WorldWideScience

Sample records for solvent metal cleaning

  1. Comparative study of aqueous and solvent methods for cleaning metals

    International Nuclear Information System (INIS)

    Briggs, J.L.; Goad, H.A.

    1976-01-01

    Studies were performed to determine the comparative effectiveness of solvent and aqueous detergent methods for cleaning various metals. The metals investigated included 304L stainless steel, beryllium, uranium-6.5 wt percent niobium alloy, and unalloyed uranium ( 238 U). The studies were initiated in response to governmental regulations restricting the use of some chlorinated solvents. Results showed that aqueous detergent cleaning was more effective than solvents, i.e. trichloroethylene and methyl chloroform, for the removal of light industrial soils. The subsequent adoption of aqueous cleaning at this plant has facilitated waste disposal, which contributed to recorded economic savings. The controlled use of aqueous detergents is environmentally acceptable and has decreased the hazards of fire and toxicity that are generally associated with solvents. 8 tables, 15 figures

  2. Nonhazardous solvent composition and method for cleaning metal surfaces

    International Nuclear Information System (INIS)

    Googin, J.M.; Simandl, R.F.; Thompson, L.M.

    1993-01-01

    A solvent composition for displacing greasy and oily contaminants as well as water and/or aqueous residue from metallic surfaces, especially surfaces of radioactive materials so that such surfaces can be wiped clean of the displaced contaminants, water and/or aqueous residue. The solvent composition consists essentially of a blend of nonpolar aliphatic hydrocarbon solvent having a minimum flash point of about 140 F and 2 to 25 volume percent of a polar solvent having a flash point sufficiently high so as to provide the solvent composition with a minimum flash point of at least 140 F. The solvent composition is nonhazardous so that when it is used to clean the surfaces of radioactive materials the waste in the form of paper or cloth wipes, lab coats and the like used in the cleaning operation is not considered to be mixed waste composed of a hazardous solvent and a radioactive material

  3. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    To control chemical hazards in work places, substitution of harmful substances with less harmful or non-toxic products is now a method used in many countries and in many companies. It has previously been demonstrated that it is desirable and possible to use non-volatile, low-toxic vegetable...... cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  4. Canyon solvent cleaning

    International Nuclear Information System (INIS)

    Reif, D.J.

    1986-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributylphosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, produce decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown the carbonate washing, although removing residual solvent activity does not remove binding ligands that hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  5. Canyon solvent cleaning with activated alumina

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    This paper presents recent work at SRL concerning the cleaning of solvent extraction solvent used at SRP. The paper explains why we undertook the work, and some laboratory studies on two approaches to solvent cleaning, namely extended carbonate washing and use of solid adsorbents. The paper then discusses scale-up of the preferred method and the results of the full-scale cleaning. 19 figs

  6. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  7. Canyon solvent cleaning with solid adsorbents

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    The HM Process at the Savannah River Plant (SRP) uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands that hold fission products in the solvent. Treatment of solvent with a solid adsorbent removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale adsorption process and the use of the process to clean HM Process first cycle solvent are presented

  8. 29 CFR 1915.32 - Toxic cleaning solvents.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Toxic cleaning solvents. 1915.32 Section 1915.32 Labor... Preservation § 1915.32 Toxic cleaning solvents. (a) When toxic solvents are used, the employer shall employ one or more of the following measures to safeguard the health of employees exposed to these solvents. (1...

  9. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  10. 40 CFR 52.246 - Control of dry cleaning solvent vapor losses.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control of dry cleaning solvent vapor... cleaning solvent vapor losses. (a) For the purpose of this section, “dry cleaning operation” means that process by which an organic solvent is used in the commercial cleaning of garments and other fabric...

  11. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  12. Solvent substitutes

    International Nuclear Information System (INIS)

    Evanoff, S.P.

    1995-01-01

    The environmental and industrial hygiene regulations promulgated since 1980, most notably the Superfund Amendments and Reauthorization Act (SARA), the Hazardous and Solid Waste Amendments to the Resources Conservation and Recovery Act (RCRA), and the Clean Air Act Amendments of 1990, have brought about an increased emphasis on user exposure, hazardous waste generation, and air emissions. As a result, industry is performing a fundamental reassessment of cleaning solvents, processes, and procedures. The more progressive organizations have made their goal the elimination of solvents that may pose significant potential human health and environmental hazards. This chapter discusses solvent cleaning in metal-finishing, metal-manufacturing, and industrial maintenance applications; precision cleaning; and electronics manufacturing. Nonmetallic cleaning, adhesives, coatings, inks, and aerosols also will be addressed, but in a more cursory manner

  13. Cleaning up our act: Alternatives for hazardous solvents used in cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Shoemaker, J.D.; Meltzer, M.; Miscovich, D.; Montoya, D.; Goodrich, P.; Blycker, G.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL) has studied more than 70 alternative cleaners as potential replacements for chlorofluorocarbons (CFCs), halogenated hydrocarbons (e.g., trichloroethylene and trichloroethane), hydrocarbons (e.g., toluene and Stoddard Solvent), and volatile organic compounds (e.g., acetone, alcohols). This report summarizes LLNL`s findings after testing more than 45 proprietary formulations on bench-scale testing equipment and in more than 60 actual shops and laboratories. Cleaning applications included electronics fabrication, machine shops, optical lenses and hardware, and general cleaning. Most of the alternative cleaners are safer than the solvents previously used and many are nonhazardous, according to regulatory criteria.

  14. Cleaning up our act: Alternatives for hazardous solvents used in cleaning

    International Nuclear Information System (INIS)

    Shoemaker, J.D.; Meltzer, M.; Miscovich, D.; Montoya, D.; Goodrich, P.; Blycker, G.

    1994-01-01

    Lawrence Livermore National Laboratory (LLNL) has studied more than 70 alternative cleaners as potential replacements for chlorofluorocarbons (CFCs), halogenated hydrocarbons (e.g., trichloroethylene and trichloroethane), hydrocarbons (e.g., toluene and Stoddard Solvent), and volatile organic compounds (e.g., acetone, alcohols). This report summarizes LLNL's findings after testing more than 45 proprietary formulations on bench-scale testing equipment and in more than 60 actual shops and laboratories. Cleaning applications included electronics fabrication, machine shops, optical lenses and hardware, and general cleaning. Most of the alternative cleaners are safer than the solvents previously used and many are nonhazardous, according to regulatory criteria

  15. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  16. 40 CFR Appendix A to Subpart T of... - Test of Solvent Cleaning Procedures

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Test of Solvent Cleaning Procedures A... CATEGORIES National Emission Standards for Halogenated Solvent Cleaning Pt. 63, Subpt. T, App. A Appendix A to Subpart T of Part 63—Test of Solvent Cleaning Procedures General Questions ___ 1. What is the...

  17. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  18. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  19. Update-processing steam generator cleaning solvent at Palo Verde

    International Nuclear Information System (INIS)

    Peters, G.

    1996-01-01

    Framatome Technologies Inc.(FTI) recently completed the steam generator chemical cleanings at the Palo Verde Nuclear Generating Station Units 1, 2 and 3. Over 500,000 gallons of low-level radioactive solvents were generated during these cleanings and were processed on-site. Chemical cleaning solutions containing high concentrations of organic chelating wastes are difficult to reduce in volume using standard technologies. The process that was ultimately used at Palo Verde involved three distinct processing steps: The evaporation step was conducted using FTI's submerged combustion evaporator (SCE) that has also been successfully used at Arkansas Nuclear One - Unit 1, Three Mile Island - Unit 1, and Oconee on similar waste. The polishing step of the distillate used ultrafiltration (UF) and reverse osmosis (RO) technology that was also used extensively by Ontario Hydro to assist in their processing of chemical cleaning solvent. This technology, equipment, and operations personnel were provided by Zenon Environmental, Inc. The concentrate from the evaporator was absorbed with a special open-quotes peat mossclose quotes based media that allowed it to be shipped and buried at the Environcare of Utah facility. This is the first time that this absorption media or burial site has been used for chemical cleaning solvent

  20. Substitution of Organic Solvents in Selected Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas; Rasmussen, Pia Brunn

    1997-01-01

    Volatile organic solvents (VOC)are becoming increasingly unwanted in industrial processes. Substitution of VOC with non-volatile, low-toxic compounds is a possibility to reduce VOC-use. It has been successfully demonstrated, that organic solvents used in cleaning processes in sheet offset printing...

  1. Determination of a cleaning and decontamination process using solvents

    International Nuclear Information System (INIS)

    Boutot, P.; Schipfer, P.

    1967-03-01

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors) [fr

  2. Industrial rag cleaning process for the environmentally safe removal of petroleum-based solvents

    International Nuclear Information System (INIS)

    Fierro, J.V.

    1993-01-01

    A process for the cleaning of industrial rags contaminated with environmentally unsafe petroleum-based solvent is described, comprising the step of: (a) placing a load of the industrial rags in a mechanically driven rotary drum; (b) revolving the drum at a high speed sufficient to physically extract liquid petroleum-based solvent contaminate from the industrial rags; (c) routing the extracted petroleum-based solvent contaminate from the rotary drum to a waste solvent collection line for environmentally safe disposal; (d) revolving the rotary drum to cause a tumbling of the industrial rags while maintaining the temperature within the drum at below the flash point of the petroleum-based solvent; (e) intermittently forcing cold air and hot air through the rotary drum to vaporize solvent from the industrial rags; (f) routing the vaporized petroleum-based solvent contaminant from the rotary drum to a condenser wherein the petroleum-based solvent contaminate is condensed and thereafter further routing said condensed solvent to a waste collection line for environmentally safe disposal; and (g) cleaning the industrial rags in the presence of a dry cleaning solvent to remove residual petroleum-based solvents and soil

  3. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  4. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  5. Cleaning of biomaterial surfaces: protein removal by different solvents.

    Science.gov (United States)

    Kratz, Fabian; Grass, Simone; Umanskaya, Natalia; Scheibe, Christian; Müller-Renno, Christine; Davoudi, Neda; Hannig, Matthias; Ziegler, Christiane

    2015-04-01

    The removal of biofilms or protein films from biomaterials is still a challenging task. In particular, for research investigations on real (applied) surfaces the reuse of samples is of high importance, because reuse allows the comparison of the same sample in different experiments. The aim of the present study was to evaluate the cleaning efficiency of different solvents (SDS, water, acetone, isopropanol, RIPA-buffer and Tween-20) on five different biomaterials (titanium, gold, PMMA (no acetone used), ceramic, and PTFE) with different wettability which were covered by layers of two different adsorbed proteins (BSA and lysozyme). The presence of a protein film after adsorption was confirmed by transmission electron microscopy (TEM). After treatment of the surfaces with the different solvents, the residual proteins on the surface were determined by BCA-assay (bicinchoninic acid assay). Data of the present study indicate that SDS is an effective solvent, but for several protein-substrate combinations it does not show the cleaning efficiency often mentioned in literature. RIPA-buffer and Tween-20 were more effective. They showed very low residual protein amounts after cleaning on all examined material surfaces and for both proteins, however, with small differences for the respective substrate-protein combinations. RIPA-buffer in combination with ultrasonication completely removed the protein layer as confirmed by TEM. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Critical cleaning agents for Di-2-ethylhexyl sebacate.

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, Mya; Archuleta, Kim M.

    2013-08-01

    It is required that Di-2-ethylhexyl Sebacate oil, also commonly known as Dioctyl Sebacate oil, be thoroughly removed from certain metals, in this case stainless steel parts with narrow, enclosed spaces. Dioctyl Sebacate oil is a synthetic oil with a low compressibility. As such, it is ideally used for high pressure calibrations. The current method to remove the Dioctyl Sebacate from stainless steel parts with narrow, enclosed spaces is a labor-intensive, multi-step process, including a detergent clean, a deionized (DI) water rinse, and several solvent rinses, to achieve a nonvolatile residue of 0.04 mg per 50 mL rinse effluent. This study was undertaken to determine a superior detergent/solvent cleaning method for the oil to reduce cleaning time and/or the amount of detergent/solvent used. It was determined that while some detergent clean the oil off the metal better than the current procedure, using only solvents obtained the best result. In addition, it can be inferred, based on elevated temperature test results, that raising the temperature of the oil-contaminated stainless steel parts to approximately 50ÀC will provide for improved cleaning efficacy.

  7. Cleaning of dismantled metals by electropolishing

    International Nuclear Information System (INIS)

    Wei, T.Y.; Chung, Z.J.; Lu, D.L.; Hsieh, J.C.

    1995-01-01

    A project of cleaning dismantled metals is going on at INER. The test work has been performed. Results showed that the activity decreased from 45 microSv/h to background level after 20 minutes electrolytic polishing. These cleaned metals could be reused through melting and fabricating. These metals could also be classified as BRC waste to facilitate the waste management if they can pass the identification and be admitted by the government authority. In order to achieve the planned target, some electro-decontamination facilities have been established. An automatic electropolishing facility with six cells was designed to clean the contaminated metals in plate type with dimensions less than 50 cm x 50 cm. Another automatic electropolishing facility was specially designed for treating the contaminated pipes. In addition, mobile electropolishing facilities were also established for large pieces of metal and some fixed equipment. In this cleaning project, a practical recycling and treatment method for electrolyte has been developed in order to comply with the requirement of secondary waste minimization

  8. 75 FR 34647 - Approval of the Clean Air Act, Section 112(l), Authority for Hazardous Air Pollutants: Air...

    Science.gov (United States)

    2010-06-18

    ... Solvent NESHAP for cleaning or drying parts, except any cold cleaning machine that uses a solvent which... cleaning machines in which parts such as film, coils, wire, and metal strips are cleaned at speeds... requires each cleaning machine to have [[Page 34650

  9. Cleaning metal filters by pulse-jet

    International Nuclear Information System (INIS)

    Pickard, P.; Perry, R.A.

    1986-01-01

    Cleanable metal filters have an established use in the Nuclear Industry. The filters that have been installed in the past have not proved to be sufficiently cleanable. A series of tests were undertaken to study the application of pulse-jet cleaning to metal fibre filter elements. The efficiency of dust removal was examined under various operating conditions. A very high degree of particulate removal was achieved, with a return to almost clean pressure drop. The effectiveness of cleaning was found to vary inversely with blowback pressure. The position of the blowback nozzle with respect to the filter element throat was also found to be important to cleaning efficiency. Under the test conditions the effect of re-entrainment when cleaning on line was found to be minimal. (author)

  10. Carbon dioxide cleaning pilot project

    International Nuclear Information System (INIS)

    Knight, L.; Blackman, T.E.

    1994-01-01

    In 1989, radioactive-contaminated metal at the Rocky Flats Plant (RFP) was cleaned using a solvent paint stripper (Methylene chloride). One-third of the radioactive material was able to be recycled; two-thirds went to the scrap pile as low-level mixed waste. In addition, waste solvent solutions also required disposal. Not only was this an inefficient process, it was later prohibited by the Resource Conservation and Recovery Act (RCRA), 40 CFR 268. A better way of doing business was needed. In the search for a solution to this situation, it was decided to study the advantages of using a new technology - pelletized carbon dioxide cleaning. A proof of principle demonstration occurred in December 1990 to test whether such a system could clean radioactive-contaminated metal. The proof of principle demonstration was expanded in June 1992 with a pilot project. The purpose of the pilot project was three fold: (1) to clean metal so that it can satisfy free release criteria for residual radioactive contamination at the Rocky Flats Plant (RFP); (2) to compare two different carbon dioxide cleaning systems; and (3) to determine the cost-effectiveness of decontamination process in a production situation and compare the cost of shipping the metal off site for waste disposal. The pilot project was completed in August 1993. The results of the pilot project were: (1) 90% of those items which were decontaminated, successfully met the free release criteria , (2) the Alpheus Model 250 was selected to be used on plantsite and (3) the break even cost of decontaminating the metal vs shipping the contaminated material offsite for disposal was a cleaning rate of 90 pounds per hour, which was easily achieved

  11. Selective metal-vapor deposition on solvent evaporated polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, Koji; Tsujioka, Tsuyoshi, E-mail: tsujioka@cc.osaka-kyoiku.ac.jp

    2015-12-31

    We report a selective metal-vapor deposition phenomenon based on solvent printing and evaporation on polymer surfaces and propose a method to prepare fine metal patterns using maskless vacuum deposition. Evaporation of the solvent molecules from the surface caused large free volumes between surface polymer chains and resulted in high mobility of the chains, enhancing metal-vapor atom desorption from the surface. This phenomenon was applied to prepare metal patterns on the polymer surface using solvent printing and maskless metal vacuum deposition. Metal patterns with high resolution of micron scale were obtained for various metal species and semiconductor polymer substrates including poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] and poly(3-hexylthiophene-2,5-diyl). - Highlights: • Selective metal-vapor deposition using solvent evaporation on polymer was attained. • Metal patterns with high resolution were obtained for various metal species. • This method can be applied to achieve fine metal-electrodes for polymer electronics.

  12. Physical-chemical purification of power metal optics for increasing its service life

    Science.gov (United States)

    Filin, S. A.; Rogalin, V. E.; Kaplunov, I. A.; Zingerman, K. M.

    2017-12-01

    In order to increase the resource of power metal optics, the features of the choice of solvents for its physical and chemical cleaning are investigated. During cleaning, on the contaminated surface there remain visually observed white film of alkali and alkaline earth metal salts, insoluble by this class of solvents, and iridescent bands from the interaction of hydrocarbons with metal, and this degrades optical properties and reduces the life of mirrors. It is demonstrated that, with the use of solvents, it is necessary to inhibit the interaction of hydrocarbons with mirrors by the stabilization of solvents or by selection of cleaning regimes.

  13. Accelerated solvent extraction method with one-step clean-up for hydrocarbons in soil

    International Nuclear Information System (INIS)

    Nurul Huda Mamat Ghani; Norashikin Sain; Rozita Osman; Zuraidah Abdullah Munir

    2007-01-01

    The application of accelerated solvent extraction (ASE) using hexane combined with neutral silica gel and sulfuric acid/ silica gel (SA/ SG) to remove impurities prior to analysis by gas chromatograph with flame ionization detector (GC-FID) was studied. The efficiency of extraction was evaluated based on the three hydrocarbons; dodecane, tetradecane and pentadecane spiked to soil sample. The effect of ASE operating conditions (extraction temperature, extraction pressure, static time) was evaluated and the optimized condition obtained from the study was extraction temperature of 160 degree Celsius, extraction pressure of 2000 psi with 5 minutes static extraction time. The developed ASE with one-step clean-up method was applied in the extraction of hydrocarbons from spiked soil and the amount extracted was comparable to ASE extraction without clean-up step with the advantage of obtaining cleaner extract with reduced interferences. Therefore in the developed method, extraction and clean-up for hydrocarbons in soil can be achieved rapidly and efficiently with reduced solvent usage. (author)

  14. Investigation of Alternative Approaches for Cleaning Mott Porous Metal Filters

    International Nuclear Information System (INIS)

    Poirier, M.R.

    2003-01-01

    The Department of Energy selected Caustic Side Solvent Extraction (CSSX) as the preferred cesium removal technology for Savannah River Site (SRS) waste. As a pretreatment step for the CSSX flowsheet, the incoming salt solution that contains entrained sludge is contacted with monosodium titanate (MST) to adsorb strontium and select actinides. The resulting slurry is filtered to remove the sludge and MST. Filter fouling occurs during this process. At times, personnel can increase the filtrate rate by backpulsing or scouring. At other times, the filtrate rate drops significantly and only chemical cleaning will restore filter performance. The current baseline technology for filter cleaning uses 0.5 M oxalic acid. The Salt Processing Project (SPP) at SRS, through the Tanks Focus Area, requested an evaluation of other cleaning agents to determine their effectiveness at removing trapped sludge and MST solids compared with the baseline oxalic acid method. A review of the technical literature identified compounds that appear effective at dissolving solid compounds. Consultation with the SPP management team, engineering personnel, and researchers led to a selection of oxalic acid, nitric acid, citric acid, and ascorbic acid for testing. Tests used simulated waste and actual waste as follows. Personnel placed simulated or actual SRS High Level Waste sludge and MST in a beaker. They added the selected cleaning agents, stirred the beakers, and collected supernate samples periodically analyzing for dissolved metals

  15. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  16. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  17. Microwave-assisted clean synthesis of amides via aza-wittig reaction under solvent-free condition

    Energy Technology Data Exchange (ETDEWEB)

    Sathishkumar, Murugan; Nagarajan, Sangaraiah; Velan, Poovan Shanmuga; Dinesh, Murugan; Ponnuswamy, Alagusundaram [Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Tamilnadu (India)

    2011-09-15

    A solvent-free microwave-assisted coupling of phosphazenes with acyl chlorides or carboxylic anhydrides in presence of triethylphosphite has been accomplished resulting in a clean synthesis of amides in good yields. Unlike the prevailing time-consuming solution phase methodologies employing chlorinated solvents, benzene (carcinogenic), etc, the present protocol is an eco friendly, rapid and simple approach. (author)

  18. Process for cleaning radioactively contaminated metal surfaces

    International Nuclear Information System (INIS)

    Mihram, R.G.; Snyder, G.A.

    1975-01-01

    A process is described for removing radioactive scale from a ferrous metal surface, including the steps of initially preconditioning the surface by contacting it with an oxidizing solution (such as an aqueous solution of an alkali metal permanganate or hydrogen peroxide), then, after removal or decomposition of the oxidizing solution, the metallic surface is contacted with a cleaning solution which is a mixture of a mineral acid and a complexing agent (such as sulfuric acid and oxalic acid), and which preferably contains a corrosion inhibitor. A final step in the process is the treatment of the spent cleaning solution containing radioactive waste materials in solution by adding a reagent selected from the group consisting of calcium hydroxide or potassium permanganate and an alkali metal hydroxide to thereby form easily recovered metallic compounds containing substantially all of the dissolved metals and radioactivity. (auth)

  19. Ultrasonic and immersion cleaning: a comparison using aqueous and fluorocarbon solvents

    International Nuclear Information System (INIS)

    Bond, R.D.; Kearsey, A.

    1984-11-01

    Decontamination is a necessary process in reducing radiation levels in the working environment in the nuclear industry. Components from active areas which require decontamination for re-use or maintenance operations. In this report, a typical chemical cleaning process using liquid pumping, airagitation and physical movement for agitation is compared with ultrasonic cleaning, now an established cleaning process in many industries. The chosen traditional method is immersion in an agitated solution of warm SDG.3 solution; an established decontaminating reagent. The decontamination effect of this process is compared with the effect of cleaning in an ultrasonic bath containing the same reagent at the same concentration and temperature. Fluorocarbon reagents are of particular interest to the nuclear industry for they offer the ability to clean electrical components without damage, and can clean product contaminated material without the risk of criticality. Such reagents are based on 1,1,2-trichloro, 1,2,2-trifluoroethane and azeotropic mixtures. This reagent and one mixture with 6% methanol were tested under agitation and ultrasonic immersion at the same temperature. Parallel control experiments were conducted using demineralised water as the cleaning media in an agitated bath. SGG3 is a good reagent for general purpose cleaning (it can remove 99% of particulate contamination) using scrubbing, immersion or spraying techniques. There is little evidence to show that ultrasonic cleaning increases its effectiveness. For special purpose fluorocarbon solvents will give satisfactory results when used in an ultrasonic system. (author)

  20. Compressed air-assisted solvent extraction (CASX) for metal removal.

    Science.gov (United States)

    Li, Chi-Wang; Chen, Yi-Ming; Hsiao, Shin-Tien

    2008-03-01

    A novel process, compressed air-assisted solvent extraction (CASX), was developed to generate micro-sized solvent-coated air bubbles (MSAB) for metal extraction. Through pressurization of solvent with compressed air followed by releasing air-oversaturated solvent into metal-containing wastewater, MSAB were generated instantaneously. The enormous surface area of MSAB makes extraction process extremely fast and achieves very high aqueous/solvent weight ratio (A/S ratio). CASX process completely removed Cr(VI) from acidic electroplating wastewater under A/S ratio of 115 and extraction time of less than 10s. When synthetic wastewater containing Cd(II) of 50mgl(-1) was treated, A/S ratios of higher than 714 and 1190 could be achieved using solvent with extractant/diluent weight ratio of 1:1 and 5:1, respectively. Also, MSAB have very different physical properties, such as size and density, compared to the emulsified solvent droplets, making separation and recovery of solvent from treated effluent very easy.

  1. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  2. Solvent substitution

    International Nuclear Information System (INIS)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general ''Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated

  3. Chemical cleaning of Dresden Unit 1: Final report

    International Nuclear Information System (INIS)

    1986-05-01

    The introduction of NS-1 solvent into the full primary system of Dresden Unit-1 nuclear power reactor on September 12, 1984, represented the culmination of several years of development, testing, planning, and construction. The requirement was to dissolve the highly radioactive deposits of primarily nickel ferrite without any corrosion which might compromise the reactor systems. During the actual cleaning with the NS-1 solvent, the chemical condition of the circulating solvent was measured. Iron, nickel, and radioactive cobalt all dissolved smoothly. The amount of copper in solution decreased in concentration, verifying expectations that metallic copper would plate on to clean metal surfaces. A special rinse formulation was employed after the primary cleaning steps and the ''lost'' copper was thus redissolved and removed from the system. After the cleaning was complete and the reactor had been refilled with pure water, radiation levels were measured. The most accurate of these measurements gave decontamination factors ranging well above 100, which indicated a significant removal of the radioactive deposits, and demonstrated the success of this project. Treatment of the radioactive liquid wastes from this operation required volume reduction and water purification. The primary method of processing the spent cleaning solvent and rinse water was evaporation. The resulting concentrate has been stored as a liquid, awaiting solidification to allow burial at a designated site. Water which was separated during evaporation, along with the dilute rinses, was processed by various chemical means, reevaporated, treated with activated carbon, and/or demineralized before its radionuclide and chemical content was low enough to allow it to be returned to Dresden Station for treatment or disposal. 60 figs., 31 tabs

  4. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  5. Solvent substitution

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The DOE Environmental Restoration and Waste Management Office of Technology Development and the Air Force Engineering and Services Center convened the First Annual International Workshop on Solvent Substitution on December 4--7, 1990. The primary objectives of this joint effort were to share information and ideas among attendees in order to enhance the development and implementation of required new technologies for the elimination of pollutants associated with industrial use of hazardous and toxic solvents; and to aid in accelerating collaborative efforts and technology transfer between government and industry for solvent substitution. There were workshop sessions focusing on Alternative Technologies, Alternative Solvents, Recovery/Recycling, Low VOC Materials and Treatment for Environmentally Safe Disposal. The 35 invited papers presented covered a wide range of solvent substitution activities including: hardware and weapons production and maintenance, paint stripping, coating applications, printed circuit boards, metal cleaning, metal finishing, manufacturing, compliance monitoring and process control monitoring. This publication includes the majority of these presentations. In addition, in order to further facilitate information exchange and technology transfer, the US Air Force and DOE solicited additional papers under a general Call for Papers.'' These papers, which underwent review and final selection by a peer review committee, are also included in this combined Proceedings/Compendium. For those involved in handling, using or managing hazardous and toxic solvents, this document should prove to be a valuable resource, providing the most up-to-date information on current technologies and practices in solvent substitution. Individual papers are abstracted separated.

  6. Carbothermic reduction of uranium oxides into solvent metallic baths

    International Nuclear Information System (INIS)

    Guisard Restivo, Thomaz A.; Capocchi, Jose D.T.

    2004-01-01

    The carbothermic reduction of UO 2 and U 3 O 8 is studied employing tin and silicon solvent metallic baths in thermal analysis equipment, under Ar inert and N 2 reactive atmospheres. The metallic solvents are expected to lower the U activity by several orders of magnitude owing to strong interactions among the metals. The reduction products are composed of the solvent metal matrix and intermetallic U compounds. Silicon is more effective in driving the reduction since there is no residual UO 2 after the reaction. The gaseous product detected by mass spectrometer (MS) during the reduction is CO. A kinetic study for the Si case was accomplished by the stepwise isothermal analysis (SAI) method, leading to the identification of the controlling mechanisms as chemical reaction at the surface and nucleation, for UO 2 and U 3 O 8 charges, respectively. One example for another system containing Al 2 O 3 is also shown

  7. Ion-induced electron emission from clean metals

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Ferron, J.; Oliva-Florio, A.; Universidad Nacional de Cuyo, San Carlos de Bariloche

    1979-01-01

    We report recent experimental work on electron emission from clean polycrystalline metal surfaces under ion bombardment. We critically discuss existing theories and point out the presently unsolved problems. (orig.)

  8. Laser decontamination and cleaning of metal surfaces: modelling and experimental studies

    International Nuclear Information System (INIS)

    Leontyev, A.

    2011-01-01

    Metal surface cleaning is highly required in different fields of modern industry. Nuclear industry seeks for new methods for oxidized surface decontamination, and thermonuclear installations require the cleaning of plasma facing components from tritium-containing deposited layer. The laser ablation is proposed as an effective and safe method for metal surface cleaning and decontamination. The important factor influencing the laser heating and ablation is the in-depth distribution of laser radiation. The model of light propagation in a scattering layer on a metal substrate is developed and applied to analyse the features of light distribution. To simulate the contaminated surfaces, the stainless steel AISI 304L was oxidized by laser and in a furnace. Radioactive contamination of the oxide layer was simulated by introducing europium and/or sodium. The decontamination factor of more than 300 was demonstrated with found optimal cleaning regime. The decreasing of the corrosion resistance was found after laser cleaning. The ablation thresholds of ITER-like surfaces were measured. The cleaning productivity of 0.07 m 2 /hour.W was found. For mirror surfaces, the damage thresholds were determined to avoid damage during laser cleaning. The possibility to restore reflectivity after thin carbon layer deposition was demonstrated. The perspectives of further development of laser cleaning are discussed. (author) [fr

  9. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    Science.gov (United States)

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere.

  10. Cleanup of 7.5% tributyl phosphate/n-paraffin solvent-extraction solvent

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-02-01

    The HM process at the Savannah River Plant uses 7.5% tributyl phosphate in n-paraffin as an extraction solvent. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials which influence product losses, product decontamination, and separation efficiencies. Laboratory studies to improve online solvent cleaning have shown that carbonate washing, although removing residual solvent activity, does not remove binding ligands which hold fission products in the solvent. Treatment of solvent by an alumina adsorption process removes binding ligands and significantly improves recycle solvent performance. Both laboratory work defining a full-scale alumina adsorption process and the use of the process to clean HM process first cycle solvent is discussed

  11. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa; Shamiryan, Denis G.; Paraschiv, Vasile; Sano, Kenichi; Reinhardt, Karen A.

    2010-01-01

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  12. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  13. Method of cleaning alkaline metal

    International Nuclear Information System (INIS)

    Kawakami, Yukio; Naito, Kesahiro; Iizawa, Katsuyuki; Nakasuji, Takashi

    1981-01-01

    Purpose: To prevent scattering of used sodium and aqueous alkaline solution when cleaning used sodium and metallic sodium adhering to equipment with an aqueous alkaline solution. Method: A sodium treating container is filled with an aqueous alkaline solution, and stainless steel gauze is sunk in the container. Equipment to be cleaned such as equipment with sodium adhering to it are retained under the gauze and are thus cleaned. On the other hand, the surface of the aqueous alkaline solution is covered with a fluid paraffin liquid covering material. Thus, the hydrogen produced by the reaction of the sodium and the aqueous alkaline solution will float up, pass through the liquid covering material and be discharged. The sodium will pass through the gauze and float upwardly while reacting with the aqueous alkaline solution in a partic ulate state to the boundary between the aqueous alkaline solution and up to the covering material, and thus the theratment reaction will continue. Thus, the cover material prevents the sodium and the aqueous alkaline solution from scattering. (Kamimura, M.)

  14. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin, E-mail: bindong@my.unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Driver, M. Sky, E-mail: Marcus.Driver@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Emesh, Ismail, E-mail: Ismail_Emesh@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Shaviv, Roey, E-mail: Roey_Shaviv@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Kelber, Jeffry A., E-mail: Jeffry.Kelber@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States)

    2016-10-30

    Highlights: • O{sub 2}-free plasma treatment of air-exposed Co or Cu surfaces yields remnant C layers inert to further plasma cleaning. • The formation of the remnant C layer is graphitic (Cu) or carbidic (Co). • The formation of a remnant C layer is linked to plasma cleaning of a metal surface. - Abstract: In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1–3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H{sub 2} or NH{sub 3} plasma cleaning of Co, and He or NH{sub 3} plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiO{sub x}N{sub y}), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp{sup 3} adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  15. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  16. Electronic properties of adsorbates and clean surfaces of metals and semiconductors

    International Nuclear Information System (INIS)

    Lecante, J.

    1980-01-01

    This paper surveys recent progress in experimental studies on electronic properties of adsorbates and clean metal surfaces. Electron spectroscopy and particularly angle resolved photoelectron spectroscopy appears to be a very powerful tool to get informations on electronic levels of adsorbates or clean surfaces. Moreover this technique may also give informations about the atomic geometry of the surface. Experimental investigation about surface plasmons, surface states, core level shifts are presented for clean surfaces. As examples of adsorbate covered surfaces two typical cases are chosen: two dimensional band structure and oriented molecules. Finally the photoelectron diffraction may be used for surface structure determination either in the case of an adsorbate or a clean metal surface [fr

  17. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  18. Restoring solvent for nuclear separation processes

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    Solvent extraction separation processes are used to recover usable nuclear materials from spent fuels. These processes involve the use of an extractant/diluent (solvent) for separation of the reusable actinides from unwanted fission products. The most widely used processes employ tributyl phosphate as an extractant diluted with a normal-paraffin hydrocarbon. During use, the solvent is altered due to hydrolysis and radiolysis, forming materials that influence product losses, product decontamination, and separation efficiencies. In most processes, the solvent is recycled after cleaning. Solvent cleaning generally involves scrubbing with a sodium carbonate solution. Studies at the Savannah River Laboratory have shown that carbonate washing, although removing residual solvent activity, does not remove more solvent-soluble binding ligands (formed by solvent degradation), which hold fission products in the solvent. Treatment of the solvent with a solid adsorbent after carbonate washing removes binding ligands and significantly improves recycled solvent performance. Laboratory work to establish the advantage of adsorbent cleaning and the development of a full-scale adsorption process is described. The application of this process for cleaning the first cycle solvent of a Savannah River Plant production process is discussed

  19. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  20. Occupational exposure to solvents, metals and welding fumes and risk of Parkinson's disease.

    Science.gov (United States)

    van der Mark, Marianne; Vermeulen, Roel; Nijssen, Peter C G; Mulleners, Wim M; Sas, Antonetta M G; van Laar, Teus; Huss, Anke; Kromhout, Hans

    2015-06-01

    The aim of this study was to investigate the potential association between occupational exposure to solvents, metals and/or welding fumes and risk of developing Parkinson's disease (PD). Data of a hospital based case-control study including 444 PD patients and 876 age and sex matched controls was used. Occupational histories and lifestyle information of cases and controls were collected in a structured telephone interview. Exposures to aromatic solvents, chlorinated solvents and metals were estimated by linking the ALOHA+ job-exposure matrix to the occupational histories. Exposure to welding fumes was estimated using self-reported information on welding activities. No statistically significant associations with any of the studied metal and solvent exposures were found. However, for self-reported welding activities we observed non-statistically significant reduced risk estimates (third tertile cumulative exposure: OR = 0.51 (95% CI: 0.21-1.24)). The results of our study did not provide support for an increased chance on developing PD after occupational exposure to aromatic solvents, chlorinated solvents or exposure to metals. The results showed reduced risk estimates for welding, which is in line with previous research, but no clear explanation for these findings is available. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Substitution of chlorinated and fluorinated solvents by biodegradable detergent solution in components cleaning of nuclear fuel elements

    International Nuclear Information System (INIS)

    Vieira, Andre Luiz Pinto da Silva

    2000-01-01

    As the auxiliary oils used in machining evolved from integral into aqueous emulsion, and later on into aqueous-solution synthetic oils, the components cleaning process with organic solvents, originally adopted at the Fuel Element Factory (FEC), Industrias Nucleares do Brasil S.A. (INB) began to present problems in removing oil residues from machined components, due to the incompatibility between aqueous and organic media. In order to eliminate such incompatibility and adapt the process to the environmental laws restricting production and use of chlorinated or fluorinated solvents as a measure for preserving the atmosphere's ozone layer, in 1995 INB initiated the development of a components cleaning process using biodegradable aqueous detergent. The effort was completed in 2000 with the construction of a machine in keeping with the specific geometry of the fuel-assembly components and the operating conditions required for working with the new process. (author)

  2. Automated cleaning of electronic components

    International Nuclear Information System (INIS)

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-01-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations

  3. Evaluation of Various Cleaning Methods to Remove Bacillus Spores from Spacecraft Hardware Materials

    Science.gov (United States)

    Venkateswaran, Kasthuri; Chung, Shirley; Allton, Judith; Kern, Roger

    2004-09-01

    A detailed study was made of the biological cleaning effectiveness, defined in terms of the ability to remove bacterial spores, of a number of methods used to clean hardware surfaces. Aluminum (Al 6061) and titanium (Ti 6Al-4V) were chosen for the study as they were deemed the two materials most likely to be used in spacecraft extraterrestrial sampler construction. Metal coupons (1 cm × 2.5 cm) were precleaned and inoculated with 5.8 × 103 cultivable Bacillus subtilis spores, which are commonly found on spacecraft surfaces and in the assembly environments. The inoculated coupons were subsequently cleaned using: (1) 70% isopropyl alcohol wipe; (2) water wipe; (3) multiple-solvent flight-hardware cleaning procedures used at the Jet Propulsion Laboratory (JPL); (4) Johnson Space Center-developed ultrapure water rinse; and (5) a commercial, semi-aqueous, multiple-solvent (SAMS) cleaning process. The biological cleaning effectiveness was measured by agar plate assay, sterility test (growing in liquid media), and epifluorescent microscopy. None of the cleaning protocols tested completely removed viable spores from the surface of the aluminum. In contrast, titanium was capable of being cleaned to sterility by two methods, the JPL standard and the commercial SAMS cleaning process. Further investigation showed that the passivation step employed in the JPL standard method is an effective surface sterilant on both metals but not compatible with aluminum. It is recommended that titanium (Ti 6Al-4V) be considered superior to aluminum (Al 6061) for use in spacecraft sampling hardware, both for its potential to be cleaned to sterilization and for its ability to withstand the most effective cleaning protocols.

  4. A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    International Nuclear Information System (INIS)

    Gao Baohong; Liu Yuling; Wang Chenwei; Wang Shengli; Zhou Qiang; Tan Baimei; Zhu Yadong

    2010-01-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO 4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection. (semiconductor technology)

  5. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    1993-04-01

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m 3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  6. Replacement of Hydrochlorofluorocarbon (HCFC) -225 Solvent for Cleaning and Verification Sampling of NASA Propulsion Oxygen Systems Hardware, Ground Support Equipment, and Associated Test Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  7. Alternative Solvents through Green Chemistry Project

    Science.gov (United States)

    Hintze, Paul E.; Quinn, Jacqueline

    2014-01-01

    Components in the aerospace industry must perform with accuracy and precision under extreme conditions, and surface contamination can be detrimental to the desired performance, especially in cases when the components come into contact with strong oxidizers such as liquid oxygen. Therefore, precision cleaning is an important part of a components preparation prior to utilization in aerospace applications. Current cleaning technologies employ a variety of cleaning agents, many of which are halogenated solvents that are either toxic or cause environmental damage. Thus, this project seeks to identify alternative precision cleaning solvents and technologies, including use of less harmful cleaning solvents, ultrasonic and megasonic agitation, low-pressure plasma cleaning techniques, and supercritical carbon dioxide extraction. Please review all data content found in the Public Data tab located at: https:techport.nasa.govview11697public

  8. Pickering Unit 1 chemical cleaning

    International Nuclear Information System (INIS)

    Smee, J.L.; Fiola, R.J.; Brennenstuhl, K.R.; Zerkee, D.D.; Daniel, C.M.

    1995-01-01

    The secondary sides of all 12 boilers at Pickering Unit 1 were chemically cleaned in 1994 by the team of Ontario Hydro, B and W International (Cambridge, Ontario) and B and W Nuclear Technologies (Lynchburg, Virginia). A multi-step EPRI/SGOG process was employed in a similar manner to previous clearings at Units 5 and 6 in 1992 and 1993, respectively. A major innovation with the Unit 1 cleaning was the incorporation of a crevice cleaning step, the first time this had been done on Ontario Hydro plants. In addition, six boilers were cleaned in parallel compared to three at a time in previous Pickering cleanings. This significantly reduced cleaning time. A total of 6,770 kg of sludge was removed through direct chemical dissolution. It consisted of 66% iron/nickel oxides and 28% copper metal. A total of 1,600,000 L (420,000 US gallons) of liquid waste was produced. It was processed through the spent solvent treatment facility located at the Bruce Nuclear Power Development site. Visual inspection performed after the cleaning indicated that the crevices between the boiler tubes and the tube support structure were completely clear of deposit and the general condition of the tubing and lattice bars appeared to be in 'as new' condition. (author)

  9. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.

  10. Results of the Test Program for Replacement of AK-225G Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Lowrey, Nikki M.; Mitchell, Mark A.

    2016-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon the solvent AsahiKlin AK-225 (hydrochlorofluorocarbon-225ca/cb or HCFC-225ca/cb) and, more recently AK-225G (the single isomer form, HCFC-225cb) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of Class II Ozone Depleting Substances, including AK-225G, was prohibited in the United States by the Clean Air Act. In 2012 through 2014, NASA test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a solvent replacement for AK-225G that is both an effective cleaner and safe for use with oxygen systems. This paper summarizes the tests performed, results, and lessons learned.

  11. 40 CFR Table 4 to Subpart Jj of... - Pollutants Excluded From Use in Cleaning and Washoff Solvents

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pollutants Excluded From Use in Cleaning and Washoff Solvents 4 Table 4 to Subpart JJ of Part 63 Protection of Environment ENVIRONMENTAL... Operations Pt. 63, Subpt. JJ, Table 4 Table 4 to Subpart JJ of Part 63—Pollutants Excluded From Use in...

  12. Post-CMP cleaning for metallic contaminant removal by using a remote plasma and UV/ozone

    International Nuclear Information System (INIS)

    Lim, Jong Min; Jeon, Bu Yong; Lee, Chong Mu

    2000-01-01

    For the chemical mechanical polishing (CMP) process to be successful, it is important to establish a good post-CMP cleaning process that will remove not only slurry and particles but also metallic impurities from the polished surface. The common metallic contaminants found after oxide CMP and Cu CMP include Cu, K, and Fe. Scrubbing, a popular method for post-CMP cleaning, is effective in removing particles, but removal of metallic contaminants using this method is not so effective. In this study, the removal of Fe metallic contaminants like Fe, which are commonly found on the wafer surface after CMP processes, was investigated using remote-hydrogen-plasma and UV/O 3 cleaning techniques. Our results show that metal contaminants, including Fe, can be effectively removed by using a hydrogen-plasma or UV/O 3 cleaning technique performed under optimal process conditions. In remote plasma H 2 cleaning, contaminant removal is enhanced with decreasing plasma exposure time and increasing rf-power. The optimal process condition for the removal of the Fe impurities existing on the wafer surface is an rf-power of 100 W. Plasma cleaning for 5 min or less is effective in removing Fe contaminants, but a plasma exposure time of 1 min is more appropriate than 5 min in view of the process time, The surface roughness decreased by 30∼50 % after remote-H 2 -plasma cleaning. On the other hand, the highest efficiency of Fe-impurity removal was achieved for an UV exposure time of 30 s. The removal mechanism for the Fe contaminants in the remote-H 2 -plasma and the UV/O 3 cleaning processes is considered to be the liftoff of Fe atoms when the SiO is removed by evaporation after the chemical or native SiO 2 formed underneath the metal atoms reacts with H + and e - to form SiO

  13. Basis of the detection, assessment and cleaning up of sites contaminated with heavy metals

    International Nuclear Information System (INIS)

    Calmano, W.; Foerstner, U.

    1993-01-01

    The cleaning up of sites contaminated with heavy metals is still in its infancy. Depending on the type and extent of the contamination, new methods of treatment must be developed and matched to each situation. A survey is given of the groundwater contamination of soil heavy metals; the binding, availability and mobilisation of heavy metals; geo-chemical concepts for sites contaminated by heavy metals; judging the potential danger; safety measures; cleaning up processes and the reinstatement and renaturing of the soil. (orig.) [de

  14. The estimation of heavy metal concentration in FBR reprocessing solvent streams by density measurement

    International Nuclear Information System (INIS)

    Brown, M.L.; Savage, D.J.

