the process expensive because of high operating losses. Alcohols were exhaustively studied at pilot and industrial scales extraction plants. Ethanol is an efficient and advantageous extraction solvent for oilseeds, being an attractive alternative to extraction grade n-hexane. Therefore, the objective of the present work is to model and to compare the extraction kinetics of jatropha oil by using ethanol and n-hexane. Extractions experiments were performed in a batch extractor at 45 deg C using a liquid-to-solvent ratio of 15:1 (mL solvent/g sample). Samples were taken every 15 min, and extraction time was to 2 h. The kinetics of oil extraction data were fitted to the models reported in literature. For n-hexane and ethanol extractions, the fractional residual oil at 120 minutes was 0.314 and 0.0538, respectively. The models reported in literature were suitable to describe the n-hexane extraction, especially the Duggal model. However, those models were not adequate the model the ethanol extraction (author)

  3. Antifungal activity of methanolic root extract of Withania somnifera

    African Journals Online (AJOL)

    Proff.Adewunmi

    remedy for many diseases in various regions of the world, especially in ... For control, 2 mL of DMSO was added to 16 mL of water, and 4 mL of this .... 3E). Since the four organic solvents used for fractionation of methanolic root .... Purification of a Lectin-Like Antifungal Protein from the Medicinal Herb, Withania Somnifera.

  4. Adaptation of the autotrophic acetogen Sporomusa ovata to methanol accelerates the conversion of CO2 to organic products

    DEFF Research Database (Denmark)

    Tremblay, Pier-Luc; Höglund, Daniel; Koza, Anna

    2015-01-01

    , and biochemical studies revealed that the molecular mechanisms responsible for the novel characteristics of the adapted strain were associated with the methanol oxidation pathway and the Wood-Ljungdahl pathway of acetogens along with biosynthetic pathways, cell wall components, and protein chaperones. The results...... to grow quicker autotrophically with methanol, a toxic C1 compound, as the sole substrate. Better growth on different concentrations of methanol and with H2-CO2 indicated the adapted strain had a more efficient autotrophic metabolism and a higher tolerance to solvent. The growth rate on methanol...

  5. Electrokinetic transport of water and methanol in Nafion membranes as observed by NMR spectroscopy

    International Nuclear Information System (INIS)

    Hallberg, Fredrik; Vernersson, Thomas; Pettersson, Erik Thyboll; Dvinskikh, Sergey V.; Lindbergh, Goeran; Furo, Istvan

    2010-01-01

    Electrophoretic NMR (eNMR) and pulsed-field-gradient NMR (PFG-NMR) methods were used to study transport processes in situ and in a chemically resolved manner in the electrolyte of an experimental direct methanol fuel cell (DMFC) setup, constituted of several layers of Nafion 117. The measurements were conducted at room temperature for membranes fully swollen by methanol-water mixtures over a wide concentration interval. The experimental setup and the experimental protocol for the eNMR experiments are discussed in detail. The magnitude of the water and methanol self-diffusion coefficients show a good agreement with previously published data while the ratio of the two self-diffusion coefficients may indicate an imperfect mixing of the two solvent molecules. On the molecular level, the drag of water and methanol molecules by protons is roughly of the same magnitude, with the drag of methanol molecules increasing with increasing methanol content. The electro-osmotic drag defined on mass-flow basis increased for methanol from a low level with increasing methanol concentration while that of water remained roughly constant.

  6. Preparation and physicochemical characteristics of polylactide microspheres of emamectin benzoate by modified solvent evaporation/extraction method.

    Science.gov (United States)

    Zhang, Shao Fei; Chen, Peng Hao; Zhang, Fei; Yang, Yan Fang; Liu, De Kun; Wu, Gang

