WorldWideScience

Sample records for solvent electrolyte system

  1. Theoretical and experimental study of mixed solvent electrolytes

    International Nuclear Information System (INIS)

    Cummings, P.T.; O'Connell, J.P.

    1990-01-01

    In the original proposal to study mixed solvent electrolyte solutions, four major goals were formulated: fundamental modeling of mixed solvent electrolytes using numerically solved integral equation approximation theories; evaluation of intermolecular pair potential models by computer simulation of selected systems for comparison with experiment and the numerical integral equation studies; development of fundamentally based correlations for the thermodynamic properties of mixed solvent electrolyte solutions using analytically solvable statistical mechanical models; and extension of experimental database on mixed solvent electrolytes by performing vapor-liquid equilibrium measurements on selected systems. This paper discusses the progress on these goals

  2. Molecular simulations of electrolyte structure and dynamics in lithium-sulfur battery solvents

    Science.gov (United States)

    Park, Chanbum; Kanduč, Matej; Chudoba, Richard; Ronneburg, Arne; Risse, Sebastian; Ballauff, Matthias; Dzubiella, Joachim

    2018-01-01

    The performance of modern lithium-sulfur (Li/S) battery systems critically depends on the electrolyte and solvent compositions. For fundamental molecular insights and rational guidance of experimental developments, efficient and sufficiently accurate molecular simulations are thus in urgent need. Here, we construct a molecular dynamics (MD) computer simulation model of representative state-of-the art electrolyte-solvent systems for Li/S batteries constituted by lithium-bis(trifluoromethane)sulfonimide (LiTFSI) and LiNO3 electrolytes in mixtures of the organic solvents 1,2-dimethoxyethane (DME) and 1,3-dioxolane (DOL). We benchmark and verify our simulations by comparing structural and dynamic features with various available experimental reference systems and demonstrate their applicability for a wide range of electrolyte-solvent compositions. For the state-of-the-art battery solvent, we finally calculate and discuss the detailed composition of the first lithium solvation shell, the temperature dependence of lithium diffusion, as well as the electrolyte conductivities and lithium transference numbers. Our model will serve as a basis for efficient future predictions of electrolyte structure and transport in complex electrode confinements for the optimization of modern Li/S batteries (and related devices).

  3. Supercapacitor Electrolyte Solvents with Liquid Range Below -80 C

    Science.gov (United States)

    Brandon, Erik; Smart, Marshall; West, William

    2010-01-01

    A previous NASA Tech Brief ["Low-Temperature Supercapacitors" (NPO-44386) NASA Tech Briefs, Vol. 32, No 7 (July 2008), page 32] detailed ongoing efforts to develop non-aqueous supercapacitor electrolytes capable of supporting operation at temperatures below commercially available cells (which are typically limited to charging and discharging at > or equal to -40 C). These electrolyte systems may enable energy storage and power delivery for systems operating in extreme environments, such as those encountered in the Polar regions on Earth or in the exploration of space. Supercapacitors using these electrolytes may also offer improved power delivery performance at moderately low temperatures (e.g. -40 to 0 C) relative to currently available cells, offering improved cold-cranking and cold-weather acceleration capabilities for electrical or hybrid vehicles. Supercapacitors store charge at the electrochemical double-layer, formed at the interface between a high surface area electrode material and a liquid electrolyte. The current approach to extending the low-temperature limit of the electrolyte focuses on using binary solvent systems comprising a high-dielectric-constant component (such as acetonitrile) in conjunction with a low-melting-point co-solvent (such as organic formates, esters, and ethers) to depress the freezing point of the system, while maintaining sufficient solubility of the salt. Recent efforts in this area have led to the identification of an electrolyte solvent formulation with a freezing point of -85.7 C, which is achieved by using a 1:1 by volume ratio of acetonitrile to 1,3-dioxolane