    1986-04-01

    The application of density measurement to heavy metal monitoring in the solvent phase is described, including practical experience gained during three fast reactor fuel reprocessing campaigns. An experimental algorithm relating heavy metal concentration and sample density was generated from laboratory-measured density data, for uranyl nitrate dissolved in nitric acid loaded tri-butyl phosphate in odourless kerosene. Differences in odourless kerosene batch densities are mathematically interpolated, and the algorithm can be used to estimate heavy metal concentrations from the density to within +1.5 g/l. An Anton Paar calculating digital densimeter with remote cell operation was used for all density measurements, but the algorithm will give similar accuracy with any density measuring device capable of a precision of better than 0.0005 g/cm 3 . For plant control purposes, the algorithm was simplified using a density referencing system, whereby the density of solvent not yet loaded with heavy metal is subtracted from the sample density. This simplified algorithm compares very favourably with empirical algorithms, derived from numerical analysis of density data and chemically measured uranium and plutonium data obtained during fuel reprocessing campaigns, particularly when differences in the acidity of the solvent are considered before and after loading with heavy metal. This simplified algorithm had been successfully used for plant control of heavy metal loaded solvent during four fast reactor fuel reprocessing campaigns. (author)

  15. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    Science.gov (United States)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  16. Solvent extraction of noble metals by formazans

    International Nuclear Information System (INIS)

    Grote, M.; Hueppe, U.; Kettrup, A.

    1984-01-01

    The extraction properties of ion-pairs composed of quaternary ammonium cations and a sulphonated formazan were compared with those of an unsulphonated formazan, for various solvent media. In dichloromethane the combined system behaves as a 'coloured anion-exchanger', with displacement of the sulphonated formazan, whereas in toluene Pd(II) and Ag(I) are extracted as the metal formazan chelates from aqueous medium. The rates of extraction are remarkably higher than with the simple extractants. Because of the higher stability only the simple chelating extraction systems afford satisfactory separation of Pd(II) from excess of Pt(IV) and of Ag(I) from Cu(II). The extracted metals can be stripped and the extractant regenerated. (author)

  17. Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX) for metal recovery.

    Science.gov (United States)

    Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming

    2010-01-01

    In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.

  18. Investigation of the Use of a Bio-Derived Solvent for Non-Solvent-Induced Phase Separation (NIPS Fabrication of Polysulfone Membranes

    Directory of Open Access Journals (Sweden)

    Xiaobo Dong

    2018-05-01

    Full Text Available Organic solvents, such as N-methyl-2-pyrrolidone (NMP and dimethylacetamide (DMAc, have been traditionally used to fabricate polymeric membranes. These solvents may have a negative impact on the environment and human health; therefore, using renewable solvents derived from biomass is of great interest to make membrane fabrication sustainable. Methyl-5-(dimethylamino-2-methyl-5-oxopentanoate (Rhodiasolv PolarClean is a bio-derived, biodegradable, nonflammable and nonvolatile solvent. Polysulfone is a commonly used polymer to fabricate membranes due to its thermal stability, strong mechanical strength and good chemical resistance. From cloud point curves, PolarClean showed potential to be a solvent for polysulfone. Membranes prepared with PolarClean were investigated in terms of their morphology, porosity, water permeability and protein rejection, and were compared to membranes prepared with traditional solvents. The pores of polysulfone/PolarClean membranes were sponge-like, and the membranes displayed higher water flux values (176.0 ± 8.8 LMH along with slightly higher solute rejection (99.0 ± 0.51%. On the other hand, PSf/DMAc membrane pores were finger-like with lower water flux (63.1 ± 12.4 LMH and slightly lower solute rejection (96 ± 2.00% when compared to PSf/PolarClean membranes.

  19. Fluid dynamic effects on precision cleaning with supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, M.R.; Hogan, M.O.; Silva, L.J.

    1994-06-01

    Pacific Northwest Laboratory staff have assembled a small supercritical fluids parts cleaning test stand to characterize how system dynamics affect the efficacy of precision cleaning with supercritical carbon dioxide. A soiled stainless steel coupon, loaded into a ``Berty`` autoclave, was used to investigate how changes in system turbulence and solvent temperature influenced the removal of test dopants. A pulsed laser beam through a fiber optic was used to investigate real-time contaminant removal. Test data show that cleaning efficiency is a function of system agitation, solvent density, and temperature. These data also show that high levels of cleaning efficiency can generally be achieved with high levels of system agitation at relatively low solvent densities and temperatures. Agitation levels, temperatures, and densities needed for optimal cleaning are largely contaminant dependent. Using proper system conditions, the levels of cleanliness achieved with supercritical carbon dioxide compare favorably with conventional precision cleaning methods. Additional research is currently being conducted to generalize the relationship between cleaning performance and parameters such as contaminant solubilities, mass transfer rates, and solvent agitation. These correlations can be used to optimize cleaning performance, system design, and time and energy consumption for particular parts cleaning applications.

  20. Solvent isotope effects upon the thermodynamics of some transition-metal redox couples in aqueous media

    International Nuclear Information System (INIS)

    Weaver, M.J.; Nettles, S.M.

    1980-01-01

    The effects of substituting D 2 O for H 2 O as solvent upon the formal potentials of a number of transition-metal redox couples containing aquo, ammine, and simple chelating ligands have been investigated with the intention of evaluating the importance of specific solvation factors in the thermodynamics of such couples. The solvent liquid junction formed between H 2 O and D 2 O was shown to have a negligible effect on the measured formal potentials. Substantial solvent isotope effects were observed for a number of these systems, particularly for couples containing aquo ligands. The effects of separately deuterating the ligands and the surrounding solvent were investigated for some ammine couples. Possible origins of the solvent isotope effects are discussed in terms of changes in metal-ligand and ligand-solvent interactions. It is tentatively concluded that the latter influence provides the predominant contribution to the observed effects for aquo couples arising from increases in the extent of hydrogen bonding between the aquo ligands and surrounding solvent when D 2 O replaces H 2 O. The implications of these results in unraveling the solvent isotope effects upon the kinetics of simple redox reactions are also considered

  1. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  2. Dry-cleaning with high-pressure carbon dioxide

    NARCIS (Netherlands)

    Van Roosmalen, M.J.E.

    2003-01-01

    Dry-cleaning is a process for removing soils and stains from fabrics and garments which uses a non-aqueous solvent with detergent added. The currently most used dry-cleaning solvent is perchloroethylene (PER), which is toxic, environmentally harmful and suspected to be carcinogenic. Carbon dioxide

  3. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  4. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  5. Recovery of uranium from 30 vol % tributyl phosphate solvents containing dibutyl phosphate

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1986-01-01

    A number of solid sorbents were tested for the removal of uranium and dibutyl phosphate (DBP) from 30% tributyl phosphate (TBP) solvent. The desired clean uranium product can be obtained either by removing the DBP, leaving the uranium in the solvent for subsequent stripping, or by removing the uranium, leaving the DBP in the solvent for subsequent treatment. The tests performed show that it is relatively easy to preferentially remove uranium from solvents containing uranium and DBP, but quite difficult to remove DBP preferentially. The current methods could be used by removing the uranium (as by a cation exchange resin) and then using either an anion exchange resin in the hydroxyl form or a conventional treatment with a basic solution to remove the DBP. Treatment of a solvent with a cation exchange resin could be useful for recovery of valuable metals from solvents containing DBP and might be used to remove cations before scrubbing a solvent with a basic solution to minimize emulsion formation. 6 refs., 9 figs

  6. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  7. Noise-Induced Hearing Loss in Korean Workers: Co-Exposure to Organic Solvents and Heavy Metals in Nationwide Industries

    Science.gov (United States)

    Choi, Yoon-Hyeong; Kim, KyooSang

    2014-01-01

    Background Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. Methods We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents) and subject-specific health outcomes (e.g., audiometric examination) were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA) (i.e., means of 2, 3, and 4 kHz) were computed. Results In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. Conclusion This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks. PMID:24870407

  8. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    Science.gov (United States)

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  9. Noise-induced hearing loss in Korean workers: co-exposure to organic solvents and heavy metals in nationwide industries.

    Directory of Open Access Journals (Sweden)

    Yoon-Hyeong Choi

    Full Text Available BACKGROUND: Noise exposure is a well-known contributor to work-related hearing loss. Recent biological evidence suggests that exposure to ototoxic chemicals such as organic solvents and heavy metals may be additional contributors to hearing loss. However, in industrial settings, it is difficult to determine the risks of hearing loss due to these chemicals in workplaces accompanied by excessive noise exposure. A few studies suggest that the effect of noise may be enhanced by ototoxic chemicals. Therefore, this study investigated whether co-exposure to organic solvents and/or heavy metals in the workplace modifies the risk of noise exposure on hearing loss in a background of excessive noise. METHODS: We examined 30,072 workers nationwide in a wide range of industries from the Korea National Occupational Health Surveillance 2009. Data on industry-based exposure (e.g., occupational noise, heavy metals, and organic solvents and subject-specific health outcomes (e.g., audiometric examination were collected. Noise was measured as the daily 8-h time-weighted average level. Air conduction hearing thresholds were measured from 0.5 to 6 kHz, and pure-tone averages (PTA (i.e., means of 2, 3, and 4 kHz were computed. RESULTS: In the multivariate linear model, PTA increment with occupational noise were 1.64-fold and 2.15-fold higher in individuals exposed to heavy metals and organic solvents than in unexposed individuals, respectively. CONCLUSION: This study provides nationwide evidence that co-exposure to heavy metals and/or organic solvents may exacerbate the effect of noise exposure on hearing loss in workplaces. These findings suggest that workers in industries dealing with heavy metals or organic solvents are susceptible to such risks.

  10. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  11. Exposure to organic solvents used in dry cleaning reduces low and high level visual function.

    Directory of Open Access Journals (Sweden)

    Ingrid Astrid Jiménez Barbosa

    Full Text Available To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1, and cognitive function as measured in a visual search task (Experiment 2.The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization, was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test, global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM and Glass pattern (oriented dot pairs respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure. In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100 in both parallel and serial search conditions.Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also

  12. Determination of a cleaning and decontamination process using solvents; Determination d'une methode de nettoyage et de decontamination par solvant

    Energy Technology Data Exchange (ETDEWEB)

    Boutot, P; Schipfer, P [Commissariat a l' Energie Atomique, Chusclan (France). Centre de Production de Plutonium de Marcoule

    1967-03-15

    This work has been carried out on samples of the white cotton serge material of which most of the working overalls of the Nuclear Research Centre are made. The aims are: - to determine,from the decontamination and cleaning points of view, the efficiency of various solvents (white-spirit, trichloroethylene, perchlorethylene and tri-chloro-trifluoroethane) and the role of additives likely to improve the treatment; - to control the textile from the wear and shrinkage points of view; - to try to develop a basic cleaning and decontamination process as a function of the possibilities of each solvent considered. (authors) [French] Cette experimentation pratiquee sur des echantillons de tissu en serge de coton blanc, tissu dans lequel est confectionnee la majorite des tenues de travail du Centre, a pour but: - de determiner, sous l'angle decontamination et nettoyage, l'efficacite de differents solvants (white-spirit, trichlorethylene, perchlorethylene et trichlorotrifluoroethane) ainsi que le role des adjuvants susceptibles d'ameliorer le traitement; - de controler le textile du point de vue usure et retrecissement; - d'essayer de mettre au point un procede de nettoyage et de decontamination type en fonction des possibilites d'emploi de chacun des solvants consideres. (auteurs)

  13. Clean Metal Casting; FINAL

    International Nuclear Information System (INIS)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-01-01

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components

  14. Occupational exposures to solvents and metals are associated with fixed airflow obstruction

    NARCIS (Netherlands)

    Alif, Sheikh M; Dharmage, Shyamali C; Benke, Geza; Dennekamp, Martine; Burgess, John A; Perret, Jennifer L; Lodge, Caroline J; Morrison, Stephen; Johns, David P; Giles, Graham G.; Gurrin, Lyle C; Thomas, Paul S; Hopper, John L; Wood-Baker, Richard; Thompson, Bruce R; Feather, Iain H; Vermeulen, Roel; Kromhout, Hans; Walters, E Haydn; Abramson, Michael J; Matheson, Melanie C

    2017-01-01

    Objectives This study investigated the associations between occupational exposures to solvents and metals and fixed airflow obstruction (AO) using post-bronchodilator spirometry. Methods We included 1335 participants from the 2002-2008 follow-up of the Tasmanian Longitudinal Health Study.

  15. Exposure to tetrachloroethylene in dry cleaning shops in the Nordic countries

    DEFF Research Database (Denmark)

    Lynge, Elsebeth; Tinnerberg, Håkan; Rylander, Lars

    2011-01-01

    Tetrachloroethylene is the dominant solvent used in dry cleaning worldwide and many workers are potentially exposed. We report here on results of 1296 measurements of tetrachloroethylene undertaken in Nordic dry cleaning shops 1947-2001.......Tetrachloroethylene is the dominant solvent used in dry cleaning worldwide and many workers are potentially exposed. We report here on results of 1296 measurements of tetrachloroethylene undertaken in Nordic dry cleaning shops 1947-2001....

  16. Recommended values of clean metal surface work functions

    International Nuclear Information System (INIS)

    Derry, Gregory N.; Kern, Megan E.; Worth, Eli H.

    2015-01-01

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  17. Recommended values of clean metal surface work functions

    Energy Technology Data Exchange (ETDEWEB)

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H. [Department of Physics, Loyola University Maryland, 4501 N. Charles St., Baltimore, Maryland 21210 (United States)

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  18. RECYCLING A NONIONIC AQUEOUS-BASED METAL-CLEANING SOLUTION WITH A CERAMIC MEMBRANE: PILOT SCALE EVALUATION

    Science.gov (United States)

    The effectiveness of a zirconium dioxide (ZrO2) membrane filter was evaluated for recycling a nonionic aqueous metal cleaning bath under real-world conditions. The pilot-scale study consisted of four 7- to 16-day filtration runs, each processed a portion of the cleaning bath duri...

  19. Brushless Cleaning of Solar Panels and Windows

    Science.gov (United States)

    Schneider, H. W.

    1982-01-01

    Machine proposed for cleaning solar panels and reflectors uses multiple vortexes of air, solvent, and water to remove dust and dirt. Uses no brushes that might abrade solar surfaces and thereby reduce efficiency. Machine can be readily automated and can be used on curved surfaces such as aparbolic reflectors as well as on flat ones. Cleaning fluids are recycled, so that large quantities of water and solvent are not needed.

  20. Next steps in the development of ecological soil clean-up values for metals.

    Science.gov (United States)

    Wentsel, Randall; Fairbrother, Anne

    2014-07-01

    This special series in Integrated Environmental Assessment Management presents the results from 6 workgroups that were formed at the workshop on Ecological Soil Levels-Next Steps in the Development of Metal Clean-Up Values (17-21 September 2012, Sundance, Utah). This introductory article presents an overview of the issues assessors face when conducting risk assessments for metals in soils, key US Environmental Protection Agency (USEPA) documents on metals risk assessment, and discusses the importance of leveraging from recent major terrestrial research projects, primarily to address Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH) requirements in Europe, that have significantly advanced our understanding of the behavior and toxicity of metals in soils. These projects developed large data sets that are useful for the risk assessment of metals in soil environments. The workshop attendees met to work toward developing a process for establishing ecological soil clean-up values (Eco-SCVs). The goal of the workshop was to progress from ecological soil screening values (Eco-SSLs) to final clean-up values by providing regulators with the methods and processes to incorporate bioavailability, normalize toxicity thresholds, address food-web issues, and incorporate background concentrations. The REACH data sets were used by workshop participants as case studies in the development of the ecological standards for soils. The workshop attendees discussed scientific advancements in bioavailability, soil biota and wildlife case studies, soil processes, and food-chain modeling. In addition, one of the workgroups discussed the processes needed to frame the topics to gain regulatory acceptance as a directive or guidance by Canada, the USEPA, or the United States. © 2013 SETAC.

  1. Metal retention in human transferrin: consequences of solvent composition in analytical sample preparation methods.

    Science.gov (United States)

    Quarles, C Derrick; Randunu, K Manoj; Brumaghim, Julia L; Marcus, R Kenneth

    2011-10-01

    The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes

  2. Application of method of organizational congruences to substitution of organic solvents with vegetable agents for cleaning offset printing machine

    Energy Technology Data Exchange (ETDEWEB)

    Salerno, S [ENEA, Casaccia (Italy). Area Energia Ambiente e Salute; Tartaglia, R [Unita Sanitaria Locale 10/D, Firenze (Italy); Garzi, S; Biagioni, A [Istituto tecnico Leonardo da Vinci, Firenze (Italy)

    1995-06-01

    The aim of this research is the application of the method of organizational congruences before and after the substitution of organic solvents with vegetable agents for the cleaning offset printing machine in order to assess the organizational changes. A solvent free process is the goal of the SUBSPRINT project (Technology Transfer Program of the European Community). In this study it is shown how human and environmental health is improved by using vegetable agents through this change may lead to some other organizational constraints such as the time needed, the monotony and repetitiveness of the technical actions involved. The authors underline that the knowledge of the new technology impact of health help for a better understanding of the resistance to the change and help for a further amelioration of it.

  3. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  4. Is dry cleaning all wet?

    International Nuclear Information System (INIS)

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  5. Solvent extraction of Zn and metals in Zn ores by nonphosphorous solvents

    International Nuclear Information System (INIS)

    Auchapt, J.M.; Tostain, Jacqueline.

    1975-07-01

    This bibliography follows a first work on Zn solvent extraction by organo-phosphorous compounds. The other solvents used in Zn extraction, are studied: oxygenated nonphosphorous solvents (ketones, alcohols, carboxylic acids, sulfonates), nitrogenous solvents and hydrocarbons [fr

  6. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  7. Solvent extraction of some metal ions by dithiocarbamate types of chemically modified lipophilic chitosan

    International Nuclear Information System (INIS)

    Inoue, K.; Nakagawa, H.; Naganawa, H.; Tachimori, S.

    2001-01-01

    Chitosan is a basic polysaccharide containing primary amino groups with high reactivity. we prepared O,O'-decanoyl chitosan and dithiocarbamate O,O'-decanoyl chitosan; the former was soluble in chloroform and toluene, while latter was soluble not only these diluents but also in some aliphatic diluents such as hexane and kerosene which are employed in commercial scale solvent extraction. Solvent extraction by dithiocarbamate O,O'-decanoyl chitosan in kerosene was tested for some base metal ions from sulfuric acid solution. The sequence of selectivity for these metal ions was found to be as follows: Cu(II) >> Ni(II) > Cd(II) ∼ Fe(III) > Co(II) ∼ Zn(II). Copper(II) was quantitatively extracted at pH > 1 and quantitatively stripped with 2 M sulfuric acid solution. Solvent extraction of silver(I) and gold(III) from hydrochloric acid as well as lanthanides and americium(III) from nitrate solution were also tested. Americium was selectively extracted over trivalent lanthanides, suggesting a high possibility for the final treatment of high level radioactive wastes. (authors)

  8. Distribution of six heavy metals in contaminated clay soils before and after extractive cleaning

    NARCIS (Netherlands)

    Tuin, B.J.W.; Tels, M.

    1990-01-01

    A sequential extraction procedure according to Tessier et al. is carried out to compare the distribution of six metals (Cd, Cr, Cu, Ni, Pb and Zn) in contaminated clay soils before and after extractive cleaning. Extraction of metals from the ‘soil fractions’ with 0.1 N HC1 or 0.1 M EDTA becomes more

  9. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    Science.gov (United States)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  10. Textile Dry Cleaning Using Carbon Dioxide : Process, Apparatus and Mechanical Action

    NARCIS (Netherlands)

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in

  11. Tunable solvation effects on the size-selective fractionation of metal nanoparticles in CO2 gas-expanded solvents.

    Science.gov (United States)

    Anand, Madhu; McLeod, M Chandler; Bell, Philip W; Roberts, Christopher B

    2005-12-08

    This paper presents an environmentally friendly, inexpensive, rapid, and efficient process for size-selective fractionation of polydisperse metal nanoparticle dispersions into multiple narrow size populations. The dispersibility of ligand-stabilized silver and gold nanoparticles is controlled by altering the ligand tails-solvent interaction (solvation) by the addition of carbon dioxide (CO2) gas as an antisolvent, thereby tailoring the bulk solvent strength. This is accomplished by adjusting the CO2 pressure over the liquid, resulting in a simple means to tune the nanoparticle precipitation by size. This study also details the influence of various factors on the size-separation process, such as the types of metal, ligand, and solvent, as well as the use of recursive fractionation and the time allowed for settling during each fractionation step. The pressure range required for the precipitation process is the same for both the silver and gold particles capped with dodecanethiol ligands. A change in ligand or solvent length has an effect on the interaction between the solvent and the ligand tails and therefore the pressure range required for precipitation. Stronger interactions between solvent and ligand tails require greater CO2 pressure to precipitate the particles. Temperature is another variable that impacts the dispersibility of the nanoparticles through changes in the density and the mole fraction of CO2 in the gas-expanded liquids. Recursive fractionation for a given system within a particular pressure range (solvent strength) further reduces the polydispersity of the fraction obtained within that pressure range. Specifically, this work utilizes the highly tunable solvent properties of organic/CO2 solvent mixtures to selectively size-separate dispersions of polydisperse nanoparticles (2 to 12 nm) into more monodisperse fractions (+/-2 nm). In addition to providing efficient separation of the particles, this process also allows all of the solvent and

  12. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    Science.gov (United States)

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  13. Thermodynamics of solvent interaction with the metal-organic framework MOF-5.

    Science.gov (United States)

    Akimbekov, Zamirbek; Wu, Di; Brozek, Carl K; Dincă, Mircea; Navrotsky, Alexandra

    2016-01-14

    The inclusion of solvent in metal-organic framework (MOF) materials is a highly specific form of guest-host interaction. In this work, the energetics of solvent MOF-5 interactions has been investigated by solution calorimetry in 5 M sodium hydroxide (NaOH) at room temperature. Solution calorimetric measurement of enthalpy of formation (ΔH(f)) of Zn4O(C8H4O4)3·C3H7NO (MOF-5·DMF) and Zn4O(C8H4O4)3·0.60C5H11NO (MOF-5·0.60DEF) from the dense components zinc oxide (ZnO), 1,4-benzenedicarboxylic acid (H2BDC), N,N-dimethylformamide (DMF) and N,N-diethylformamide (DEF) gives values of 16.69 ± 1.21 and 45.90 ± 1.46 kJ (mol Zn4O)(-1), respectively. The enthalpies of interaction (ΔH(int)) for DMF and DEF with MOF-5 are -82.78 ± 4.84 kJ (mol DMF)(-1) and -89.28 ± 3.05 kJ (mol DEF)(-1), respectively. These exothermic interaction energies suggest that, at low guest loading, Lewis base solvents interact more strongly with electron accepting Zn4O clusters in the MOF than at high solvent loading. These data provide a quantitative thermodynamic basis to investigate transmetallation and solvent assisted linker exchange (SALE) methods and to synthesize new MOFs.

  14. Batch extracting process using magnetic particle held solvents

    Science.gov (United States)

    Nunez, L.; Vandergrift, G.F.

    1995-11-21

    A process is described for selectively removing metal values which may include catalytic values from a mixture containing same, wherein a magnetic particle is contacted with a liquid solvent which selectively dissolves the metal values to absorb the liquid solvent onto the magnetic particle. Thereafter the solvent-containing magnetic particles are contacted with a mixture containing the heavy metal values to transfer metal values into the solvent carried by the magnetic particles, and then magnetically separating the magnetic particles. Ion exchange resins may be used for selective solvents. 5 figs.

  15. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  16. Dealing with the chlorinated solvent situation at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1993-01-01

    Recent events regarding health and environmental problems associated with the use of chlorinated solvents have prompted the Oak Ridge Y-12 Plant to investigate substitutes for these materials. Since 1987, the purchase of chlorinated solvents at the Y-12 Plant has been reduced by 92%. This has been accomplished by substituting chlorinated solvent degreasing with ultrasonic aqueous detergent cleaning and by substituting chlorinated solvents with less toxic, environmentally friendly solvents for hand-wiping applications. Extensive studies of cleaning ability, compabitility, and effects on welding, bonding, and painting have been conducted to gain approval for use of these solvents. Toxicity and waste disposal were also assessed for the solvents

  17. General Solvent-dependent Strategy toward Enhanced Oxygen Reduction Reaction in Graphene/Metal Oxide Nanohybrids: Effects of Nitrogen-containing Solvent

    Science.gov (United States)

    Kao, Wei-Yao; Chen, Wei-Quan; Chiu, Yu-Hsiang; Ho, Yu-Hsuan; Chen, Chun-Hu

    2016-11-01

    A general solvent-dependent protocol directly influencing the oxygen reduction reaction (ORR) in metal oxide/graphene nanohybrids has been demonstrated. We conducted the two-step synthesis of cobalt oxide/N-doped graphene nanohybrids (CNG) with solvents of water, ethanol, and dimethylformamide (DMF), representing tree typical categories of aqueous, polar organic, and organic N-containing solvents commonly adopted for graphene nanocomposites preparation. The superior ORR performance of the DMF-hybrids can be attributed to the high nitrogen-doping, aggregation-free hybridization, and unique graphene porous structures. As DMF is the more effective N-source, the spectroscopic results support a catalytic nitrogenation potentially mediated by cobalt-DMF coordination complexes. The wide-distribution of porosity (covering micro-, meso-, to macro-pore) and micron-void assembly of graphene may further enhance the diffusion kinetics for ORR. As the results, CNG by DMF-synthesis exhibits the high ORR activities close to Pt/C (i.e. only 8 mV difference of half-wave potential with electron transfer number of 3.96) with the better durability in the alkaline condition. Additional graphene hybrids comprised of iron and manganese oxides also show the superior ORR activities by DMF-synthesis, confirming the general solvent-dependent protocol to achieve enhanced ORR activities.

  18. Occupational exposure to solvents, metals and welding fumes and risk of Parkinson's disease

    NARCIS (Netherlands)

    van der Mark, Marianne; Vermeulen, Roel; Nijssen, Peter C G; Mulleners, Wim M; Sas, Antonetta M G; van Laar, Teus; Huss, Anke; Kromhout, Hans

    OBJECTIVES: The aim of this study was to investigate the potential association between occupational exposure to solvents, metals and/or welding fumes and risk of developing Parkinson's disease (PD). METHODS: Data of a hospital based case-control study including 444 PD patients and 876 age and sex

  19. Plasma cleaning and the removal of carbon from metal surfaces

    International Nuclear Information System (INIS)

    Baker, M.A.

    1980-01-01

    In an investigation of the plasma cleaning of metals and the plasma etching of carbon, a mass spectrometer was used as a sensitive process monitor. CO 2 produced by the plasma oxidation of carbon films or of organic contamination and occluded carbon at the surfaces of metals proved to be the most suitable gas to monitor. A good correlation was obtained between the measured etch rate of carbon and the resulting CO 2 partial pressure monitored continuously with the mass spectrometer. The rate of etching of carbon in an oxygen-argon plasma at 0.1 Torr was high when the carbon was at cathode potential and low when it was electrically isolated in the plasma, thus confirming the findings of previous workers and indicating the importance of ion bombardment in the etching process. Superficial organic contamination on the surfaces of the metals aluminium and copper and of the alloy Inconel 625 was quickly removed by the oxygen-argon plasma when the metal was electrically isolated and also when it was at cathode potential. Occluded carbon (or carbides) at or near the surfaces of the metals was removed slowly and only when the metal was at cathode potential, thus illustrating again the importance of ion bombardment. (Auth.)

  20. Association of solvent extraction and liquid-liquid flotation processes for metal recovery

    International Nuclear Information System (INIS)

    Puget, Flavia P.; Mendonca, Luciano A. de; Massarani, Giulio

    2000-01-01

    From the batch solvent extraction process, in this work it has been carried out a preliminary study aiming the determination of the optimal operating conditions for zirconium recovery (10 ppm) using alamine 336 (tricaprylylamine) as extractor. The results have shown that the extraction takes place instantaneously (5s of manual agitation) and that at pH around 2.0 the extraction efficiency is up to 98-99% for an aqueous/organic phase volumetric ratio of 10. Based on these results, it is proposed to evaluate the possibility of using of a pioneering technology for metal recovery at low concentrations, using a experimental set-up that associates standard solvent extraction process with liquid-liquid flotation process. (author)

  1. SAGE 2.1: SOLVENT ALTERNATIVES GUIDE: USER'S GUIDE

    Science.gov (United States)

    The guide provides instruction for using the SAGE (Solvent Alternatives GuidE) software system, version 2.1. SAGE recommends solvent replacements in cleaning and degreasing operations. It leads the user through a question-and-answer session. The user's responses allow the system ...

  2. Replacement Technologies for Precision Cleaning of Aerospace Hardware for Propellant Service

    Science.gov (United States)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1997-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-l13- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. Replacement technologies are being investigated for aerospace hardware and for gauges and instrumentation. This paper includes the findings of investigations of aqueous cleaning and verification of aerospace hardware using known contaminants, such as hydraulic fluid and commonly used oils. The results correlate nonvolatile residue with CFC 113. The studies also include enhancements to aqueous sampling for organic and particulate contamination. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon 225 (HCFC 225), HCFC 141b, HFE 7100(R), and Vertrel MCA(R) was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC 113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autogenous ignition and liquid oxygen mechanical impact testing.

  3. An assessment of alternatives for replacing Freon 113 in bench type electrical circuit board cleaning at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Isakson, K.; Vessell, A.L.

    1994-07-01

    Fermilab is presently phasing out all solvents containing Freon-113 (CFC-113) as part of the continuing Waste Minimization Program. These solvents are used primarily in cleaning the flux off of electronic circuit boards after soldering, specifically in bench type work. Title VI of the Clean Air Act mandates a production phase-out for ozone depleting substances, like CFC-113, by the year 2000. Our study addresses this issue by evaluating and choosing alternative non-CFC solvents to replace the CFC-1 13 solvents at Fermilab. Several potential non-CFC cleaning solvents were tested. The evaluation took place in three parts: controlled experimental evaluation, chemical composition evaluation, and employee performed evaluation. First, we performed a controlled nine-step procedure with the potential solvents where each was evaluated in categories such as cleaning effectiveness, odor, residue, type of output and drying time. Next, we listed the chemical composition of each solvent. We noted which solvents contained hydrochlorofluorocarbons because they are targeted for phase-out in the future and will be recognized as interim solutions only. Finally, after preliminary testing, five solvents were chosen as the best options. These solvents were sent to be tested by Fermilab employees who use such materials. Their opinions are valuable not only because they are knowledgeable in this field, but also because they will be using the solvents chosen to replace the CFC-113 solvents. The results favored two ''best alternatives'': Safezone Solvent Flux Remover by Miller-Stephenson and E-Series CFC Free Flux-Off 2000 by Chemtech. Another possible solution also pursued is the no-clean solder option. In our study, we were not able to thoroughly investigate the many types of no-clean solders because of time and financial constraints. The testing that was done, however, showed that no-clean solder was a viable alternative in many cases

  4. Green chemistry: solvent- and metal-free Prins cyclization. Application to sequential reactions.

    Science.gov (United States)

    Clarisse, Damien; Pelotier, Béatrice; Piva, Olivier; Fache, Fabienne

    2012-01-04

    Prins cyclization between a homoallylic alcohol and an aldehyde, promoted by trimethylsilyl halide, afforded 4-halo-tetrahydropyrans with good to excellent yields. Thanks to the absence of the solvent and metal, the THP thus obtained have been implicated without purification in several other reactions, in a sequential way, affording in particular new indole derivatives. This journal is © The Royal Society of Chemistry 2012

  5. Study of chemical cleaning technique for removing sludge in secondary side of PWR SG

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Pan Qingchun; Yu Jinghua; Hou Shufeng

    1993-12-01

    The effect of components, concentration, pH, temperature, cleaning time and flowrate of chemical cleaning solvent made from EDTA mainly on Fe 3 O 4 solubility and corrosion rate of A3 carbon steel, S271 low alloy steel and 800 alloy are introduced. A small chemical cleaning test loop (30L) was built to study the cleaning technique. The effect of residue of chemical cleaning solvent on anti-corrosion performance of materials has been studied under the simulation condition of PWR (pressure water reactor) SG (steam generator) secondary side. The results show that the chemical solvent (pH = 7, 10% EDTA, 1% assistance solvent and 0.25% inhibitor A) can dissolve Fe 3 O 4 18 ∼23 g/L under the conditions of 93 +- 5 degree C, 8 hours and 112 r/min (1.8 ∼ 2.0 t/h). The corrosion rate of material is low. When the residue of EDTA is less than 0.01% there is no impact on the anti-corrosion performance of materials in PWR SG secondary side at normal operation condition (260 +- 5 degree C)

  6. 40 CFR 63.462 - Batch cold cleaning machine standards.

    Science.gov (United States)

    2010-07-01

    .... (a) Each owner or operator of an immersion batch cold solvent cleaning machine shall comply with the... cleaning machine complying with paragraph (a)(2) or (b) of this section shall comply with the work and...

  7. Effect of temperature, solvent and nature of metal cations on the potentiometric titration S of iron oxide

    International Nuclear Information System (INIS)

    Tasleem, S.; Ishrat, B.

    2008-01-01

    A comprehensive study of the potentiometric titrations of iron oxide in the presence of CU/sub 2/ and Mg/sup 2/ were under taken under different experimental conditions of temperature and concentration of metal ions in aqueous and aqueous/organic mixed solvent. The adsorption of both the metal ions were observed to increase with the increase in pH and temperature of the system. The adsorbent iron oxide preferentially adsorbs transition metal as compared to alkaline earth metal ion. (author)

  8. CO{sub 2}-based supercritical fluids as environmentally-friendly processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Pierce, T. [Los Alamos National Lab., NM (United States). Physical Organic Chemistry Group; Tiefert, K. [Hewlett-Packard Co., Inc., Santa Clara, CA (United States)

    1999-03-01

    The production of integrated circuits involves a number of discrete steps that utilize hazardous or regulated solvents. Environmental, safety and health considerations associated with these chemicals have prompted a search for alternative, more environmentally benign, solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Supercritical CO{sub 2} (SCCO{sub 2}) is an excellent choice for IC manufacturing processes since it is non-toxic, non-flammable, inexpensive, and is compatible with all substrate and metallizations systems. Also, conditions of temperature and pressure needed to achieve the supercritical state are easily achievable with existing process equipment. The authors first describe the general properties of supercritical fluids, with particular emphasis on their application as alternative solvents. Next, they review some of the work which has been published involving the use of supercritical fluids, and particularly CO{sub 2}, as they may be applied to the various steps of IC manufacture, including wafer cleaning, thin film deposition, etching, photoresist stripping, and waste treatment. Next, they describe the research work conducted at Los Alamos, on behalf of Hewlett-Packard, on the use of SCCO{sub 2} in a specific step of the IC manufacturing process: the stripping of hard-baked photoresist.

  9. Solvent effects in the synergistic solvent extraction of Co2+

    International Nuclear Information System (INIS)

    Kandil, A.T.; Ramadan, A.

    1979-01-01

    The extraction of Co 2+ from a 0.1M ionic strength aqueous phase (Na + , CH 3 COOH) of pH = 5.1 was studied using thenoyltrifluoroacetone, HTTA, in eight different solvents and HTTA + trioctylphosphine oxide, TOPO, in the same solvents. A comparison of the effect of solvent dielectric constant on the equilibrium constant shows a synergism as a result of the increased hydrophobic character imparted to the metal complex due to the formation of the TOPO adduct. (author)

  10. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  11. Differences in metal sequestration between zebra mussels from clean and polluted field locations.

    Science.gov (United States)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  12. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    International Nuclear Information System (INIS)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-01-01

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  13. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    Energy Technology Data Exchange (ETDEWEB)

    Voets, Judith [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Redeker, Erik Steen [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Institute for Materials Research, Chemistry Division, Hasselt University, Agoralaan Building D G1-36, B 3590 Diepenbeek (Belgium); Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: Lieven.bervoets@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  14. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    Science.gov (United States)

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  15. Method of and apparatus for cleaning garments and soft goods contaminated with nuclear, chemical and/or biological contaminants

    International Nuclear Information System (INIS)

    Fowler, D.E.

    1989-01-01

    A method is described for decontaminating garments, soft good or mixtures thereof contaminated with radioactive particulates, toxin, chemical, and biological contaminants comprising the steps of: (a) depositing contaminated garments, soft goods or mixtures thereof in a cleaning drum; (b) charging the drum with a cleaning solvent in which the chemical contaminants are soluble; (c) agitating the drum during a wash cycle to separate radioactive, toxin, biological particulate matter of mixtures thereof from the garments; (d) draining the drum of the dry cleaning solvent which contains suspended particulate contaminants and dissolved chemical contaminants; (e) contacting the drained solvent with both a neutralizing agent and an oxidizing agent, the neutralizing agent being selected from the group consisting of sodium hydroxide, potassium hydroxide and mixtures thereof and having a concentration greater than one (1.0) normal; (f) rinsing the garments, soft goods or mixtures thereof by circulating clean solvent from a solvent tank through the drum thereby effecting additional removal and flushing of particulate and chemical contaminants; (g) filtering the circulated solvent to remove the particulate material suspended in the solvent prior to addition to the drum; and (h) preferentially adsorbing the chemical contaminants dissolved in the circulated solvent prior to addition to the drum

  16. Contamination spike simulation and measurement in a clean metal vapor laser

    International Nuclear Information System (INIS)

    Lin, C.E.; Yang, C.Y.

    1990-01-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure

  17. Solvent extraction: the coordination chemistry behind extractive metallurgy.

    Science.gov (United States)

    Wilson, A Matthew; Bailey, Phillip J; Tasker, Peter A; Turkington, Jennifer R; Grant, Richard A; Love, Jason B

    2014-01-07

    The modes of action of the commercial solvent extractants used in extractive hydrometallurgy are classified according to whether the recovery process involves the transport of metal cations, M(n+), metalate anions, MXx(n-), or metal salts, MXx into a water-immiscible solvent. Well-established principles of coordination chemistry provide an explanation for the remarkable strengths and selectivities shown by most of these extractants. Reagents which achieve high selectivity when transporting metal cations or metal salts into a water-immiscible solvent usually operate in the inner coordination sphere of the metal and provide donor atom types or dispositions which favour the formation of particularly stable neutral complexes that have high solubility in the hydrocarbons commonly used in recovery processes. In the extraction of metalates, the structures of the neutral assemblies formed in the water-immiscible phase are usually not well defined and the cationic reagents can be assumed to operate in the outer coordination spheres. The formation of secondary bonds in the outer sphere using, for example, electrostatic or H-bonding interactions are favoured by the low polarity of the water-immiscible solvents.

  18. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  19. Chemical-Cleaning Demonstration Test No. 2 in a mock-up steam generator

    International Nuclear Information System (INIS)

    Jevec, J.M.; Leedy, W.S.

    1983-04-01

    This report describes the results of the mockup demonstration test of the first modified baseline process under Contract S-127, Chemical Cleaning of Nuclear Steam Generators. The objective of this program is to determine the feasibility of cleaning the secondary side of nuclear steam generators with state-of-the-art chemical cleaning technology. The first step was to benchmark a baseline process. This process was then modified to attempt to eliminate the causes of unacceptable cleaning performance. The modified baseline process consists of an EDTA/H 2 O 2 -based copper solvent and a near-neutral, EDTA/N 2 H 4 -based magnetite and crevice solvent. This report also presents the results of three inhibitor evaluation mockup runs used in the evaluation of the modified baseline process

  20. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Science.gov (United States)

    2010-07-01

    ...-base solvent wash paint subcategory. 446.10 Section 446.10 Protection of Environment ENVIRONMENTAL...-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...

  1. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    International Nuclear Information System (INIS)

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    Full text of publication follows: One of the basic performances of aerosol filters is the aerodynamic resistance to the flow of gaseous medium to be cleaned. Calculation of the aerodynamics of aerosol filters in reference to the gas loops of reactor installations with heavy liquid metal coolant (HLMC) allows the design of the structural components of filters to be optimized to provide minimum initial resistance values. It is established that owing to various factors aerosol particles of different concentration and disperse composition are present always in the gas spaces of heavy liquid metal cooled reactor gas loops. To prevent the negative effect of aerosols on the equipment of the gas loops, it is reasonable to use filters of multistep design with sections of preliminary and fine cleaning to catch micron and submicron particles, respectively. A computer program and technique have been developed to evaluate the aerodynamics of folded aerosol filters for different parameters of their structural components, taking account of the aerosol spectrum and concentration. The algorithm of the calculation is presented by the example of a two-step design assembled in single vessel; the filter dimensions and pattern of the air flow to be cleaned are determined under the given boundary conditions. The evaluation of the aerodynamic resistance of filters was performed with consideration for local resistances and resistances of all the structural components of the filter (sudden constriction, expansion, the flow in air channels, filtering material and so on). Correlations have been derived for the resistance of air channels, filtering materials of preliminary and fine cleaning sections as a function of such parameters as the section depth (50-500 mm), the height of separators (3,5-20 mm), the filtering surface area (1,5-30 m 2 ). Based on the calculation results, the auto-similarity domain was brought out for the minimal values of filter resistances as a function of the ratio of

  2. Comparison of trace metals in intake and discharge waters of power plants using clean techniques

    International Nuclear Information System (INIS)

    Salvito, D.T.; Allen, H.E.

    1995-01-01

    In order to determine the impact to receiving waters of trace metals potentially discharged from a once-through, non-contact cooling water system from a power plant, a study was conducted utilizing clean sampling and analytical techniques for a series of metals. Once-through, non-contact cooling water at power plants is frequently discharged back to the fresh or saline waterbody utilized for its intake water. This water is used to cool plant condensers. Intake and discharge data were collected and evaluated using paired t-tests. Study results indicate that there is no measurable contribution of metals from non-contact cooling water from this power plant

  3. Solvent/oxidant-switchable synthesis of multisubstituted quinazolines and benzimidazoles via metal-free selective oxidative annulation of arylamidines.

    Science.gov (United States)

    Lin, Jian-Ping; Zhang, Feng-Hua; Long, Ya-Qiu

    2014-06-06

    A fast and simple divergent synthesis of multisubstituted quinazolines and benzimidazoles was developed from readily available amidines, via iodine(III)-promoted oxidative C(sp(3))-C(sp(2)) and C(sp(2))-N bond formation in nonpolar and polar solvents, respectively. Further selective synthesis of quinazolines in polar solvent was realized by TEMPO-catalyzed sp(3)C-H/sp(2)C-H direct coupling of the amidine with K2S2O8 as the oxidant. No metal, base, or other additives were needed.

  4. Highly stable ni-m f6-nh2o/onpyrazine2(solvent)x metal organic frameworks and methods of use

    KAUST Repository

    Eddaoudi, Mohamed

    2016-10-13

    Provided herein are metal organic frameworks comprising metal nodes and N-donor organic ligands. Methods for capturing chemical species from fluid compositions comprise contacting a metal organic framework characterized by the formula [MaMbF6-n(O/H2O)w(Ligand)x(solvent)y]z with a fluid composition and capturing one or more chemical species from the fluid composition.

  5. Solvent extraction of gold using ionic liquid based process

    Science.gov (United States)

    Makertihartha, I. G. B. N.; Zunita, Megawati; Rizki, Z.; Dharmawijaya, P. T.

    2017-01-01

    In decades, many research and mineral processing industries are using solvent extraction technology for metal ions separation. Solvent extraction technique has been used for the purification of precious metals such as Au and Pd, and base metals such as Cu, Zn and Cd. This process uses organic compounds as solvent. Organic solvents have some undesired properties i.e. toxic, volatile, excessive used, flammable, difficult to recycle, low reusability, low Au recovery, together with the problems related to the disposal of spent extractants and diluents, even the costs associated with these processes are relatively expensive. Therefore, a lot of research have boosted into the development of safe and environmentally friendly process for Au separation. Ionic liquids (ILs) are the potential alternative for gold extraction because they possess several desirable properties, such as a the ability to expanse temperature process up to 300°C, good solvent properties for a wide range of metal ions, high selectivity, low vapor pressures, stability up to 200°C, easy preparation, environmentally friendly (commonly called as "green solvent"), and relatively low cost. This review paper is focused in investigate of some ILs that have the potentials as solvent in extraction of Au from mineral/metal alloy at various conditions (pH, temperature, and pressure). Performances of ILs extraction of Au are studied in depth, i.e. structural relationship of ILs with capability to separate Au from metal ions aggregate. Optimal extraction conditon in order to gain high percent of Au in mineral processing is also investigated.