    2013-12-18

    Emamectin benzoate is highly effective against insect pests and widely used in the world. However, its biological activity is limited because of high resistance of target insects and rapid degradation speed in fields. Preparation and physicochemical characterization of degradable microcapsules of emamectin benzoate were studied by modified solvent evaporation/extraction method using polylactide (PLA) as wall material. The influence of different compositions of the solvent in internal organic phase and external aqueous phase on diameter, span, pesticide loading, and entrapment rate of the microspheres was investigated. The results indicated that the process of solvent extraction and the formation of the microcapsules would be accelerated by adding water-miscible organic solvents such as ethyl ether, acetone, ethyl acetate, or n-butanol into internal organic phase and external aqueous phase. Accelerated formation of the microcapsules would result in entrapment rates of emamectin benzoate increased to as high as 97%. In addition, by adding ethanol into the external aqueous phase, diameters would reduce to 6.28 μm, whereas the loading efficiency of emamectin benzoate did not increase. The PLA microspheres prepared under optimum conditions were smoother and more spherical. The degradation rate in PLA microspheres of emamectin benzoate on the 10th day was 4.29 ± 0.74%, whereas the degradation rates of emamectin benzoate in methanol solution and solid technical material were 46.3 ± 2.11 and 22.7 ± 1.51%, respectively. The PLA skeleton had combined with emamectin benzoate in an amorphous or molecular state by using differential scanning calorimetry (DSC) determination. The results indicated that PLA microspheres of emamectin benzoate with high entrapment rate, loading efficiency, and physicochemical characteristics could be obtained by adding water-miscible organic solvents into the internal organic phase and external aqueous phase.

  7. PHYTOCHEMICALS ANALYSIS AND TLC FINGERPRINTING OF METHANOLIC EXTRACTS OF THREE MEDICINAL PLANTS

    OpenAIRE

    Dutta Jayashree

    2013-01-01

    The present work is done on three medicinal plants (Enhydra fluctuans, Lecuas aspera and Dillinia indica) in order to investigate the presence of the various types of Phytoconstituents. The leaves of all three plants were extracted using methanol as solvents. For the purpose of phytochemical investigation, Preliminary qualitative chemical test and TLC were mainly used. Thin layer chromatography (TLC) has been carried out on all the three plants in two different solvent systems, which showed d...

  8. Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen

    Science.gov (United States)

    Salnikov, Oleg G.; Kovtunov, Kirill V.; Koptyug, Igor V.

    2015-09-01

    An experimental approach for the production of catalyst-free hyperpolarised ethanol solution in water via heterogeneous hydrogenation of vinyl acetate with parahydrogen and the subsequent hydrolysis of ethyl acetate was demonstrated. For an efficient hydrogenation, liquid vinyl acetate was transferred to the gas phase by parahydrogen bubbling and almost completely converted to ethyl acetate with Rh/TiO2 catalyst. Subsequent dissolution of ethyl acetate gas in water containing OH- ions led to the formation of catalyst- and organic solvent-free hyperpolarised ethanol and sodium acetate. These results represent the first demonstration of catalyst- and organic solvent-free hyperpolarised ethanol production achieved by heterogeneous hydrogenation of vinyl acetate vapour with parahydrogen and the subsequent ethyl acetate hydrolysis.

  9. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  10. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L. on Two Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Bipul Biswas

    2013-01-01

    Full Text Available Aim. To determine the antimicrobial potential of guava (Psidium guajava leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water. The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  11. Theoretical prediction of pKa in methanol: testing SM8 and SMD models for carboxylic acids, phenols, and amines.

    Science.gov (United States)

    Miguel, Elizabeth L M; Silva, Poliana L; Pliego, Josefredo R

    2014-05-29

    Methanol is a widely used solvent for chemical reactions and has solvation properties similar to those of water. However, the performance of continuum solvation models in this solvent has not been tested yet. In this report, we have investigated the performance of the SM8 and SMD models for pKa prediction of 26 carboxylic acids, 24 phenols, and 23 amines in methanol. The gas phase contribution was included at the X3LYP/TZVPP+diff//X3LYP/DZV+P(d) level. Using the proton exchange reaction with acetic acid, phenol, and ammonia as reference species leads to RMS error in the range of 1.4 to 3.6 pKa units. This finding suggests that the performance of the continuum models for methanol is similar to that found for aqueous solvent. Application of simple empirical correction through a linear equation leads to accurate pKa prediction, with uncertainty less than 0.8 units with the SM8 method. Testing with the less expensive PBE1PBE/6-311+G** method results in a slight improvement in the results.