  6. Solubility and solvation of alkali metal perchlorates, tetramethyl and tetraethylammonium in aqua-ketone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1998-01-01

    The KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 solubility in water and water-acetone, water-methylethylketone mixtures is determined through the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metals perchlorates in acetone and its 90% mixtures (by volume) are determined conductometrically. Solubility products and standard energies of the Gibbs transfer of the studied electrolytes from water into water-acetone and water-methylethylketone solvents. It is established that the Gibbs standard energies of Na + , K + , Rb + and Cs + cations transfer from water to water-ketone solvents are close to each other. It is shown that the effect of acetone and methylethylketone on solvation of the studied electrolytes is practically similar

  7. A centrifuge CO2 pellet cleaning system

    International Nuclear Information System (INIS)

    Foster, C.A.; Fisher, P.W.; Nelson, W.D.; Schechter, D.E.

    1993-01-01

    Centrifuge-based cryogenic pellet accelerator technology, originally developed at Oak Ridge National Laboratory (ORNL) for the purpose of refueling fusion reactors with high-speed pellets of frozen deuterium/tritium,is now being developed as a method of cleaning without the use of conventional solvents. In these applications large quantities of pellets made of frozen CO 2 or argon are accelerated in a high-speed rotor. The accelerated pellet stream is used to clean or etch surfaces. The advantage of this system is that the spent pellets and debris resulting from the cleaning process can be filtered leaving only the debris for disposal. This paper discusses the centrifuge CO 2 pellet cleaning system, the physics model of the pellet impacting the surface, the centrifuge apparatus, and some initial cleaning and etching tests

  8. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure.

  9. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    International Nuclear Information System (INIS)

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure

  10. Overview of shoreline cleaning agents

    International Nuclear Information System (INIS)

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  11. Rudimentary Cleaning Compared to Level 300A

    Science.gov (United States)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  12. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  13. Green Michael addition of thiols to electron deficient alkenes using KF/alumina and recyclable solvent or solvent-free conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lenardao, Eder J.; Trecha, Danusia O.; Ferreira, Patricia da C.; Jacob, Raquel G.; Perin, Gelson [Universidade Federal de Pelotas (UFPEL), Pelotas, RS (Brazil). Inst. de Quimica e Geociencias. Lab. de Sintese Organica Limpa (LASOL)]. E-mail: lenardao@ufpel.edu.br

    2009-07-01

    A general, clean and easy method for the conjugated addition of thiols to citral promoted by KF/Al{sub 2}O{sub 3} under solvent-free or using glycerin as recyclable solvent at room temperature is described. It was found that the solvent-free protocol is applicable to the direct reaction of thiophenol with the essential oil of lemon grass (Cymbopogon citratus) to afford directly 3,7-dimethyl-3-(phenylthio)oct-6-enal, a potential bactericide agent. The method was extended to other electron-poor alkenes with excellent results. For the solvent-free protocol, the use of microwave irradiation facilitated the procedure and accelerates the reaction. The catalytic system and glycerin can be reused up to three times without previous treatment with comparable activity. (author)

  14. Trajectories towards clean technology. Example of volatile organic compound emission reductions

    Energy Technology Data Exchange (ETDEWEB)

    Belis-Bergouignan, Marie-Claude; Oltra, Vanessa; Saint Jean, Maider [IFREDE-E3i, University Montesquieu-Bordeaux IV, Avenue Leon Duguit, Pessac 33608 (France)

    2004-02-20

    This article is based on the observation that, up until now, corporate investment has been limited in clean technologies despite the will of governmental authorities to stimulate them in order to cope with the demands of sustainable development. The paper deals with the issue of the development of clean technologies and the role of regulations as clean technology promoters. It tries to apprehend the characteristics and specificity of clean technology from both an empirical and a theoretical point of view, so as to understand which are the most favourable (or inversely, the most detrimental) conditions for their development. We use case studies concerning the reduction of volatile organic compound (VOC) emissions in the chemical and metallurgical industries. These two examples highlight the problems created by the shift from a 'with-solvent paradigm' to a 'solvent-free paradigm' and the way clean technology trajectories may spread within such paradigms. We show that the problem of clean technology development primarily resides in some factors that impede technological adoption, although a strong and mixed incentives framework prevails. Such impediments are sector-specific, leading to different clean technology trajectories among sectors and indicating areas of sectoral intervention that could become the cornerstones of complementary technology policy.

  15. Extracting metals directly from metal oxides

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of β-diketones, halogenated β-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs

  16. Solid sampling graphite furnace atomic absorption spectrometry for the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration

    Science.gov (United States)

    González-Álvarez, Rafael Jesús; Pinto, Juan J.; Bellido-Milla, Dolores; Moreno, Carlos

    2017-09-01

    The potential applicability of the continuum source solid sampling graphite furnace atomic absorption spectroscopy (CS SS-GF AAS) technique has been studied to carry out the direct analysis of microextraction solvent bars used for metal ultra-trace pre-concentration in natural waters. An optimisation of the temperature program was developed for this purpose. Preliminary chamber furnace studies were performed in order to understand the behaviour of the bars with the increasing temperature. Solvent bars were filled with an acceptor solution, impregnated with an organic extractant and placed into the chamber furnace to carry out several temperature programs. Results led to perform a correct optimisation of the drying and pyrolysis steps of the furnace temperature program, which was tested with silver once completed. Blank solvent bars as well as standards containing silver were measured, obtaining a calibration curve with a correlation coefficient of 0.991. The results exhibited good repeatability and reproducibility, with relative standard deviations below 10% in both cases, indicating a promising applicability of the CS SS-GF AAS technique to directly determine metallic species in microextraction solvent bars.

  17. AN ELECTROLYTIC CIP-CLEANING PROCESS FOR REMOVING IMPURITIES FROM THE INNER SURFACE OF A METALLIC CONTAINER

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to a novel electrolytic process for removing impurities from the inner surface of a metallic container. The process is particularly useful for cleaning process reactors used for culturing microorganisms, and storage tanks used for storing metabolites formed in the process...... reactor, as well as containers for dairy products....

  18. Surface cleaning in thin film technology

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1978-01-01

    A ''clean surface'' is one that contains no significant amounts of undesirable material. This paper discusses the types and origin of various contaminants. Since cleaning is often equated with adhesion, the mechanisms of adhesion to oxide, metal, and organic surfaces are reviewed and cleaning processes for these surfaces are outlined. Techniques for monitoring surface cleaning are presented, and the importance of storage of clean surfaces is discussed. An extensive bibliography is given. 4 figs., 89 references

  19. Prioritizing substitution of organic solvents in industrial cleaning processes

    DEFF Research Database (Denmark)

    Rasmussen, Pia Brunn; Jacobsen, Thomas

    1997-01-01

    A method for prioritizing the substitution of volatile organic compounds (VOC) used in industrial cleaning processes is developed. The result is a matrix, which, if all information can be obtained, gives a comprehensive description of the effects, exposure and emission of VOC, as well as the pros...

  20. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  1. Cleaning and Restoration of an Oil Painting with a Polymer Gel in Iran

    Directory of Open Access Journals (Sweden)

    Siyamak Alizadeh

    2018-03-01

    Full Text Available One of the major stages in the conservation and restoration of a painting is to clean its colored surface of unwanted stains, and old and darkened varnishes. Various solvents have been used to date for this purpose; however, new cleaning materials have also come onto the market in the past decade that are still unknown and may never have been employed in Iran. The present study aims to introduce a polymer gel and use an in vitro sample of the substance for cleaning and to then present the results of the tests carried out. Applying a polymer gel in the cleaning of paintings yielded better results and greater advantages over the solvents previously used to clean artworks. The advantages include, performing on the surface without penetrating the lower layers, the absence of residues after application, flexibility, solubility and the gentle removal of old stains and varnishes, maintaining clarity and cleaning the surface by simple removal of the thin dried layer, which requires no mechanical pressure. Microscopic examinations and pH testing showed that this new alternative technique can be of use in cleaning the color layers of oil paintings.

  2. Refining of crude uranium by solvent extraction for production of nuclear pure uranium metal

    International Nuclear Information System (INIS)

    Gupta, S.K.; Manna, S.; Singha, M.; Hareendran, K.N.; Chowdhury, S.; Satpati, S.K.; Kumar, K.

    2007-01-01

    Uranium is the primary fuel material for any nuclear fission energy program. Natural uranium contains only 0.712% of 235 U as fissile constituent. This low concentration of fissile isotope in natural uranium calls for a very high level of purity, especially with respect to neutron poisons like B, Cd, Gd etc. before it can be used as nuclear fuel. Solvent extraction is a widely used technique by which crude uranium is purified for reactor use. Uranium metal plant (UMP), BARC, Trombay is engaged in refining of uranium concentrate for production of nuclear pure uranium metal for fabrication of fuel for research reactors. This paper reviews some of the fundamental aspects of this refining process with some special references to UMP, BARC. (author)

  3. Chemical cleaning the service water system at a nuclear power plant

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    Chemical cleaning a large cooling water system in a nuclear power plant presented many unique problems. The selection, qualification, and performance of the cleaning process were done using a phased approach. The piping was inspected to determine the extent of the problem. Deposit samples were removed from the service water system pipe and tested in the laboratory to determine the most effective cleaning solvent for deposit removal. An engineering study was performed to define the design parameters required to implement the system-wide chemical cleaning

  4. Surface Analysis of the Laser Cleaned Metal Threads

    Science.gov (United States)

    Sokhan, M.; Hartog, F.; McPhail, D.

    The laser cleaning of the tarnished silver threads was carried out using Nd:YAG laser radiation at IR (1064 nm) and visible wavelengths (532 nm). The preliminary tests were made on the piece of silk with the silver embroidery with the clean and tarnished areas. FIBS and SIMS analysis were used for analysing the condition of the surface before and after laser irradiation. It was found that irradiation below 0.4 J/cm-2 and higher than 1.0 J/cm-2 fluences aggravates the process of tarnishing and leads to the yellowing effect. The results of preliminary tests were used for finding the optimum cleaning regime for the laser cleaning of the real museum artefact: "Women Riding Jacket" dated to the beginning of 18th century.

  5. PWR steam generator chemical cleaning. Phase I: Final report, Volume I

    International Nuclear Information System (INIS)

    1978-07-01

    Two chemical cleaning solvent systems and two application methods were developed to remove the sludge in nuclear steam generators and to remove the corrosion products in the annuli between the steam generator tubes and the support plates. Laboratory testing plus subsequent pilot testing has demonstrated that, in a reasonable length of time, both solvents are capable of dissolving significant amounts of sludge, and of dissolving tightly packed magnetite in tube/support plate crevices. Further, tests have demonstrated that surface losses of the materials of construction in steam generators can be controlled to acceptable limits for the duration of the required cleaning period. Areas requiring further study and test have been identified, and a preliminary procedure for chemical cleaning nuclear steam generators has been chosen subject to quantification based on additional tests prior to actual in-plant demonstration

  6. Paraffin wax removal from metal injection moulded cocrmo alloy compact by solvent debinding process

    Science.gov (United States)

    Dandang, N. A. N.; Harun, W. S. W.; Khalil, N. Z.; Ahmad, A. H.; Romlay, F. R. M.; Johari, N. A.

    2017-10-01

    One of the most crucial and time consuming phase in metal injection moulding (MIM) process is “debinding”. These days, in metal injection moulding process, they had recounted that first debinding practice was depend on thermal binder degradation, which demanding more than 200 hours for complete removal of binder. Fortunately, these days world had introduced multi-stage debinding techniques to simplified the debinding time process. This research study variables for solvent debinding which are temperature and soaking time for samples made by MIM CoCrMo powder. Since wax as the key principal in the binder origination, paraffin wax will be removed together with stearic acid from the green bodies. Then, debinding process is conducted at 50, 60 and 70°C for 30-240 minutes. It is carried out in n-heptane solution. Percentage weight loss of the binder were measured. Lastly, scanning electron microscope (SEM) analysis and visual inspection were observed for the surface of brown compact. From the results, samples debound at 70°C exhibited a significant amount of binder loss; nevertheless, sample collapse, brittle surface and cracks were detected. But, at 60°C temperature and time of 4 hours proven finest results as it shows sufficient binder loss, nonappearance of surface cracks and easy to handle. Overall, binder loss is directly related to solvent debinding temperature and time.

  7. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  8. A new approach involving a multi transducer ultrasonic system for cleaning turbine engines' oil filters under practical conditions.

    Science.gov (United States)

    Nguyen, Dinh Duc; Ngo, Huu Hao; Yoon, Yong Soo; Chang, Soon Woong; Bui, Hong Ha

    2016-09-01

    The purpose of this paper is to provide a green technology that can clean turbine engine oil filters effectively in ships using ultrasound, with ultrasonic devices having a frequency of 25kHz and different powers of 300W and 600W, respectively. The effects of temperature, ultrasonic cleaning times, pressure losses through the oil filter, solvent washing, and ultrasonic power devices were investigated. In addition, the cleaning efficiency of three modes (hand washing, preliminary washing and ultrasonic washing) were compared to assess their relative effectiveness. Experimental results revealed that the necessary ultrasonic time varied significantly depending on which solvent was used for washing. For instance, the optimum ultrasonic cleaning time was 50-60min when the oil filter was cleaned in a solvent of kerosene oil (KO) and over 80min when in a solvent of diesel oil (DO) using the same ultrasonic generator device (25kHz, 600W) and experimental conditions. Furthermore, microscopic examination did not reveal any damage or breakdown on or within the structure of the filter after ultrasonic cleaning, even in the filter's surfaces at a constantly low frequency of 25kHz and power specific capacity (100W/gal). Overall, it may be concluded that ultrasound-assisted oil filter washing is effective, requiring a significantly shorter time than manual washing. This ultrasonic method also shows promise as a green technology for washing oil filters in turbine engines in general and Vietnamese navy ships in particular, because of its high cleaning efficiency, operational simplicity and savings. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process - 15495

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Remediation, LLC., Aiken, SC (United States); Scherman, Carl [Savannah River Remediation, LLC., Aiken, SC (United States); Martin, David [Savannah River Remediation, LLC., Aiken, SC (United States); Suggs, Patricia [Savannah River Site (SRS), Aiken, SC (United States)

    2015-01-14

    Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant-based solvent in MCU with clean MaxCalix extractant-based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

  10. Metal ion extractant in microemulsions: where solvent extraction and surfactant science meet

    International Nuclear Information System (INIS)

    Bauer, C.

    2011-01-01

    The presented work describes the supramolecular structure of mixtures of a hydrophilic surfactant n-octyl-beta-glucoside (C8G1), and the hydrophobic metal ion extractant tributylphosphate (TBP) in n-dodecane/water as well as in the presence of salts. In the first part, basic solvent extraction system, composed of water, oil and extractant, will be introduced. The focus, however, lies on the extraction of multivalent metal ions from the aqueous phase. During this extraction process and in the following thermodynamic equilibrium, aggregation and phase transition in supramolecular assemblies occur, which are already described in literature. Notably, these reports rest on individual studies and specific conclusions, while a general concept is still missing. We therefore suggest the use of generalized phase diagrams to present the physico-chemical behaviour of (amphiphilic) extractant systems. These phase diagrams facilitated the development of a thermodynamic model based on molecular geometry and packing of the extractant molecules in the oil phase. As a result, we are now in the position to predict size and water content of extractant aggregates and, thus, verify the experimental results by calculation.Consequently, the second part presents a systematic study of the aqueous and organic phase of water/C8G1 and water/oil/TBP mixtures. The focus lies on understanding the interaction between metal ions and both amphiphilic molecules by means of small angle x-ray scattering (SAXS), dynamic light scattering (DLS) and UV-Vis spectroscopy. We confirmed the assumption that extraction of metal ions is driven by TBP, while C8G1 remains passive. In the third and last part, microemulsions of C8G1, TBP, water (and salt) and n-dodecane are characterized by small angle neutron scattering (SANS), and chemical analytics (Karl Fischer, total organic carbon, ICP-OES,...). The co-surfactant behaviour of TBP was highlighted by comparison to the classical n-alcohol (4≤n≤8) co

  11. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  12. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-04-12

    This twelfth quarterly report describes work done during the twelfth three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to a number of outside contacts.

  13. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  14. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  15. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  16. Radiological pathways analysis for spent solvents from the boiler chemical cleaning at the Pickering Nuclear Site

    International Nuclear Information System (INIS)

    Garisto, N.C.; Eslami, Z.; Hodgins, S.; Beaman, T.; Von Svoboda, S.; Marczak, J.

    2006-01-01

    Spent solvents are generated as a result of Boiler Chemical Cleanings (BCC) at CANDU reactor sites. These solutions contain small amount of radioactivity from a number of different sources including: Cut tubes - short sections of boiler tubes are infrequently removed from the boilers for a detailed characterization. These tubes are typically only plugged at the tubesheet allowing the primary side deposits to be exposed to BCC solvents. Tube leaks - primary to secondary side leaks also occur infrequently as a result of tube degradation. Radioactivity from the leaking fluid can consequently be deposited in the sludge on the secondary side of the tubes. Diffusion of tritium - during normal operation of the reactor units, tritium slowly diffuses from the heavy water in the primary heat-transfer system to the light-water coolant on the secondary side. Some of this tritium is retained in the secondary side deposits. The Pickering Nuclear Generating Station (PNGS) would like the flexibility to have several options for handling the spent solvent waste and associated rinse water from BCC. To this end, a radiological pathways analysis was undertaken to determine dose consequences associated with each option. Sample results from this study are included in this paper. The pathways analysis is used in this study to calculate dose to hypothetical receptors including individuals such as truck drivers, incinerator workers, residue (ash) handlers, residents who live near the landfill, inadvertent intruders into the landfill after closure and residents who live near the outfall. This dose is compared to a de minimis dose. A de minimis dose or dose rate represents a level of risk, which is generally accepted as being of no significance. Shipments of spent solvents and rinse water with corresponding doses below de minimis can be sent to conventional (i.e., non-radioactive) landfills for incineration and disposal as the radioactive dose associated with them is much less than natural

  17. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  18. Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.

    Science.gov (United States)

    Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon

    2015-05-26

    Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.

  19. Bioremediation potential of a newly isolate solvent tolerant strain Bacillus thermophilus PS11

    Directory of Open Access Journals (Sweden)

    PAYEL SARKAR

    2012-01-01

    Full Text Available The increased generation of solvent waste has been stated as one of the most critical environmental problems. Though microbial bioremediation has been widely used for waste treatment but their application in solvent waste treatment is limited since the solvents have toxic effects on the microbial cells. A solvent tolerant strain of Bacillus thermophilus PS11 was isolated from soil by cyclohexane enrichment. Transmission electron micrograph of PS11 showed convoluted cell membrane and accumulation of solvents in the cytoplasm, indicating the adaptation of the bacterial strain to the solvent after 48h of incubation. The strain was also capable of growing in presence of wide range of other hydrophobic solvents with log P-values below 3.5. The isolate could uptake 50 ng/ml of uranium in its initial 12h of growth, exhibiting both solvent tolerance and metal resistance property. This combination of solvent tolerance and metal resistance will make the isolated Bacillus thermophilus PS11 a potential tool for metal bioremediation in solvent rich wastewaters.

  20. An X-ray photoelectron spectroscopic study of a nitric acid/argon ion cleaned uranium metal surface at elevated temperature

    International Nuclear Information System (INIS)

    Paul, A.J.; Sherwood, P.M.A.

    1987-01-01

    X-ray photoelectron spectroscopy has been used to study the surface of uranium metal cleaned by nitric acid treatment and argon ion etching, followed by heating in a high vacuum. The surface is shown to contain UOsub(2-x) species over the entire temperature range studied. Heating to temperatures in the range 400-600 0 C generates a mixture of this oxide, the metal and a carbide and/or oxycarbide species. (author)

  1. Engineered Natural Geosorbents for In Situ Immobilization of DNAPLs and Heavy Metals

    Energy Technology Data Exchange (ETDEWEB)

    Walter J. Weber; Gordon M. Fair; Earnest Boyce

    2006-12-01

    Extensive subsurface contamination by dense non-aqueous phase liquid (DNAPL) organic solvents and heavy metals is common place at many DOE facilities. Poor performances and excessive costs have made traditional technologies and approaches less than satisfactory for remediation of such sites. It is increasingly apparent that marginal improvements in conventional methods and approaches will not suffice for clean up of many contaminated DOE sites. Innovative approaches using new and/or existing technologies in more efficient and cost-effective ways are thus urgently required.

  2. Engineered Natural Geosorbents for In Situ Immobilization of DNAPLs and Heavy Metals

    International Nuclear Information System (INIS)

    Walter J. Weber; Gordon M. Fair; Earnest Boyce

    2006-01-01

    Extensive subsurface contamination by dense non-aqueous phase liquid (DNAPL) organic solvents and heavy metals is common place at many DOE facilities. Poor performances and excessive costs have made traditional technologies and approaches less than satisfactory for remediation of such sites. It is increasingly apparent that marginal improvements in conventional methods and approaches will not suffice for clean up of many contaminated DOE sites. Innovative approaches using new and/or existing technologies in more efficient and cost-effective ways are thus urgently required

  3. CO2 dry cleaning: Acoustic cavitation and other mechanisms to induce mechanical action

    NARCIS (Netherlands)

    Sutanto, S.; Dutschk, Victoria; Mankiewicz, J.; van Roosmaalen, M.; Warmoeskerken, Marinus

    2014-01-01

    High pressure carbon dioxide (CO2) is a potential solvent for textile dry cleaning. However, the particulate soil (e.g. clay, sand) removal in CO2 is generally insufficient. Since cavitation has been proven to be beneficial in other CO2 cleaning applications, this study aims to investigate the

  4. Development of an emergency air-cleaning system for liquid-metal reactors

    International Nuclear Information System (INIS)

    Owen, R.K.

    1980-11-01

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter

  5. Carbothermic reduction of refractory metals

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.D.

    1976-01-01

    The reduction of stable refractory metal oxides by carbon is generally unacceptable since the product is usually contaminated with carbides. The carbide formation may be avoided by selecting a solvent metal to dissolve the reactive metal as it is produced and reduce its chemical activity below that required for carbide formation. This approach has been successfully applied to the oxides of Si, Zr, Ti, Al, Mg, and U. In the case where a volatile suboxide, a carbonyl reaction, or a volatile metal occur, the use of the solvent metal appears satisfactory to limit the loss of material at low pressures. In several solute--solvent systems, vacuum evaporation is used to strip the solvent metal from the alloy to give the pure metal

  6. Vapor solvent decontamination of PCB [polychlorinated biphenyls] transformer components

    International Nuclear Information System (INIS)

    Green, G.R.; Green, G.R.

    1992-01-01

    A process is provided to recover reclaimable material from discarded transformers containing PCB (polychlorinated biphenyl) insulating oils and to minimize the volume of materials which are subject to environmental regulation upon disposal. According to the invention, the transformer is drained and given an initial cleaning. The internal parts are removed and cleaned a second time as is the empty transformer casing. Recoverable materials such as aluminum and copper are cleaned to less than 10 μg of PCB per 100 cm 2 , allowing these materials to be recycled rather than buried. Almost all of the remaining nonmetallic materials are combustible solids or liquids which can be destroyed by incineration. The cleaning is accomplished using trichloroethylene solvent, chosen for its low boiling point which makes it easy to recycle using an isothermal separator. The removed transformer parts are cleaned in a secondary cleaning station consisting of 3 separate sections including tumbling baskets. 2 figs

  7. Solvent extraction columns

    International Nuclear Information System (INIS)

    Middleton, P.; Smith, J.R.

    1979-01-01

    In pulsed columns for use in solvent extraction processes, e.g. the reprocessing of nuclear fuel, the horizontal perforated plates inside the column are separated by interplate spacers manufactured from metallic neutron absorbing material. The spacer may be in the form of a spiral or concentric circles separated by radial limbs, or may be of egg-box construction. Suitable neutron absorbing materials include stainless steel containing boron or gadolinium, hafnium metal or alloys of hafnium. (UK)

  8. Final status report in preparation for the chemical cleaning of Dresden-1, DNS-D1-034

    International Nuclear Information System (INIS)

    1981-09-01

    This report discusses the status of all of the activities conducted in preparation for the chemical cleaning of the Dresden-1 Nuclear Power Plant of Commonwealth Edison of Illinois. The metallurgical testing of a solvent and its ability to remove radioactivity are reviewed. Included are all engineering details relating to the modifications to the primary system to be able to perform the chemical cleaning and to rinse the cleaning solvent out of the equipment. A facility to store and process spent cleaning solutions is described in detail. Construction activities and preoperational activities are recounted. Licensing activities, quality assurance, safety, and radiation protection are discussed. The report includes recommendations for future actions for restarting the project when approval is received. All of the efforts discussed in this Final Status Report led to the conclusion that the chemical cleaning, as planned, was feasible. All of the necessary modifications and new equipment are in place and are operational

  9. Caustic-Side Solvent Extraction: Chemical and Physical Properties of the Optimized Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Delmau, L.H.

    2002-10-08

    This work was undertaken to optimize the solvent used in the Caustic Side Solvent Extraction (CSSX) process and to measure key chemical and physical properties related to its performance in the removal of cesium from the alkaline high-level salt waste stored in tanks at the Savannah River Site. The need to adjust the solvent composition arose from the prior discovery that the previous baseline solvent was supersaturated with respect to the calixarene extractant. The following solvent-component concentrations in Isopar{reg_sign} L diluent are recommended: 0.007 M calix[4]arene-bis(tert-octylbenzo-crown-6) (BOBCalixC6) extractant, 0.75 M 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol (Cs-7SB) phase modifier, and 0.003 M tri-n-octylamine (TOA) stripping aid. Criteria for this selection included BOBCalixC6 solubility, batch cesium distribution ratios (D{sub Cs}), calculated flowsheet robustness, third-phase formation, coalescence rate (dispersion numbers), and solvent density. Although minor compromises within acceptable limits were made in flowsheet robustness and solvent density, significant benefits were gained in lower risk of third-phase formation and lower solvent cost. Data are also reported for the optimized solvent regarding the temperature dependence of D{sub Cs} in extraction, scrubbing, and stripping (ESS); ESS performance on recycle; partitioning of BOBCalixC6, Cs-7SB, and TOA to aqueous process solutions; partitioning of organic anions; distribution of metals; solvent phase separation at low temperatures; solvent stability to elevated temperatures; and solvent density and viscosity. Overall, the technical risk of the CSSX process has been reduced by resolving previously identified issues and raising no new issues.

  10. Compound forming extractants, solvating solvents and inert solvents IUPAC chemical data series

    CERN Document Server

    Marcus, Y; Kertes, A S

    2013-01-01

    Equilibrium Constants of Liquid-Liquid Distribution Reactions, Part III: Compound Forming Extractants, Solvating Solvents, and Inert Solvents focuses on the compilation of equilibrium constants of various compounds, such as acids, ions, salts, and aqueous solutions. The manuscript presents tables that show the distribution reactions of carboxylic and sulfonic acid extractants and their dimerization and other reactions in the organic phase and extraction reactions of metal ions from aqueous solutions. The book also states that the inorganic anions in these solutions are irrelevant, since they d

  11. Metallization and photolithographic processes and procedures for MC2730 RTG thermopile intraconnections

    International Nuclear Information System (INIS)

    Komarek, E.E.; Wright, R.E.; Knauss, G.L.

    1974-03-01

    Processes and procedures were developed for applying the thin film tungsten electrical intraconnections to the MC2730 RTG ''one-dimensional'' thermopile. After polishing, the surface to be metallized was cleaned with a detergent/organic solvent procedure and then etched with hydrofluoric acid to minimize the oxide. Tungsten contacts were sputtered onto the thermopile and the individual contacts photolithographically defined using a negative acting photoresist in conjunction with a potassium ferricyanide etchant. The processes were used to process 89 thermopiles with an 80 percent effective yield

  12. Improvement of solvents for chemical decontamination: nickel ferrites removal

    International Nuclear Information System (INIS)

    Figueroa, Carlos A.; Morando, Pedro J.; Blesa, Miguel A.

    1999-01-01

    Carboxylic acids are usually included in commercial solvents for the chemical cleaning and decontamination of metal surfaces from the oxide layers grown and/or deposited from high temperature water by corrosive process. In particular oxalic acid is included in second path of AP-Citrox method. However, in some cases, their use shows low efficiency. This fact is attributed to the special passivity of the mixed oxides as nickel ferrites. This work reports a kinetic study of dissolution of a synthetic nickel ferrite (NiFe 2 O 4 ) confronted with simple oxides (NiO and Fe 2 O 3 ) in mineral acids and oxalic acid. The dissolution factor and reaction rate were determined in several conditions (reactive concentrations, pH and added ferrous ions). Experimental data of dissolution (with and without Fe(II) added) show a congruent kinetic regime. Pure nickel oxide (NiO) is rather resistant to the attack by oxalic acid solutions, and ferrous ions do not accelerate dissolution. In fact, nickel oxide dissolves better by oxidative attack that takes advantage of the higher lability of Ni 3+ . It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Our results point to use more reactive solvents in iron from mixed oxides and to the possibility of using one stage decontamination method. (author)

  13. Separation and Recovery of Precious Metals from Leach Liquors of Spent Electronic Wastes by Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi Hong; Wang, Lingyun; Lee, Man Seung [Mokpo National University, Mokpo (Korea, Republic of)

    2017-04-15

    Solvent extraction was employed to recover precious metals (Au (III), Pd (II) and Pt (IV)) from the leach solution of spent electronic wastes containing Cu (II), Cr (III) and Fe (III). First, pure Fe (III) and Au (III) were recovered by simultaneous extraction with Cyanex 923 followed by selective stripping with HCl and Na{sub 2}S{sub 2}O{sub 3}. Second, Pt (IV), Pd (II) and Cu (II) were extracted by Alamine 336 from the raffinate. After the removal of Cu (II) by stripping with weak HCl, Pd (II) and Pt (IV) were separately stripped by controlling the concentration of thiourea in the mixture with HCl. A process flow sheet for the separation of precious metals was proposed.

  14. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  15. Terpenes as Green Solvents for Extraction of Oil from Microalgae

    Directory of Open Access Journals (Sweden)

    Celine Dejoye Tanzi

    2012-07-01

    Full Text Available Herein is described a green and original alternative procedure for the extraction of oil from microalgae. Extractions were carried out using terpenes obtained from renewable feedstocks as alternative solvents instead of hazardous petroleum solvents such as n-hexane. The described method is achieved in two steps using Soxhlet extraction followed by the elimination of the solvent from the medium using Clevenger distillation in the second step. Oils extracted from microalgae were compared in terms of qualitative and quantitative determination. No significant difference was obtained between each extract, allowing us to conclude that the proposed method is green, clean and efficient.

  16. Validation of Alternatives to High Volatile Organic Compound Solvents Used in Aeronautical Antifriction Bearing Cleaning

    Science.gov (United States)

    2006-10-17

    982-4832 (fax) tom.torres@navy.mil Quality Assurance Officer Gene Griffin NFESC 1100 23rd Avenue Port Hueneme, CA 93043-4370 (805) 982-2267...solvent replenishment system. The waste solvent shall be captured in a sealed container that is easily acces· sible for periodic disposal. (2) HFE ...Co-Solvent Vapor Degreaser. This method features the use of a hydrocarbon (HC) solvating agent and a Hydrofluoroether ( HFE ) liquid rinse and vapor

  17. Methods of producing adsorption media including a metal oxide

    Science.gov (United States)

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  18. Technology for cleaning of Pb-Bi adhering to steel (1). Basic tests

    International Nuclear Information System (INIS)

    Saito, Shigeru; Sasa, Toshinobu; Umeno, Makoto; Kurata, Yuji; Kikuchi, Kenji; Futakawa, Masatoshi

    2004-12-01

    The accelerator driven system (ADS) is proposed to transmute minor actinides (MA) in high-level waste from spent fuels of nuclear power reactors. Liquid Pb-Bi alloy is a candidate material for spallation target and coolant of ADS. Pb-Bi cleaning technology is required to reduce radiation exposure during maintenance service and to decontaminate replaced components. In this study, three cleaning methods were tested; silicon oil cleaning at 170degC, mixture of acetic acid and nitric acid cleaning. Specimens were prepared by immersion in melted Pb-Bi. After silicon oil tests, most of Pb-Bi remained on the surface of the specimens. It was found that blushing was needed to remove Pb-Bi effectively. On the other hands, Pb-Bi was easily dissolved and almost removed in the mixed acid and nitric acid. Silicon oil cleaning did not affect on base metals. The surface of base metals was slightly blacked after mixed acid cleaning. F82H base metals were corroded by nitric acid. (author)

  19. Solvent-induced controllable synthesis, single-crystal to single-crystal transformation and encapsulation of Alq3 for modulated luminescence in (4,8)-connected metal-organic frameworks.

    Science.gov (United States)

    Lan, Ya-Qian; Jiang, Hai-Long; Li, Shun-Li; Xu, Qiang

    2012-07-16

    In this work, for the first time, we have systematically demonstrated that solvent plays crucial roles in both controllable synthesis of metal-organic frameworks (MOFs) and their structural transformation process. With solvent as the only variable, five new MOFs with different structures have been constructed, in which one MOF undergoes solvent-induced single-crystal to single-crystal (SCSC) transformation that involves not only solvent exchange but also the cleavage and formation of coordination bonds. Particularly, a significant crystallographic change has been realized through an unprecedented three-step SCSC transformation process. Furthermore, we have demonstrated that the obtained MOF could be an excellent host for chromophores such as Alq3 for modulated luminescent properties.

  20. Laser-assisted cleaning

    Indian Academy of Sciences (India)

    Experiments conducted with loose contamination on metal and transparent dielectric surfaces proved conclusively the dominant role played by the absorption of the incident radiation by the surface towards the generation of the cleaning force as against the absorption in the particulates alone. Further, the presence of ...

  1. Cleaning of small components of complex geometry by means of the sodium-alcohol reaction

    International Nuclear Information System (INIS)

    De Luca, B.; Grasso, C.; Spadoni, M.

    1978-01-01

    The results of some experiments on the vacuum reaction between butylcellosolve and sodium, contained in small diameter capillaries, are reported. The effects on the cleaning rate of the temperature, amount of solvent, diameter and position of the capillaries are analyzed. The facility, used for the cleaning of small components of complex geometry, is described. (author)

  2. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S. [National Research Nuclear University MEPhI (Russian Federation); Buzhinsky, O. I. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V. [National Research Nuclear University MEPhI (Russian Federation); Tugarinov, S. N. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  3. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    International Nuclear Information System (INIS)

    Kuznetsov, A. P.; Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-01-01

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10 7 W/cm 2 . The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant

  4. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    Key, G.L.; Helyer, M.H.

    1981-04-01

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  5. Cancer in persons working in dry cleaning in the Nordic countries

    DEFF Research Database (Denmark)

    Lynge, Elsebeth; Andersen, Aage; Rylander, Lars

    2006-01-01

    -cleaning workers identified from the 1970 censuses in Denmark, Norway, Sweden, and Finland. Dry-cleaning work in the Nordic countries during the period when tetrachloroethylene was the dominant solvent was not associated with an increased risk of esophageal cancer [rate ratio (RR) = 0.76; 95% confidence interval...... not found in women directly involved in dry cleaning. We found an excess risk of bladder cancer (RR = 1.44; 95% CI, 1.07-1.93) not associated with length of employment. The finding of no excess risk of esophageal cancer in Nordic dry cleaners differs from U.S. findings. Chance, differences in level...

  6. Proceedings of ISEC 2008, International Solvent Extraction Conference - Solvent Extraction: Fundamentals to Industrial Applications

    International Nuclear Information System (INIS)

    Moyer, Bruce A.

    2008-01-01

    The North American industry has employed major solvent-extraction processes to support a wide range of separations including but not limited to chemical, metallurgical, nuclear, biochemical, pharmaceutical, and petroleum applications. The knowledge enabling these separations has been obtained through fundamental studies in academe, government and industry. The International Solvent Extraction Conferences have been and continue to be a major gathering of scientists, engineers, operators, and vendors from around the world, who present new findings since the last meeting, exchange ideas, make business contacts, and conduct collegial discussions. The ISEC 2008 program emphasizes fundamentals to industrial applications of solvent extraction, particularly how this broad spectrum of activities is interconnected and has led to the implementation of novel processes. The oral and poster sessions have been organized into seven topics: Fundamentals; Novel Reagents, Materials and Techniques; Nuclear Fuel Reprocessing; Hydrometallurgy and Metals Extraction; Analytical and Preparative Applications; Biotechnology, Pharmaceuticals, Life-Science Products, and Organic Products; and Process Chemistry and Engineering. Over 350 abstracts were received, resulting in more than 260 manuscripts published in these proceedings. Five outstanding plenary presentations have been identified, with five parallel sessions for oral presentations and posters. In recognition of the major role solvent extraction (SX) plays in the hydrometallurgical and nuclear industries, these proceedings begin with sections focusing on hydrometallurgy, process chemistry, and engineering. More fundamental topics follow, including sections on novel reagents, materials, and techniques, featuring novel applications in analytical and biotechnology areas. Despite the diversity of topics and ideas represented, however, the primary focus of the ISEC community continues to be metals extraction. Four papers from these

  7. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  8. Substitution of Organic Solvents - a Way to improve Working Environment and reduce Emissions to the Atmosphere

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1996-01-01

    solvents as cleaning agents has been reached. However, some barriers to this substitution process, are found outside the printing companies. In designing of machines and auxiliary equipment, the manufacturers must take into account, that cleaning with non-volatile agents should be possible. Even a rather...... the process in order to omit the solvents or to use water-based products. In cases, where a change to water-based is not evident, improvements can be reached by using non-volatile, low-toxic products, typically esters of fatty acids from vegetable oils. In offset printing a drastic reduction of use of organic...

  9. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Science.gov (United States)

    2013-07-31

    ... section 307 of the Clean Water Act (CWA)); A municipal solid waste landfill that is regulated under 40 CFR... laundries and dry cleaners could dispose of sludge from cleaning solvent-contaminated wipes in solid waste landfills if the sludge does not exhibit a hazardous waste characteristic. \\8\\ The Agency stated in the...

  10. Micro transflection on a metallic stick: an innovative approach of reflection infrared spectroscopy for minimally invasive investigation of painting varnishes.

    Science.gov (United States)

    Rosi, Francesca; Legan, Lea; Miliani, Costanza; Ropret, Polonca

    2017-05-01

    A new analytical approach, based on micro-transflection measurements from a diamond-coated metal sampling stick, is presented for the analysis of painting varnishes. Minimally invasive sampling is performed from the varnished surface using the stick, which is directly used as a transflection substrate for micro Fourier transform infrared (FTIR) measurements. With use of a series of varnished model paints, the micro-transflection method has been proved to be a valuable tool for the identification of surface components thanks to the selectivity of the sampling, the enhancement of the absorbance signal, and the easier spectral interpretation because the profiles are similar to transmission mode ones. Driven by these positive outcomes, the method was then tested as tool supporting noninvasive reflection FTIR spectroscopy during the assessment of varnish removal by solvent cleaning on paint models. Finally, the integrated analytical approach based on the two reflection methods was successfully applied for the monitoring of the cleaning of the sixteenth century painting Presentation in the Temple by Vittore Carpaccio. Graphical Abstract Micro-transflection FTIR on a metallic stick for the identification of varnishes during painting cleanings.

  11. Work ability score of solvent-exposed workers.

    Science.gov (United States)

    Furu, Heidi; Sainio, Markku; Hyvärinen, Hanna-Kaisa; Kaukiainen, Ari

    2018-03-28

    Occupational chronic solvent encephalopathy (CSE), characterized by neurocognitive dysfunction, often leads to early retirement. However, only the more severe cases are diagnosed with CSE, and little is known about the work ability of solvent-exposed workers in general. The aim was to study memory and concentration symptoms, work ability and the effect of both solvent-related and non-occupational factors on work ability, in an actively working solvent-exposed population. A questionnaire on exposure and health was sent to 3640 workers in four solvent-exposed fields, i.e. painters and floor-layers, boat builders, printers, and metal workers. The total number of responses was 1730. We determined the work ability score (WAS), a single question item of the Work Ability Index, and studied solvent exposure, demographic factors, Euroquest memory and concentration symptoms, chronic diseases, and employment status using univariate and multivariate analyses. The findings were compared to those of a corresponding national blue-collar reference population (n = 221), and a small cohort of workers with CSE (n = 18). The proportion of workers with memory and concentration symptoms was significantly associated with solvent exposure. The WAS of solvent-exposed workers was lower than that of the national blue-collar reference group, and the difference was significant in the oldest age group (those aged over 60). Solvent-exposed worker's WAS were higher than those of workers diagnosed with CSE. The WAS were lowest among painters and floor-layers, followed by metal workers and printers, and highest among boat builders. The strongest explanatory factors for poor work ability were the number of chronic diseases, age and employment status. Solvent exposure was a weak independent risk factor for reduced WAS, comparable to a level of high alcohol consumption. Even if memory and concentration symptoms were associated with higher solvent exposure, the effect of solvents on self

  12. 78 FR 5290 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Reasonably Available...

    Science.gov (United States)

    2013-01-25

    ...: Paper, film, and foil coatings; industrial cleaning solvents; miscellaneous metal and plastic parts... solvents; (3) miscellaneous metal and plastic parts coatings; (4) large appliance coatings; (5) offset... the provisions of the Paperwork Reduction Act (44 U.S.C. 3501 et seq.); Is certified as not having a...

  13. 19F NMR spectroscopy in monitoring fluorinated-solvent regeneration

    International Nuclear Information System (INIS)

    Ogorodnikov, V.D.; Bordunov, V.V.

    1987-01-01

    Extensive use is made of solvents such as trichloroethylene, freon-133, and perchloroethylene because they are good solvents for inorganic, plant, and animal greases, while the solvents can be recovered and there is no fire hazard. In this paper, the authors examined methods to monitor spent solution regeneration rapidly and with high accuracy. The authors tested perfluorinated telomeric alcohols as solvents for cleaning engineering components which have melting points of 60-120 degrees celsius. The higher working temperatures and the increased energy consumption are disadvantages of these solvents, but these are compensated for by the scope for using them virtually in the solid, liquid, and vapor states. The authors' proposed technology is based on solvents with melting points over 40 degrees celsius which produce virtually no wastes. The telomeric alcohols are recovered after cooling to normal conditions by separation from the oil by filtration and centrifugation, and they can be used in the next purification cycle. When the solvents have been regenerated, the petroleum products such as industrial oils can be reused for their original purpose. However, quantitative data are required on the solvent contents in the oil and the oil contents in the solvent in order to determine the degree of regeneration and the modes to be used. The authors have also proposed a quantitative method of determining traces of these alcohols in oils and residual oils in the solvent by fluorine NMR. All measurements were made with a BS497 NMR spectrometer

  14. Preliminary assessment and analysis of CO2 cleaning for an inertial fusion device

    International Nuclear Information System (INIS)

    Ying, A.; Abdou, M.

    1996-01-01

    The mechanisms of cleaning with carbon dioxide ice (CO 2 ) for the National Ignition Facility (NIF) application are discussed and analyzed. The compatibility between this cleaning process and the materials proposed for energy-relevant liquid-interaction experiments is examined. The cleaning mechanisms include kinetic shear stress, sublimation followed by thermophoresis, and solvent action. The study shows that the debris size could determine the efficiency of this cleaning technique. Furthermore, if the condensed vapor particulate becomes flattened and embedded inside the abscissa while hitting the surface, a large kinetic shear would be needed for debris removal which might damage the surface. 20 refs., 5 figs

  15. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  16. New Approaches to Cleaning Liquid Radioactive Waste

    Directory of Open Access Journals (Sweden)

    Zabulonov, Yu.L.

    2015-05-01

    Full Text Available The industrial cleaning methods of liquid radioactive waste and technologically contaminated solutions, which contain heavy metals and radionuclides, are considered. It is shown that in the case when heavy metal ions exclusively exist in ionic form, the cleaning method with highest efficiency is electrodialysis. In the case when components, which must be removed, are in ionic and colloidal forms at the same time, the previous destruction of colloidal and organic matter (method of hydrodynamic cavitation, lowtemperature plasma etc is necessary. The developed «PTANK» method enables an effective purification of multicomponent metalcontaining man-made solutions, which contain additionally organic substances and complexes. Development of advanced membrane technologies, creation of complex recycling schemes and their synergistic combination will provide an opportunity to achieve deep cleaning of technologically contaminated solutions and minimize the amount of secondary wastes.

  17. Solvent extraction in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Eccles, H.; Naylor, A.

    1987-01-01

    Solvent extraction techniques have been used in the uranium nuclear fuel cycle in three main areas; concentration of uranium from ore leach liquor, purification of ore concentrates and fuel reprocessing. Solvent extraction has been extended to the removal of transuranic elements from active waste liquor, the recovery of uranium from natural sources and the recovery of noble metals from active waste liquor. Schemes are presented for solvent extraction of uranium using the Amex or Dapex process; spent fuel reprocessing and the Purex process. Recent and future developments of the techniques are outlined. (UK)

  18. Cleaning and Restoration of an Oil Painting with a Polymer Gel in Iran

    OpenAIRE

    Siyamak Alizadeh

    2018-01-01

    One of the major stages in the conservation and restoration of a painting is to clean its colored surface of unwanted stains, and old and darkened varnishes. Various solvents have been used to date for this purpose; however, new cleaning materials have also come onto the market in the past decade that are still unknown and may never have been employed in Iran. The present study aims to introduce a polymer gel and use an in vitro sample of the substance for cleaning and to then present the res...

  19. Solvent-Controlled Assembly of ionic Metal-Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties

    KAUST Repository

    Zheng, Bing

    2016-07-15

    Four Metal-Organic Frameworks (MOFs) based on Indium and tetracarboxylate ligand have been synthesized through regulation of the solvent conditions, the resulted compounds not only exhibited rich structural topologies (pts, soc and unique topologies), but also interesting charge reversal framework features. By regulating the solvent, different building units (indium monomer, trimer) have been generated in situ, and they are connected with the ligand to form ionic frameworks 1-4, respectively. Among the synthesized four ionic frameworks, compounds 3 and 4 could keep their crystallinity upon heating temperature up to 300oC after fully removal of solvent guest molecules, they also exhibit the charge reversal framework features (3 adopts an overall cationic framework, while 4 has an anionic framework). Both compounds 3 and 4 exhibit significant uptake capacity for CO2 and H2, besides that, compounds 3 and 4 also present excellent selective adsorption of CO2 over N2 and CH4.

  20. Solvent-Controlled Assembly of ionic Metal-Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties

    KAUST Repository

    Zheng, Bing; Sun, Xiaodong; Li, Guanghua; Cairns, Amy; Kravtsov, Victor; Huo, Qisheng; Liu, Yunling; Eddaoudi, Mohamed

    2016-01-01

    Four Metal-Organic Frameworks (MOFs) based on Indium and tetracarboxylate ligand have been synthesized through regulation of the solvent conditions, the resulted compounds not only exhibited rich structural topologies (pts, soc and unique topologies), but also interesting charge reversal framework features. By regulating the solvent, different building units (indium monomer, trimer) have been generated in situ, and they are connected with the ligand to form ionic frameworks 1-4, respectively. Among the synthesized four ionic frameworks, compounds 3 and 4 could keep their crystallinity upon heating temperature up to 300oC after fully removal of solvent guest molecules, they also exhibit the charge reversal framework features (3 adopts an overall cationic framework, while 4 has an anionic framework). Both compounds 3 and 4 exhibit significant uptake capacity for CO2 and H2, besides that, compounds 3 and 4 also present excellent selective adsorption of CO2 over N2 and CH4.

  1. Solubility and Standard Gibb's energies of transfer of alkali metal perchlorates, tetramethyl- and tetraethylammonium from water to aqua-acetone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1996-01-01

    Solubilities of KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 M 5 ) 4 NClO 4 in water and water-acetone mixtures are determined by the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metal perchlorates are found by conductometric method. Solubility products and standard Gibbs energies of transfer of corresponding electrolytes from water into water-acetone solvents are calculated. The character of transfer Gibbs energy dependence on solvent composition is explained by preferred solvation of cations by acetone molecules and anions-by water molecules. Features of tetraalkyl ammonium ions are explained by large changes in energy of cavity formation for these ions

  2. Method of decomposing radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Uki, Kazuo; Ichihashi, Toshio; Hasegawa, Akira; Sato, Tatsuaki

    1986-01-01

    Purpose: To decompose radioactive organic solvent wastes or radioactive hydrocarbon solvents separated therefrom into organic materials under moderate conditions, as well as greatly decrease the amount of secondary wastes generated. Method: Radioactive organic solvent wastes comprising an organic phosphoric acid ester ingredient and a hydrocarbon ingredient as a diluent therefor, or radioactive hydrocarbon solvents separated therefrom are oxidatively decomposed by hydrogen peroxide in an aqueous phosphoric acid solution of phosphoric acid metal salts finally into organic materials to perform decomposing treatment for the radioactive organic solvent wastes. The decomposing reaction is carried out under relatively moderate conditions and cause less burden to facilities or the likes. Further, since the decomposed liquid after the treatment can be reused for the decomposing reaction as a catalyst solution secondary wastes can significantly be decreased. (Yoshihara, H.)

  3. Measurement of dielectric constant of organic solvents by indigenously developed dielectric probe

    Science.gov (United States)

    Keshari, Ajay Kumar; Rao, J. Prabhakar; Rao, C. V. S. Brahmmananda; Ramakrishnan, R.; Ramanarayanan, R. R.

    2018-04-01

    The extraction, separation and purification of actinides (uranium and plutonium) from various matrices are an important step in nuclear fuel cycle. One of the separation process adopted in an industrial scale is the liquid-liquid extraction or solvent extraction. Liquid-liquid extraction uses a specific ligand/extractant in conjunction with suitable diluent. Solvent extraction or liquid-liquid extraction, involves the partitioning of the solute between two immiscible phases. In most cases, one of the phases is aqueous, and the other one is an organic solvent. The solvent used in solvent extraction should be selective for the metal of interest, it should have optimum distribution ratio, and the loaded metal from the organic phase should be easily stripped under suitable experimental conditions. Some of the important physical properties which are important for the solvent are density, viscosity, phase separation time, interfacial surface tension and the polarity of the extractant.

  4. Organic solvent topical report

    International Nuclear Information System (INIS)

    COWLEY, W.L.

    1999-01-01

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed

  5. Organic solvent topical report

    Energy Technology Data Exchange (ETDEWEB)

    COWLEY, W.L.

    1999-05-13

    This report provides the basis for closing the organic solvent safety issue. Sufficient information is presented to conclude that risk posed by an organic solvent fire is within risk evaluation guidelines. This report updates information contained in Analysis of Consequences of Postulated Solvent Fires in Hanford Site Waste Tanks. WHC-SD-WM-CN-032. Rev. 0A (Cowley et al. 1996). However, this document will not replace Cowley et al (1996) as the primary reference for the Basis for Interim Operation (BIO) until the recently submitted BIO amendment (Hanson 1999) is approved by the US Department of Energy. This conclusion depends on the use of controls for preventing vehicle fuel fires and for limiting the use of flame cutting in areas where hot metal can fall on the waste surface.The required controls are given in the Tank Waste Remediation System Technical Safety Requirements (Noorani 1997b). This is a significant change from the conclusions presented in Revision 0 of this report. Revision 0 of this calcnote concluded that some organic solvent fire scenarios exceeded risk evaluation guidelines, even with controls imposed.

  6. Extraction and identification of cyclobutanones from irradiated cheese employing a rapid direct solvent extraction method.

    Science.gov (United States)

    Tewfik, Ihab

    2008-01-01

    2-Alkylcyclobutanones (cyclobutanones) are accepted as chemical markers for irradiated foods containing lipid. However, current extraction procedures (Soxhlet-florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to gas chromatography-mass spectrophotometry identification. This paper outlines an alternative isolation and clean-up method for the extraction of cyclobutanones in irradiated Camembert cheese. The newly developed direct solvent extraction method enables the efficient screening of large numbers of food samples and is not as resource intensive as the BS EN 1785:1997 method. Direct solvent extraction appears to be a simple, robust method and has the added advantage of a considerably shorter extraction time for the analysis of foods containing lipid.

  7. Waste cleaning using CO2-acid microemulsion

    International Nuclear Information System (INIS)

    Park, Kwangheon; Sung, Jinhyun; Koh, Moonsung; Ju, Minsu

    2011-01-01

    Frequently we need to decontaminate radioactive wastes for volume reduction purposes. Metallic contaminants in wastes can be removed by dissolution to acid; however, this process produces a large amount of liquid acid waste. To reduce this 2ndary liquid waste, we suggest CO 2 -acid emulsion in removing metallic contaminants. Micro- and macro-emulsion of acid in liquid/supercritical CO 2 were successfully made. The formation region of microemulsion (water or acid in CO 2 ) was measured, and stability of the microemulsion was analyzed with respect to surfactant types. We applied micro- and macro-emulsion containing acid to the decontamination of radioactive metallic parts contaminated on the surface. The cleaning methods of micro- and macro-emulsion seemed better compared to the conventional acid cleaning. Moreover, these methods produce very small amount of secondary wastes. (author)

  8. The effect of specific solvent-solute interactions on complexation of alkali-metal cations by a lower-rim calix[4]arene amide derivative.

    Science.gov (United States)

    Horvat, Gordan; Stilinović, Vladimir; Kaitner, Branko; Frkanec, Leo; Tomišić, Vladislav

    2013-11-04

    Complexation of alkali-metal cations with calix[4]arene secondary-amide derivative, 5,11,17,23-tetra(tert-butyl)-25,26,27,28-tetra(N-hexylcarbamoylmethoxy)calix[4]arene (L), in benzonitrile (PhCN) and methanol (MeOH) was studied by means of microcalorimetry, UV and NMR spectroscopies, and in the solid state by X-ray crystallography. The inclusion of solvent molecules (including acetonitrile, MeCN) in the calixarene hydrophobic cavity was also investigated. The classical molecular dynamics (MD) simulations of the systems studied were carried out. By combining the results obtained using the mentioned experimental and computational techniques, an attempt was made to get an as detailed insight into the complexation reactions as possible. The thermodynamic parameters, that is, equilibrium constants, reaction Gibbs energies, enthalpies, and entropies, of the investigated processes were determined and discussed. The stability constants of the 1:1 (metal:ligand) complexes measured by different methods were in very good agreement. Solution Gibbs energies of the ligand and its complexes with Na(+) and K(+) in methanol and acetonitrile were determined. It was established that from the thermodynamic point of view, apart from cation solvation, the most important reason for the huge difference in the stability of these complexes in the two solvents lay in the fact that the transfer of complex species from MeOH to MeCN was quite favorable. That could be at least partly explained by a more exergonic inclusion of the solvent molecule in the complexed calixarene cone in MeCN as compared to MeOH, which was supported by MD simulations. Molecular and crystal structures of the lithium cation complex of L with the benzonitrile molecule bound in the hydrophobic calixarene cavity were determined by single-crystal X-ray diffraction. As far as we are aware, for the first time the alkali-metal cation was found to be coordinated by the solvent nitrile group in a calixarene adduct. According to

  9. A Comprehensive Study for the Laser Cleaning of Corrosion Layers due to Environmental Pollution for Metal Objects of Cultural Value: Preliminary Studies on Artificially Corroded Coupons

    International Nuclear Information System (INIS)

    Siatou, A.; Charalambous, D.; Argyropoulos, V.; Pouli, P.

    2006-01-01

    This paper is focused on the systematic investigation of the layer-by-layer removal of corrosion products on artificially corroded metal coupons aiming to introduce a methodology for the optimum laser cleaning approach of historical metal objects. Thus, it is very important to determine the chemical composition of the studied surfaces before and after irradiation. A series of laser cleaning studies has been performed on test coupons (reference and artificially corroded). Wavelength and pulse duration effects are investigated. Initial studies were focused on the use of infrared (1064 nm) and ultraviolet (355 nm and 248 nm) radiations of nanosecond (ns) pulse duration. Damage and removal threshold values were determined for the substrates and the corrosion layers, respectively. The irradiated surfaces are evaluated microscopically under the optical and the scanning electron microscope, while the mineralogical and chemical composition of the various layers is determined with X-ray diffraction and SEM-EDAX analyses, respectively. The results obtained are providing a comprehensive approach for understanding the main mechanisms that are significant in the different laser cleaning regimes, while the optimum cleaning methodologies for the studied materials are being established.

  10. Steam generator secondary side chemical cleaning at Gentilly-2

    International Nuclear Information System (INIS)

    Plante, S.

    2006-01-01

    After more than 20 years of operation, the secondary side of the four steam generators at Gentilly-2 were chemically cleaned during the 2005 annual outage. The FRAMATOME ANP high temperature cleaning process used to remove magnetite loading involved stepwise injection of solvent with PHT temperature in the range 160 o C to 175 o C. The heat required to maintain the PHT temperature was provided by the operation of the main PHT pumps and the reactor core residual heat. The temperature control was accomplished by the shutdown cooling system heat exchangers. A total of 1280 kg of magnetite was removed from the four steam generators. A copper-cleaning step was applied after the iron step. The PHT has been cooled down and the steam generators drained to temporary tanks and dried in preparation of the copper step. The process has been applied at room temperature, two boilers at a time. The solvent removed a total of 116 kg of copper. During the iron step, steam flow to the feedwater tank chemically contaminate the Balance Of Plant (BOP) systems. The isolation of this path should have been part of the G2 procedures. Around 700 m3 of water had to be drained to interim storage tanks for subsequent resin treatment before disposal. Visual inspection of BO1 tubesheet and first support plate showed clean surfaces without measurable sludge pile. Upper support plates visual inspection of BO4 revealed that broach holes blockage reported in 2000 is still present in peripheral area. Following the plant restart, the medium range level measurement instability observed since several years for BO3 was no more present. As anticipated, it also has been observed that the medium and wide range level measurements have shifted down as a result of downcomer flow increase after the cleaning. The cleaning objectives were achieved regarding the fouling reduction on the steam generators secondary side but broach holes blockage of the upper support plate is still present in periphery. (author)

  11. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  12. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  13. Carbon steel corrosion prevention during chemical cleaning of steam generator secondary side components

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Velciu, L.

    2009-01-01

    During operation of a nuclear power plant, many contaminants, such as solid particles or dissolved species are formed in the secondary circuit, go into steam generator and deposit as scales on heat transfer tubing, support plate or as sludge on tube sheet. By accumulation of these impurities, heat transfer is reduced and the integrity of the steam generator tubing is influenced. Chemical cleaning is a qualified, efficient measure to improve steam generator corrosion performance. The corrosion mechanism can be counteracted by the chemical cleaning of the deposits on the tube sheet and the scales on the heat transfer tubing. The major component of the scales is magnetite, which can be dissolved using an organic chelating agent (ethylenediaminetetraacetic acid, EDTA) in combination with a complexing agent such as citric acid in an alkaline reducing environment. As the secondary side of SG is a conglomerate of alloys it is necessary to choose an optimal chemical cleaning solution for an efficient cleaning properties and at the same time with capability of corrosion prevention of carbon steel components during the process. The paper presents laboratory tests initiated to confirm the ability of this process to clean the SG components. The experiments followed two paths: - first, carbon steel samples have been autoclavized in specific secondary circuit solutions of steam generator to simulate the deposits constituted during operation of this equipment; - secondly, autoclavized samples have been cleaned with a solvent composed of EDTA citric acid, hydrazine of pH = 5 and temperature of 85 deg. C. Before chemical cleaning, the oxide films were characterized by surface analysis techniques including optical microscopy, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Applied to dissolve corrosion products formed in a steam generator, the solvents based on chelating agents are aggressive toward carbon steels and corrosion inhibitors are

  14. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    International Nuclear Information System (INIS)

    Mansoor, I; Liu, Y; Stoeber, B; Häfeli, U O

    2013-01-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres. (paper)

  15. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    International Nuclear Information System (INIS)

    Abdel-Kareem, Omar; Harith, M.A.

    2008-01-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles

  16. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Kareem, Omar [Conservation Department, Faculty of Archaeology, Cairo University, El-Gamaa Street, El-Giza (Egypt)], E-mail: Omaa67@yahoo.com; Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)], E-mail: mharithm@niles.edu.eg

    2008-07-15

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  17. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Science.gov (United States)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  18. Ionic liquids used in extraction and separation of metal ions

    International Nuclear Information System (INIS)

    Shen Xinghai; Xu Chao; Liu Xinqi; Chu Taiwei

    2006-01-01

    Ionic liquids as green solvents now have become a research hotspot in the field of separation of metal ions by solvent extraction. Experimental results of extraction of various metal ions with ionic liquids as solvents, including that of alkali metals, alkaline earths, transition metals rare earths and actinides are introduced. The extraction of uranium, plutonium and fission products that are involved in spent nuclear fuel reprocessing is also reviewed. The possible extraction mechanisms are discussed. Finally, the prospect of replacement of volatile and/or toxic organic solvents with environmentally benign ionic liquids for solvent extraction and the potency of applications of ionic liquids in solvent extraction are also commented. (authors)

  19. Chemical cleaning, decontamination and corrosion

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Das Chintamani; Gaonkar, K.B.

    1991-01-01

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  20. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  1. SOLVENT-BASED TO WATERBASED ADHESIVE-COATED SUBSTRATE RETROFIT - VOLUME II: PROCESS OVERVIEW

    Science.gov (United States)

    This volume presents initial results of a study to identify the issues and barriers associated with retrofitting existing solvent-based equipment to accept waterbased adhesives as part of an EPA effort to improve equipment cleaning in the coated and laminated substrate manufactur...

  2. Activity coefficients of plutonium and cerium in liquid gallium at 1073 K: Application to a molten salt/solvent metal separation concept

    International Nuclear Information System (INIS)

    Lambertin, David; Ched'homme, Severine; Bourges, Gilles; Sanchez, Sylvie; Picard, Gerard S.

    2005-01-01

    Activity coefficients in liquid metal and salt phases are important parameters for predicting the separation efficiency of reductive extraction or electrochemical pyrochemical processes. The electrochemical properties of Ce and Pu in gallium metal and chlorides media - CaCl 2 and equimolar NaCl-KCl - have been studied at 1073 K. Cyclic voltammetry and chronoamperometry show the thermodynamic feasibility of using gallium as solvent metal for pyrochemical processes involving Pu and Ce. The activity coefficient of Pu in liquid Ga (log(γ Pu,Ga ) = -7.3 ± 0.5) is deduced from the results and is a basis of assessing the potential for using liquid metals in pyrochemical separation of actinides and lanthanides. Evaluation of literature data for Al, Bi and Cd suggests that Ga is most favorable for selective separation of Pu from Ce near 1073 K

  3. Late washing filter cleaning cycle demonstration

    International Nuclear Information System (INIS)

    Meyer, M.L.; McCabe, D.J.

    1992-01-01

    The DWPF Late Washing Facility will filter cesium and potassium tetraphenyl borate (TPB) solids using a Mott sintered metal filter, identical to the filter now used in the In-tank Precipitation Facility. The purpose of the late wash step is primarily to remove the nitrite salts from the slurry prior to delivery to DWPF. Periodic chemical cleaning of the filter will be required, presumably after each batch although the actual required frequency could not be determined on the lab-scale. Minimization of chemical cleaning solution volumes is key to maximizing the attainment of the Late Wash facility. This report summarizes work completed in experiments designed to identify minimum cleaning solution requirements

  4. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  5. Solubility of metallic mercury in organic solvents; Solubilite du mercure metallique dans les solvants organiques; Rastvorimost' metallicheskoj rtuti v organicheskikh rastvoritelyakh; Solubilidad del mercurio metalico en solventes organicos

    Energy Technology Data Exchange (ETDEWEB)

    Klehr, E H; Voigt, A F [Institute for Atomic Research and Department of Chemistry, Iowa State University, Ames, IA (United States)

    1962-03-15

    The solubilities of metallic mercury at 25{sup o}C in the solvents carbon tetrachloride, 2, 2, 4-trimethylpentane, n-decane, benzene, toluene, nitrobenzene, chlorobenzene and bromobenzene have been determined by the use of Hg{sup 203} tracer. Measurements were made either by shaking mercury metal of known specific activity with the solvent, or by measuring the distribution coefficient of the metal between the solvent and water and combining this measurement with the solubility of mercury in water, or by both methods. Radioactivity was measured by counting precipitated samples with a GM counter or liquid aliquots with a well-type scintillator counter. All solubilities were in the range (4.6 to 16) x 10{sup -6} g atoms/l. For n-decane, toluene and chlorobenzene, the temperature dependence of the solubility was determined over the range 0 to 45{sup o}C. The Hildebrand-Scott theory of solubility has been applied to these systems for comparison. For the aliphatic hydrocarbons, the solubilities predicted by theory are within 35% of those observed, but for the other solvents, the predicted values are 4 to 18 times larger than those observed. Modification of the theory gives better agreement for some solvents but poorer agreement for others. Curves of log G (solubility) vs. 1/T were straight lines with slopes similar to those obtained from the Hildebrand-Scott theory but displaced from those curves. The slopes of the curves were used for the calculation of heats and entropies of solution. Entropies were also calculated from curves of log G vs. log T. The two sets of entropy values were in agreement with each other and were within one to four entropy units of the ideal entropies of mixing. (author) [French] Les auteurs ont determine la solubilite du mercure metallique a 25{sup o}C dans les solvants suivants: tetrachlorure de carbone, trimethylpentane 2, 2, 4, n-decane, benzene, toluene, nitrobenzene, chlorobenzene et bromobenzene en utilisant le mercure-203 comme

  6. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  7. Cleaning and electrochemistry restoration of archaeological metalic objects | Limpieza y restauración electroquímica de objetos arqueológicos metálicos

    OpenAIRE

    Tomás España Guisolphe; Vicente Montiel Leguey; Marcelo López Segura; Antonio Aldaz Riera

    1985-01-01

    This paper shows how electrochemical methods can be applied to the cleaning and restoration of coins and metallic objects proceeding from archaeological finds. A description is given of the electrochemical methods used and a comparison with the usual cleaning methods is also made. | El presente estudio pone de manifiesto la aplicabilidad de los métodos electroquímicos a la limpieza y restauración de monedas y piezas metálicas que proceden de yacimientos arqueológicos. Se hace una descripción ...

  8. Metal sponge for cryosorption pumping applications

    International Nuclear Information System (INIS)

    Myneni, G.R.; Kneisel, P.

    1995-01-01

    A system has been developed for adsorbing gases at high vacuum in a closed area. The system utilizes large surface clean anodized metal surfaces at low temperatures to adsorb the gases. The large surface clean anodized metal is referred to as a metal sponge. The metal sponge generates or maintains the high vacuum by increasing the available active cryosorbing surface area. 4 figs

  9. Anodic Oxidation of Furans in Aprotic Solvents.

    Science.gov (United States)

    1984-01-06

    dissolved in 70 mL acetonitrile (0.003% water , K.F. titration) containing 0.1 M tetra-n-butyl ammonium tetrafluoroborate (TBAF). The solution was...solvent evaporated on a rotary evaporator at 25°C ( water bath temperature). The residue was extracted with 3 x 20 mL portions of diethylether, and the...results for a clean electrode in the same solution after presaturation with oxygen. To make the film conductive for the electrolyses , the voltage was

  10. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  11. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  12. Photoresist removal using gaseous sulfur trioxide cleaning technology

    Science.gov (United States)

    Del Puppo, Helene; Bocian, Paul B.; Waleh, Ahmad

    1999-06-01

    A novel cleaning method for removing photoresists and organic polymers from semiconductor wafers is described. This non-plasma method uses anhydrous sulfur trioxide gas in a two-step process, during which, the substrate is first exposed to SO3 vapor at relatively low temperatures and then is rinsed with de-ionized water. The process is radically different from conventional plasma-ashing methods in that the photoresist is not etched or removed during the exposure to SO3. Rather, the removal of the modified photoresist takes place during the subsequent DI-water rinse step. The SO3 process completely removes photoresist and polymer residues in many post-etch applications. Additional advantages of the process are absence of halogen gases and elimination of the need for other solvents and wet chemicals. The process also enjoys a very low cost of ownership and has minimal environmental impact. The SEM and SIMS surface analysis results are presented to show the effectiveness of gaseous SO3 process after polysilicon, metal an oxide etch applications. The effects of both chlorine- and fluorine-based plasma chemistries on resist removal are described.

  13. Indium recovery by solvent extraction

    International Nuclear Information System (INIS)

    Fortes, Marilia Camargos Botelho

    1999-04-01

    Indium has been recovered as a byproduct from residues generated from the sulfuric acid leaching circuits in mineral plants for zinc recovery. Once its recovery comes from the slags of other metals recovery, it is necessary to separate it from the other elements which usually are present in high concentrations. Many works have been approaching this separation and indicate the solvent extraction process as the main technique used. In Brazilian case, indium recovery depends on the knowledge of this technique and its development. This paper describes the solvent extraction knowledge for the indium recovery from aqueous solutions generated in mineral plants. The results for determination of the best experimental conditions to obtain a high indium concentration solution and minimum iron poisoning by solvent extraction with di (2-ethylhexyl)-phosphoric acid (D2EHPA) solubilized in isoparafin and exxsol has been presented. (author)

  14. Energized CO{sub 2} dry ice blast cleaning firmly grounded in the Canadian electrical industry

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, K.

    1999-02-01

    Development and use of energized carbon dioxide dry ice blast technology for cleaning electrical distribution system components by Oakville Hydro and Milton Hydro (both in Ontario) is discussed. The technology was developed by Alpheus Cleaning Technologies of California and Puget Sound Power and Light Company after a two-year study that commenced in 1991, and has been supplied in Canada by Wickens Industrial Ltd., since 1993 for cleaning various industrial and non-energized electrical applications in the automotive, printing , food processing and other manufacturing industries and hydro generating facilities. The unique cleaning dynamics of this technology allow for the removal of contaminants that are much more stubborn than those encountered in pad-mounted switchgear and other electrical apparatus. Dry ice pellets, by expanding to 400 times their solid state on impact, create a flushing action that helps to remove contaminants. No grit or solvents are required and the process is non-toxic. In using the process workers wear fire retardant clothing, 40 kV-Class 4 rubber gloves and full face shields. Dielectric tests are performed routinely to confirm the dielectric integrity of the spray wand components. A two stage inspection/trouble report is completed on every job. Use of this technology eliminates power interruptions to customers, improves system reliability and safety, reduces cleaning time to a minimum, and eliminated the need for reclamation of grit or solvent containment.

  15. Wet-cleaning of MgO(001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy

    OpenAIRE

    Le Febvrier, Arnaud; Jensen, Jens; Eklund, Per

    2017-01-01

    The effect of the wet-cleaning process using solvents and detergent on the surface chemistry of MgO(001) substrate for film deposition was investigated. Six different wet-cleaning processes using solvent and detergent were compared. The effect on film growth was studied by the example system ScN. The surface chemistry of the cleaned surface was studied by x-ray photoelectron spectroscopy and the film/substrate interface after film growth was investigated by time-of-flight secondary ion mass s...

  16. Demonstration of advanced APBS solvent at TNO's CO2 capture pilot plant

    NARCIS (Netherlands)

    Bumb, P.; Kumar, R.; Khakharia, P.M.; Goetheer, E.L.V.

    2014-01-01

    The company Carbon Clean Solutions (CCS) has developed a variety of energy efficient solvents and processes such as PCCMax, which aim to reduce the overall operating and capital cost of CO2 capture. Highly successful R&D in collaboration with TNO, considering aspects from fundamental properties such

  17. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Quentin C. Berg; Stephen P. Carpenter; Dady Dadyburjor; Jason C. Hissam; Manoj Katakdaunde; Liviu Magean; Abha Saddawi; Alfred H. Stiller; John W. Zondlo

    2006-03-07

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, efforts have focused on the development of carbon electrodes for Direct Carbon Fuel Cells (DCFC), and on carbon foam composites used in ballistic armor, as well as the hydrotreatment of solvents used in the basic solvent extraction process. A major goal is the production of 1500 pounds of binder pitch, corresponding to about 3000 pounds of hydrotreated solvent.

  18. ANALYSIS ON TECHNOLOGICAL PROCESSES CLEANING OIL PIPELINES

    Directory of Open Access Journals (Sweden)

    Mariana PǍTRAŞCU

    2015-05-01

    Full Text Available In this paper the researches are presented concerning the technological processes of oil pipelines.We know several technologies and materials used for cleaning the sludge deposits, iron and manganese oxides, dross, stone, etc.de on the inner walls of drinking water pipes or industries.For the oil industry, methods of removal of waste materials and waste pipes and liquid and gas transport networks are operations known long, tedious and expensive. The main methods and associated problems can be summarized as follows: 1 Blowing with compressed air.2 manual or mechanical brushing, sanding with water or dry.3 Wash with water jet of high pressure, solvent or chemical solution to remove the stone and hard deposits.4 The combined methods of cleaning machines that use water jets, cutters, chains, rotary heads cutters, etc.

  19. Developing clean fuels: Novel techniques for desulfurization

    Science.gov (United States)

    Nehlsen, James P.

    The removal of sulfur compounds from petroleum is crucial to producing clean burning fuels. Sulfur compounds poison emission control catalysts and are the source of acid rain. New federal regulations require the removal of sulfur in both gasoline and diesel to very low levels, forcing existing technologies to be pushed into inefficient operating regimes. New technology is required to efficiently produce low sulfur fuels. Two processes for the removal of sulfur compounds from petroleum have been developed: the removal of alkanethiols by heterogeneous reaction with metal oxides; and oxidative desulfurization of sulfides and thiophene by reaction with sulfuric acid. Alkanethiols, common in hydrotreated gasoline, can be selectively removed and recovered from a hydrocarbon stream by heterogeneous reaction with oxides of Pb, Hg(II), and Ba. The choice of reactive metal oxides may be predicted from simple thermodynamic considerations. The reaction is found to be autocatalytic, first order in water, and zero order in thiol in the presence of excess oxide. The thiols are recovered by reactive extraction with dilute oxidizing acid. The potential for using polymer membrane hydrogenation reactors (PEMHRs) to perform hydrogenation reactions such as hydrodesulfurization is explored by hydrogenating ketones and olefins over Pt and Au group metals. The dependence of reaction rate on current density suggests that the first hydrogen addition to the olefin is the rate limiting step, rather than the adsorption of hydrogen, for all of the metals tested. PEMHRs proved unsuccessful in hydrogenating sulfur compounds to perform HDS. For the removal of sulfides, a two-phase reactor is used in which concentrated sulfuric acid oxidizes aromatic and aliphatic sulfides present in a hydrocarbon solvent, generating sulfoxides and other sulfonated species. The polar oxidized species are extracted into the acid phase, effectively desulfurizing the hydrocarbon. A reaction scheme is proposed for this

  20. Gold recovery from organic solvents using galvanic stripping

    Energy Technology Data Exchange (ETDEWEB)

    Flores, C.; O`Keefe, T.J. [Univ. of Missouri, Rolla, MO (United States). Dept. of Metallurgical Engineering

    1995-08-01

    A novel process using solid metals for the direct reduction of more noble metal ions from solvent extraction organics has been developed. Base metals recovery has been the principal focus of investigations to date but feasibility tests have now also been made on galvanically stripping selected precious metals. In this study gold (III) was loaded from an aqueous HAuCl{sub 4}{center_dot}3H{sub 2}O solution into a mixed organic 40 vol.% TBP, 10 vol.% D2EHPA in kerosene. The direct precipitation of metallic gold from the loaded organic phase using zinc powder and iron, aluminum and copper slabs at 70 C was successfully demonstrated. The gold reduction rates were relatively fast even though the conductivity of the organic solutions is very low. The reaction rates were studied as a function of the variables zinc particulate size, oxygen and nitrogen atmosphere, water content in the organic phase, organic ratios and temperature. The gold morphology was usually powdery or dendritic in nature but continuous films were obtained in some instances. Activation energies were calculated and possible reaction mechanisms are discussed. In general, the results obtained were very promising and showed that gold can be successfully cemented from selected organic solvents by galvanic stripping using less noble solid metal reductants.

  1. Structural and vibrational studies of clean and chemisorbed metal surfaces

    International Nuclear Information System (INIS)

    Jiang, Qing-Tang.

    1992-01-01

    Using Medium Energy Ion Scattering, we have studied the structural and vibrational properties of a number of clean and chemisorbed metal surfaces. The work presented in this thesis is mainly of a fundamental nature. However, it is believed that an atomistic understanding of the forces that affect surface structural and vibrational properties can have a beneficial impact on a large number of areas of applied nature. We find that the surface structure of Cu(001) follows the common trend for metal surfaces, where a small oscillatory relaxation exists beginning with a slight contraction in the top layer. In addition, the surface vibrational amplitude is enhanced (as s usually the case) by ∼80%. A detailed analysis of our data shows an unexpected anisotropy of the vibrational amplitude, such that the out-of-plane vibrational amplitude is 30% smaller than the in-plane vibrational amplitude. The unexpected results may imply a large tensile stress on Cu(001). Upon adsorption of 1/4 of a monolayer of S, a p(2 x 2)-S/Cu(001) surface is created. This submonolayer amount of S atoms makes the surface bulk-like, in which the anisotropy of the surface vibrations is removed and the first interlayer contraction is lifted. By comparing our model to earlier contradictory results on this controversial system. We find excellent agreement with a recent LEED study. The presence of 0.1 monolayer of Ca atoms on the Au(113) surface induces a drastic atomic rearrangements, in which half of the top layer Au atoms are missing and a (1 x 2) symmetry results. In addition, the first interlayer spacing of Au(113) is significantly reduced. Our results are discussed in terms of the energy balance between competing surface electronic charge densities

  2. Understanding and Modelling the Effect of Dissolved Metals on Solvent Degradation in Post Combustion CO2 Capture Based on Pilot Plant Experience

    Directory of Open Access Journals (Sweden)

    Sanjana Dhingra

    2017-05-01

    Full Text Available Oxidative degradation is a serious concern for upscaling of amine-based carbon capture technology. Different kinetic models have been proposed based on laboratory experiments, however the kinetic parameters included are limited to those relevant for a lab-scale system and not a capture plant. Besides, most of the models fail to recognize the catalytic effect of metals. The objective of this work is to develop a representative kinetic model based on an apparent auto-catalytic reaction mechanism between solvent degradation, corrosion and ammonia emissions. Measurements from four different pilot plants: (i EnBW’s plant at Heilbronn, Germany (ii TNO’s plant at Maasvlakte, The Netherlands; (iii CSIRO’s plants at Loy Yang and Tarong, Australia and (iv DONG Energy’s plant at Esbjerg, Denmark are utilized to propose a degradation kinetic model for 30 wt % ethanolamine (MEA as the capture solvent. The kinetic parameters of the model were regressed based on the pilot plant campaign at EnBW. The kinetic model was validated by comparing it with the measurements at the remaining pilot campaigns. The model predicted the trends of ammonia emissions and metal concentration within the same order of magnitude. This study provides a methodology to establish a quantitative approach for predicting the onset of unacceptable degradation levels which can be further used to devise counter-measure strategies such as reclaiming and metal removal.

  3. Clean Air Act Guidelines and Standards for Solvent Use and Surface Coating Industry

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the solvent use and surface coating industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  4. Solvents interactions with thermochromic print

    Directory of Open Access Journals (Sweden)

    Mirela Rožić

    2017-12-01

    Full Text Available In this study, the interactions between different solvents (benzene, acetone, cyclohexanone, various alcohols and water and thermochromic printing ink were investigated. Thermochromic printing ink was printed on metal surface. Components of thermochromic printing inks are polymeric microcapsules and classic yellow offset printing ink. Below its activation temperature, dye and developer within the microcapsules form a blue coloured complex. Therefore, thermochromic print is green. By heating above the activation temperature, blue colour of the complex turns into the leuco dye colourless state and the green colour of the prints turns into the yellow colour of the classic offset pigment. The results of the interaction with various solvents show that the thermochromic print is stable in all tested solvents except in ethanol, acetone and cyclohexanone. In ethanol, the green colour of the print becomes yellow. SEM analysis shows that microcapsules are dissolved. In acetone and cyclohexanone, the green colour of the print turns into blue, and the microcapsules become significantly more visible. Thus, the yellow pigment interacts with examined ketones. Based on the obtained interactions it can be concluded that the microcapsules have more polar nature than the classical pigment particles. Solvent-thermocromic print interactions were analysed using Hansen solubility parameters that rank the solvents based on their estimated interaction capabilities.

  5. Photoemission studies of clean and adsorbate covered metal surfaces using synchrotron and uv radiation sources

    International Nuclear Information System (INIS)

    Apai, G.R. II.

    1977-09-01

    Photoemission energy distribution experiments on clean metal and adsorbate-covered surfaces were performed under ultrahigh vacuum conditions by using x-ray and ultraviolet photon sources in the laboratory as well as continuously-tunable, highly polarized synchrotron radiation obtainable at the Stanford Synchrotron Radiation Laboratory (SSRL). Studies focused on two general areas: cross-section modulation in the photoemission process was studied as a function of photon energy and orbital composition. Sharp decreases in intensity of the valence bands of several transition metals (i.e., Ag, Au, and Pt) are attributed to the radial nodes in the respective wave functions. Adsorbate photoemission studies of CO adsorbed on platinum single crystals have demonstrated a very high spectral sensitivity to the 4sigma and (1π + 5sigma) peaks of CO at photon energies of 150 eV. Angle-resolved photoemission allowed determination of the orientation of CO chemisorbed on a Pt (111) or Ni(111) surface. Prelinimary results at high photon energies (approximately 150 eV) indicated scattering from the substrate which could yield chemisorption site geometries

  6. Modern Procedures Used in Cleaning Old, Illegibly and Blackened Icons

    Directory of Open Access Journals (Sweden)

    Pruteanu Silvea

    2015-05-01

    Full Text Available In order to restore the original aesthetic aspect, to improve the state of the age patina and of the gold halo, similar processes are required. The cleaning process is one of the most important aspects for an artwork and is considering a series of deteriorations and degradations, like dirt deposits (clogged or unclogged opalescent varnish, colors blackening, burns, blisters, gaps (missing ground, painting layer or varnish. This step in the restoration process includes physical and mechanical proceedings like dusting (with a vacuum, brushing (with a brush, scraping (with a scalpel, removal or polishing etc. The scalpel and the milling process are rough unconventional means that are used only in exceptional cases. The wet cleaning of dirt includes classic washing processes, with water or other complex systems of organic solvents (emollients, surface additives or surfactants, mixtures of solvents. Cleaning the clogged dirt deposits with unconventional methods can be done by means of electronic laser, ion and thermal exchange or ultrasounds. Laser cleaning is often used in removing unwanted dirt deposits from different layers of the art piece. A lot of attention goes towards the controlled elimination of the exterior protection layer (varnish, which can be photo- degraded and oxidized by atmospheric exposure. Visual analysis, with enlargers (OM, SEM, AFM etc. combined with transmission or penetration techniques (radiography, endoscopy, X-ray diffraction etc. provides information on the superficial structures of the art work. In order to determine the modifications of the desiccant oils, SEM was used to observed the changes in the morphology of the oil painting layers. Gas chromatography/mass spectrometry (GC/MS can be used to detrmine detergent residues on the painting layer.

  7. In situ fabrication of electrochemically grown mesoporous metallic thin films by anodic dissolution in deep eutectic solvents.

    Science.gov (United States)

    Renjith, Anu; Roy, Arun; Lakshminarayanan, V

    2014-07-15

    We describe here a simple electrodeposition process of forming thin films of noble metallic nanoparticles such as Au, Ag and Pd in deep eutectic solvents (DES). The method consists of anodic dissolution of the corresponding metal in DES followed by the deposition on the cathodic surface. The anodic dissolution process in DES overcomes the problems associated with copious hydrogen and oxygen evolution on the electrode surface when carried out in aqueous medium. The proposed method utilizes the inherent abilities of DES to act as a reducing medium while simultaneously stabilizing the nanoparticles that are formed. The mesoporous metal films were characterized by SEM, XRD and electrochemical techniques. Potential applications of these substrates in surface enhanced Raman spectroscopy and electrocatalysis have been investigated. A large enhancement of Raman signal of analyte was achieved on the mesoporous silver substrate after removing all the stabilizer molecules from the surface by calcination. The highly porous texture of the electrodeposited film provides superior electro catalytic performance for hydrogen evolution reaction (HER). The mechanisms of HER on the fabricated substrates were studied by Tafel analysis and electrochemical impedance spectroscopy (EIS). Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  9. Portable sandblaster cleans small areas

    Science.gov (United States)

    Severin, H. J.

    1966-01-01

    Portable sandblasting unit rapidly and effectively cleans localized areas on a metal surface. The unit incorporates a bellows enclosure, masking plate, sand container, and used sand accummulator connected to a vacuum system. The bellows is equipped with an inspection window and light for observation of the sanding operation.

  10. Solvent Retention Capacities of Oat Flour

    Directory of Open Access Journals (Sweden)

    Qianwen Niu

    2017-03-01

    Full Text Available This study measured the solvent retention capacities (SRCs of flours from eight oat varieties and one wheat variety against different solvents to explore the swelling volume of oat flour with different solvents, and thus provide a theoretical basis for quick β-glucan analysis. The SRC profile consists of water SRC (WSRC, 50% sucrose SRC (SSRC, 5% lactic acid SRC (LASRC, 5% Na2CO3 SRC (SCASRC, NaCl SRC (SCSRC, CaCl2 SRC (CCSRC, FeCl3 SRC (FCSRC, sodium cholate SRC (SCHSRC, NaOH (pH 10 SRC (SHSRC, Na2CO3 (pH 10 SRC (SCABSRC and SDS (pH 10 SRC (SDSSRC values, and a Chopin SRC kit was used to measure the SRC value. SRCs of the oat flours increased when the solvents turned from neutral (water and NaCl to acidic (5% lactic acid or alkaline (5% Na2CO3, CaCl2, FeCl3, NaOH and pH 10 Na2CO3, and rose as the metal ion valencies of the metal salts (NaCl, CaCl2 and FeCl3 increased. The β-glucan contents were significantly positively correlated with the SCSRC (0.83**, CCSRC (0.82**, SCHSRC (0.80** and FCSRC (0.78*. SRC measurements of β-glucan in oat flours revealed that the CCSRC values were related with β-glucan (0.64* but not related with protein and starch. CaCl2 could therefore potentially be exploited as a reagent for β-glucan assay.

  11. Continuing challenges in nuclear air cleaning

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1976-01-01

    The safe operation of nuclear facilities is heavily dependent upon the adequate performance of air cleaning systems. Although many problems have been solved, new questions and new challenges continue to arise. These are well illustrated by weaknesses in air cleaning and ventilating systems revealed by the Browns Ferry fire, and the need to develop additional data on the reliability of such systems, particularly under emergency conditions, as revealed by the Reactor Safety Study. Assessments of the degree to which engineered safety features can compensate for deficiencies in nuclear power plant sites continue to challenge those involved in risk/benefit evaluations. Additional challenges are being generated by the air cleaning requirements associated with the commercial development of the liquid metal fast breeder reactor

  12. Metal-doped organic foam and method of making same. [Patent application

    Science.gov (United States)

    Rinde, J.A.

    Organic foams having a low density and very small cell size and method for producing same in either a metal-loaded or unloaded (nonmetal loaded) form are described. Metal-doped foams are produced by soaking a polymer gel in an aqueous solution of desired metal salt, soaking the gel successively in a solvent series of decreasing polarity to remove water from the gel and replace it with a solvent of lower polarity with each successive solvent in the series being miscible with the solvents on each side and being saturated with the desired metal salt, and removing the last of the solvents from the gel to produce the desired metal-doped foam having desired density cell size, and metal loading. The unloaded or metal-doped foams can be utilized in a variety of applications requiring low density, small cell size foam. For example, rubidium-doped foam made in accordance with the invention has utility in special applications, such as in x-ray lasers.

  13. Solvent Effect, Photochemical and Photophysical Properties of Phthalocyanines with Different Metallic Nuclei

    Directory of Open Access Journals (Sweden)

    Charles Biral Silva

    2017-12-01

    Full Text Available Photophysical and photochemical properties of lithium phthalocyanine (1, gallium(III phthalocyanine chloride (2, titanium(IV phthalocyanine dichloride (3 and iron(II phthalocyanine (4 were investigated in dimethyl sulfoxide (DMSO, tetrahydrofuran (THF and DMSO-THF mixtures. The influence of the central metal on these properties was analyzed according to solvent type, axial ligands and their paramagnetic and diamagnetic effect. Fluorescence lifetimes were recorded using a time correlated single photon counting setup (TCSPC technique. In order to demonstrate the generation of reactive oxygen species under light irradiation, the indirect method (applying 1,3-diphenylisobenzofuran (DPBF as chemical suppressor and the direct method (analyzing the phosphorescence decay curves of singlete oxygen at 1270 nm were employed. Compounds 1, 2 and 3 showed a monomeric behavior in all media while compound 4 presented low aggregation in DMSO, but a very pronounced aggregation behavior in THF. Steady-state fluorescence anisotropy was compared with emission spectra and complex 4 presented values beyond the expected limits. DOI: http://dx.doi.org/10.17807/orbital.v9i5.1047 

  14. TCV mirrors cleaned by plasma

    Directory of Open Access Journals (Sweden)

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.