  12. Esterification with ethanol to produce biodiesel from high acidity raw materials. Kinetic studies and analysis of secondary reactions

    Energy Technology Data Exchange (ETDEWEB)

    Pisarello, M.L.; Dalla Costa, B.; Mendow, G.; Querini, C.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE)-(FIQ-UNL, CONICET), Santiago del Estero 2654-Santa Fe, S3000AOJ (Argentina)

    2010-09-15

    In this work, the esterification reaction of free fatty acids (FFA) in sunflower oil, coconut oil and concentrated FFA, with ethanol, methanol and ethanol 96%, using homogeneous acid catalysts to produce biodiesel is studied. Kinetic parameters are estimated with a simplified model, and then used to predict the reaction behavior. Reactions other than the reversible esterification are considered to explain the behavior that this system displays. Such reactions are the triglycerides conversion by acid catalyzed transesterification and hydrolysis. In addition, we include kinetic studies of the reaction that occur between the sulphuric acid and methanol (or ethanol), forming mono and dialkylsulphates. This reaction produces water and consumes methanol (or ethanol), and consequently has a direct impact in the esterification reaction rate and equilibrium conversion. The concentration of sulphuric acid decreases to less than 50% of the initial value due to the reaction with the alcohol. A minimum in the acidity due to the free fatty acids as a function of time was clearly observed during the reaction, which has not been reported earlier. This behavior is related to the consecutive reactions that take place during the esterification of FFA in the presence of triglycerides. The phase separation due to the presence of water, which is generated during the reaction, is also studied. (author)

  13. Kinetic solvent isotope effects in the additions of bromine and 4-chlorobenzenesulfenyl chloride to alkenes and alkynes

    International Nuclear Information System (INIS)

    Modro, A.; Schmid, G.H.; Yates, K.

    1979-01-01

    The rates of bromination of selected alkenes and alkynes in methanol/methanol-d, acetic acid/acetic acid-d, and formic acid/formic acid-d have a nearly constant value of k/sub H//k/sub D/ = 1.23 +- 0.02. This kinetic solvent isotope effect is attributed to specific electrophilic solvation of the incipient bromide anion by hydrogen bonding in the rate-determining transition state. The rates of bromination were measured in two solvents having the same values of the solvent parameter Y but different nucleophilicities in order to assess the importance of nucleophilic solvation. Significant nucleophilic solvent assistance is found for only alkylacetylenes. The kinetic solvent isotope effects of the addition of 4-chlorobenzenesulfenyl chloride to selected alkenes and alkynes in acetic acid/acetic acid-d vary from 1.00 to 1.28. These data are consistent with two mechanisms: one involves a tetravalent sulfur intermediate while the second is the sulfur analogue of the S/sub N/2 mechanism

  14. Multi-photon ionization of atoms and molecules by intense XUV-FEL light. Application to methanol and ethanol molecules

    International Nuclear Information System (INIS)

    Sato, Takahiro; Iwasaki, Atsushi; Okino, Tomoya; Yamanouchi, Kaoru; Yagishita, Akira; Yazawa, Hiroki; Kannari, Fumihiko; Aoyama, Makoto; Yamakawa, Koichi; Midorikawa, Katsumi; Nakano, Hidetoshi; Yabashi, Makina; Nagasono, Mitsuru; Higashiya, Atsushi; Togashi, Tadashi; Ishikawa, Tetsuya

    2009-01-01

    The photo-ionization processes of methanol (CH 3 OH, CD 3 OH) and ethanol (C 2 H 5 OH) and their dependences on the wavelength and the light-field intensity were investigated using intense XUV light at 51 and 61 nm at the XUV free electron laser facility of RIKEN SPring-8 Center. The light field intensity achieved at 51 nm was found to be intense enough to generate Ar 7+ from Ar. It was confirmed that (1) the stable dications, CH 2 OH 2+ and CH 2 OD 2+ , were produced respectively from CH 3 OH and CD 3 OH, and C 2 H 2 OH 2+ from CH 2 H 5 OH via the direct and/or stepwise two-photon absorption, and (2) C + and CH + were produced from C 2 H 5 OH via the stepwise two-photon absorption of the XUV light. It was also confirmed by the formation of H 3 O + from CH 3 OH and C 2 H 5 OH, and HOD 2 + from CD 3 OH that hydrogen migration processes were induced by the irradiation of the intense XUV light. (author)

  15. Stabilization of Empty Fruit Bunch derived Bio-oil using Solvents

    Directory of Open Access Journals (Sweden)