  15. Ionic Liquids as Extraction Media for Metal Ions

    Science.gov (United States)

    Hirayama, Naoki

    In solvent extraction separation of metal ions, recently, many researchers have investigated possible use of hydrophobic ionic liquids as extraction media instead of organic solvents. Ionic liquids are salts of liquid state around room temperature and can act not only as solvents but also as ion-exchangers. Therefore, the extraction mechanism of metal ions into ionic liquids is complicated. This review presents current overview and perspective on evaluation of nature of hydrophobic ionic liquids as extraction media for metal ions.

  16. Accelerated solvent extraction (ASE) - a fast and automated technique with low solvent consumption for the extraction of solid samples (T12)

    International Nuclear Information System (INIS)

    Hoefler, F.

    2002-01-01

    Full text: Accelerated solvent extraction (ASE) is a modern extraction technique that significantly streamlines sample preparation. A common organic solvent as well as water is used as extraction solvent at elevated temperature and pressure to increase extraction speed and efficiency. The entire extraction process is fully automated and performed within 15 minutes with a solvent consumption of 18 ml for a 10 g sample. For many matrices and for a variety of solutes, ASE has proven to be equivalent or superior to sonication, Soxhlet, and reflux extraction techniques while requiring less time, solvent and labor. First ASE has been applied for the extraction of environmental hazards from solid matrices. Within a very short time ASE was approved by the U.S. EPA for the extraction of BNAs, PAHs, PCBs, pesticides, herbicides, TPH, and dioxins from solid samples in method 3545. Especially for the extraction of dioxins the extraction time with ASE is reduced to 20 minutes in comparison to 18 h using Soxhlet. In food analysis ASE is used for the extraction of pesticide and mycotoxin residues from fruits and vegetables, the fat determination and extraction of vitamins. Time consuming and solvent intensive methods for the extraction of additives from polymers as well as for the extraction of marker compounds from herbal supplements can be performed with higher efficiencies using ASE. For the analysis of chemical weapons the extraction process and sample clean-up including derivatization can be automated and combined with GC-MS using an online ASE-APEC-GC system. (author)

  17. Visible-light self-cleaning cotton by metalloporphyrin-sensitized photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Afzal, Shabana [School of Applied Sciences and Engineering, Monash University, Churchill 3842 (Australia); Daoud, Walid A., E-mail: wdaoud@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Langford, Steven J. [School of Chemistry, Monash University, Clayton 3800 (Australia)

    2013-06-15

    Thin films of meso-tetra(4-carboxyphenyl)porphyrin with different metal centres (MTCPP, M = Fe, Co and Zn) in combination with anatase TiO{sub 2} have been formed on cotton fabric. Their self-cleaning properties have been evaluated by conducting the photocatalytic degradation of methylene blue under visible-light irradiation. All MTCPP/TiO{sub 2}-coated cotton fabrics showed superior self-cleaning performance as compared to the bare TiO{sub 2}-coated cotton. Among the three metal porphyrins, FeTCPP showed the highest photocatalytic activity with complete degradation of methylene blue in 180 min. The fabrics were characterized by FESEM, XRD, UV–vis and fluorescence spectroscopy.

  18. The ageing and poisoning of charcoal used in nuclear plant air cleaning systems

    International Nuclear Information System (INIS)

    Broadbent, D.

    1986-01-01

    Ageing and Poisoning are terms which are used to describe the in-service deterioration or weathering of activated charcoals used to remove radioiodine from air cleaning systems. This paper describes an investigation aimed at identifying the relative importance of the two effects and at comparing the resistance to weathering of potassium iodide (KI) impregnated charcoal with triethylene diamine (TEDA) impregnated charcoal. Some preliminary results are given on the rates of oxidative ageing of charcoals as a function of temperature and relative humidity. The effect on charcoal performance of organic poisons has been examined by measuring the index of performance (k-factor) of charcoals preloaded with a range of organic solvents. Finally the combined effect of oxidative ageing and organic poisoning has been measured using realistic operating conditions of temperature and relative humidity. The in-service deterioration of charcoal in air cleaning systems can be accounted for by a combination of oxidative ageing and poisoning by airborne organic solvents. (author)

  19. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  20. Trace elements retained in washed nuclear fuel reprocessing solvents

    International Nuclear Information System (INIS)

    Gray, L.W.; MacMurdo, K.W.

    1979-09-01

    Analysis of purified TBP extractant from solvent extraction processes at Savannah River Plant showed several stable elements and several long-lived radioisotopes. Stable elements Al, Na, Br, Ce, Hg, and Sm are found in trace quantities in the solvent. The only stable metallic element consistently found in the solvent was Al, with a concentration which varies from about 30 ppM to about 10 ppM. The halogens Br and Cl appear to be found in the solvent systems as organo halides. Radionuclides found were principally 106 Ru, 129 I, 3 H, 235 U, and 239 Pu. The 129 I concentration was about 1 ppM in the first solvent extraction cycle of each facility. In the other cycles, 129 I concentration varied from about 0.1 to 0.5 ppM. Both 129 I and 3 H appear to be in the organic solvent as a result of exchange with hydrogen

  1. Solvent anode for plutonium purification

    International Nuclear Information System (INIS)

    Bowersox, D.F.; Fife, K.W.; Christensen, D.C.

    1986-01-01

    The purpose of this study is to develop a technique to allow complete oxidation of plutonium from the anode during plutonium electrorefining. This will eliminate the generation of a ''spent'' anode heel which requires further treatment for recovery. Our approach is to employ a solvent metal in the anode to provide a liquid anode pool throughout electrorefining. We use molten salts and metals in ceramic crucibles at 700 0 C. Our goal is to produce plutonium metal at 99.9% purity with oxidation and transfer of more than 98% of the impure plutonium feed metal from the anode into the salt and product phases. We have met these criteria in experiments on the 100 to 1000 g scale. We plan to scale our operations to 4 kg of feed plutonium and to optimize the process parameters

  2. Bringing Catalysis with Gold Nanoparticles in Green Solvents to Graduate Level Students

    Science.gov (United States)

    Raghuwanshi, Vikram Singh; Wendt, Robert; O'Neill, Maeve; Ochmann, Miguel; Som, Tirtha; Fenger, Robert; Mohrmann, Marie; Hoell, Armin; Rademann, Klaus

    2017-01-01

    We demonstrate here a novel laboratory experiment for the synthesis of gold nanoparticles (AuNPs) by using a low energy gold-sputtering method together with a modern, green, and biofriendly deep eutectic solvent (DES). The strategy is straightforward, economical, ecofriendly, rapid, and clean. It yields uniform AuNPs of 5 nm in diameter with high…

  3. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Sawa, Toshio; Takahashi, Sankichi; Takashima, Yoshie.

    1983-01-01

    Purpose: To efficiently eliminate radioactive materials such as iron oxide and cobalt ions with less heat loss by the use of an electrode assembly applied with a direct current. Constitution: In a reactor water clean-up device adapted to pass reactor water through an electrode assembly comprising at least a pair of anode and cathode applied with a direct current to eliminate various types of ions contained in the reactor water by way of the electrolysis or charge neutralization at the anode, the cathode is constituted with a corrosion resistant grid-like or porous metal plate and a layer to the upper portion of the metal plate filled with a plurality of metal spheres of about 1 - 5 mm diameter, and the anode is made of insoluble porous or spirally wound metal material. (Seki, T.)

  4. 300 area solvent evaporator interim status closure plan: Revision 2

    International Nuclear Information System (INIS)

    1989-02-01

    This document describes activities for the closure of a hazardous waste tank treatment facility operated by the US Department of Energy-Richland Operations Office (DOE-RL) and co-operated by the Westinghouse Hanford Company (WHC). This treatment facility was a solvent evaporator located in the 300 Area of the Hanford Site, from 1975 to 1985 on behalf of DOE-RL. The 300 Area Solvent Evaporator (300 ASE) was a modified load lugger (dumpster) in which solvent wastes were evaporated. Some of the solvents were radioactively contaminated because they came from a degreaser which processed bare uranium metal billets from the N Reactor Fuel Manufacturing Facility. The waste was composed of perchloroethylene, trichloroethylene, 1,1,1-trichloroethane, ethyl acetate/bromine solution, paint shop solvents and possibly some used oil. Also, small amounts of uranium, copper, zirconium and possibly beryllium were present in the degreaser solvents as particulates. Radioactive and non-radioactive solvents were not segregated in the 300 ASE, and the entire mixture was regarded as mixed waste

  5. The EED [Emergencies Engineering Division] solvent extraction process for the removal of petroleum-derived hydrocarbons from soil

    International Nuclear Information System (INIS)

    Bastien, C.Y.

    1994-03-01

    Research was conducted to investigate the ability of hexane and natural gas condensate (NGC) to extract three different types of hydrocarbon contaminant (light crude oil, diesel fuel, and bunker C oil) from three types of soil (sand, peat, and clay). A separate but related study determined the efficiency of solvent extraction (using hexane and five other solvents but not NGC) for removal of polychlorinated biphenyls (PCB) from contaminated soil. The process developed for this research includes stages of mixing, extraction, separation, and solvent recovery, for eventual implementation as a mobile solvent extraction unit. In experiments on samples created in the laboratory, extraction efficiencies of hydrocarbons often rose above 95%. On samples from a petroleum contaminated site, average extraction efficiency was ca 82%. Sandy soils contaminated in the laboratory were effectively cleaned of all hydrocarbons tested but only diesel fuel was successfully extracted from peat soils. No significant differences were observed in the effectiveness of hexane and NGC for contamination levels above 3%. Below this number, NGC seems more effective at removing oil from peat while hexane is slightly more effective on clay soils. Sand is equally cleaned by both solvents at all contamination levels. Safety considerations, odor, extra care needed to deal with light ends and aromatics, and the fact that only 26% of the solvent is actually usable make NGC an unfeasible option in spite of its significantly lower cost compared to hexane. For extracting PCBs, a hexane/acetone mixture proved to have the best removal efficiency. 14 refs., 14 figs., 7 tabs

  6. Direct oxide reduction (DOR) solvent salt recycle in pyrochemical plutonium recovery operations

    International Nuclear Information System (INIS)

    Fife, K.W.; Bowersox, D.F.; Davis, C.C.; McCormick, E.D.

    1987-02-01

    One method used at Los Alamos for producing plutonium metal is to reduce the oxide with calcium metal in molten CaCl 2 at 850 0 C. The solvent CaCl 2 from this reduction step is currently discarded as low-level radioactive waste because it is saturated with the reaction by-product, CaO. We have developed and demonstrated a molten salt technique for rechlorinating the CaO, thereby regenerating the CaCl 2 and incorporating solvent recycle into the batch PuO 2 reduction process. We discuss results from the process development experiments and present our plans for incorporating the technique into an advanced design for semicontinuous plutonium metal production

  7. Some regularities in formation and solvent extraction of complexes in metal-salicylic acid or its derivative- organic base systems

    International Nuclear Information System (INIS)

    Alimarin, I.P.; Fadeeva, V.I.; Tikhomirova, T.I.

    1982-01-01

    The influence of concentrations of the reagents, pH and solvent on the conditions for the formation and extraction of Sc, Ti, Zr, Hf, Th complexes has been examined in salicylic acid (H 2 Sal)-heterocyclic amine systems. The extraction chemism and factors, which affect the reactions between the metal ions and the ligands, are discussed. It has been shown that Zr, Hf, Ti form species of ion associate type, Sc and Th form different-ligand complexes under conditions for interphase equilibrium in a Me-H 2 Sal-heterocyclic amine system

  8. Cleaning and electrochemistry restoration of archaeological metalic objects | Limpieza y restauración electroquímica de objetos arqueológicos metálicos

    Directory of Open Access Journals (Sweden)

    Tomás España Guisolphe

    1985-12-01

    Full Text Available This paper shows how electrochemical methods can be applied to the cleaning and restoration of coins and metallic objects proceeding from archaeological finds. A description is given of the electrochemical methods used and a comparison with the usual cleaning methods is also made. | El presente estudio pone de manifiesto la aplicabilidad de los métodos electroquímicos a la limpieza y restauración de monedas y piezas metálicas que proceden de yacimientos arqueológicos. Se hace una descripción de los métodos electroquímicos utilizados y una comparación con los métodos habituales de limpieza.

  9. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  10. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Science.gov (United States)

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  11. On solvent extraction of metals by macrocyclic polyethers

    International Nuclear Information System (INIS)

    Ionov, V.P.

    1984-01-01

    The Ksub(γ) parameter characterizing effective ion charges in ionic associates of metal salts is suggested; these charges parallel with other factors determine the metals extraction by macrocyclic polyethers (crown-ethers). The dependence of metal extraction constant on the Ksub(γ) parameter is discussed. It is shown that the less effective cation charge of alkali metal ionic associates, the more probable its entering the crown-ether cavity. The synergetic crown-ethers extraction is bound as well with Ksub(γ) of metal salts. The differences in the cation extraction constants having the same ionic radius are explained with account of different values of Ksub(γ) parameters of these salts

  12. Exposure to organic solvents in the offset printing industry in Norway.

    Science.gov (United States)

    Svendsen, K; Rognes, K S

    2000-03-01

    The purpose of this study was to document the conditions regarding solvent exposure at offset printing offices in Norway at present and to study the variation of exposure between printing office technologies. Measurements were made at seven offset printing offices. The measurements consisted of five to 10 whole day personal exposure measurements at each office performed over a period of 2 months. Variables that may influence the level of exposure were registered by the occupational hygienist at the end of each measuring day using a check list. The influence of the variables on the "additive factor" was examined by linear regression analysis.The main contributor to the "additive factor" was isopropanol. The exposure to isopropanol sometimes exceeded the Norwegian TLV. The exposure decreased when a separate exhaust ventilation was used. The exposure increased when the machine had automatic cleaning. The variables automatic cleaning and separate exhaust ventilation explained 59% of the variation in the "additive factor". The results of this study indicate that the most important source of solvent exposure in printing offices at present is the moisturizer used in the printing machines. We think it is worth giving attention to this exposure and making efforts to reduce it.

  13. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jie Wang; Chunqi Li; Kinya Sakanishi; Tetsuya Nakazato; Hiroaki Tao; Toshimasa Takanohashi; Takayuki Takarada; Ikuo Saito [National Institute Advanced Industrial Science and Technology (AIST), Ibaraki (Japan). Energy Technology Research Institute

    2005-09-01

    A sub-bituminous Wyodak coal (WD coal) and a bituminous Illinois No. 6 coal (IL coal) were thermally extracted with 1-methylnaphthalene (1-MN) and N-methyl-2-pyrrolidone (NMP) to produce clean extract. A mild pretreatment with acetic acid was also carried out. Major and trace inorganic elements in the raw coals and resultant extracts were determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES), flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS), and cold vapor atomic absorption spectrometry (CV-AAS). It was found that the extraction with 1-MN resulted in 73-100% reductions in the concentration of Li, Be, V, Ga, As, Se, Sr, Cd, Ba, Hg, and Pb. The extraction with NMP yielded more extract than that with 1-MN, but it retained more organically associated major and trace metals in the extracts. In the extraction of WD coal with NMP, the acid pretreatment not only significantly enhanced the extraction yield but also significantly reduced the concentrations of alkaline earth elements such as Be, Ca, Mg, Sr, and Ba in the extract. In addition, the modes of occurrence of trace elements in the coals were discussed according to their extraction behaviors. 30 refs., 2 figs., 5 tabs.

  14. Enhancement in extraction rates by addition of organic acids to aqueous phase in solvent extraction of rare earth metals in presence of diethylenetriaminepentaacetic acid

    International Nuclear Information System (INIS)

    Matsuyama, Hideto; Azis, A.; Fujita, Mamoru; Teramoto, Masaaki.

    1996-01-01

    It is well known that the selectivity of rare earth metals by solvent extraction is increased by the addition of a chelating agent such as diethylenetriaminepentaacetic acid (DTPA) in the aqueous phase. One of the disadvantages of this method is the decrease in extraction rates due to complexation in the aqueous phase. In this paper, further addition of organic acids to the aqueous phase was examined for the purpose of enhancing the extraction rates in solvent extraction with DTPA. The addition of several kind of organic acids such as formic acid, acetic acid, malonic acid, lactic acid and citric acid was investigated for a Er/Y separation system. A remarkable enhancement in extraction rates was observed with a slight decrease in the selectivity by the addition of citric acid or lactic acid. Extraction rates in the presence of both DTPA and citric acid increased with the increase in citric acid concentration and with the increase in proton concentration. A 150 times enhancement in extraction rates was found in the low proton concentration condition. In order to analyze the extraction rates and selectivities obtained, mass transfer equations were presented by considering both the dissociation reaction of rare earth metal-DTPA complexes and the complex formation between rare earth metal and organic acid in the aqueous phase. The experimental data were analyzed by these equations. (author)

  15. TiO 2 Thin Films Prepared via Adsorptive Self-Assembly for Self-Cleaning Applications

    KAUST Repository

    Xi, Baojuan; Verma, Lalit Kumar; Li, Jing; Bhatia, Charanjit Singh; Danner, Aaron James; Yang, Hyunsoo; Zeng, Hua Chun

    2012-01-01

    oxidation processes for wastewater and bactericidal treatments, self-cleaning window glass for green intelligent buildings, dye-sensitized solar cells, solid-state semiconductor metal-oxide solar cells, self-cleaning glass for photovoltaic devices

  16. Solution chemistry and separation of metal ions in leached solution

    International Nuclear Information System (INIS)

    Shibata, J.

    1991-01-01

    The method to presume a dissolved state of metal ions in an aqueous solution and the technology to separate and concentrate metal ions in a leached solution are described in this paper. It is very important for the separation of metal ions to know the dissolved state of metal ions. If we know the composition of an aqueous solution and the stability constants of metal-ligand complexes, we can calculate and estimate the concentration of each species in the solution. Then, we can decide the policy to separate and concentrate metal ions. There are several methods for separation and purification; hydroxide precipitation method, sulfide precipitation method, solvent extraction method and ion exchange resin method. Solvent extraction has been used in purification processes of copper refinery, uranium refinery, platinum metal refinery and rare earth metal refinery. Fundamental process of solvent extraction, a kind of commercial extractants, a way of determining a suitable extractant and an equipment are discussed. Finally, it will be emphasized how the separation of rare earths is improved in solvent extraction. (author) 21 figs., 8 tabs., 8 refs

  17. Laser cleaning of 19th century Congo rattan mats

    International Nuclear Information System (INIS)

    Carmona, N.; Oujja, M.; Roemich, H.; Castillejo, M.

    2011-01-01

    There is a growing interest by art conservators for laser cleaning of organic materials, such as wooden artworks, paper and textiles, since traditional cleaning with solvents can be a source of further decay and mechanical cleaning may be too abrasive for sensitive fibers. In this work we present a successful laser cleaning approach for 19th century rattan mats from the Brooklyn Museum collection of African Art, now part of the study collection at the Conservation Center in New York. Tests were carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength of a Q-switched Nd:YAG laser to measure threshold values both for surface damage and color changes for different types of rattan samples. The irradiated substrates were investigated by optical microscopy, scanning electron microscopy and by UV-vis spectroscopy in order to determine the efficiency of laser cleaning and to assess possible deterioration effects that may have occurred as a result of laser irradiation. The study showed that by using the laser emission at 532 nm, a wavelength for which photon energy is below the bond dissociation level of the main cellulosic compounds and the water absorption is negligible, it is possible to select a range of laser fluences to remove the black dust layer without damaging the rattan material.

  18. Heavy metals in trees and energy crops - a literature review

    International Nuclear Information System (INIS)

    Johnsson, Lars

    1995-12-01

    This literature review deals with the use of energy crops for cleaning of soils from heavy metals. It also deals with the use of low accumulating energy crops to be used on strongly contaminated soils where a low uptake of heavy metals is preferred, for example on mining deposits. In addition to the efforts to reduce the sources for heavy metal contamination of soils (for example commercial fertilizers and atmospheric deposition) the uptake and removal of heavy metals from the soils by the use of energy crops have recently been discussed as a method for cleaning of soils. Species from the Salix family (willow) have a greater potential for accumulating heavy metals than cereals which makes them interesting for this purpose. The Salix family consists of species with a great genetic variation. This will probably make it possible to find or develop clones with different characteristics suitable for cleaning of contaminated soils as well as for plant covering of soils that are extremely contaminated by heavy metals. In the former case an accumulation of heavy metals in the harvested parts, the shoots, is preferred. In the later case clones that do not accumulate heavy metals and maybe also clones with only root accumulation are preferred. There are also Salix clones with a specific accumulation of heavy metals which makes it possible to clean soils from a toxic metal and at the same time avoid the risk for deficiency of essential metals, for example Zn. The greatest potential to clean soils by the use of energy crops, is when the contamination levels in the soils are low, the areas to clean are large and when the time needed for cleaning is of minor importance. The most suitable soils are those where the metal contamination is located in the top soil layer and where the heavy metal concentrations in the sub soil layer are still low. 58 refs, 8 tabs, 1 fig

  19. Self Cleaning HEPA Filtration without Interrupting Process Flow

    International Nuclear Information System (INIS)

    Wylde, M.

    2009-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research (Bergman et al 1997, Moore et al 1992) suggests that the then costs to the DOE, based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4,450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5,000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15,000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  20. Plasma cleaning techniques and future applications in environmentally conscious manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1995-07-01

    Plasmas have frequently been used in industry as a last step surface preparation technique in an otherwise predominantly wet-etch process. The limiting factor in the usefulness of plasma cleaning techniques has been the rate at which organic materials are removed. Recent research in the field of plasma chemistry has provided some understanding of plasma processes. By controlling plasma conditions and gas mixtures, ultra-fast plasma cleaning and etching is possible. With enhanced organic removal rates, plasma processes become more desirable as an environmentally sound alternative to traditional solvent or acid dominated process, not only as a cleaning tool, but also as a patterning and machining tool. In this paper, innovations in plasma processes are discussed including enhanced plasma etch rates via plasma environment control and aggressive gas mixtures. Applications that have not been possible with the limited usefulness of past plasma processes are now approaching the realm of possibility. Some of these possible applications will be discussed along with their impact to environmentally conscious manufacturing.

  1. N-acyl thioureas - selective ligands for complexing of heavy metals and noble metals

    International Nuclear Information System (INIS)

    Schuster, M.

    1992-01-01

    Acyl thioureas are complexing agents for heavy metals that are easily produced and very stable. Their favourable toxicological data make them particularly suitable for industrial applications, e.g. detoxification of metallic process solutions or solvent extraction of metals. (orig.) [de

  2. Processing method for cleaning water waste from cement kneader

    International Nuclear Information System (INIS)

    Soda, Kenzo; Fujita, Hisao; Nakajima, Tadashi.

    1990-01-01

    The present invention concerns a method of processing cleaning water wastes from a cement kneader in a case of processing liquid wastes containing radioactive wastes or deleterious materials such as heavy metals by means of cement solidification. Cleaning waste wastes from the kneader are sent to a cleaning water waste tank, in which gentle stirring is applied near the bottom and sludges are retained so as not to be coagulated. Sludges retained at the bottom of the cleaning water waste tank are sent after elapse of a predetermined time and then kneaded with cements. Thus, since the sludges in the cleaning water are solidified with cement, inhomogenous solidification products consisting only of cleaning sludges with low strength are not formed. The resultant solidification product is homogenous and the compression strength thereof reaches such a level as capable of satisfying marine disposal standards required for the solidification products of radioactive wastes. (I.N.)

  3. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    International Nuclear Information System (INIS)

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  4. Manufacturing of ashless coal by using solvent de-ashing technology

    Energy Technology Data Exchange (ETDEWEB)

    Sang-Do Kim; Kwang-Jae Woo; Soon-Kwan Jeong; Young-Jun Rhim; Si-Huyn Lee [Korea Institute of Energy Research, Daejeon (Republic of Korea). Clean Energy Research Center

    2007-07-01

    Maintenance of a high oil value has an influence to energy crisis and national security in South Korea which does not have energy resources. The coals which have characterized by the abundant reserves and the inexpensive price can be said to be the alternative energy source. Hyper-coal process, which has been developed in Japan since 1999, is a new effective process to produce a clean coal by using the solvent de-ashing technology. When coal is extracted with organic solvent, only the organic portion of coal is dissolved in the solvents. That is possible to apply the low rank coal. This study was performed to produce ashless coal by using the solvent de-ashing technology. The experiment was conducted in the batch(or semi-batch) type reactor with two solvents such as NMP(N-methyl-2-pyrrolidinone) and 1-MN(1-methylnaphthalene) and various coals such as Kideko coal, Roto South coal and Sunhwa coal at 200-400{sup o}C. As a result of the test, extraction yield of coals was more than 60% on daf. Ash concentration which contains the extracted coal was 0.11-1.0wt%. The heat value was increased from 5,400 kcal/kg to 7,920 kcal/kg in the Roto South coal. 10 refs., 4 figs., 2 tabs.

  5. The use of household cleaning products during pregnancy and lower respiratory tract infections and wheezing during early life.

    Science.gov (United States)

    Casas, Lidia; Zock, Jan Paul; Carsin, Anne Elie; Fernandez-Somoano, Ana; Esplugues, Ana; Santa-Marina, Loreto; Tardón, Adonina; Ballester, Ferran; Basterrechea, Mikel; Sunyer, Jordi

    2013-10-01

    To evaluate the effects of household use of cleaning products during pregnancy on infant wheezing and lower respiratory tract infections (LRTI). In four prospective Spanish birth cohorts (n = 2,292), pregnant women reported the use of household cleaning products. When infants were 12-18 months old, current cleaning product use and infant's wheezing and LRTI were reported. Cohort-specific associations between the use of specific products and respiratory outcomes were evaluated using multivariable regression analyses and estimates were combined using random-effects meta-analyses. The period prevalence of LRTI was higher when sprays (combined odds ratio (OR) = 1.29; 95 % confidence interval (CI) 1.04-1.59) or air fresheners (OR = 1.29; CI 1.03-1.63) were used during pregnancy. The odds of wheezing increased with spray (OR = 1.37; CI 1.10-1.69) and solvent (OR = 1.30; CI 1.03-1.62) use. The associations between spray and air freshener use during pregnancy and both outcomes remained apparent when these products were not used after pregnancy. Nevertheless, the estimates were higher when post-natal exposure was included. The use of cleaning sprays, air fresheners and solvents during pregnancy may increase the risk of wheezing and infections in the offspring.

  6. Solvent extraction of platinum with thiobenzanilide. Separation of platinum from copper

    International Nuclear Information System (INIS)

    Shkil', A.N.; Zolotov, Yu.A.

    1989-01-01

    The solvent extraction of micro concentrations of platinum has been investigated from hydrochloric acid media using thiobenzanilide in the presence of SnCl 2 and KI. In the presence of SnCl 2 platinum is extracted rapidly and to significant completion. Conditions have been developed for the quantitative extraction of platinum. The authors have also examined the solvent extraction of copper(II) using thiobenzanilide, interference due to copper(II) and iron(III) on solvent extraction of platinum, and methods to suppress this interference. A procedure has also been developed for the separation of platinum from copper. Solvent extraction of metals was studied using radioactive isotopes: 197 Pt, 64 Cu, 59 Fe, 198 Au, 109 Pd, 110m Ag

  7. Corrosion monitoring during a chemical cleaning

    International Nuclear Information System (INIS)

    Delepine, J.; Feron, D.; Roy, M.

    1994-01-01

    In order to estimate the possible corrosion induced by the chemical cleaning, a corrosion monitoring has been realized during the cleaning of the secondary circuit (including the model boiler) of ORION loop. It included coupons and electrodes and has required a preliminary setting in laboratory. The electrochemical device which was used during the chemical cleaning included two reference electrodes (Ag/AgCl) and eight metallic electrodes (carbon steel, stainless steel, Alloy 600 and Alloy 690) for free corrosion potential monitoring, three other carbon steel electrodes for instantaneous corrosion rate measurements by polarization resistance and three coupling devices with different surface ratios between carbon steel and Alloy 600. The results showed a good agreement between corrosion rates measured by weight losses on coupons or by electrochemistry (polarization resistance), and an increase of the carbon steel corrosion rate when it was coupled with Alloy 600. (authors). 5 figs., 2 tabs., 3 refs

  8. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  9. Combustion and environmental performance of clean coal end products

    Energy Technology Data Exchange (ETDEWEB)

    Skodras, G.; Sakellaropoulos, G. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications]|[Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab]|[Chemical Process Engineering Research Inst., Thessaloniki (Greece). Lab. of Solid Fuels and Environment; Someus, E. [Thermal Desorption Technology Group (Greece); Grammelis, P.; Amarantos, P.S. [Centre for Research and Technology, Hellas, Ptolemaidas-Kozanis, Ptolemaida (Greece). Inst. for Solid Fuel Technolgy and Applications; Palladas, A.; Basinas, P.; Natas, P.; Prokopidou, M.; Diamantopoulou, I.; Sakellaropoulos, G. [Aristotle Univ. of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering, Chemical Process Engineering Lab

    2006-07-01

    Clean and affordable power production is needed in order to achieve sustainable economic development. This paper focused on clean coal technologies in which coal-fired power plants are used in conjunction with large amounts of renewable energy sources to offer a high level of process safety and long term management of all residual operation streams. Thermal Desorption Recycle-Reduce-Reuse Technology (TDT-3R) was described as being a promising solid fuel pretreatment process for clean energy production up to 300 MWe capacities. TDT-3R is based on low temperature carbonisation fuel pre-treatment principles, which produce cleansed anthracite type fuels from coal and other carbonaceous material such as biomass and organic wastes. The combustion efficiency of such clean coals and the environmental performance of the TDT-3R process were investigated in this study via pilot scale tests of clean fuel production. Tests included flue gas emissions monitoring, raw fuel and product characterisation and thermogravimetric tests, polychlorinated dibenzo-p-dioxins and dibenzo-furans, and heavy metals analyses, and toxicity tests. Raw material included coal and biomass, such as willow, straw and demolition wood. The fuels were heated in a rotary kiln operating at 550 degrees C under slightly vacuum conditions. Clean coals were tested either alone or in conjunction with biomass fuels in a pilot scale combustion facility at Dresden, Germany. The clean coal samples were shown to have higher fixed carbon and ash content and lower volatiles compared to the respective raw coal samples. The major advantage of the TDT-3R process is the production of fuels with much lower pollutants content. Low nitrogen, sulphur, chlorine and heavy metal contents result in produced fuels that have excellent environmental performance, allow boiler operation in higher temperatures and overall better efficiency. Moreover, the use of clean fuels reduces deposition problems in the combustion chamber due to the

  10. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  11. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar; Cairns, Amy J.; Eddaoudi, Mohamed; Vittal, Jagadese J.

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal

  12. Solvent Influences on the Molecular Aggregation of Magnesium Aryloxides

    Energy Technology Data Exchange (ETDEWEB)

    ZECHMANN,CECILIA A.; BOYLE,TIMOTHY J.; RODRIGUEZ,MARK A.; KEMP,RICHARD A.

    2000-07-14

    Magnesium aryloxides were prepared in a variety of solvents through the reaction of dibutyl magnesium with sterically varied aryl alcohols: 2,6-dimethylphenol (H-DMP), 2,6-diisopropylphenol (H-DIP), and 2,4,6-trichlorophenol (H-TCP). Upon using a sufficiently strong Lewis-basic solvent, the monomeric species Mg(DMP){sub 2}(py){sub 3} (1, py = pyridine), Mg(DIP){sub 2}(THF){sub 3}, (2a, THF = tetrahydrofuran) Mg(TCP){sub 2}(THF){sub 3} (3) were isolated. Each of these complexes possesses a five-coordinate magnesium that adopts a trigonal bipyramidal geometry. In the absence of a Lewis base, the reaction with H-DIP yields a soluble trinuclear complex, [Mg(DIP){sub 2}]{sub 3} (2b). The Mg metal centers in 2b adopt a linear arrangement with a four-coordinate central metal while the outer metal centers are reduced to just three-coordinate. Solution spectroscopic methods suggest that while 2b remains intact, the monomeric species (1, 2a, and 3) are involved in equilibria, which facilitate intermolecular ligand transfer.

  13. Rapid, efficient and solvent free microwave mediated synthesis of aldo- and ketonitrones

    Directory of Open Access Journals (Sweden)

    Loredana Maiuolo

    2016-01-01

    Full Text Available A library of C-alkyl and C-aryl nitrones has been obtained by direct condensation of primary N-substituted hydroxylamine hydrochlorides with various aldehydes and ketones without catalysts or base. The synthetic procedure, performed under MW irradiation in the absence of solvent, does not require the presence of a base, is fast, clean, high-yielding and characterized by simple work-up.

  14. The impact of metallic filter media on HEPA filtration

    International Nuclear Information System (INIS)

    Chadwick, Chris; Kaufman, Seth

    2006-01-01

    Traditional HEPA filter systems have limitations that often prevent them from solving many of the filtration problems in the nuclear industry; particularly in applications where long service or storage life, high levels of radioactivity, dangerous decomposition products, chemical aggression, organic solvents, elevated operating temperatures, fire resistance and resistance to moisture are issues. This paper addresses several of these matters of concern by considering the use of metallic filter media to solve HEPA filtration problems ranging from the long term storage of transuranic waste at the WIPP site, spent and damaged fuel assemblies, in glove box ventilation and tank venting to the venting of fumes at elevated temperatures from incinerators, vitrification processes and conversion and sintering furnaces as well as downstream of iodine absorbers in gas cooled reactors in the UK. The paper reviews the basic technology, development, performance characteristics and filtration efficiency, flow versus differential pressure, cleanability and costs of sintered metal fiber in comparison with traditional resin bonded glass fiber filter media and sintered metal powder filter media. Examples of typical filter element and system configurations and applications will be presented The paper will also address the economic case for installing self cleaning pre-filtration, using metallic media, to recover the small volumes of dust that would otherwise blind large volumes of final disposable HEPA filters, thus presenting a route to reduce ultimate disposal volumes and secondary waste streams. (authors)

  15. Techniques for the quantitative analysis of fission-product noble metals

    International Nuclear Information System (INIS)

    Lautensleger, A.W.; Hara, F.T.

    1982-08-01

    Analytical procedures for the determination of ruthenium, rhodium, and palladium in precursor waste, solvent metal, and final glass waste forms have been developed. Two procedures for the analysis of noble metals in the calcine and glass waste forms are described in this report. The first is a fast and simple technique that combines inductively coupled argon plasma atomic emission spectrometry (ICP) and x-ray fluorescence techniques and can only be used on nonradioactive materials. The second procedure is based on a noble metal separation step, followed by an analysis using ICP. This second method is more complicated than the first, but it will work on radioactive materials. Also described is a procedure for the ICP analysis of noble metals in the solvent metal matrix. The only solvent metal addressed in this procedure is lead, but with minor changes the procedure could be applied to any of the solvent metals being considered in the Pacific Northwest Laboratory (PNL) extraction process. A brief explanation of atomic spectroscopy and the ICP analytical process, as well as of certain aspects of ICP performance (interelement spectral line interferences and certain matrix effects) is given

  16. Cleaning of the first mirrors and diagnostic windows by YAG laser on HL-2A

    International Nuclear Information System (INIS)

    Zhou, Y; Zheng, L; Li, Y G; Li, L C; Jiao, Y M; Gao, H; Zhao, G

    2009-01-01

    A laser cleaning system for HL-2A tokamak first mirrors and diagnostic windows has been developed recently. A detailed description of the laser cleaning procedure is presented. The optical transmission performance measured before and after the laser cleaning of the impurity film deposited on the optical elements is investigated. HL-2A deposited layers on metal mirrors and glass windows with thicknesses of about 1 and 4 μm, respectively, are clearly removed by irradiation with a single pulse of a Q-switched Nd:YAG laser with energy density of 0.4 and 2.8 J cm -2 , respectively. The feasibility of cleaning ECE windows is demonstrated. A cleaning time of about 5 min is suitable for application in fusion devices. The comparison of results obtained at different laser wavelengths shows that there is a greater probability of damage to the metallic mirror surface with a short laser wavelength than with longer wavelength.

  17. Should you get your heating ducts cleaned?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  18. Zeolite-like metal-organic frameworks with ana topology

    KAUST Repository

    Eddaoudi, Mohamed

    2017-04-20

    Embodiments of the present disclosure describe a zeolite-like metal-organic framework composition comprising a metal-organic framework composition with ana topology characterized by the formula [MIII(4, 5-imidazole dicarboxylic acid)2X(solvent)a]n wherein MIII comprises a trivalent cation of a rare earth element, X comprises an alkali metal element or alkaline earth metal element, and solvent comprises a guest molecule occupying pores. Embodiments of the present disclosure describe a method of separating paraffins comprising contacting a zeolite-like metal-organic framework with ana topology with a flow of paraffins, and separating the paraffins by size.

  19. The successful of finite element to invent particle cleaning system by air jet in hard disk drive

    Science.gov (United States)

    Jai-Ngam, Nualpun; Tangchaichit, Kaitfa

    2018-02-01

    Hard Disk Drive manufacturing has faced very challenging with the increasing demand of high capacity drives for Cloud-based storage. Particle adhesion has also become increasingly important in HDD to gain more reliability of storage capacity. The ability to clean on surfaces is more complicated in removing such particles without damaging the surface. This research is aim to improve the particle cleaning in HSA by using finite element to develop the air flow model then invent the prototype of air cleaning system to remove particle from surface. Surface cleaning by air pressure can be applied as alternative for the removal of solid particulate contaminants that is adhering on a solid surface. These technical and economic challenges have driven the process development from traditional way that chemical solvent cleaning. The focus of this study is to develop alternative way from scrub, ultrasonic, mega sonic on surface cleaning principles to serve as a foundation for the development of new processes to meet current state-of-the-art process requirements and minimize the waste from chemical cleaning for environment safety.

  20. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  1. X-ray photoelectron spectroscopy analysis of cleaning procedures for synchrotron radiation beamline materials at the Advanced Photon Source

    International Nuclear Information System (INIS)

    Li, Y.; Ryding, D.; Liu, C.; Kuzay, T.M.; McDowell, M.W.; Rosenberg, R.A.

    1994-01-01

    TZM (a high temperature molybdenum alloy), machinable tungsten, and 304 stainless steel were cleaned using environmentally safe, commercially available cleaning detergents. The surface cleanliness was evaluated by x-ray photoelectron spectroscopy (XPS). It was found that a simple alkaline detergent is very effective at removal of organic and inorganic surface contaminants or foreign particle residue from machining processes. The detergent can be used with ultrasonic agitation at 140 F to clean the TZM molybdenum, machinable tungsten, and 304 stainless steel. A citric-acid-based detergent was also found to be effective at cleaning metal oxides, such as iron oxide, molybdenum oxide, as well as tungsten oxides at mild temperatures with ultrasonic agitation, and it can be used to replace strong inorganic acids to improve cleaning safety and minimize waste disposal and other environmental problems. The efficiency of removing the metal oxides depends on both cleaning temperature and time

  2. Dissolution kinetics of metal coating in HNO3-scCO2 micro-emulsion using QCM

    International Nuclear Information System (INIS)

    Ju, Min Su; Koh, Moon Sung; Park, Kwang Heon; Kim, Hak Won; Kim, Hong Doo

    2005-01-01

    Radioactive contamination is rising because of an increasing number of nuclear facilities. Among the decontamination methods, the surface decontamination method is especially important. Conventional chemical decontamination methods for surface decontamination cause not only secondary radioactive wastes, but also corrosion and defects on the surface of equipment. Therefore, we require a new surface decontamination method. If CO 2 is used as a solvent for decontamination of radioactive contaminants, the wastes can be effectively reduced by recycling the CO 2 . Supercritical fluid has many good points as a process solvent, including low viscosity, negligible surface tension, and variable selectivity. And supercritical fluids have physical properties of both liquid and gas, such as good penetration with a high dissolution capability. A number of workers applied supercritical CO 2 solvent for cleaning precision devices and waste treatments. Since supercritical CO 2 has its mild critical point at 31 .deg. C and 73.8bar as well as low surface tension, it is a potentially suitable cleaning substance. The operational costs of CO 2 cleaning were estimated to be lower than other cleaning processes. However supercritical CO 2 has limited solubility about contaminated material. To tackle these problem, we researched various aspects of surfactants. Quartz Crystal Microbalance (QCM) is a thickness-shear mode resonator in which the acoustic wave propagates in a direction perpendicular to the crystal surface. The use of QCM as a chemical sensor has its origins in the work of Sauerbrey and King who carried out micro-gravimetric measurements in the gas phase. It was assumed in their work that a thin film applied to a thickness-shear-mode device could be treated in sensor measurements, and a shift in the resonance frequency of an oscillating AT-cut crystal could be correlated quantitatively with a change in mass added to or removed from the surface of the device. Now, the QCM

  3. Synthesis of β-phenylchalcogeno-α, β-unsaturated esters, ketones and nitriles using microwave and solvent-free conditions

    International Nuclear Information System (INIS)

    Lenardao, Eder J.; Silva, Marcio S.; Mendes, Samuel R.; Azambuja, Francisco de; Jacob, Raquel G.; Perin, Gelson; Santos, Paulo Cesar Silva dos

    2007-01-01

    A simple, clean and efficient solvent-free protocol was developed for hydrochalcogenation of alkynes containing a Michael acceptor (ester, ketone and nitrile) with phenylchalcogenolate anions generated in situ from the respective diphenyl dichalcogenide (Se, Te, S), using alumina supported sodium borohydride. This efficient and improved method is general and furnishes the respective (Z)-β-phenylchalcogeno-α,β-unsaturated esters, ketones and nitriles, in good yield and higher selectivity, compared with those that use organic solvent and inert atmosphere. The use of microwave (MW) irradiation facilitates the procedure and accelerates the reaction. (author)

  4. Nanometer-scale lithography on microscopically clean graphene

    International Nuclear Information System (INIS)

    Van Dorp, W F; De Hosson, J Th M; Zhang, X; Feringa, B L; Wagner, J B; Hansen, T W

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous material in order to obtain large areas of microscopically clean graphene flakes. After cleaning, W(CO) 6 was used as the precursor to study the early growth phase of FEBID deposits. It was observed that preferential adsorption of the precursor molecules on step edges and adsorbates plays a key role in the deposition on cleaned few-layer graphene.

  5. Solvent extraction of Southern US tar sands

    Energy Technology Data Exchange (ETDEWEB)

    Penney, W.R.

    1990-01-01

    The Department of Chemical Engineering at the University of Arkansas, in association with Diversified Petroleum Recovery, Inc. (DPR) of Little Rock, Arkansas, has been developing a solvent extraction process for the recovery of bitumen from tar sands for the past five years. The unique feature of the process is that the bitumen is recovered from the solvent by contacting with a co-solvent, which causes the bitumen to precipitate. The overall purpose of this project is to study both the technical and economic feasibility of applying this technology for recovery of bitumen from tar sands by (1) investigating the socioeconmic factors which affect (a) plant siting and (b) the market value of recovered bitumen; (2) operating a process demonstration unit at the rate of 1 lb/hr recovered bitumen while producing clean sand and recyclable solvents; and (3) determine the economic conditions which will make a bitumen recovery project economical. DPR has analyzed the historical trends of domestic production, consumption, discoveries and reserves of crude oil. They have started an investigation of the volatility in the price of crude oil and of gasoline prices and of the differential between gasoline and crude oil. DPR continues to analyze the geographical movement and demand for asphalt products. Utah does not appear economically attractive as a site for a bitumen from tar sands asphalt plant. Oklahoma sites are now being studied. This report also contains the quarterly progress report from a University of Nevada study to determine bitumen composition, oxygen uptake rates, and viscosities of Alabama and Utah bitumens. Both reports have been indexed separately for inclusion on the data base.

  6. Cleaning and decontamination: Experimental feedback from PHENIX

    International Nuclear Information System (INIS)

    Masse, F.; Rodriguez, G.

    1997-01-01

    After the first few years of operation of PHENIX, it proved necessary to clean, then decontaminate sodium-polluted components, particularly large components such as the intermediate heat exchangers (IHX) and the primary pumps (PP). Ibis document presents the evolution of the cleaning and decontamination processes used, and specifies the reasons for this evolution. As regards the cleaning, experimental feedback and a greater rigour with respect to the hydrogen hazard have resulted in a modification of the process. The new cleaning process used at present (since 1994) is described in greater detail in this document. The main steps are: cold CO 2 bubbling in water, followed by hot CO 2 bubbling, spraying phase, then drying for inspection before immersion. In order to optimize and validate the process, the cleaning and decontamination plant has been highly instrumented, which, in particular, has allowed confirmation of the contention that the major part of the sodium is eliminated during the bubbling phases. With respect to decontamination, the objective is to perfect an efficient process that allows both human intervention with no particular biological shield for repair or maintenance of the components, and requalification of the materials after the decontamination operation. Owing to the high operating temperature of Fast Breeder Reactor components (400 to 550 deg. C), the activated corrosion products deposited on the components melt into the metal. The decontamination process therefore consists in either dissolving the deposits on the surface, or dissolving a thickness of about less than ten micrometers of the base metal. The reference process for austenitic-type steels is the SPm process, which consists in immersing the component in a sulphuric-phosphoric bath (sulphuric acid and phosphoric acid) at a temperature of 60 deg. C for 6 hours. The problem linked to this process is the treatment of the effluents that are produced, particularly phosphate releases. A

  7. Metals separation using solvent extractants on magnetic microparticles

    International Nuclear Information System (INIS)

    Nunez, L.; Pourfarzaneh, M.

    1997-01-01

    The magnetically assisted chemical separation program was initially funded by DOE EM-50 to develop processes for the efficient separation of radionuclides and other hazardous metals. This process has simulated the partnership between industry and ANL for many applications related to hazardous metal problems in industry. In-tank or near-tank hazardous metals separation using magnetic particles promises simple, compact processing at very low costs and employs mature chemical separations technologies to remove and recover hazardous metals from aqueous solutions. The selective chemical extractants are attached to inexpensive magnetic carrier particles. Surfaces of small particles composed of rare earths or ferromagnetic materials are treated to retain chemical extractants (e.g., TBP, CMPO, quaternary amines, carboxylic acid). After selective partitioning of contaminants to the surface layer, magnets are used to collect the loaded particles from the tank. The particles can be regenerated by stripping the contaminants and the selective metals can be recovered and recycled from the strip solution. This process and its related equipment are simple enough to be used for recovery/recycling and waste minimization activities at many industrial sites. Both the development of the process for hazardous and radioactive waste and the transfer of the technology will be discussed

  8. Comparison between polluted and clean air masses over Lake Michigan

    International Nuclear Information System (INIS)

    Alkezweeny, A.J.; Laulainen, N.S.

    1981-01-01

    Clean and polluted air masses, advected over Lake Michigan, were studied using instrumental aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The concentrations of sulfate, nitrate and trace metals in a clean air mass are more than an order of magnitude lower than those in polluted air masses. Furthermore, these concentrations are comparable with those measured in remote areas of the world. In clean air the ratio of the total light scattering to Rayleigh scattering is very close to one, indicating very low concentrations of particulates in the optically active size classes

  9. Determination of 21 antibiotics in sea cucumber using accelerated solvent extraction with in-cell clean-up coupled to ultra-performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Zhu, Minghua; Zhao, Hongxia; Xia, Deming; Du, Juan; Xie, Huaijun; Chen, Jingwen

    2018-08-30

    An accelerated solvent extraction (ASE) with in-cell clean-up method coupled to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was developed to determine 21 antibiotics in sea cucumber. The analytes include 10 sulfonamides, 4 fluoroquinolones, 3 amphenicols, 2 beta-lactams, 1 lincosamide and trimethoprim. Optimal parameters of ASE method were obtained at 80 °C, 1 static cycle of 5 min with methanol/acetonitrile (1/1, v/v) using 2 g of C18 as adsorbent. Recoveries at 50.1-129.2% were achieved with RSD under 20%. Method detection limits ranged from 0.03 to 2.9 μg kg -1 . Compared to the reported ultrasound-assisted extraction method, the proposed method offered comparable extraction efficiency for sulfonamides from sea cucumber, but higher for other categories of antibiotics. This validated method was then successfully applied to sea cucumber samples and 9 antibiotics were detected with the highest concentration up to 57.7 μg kg -1 for norfloxacin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. PREPARATION OF METAL OXIDE POWDERS FROM METAL LOADED VERSATIC ACID

    OpenAIRE

    KAKIHATA, Takayuki; USAMI, Kensuke; YAMAMOTO, Hideki; SHIBATA, Junji

    1998-01-01

    A production process for metal oxide powders was developed using a solvent extraction method. Versatic Acid 10 and D2EHPA solutions containing copper, zinc and nickel were used for a precipitation-stripping process, where oxalic acid was added to the solution as a precipitation reagent.Copper, zinc and nickel oxalates were easily formed in an aqueous phase, and 99.9% of precipitation was obtained for each metal during this process. These metal oxalates were easily converted to metal oxides by...

  11. Solvent extraction studies on cadmium Part 3

    International Nuclear Information System (INIS)

    Alian, A.; El-Kot, A.

    1976-01-01

    An extraction study was performed on various concentrations of cadmium, zinc and cobalt halides in the presence of sulphuric acid. A long chain amine (Amberlite LA-2) and an organophosphorus solvent (TBP) were used. In most cases the value of the distribution ratio decreases with the increase of metal concentration in the aqueous phase. The various possibilities of chemical and radiochemical separations of cadmium from accompanying metal species are reported: separation of (sup109m)Ag from irradiated Cd targets, separation of (sup115m)In using HDEHP, separation of Cd and Zn from their mixtures. (T.G.)

  12. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  13. Metal-assisted etch combined with regularizing etch

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Joanne; Miller, Jeff; Jura, Michael; Black, Marcie R.; Forziati, Joanne; Murphy, Brian; Magliozzi, Lauren

    2018-03-06

    In an aspect of the disclosure, a process for forming nanostructuring on a silicon-containing substrate is provided. The process comprises (a) performing metal-assisted chemical etching on the substrate, (b) performing a clean, including partial or total removal of the metal used to assist the chemical etch, and (c) performing an isotropic or substantially isotropic chemical etch subsequently to the metal-assisted chemical etch of step (a). In an alternative aspect of the disclosure, the process comprises (a) performing metal-assisted chemical etching on the substrate, (b) cleaning the substrate, including removal of some or all of the assisting metal, and (c) performing a chemical etch which results in regularized openings in the silicon substrate.

  14. Pyrolized biochar for heavy metal adsorption

    Science.gov (United States)

    Removal of copper and lead metal ions from water using pyrolized plant materials. Method can be used to develop a low cost point-of-use device for cleaning contaminated water. This dataset is associated with the following publication:DeMessie, B., E. Sahle-Demessie , and G. Sorial. Cleaning Water Contaminated With Heavy Metal Ions Using Pyrolyzed Banana Peel Adsorbents. Separation Science and Technology. Marcel Dekker Incorporated, New York, NY, USA, 50(16): 2448-2457, (2015).

  15. Review of cleaning techniques and their effects on the chemical composition of foliar samples

    Energy Technology Data Exchange (ETDEWEB)

    Rossini Oliva, S.; Raitio, H.

    2003-07-01

    Chemical foliar analysis is a tool widely used to study tree nutrition and to monitor the impact and extent of air pollutants. This paper reviews a number of cleaning methods, and the effects of cleaning on foliar chemistry. Cleaning may include mechanical techniques such as the use of dry or moistened tissues, shaking, blowing, and brushing, or use various washing techniques with water or other solvents. Owing to the diversity of plant species, tissue differences, etc., there is no standard procedure for all kinds of samples. Analysis of uncleaned leaves is considered a good method for assessing the degree of air contamination because it provides an estimate of the element content of the deposits on leaf surfaces or when the analysis is aimed at the investigation of transfer of elements along the food chain. Sample cleaning is recommended in order (1) to investigate the transfer rate of chemical elements from soil to plants, (2) to qualify the washoff of dry deposition from foliage and (3) to separate superficially absorbed and biomass-incorporated elements. Since there is not a standard cleaning procedure for all kinds of samples and aims, it is advised to conduct a pilot study in order to be able to establish a cleaning procedure to provide reliable foliar data. (orig.)

  16. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Directory of Open Access Journals (Sweden)

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  17. Calculations in solvent extraction of rare earth metals

    International Nuclear Information System (INIS)

    Sadanandam, R.; Sharma, A.K.; Fonseca, M.F.; Hubli, R.C.; Suri, A.K.; Singh, D.K.

    2010-01-01

    The paper deals with calculation of number of countercurrent stages in solvent extraction of rare earths both under total reflux and partial reflux conditions to achieve a given degree of purification and recovery. The use of Fenske's equation normally used for separation by distillation is proposed to calculate the number of stages required under total reflux, replacing relative volatility by separation factor. Kremser's equations for extraction and scrubbing are used to calculate the number of stages in extraction and scrubbing modules under partial reflux conditions. McCabe-Thiele's approach is also adopted to arrive at the number of scrubbing stages. (author)

  18. Initiate test loop irradiations of ALSEP process solvent

    Energy Technology Data Exchange (ETDEWEB)

    Peterman, Dean R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Olson, Lonnie G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); McDowell, Rocklan G. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report describes the initial results of the study of the impacts of gamma radiolysis upon the efficacy of the ALSEP process and is written in completion of milestone M3FT-14IN030202. Initial irradiations, up to 100 kGy absorbed dose, of the extraction section of the ALSEP process have been completed. The organic solvent used for these experiments contained 0.05 M TODGA and 0.75 M HEH[EHP] dissolved in n-dodecane. The ALSEP solvent was irradiated while in contact with 3 M nitric acid and the solutions were sparged with compressed air in order to maintain aerated conditions. The irradiated phases were used for the determination of americium and europium distribution ratios as a function of absorbed dose for the extraction and stripping conditions. Analysis of the irradiated phases in order to determine solvent composition as a function of absorbed dose is ongoing. Unfortunately, the failure of analytical equipment necessary for the analysis of the irradiated samples has made the consistent interpretation of the analytical results difficult. Continuing work will include study of the impacts of gamma radiolysis upon the extraction of actinides and lanthanides by the ALSEP solvent and the stripping of the extracted metals from the loaded solvent. The irradiated aqueous and organic phases will be analyzed in order to determine the variation in concentration of solvent components with absorbed gamma dose. Where possible, radiolysis degradation product will be identified.

  19. Solvent-free porous framework resulted from 3D entanglement of 1D zigzag coordination polymer

    KAUST Repository

    Kole, Goutam Kumar Umar

    2010-01-01

    A solvent-free porous metal organic framework is constructed by the 3D entanglement of 1D zigzag coordination polymeric chains. The role of solvents and the effect of reaction conditions on such unique entanglement are addressed. © 2010 The Royal Society of Chemistry and the Centre National de la Recherche Scientifique.

  20. Microwave-Assisted Solvent-Free Synthesis of Zeolitic Imidazolate Framework-67

    Directory of Open Access Journals (Sweden)

    Heng Zhang

    2016-01-01

    Full Text Available A microporous metal-organic framework (MOF, cobalt-based zeolitic imidazolate framework-67 (ZIF-67, was synthesized by the combination of solvent-free hand-mill and microwave irradiation, without any organic solvent and within 30 minutes. The hand-milling process can mix the reactants well by the virtue of high moisture/water absorption capacity of reactants. In addition, the outstanding electromagnetic wave absorption capability of cobalt leads to efficient conversion to MOF structures before carbonization. The obtained ZIF-67 possesses high surface area and micropore volume.

  1. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    International Nuclear Information System (INIS)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C 2 H 2 and C 2 H 4 adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals

  2. Morphological control in polymer solar cells using low-boiling-point solvent additives

    Science.gov (United States)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  3. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference...... in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance...

  4. Investigation of effective forensic cleaning methods for bullet and cartridge case samples

    Science.gov (United States)

    Shuherk, Cassie Marie

    Bullet and cartridge case evidence may potentially link weapons and crimes through the comparison of toolmark patterns. This analysis relies on the clarity of the toolmarks and the ability of the examiner to identify patterns on the evidence. These patterns may be distorted by debris such as soil, blood, cyanoacrylate, and construction materials. Despite the potential importance of bullet and cartridge case evidence, few investigations of proper cleaning methods have been conducted. The present study was designed to examine the effects of various cleaning solutions and application methods on copper and brass bullets and cartridge cases. Additionally, this research investigated the efficacy of these cleaning protocols on the common evidence contaminants blood and cyanoacrylate. No cleaning method was found to be universally effective on both contaminant types and nondestructive to the metal surface. Ultrasonication was the most efficient application method employed when used in conjunction with an appropriate cleaning solution. Acetone proved to be safe and successful at removing heavy cyanoacrylate deposits from brass cartridge cases without damaging the metal. Although sulfuric acid removed most of the cyanoacrylate from the brass cartridge case, ultrasonication of the fumed cartridge cases in sulfuric acid caused the nickel-plated primer caps to turn black. Additionally, etching occurred when sulfuric acid was allowed to dry on the cartridge case surface. Citric acid, salt-flour-vinegar paste, TergazymeRTM, and water did not effectively remove the cyanoacrylate from the cartridge cases, but the solutions were safe to use on the brass and sometimes resulted in a shinier surface. Regardless of the cleaning method employed, the bloodstained bullets retained most or all of the underlying brown tarnish. Ultrasonication with sulfuric acid was successful at removing some blood-initiated tarnishing; however, the removal of residues was not complete, making it difficult

  5. Solvent cleanup using base-treated silica gel solid adsorbent

    International Nuclear Information System (INIS)

    Tallent, O.K.; Mailen, J.C.; Pannell, K.D.

    1984-06-01

    A solvent cleanup method using silica gel columns treated with either sodium hydroxide (NaOH) or lithium hydroxide (LiOH) has been investigated. Its effectiveness compares favorably with that of traditional wash methods. After treatment with NaOH solution, the gels adsorb HNO 3 , dibutyl phosphate (DBP), UO 2 2+ , Pu 4+ , various metal-ion fission products, and other species from the solvent. Adsorption mechanisms include neutralization, hydrolysis, polymerization, and precipitation, depending on the species adsorbed. Sodium dibutyl phosphate, which partially distributes to the solvent from the gels, can be stripped with water; the stripping coefficient ranges from 280 to 540. Adsorption rates are diffusion controlled such that temperature effects are relatively small. Recycle of the gels is achieved either by an aqueous elution and recycle sequence or by a thermal treatment method, which may be preferable. Potential advantages of this solvent cleanup method are that (1) some operational problems are avoided and (2) the amount of NaNO 3 waste generated per metric ton of nuclear fuel reprocessed would be reduced significantly. 19 references, 6 figures, 12 tables

  6. Synthesis metal nanoparticle

    Science.gov (United States)

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  7. Thin-layer chromatography of 49 metal ions on stannic antimonate in aqueous and mixed solvent systems containing dimethylsulfoxide: quantitative separation of uranium from numerous metal ions

    International Nuclear Information System (INIS)

    Qureshi, M.; Varshney, K.G.; Rajput, R.P.S.

    1976-01-01

    Thin-layer chromatography of 40 metal ions in 31 aqueous and mixed solvent systems has been performed on stannic antimonate ion-exchange material. Dimethylsulfoxide has been utilized to resolve such binary mixtures as La 3+ and Ce 3+ from Pr 3+ , Nd 3+ , and Sm 3+ ; VO 2+ from Ti 4+ , Nb 5+ , and Ta 5+ ; Ga 3+ from In 3+ , Tl + , and Y 3+ ; Fe 3+ from VO 2+ ; and Mg 2+ from Al 3+ . Quantitative separation of 200 to 800 μg U from its binary mixtures and from the synthetic mixtures containing Mg 2+ , Bi 3+ , Fe 3+ , Th 4+ , Ce 4+ , Cr 3+ , Zr 4+ , Hf 4+ , Ti 4+ Mn 2+ , Cu 2+ , Ce 3+ , In 3+ , Y 3+ , Ca 2+ , Co 2+ , Tl + , Nb 5+ , and Ag + has been obtained

  8. Dry cleaning device for protective cloths for use in nuclear power plants

    International Nuclear Information System (INIS)

    Sugimoto, Yoshikazu.

    1985-01-01

    Purpose: To enable the use of fron 113 as laundry liquid so that sterilizing effect can also be attained during drying. Constitution: After cleaning various kinds of contaminations deposited to cloths in a laundry drum with fron 113 (trichlorofluoroethane), gases in the drum are recycled by a blower passing through a drying condenser and a heater to evaporize solvents or moisture content remained in the cloths. The evaporated solvent or moistures are condensated to recover when they pass through the condenser cooled by the coolants of a refrigerator. Accordingly, since high temperature drying is enabled and moistures can be dried as well by the use of fron 113, no additional provision of the drier is required and sterilizing effect can also be effected at high temperature drying. (Kamimura, M.)

  9. Molecular effects in ion-electron emission from clean metal surfaces

    International Nuclear Information System (INIS)

    Baragiola, R.A.; Alonso, E.V.; Auciello, O.; Ferron, J.; Lantschner, G.; Oliva Florio, A.

    1978-01-01

    The authors have measured electron emission yields from clean Al, Cu and Ag under 2-50 keV H + , D + , H 2 + impact. It is found that molecular ion yields are lower than twice the yield of atomic ions. No isotope effects are observed for equal-velocity ions. (Auth.)

  10. Assessment and cleanup of the Taxi Strip waste storage area at LLNL [Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Buerer, A.

    1983-01-01

    In September 1982 the Hazards Control Department of the Lawrence Livermore National Laboratory (LLNL) began a final radiological survey of a former low-level radioactive waste storage area called the Taxi Strip so that the area could be released for construction of an office building. Collection of soil samples at the location of a proposed sewer line led to the discovery of an old disposal pit containing soil contaminated with low-level radioactive waste and organic solvents. The Taxi Strip area was excavated leading to the discovery of three additional small pits. The clean-up of Pit No. 1 is considered to be complete for radioactive contamination. The results from the chlorinated solvent analysis of the borehole samples and the limited number of samples analyzed by gas chromatography/mass spectrometry indicate that solvent clean-up at this pit is complete. This is being verified by gas chromatography/mass spectrometry analysis of a few additional soil samples from the bottom sides and ends of the pit. As a precaution, samples are also being analyzed for metals to determine if further excavation is necessary. Clean-up of Pits No. 2 and No. 3 is considered to be complete for radioactive and solvent contamination. Results of analysis for metals will determine if excavation is complete. Excavation of Pit No. 4 which resulted from surface leakage of radioactive contamination from an evaporation tray is complete

  11. Fouling and cleaning of seawater reverse osmosis membranes in Kalpakkam Nuclear Desalination Plant

    International Nuclear Information System (INIS)

    Murugan, V.; Rajanbabu, K.; Tiwari, S.A.; Balasubramanian, C.; Yadav, Manoj Kumar; Dangore, A.Y.; Prabhakar, S.; Tewari, P.K.

    2005-01-01

    Seawater reverse osmosis plant of 1800 m 3 /day capacity is a part of 6300 m 3 /day capacity Nuclear Desalination Demonstration Project, at Kalpakkam. The plant was commissioned in October 2002 and is in continuous operation. This paper deals with types of foulants, membrane cleaning procedures and the improvement in the reverse osmosis system after cleaning. This paper also describes analysis of foulants which may consist of adsorbed organic compounds, particulate matter, microorganisms, metallic oxides and chemical cleaning procedure to be adopted, which is characteristics of sea water used as the membrane foulant is very much specific with respect to the sea water constituents. The cleaning of the membranes in Kalpakkam Nuclear Desalination plant were taken up as the quality of permeate deteriorated and differential pressure across membrane had gone-up. This paper essentially deals with selection of cleaning chemicals, the experience gained in cleaning procedure adopted and effects of cleaning for the membrane system. (author)

  12. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  13. SOLVENT FREE OXIDATION OF ALCOHOLS USING IRON (III) NITRATE NONAHYDRATE

    Science.gov (United States)

    Oxidation of alcohols have been conducted with metal nitrate reagents on various mineral supports such as clay, silica and zeolite etc. To circumvent the limitations of these supported reagents namely their preparation using solvents and short shelf-life, we explored the use of i...

  14. Solvent extraction and its practical application for the recovery of copper and uranium

    International Nuclear Information System (INIS)

    Reuter, J.

    1975-01-01

    In recent years solvent extraction has been developed to a stage that allows practical application first for the recovery of uranium and later also for winning copper from low-grade acid-soluble ores. By now it has been realized in several plants with great technical and ecomomic success. Solvent extraction includes the following essential operations: leaching, solvent extraction, back extraction of the organically bonded valuable mineral to an acid, aqueous solution and finally separation of the valuable metal from the final acid by precipitation or electrolytic procedures. Upon assessing the cost of the solvent extraction process for the recovery of copper it turns out that from an economic point of view it is significantly superior to the conventional cementation process. (orig.) [de

  15. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeyoun [Division of Restoration Technology, National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of); Cho, Namchul, E-mail: nam1611@hanmail.net [Department of Cultural Heritage Conservation Science, Kongju National University, Gongju, 314-701 (Korea, Republic of); Lee, Jongmyoung [Laser Engineering Group, IMT Co. Ltd, Gyeonggi (Korea, Republic of)

    2013-11-01

    As numerous pores are formed at plating gilt-bronze artifacts, the metal underlying the gold is corroded and corrosion products are formed on layer of gold. Through this study, the surfaces of gilt-bronze are being investigated before and after the laser irradiation to remove corrosion products of copper by using Nd:YAG laser. For gilt-bronze specimens, laser and chemical cleaning were performed, and thereafter, surface analysis with SEM-EDS, AFM, and XPS were used to determine the surface characteristics. Experimental results show that chemical cleaning removes corrosion products of copper through dissolution but it was not removed uniformly and separated the metal substrate and the gold layer. Nevertheless, through laser cleaning, some of the corrosions were removed with some damaged areas due to certain conditions and brown residues remained. Brown residues were copper corrosion products mixed with soil left within the gilt layer. It was due to surface morphology of uneven and rough gilt layer. Hence, they did not react effectively to laser beams, and thus, remained as residues. The surface properties of gilt-bronze should be thoroughly investigated with various surface analyses to succeed in laser cleaning without damages or residues.

  16. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  17. Phytoremediation of heavy metals: Recent techniques | Jadia ...

    African Journals Online (AJOL)

    microorganisms/biomass or live plants to clean polluted areas. Phytoremediation is an emerging technology for cleaning up contaminated sites, which is ... A brief review on phytoremediation of heavy metals and its effect on plants have been ...

  18. LEED crystallography studies of the structure of clean and adsorbate-covered Ir, Pt and Rh crystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, R.J.

    1982-08-01

    There have only been a few Low Energy Electron Diffraction (LEED) intensity analyses carried out to determine the structure of molecules adsorbed on metal surfaces; most surface crystallography studies concentrated on the structure of clean unreconstructed or atomic adsorbate-covered transition metal faces. The few molecular adsorption systems already investigated by dynamical LEED are CO on Ni(100), Cu(100) and Pd(100) as well as C/sub 2/H/sub 2/ and C/sub 2/H/sub 4/ adsorbed on Pt(111). The emphasis of this thesis research has been to extend the applicability of LEED crystallography to the more complicated unit cells found in molecular overlayers on transition metals or in there constructed surfaces of clean transition metals.

  19. Adsorbents for radioactive organic solvent wastes

    International Nuclear Information System (INIS)

    Ichinose, Shigeo; Kiribayashi, Takehiko.

    1986-01-01

    Purpose: To enable to settle radioactive solvents such as tributyl phosphate (TBP) and n-dodecane as they are without using hydrophobicizing agent such as quaternary ammonium salts. Constitution: The adsorbents are prepared by replacing interlaminer ions of swelling-type synthetic mica with alkaline earth metals or metal ions. For instance, synthetic micas introduced with Zr 4+ or Ca 2+ between the layers provide quite different functions from those of starting materials due to the properties of ions introduced between the layers. That is, they provide an intense affinity to organic phosphates such as TBP and transform into material showing a property of adsorbing and absorbing them. Particularly, the fixing nature to the phosphor content constituting TBP is significantly increased. (Horiuchi, T.)

  20. Adventitious Carbon on Primary Sample Containment Metal Surfaces

    Science.gov (United States)

    Calaway, M. J.; Fries, M. D.

    2015-01-01

    Future missions that return astromaterials with trace carbonaceous signatures will require strict protocols for reducing and controlling terrestrial carbon contamination. Adventitious carbon (AC) on primary sample containers and related hardware is an important source of that contamination. AC is a thin film layer or heterogeneously dispersed carbonaceous material that naturally accrues from the environment on the surface of atmospheric exposed metal parts. To test basic cleaning techniques for AC control, metal surfaces commonly used for flight hardware and curating astromaterials at JSC were cleaned using a basic cleaning protocol and characterized for AC residue. Two electropolished stainless steel 316L (SS- 316L) and two Al 6061 (Al-6061) test coupons (2.5 cm diameter by 0.3 cm thick) were subjected to precision cleaning in the JSC Genesis ISO class 4 cleanroom Precision Cleaning Laboratory. Afterwards, the samples were analyzed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy.

  1. Self Cleaning High Efficiency Particulate Air (HEPA) Filtration without Interrupting Process Flow - 59347

    International Nuclear Information System (INIS)

    Chadwick, Chris

    2012-01-01

    The strategy of protecting the traditional glass fibre HEPA filtration train from it's blinding contamination and the recovery of dust by the means of self cleaning, pre-filtration is a proven means in the reduction of ultimate disposal volumes and has been used within the Fuel Production Industry. However, there is an increasing demand in nuclear applications requiring elevated operating temperatures, fire resistance, moisture resistance and chemical composition that the existing glass fibre HEPA filtration cannot accommodate, which can be remedied by the use of a metallic HEPA filter media. Previous research suggests that the then costs to the Department of Energy (DOE), based on a five year life cycle, was $29.5 million for the installation, testing, removal and disposal of glass fibre HEPA filtration trains. Within these costs, $300 was the value given to the filter and $4, 450 was given to the peripheral activity. Development of a low cost, cleanable, metallic, direct replacement of the traditional filter train will the clear solution. The Bergman et al work has suggested that a 1000 ft 3 /min, cleanable, stainless HEPA could be commercially available for $5, 000 each, whereas the industry has determined that the truer cost of such an item in isolation would be closer to $15, 000. This results in a conflict within the requirement between 'low cost' and 'stainless HEPA'. By proposing a system that combines metallic HEPA filtration with the ability to self clean without interrupting the process flow, the need for a tradition HEPA filtration train will be eliminated and this dramatically reduces the resources required for cleaning or disposal, thus presenting a route to reducing ultimate costs. The paper will examine the performance characteristics, filtration efficiency, flow verses differential pressure and cleanability of a self cleaning HEPA grade sintered metal filter element, together with data to prove the contention. (authors)

  2. National Ignition Facility Incorporates P2/E2 in Aqueous Parts Cleaning of Optics Hardware

    International Nuclear Information System (INIS)

    Gabor, K

    2001-01-01

    When completed, Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF) will be the world's largest laser with experimental capabilities applicable to stockpile stewardship, energy research, science and astrophysics. As construction of the conventional facilities nears completion, operations supporting the installation of specialized laser equipment have come online. Playing a critical role in the precision cleaning of mechanical parts from the NIF beamline are three pieces of aqueous cleaning equipment. Housed in the Optics Assembly Building (OAB), adjacent to NIF's laser bay, are the large mechanical parts gross cleaner (LMPGC), the large mechanical parts precision cleaner (LMPPC), and the small mechanical parts gross and precision cleaner (SMPGPC). These aqueous units, designed and built by Sonic Systems, Inc., of Newtown, Pennsylvania, not only accommodate parts that vary greatly in size, weight, geometry, surface finish and material, but also produce cleaned parts that meet the stringent NIF cleanliness standards (MIL-STD-1246C Level 83 for particles and A/10 for non-volatile residue). Each unit was designed with extensive water- and energy-conserving features, and the technology used minimizes hazardous waste generation associated with solvent wipe cleaning, the traditional method for cleaning laser mechanical components. The LMPGC provides preliminary gross cleaning for large mechanical parts. Collection, filtration and reuse of the wash and primary rinse water in the LMPGC limit its routine discharge to the volume of the low-pressure, deionized secondary rinse. After an initial gross cleaning in the LMPGC, a large mechanical part goes to the LMPPC. This piece of equipment, unique because of its size, consists of four 2700-gallon tanks. Parts held securely on specialized metal pallets (jointly weighing up to 1500 pounds) move through the tanks on an automated system. Operators program all movement, speeds and process times to

  3. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  4. Application of IC and HPLC as an analytical tool in solvent extraction studies

    International Nuclear Information System (INIS)

    Das, Debasish; Sureshkumar, M.K.; Mohapatra, P.K.; Manchanda, V.K.

    2010-01-01

    Ion chromatography and HPLC was used for analyzing the concentration of various metal ions present in the aqueous phase after solvent extraction using a number of novel organic extractants such as CMPO, DMDBTDMA and TODGA. Calibration plots were obtained for each of the metal ions studied. Interference of one group of metal ions on the other was investigated. The error in the expected values was within the < 10% even in the presence of interfering elements. (author)

  5. Cancer in persons working in dry cleaning in the Nordic countries.

    Science.gov (United States)

    Lynge, Elsebeth; Andersen, Aage; Rylander, Lars; Tinnerberg, Håkan; Lindbohm, Marja-Liisa; Pukkala, Eero; Romundstad, Pål; Jensen, Per; Clausen, Lene Bjørk; Johansen, Kristina

    2006-02-01

    U.S. studies have reported an increased risk of esophageal and some other cancers in dry cleaners exposed to tetrachloroethylene. We investigated whether the U.S. findings could be reproduced in the Nordic countries using a series of case-control studies nested in cohorts of laundry and dry-cleaning workers identified from the 1970 censuses in Denmark, Norway, Sweden, and Finland. Dry-cleaning work in the Nordic countries during the period when tetrachloroethylene was the dominant solvent was not associated with an increased risk of esophageal cancer [rate ratio (RR) = 0.76; 95% confidence interval (CI), 0.34-1.69], but our study was hampered by some unclassifiable cases. The risks of cancer of the gastric cardia, liver, pancreas, and kidney and non-Hodgkin lymphoma were not significantly increased. Assistants in dry-cleaning shops had a borderline significant excess risk of cervical cancer not found in women directly involved in dry cleaning. We found an excess risk of bladder cancer (RR = 1.44; 95% CI, 1.07-1.93) not associated with length of employment. The finding of no excess risk of esophageal cancer in Nordic dry cleaners differs from U.S. findings. Chance, differences in level of exposure to tetrachloroethylene, and confounding may explain the findings. The overall evidence on bladder cancer in dry cleaners is equivocal.

  6. Review of recent ORNL studies in solvent cleanup and diluent degradation. Consolidated Fuel-Reprocessing Program

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1982-01-01

    Testing of solvent cleanup methods to replace the use of sodium carbonate in the Purex process has been ongoing for several years in order to reduce the quantity of waste sodium nitrate generated and to improve phase separation. Alternate solvent cleanup methods include the use of packed columns of base-treated silica gel or solvent scrubbing with hydrazine oxalate. Degradation of the diluent was shown to generate long-chain organic acids which appear to be the major culprits in the phase separation problems encountered in sodium carbonate scrubbers. Solvent scrubbing with hydrazine oxalate gives improved phase separations. Solvent cleanup in columns packed with base-treated silica gel avoids the phase separation problem since a dispersable aqueous phase is not present. Removals of TBP degradation products and metal-ion complexes by sodium carbonate, hydrazine salts, or by packed beds of base-treated silica gel are all satisfactory. Solvent scrubbing by hydrazine oxalate solutions is the prime candidate for solvent cleanup in fuel reprocessing plants

  7. Coordination compounds of metals with imidazoles and benzimidazoles. [Metals: V, Th, Mo, Cd, rare earths, etc

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, G A; Molodkin, A K; Kukalenko, S S

    1988-12-01

    Methods of preparation, composition and structure of UO/sub 2//sup 2+/, Th/sup 4+/, Mo/sup 3+/, Cd/sup 2+/, Ln/sup 3+/ metal ion complexes with imidazoles and benzimidazoles are considered in reviews of native and foreign literature of up to 1985. Complexes are customarily prepared by direct interaction of ligands with inorganic salts in different organic solvents. Complex composition is defined by the nature of complexing metal and inorganic salt anion, ligand volume and basicity, as well as solvent characteristics. Effect of R substituent in imidazole and benzimidazole side chain on composition of coordination compounds is considered.

  8. Amine promoted, metal enhanced degradation of Mirex under high temperature conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jallad, Karim N. [American University of Sharjah, Department of Chemistry, P.O. Box 26666, Sharjah (United Arab Emirates)]. E-mail: kjallad@runbox.com; Lynn, Bert C. [University of Kentucky, Department of Chemistry, Lexington, KY 40506-055 (United States); Alley, Earl G. [Mississippi State University, Department of Chemistry, MS State, MS 39762 (United States)

    2006-07-31

    In this study, zero-valent metal dehalogenation of mirex was conducted with amine solvents at high temperatures. Mirex was treated with excess amine in sealed glass tube reactors under nitrogen. The amines used were n-butyl amine (l), ethyl amine (l), dimethyl amine (g), diethyl amine (l), triethyl amine (l), trimethyl amine (g) and ammonia (g). The metals used were copper, zinc, magnesium, aluminum and calcium. The most suitable amine solvent and metal were selected by running a series of reactions with different amines and different zero-valent metals, in order to optimize the conditions under which complete degradation of mirex takes place. These dehalogenation reactions illustrated the role of zero-valent metals as reductants, whereas the amine solvents acted as proton donors. In this study, we report that mirex was completely degraded with diethyl amine (l) in the presence of copper at 100 deg. C and the hydrogenated products accounted for more than 94 of the degraded mirex.

  9. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  10. Liquid Metal Engineering and Technology. Volume 1

    International Nuclear Information System (INIS)

    1988-01-01

    These proceedings of the fourth international conference on liquid metal engineering and technology volume 1, are devided into 3 sections bearing on: - Apparatus and components for liquid metal (29 papers) - Liquid metal leaks, fires and fumes (10 papers) - Cleaning, decontamination, waste disposal (14 papers) [fr

  11. Molten salt destruction of rubber and chlorinated solvents

    International Nuclear Information System (INIS)

    Upadhye, R.S.; Wilder, J.G.

    1994-09-01

    Acceptable methods for the treatment of mixed wastes are not currently available. The authors have investigated Molten Salt Destruction (MSD) as an alternative to incineration of mixed wastes. MSD differs from incineration in several ways: there is no evidence of open flames in MSD, the containment of actinides is accomplished by chemical means (wetting and dissolution), the operating temperature of MSD is much lower (700--590 C vs 1,000--1,200 C) thus lowering the volatility of actinides. Furthermore, no acid gases are released from MSD. These advantages provide the main incentive for developing MSD as an alternative to incineration. The authors have demonstrated the viability of the MSD process to cleanly destroy rubber and chlorinated solvents

  12. Weld region corrosion during chemical cleaning of PWR [pressurized-water reactor] steam generators: Volume 2, Tests and analyses: Final report

    International Nuclear Information System (INIS)

    Barna, J.L.; Bozeka, S.A.; Jevec, J.M.

    1987-07-01

    The potential for preferential corrosion of steam generator weld regions during chemical cleaning using the generic SGOG solvents was investigated. The investigations included development and use of a corrosion assessment test facility which measured corrosion currents in a realistic model of the steam generator geometry in the vicinity of a specific weld during a simulated chemical dissolution of sludge consisting of essentially pure magnetite. A corrosion monitoring technique was developed and qualified. In this technique free corrosion rates measured by linear polarization techniques are added to corrosion rates calculated from galvanic current measured using a zero resistance ammeter to give an estimate of total corrosion rate for a galvanically corroding material. An analytic modeling technique was developed and proved useful in determining the size requirements for the weld region mockup used in the corrosion assessment test facility. The technique predicted galvanic corrosion rates consistent with that observed in a corrosion assessement test when polarization data used as model input were obtained on-line during the test. The test results obtained during this investigation indicated that chemical cleaning using the SGOG magnetite dissolution solvent can be performed with a small amount of corrosion of secondary side internals and pressure boundary welds. The maximum weld region corrosion measured during a typical chemical cleaning cycle to remove essentially pure magnetite sludge was about 8 mils. However, additional site specific weld region corrosion assessment testing and qualification will be required prior to chemical cleaning steam generators at a specific plant. Recommendations for site specific qualification of chemical cleaning processes and for use of process monitors and on-line corrosion instrumentation are included in this report

  13. Zero-Valent Metallic Treatment System and Its Application for Removal and Remediation of Polychlorinated Biphenyls (Pcbs)

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Brooks, Kathleen B. (Inventor)

    2012-01-01

    PCBs are removed from contaminated media using a treatment system including zero-valent metal particles and an organic hydrogen donating solvent. The treatment system may include a weak acid in order to eliminate the need for a coating of catalytic noble metal on the zero-valent metal particles. If catalyzed zero-valent metal particles are used, the treatment system may include an organic hydrogen donating solvent that is a non-water solvent. The treatment system may be provided as a "paste-like" system that is preferably applied to natural media and ex-situ structures to eliminate PCBs.

  14. 75 FR 2796 - Revisions to the California State Implementation Plan, San Joaquin Valley Air Pollution Control...

    Science.gov (United States)

    2010-01-19

    ...EPA is finalizing approval of revisions to the San Joaquin Valley Air Pollution Control District portion of the California State Implementation Plan (SIP). These revisions were proposed in the Federal Register on June 16, 2009 and concern volatile organic compound (VOC) emissions from coating of metal parts, large appliances, metal furniture, motor vehicles, mobile equipment, cans, coils, organic solvent cleaning, and storage and disposal related to such operations. We are approving local rules that regulate these emission sources under the Clean Air Act as amended in 1990 (CAA or the Act).

  15. Chemical cleaning of steam generators: application to Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1991-01-01

    EDF has patented a chemical cleaning process for PWR steam generators, based on the use of a mixture or organic acids in order to dissolve iron oxides and copper with a single solution and clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its innocuousness related to steam generator materials. The process, the licence of which belongs to SOMAFER RA and Framatome has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units. (author)

  16. Plasma cleaning and analysis of archeological artefacts from Sipan

    Energy Technology Data Exchange (ETDEWEB)

    Saettone, E A O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Matta, J A S da [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Alva, W [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Chubaci, J F O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Fantini, M C A [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Galvao, R M O [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Kiyohara, P [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil); Tabacniks, M H [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, CEP 05508-900 (Brazil)

    2003-04-07

    A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipan. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.

  17. Catalytic production of metal carbonyls from metal oxides

    Science.gov (United States)

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  18. Fabrication of superhydrophilic or superhydrophobic self-cleaning metal surfaces using picosecond laser pulses and chemical fluorination

    Science.gov (United States)

    Zheng, Buxiang; Jiang, Gedong; Wang, Wenjun; Mei, Xuesong

    2016-05-01

    Bioinspired superhydrophilic/phobic self-cleaning surfaces have recently drawn a lot of interest in both fundamental and applied research. A hybrid method to produce the self-cleaning property of micro/nanostructured surface using ultra-fast laser pulses followed by chemical fluorination is proposed. The typical micro/nanocomposite structures that form from microporous arrays and microgroove groups have been processed by picosecond laser on titanium alloy surface. The surface hydrophilic/phobic and self-cleaning properties of micro/nanostructures before and after fluorination with fluoroalkyl-silane were investigated using surface contact angle measurements. The results indicate that surface properties change from hydrophilic to hydrophobic after fluorination, and the micro/nanostructured surface with increased roughness contributes to the improvement of surface hydrophobicity. The micro/nanomodification can make the original hydrophilic titanium alloy surface more hydrophilic or superhydrophilic. It also can make an originally hydrophobic fluorinated titanium alloy surface more hydrophobic or superhydrophobic. The produced micro/nanostructured titanium alloy surfaces show excellent self-cleaning properties regardless of the fluorination treatment, although the fluorinated surfaces have slightly better self-cleaning properties. It is found that surface treatment using ultra-fast laser pulses and subsequent chemical fluorination is an effective way to manipulate surface wettability and obtain self-cleaning properties.

  19. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    International Nuclear Information System (INIS)

    Poirier, M.; Thomas Peters, T.; Fernando Fondeur, F.; Samuel Fink, S.

    2008-01-01

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached ∼10 psi while processing ∼1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective cleaning and

  20. How the nuclear industry keeps it gases clean

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The paper surveys briefly the papers presented at a conference on gas filtration in the nuclear industry. The theory, development, design, use (under various conditions of temperature, humidity, corrosion), performance, cleaning and testing of fibrous, HEPA, metal, packed bed and magnetic filters are included, and the problems, advantages and disadvantages of the various types of filter are discussed. (U.K.)

  1. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios

    Science.gov (United States)

    Nassar, Nedal T.; Wilburn, David R.; Goonan, Thomas G.

    2016-01-01

    The United States has and will likely continue to obtain an increasing share of its electricity from solar photovoltaics (PV) and wind power, especially under the Clean Power Plan (CPP). The need for additional solar PV modules and wind turbines will, among other things, result in greater demand for a number of minor metals that are produced mainly or only as byproducts. In this analysis, the quantities of 11 byproduct metals (Ag, Cd, Te, In, Ga, Se, Ge, Nd, Pr, Dy, and Tb) required for wind turbines with rare-earth permanent magnets and four solar PV technologies are assessed through the year 2040. Three key uncertainties (electricity generation capacities, technology market shares, and material intensities) are varied to develop 42 scenarios for each byproduct metal. The results indicate that byproduct metal requirements vary significantly across technologies, scenarios, and over time. In certain scenarios, the requirements are projected to become a significant portion of current primary production. This is especially the case for Te, Ge, Dy, In, and Tb under the more aggressive scenarios of increasing market share and conservative material intensities. Te and Dy are, perhaps, of most concern given their substitution limitations. In certain years, the differences in byproduct metal requirements between the technology market share and material intensity scenarios are greater than those between the various CPP and No CPP scenarios. Cumulatively across years 2016–2040, the various CPP scenarios are estimated to require 15–43% more byproduct metals than the No CPP scenario depending on the specific byproduct metal and scenario. Increasing primary production via enhanced recovery rates of the byproduct metals during the beneficiation and enrichment operations, improving end-of-life recycling rates, and developing substitutes are important strategies that may help meet the increased demand for these byproduct metals.

  2. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  3. Exploiting Sequential Injection on-line Solvent Extraction/Back Extraction with Detection by ETAAS or ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    presents an on-line SI-solvent extraction/back extraction procedure used in connection with detection by either ETAAS or ICPMS. Incorporating two newly designed dual-conical gravitational phase separators, its performance is demonstrated for the determination of various metals in reference materials.......Electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are highly sensitive techniques for trace metal analyses. Nevertheless, separation/preconcentration procedures are often called for in order to overcome their inherent low matrix...... tolerances. With detection by ETAAS, separation/preconcentration by solvent extraction has enjoyed much use. However, this approach is not necessarily the optimal one since introduction of organic eluates directly into the graphite tube might lead to deteriorated reproducibility and lower sensitivity...

  4. Optimization of the process of steel strip perforation and nickel platting for the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strip

    Directory of Open Access Journals (Sweden)

    Petrović Aleksandra B.

    2009-01-01

    Full Text Available In the production of pocket type electrodes for Ni-Cd batteries perforation of proper steel strips and then nickel platting of perforated steel strips were made. In the nickel platting process, the organic solvent, trichloroethylene, has previously been used for cleaning. Due to the carcinogenic nature of trichloroethylene and the many operations previously required during cleaning, it was considered to do cleaning of perforated steel strips without use of the mentioned organic solvent. In the purpose of elimination of trichloroethylene from the cleaning process of perforated steel strips, the tests of perforation of steel strips with use of oils of different viscosity were made. It was shown that there was no dysfunction during the work of the perforation plants, meaning there was no additional heating of the strips, deterring of the steel filings, nor excessive wearing of the perforation apparatus. The perforation percent was the same irrelevant of the viscosity of the used oil. Before being perforated using the oils with different viscosity, the nickel platting steel strips were cleaned in different degreasers (based on NaOH as well as on KOH. It was shown that efficient cleaning without the use of trichloroethylene is possible with the use of oil with smaller viscosity in the perforated steel strips process and the degreaser based on KOH in the cleaning process, before nickel platting. It also appeared that the alkali degreaser based on KOH was more efficient, bath corrections were made less often and the working period of the baths was longer, which all in summary means less quantity of chemicals needed for degreasing of perforated steel strips.

  5. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; R. Michael Bergen; Stephen P. Carpenter; Dady Dadyburjor; Manoj Katakdaunde; Liviu Magean; Alfred H. Stiller; W. Morgan Summers; John W. Zondlo

    2006-05-12

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, coking and composite fabrication continued using coal-derived samples. These samples were tested in direct carbon fuel cells. Methodology was refined for determining the aromatic character of hydro treated liquid, based on Nuclear Magnetic Resonance (NMR) and Fourier Transform Infrared (FTIR). Tests at GrafTech International showed that binder pitches produced using the WVU solvent extraction protocol can result in acceptable graphite electrodes for use in arc furnaces. These tests were made at the pilot scale.

  6. Ecological effectiveness of oil spill countermeasures: how clean is clean?

    International Nuclear Information System (INIS)

    Baker, J.M.