    Chung Loong Yiin

    2016-03-01

    Full Text Available The intention of this research was to select the ideal condition for accelerated aging of bio-oil and the consequences of additive in stabilizing the bio-oil. The bio-oil was produced from the catalytic pyrolysis of empty fruit bunch. The optimum reaction conditions applied to obtain the utmost bio-oil yield were 5 wt% of H-Y catalyst at reaction temperature of 500 °C and nitrogen flow rate of 100 ml/min. A 10 wt% of solvents including acetone, ethanol, and ethyl acetate were used to study the bio-oil’s stability. All the test samples were subjected to accelerated aging at temperature of 80 oC for 7 days. The properties of samples used as the indicator of aging were viscosity and water content. The effectiveness of solvents increased in the following order: acetone, ethyl acetate, and 95 vol% ethanol. Based on the result of Gas chromatography-mass spectrometry (GC-MS, it could impede the chain of polymerization by converting the active units in the oligomer chain to inactive units. The solvent reacted to form low molecular weight products which resulted in lower viscosity and lessen the water content in bio-oil. Addition of 95 vol% ethanol also inhibited phase separation.

  16. semicarbazide manganese (ii)

    African Journals Online (AJOL)

    DR. AMINU

    Department of Chemistry Bayero University, P. M. B. 3011, Kano, Nigeria. E-mail: ... organic solvents but are readily soluble in methanol and ethanol. The molar ... aldehyde or a ketone yields Schiff base (Holm et al.,. 1966; Hobday and Smith, ...

  17. Green synthesis of tri/tetrasubstituted 1H-imidazoles and 2,3 ...

    Indian Academy of Sciences (India)

    carried out in polar solvents such as ethanol, methanol, acetic acid, dimethylformamide (DMF), and dimethyl- sulfoxide (DMSO), leading to complex ... few drops of water (0.3 mL), 0.210 g (1 mmole) ben- zil was added at room temperature.

  18. Cm3+-F- interaction in a mixed system of methanol and water

    International Nuclear Information System (INIS)

    Satoh, I.; Watanabe, T.; Ishii, Y.; Kawasaki, M.; Suganuma, H.

    2003-01-01

    The stability constants (β 1 ) of the monofluoro complex of Cm(III) have been determined in mixed solvents of methanol and water using the solvent extraction technique. The values of Inβ 1 increase as the molar fraction of methanol (X s ) in the mixed solvent increases. The variation in the stability constants mainly depends on the solvation of F - and slightly depends on both (1) the solvation of cations in connection with the complexation of CmF 2+ and (2) the electrostatic attraction of Cm 3+ -F - . The variation in Inβ 1 for Cm(III) due to the effect of both (1) and (2) is similar to that for Sm(III). By variation of Inβ 1 the coordination number in the primary hydration sphere (CN) of Cm(III) decreased from a value between CN = 9 and CN = 8 to CN = 8, at about X s = 0.02. The X s value of the inflection point of the CN for Cm is slightly lower than X s = 0.06 for Sm(III) and X s = 0.03 for Eu(III), previously obtained. (author)

  19. Ethanol exposure can inhibit red spruce ( Picea rubens ) seed germination

    Science.gov (United States)

    John R. Butnor; Brittany M. Verrico; Victor Vankus; Stephen R. Keller

    2018-01-01

    Flotation of seeds in solvents is a common means of separating unfilled and filled seeds. While a few protocols for processing red spruce (Picea rubens) seeds recommend ethanol flotation, delayed and reduced germination have been reported. We conducted an ethanol bioassay on seeds previously stored at -20°C to quantify the concentration required to separate red spruce...

  20. Application of Óbidos “Ginginha” by-products in topical formulations: Apreliminary study

    Directory of Open Access Journals (Sweden)

    Elisabete Maurício

    2013-06-01

    Full Text Available In recent years many studies on cherries have revealed that they are rich sources of bioactive compounds, mainly due to their polyphenolic phytochemicals. In this work, by-products of the sour cherry (Prunus cerasus L. used in the Óbidos liquor from Portugal, were evaluated by determination of their total phenolic and anthocyanins contents. The mix samples (leaves and stems and pomace (skins with and without kernels were extracted by maceration using two different extraction methods with different solvents: ethanol and methanol. Overall, significant differences were observed between all the extracts in relation to the solvent used and anthocyanin and phenol contents. Stem and leaf extracts showed a polyphenol concentration higher than those from pomace. For all samples the total phenolic and anthocyanin contents were higher in methanol extracts than in ethanol extracts showing that methanol was the best solvent. For the pomace extracts the samples without kernels (skin samples gave the highest values for both parameters. The tested cherry stems and pomace could be regarded as a promising agro-industrial by-product, being a low-cost polyphenols source, with potential to be added in functional cosmetics formulations. Further studies will be conducted to address their potential use as an antioxidant ingredient.