    1999-01-01

    This paper with 94 references examines background levels of hydrocarbons and the difficulty of defining clean. Processes and timescales for natural cleaning, and factors affecting natural cleaning timescales are considered. Ecological advantages and disadvantages of clean-up methods are highlighted, and five case histories of oil spills are summarised. The relationships between ecological and socio-economic considerations, and the need for a net environmental benefit analysis which takes into account the advantages and disadvantages of clean-up responses and natural clean-up are discussed. A decision tree for evaluating the requirement for shore clean-up is illustrated. (UK)

  7. Pressure-induced polyamorphism in lanthanide-solute metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Li, Liangliang; Li, Renfeng; Liu, Haozhe [Harbin Institute of Technology, Harbin (China); Center for High Pressure Science Technology Advanced Research, Changchun (China); Wang, Luhong [Harbin Institute of Technology, Harbin (China); Qu, Dongdong [School of Mechanical and Mining Engineering, The University of Queensland, Brisbane, QLD (Australia); Zhao, Haiyan [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States); Center for Advanced Energy Studies, University of Idaho, Idaho Falls, ID (United States); Chapman, Karena W.; Chupas, Peter J. [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL (United States)

    2017-06-15

    The electronic structure inheritance of lanthanide-solvent atoms in lanthanide-based metallic glasses has been proposed. Is a polyamorphism possible in lanthanide-solute metallic glasses? So far, polyamorphic phase transitions in metallic glass containing lanthanide have been observed only in lanthanide-solvent metallic glasses. Here, a pressure-induced transition between two distinct amorphous states, accompanied by a 7% volume collapse at ambient pressure, was observed in La{sub 43.4}Pr{sub 18.6}Al{sub 14}Cu{sub 24} metallic glass, with low lanthanide content, by using in situ X-ray total scattering method. The transformation also indicated by changes in short range and medium range order. Thus, it is proposed that the lanthanide-solute metallic glasses also inherit 4f electronic transition from pure lanthanide element in polyamorphic transition. This discovery offers a supplement to research on lanthanide-based metallic glasses, which further provides a new perspective of the polyamorphic transformation in metallic glasses containing lanthanide element. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Controlled fabrication of semiconductor-metal hybrid nano-heterostructures via site-selective metal photodeposition

    Science.gov (United States)

    Vela Becerra, Javier; Ruberu, T. Purnima A.

    2017-12-05

    A method of synthesizing colloidal semiconductor-metal hybrid heterostructures is disclosed. The method includes dissolving semiconductor nanorods in a solvent to form a nanorod solution, and adding a precursor solution to the nanorod solution. The precursor solution contains a metal. The method further includes illuminating the combined precursor and nanorod solutions with light of a specific wavelength. The illumination causes the deposition of the metal in the precursor solution onto the surface of the semiconductor nanorods.

  9. Non-Hodgkin's lymphoma risk derived from exposure to organic solvents: a review of epidemiologic studies

    Directory of Open Access Journals (Sweden)

    Rêgo Marco Antônio V.

    1998-01-01

    Full Text Available The rate of non-Hodgkin's lymphomas (NHL has increased around the world during the last decades. Apart from the role of the human immunodeficiency virus (HIV infection in the development of NHL, exposure to chemical agents like phenoxyacetic pesticides, hair dyes, metal fumes and organic solvents are suspected to be involved. The present review evaluates the results of studies that directly or indirectly searched for an association between solvent exposure and NHL. The selected studies comprised those published from 1979 to 1997, designed to investigate risk factors for NHL, whether specifically looking for solvent exposure or for general risks in which solvent exposure could be included. In 25 of the 45 reviewed studies (55.5%, fifty-four statistically significant associations between NHL and solvent exposure related occupations or industries were reported. Statistical significance was more frequently shown in studies where solvent exposure was more accurately defined. In eighteen of such studies, 13 (72.2% defined or suggested organic solvents as possible risk factors for NHL.

  10. Non-Hodgkin's lymphoma risk derived from exposure to organic solvents: a review of epidemiologic studies

    Directory of Open Access Journals (Sweden)

    Marco Antônio V. Rêgo

    Full Text Available The rate of non-Hodgkin's lymphomas (NHL has increased around the world during the last decades. Apart from the role of the human immunodeficiency virus (HIV infection in the development of NHL, exposure to chemical agents like phenoxyacetic pesticides, hair dyes, metal fumes and organic solvents are suspected to be involved. The present review evaluates the results of studies that directly or indirectly searched for an association between solvent exposure and NHL. The selected studies comprised those published from 1979 to 1997, designed to investigate risk factors for NHL, whether specifically looking for solvent exposure or for general risks in which solvent exposure could be included. In 25 of the 45 reviewed studies (55.5%, fifty-four statistically significant associations between NHL and solvent exposure related occupations or industries were reported. Statistical significance was more frequently shown in studies where solvent exposure was more accurately defined. In eighteen of such studies, 13 (72.2% defined or suggested organic solvents as possible risk factors for NHL.

  11. Study on solvent extraction of gold(III) with 2-mercaptobenzothiazole into chloroform

    Energy Technology Data Exchange (ETDEWEB)

    Rajadhyaksha, M.; Turel, Z.R.

    1985-11-01

    Ideal conditions for the extraction of Au(III) with 2-mercaptobenzothiazole (2-HMBT) into chloroform were established. The effects of various parameters such as pH, time of equilibration, solvents, cation interferences, anion interferences, and stoichiometry of the metal to reagent were established.

  12. Solvent wash solution

    International Nuclear Information System (INIS)

    Neace, J.C.

    1986-01-01

    This patent describes a process for removing diluent degradation products from a solvent extraction solution comprising an admixture of an organic extractant for uranium and plutonium and a non-polar organic liquid diluent, which has been used to recover uranium and plutonium from spent nuclear fuel. Comprising combining a wash solution consisting of: (a) water; and (b) a positive amount up to about, an including, 50 volume percent of at least one highly-polar water-miscible organic solvent, based on the total volume of the water and the highly-polar organic solvent, with the solvent extraction solution after uranium and plutonium values have been stripped from the solvent extraction solution, the diluent degradation products dissolving in the highly-polar organic solvent and the extractant and diluent of the extraction solution not dissolving in the highly-polar organic solvent, and separating the highly-polar organic solvent and the extraction solution to obtain a purified extraction solution

  13. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  14. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  15. Solvent extraction of silver(I) from dilute cyanide solutions with 2,4-dihydroxyacetophenone thiosemicarbazone

    International Nuclear Information System (INIS)

    Reddy, A.V.; Reddy, Y.K.; Reddy, G.S.

    1986-01-01

    The solvent extraction of silver(I) was carried out in 0.5M nitric acid in the presence of cyanide by 2,4-dihydroxyacetophenone thiosemicarbazone (DATS). Ethyl acetate was used as a solvent and quantitative recovery was possible with 12.5-fold excess of the reagent in a single extraction. In this medium silver(I) forms a 2:2 complex (metal:ligand) with DATS. The effect of diverse ions on the extraction of silver(I) was investigated. (author)

  16. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation

    OpenAIRE

    Nemade, K. R.; Waghuley, S. A.

    2014-01-01

    Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with a...

  17. Ionic Transport Through Metal-Rich Organic Coatings

    Science.gov (United States)

    2016-08-19

    important for metal substrates, as it is well-known that chloride increases corrosion of metals . 3 For metal -loaded primers, it has been established...volume (MPV) percent, solvent polarity, and resin molecular weight impact corrosion protection of metal -rich organic (MRO) coatings. Following design of...pH and chloride ion concentration levels over time. As the corrosion protection of the coating decreases, chloride ion concentration will increase

  18. The crystallization of a solid solution in a solvent and the stability of a growth interface

    International Nuclear Information System (INIS)

    Malmejac, Yves

    1971-03-01

    The potential uses of germanium-silicon alloys as thermoelectric generators in hitherto unexploited temperature ranges initiated the present study. Many delicate problems are encountered in the classical methods of preparation. An original technique was sought for crystallization in a metallic solvent. The thermodynamic equilibria between the various phases of the ternary System used were studied in order to justify the method used. The conditions (temperature and composition) were determined in which the cooling of a ternary liquid mixture induces the precipitation of a binary solid solution with the desired composition. If large crystals are to be obtained from the solid solution, metallic solvent precipitation must be replaced by a mono-directional solvent crystallization. The combined effect of a certain number of simple physical phenomena on the stability of a crystal liquid interface was studied: the morphological stability of the crystal growth interface is the first step towards obtaining perfect crystals. (author) [fr

  19. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  20. Thermal decomposition of organic solvent with nitric acid in nuclear fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Koike, Tadao; Nishio, Gunji; Takada, Junichi; Tukamoto, Michio; Watanabe, Kouji [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Miyata, Sadaichirou

    1995-02-01

    Since a thermal decomposition of organic solvent containing TBP (tributyl phosphate) with nitric acid and heavy metal nitrates is an exothermic reaction, it is possible to cause an explosive decomposition of TBP-complex materials formed by a nitration between the solvent and nitric acid, if the solvent involving TBP-complex is heated upto a thermal limit in an evaporator to concentrate a fuel liquid solution from the extraction process in the reprocessing plant. In JAERI, the demonstration test for explosive decomposition of TBP-complex by the nitration was performed to elucidate the safety margin of the evaporator in the event of hypothetical explosion under auspices of the Science and Technology Agency. The demonstration test was carried out by heating TBP/n-dodecane solvent mixed with nitric acid and uranium nitrate. In the test, the thermal decomposition behavior of the solvent was examined, and also a kinematic reaction constant and a heat formation of the TBP-complex decomposition were measured by the test. In the paper, a safety analysis of a model evaporator was conducted during accidental conditions under the explosive decomposition of the solvent. (author).

  1. Plasma cleaning of ITER First Mirrors in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Moser, Lucas, E-mail: lucas.moser@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Steiner, Roland [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Leipold, Frank; Reichle, Roger [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); Marot, Laurent; Meyer, Ernst [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2015-08-15

    To avoid reflectivity losses in ITER’s optical diagnostic systems, plasma sputtering of metallic First Mirrors is foreseen in order to remove deposits coming from the main wall (mainly beryllium and tungsten). Therefore plasma cleaning has to work on large mirrors (up to a size of 200 × 300 mm) and under the influence of strong magnetic fields (several Tesla). This work presents the results of plasma cleaning of aluminium and aluminium oxide (used as beryllium proxy) deposited on molybdenum mirrors. Using radio frequency (13.56 MHz) argon plasma, the removal of a 260 nm mixed aluminium/aluminium oxide film deposited by magnetron sputtering on a mirror (98 mm diameter) was demonstrated. 50 nm of pure aluminium oxide were removed from test mirrors (25 mm diameter) in a magnetic field of 0.35 T for various angles between the field lines and the mirrors surfaces. The cleaning efficiency was evaluated by performing reflectivity measurements, Scanning Electron Microscopy and X-ray Photoelectron Spectroscopy.

  2. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja; Adil, Karim; Belmabkhout, Youssef; Eddaoudi, Mohamed; Bhatt, Prashant M.

    2017-01-01

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  3. Compositions and methods of making and using metal-organic framework compositions

    KAUST Repository

    Mohideen, Mohamed Infas Haja

    2017-05-04

    Embodiments of the present disclosure include a metal-organic framework (MOF) composition comprising one or more metal ions, a plurality of organic ligands, and a solvent, wherein the one or more metal ions associate with the plurality of organic ligands sufficient to form a MOF with kag topology. Embodiments of the present disclosure further include a method of making a MOF composition comprising contacting one or more metal ions with a plurality of organic ligands in the presence of a solvent, sufficient to form a MOF with kag topology, wherein the solvent comprises water only. Embodiments of the present disclosure also describe a method of capturing chemical species from a fluid composition comprising contacting a MOF composition with kag topology and pore size of about 3.4Å to 4.8Å with a fluid composition comprising two or more chemical species and capturing one or more captured chemical species from the fluid composition.

  4. Service water chemical cleaning at River Bend gets results

    International Nuclear Information System (INIS)

    Brice, T.O.; Glover, W.A.

    1994-01-01

    The largest known Service Water System (SWS) chemical cleaning ever performed at a nuclear plant was successfully completed at, River Bend Station. Corrosion product buildup was observed during system inspections in the first operating cycle and the first refueling outage in 1987. Under deposit corrosion was followed with microbiologically influenced corrosion (MIC) occurring as a later stage under deposits. The heavy corrosion caused blockage of heat exchanger tubes, fouling of valve seats, and general flow blockage throughout the system. Various options were evaluated for restoring the SWS back to an acceptable long term operating condition. The large scale chemical cleaning performed arrested the corrosion by removing the deposits down to the bare metal surfaces and leaving behind a protective passivation layer. After the cleaning, the open recirculating SWS was converted to a closed system. The implementation of a molybdate/nitrate water treatment program with a copper corrosion inhibitor maintained at a high pH (8.5--10.5) has significantly reduced corrosion rates in the closed system. This should extend the life of the SWS piping for the remaining life of the plant. Several field tests were conducted to qualify the process and demonstrate its ability to achieve acceptable cleaning results prior to being used on a larger scale. In the summer of 1992, temporary and permanent modifications were installed to divide the SWS into two separate cleaning loops for the system wide cleaning. The SWS chemical was successfully performed and completed on schedule during the fourth refueling outage. Post cleaning inspections at various locations throughout the Service Water System showed the process to be very effective at complete deposit removal

  5. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2 '-bipyridine)(CN)4]2-

    DEFF Research Database (Denmark)

    Kjær, Kasper Skov; Kunnus, Kristjan; Harlang, Tobias C. B.

    2018-01-01

    The excited state dynamics of solvated [Fe(bpy)(CN)4]2-, where bpy = 2,2'-bipyridine, show significant sensitivity to the solvent Lewis acidity. Using a combination of optical absorption and X-ray emission transient spectroscopies, we have previously shown that the metal to ligand charge transfer...... the MLCT excited state relaxation dynamics of [Fe(bpy)(CN)4]2- in water, a strong Lewis acid solvent. The charge-transfer excited state is now found to decay in less than 100 femtoseconds, forming a quasi-stable metal centered excited state with a 13 picosecond lifetime. We find that this MC excited state...... developed for solar applications....

  6. Coordination compounds of metals with imidazoles and benzimidazoles

    International Nuclear Information System (INIS)

    Novikova, G.A.; Molodkin, A.K.; Kukalenko, S.S.

    1988-01-01

    Methods of preparation, composition and structure of UO 2 2+ , Th 4+ , Mo 3+ , Cd 2+ , Ln 3+ metal ion complexes with imidazoles and benzimidazoles are considered in reviews of native and foreign literature of up to 1985. Complexes are customarily prepared by direct interaction of ligands with inorganic salts in different organic solvents. Complex composition is defined by the nature of complexing metal and inorganic salt anion, ligand volume and basicity, as well as solvent characteristics. Effect of R substituent in imidazole and benzimidazole side chain on composition of coordination compounds is considered

  7. Recent trends in metals extraction

    Directory of Open Access Journals (Sweden)

    Regel-Rosocka, M.

    2013-08-01

    Full Text Available After near 70 years of practical usage, solvent extraction is a perfectly mastered technique of separation, widely used on an industrial scale for the separation of metals mainly from raw materials. However, currently, in the era of depleting natural resources and increasingly less accessible deposits, environmental restrictions, etc., an increasing interest, both from social and economical constrains, is being directed at the extraction of metals from the secondary sources (such as batteries, electronic scrap. In many cases, solvent extraction, due to its operational characteristics, can be considered as the Best Available Technology for the purpose of separating multielemental metal solutions. This paper provides a brief overview of past achievements and present scenario of solvent extraction investigations and developments, describing some recently commissioned solvent extraction plants, whereas the Skorpion Zinc plant (Namibia for zinc extraction from raw materials and caesium removal from radioactive High Level Wastes (HLWs are told over in detail as case studies. The paper also presents some proposals for the use of liquid-liquid extraction to separate metal ions from secondary sources (e.g. cobalt from industrial waste streams. The review highlights the emerging use of ionic liquids as new extractants for metals, providing an insight into this exciting research field. Despite its detractors, solvent extraction has entered in force into XXI century as a leading separation technology for metals.Después de casi 70 años de uso práctico, la extracción líquido-líquido o extracción con disolventes es una técnica de separación muy evolucionada, utilizándose a escala industrial en el beneficio de metales obtenidos de diversas materias primas. Sin embargo, con el agotamiento de los recursos naturales y el aumento de depósitos minerales de más difícil acceso, restricciones medio ambientales, etc., ha aumentado el interés, tanto desde

  8. Reaction of active uranium and thorium with aromatic carbonyls and pinacols in hydrocarbon solvents

    International Nuclear Information System (INIS)

    Kahn, B.E.; Rieke, R.D.

    1988-01-01

    Highly reactive uranium and thorium metal powders have been prepared by reduction of the anhydrous metal(IV) chlorides in hydrocarbon solvents. The reduction employs the crystalline hydrocarbon-soluble reducing agent [(TMEDA)Li] 2 [Nap] (TMEDA = N,N,N',N'-tetramethylethylenediamine, Nap = naphthalene). The resulting active metal powders have been shown to be extremely reactive with oxygen-containing compounds and have been used in the reductive coupling of aromatic ketones giving tetra-arylethylenes. Reactions with pinacols have given some mechanistic insight into the ketone coupling reaction. These finely divided metal powders activate very weakly acidic C-H bonds forming metal hydrides, which can be transferred to organic substrates

  9. Exploiting sequential injection on-line solvent extraction/back extraction with detection by ETAAS and ICPMS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    presents an on-line SI-solvent extraction/back extraction procedure used in connection with detection by either ETAAS or ICPMS. Incorporating two newly designed dual-conical gravitational phase separators, its performance is demonstrated for the determination of various metals in reference materials.......Electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICPMS) are highly sensitive techniques for trace metal analyses. Nevertheless, separation/preconcentration procedures are often called for in order to overcome their inherent low matrix tolerance....... With detection by ETAAS, separation/preconcentration by solvent extraction has enjoyed much use. However, this approach is not necessarily the optimal one since introduction of organic eluates directly into the graphite tube might lead to deteriorated reproducibility and lower sensitivity. And for ICPMS...

  10. Aluminum metal surface cleaning and activation by atmospheric-pressure remote plasma

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, J., E-mail: jmespadero@uco.es; Bravo, J.A.; Calzada, M.D.

    2017-06-15

    Highlights: • Atmospheric-pressure postdischarges have been applied on aluminium surfaces. • The outer hydrocarbon layer is reduced by the action of the postdischarge. • The treatment promotes the appearance of hydrophilic OH radicals in the surface. • Effectivity for distances up to 5 cm allows for treating irregular surfaces. • Ageing in air due to the disappearance of OH radicals has been reported. - Abstract: The use of the remote plasma (postdischarge) of argon and argon-nitrogen microwave plasmas for cleaning and activating the surface of metallic commercial aluminum samples has been studied. The influence of the nitrogen content and the distance between the treated samples and the end of the discharge on the hydrophilicity and the surface energy has been analyzed by means of the sessile drop technique and the Owens-Wendt method. A significant increase in the hydrophilicity has been noted in the treated samples, together with an increase in the surface energy from values around 37 mJ/m{sup 2} to 77 mJ/m{sup 2}. Such increase weakly depends on the nitrogen content of the discharge, and the effectivity of the treatment extends to distances up to 5 cm from the end of the discharge, much longer than those reported in other plasma-based treatments. The analysis of the treated samples using X-ray photoelectron spectroscopy reveals that such increase in the surface energy takes place due to a reduction of the carbon content and an increase in the amount of OH radicals in the surface. These radicals tend to disappear within 24–48 h after the treatment when the samples are stored in contact with ambient air, resulting in the ageing of the treated surface and a partial retrieval of the hydrophobicity of the surface.

  11. Caustic-Side Solvent Extraction Chemical and Physical Properties Progress in FY 2000 and FY 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Moyer, BA

    2002-04-17

    The purpose of this work was to provide chemical- and physical-property data addressing the technical risks of the Caustic-Side Solvent Extraction (CSSX) process as applied specifically to the removal of cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site. As part of the overall Salt Processing Project, this effort supported decision-making in regards to selecting a preferred technology among three alternatives: (1) CSSX, (2) nonelutable ion-exchange with an inorganic silicotitanate material and (3) precipitation with tetraphenylborate. High risks, innate to CSSX, that needed specific attention included: (1) chemical stability of the solvent matrix, (2) radiolytic stability of the solvent matrix, (3) proof-of-concept performance of the proposed process flowsheet with simulated waste, and (4) performance of the CSSX flowsheet with actual SRS high-level waste. This body of work directly addressed the chemical-stability risk and additionally provided supporting information that served to plan, carry out, and evaluate experiments conducted by other CSSX investigators addressing the other high risks. Information on cesium distribution in extraction, scrubbing, and stripping served as input for flowsheet design, provided a baseline for evaluating solvent performance under numerous stresses, and contributed to a broad understanding of the effects of expected process variables. In parallel, other measurements were directed toward learning how other system components distribute in the flowsheet. Such components include the solvent components themselves, constituents of the waste, and solvent-degradation products. Upon understanding which components influence flowsheet performance, it was then possible to address in a rational fashion how to clean up the solvent and maintain its stable function.

  12. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  13. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  14. Evaluation of methods for cleaning low carbon uranium metal and alloy samples

    International Nuclear Information System (INIS)

    Kirchner, K.; Dixon, M.

    1979-01-01

    Several methods for cleaning uranium samples prior to carbon analysis, using a Leco Carbon Analyzer, were evaluated. Use of Oakite Aluminum NST Cleaner followed by water and acetone rinse was found to be the best overall technique

  15. 40 CFR 52.478 - Rules and Regulations.

    Science.gov (United States)

    2010-07-01

    ... truck manufacturing; (2) Coating of cans, coils, paper, fabric and vinyl, metal furniture, large... batch processes in the synthetic organic chemical manufacturing industry; (7) Volatile organic storage; (8) Wood furniture coatings; (9) Offset lithography; (10) Clean-up solvents. [64 FR 57781, Oct. 27...

  16. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    Science.gov (United States)

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  17. Response of solvent-exposed printers and unexposed controls to six-hour toluene exposure

    DEFF Research Database (Denmark)

    Bælum, Jesper; Andersen, I B; Lundqvist, G R

    1985-01-01

    of intoxication, and irritation of the eyes, nose and throat. Furthermore, the subjects exposed to toluene showed decreased manual dexterity, decreased color discrimination, and decreased accuracy in visual perception. There was no significant difference in the effects of toluene on printers compared to those......The acute effects of toluene were studied in 43 male printers and 43 control subjects matched according to sex, age, educational level, and smoking habits. The mean age of the subjects was 36 (range 29-50) years. The printers had been exposed to solvents for 9 to 25 years during employment at flexo...... and rotogravure printing plants, while the controls had no history of solvent exposure. Each subject was exposed once in a climate chamber to either 100 ppm of toluene or clean air for 6.5 h preceded by a 1-h acclimatization period. The effects of toluene were measured from subjective votes with linear analogue...

  18. Oil-in-water nanocontainers as low environmental impact cleaning tools for works of art: two case studies.

    Science.gov (United States)

    Carretti, Emiliano; Giorgi, Rodorico; Berti, Debora; Baglioni, Piero

    2007-05-22

    A novel class of p-xylene-in-water microemulsions mainly based on nonionic surfactants and their application as low impact cleaning tool in cultural heritage conservation is presented. Alkyl polyglycosides (APG) and Triton X-100 surfactants allow obtaining very effective low impact oil-in-water (o/w) microemulsions as alternatives to pure organic solvents for the removal of polymers (particularly Paraloid B72 and Primal AC33) applied during previous conservation treatments. The ternary APG/p-xylene/water microemulsions have been characterized by quasi elastic light scattering to obtain the hydrodynamic radius and the polydispersity of the microemulsion droplets. Laplace inversion of the correlation function CONTIN analysis provided evidence of acrylic copolymers solubilization into the oil nanodroplets. Contact angle, Fourier transform infrared (FTIR), and scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) data confirmed that microemulsions were effective in removing polymer coatings. The phase diagram of APG microemulsions showed that a reduction >90% (compared to the conventional cleaning methods) of the organic solvent can be achieved by using o/w microemulsions. The microemulsions were successfully tested in two real cases: (1) the APG based microemulsion was used in a Renaissance painting by Vecchietta in Santa Maria della Scala, Siena, Italy, degraded by the presence of a polyacrylate coating applied during a previous restoration and (2) a Triton X-100 oil-in-water microemulsion containing (NH4)2CO3 in the water continuous phase. The association of ammoniun carbonate to the microemusion led to the swelling of an organic deposit (mainly asphaltenes deposited on the fresco in the Oratorio di San Nicola al Ceppo in Florence, still contamined by the water of the Arno river during the 1966 flood) and a very efficient removal of highly insoluble inorganic deposits (mainly gypsum) strongly associated to asphaltenes. These innovative systems are

  19. The synthesis and properties of some organometallic compounds containing group IV (Ge, Sn)-group II (Zn, Cd) metal---metal bonds

    NARCIS (Netherlands)

    Des Tombe, F.J.A.; Kerk, G.J.M. van der; Creemers, H.M.J.C.; Carey, N.A.D.; Noltes, J.G.

    1972-01-01

    The reactions of triphenylgermane and triphenyltin hydride with coordinatively saturated organozinc or organocadmium compounds give organometallic complexes containing Group IV (Ge, Sn)-Group II(Zn, Cd) metal---metal bonds. The 2,2′-bipyridine complexes show solvent-dependent charge-transfer

  20. Effect of organic solvents on desorption and atomic absorption determination of heavy metal ions after ion exchange concentration

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Safronova, V.G.; Zakrevskaya, L.V.

    1986-01-01

    The effect of organic solvents (acetone, methylethylketone, dioxane, ethanol) on desorption of Cu, Mn, Co, Cd, Zn, Pb, Ni from cationite KU-23 ion exchange resin and on the detection limits of their atomic absorption determination has been examined. Cobalt and cadmium can be separated quantitatively using desorption by a mixture of HCl and acetone. Addition of an organic solvent results in a higher absorbance, mainly due to a high rate and efficiency of atomization. Acetone has proved to be the best solvent: addition of 60 vol. % of this solvent to the concentrate provides 2 times lower detection limits for the heavy metas in water

  1. Novel Paradigm Supercapacitors V: Significance of Organic Polar Solvents and Salt Identities

    Science.gov (United States)

    2017-06-01

    146 E. DISCUSSION OF VARIABLES ..........................................................146 1. Viscosity and Density...146 Table 77. Kinematic Viscosity and Density of Water and Tested Solvents...surface area per unit mass, or unit volume [22]. Examples of this material include carbon, conductive clays , some metal and oxides and graphene. These

  2. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  3. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  4. Hydrolysis of N-succinyl-L,L-diaminopimelic acid by the Haemophilus influenzae dapE-encoded desuccinylase: metal activation, solvent isotope effects, and kinetic mechanism.

    Science.gov (United States)

    Born, T L; Zheng, R; Blanchard, J S

    1998-07-21

    Hydrolysis of N-succinyl-L,L-diaminopimelic acid by the dapE-encoded desuccinylase is required for the bacterial synthesis of lysine and meso-diaminopimelic acid. We have investigated the catalytic mechanism of the recombinant enzyme from Haemophilus influenzae. The desuccinylase was overexpressed in Escherichia coli and purified to homogeneity. Steady-state kinetic experiments verified that the enzyme is metal-dependent, with a Km for N-succinyl-L,L-diaminopimelic acid of 1.3 mM and a turnover number of 200 s-1 in the presence of zinc. The maximal velocity was independent of pH above 7 but decreased with a slope of 1 below pH 7. The pH dependence of V/K was bell-shaped with apparent pKs of 6.5 and 8.3. Both L,L- and D,L-diaminopimelic acid were competitive inhibitors of the substrate, but d,d-diaminopimelic acid was not. Solvent kinetic isotope effect studies yielded inverse isotope effects, with values for D2OV/K of 0.62 and D2OV of 0.78. Determination of metal stoichiometry by ICP-AES indicated one tightly bound metal ion, while sequence homologies suggest the presence of two metal binding sites. On the basis of these observations, we propose a chemical mechanism for this metalloenzyme, which has a number of important structurally defined homologues.

  5. Cleanable sintered metal filters in hot off-gas systems

    International Nuclear Information System (INIS)

    Schurr, G.A.

    1981-01-01

    Filters with sintered metal elements, arranged as tube bundles with backflush air cleaning, are the equivalent of bag filters for high-temperature, harsh environments. They are virtually the only alternative for high-temperature off-gas systems where a renewable, highly efficient particle trap is required. Tests were conducted which show that the sintered metal elements installed in a filter system provide effective powder collection in high-temperature atmospheres over thousands of cleaning cycles. Such a sintered metal filter system is now installed on the experimental defense waste calciner at the Savannah River Laboratory. The experimental results included in this paper were used as the basis for its design

  6. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1999-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  7. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  8. Computational, electrochemical, and spectroscopic studies of two mononuclear cobaloximes: the influence of an axial pyridine and solvent on the redox behaviour and evidence for pyridine coordination to cobalt(I) and cobalt(II) metal centres†

    Science.gov (United States)

    Lawrence, Mark A. W.; Celestine, Michael J.; Artis, Edward T.; Joseph, Lorne S.; Esquivel, Deisy L.; Ledbetter, Abram J.; Cropek, Donald M.; Jarrett, William L.; Bayse, Craig A.; Brewer, Matthew I.; Holder, Alvin A.

    2018-01-01

    [Co(dmgBF2)2(H2O)2] 1 (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO 2 (where py = pyridine) in acetone. The formulation of complex 2 was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex 1. A spectrophotometric titration involving complex 1 and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(II) centre diminished the peak current at the Epc value of the CoI/0 redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical 59Co NMR spectroscopic data for the formation of Co(I) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(I) metal centre is more favourable than coordination to a cobalt(II) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes 1 and 2 in various solvents demonstrated the dramatic effects of the axial

  9. Nanometer-scale lithography on microscopically clean graphene

    DEFF Research Database (Denmark)

    van Dorp, W. F.; Zhang, X.; Feringa, B. L.

    2011-01-01

    Focused-electron-beam-induced deposition, or FEBID, enables the fabrication of patterns with sub-10 nm resolution. The initial stages of metal deposition by FEBID are still not fundamentally well understood. For these investigations, graphene, a one-atom-thick sheet of carbon atoms in a hexagonal...... lattice, is ideal as the substrate for FEBID writing. In this paper, we have used exfoliated few-layer graphene as a support to study the early growth phase of focused-electron-beam-induced deposition and to write patterns with dimensions between 0.6 and 5 nm. The results obtained here are compared...... to the deposition behavior on amorphous materials. Prior to the deposition experiment, the few-layer graphene was cleaned. Typically, it is observed in electron microscope images that areas of microscopically clean graphene are surrounded by areas with amorphous material. We present a method to remove the amorphous...

  10. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    Science.gov (United States)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  11. First-Row-Transition Ion Metals(II-EDTA Functionalized Magnetic Nanoparticles as Catalysts for Solvent-Free Microwave-Induced Oxidation of Alcohols

    Directory of Open Access Journals (Sweden)

    Nuno M. R. Martins

    2017-11-01

    Full Text Available A series of first-row transition-metals combined with ethylenediamine tetraacetic acid (EDTA, as metal-based N,O-chelating ligands, at the surface of ferrite magnetic nanoparticles (MNPs was prepared by a co-precipitation method. Those EDTA functionalized MNPs with general formula Fe3O4@EDTA-M2+ [M = Mn2+ (1, Fe2+ (2, Co2+ (3, Ni2+ (4, Cu2+ (5 or Zn2+ (6] were characterized by FTIR (Fourier Transform Infrared spectroscopy, powder XRD (X-ray Diffraction, SEM (Scanning Electron Microscope, EDS (Energy Dispersive Spectrometer, VSM (Vibrating Sample Magnetometer and TGA (Thermal Gravity Analysis. The application of the magnetic NPs towards the microwave-assisted oxidation of several alcohol substrates in a solvent-free medium was evaluated. The influence of reaction parameters such as temperature, time, type of oxidant, and presence of organic radicals was investigated. This study demonstrates that these MNPs can act as efficient catalysts for the conversion of alcohols to the corresponding ketones or aldehydes with high selectivity and yields up to 99% after 2 h of reaction at 110 °C using t-BuOOH as oxidant. Moreover, they have the advantage of being magnetically recoverable catalysts that can be easily recycled in following runs.

  12. Hebei Spirit Oil Spill Exposure and Subjective Symptoms in Residents Participating in Clean-Up Activities

    Science.gov (United States)

    Cheong, Hae-Kwan; Lee, Jong Seong; Kwon, Hojang; Ha, Eun-Hee; Hong, Yun-Chul; Choi, Yeyong; Jeong, Woo-Chul; Hur, Jongil; Lee, Seung-Min; Kim, Eun-Jung; Im, Hosub

    2011-01-01

    Objectives This study was conducted to examine the relationship between crude oil exposure and physical symptoms among residents participating in clean-up work associated with the Hebei Spirit oil spill, 2007 in Korea. Methods A total of 288 residents responded to a questionnaire regarding subjective physical symptoms, sociodemographic characteristics and clean-up activities that occurred between two and eight weeks after the accident. Additionally, the urine of 154 of the respondents was analyzed for metabolites of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) and heavy metals. To compare the urinary levels of exposure biomarkers, the urine of 39 inland residents who were not directly exposed to the oil spill were analyzed. Results Residents exposed to oil remnants through clean-up work showed associations between physical symptoms and the exposure levels defined in various ways, including days of work, degree of skin contamination, and levels of some urinary exposure biomarkers of VOCs, metabolites and metals, although no major abnormalities in urinary exposure biomarkers were observed. Conclusions This study provides evidence of a relationship between crude oil exposure and acute human health effects and suggests the need for follow-up to evaluate the exposure status and long-term health effects of clean-up participants. PMID:22125768

  13. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.

  14. Investigation of some cleaning surface treatments for the fabrication of ITER first wall panels by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Frayssines, P.E.; Bucci, P. [CEA Grenoble (DRT/LITEN/DTH), 38 (France); Vito, E. de [CEA Grenoble (LITEN/DTH/LCPEM), 38 (France); Lorenzetto, P. [2EFDA, Garching (Germany)

    2007-07-01

    Full text of publication follows: ITER First Wall (FW) panels are the innermost part of the ITER reactor. Metallic materials used for their manufacture are 316L(N)-IG stainless steel, a copper alloy and beryllium. Stainless steel material is a support structure for the copper alloy that serves as a heat sink material and also for the beryllium tiles that are a protective armour against the plasma. All these materials are bonded together by Hot Isostatic Pressing (HIP). Thus, several types of joints (Cu/Cu, Cu/SS, SS/SS or Cu/Be) are present in a FW panels. Their manufacturing requires a very strict and advanced metallic surface preparation in order to eliminate most of the organic or oxide layers that could prevent the diffusion process between the facing materials. In this field, our laboratory practice enables to obtain sufficiently clean metallic surfaces and high strength joints are obtained when small mockups are made. However, the manufacture of a large number of FW panels in the future requires to find a new cleaning process that is industrially relevant without a strong reduction of the joint's mechanical properties. In this paper we present our investigations to find an industrial solution to clean efficiently copper alloy and stainless steel materials in order to manufacture high strength Cu/Cu, SS/SS or Cu/SS joints. Products investigated are mainly acid liquids proposed by chemical Company and a more advanced technique that uses a plasma process. HIP joints are tested mechanically by making impact toughness and tensile measurements. Results obtained with these solutions are compared to those obtained in our Laboratory by using our own cleaning route. Moreover, XPS analyses are performed on small specimens that have been submitted to the same cleaning treatments in order to better understand the mechanical results of our specimens. (authors)

  15. Investigation of some cleaning surface treatments for the fabrication of ITER first wall panels by HIP

    International Nuclear Information System (INIS)

    Frayssines, P.E.; Bucci, P.; Vito, E. de; Lorenzetto, P.

    2007-01-01

    Full text of publication follows: ITER First Wall (FW) panels are the innermost part of the ITER reactor. Metallic materials used for their manufacture are 316L(N)-IG stainless steel, a copper alloy and beryllium. Stainless steel material is a support structure for the copper alloy that serves as a heat sink material and also for the beryllium tiles that are a protective armour against the plasma. All these materials are bonded together by Hot Isostatic Pressing (HIP). Thus, several types of joints (Cu/Cu, Cu/SS, SS/SS or Cu/Be) are present in a FW panels. Their manufacturing requires a very strict and advanced metallic surface preparation in order to eliminate most of the organic or oxide layers that could prevent the diffusion process between the facing materials. In this field, our laboratory practice enables to obtain sufficiently clean metallic surfaces and high strength joints are obtained when small mockups are made. However, the manufacture of a large number of FW panels in the future requires to find a new cleaning process that is industrially relevant without a strong reduction of the joint's mechanical properties. In this paper we present our investigations to find an industrial solution to clean efficiently copper alloy and stainless steel materials in order to manufacture high strength Cu/Cu, SS/SS or Cu/SS joints. Products investigated are mainly acid liquids proposed by chemical Company and a more advanced technique that uses a plasma process. HIP joints are tested mechanically by making impact toughness and tensile measurements. Results obtained with these solutions are compared to those obtained in our Laboratory by using our own cleaning route. Moreover, XPS analyses are performed on small specimens that have been submitted to the same cleaning treatments in order to better understand the mechanical results of our specimens. (authors)

  16. Phosphazene-catalyzed ring-opening polymerization of ε-caprolactone: Influence of solvents and initiators

    KAUST Repository

    Alamri, Haleema; Zhao, Junpeng; Pahovnik, David; Hadjichristidis, Nikolaos

    2014-01-01

    Phosphazene base (t-BuP2) catalysed metal-free ring-opening polymerization of ε-caprolactone (ε-CL) at room temperature with various protic initiators in different solvents was investigated. The polymerization proceeded, in most cases, in a controlled manner to afford poly(ε-caprolactone) with low dispersities and expected molecular weights. Kinetic studies showed that when a primary alcohol was used as an initiator the polymerization rate in different solvents followed the order of dichloromethane ≫ toluene > 1,4-dioxane ≈ tetrahydrofuran. Extremely fast polymerization of l-lactide (LLA), which was added as a second monomer, was observed in different solvents giving rise to poly(ε-caprolactone)-b- poly(l-lactide) diblock copolymers with neat PLLA blocks despite incomplete conversion of ε-CL. The dependence of polymerization rate on the concentrations of ε-CL and t-BuP2 was also revealed. In addition to primary alcohol, the feasibility of using other protic initiators, such as secondary alcohol (either on a small molecule or a polymer chain-end), (aliphatic/aromatic) amide, carboxylic acid, phenol and thiophenol, was also investigated. These studies provided important information for designing a metal-free route towards polyester-based (bio)materials. © 2014 the Partner Organisations.

  17. Method of dissolving metal ruthenium

    International Nuclear Information System (INIS)

    Tsuno, Masao; Soda, Yasuhiko; Kuroda, Sadaomi; Koga, Tadaaki.

    1988-01-01

    Purpose: To dissolve and clean metal ruthenium deposited to the inner surface of a dissolving vessel for spent fuel rods. Method: Metal ruthenium is dissolved in a solution of an alkali metal hydroxide to which potassium permanganate is added. As the alkali metal hydroxide used herein there can be mentioned potassium hydroxide, sodium hydroxide and lithium hydroxide can be mentioned, which is used as an aqueous solution from 5 to 20 % concentration in view of the solubility of metal ruthenium and economical merit. Further, potassium permanganate is used by adding to the solution of alkali metal hydroxide at a concentration of 1 to 5 %. (Yoshihara, H.)

  18. A study on solvent extraction of gold(III) with 2-mercaptobenzothiazole into chloroform

    International Nuclear Information System (INIS)

    Rajadhyaksha, M.; Turel, Z.R.

    1985-01-01

    Ideal conditions for the extraction of Au(III) with 2-mercaptobenzothiazole (2-HMBT) into chloroform were established. The effects of various parameters such as pH, time of equilibration, solvents, cation interferences, anion interferences, and stoichiometry of the metal to reagent were established. (author)

  19. Optimizing a cleaning process for multilayer-dielectric- (MLD) diffraction gratings

    Energy Technology Data Exchange (ETDEWEB)

    Ashe, B. [Univ. of Rochester, NY (United States); Giacofei, C. [Univ. of Rochester, NY (United States); Myhre, G. [Univ. of Rochester, NY (United States); Schmid, A. W. [Univ. of Rochester, NY (United States)

    2007-12-20

    An essential component for the OMEGA EP short-pulse petawatt laser system is the grating compressor chamber (GCC). This large (12,375 ft3) vacuum chamber contains critical optics where laser-pulse compression is performed at the output of the system on two 40-cm-sq-aperture, IR (1054-nm) laser beams. Critical to this compression, within the GCC, are four sets of tiled multilayer-dielectric- (MLD) diffraction gratings that provide the capability for producing 2.6-kJ output IR energy per beam at 10 ps. The primary requirements for these large-aperture (43-cm × 47-cm) gratings are diffraction efficiencies greater than 95%, peak-to-valley wavefront quality of less than λ/10 waves, and laser-induced-damage thresholds greater than 2.7 J/cm2 at 10-ps measured beam normal. Degradation of the grating laser-damage threshold due to adsorption of contaminants from the manufacturing process must be prevented to maintain system performance. In this paper we discuss an optimized cleaning process to achieve the OMEGA EP requirements. The fabrication of MLD gratings involves processes that utilize a wide variety of both organic materials (photoresist processes) and inorganic materials (metals and metal oxides) that can affect the final cleaning process. Finally, a number of these materials have significant optical absorbance; therefore, incomplete cleaning of these residues may result in the MLD gratings experiencing laser damage.

  20. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    Science.gov (United States)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  1. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  2. [Myelofibrosis in a benzene-exposed cleaning worker].

    Science.gov (United States)

    Bausà, Roser; Navarro, Lydia; Cortès-Franch, Imma

    Long-term exposure to benzene has been associated with several blood malignancies, including aplastic anemia, myeloproliferative neoplasms, and different leukemias. We present a case of primary myelofibrosis in a 59-year-old woman who worked as a cleaner at a car dealership and automobile mechanic shop. For 25 years, she used gasoline as a degreaser and solvent to clean engine parts, floors and work desks on a daily basis. She was referred by her primary care provider to the Occupational Health Unit of Barcelona to assess whether her illness was work-related. Review of her job history and working conditions revealed chronic exposure to benzene in the absence of adequate preventive measures. An association between benzene exposure and myeloproliferative disease was established, suspicious for an occupational disease. Copyright belongs to the Societat Catalana de Salut Laboral.

  3. Synthesis of silver nanocubes in a hydrophobic binary organic solvent.

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; Sun, Y. (Center for Nanoscale Materials)

    2010-01-01

    Synthesis of metal nanoparticles with controlled shapes in hydrophobic solvents is challenging because homogeneous nucleation with high rate in these solvents is favorable for the formation of multiply twinned (MT) nanoparticles with spherical morphology. In this work, we report an inhomogeneous nucleation strategy in a binary hydrophobic solvent mediated by dimethyldistearylammonium chloride (DDAC), resulting in the coexistence of single-crystalline Ag polyhedrons and MT Ag quasi-spheres at the beginning of the reaction. In the consequent step, the MT Ag nanoparticles are selectively etched and dissolved through oxidation by NO{sub 3}{sup -} ions (from the Ag precursor, AgNO{sub 3}) with the assistance of Cl{sup -} ions (from DDAC). The dissolved Ag species are then reduced and deposited on the more stable single-crystalline polyhedrons to form Ag nanocubes. Synergy of the oxidative etching of MT particles and growth of single-crystalline particles leads to Ag nanocubes with high purity when the ripening time is long enough. For example, refluxing a mixing solvent of octyl ether and oleylamine containing AgNO{sub 3} (0.02 M) and DDAC (0.03 M) at 260 C for 1 h results in Ag nanocubes with an average edge length of 34 nm and a purity higher than 95%.

  4. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  5. Comparison of high‐intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting

    Science.gov (United States)

    Seiffert, Gary; Sutcliffe, Chris

    2015-01-01

    Abstract Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high‐intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting‐fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high‐intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117–123, 2017. PMID:26426906

  6. Developing technique for waste water cleaning of a division for equipment decontamination

    International Nuclear Information System (INIS)

    Gromoglasov, A.A.; Solyakov, V.K.; Novikov, V.N.; Pil'shchikov, A.P.; Chekalov, A.G.; Sinyukov, M.A.; Pshenichnykh, V.N.

    1989-01-01

    Results are described of developing technique for radionuclide cleaning solutions after metal product decontamination. The method is based on the adagulation with usage of quicklime. The conclusion is method permits to consider it as the main technique for waste water decontamination. 3 refs.; 2 figs.; 3 tabs

  7. Plasma cleaning and analysis of archeological artefacts from Sipán

    Science.gov (United States)

    Saettone, E. A. O.; da Matta, J. A. S.; Alva, W.; Chubaci, J. F. O.; Fantini, M. C. A.; Galvão, R. M. O.; Kiyohara, P.; Tabacniks, M. H.

    2003-04-01

    A novel procedure using plasma sputtering in an electron-cyclotron-resonance device has been applied to clean archeological MOCHE artefacts, unearthed at the Royal Tombs of Sipán. After successful cleaning, the pieces were analysed by a variety of complementary techniques, namely proton-induced x-ray emission, Rutherford backscattering spectroscopy, x-ray diffraction, electron microscopy, and inductively coupled plasma mass spectroscopy. With these techniques, it has been possible to not only determine the profiles of the gold and silver surface layers, but also to detect elements that may be relevant to explain the gilding techniques skillfully developed by the metal smiths of the MOCHE culture.

  8. Design of segmental ultrasonic cleaning equipment for removing the sludge in a steam generator

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Byeon, Min Suk; Lee, Ho One

    2010-01-01

    In nuclear power plants, the water in the coolant system is managed to be clean but metallic sludge is accumulated on the top of tube-sheet in a steam generator. The sludge causes the corrosion of the tubesheet. The electric utility company in Korea removes the sludge with a lancing system for every outage of nuclear power plants. But the sludge is not perfectly removed with lancing system because the pressurized water of the lancing system cannot reach all area in a steam generator. Therefore the steam generator cleaning system with ultrasonic energy has been developed in KEPCO Research Institute. In this paper, the ultrasonic cleaning system is designed for removing the sludge on the steam generator

  9. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  10. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  11. Cleaning fluid emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Prikryl, J; Kotyza, R; Krulikovsky, J; Mjartan, V; Valisova, I

    1981-09-15

    Composition of cleaning fluid emulsion are presented for drilling small diameter wells in clay soils, at high drill bit rotation velocity. The emulsions have lubricating properties and the abilty to improve stability of the drilled soil. The given fluids have a high fatty acid content with 12-24 carbon atoms in a single molecule, with a predominance of resinous acids 1-5% in mass, and having been emulsified in water or clay suspension without additives, or in a clay suspension with high-molecular polymer additives (glycobate cellulose compounds and/or polysaccharides, and/or their derivatives) in an amount of 0.1-3% per mass; thinning agents - huminite or lignite compounds in the amount of 0.01 to 0.5% in mass; weighting material - barite or lime 0.01 to 50% per mass; medium stabilizers - organic poly-electrolyte with polyacrylate in the amount of 0.05 to 2% in mass, or alkaline chloride/alkaline-ground metals 1-10% per mass. A cleaning emulsion fluid was prepared in the laboratory according to the given method. Add 3 kg tall oil to a solution of 1 kg K/sub 2/CO/sub 3/ per 100 l of water. Dynamic viscosity was equal to 1.4 x 10-/sup 3/ Pa/s. When drilling in compacted clay soils, when the emulsions require improved stability, it is necessary to add the maximum amount of tall oil whose molecules are absorbed by the clay soil and increase its durability.

  12. Ionic Liquids in Selective Oxidation: Catalysts and Solvents.

    Science.gov (United States)

    Dai, Chengna; Zhang, Jie; Huang, Chongpin; Lei, Zhigang

    2017-05-24

    Selective oxidation has an important role in environmental and green chemistry (e.g., oxidative desulfurization of fuels and oxidative removal of mercury) as well as chemicals and intermediates chemistry to obtain high-value-added special products (e.g., organic sulfoxides and sulfones, aldehydes, ketones, carboxylic acids, epoxides, esters, and lactones). Due to their unique physical properties such as the nonvolatility, thermal stability, nonexplosion, high polarity, and temperature-dependent miscibility with water, ionic liquids (ILs) have attracted considerable attention as reaction solvents and media for selective oxidations and are considered as green alternatives to volatile organic solvents. Moreover, for easy separation and recyclable utilization, IL catalysts have attracted unprecedented attention as "biphasic catalyst" or "immobilized catalyst" by immobilizing metal- or nonmetal-containing ILs onto mineral or polymer supports to combine the unique properties of ILs (chemical and thermal stability, capacity for extraction of polar substrates and reaction products) with the extended surface of the supports. This review highlights the most recent outcomes on ILs in several important typical oxidation reactions. The contents are arranged in the series of oxidation of sulfides, oxidation of alcohols, epoxidation of alkenes, Baeyer-Villiger oxidation reaction, oxidation of alkanes, and oxidation of other compounds step by step involving ILs as solvents, catalysts, reagents, or their combinations.

  13. Standard practice for fluorescent liquid penetrant testing using the Solvent-Removable process

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice covers procedures for fluorescent penetrant examination utilizing the solvent-removable process. It is a nondestructive testing method for detecting discontinuities that are open to the surface, such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass. 1.2 This practice also provides a reference: 1.2.1 By which a fluorescent penetrant examination solvent-removable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness. 1.2.2 For use in the preparation of process specifications dealing with the fluorescent solvent-removable liquid penetrant examination of materials and parts. Agreement by th...

  14. High-brightness electron beam evolution following laser-based cleaning of a photocathode

    Directory of Open Access Journals (Sweden)

    F. Zhou

    2012-09-01

    Full Text Available Laser-based techniques have been widely used for cleaning metal photocathodes to increase quantum efficiency (QE. However, the impact of laser cleaning on cathode uniformity and thereby on electron beam quality are less understood. We are evaluating whether this technique can be applied to revive photocathodes used for high-brightness electron sources in advanced x-ray free-electron laser (FEL facilities, such as the Linac Coherent Light Source (LCLS at the SLAC National Accelerator Laboratory. The laser-based cleaning was applied to two separate areas of the current LCLS photocathode on July 4 and July 26, 2011, respectively. The QE was increased by 8–10 times upon the laser cleaning. Since the cleaning, routine operation has exhibited a slow evolution of the QE improvement and comparatively rapid improvement of transverse emittance, with a factor of 3 QE enhancement over five months, and a significant emittance improvement over the initial 2–3 weeks following the cleaning. Currently, the QE of the LCLS photocathode is holding constant at about 1.2×10^{-4}, with a normalized injector emittance of about 0.3  μm for a 150-pC bunch charge. With the proper procedures, the laser-cleaning technique appears to be a viable tool to revive the LCLS photocathode. We present observations and analyses for the QE and emittance evolution in time following the laser-based cleaning of the LCLS photocathode, and comparison to the previous studies, the measured thermal emittance versus the QE and comparison to the theoretical model.

  15. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  16. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  17. Decomposition of SnH{sub 4} molecules on metal and metal–oxide surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ugur, D. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Storm, A.J.; Verberk, R. [TNO, Stieltjesweg 1, 2628 CK Delft (Netherlands); Brouwer, J.C. [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands); Sloof, W.G., E-mail: w.g.sloof@tudelft.nl [Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft (Netherlands)

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH{sub 4} decomposition. This phenomenon of SnH{sub 4} decomposition during tin cleaning has been quantified for various metallic and metal-oxide surfaces using X-ray photoelectron spectroscopy (XPS). It was observed that the metal oxide surfaces (TiO{sub 2} and ZrO{sub 2}) were significantly less contaminated than metallic surfaces. Tin contamination due to SnH{sub 4} decomposition can thus be reduced or even mitigated by application of a suitable metal-oxide coating.

  18. Optimization of metals extraction using cyanex series and NaDDC reagents in liquid/supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ko, M. S.; Kim, S. H.; Park, K. H.; Kim, H. D.; Kim, H. W. [Kyunghee Univ., Youngin (Korea, Republic of)

    2002-05-01

    In this research, extraction of small fraction of radioactive elements from mixed contaminated working dress has been conducted by organic solvent extraction, but use of organic solvents has created secondary wastes. In this study, liquid/supercritical fluid CO{sub 2}, an environmentally friendly solvent, was used to extract five metals(Co, Cu, Pb, Cd, Zn). Using five metals selective ligand Cyanex-272 and NaDDC, the most optimized extraction conditions were founded 20 .deg. C, 100atm and complexed ratio(Cyanex-272: 100mg, NaDDC:5mg). The results suggest the possibility of utilizing supercritical fluid technology for extraction of metals from contaminated working dress.

  19. SCOPE OF VARIOUS SOLVENTS AND THEIR EFFECTS ON SOLVOTHERMAL SYNTHESIS OF Ni-BTC

    Directory of Open Access Journals (Sweden)

    Farrukh Israr

    2016-07-01

    Full Text Available Ni-BTC (BTC = 1,3,5-benzene tricarboxylate metal organic framework (MOF was synthesized using different solvent conditions. Solvent mixtures of water/N,N-dimethylformamide (DMF, water/ethanol, and water/ethanol/DMF were used for the reactions with or without a variety of bases at 160 ºC for 48 hours. Even with same green crystals, prepared MOFs show all different BET surface areas and different XRD patterns. The highest BET surface area of the crystals was 850 m2/g obtained from water/DMF solvent with NH4OH as a base. The measured surface areas of the crystals follows the order of Ni-BTC(water/DMF-NH4OH > Ni-BTC(water/DMF-TMA > Ni-BTC(water/DMF > Ni-BTC(water/DMF-Pyridine> Ni-BTC(water/ethanol> Ni-BTC(water/DMF-aniline> Ni-BTC(water/DMF-NaOH.

  20. Selectivity in stripping of alkali-metal cations from crown ether carboxylate complexes

    International Nuclear Information System (INIS)

    Bartsch, R.A.; Walkowiak, W.; Robison, T.W.

    1992-01-01

    To probe the effect of structural variations within the ionophore upon the efficiency and selectivity of solvent extraction, a variety of crown ether carboxylic acids and phosphonic acid monoesters have been synthesized. In other studies the influence of the organic diluent upon extraction efficiency and selectivity has been probed for such proton-ionizable crown ethers. In the present investigation, attention is focused upon selectivity in the stripping step. Although the efficiency of metal ion stripping is often examined in solvent extraction studies, the selectivity of competitive metal ion release under different conditions is much less frequently considered. In this study, competitive stripping of metal ions from chloroform solutions of five-alkali-metal crown ether carboxylates by varying concentrations of aqueous hydrochloric acid is examined. Alkali metals used were Li, Na, K, Rb, and Cs

  1. Ultra-clean

    International Nuclear Information System (INIS)

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  2. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov (United States)

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  3. Bimetallic Nanoparticles in Alternative Solvents for Catalytic Purposes

    Directory of Open Access Journals (Sweden)

    Trung Dang-Bao

    2017-07-01

    Full Text Available Bimetallic nanoparticles represent attractive catalytic systems thanks to the synergy between both partners at the atomic level, mainly induced by electronic effects which in turn are associated with the corresponding structures (alloy, core-shell, hetero-dimer. This type of engineered material can trigger changes in the kinetics of catalyzed processes by variations on the electrophilicity/nucleophilicity of the metal centers involved and also promote cooperative effects to foster organic transformations, including multi-component and multi-step processes. Solvents become a crucial factor in the conception of catalytic processes, not only due to their environmental impact, but also because they can preserve the bimetallic structure during the catalytic reaction and therefore increase the catalyst life-time. In this frame, the present review focuses on the recent works described in the literature concerning the synthesis of bimetallic nanoparticles in non-conventional solvents, i.e., other than common volatile compounds, for catalytic applications.

  4. Changing the Mechanism for CO 2 Hydrogenation Using Solvent-Dependent Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Samantha A. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Appel, Aaron M. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Linehan, John C. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA; Wiedner, Eric S. [Catalysis Science Group, Pacific Northwest National Laboratory, P.O. Box 999 Richland WA 99352 USA

    2017-10-23

    A critical scientific challenge for utilization of CO2 is the development of catalyst systems that do not depend upon expensive or environmentally unfriendly reagents, such as precious metals, strong organic bases, and organic solvents. We have used thermodynamic insights to predict and demonstrate that the HCoI(dmpe)2 catalyst system, previously described for use in organic solvents, can hydrogenate CO2 to formate in water with bicarbonate as the only added reagent. Replacing tetrahydrofuran as the solvent with water changes the mechanism for catalysis by altering the thermodynamics for hydride transfer to CO2 from a key dihydride intermediate. The need for a strong organic base was eliminated by performing catalysis in water due to the change in mechanism. These studies demonstrate that the solvent plays a pivotal role in determining the reaction thermodynamics and thereby catalytic mechanism and activity. The research was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  5. One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone and some of its transition metal complexes in aqueous solution and in aqueous isopropanol-acetone-mixed solvent: a steady-state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Das, S.; Bhattacharya, A.; Mandal, P.C.; Rath, M.C.; Mukherjee, T.

    2002-01-01

    One-electron reduction of 1,2-dihydroxy-9,10-anthraquinone (DHA) and its complexes with Cu(II), Ni(II) and Fe(III), by acetone ketyl radical, (CH 3 ) 2 C·OH, was carried out in aqueous solution and in aqueous isopropanol acetone mixed solvent using both steady-state gamma radiolysis and pulse radiolysis techniques. The rate constants for the reduction of DHA at different pH values by the ketyl radical are in the order of ∼10 9 dm 3 mol -1 s -1 , whereas those for the metal complexes are comparatively less. These rate constants are, however, in conformity with the one-electron reduction potentials of the ligand in free DHA and in its metal complexes. Decay kinetics of the one-electron reduced semiquinones of the free ligand and its metal complexes suggest disproportionation of the semiquinone in the case of the free ligand and intermolecular electron transfer from the co-ordinated semiquinone radical to the metal centre in the case of the metal complexes

  6. Synthesis of organically-capped metallic zinc nanoparticles using electrical explosion of wires (EEW) coupled with PIERMEN

    Energy Technology Data Exchange (ETDEWEB)

    Abdelkader, Elseddik M.; Jelliss, Paul A., E-mail: jellissp@slu.edu; Buckner, Steven W., E-mail: buckners@slu.edu

    2015-01-15

    In this study zinc nanoparticles (ZNPs) were produced using electrical explosion of wires (EEW) with NP size around 100 nm. The explosion chamber was constructed from Teflon to withstand the shockwave, to allow growth and reaction of the incipient ZNPs in various organic solvents, and to allow a constant flow of argon creating an inert atmosphere. We utilized polymerization initiation by electron-rich metallic nanoparticles (PIERMEN) as the capping technique for the reactive ZNPs. Epoxides and alkenes served as the capping monomers. Epoxide caps underwent oligomerization on the surface of the NPs to form a protective polyether cap which renders the particles stable, non-pyrophoric in air, and dispersible in organic solvents. We investigated various Zn to monomer molar ratios varying from 1:1 to 10:1. Polyethylene glycol was also used as a capping agent and was found to give the smallest average Zn core sizes with the metal core diameters varying from 15 to 20 nm. Several solvents were used to study differences in resultant particle size and we observe toluene to give the smallest metal cores. Transmission electron microscopy shows the spherical particles with the metallic core embedded in a polymer matrix. The sample consists of predominantly smaller particles, but there was also a broad size distribution giving a range of 20–150 nm. Powder X-ray diffraction (PXRD) was used to confirm the identity of the metallic NPs. The capping agents were characterized using both attenuated total reflectance-Fourier transform infra-red (ATR-FTIR) and Raman spectroscopies. There was no evidence for formation of zinc oxide with appropriate organic capping agents and solvent combinations; thus, this is the first report of production of pure metallic zinc nanoparticles with an organic cap using EEW. - Highlights: • Organically-capped Zn metal nanoparticles are produced by EEW in organic solution. • Incipient Zn metal nanoparticles initiate oligomerization of epoxide and

  7. Chemical cleaning of nuclear (PWR) steam generators

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Mundis, J.A.

    1982-01-01

    This paper reports on a significant research program sponsored by a group of utilities (the Steam Generator Owners Group), which was undertaken to develop a process to chemically remove corrosion product deposits from the secondary side of pressurized water reactor (PWR) power plant steam generators. Results of this work have defined a process (solvent system and application methods) that is capable of removing sludge and tube-to-tube support plate crevice corrosion products generated during operation with all-volatile treatment (AVT) water chemistry. Considers a plant-specific test program that includes all materials in the steam generator to be cleaned and accounts for the physical locations (proximity and contact) of those materials. Points out that prior to applying the process in an operational unit, the utility, with the participation of the NSSR vendor, must define allowable total corrosion to the materials of construction of the unit

  8. Electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP

    Science.gov (United States)

    Ferrandis, Philippe; Billaud, Mathilde; Duvernay, Julien; Martin, Mickael; Arnoult, Alexandre; Grampeix, Helen; Cassé, Mikael; Boutry, Hervé; Baron, Thierry; Vinet, Maud; Reimbold, Gilles

    2018-04-01

    To overcome the Fermi-level pinning in III-V metal-oxide-semiconductor capacitors, attention is usually focused on the choice of dielectric and surface chemical treatments prior to oxide deposition. In this work, we examined the influence of the III-V material surface cleaning and the semiconductor growth technique on the electrical properties of metal/Al2O3/In0.53Ga0.47As capacitors grown on InP(100) substrates. By means of the capacitance-voltage measurements, we demonstrated that samples do not have the same total oxide charge density depending on the cleaning solution used [(NH4)2S or NH4OH] prior to oxide deposition. The determination of the interface trap density revealed that a Fermi-level pinning occurs for samples grown by metalorganic chemical vapor deposition but not for similar samples grown by molecular beam epitaxy. Deep level transient spectroscopy analysis explained the Fermi-level pinning by an additional signal for samples grown by metalorganic chemical vapor deposition, attributed to the tunneling effect of carriers trapped in oxide toward interface states. This work emphasizes that the choice of appropriate oxide and cleaning treatment is not enough to prevent a Fermi-level pinning in III-V metal-oxide-semiconductor capacitors. The semiconductor growth technique needs to be taken into account because it impacts the trapping properties of the oxide.

  9. Analysis of solvent extracts from coal liquefaction in a flowing solvent reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-Ying; Feng, Jie; Xie, Ke-Chang [Key Laboratory of Coal Science and Technology, Taiyuan University of Technology, Ministry of Education and Shanxi Province, No. 79 Yingze West Street, Taiyuan 030024 (China); Kandiyoti, R. [Department of Chemical Engineering and Chemical Technology, Imperial College, University of London, London SW7 2BY (United Kingdom)

    2004-10-15

    Point of Ayr coal has been extracted using three solvents, tetralin, quinoline and 1-methyl-2-pyrrolidinone (NMP) at two temperatures 350 and 450 C, corresponding approximately to before and after the onset of massive covalent bond scission by pyrolysis. The three solvents differ in solvent power and the ability to donate hydrogen atoms to stabilise free radicals produced by pyrolysis of the coal. The extracts were prepared in a flowing solvent reactor to minimise secondary thermal degradation of the primary extracts. Analysis of the pentane-insoluble fractions of the extracts was achieved by size exclusion chromatography, UV-fluorescence spectroscopy in NMP solvent and probe mass. With increasing extraction temperature, the ratio of the amount having big molecular weight to that having small molecular weight in tetralin extracts was increased; the tetralin extract yield increased from 12.8% to 75.9%; in quinoline, increasing extraction temperature did not have an effect on the molecular weight of products but there was a big increase in extract yield. The extracts in NMP showed the enhanced solvent extraction power at both temperatures, with a shift in the ratio of larger molecules to smaller molecules with increasing extraction temperature and with the highest conversion of Point of Ayr coal among these three solvents at both temperatures. Solvent adducts were detected in the tetralin and quinoline extracts by probe mass spectrometry; solvent products were formed from NMP at both temperatures.

  10. How clean is clean?---How clean is needed?

    International Nuclear Information System (INIS)

    Hays, A.K.

    1991-01-01

    This paper will provide an overview of cleaning qualifications used in a variety of industries: from small-scale manufacturer's of precision-machined products to large-scale manufacturer's of electronics (printed wiring boards and surface mount technology) and microelectronics. Cleanliness testing techniques used in the production of precision-machined products, will be described. The on-going DOD program to obtain high-reliability electronics, through the use of military specifications for cleaning and cleanliness levels, will be reviewed. In addition, the continually changing cleanroom/materials standards of the microelectronics industry will be discussed. Finally, we will speculate on the role that new and improved analytical techniques and sensor technologies will play in the factories of the future. 4 refs., 1 tab

  11. Clean technologies: methods for minimizing the releases and choice of the effluents valorization processes. Application to metal workshops; Technologies propres: methodes de minimisation des rejets et de choix des procedes de valorisation des effluents. Application aux ateliers de traitement de surface

    Energy Technology Data Exchange (ETDEWEB)

    Laforest, V.

    1999-12-10

    Currently, the essential part of the money invested by the industrialist is for the water treatment. In France, most of the 20 billions francs per year devoted to the water treatment is used for the industrial activity. The global management of effluents favour the integration of clean technologies (optimization, change and modification of the production process) in order to reduce the pollution problem at its source. Our study aims at the introduction of clean technologies in the metal workshops (consumer and generator of water and chemicals) by the development of two data management methods, which lead to two decision support systems. The aim of the first one is to minimize both the water consumption and the wastewater disposal by optimizing the production process (optimum yield and efficiency of the rinsing baths). The second one concerns the choice of valorization techniques considering the valorization objectives, the effluents characteristics and the parameters limiting the use of the techniques. Our approach fits into a global management method for the metal finishing industry wastewater. Its aim is to limit the quantity of wastewater generated, to valorize effluents and by this way to develop the clean technologies.

  12. Homogeneous Catalysis with Metal Complexes Fundamentals and Applications

    CERN Document Server

    Duca, Gheorghe

    2012-01-01

    The book about homogeneous catalysis with metal complexes deals with the description of the reductive-oxidative, metal complexes  in a liquid phase (in polar solvents, mainly in water, and less in nonpolar solvents). The exceptional importance of the redox processes in chemical systems, in the reactions occuring in living organisms, the environmental processes, atmosphere, water, soil, and in industrial technologies (especially in food-processing industries) is discussed. The detailed practical aspects of the established regularities are explained for solving the specific practical tasks in various fields of industrial chemistry, biochemistry, medicine, analytical chemistry and ecological chemistry. The main scope of the book is the survey and systematization of the latest advances in homogeneous catalysis with metal complexes. It gives an overview of the research results and practical experience accumulated by the author during the last decade.

  13. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Dady B. Dadyburjor; Mark E. Heavner; Manoj Katakdaunde; Liviu Magean; J. Joshua Maybury; Alfred H. Stiller; Joseph M. Stoffa; John W. Zondlo

    2006-08-01

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. The largest applications are those which support metals smelting, such as anodes for aluminum smelting and electrodes for arc furnaces. Other carbon products include materials used in creating fuels for the Direct Carbon Fuel Cell, and porous carbon structural material referred to as ''carbon foam'' and carbon fibers. During this reporting period, hydrotreatment of solvent was completed in preparation for pitch fabrication for graphite electrodes. Coal digestion has lagged but is expected to be complete by next quarter. Studies are reported on coal dissolution, pitch production, foam synthesis using physical blowing agents, and alternate coking techniques.

  14. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G. [Northwestern Univ., Evanston, IL (United States)

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  15. Innovative eco-friendly bio- solvent for combating sea surface and sedimented oil pollution

    Science.gov (United States)

    Theodorou, Paraskevas

    2017-04-01

    The combating of oil spill at sea surface by chemical dispersants accelerates the evaporation and disperse the oil into the water column, where it is broken down by natural processes and/or is sedimented at the sea bottom, especially at near coastal shallow areas, ports and marinas. The usual methodology for cleaning the sedimented oil from the sea bottom is mainly carried out via excavation and dumping of the polluted sediment into deeper sea areas, where the contamination is transferred from one area to another. The eco-friendly bio-solvent MSL Aqua 250 is an innovative new solution based mainly on natural constituents. The action mechanism and the effectiveness of this eco-friendly solvent is based on the high surface tension process. Organic compounds, including hydrocarbons upon coming in contact with MSL Aqua 250 solvent generate a significant surface tension reaction, which is able to alter the organic compounds to liquid form and then to drastically evaporate it. The use of MSL Aqua 250 solvent, both at sea surface and at the bottom, has the following advantages compared to the dispersants: • Efficient solution without transferring the pollution from sea surface to the water column and to the bottom or disturbing the Aquatic Eco System. • Non-Toxic. • Environmentally friendly with a restoration of marine life in the Eco System. • Cost effective. The MSL Aqua 250 solvent has been tested in cooperation with the Cyprus Department of Fisheries and Marine Research and the Technological University of Cyprus and used during the years 2015 and 2016 in marinas and fishing shelters in Cyprus faced oil pollution, with high concentration in the sea water and at the sea bottom of chemical parameters (BOD5, COD, FOG, TKN, TP, TPH), with excellent results.

  16. Synthesis of Halide- and Solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Jensen, Torben René

    chloride or LiBH4 is present in the sample. The synthesis pathway has been shown to work for most of the already known metal borohydrides, M = Na, Ca, Sr, Ba, Y, La, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb, but also new borohydrides are formed, M = Pr, Nd and Lu. Besides new compounds, new polymorphs...

  17. Comparison of high-intensity sound and mechanical vibration for cleaning porous titanium cylinders fabricated using selective laser melting.

    Science.gov (United States)

    Seiffert, Gary; Hopkins, Carl; Sutcliffe, Chris

    2017-01-01

    Orthopedic components, such as the acetabular cup in total hip joint replacement, can be fabricated using porous metals, such as titanium, and a number of processes, such as selective laser melting. The issue of how to effectively remove loose powder from the pores (residual powder) of such components has not been addressed in the literature. In this work, we investigated the feasibility of two processes, acoustic cleaning using high-intensity sound inside acoustic horns and mechanical vibration, to remove residual titanium powder from selective laser melting-fabricated cylinders. With acoustic cleaning, the amount of residual powder removed was not influenced by either the fundamental frequency of the horn used (75 vs. 230 Hz) or, for a given horn, the number of soundings (between 1 and 20). With mechanical vibration, the amount of residual powder removed was not influenced by the application time (10 vs. 20 s). Acoustic cleaning was found to be more reliable and effective in removal of residual powder than cleaning with mechanical vibration. It is concluded that acoustic cleaning using high-intensity sound has significant potential for use in the final preparation stages of porous metal orthopedic components. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 117-123, 2017. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  18. Establishment of a clean chemistry laboratory at JAERI. Clean laboratory for environmental analysis and research (CLEAR)

    Energy Technology Data Exchange (ETDEWEB)

    Hanzawa, Yukiko; Magara, Masaaki; Watanabe, Kazuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    2003-02-01

    The JAERI has established a facility with a cleanroom: the Clean Laboratory for Environmental Analysis and Research (CLEAR). This report is an overview of the design, construction and performance evaluation of the CLEAR in the initial stage of the laboratory operation in June 2001. The CLEAR is a facility to be used for analyses of ultra trace amounts of nuclear materials in environmental samples for the safeguards, for the CTBT verification and for researches on environmental sciences. One of the special features of the CLEAR is that it meets double requirements of a cleanroom and for handling of nuclear materials. As another feature of the CLEAR, much attention was paid to the construction materials of the cleanroom for trace analysis of metal elements using considerable amounts of corrosive acids. The air conditioning and purification system, specially designed experimental equipment to provide clean work surfaces, utilities and safety systems are also demonstrated. The potential contamination from the completed cleanroom atmosphere during the analytical procedure was evaluated. It can be concluded that the CLEAR has provided a suitable condition for reliable analysis of ultra trace amounts of nuclear materials and other heavy elements in environmental samples. (author)

  19. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    Science.gov (United States)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  20. The Solvent Selection framework: solvents for organic synthesis, separation processes and ionic-organic synthesis

    DEFF Research Database (Denmark)

    Mitrofanov, Igor; Sansonetti, Sascha; Abildskov, Jens

    2012-01-01

    This paper presents a systematic integrated framework for solvent selection and solvent design. The framework is divided into several modules, which can tackle specific problems in various solvent-based applications. In particular, three modules corresponding to the following solvent selection pr...

  1. Nanomaterials for the cleaning and pH adjustment of vegetable-tanned leather

    Science.gov (United States)

    Baglioni, Michele; Bartoletti, Angelica; Bozec, Laurent; Chelazzi, David; Giorgi, Rodorico; Odlyha, Marianne; Pianorsi, Diletta; Poggi, Giovanna; Baglioni, Piero

    2016-02-01

    Leather artifacts in historical collections and archives are often contaminated by physical changes such as soiling, which alter their appearance and readability, and by chemical changes which occur on aging and give rise to excessive proportion of acids that promote hydrolysis of collagen, eventually leading to gelatinization and loss of mechanical properties. However, both cleaning and pH adjustment of vegetable-tanned leather pose a great challenge for conservators, owing to the sensitivity of these materials to the action of solvents, especially water-based formulations and alkaline chemicals. In this study, the cleaning of historical leather samples was optimized by confining an oil-in-water nanostructured fluid in a highly retentive chemical hydrogel, which allows the controlled release of the cleaning fluid on sensitive surfaces. The chemical gel exhibits optimal viscoelasticity, which facilitates its removal after the application without leaving residues on the object. Nanoparticles of calcium hydroxide and lactate, dispersed in 2-propanol, were used to adjust the pH up to the natural value of leather, preventing too high alkalinity which causes swelling of fibers and denaturation of the collagen. The treated samples were characterized using scanning electron microscopy, controlled environment dynamic mechanical analysis, and infrared spectroscopy. The analytical assessment validated the use of tools derived from colloid and materials science for the preservation of collagen-based artifacts.

  2. Simulation of equilibrium distribution data in a solvent extraction system

    International Nuclear Information System (INIS)

    Mondal, S.; Giriyalkar, A.B.; Singh, A.K.; Singh, D.K.; Hubli, R.C.

    2014-01-01

    In hydrometallurgy, solvent extraction has been proved to be the purification method to recover metal in high-pure form from impure solution. Any solvent extraction process is complex and based on some operating parameters which always lure the scientists to model them. Operating parameters like aqueous to organic volume ratio and concentration of feed are related to required number of stages for a product with specific recovery. So to determine final feed concentration or aqueous to organic volume ratio for a specific extractant concentration, one needs to carry out a number of extraction experiments tediously supported by analysis. Here an attempt is being made to model the distribution of solute between organic and aqueous phases with minimum analytical and experimental support for any system. The model can predict the effect on solvent extraction for a change in the aqueous to organic volume ratio i.e. slope of operating line, percentage loading of solvent, feed concentration, solvent concentration, number of stages and in the process it can help in optimizing conditions for the best result from a solvent extraction system. Uranium-7% TBP in dodecane system was taken up to validate the model. The predicted values of the model was tallied against uranium distribution between aqueous and organic phases in a running mixer settler. The equation for operating line i.e. straight line is derived from O/A=1.5 and considering barren organic contains 2 ppm uranium: y 1 = 0.667x 0 - .002. The extraction isotherm i.e. parabola equation came as : x 1 = 0.003y 0 2 + 0.723y 0 considering three points i.e. (0,0), (13,16.7) (uranium analysis for first stage of mixer-settler) and (25, 30.69) (feed concentration, loading capacity of solvent). Using these two equations the results that were obtained, predicted the solute distribution across different stages exactly as it is in the running mixer settler. Individual isotherms could also be drawn with the predicted results from the

  3. Chemical cleaning of the Bruce A steam generators

    International Nuclear Information System (INIS)

    Le Surf, J.E.; Mason, J.B.; Symmons, W.R.; Yee, F.

    1992-01-01

    Deposits consisting mostly of oxides and salts and copper metal in the secondary side of the steam generators at the Bruce A Nuclear Generating Station have caused instability in the steam flow and loss of heat capacity, resulting in derating of the units and reduction in power production. Attempts to remove the deposits by pressure pulsing were unsuccessful. Water lancing succeeded in restoring stability, but restrictions on access prevented complete lancing of the tube support plate holes. Chemical cleaning using a modified EPRI-SGOG process has been selected as the best method of removing the deposits. A complete chemical cleaning system has been designed and fabricated for Ontario Hydro by Pacific Nuclear, with support from AECL CANDU and their suppliers. The system consists of self contained modules which are easily interconnected on site. The whole process is controlled from the Control Module, where all parameters are monitored on a computer video screen. The operator can control motorized valves, pumps and heaters from the computer key board. This system incorporates all the advanced technologies and design features that have been developed by Pacific Nuclear in the design, fabrication and operation of many systems for chemical decontamination and cleaning of nuclear systems. 2 figs

  4. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  5. SOLVENT FIRE BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D; Samuel Fink, S

    2006-05-22

    Southwest Research Institute (SwRI) conducted a burn test of the Caustic-Side Solvent Extraction (CSSX) solvent to determine the combustion products. The testing showed hydrogen fluoride gas is not a combustion product from a solvent fire when up to 70% of the solvent is consumed. The absence of HF in the combustion gases may reflect concentration of the modifier containing the fluoride groups in the unburned portion. SwRI reported results for other gases (CO, HCN, NOx, formaldehyde, and hydrocarbons). The results, with other supporting information, can be used for evaluating the consequences of a facility fire involving the CSSX solvent inventory.

  6. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  7. Salts of alkali metal anions and process of preparing same

    Science.gov (United States)

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  8. DEVELOPMENT OF CONTINUOUS SOLVENT EXTRACTION PROCESSES FOR COAL DERIVED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Elliot B. Kennel; Philip L. Biedler; Chong Chen; Dady Dadyburjor; Liviu Magean; Peter G. Stansberry; Alfred H. Stiller; John W. Zondlo

    2005-04-13

    The purpose of this DOE-funded effort is to develop continuous processes for solvent extraction of coal for the production of carbon products. These carbon products include materials used in metals smelting, especially in the aluminum and steel industries, as well as porous carbon structural material referred to as ''carbon foam'' and carbon fibers. A process has been developed which results in high quality binder pitch suitable for use in graphite electrodes or carbon anodes. A detailed description of the protocol is given by Clendenin. Briefly, aromatic heavy oils are hydro-treated under mild conditions in order to increase their ability to dissolve coal. An example of an aromatic heavy oil is Koppers Carbon Black Base (CBB) oil. CBB oil has been found to be an effective solvent and acceptably low cost (i.e., significantly below the market price for binder pitch, or about $280 per ton at the time of this writing). It is also possible to use solvents derived from hydrotreated coal and avoid reliance on coke oven recovery products completely if so desired.

  9. Mining utilization of residues of exhaust gas cleaning from waste incinerators; Bergtechnische Verwertung von Abgasreinigungsrueckstaenden aus Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Werthmann, Rainer [K+S Entsorgung GmbH, Kassel (Germany). Abfallchemie und Zulassungen

    2013-03-01

    The exhaust gas purification of a household incinerator or a substitute fuel power plant intends to remove dust, heavy metal compounds and acid harmful gases from the exhaust gas in order to comply with the immission-control legal limits. The particulate matter contains volatile heavy metal chlorides which precipitate as a solid matter. The enhanced amount of water-soluble salts is conspicuous. The concentration of soluble components is limited to 10,000 mg/L in the 1:10 eluate due to the landfill regulation. Thus, the residues of exhaust gas cleaning are predestined for an underground waste disposal in salt mines. Under this aspect, the author of the contribution under consideration reports on the mining utilization of residues of exhaust gas cleaning from waste incinerators.

  10. Depositing nanometer-sized particles of metals onto carbon allotropes

    Science.gov (United States)

    Watson, Kent A. (Inventor); Fallbach, Michael J. (Inventor); Ghose, Sayata (Inventor); Smith, Joseph G. (Inventor); Delozier, Donavon M. (Inventor); Connell, John W. (Inventor)

    2010-01-01

    A process for depositing nanometer-sized metal particles onto a substrate in the absence of aqueous solvents, organic solvents, and reducing agents, and without any required pre-treatment of the substrate, includes preparing an admixture of a metal compound and a substrate by dry mixing a chosen amount of the metal compound with a chosen amount of the substrate; and supplying energy to the admixture in an amount sufficient to deposit zero valance metal particles onto the substrate. This process gives rise to a number of deposited metallic particle sizes which may be controlled. The compositions prepared by this process are used to produce polymer composites by combining them with readily available commodity and engineering plastics. The polymer composites are used as coatings, or they are used to fabricate articles, such as free-standing films, fibers, fabrics, foams, molded and laminated articles, tubes, adhesives, and fiber reinforced articles. These articles are well-suited for many applications requiring thermal conductivity, electrical conductivity, antibacterial activity, catalytic activity, and combinations thereof.

  11. Secondary ion emission from cleaned surfaces bombarded by 100 MeV accelerator beams at the GSI Darmstadt

    International Nuclear Information System (INIS)

    Wien, K.; Becker, O.; Guthier, W.; Knippelberg, W.; Koczon, P.

    1988-01-01

    The 1.4 MeV/n beam facility for the UNILAC/GSI has been used to study secondary ion emission from surfaces cleaned under UHV conditions by ion etching or cleaving of crystals. The desorption phenomena observed by means of TOF mass spectrometry can be classified as follows: (1) Clean metal surfaces emit metal ions being ejected by atomic collisions cascades. Electronic excitation of surface states seems to support ionization. (2) The desorption of contaminants adsorbed at the metal surface is strongly correlated with the electronic energy loss of the projectiles - even, if the content of impurities is very low. (3) Ion formation at the epitaxial surface of fluoride crystals as CaF 2 , MgF 2 and NaF is initiated by the electronic excitation of the crystal. At high beam energies the mass spectrum is dominated by a series of cluster ions. These cluster ions disappear below a certain energy deposit threshold, whereas small atomic ions are observed over the whole energy range

  12. Evaluation of Surface Cleaning Procedures for CTGS Substrates for SAW Technology with XPS

    Directory of Open Access Journals (Sweden)

    Erik Brachmann

    2017-11-01

    Full Text Available A highly efficient and reproducible cleaning procedure of piezoelectric substrates is essential in surface acoustic waves (SAW technology to fabricate high-quality SAW devices, especially for new applications such SAW sensors wherein new materials for piezoelectric substrates and interdigital transducers are used. Therefore, the development and critical evaluation of cleaning procedures for each material system that is under consideration becomes crucial. Contaminants like particles or the presence of organic/inorganic material on the substrate can dramatically influence and alter the properties of the thin film substrate composite, such as wettability, film adhesion, film texture, and so on. In this article, focus is given to different cleaning processes like SC-1 and SC-2, UV-ozone treatment, as well as cleaning by first-contact polymer Opticlean, which are applied for removal of contaminants from the piezoelectric substrate Ca 3 TaGa 3 Si 2 O 14 . By means of X-ray photoelectron spectroscopy, the presence of the most critical contaminants such as carbon, sodium, and iron removed through different cleaning procedures were studied and significant differences were observed between the outcomes of these procedures. Based on these results, a two-step cleaning process, combining SC-1 at a reduced temperature at 30 ∘ C instead of 80 ∘ C and a subsequent UV-ozone cleaning directly prior to deposition of the metallization, is suggested to achieve the lowest residual contamination level.

  13. Electrical double layer structure at the gallium metals in a methanol solution of a surface-inactive electrolyte

    International Nuclear Information System (INIS)

    Emets, V.V.

    1997-01-01

    The structure of double electric layer on Ga-, In-Ga- and Tl-Ga-electrodes in methanol solutions of surface-inactive electrolyte has been studied. It is shown that in the absence of chemisorption interaction between metal and solvent, the distance of the nearest approach of methanol dipoles to the surface of Ga-, In-Ga- and Tl-Ga-electrodes is practically the same. Accordingly, the specificity of the metals contact with solvent is reduced solely to their chemisorption interaction. In the zero charge area and for negative charges the chemisorption interaction with methanol molecules increases in the sequence Tl-Ga< In-Ga< Ga. The growth correlates both with the metals acceptor ability towards electron, which is characterized by the work of metal electron escape to vacuum, and donor ability of the solvent characterized by its donor number

  14. Removing paint from a metal substrate using a flattened top laser

    International Nuclear Information System (INIS)

    Shi Shu-Dong; Li Wei; Du Peng; Wang Meng; Song Feng; Liu Shu-Jing; Chen Nian-Jiang; Zhao Hong; Yang Wen-Shi

    2012-01-01

    In this paper, we investigate laser cleaning using a flattened top laser to remove paint coating from a metal substrate. Under the irradiation of a flattened top laser, the coating paint of the metal substrate can be removed efficiently by laser induced ablation, stress, and displacement force. The temperature distribution, stress, and displacement are calculated in the coating layer and substrate using finite element analysis. The effects of a Gaussian laser and a flattened top laser and the results of different diameters of laser spot are compared. The investigation shows that the flattened top laser can reduce the substrate damage and enhance the cleaning efficiency. This method meets the need of large area industrial cleaning applications by optimizing the flattened top laser parameters

  15. Removing paint from a metal substrate using a flattened top laser

    Science.gov (United States)

    Shi, Shu-Dong; Li, Wei; Du, Peng; Wang, Meng; Song, Feng; Liu, Shu-Jing; Chen, Nian-Jiang; Zhao, Hong; Yang, Wen-Shi

    2012-10-01

    In this paper, we investigate laser cleaning using a flattened top laser to remove paint coating from a metal substrate. Under the irradiation of a flattened top laser, the coating paint of the metal substrate can be removed efficiently by laser induced ablation, stress, and displacement force. The temperature distribution, stress, and displacement are calculated in the coating layer and substrate using finite element analysis. The effects of a Gaussian laser and a flattened top laser and the results of different diameters of laser spot are compared. The investigation shows that the flattened top laser can reduce the substrate damage and enhance the cleaning efficiency. This method meets the need of large area industrial cleaning applications by optimizing the flattened top laser parameters.

  16. The Role of Plant Growth-Promoting Bacteria in Metal Phytoremediation.

    Science.gov (United States)

    Kong, Zhaoyu; Glick, Bernard R

    2017-01-01

    Phytoremediation is a promising technology that uses plants and their associated microbes to clean up contaminants from the environment. In recent years, phytoremediation assisted by plant growth-promoting bacteria (PGPB) has been highly touted for cleaning up toxic metals from soil. PGPB include rhizospheric bacteria, endophytic bacteria and the bacteria that facilitate phytoremediation by other means. This review provides information about the traits and mechanisms possessed by PGPB that improve plant metal tolerance and growth, and illustrate mechanisms responsible for plant metal accumulation/translocation in plants. Several recent examples of phytoremediation of metals facilitated by PGPB are reviewed. Although many encouraging results have been reported in the past years, there have also been numerous challenges encountered in phytoremediation in the field. To implement PGPB-assisted phytoremediation of metals in the natural environment, there is also a need to critically assess the ecological effects of PGPB, especially for those nonnative bacteria. © 2017 Elsevier Ltd All rights reserved.

  17. Solvent - solute interaction

    International Nuclear Information System (INIS)

    Urbanczyk, A.; Kalinowski, M.K.

    1983-01-01

    The electronic absorption spectrum of vanadyl acetylacetonate has been studied in 15 organic solvents. It has been found that wavenumbers and molar absorptivities of the long-wavelength bands (d-d transitions) can be well described by a complementary Lewis acid-base model including Gutmann's donor number [Gutmann V., Wychera E., Inorg. Nucl. Chem. Letters 2, 257 (1966)] and acceptor number [Mayer U., Gutmann V., Gerger W., Monatsh. Chem. 106, 1235 (1975)] of a solvent. This model describes also the solvent effect of the hyperfine splitting constant, Asub(iso)( 51 V), from e.s.r. spectra of VOacac 2 . These observations are discussed in terms of the donor-acceptor concept for solvent-solute interactions. (Author)

  18. Deasphalting solvents

    International Nuclear Information System (INIS)

    Carrillo, J. A; Caceres, J; Vela, G; Bueno, H

    1996-01-01

    This paper describes how the deasphalted oil (DMO) or demetalized oil (DMO) quality (CCR, Ni, V end asphaltenes contents) changes with: DAO or DMO yield, solvent/feed ratio, type of vacuum reside (from paraffinic to blends with vis breaking bottoms), extraction temperature and extraction solvent (propane, propylene, n-butane and I butane)

  19. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  20. Measurement of the Residual Sodium and Reaction Compounds on a Cleaned Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun Nam

    2006-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either a intergranular penetration characteristic of a high-oxygen sodium or an accelerated corrosion due to oxygen. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, a chemical, physical, or mechanical damage, and external effects. It is important to determine the levels of residual sodium that can be accepted so that those deleterious effects will not negate the reuse of the component. The purpose of this paper is to measure the amount of the sodium and the reaction compounds remaining on a component after a cleaning and prepare acceptable criteria for the reuse of components which have been subjected to a sodium cleaning