  4. Organic solvents, electrolytes, and lithium ion cells with good low temperature performance

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Surampudi, Subbarao (Inventor); Huang, Chen-Kuo (Inventor)

    2002-01-01

    Multi-component organic solvent systems, electrolytes and electrochemical cells characterized by good low temperature performance are provided. In one embodiment, an improved organic solvent system contains a ternary mixture of ethylene carbonate, dimethyl carbonate and diethyl carbonate. In other embodiments, quaternary systems include a fourth component, i.e, an aliphatic ester, an asymmetric alkyl carbonate or a compound of the formula LiOX, where X is R, COOR, or COR, where R is alkyl or fluoroalkyl. Electrolytes based on such organic solvent systems are also provided and contain therein a lithium salt of high ionic mobility, such as LiPF.sub.6. Reversible electrochemical cells, particularly lithium ion cells, are constructed with the improved electrolytes, and preferably include a carbonaceous anode, an insertion type cathode, and an electrolyte interspersed therebetween.

  5. Reverse Schreinemakers Method for Experimental Analysis of Mixed-Solvent Electrolyte Systems

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    the reverse Schreinemakers (RS) method. The method is based on simple mass balance principles similar to the wet residues method. It allows for accurate determination of the mixed-solvent phase composition even though part of the solvent may precipitate as complexes between solvent and salt. Discrepancies......A method based on Schreinemakers's tie-line theory of 1893 is derived for determining the composition and phase amounts in solubility experiments for multi-solvent electrolyte systems. The method uses the lever rule in reverse compared to Schreinemakers's wet residue method, and is therefore called...... from determining the composition of salt mixtures by pH titration are discussed, and the derived method significantly improves the obtained result from titration. Furthermore, the method reduces the required experimental work needed for analysis of phase composition. The method is applicable to multi...

  6. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents

    International Nuclear Information System (INIS)

    Li, Song; Feng, Guang; Cummings Peter, T; Zhang, Pengfei; Fulvio Pasquale, F; Hillesheim Patrick, C; Dai, Sheng

    2014-01-01

    The use of dicationic ionic liquid (DIL) electrolytes in supercapacitors is impeded by the slow dynamics of DILs, whereas the addition of organic solvents into DIL electrolytes improves ion transport and then enhances the power density of supercapacitors. In this work, the influences of organic solvents on the conductivity of DILs and the electrical double layer (EDL) of DIL-based supercapacitors are investigated using classical molecular dynamics simulation. Two types of organic solvents, acetonitrile (ACN) and propylene carbonate (PC), were used to explore the effects of different organic solvents on the EDL structure and capacitance of DIL/organic solvent-based supercapacitors. Firstly, it was found that the conductivity of DIL electrolytes was greatly enhanced in the presence of the organic solvent ACN. Secondly, a stronger adsorption of PC on graphite results in different EDL structures formed by DIL/ACN and DIL/PC electrolytes. The expulsion of co-ions from EDLs was observed in DIL/organic solvent electrolytes rather than neat DILs and this feature is more evident in DIL/PC. Furthermore, the bell-shaped differential capacitance–electric potential curve was not essentially changed by the presence of organic solvents. Comparing DIL/organic solvent electrolytes with neat DILs, the capacitance is slightly increased by organic solvents, which is in agreement with experimental observation. (paper)

  7. Electrolytes including fluorinated solvents for use in electrochemical cells

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan

    2015-07-07

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include ion-supplying salts and fluorinated solvents capable of maintaining single phase solutions with the salts at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and increase safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Fluorinated salts, such as fluoroalkyl-substituted LiPF.sub.6, fluoroalkyl-substituted LiBF.sub.4 salts, linear and cyclic imide salts as well as methide salts including fluorinated alkyl groups, may be used due to their solubility in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene or, more specifically, a cyclic phosphazene and/or one or more ionic liquids.

  8. Lithium current sources with an electrolyte based on aprotonic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shembel, Ye.M.; Ksenzhek, O.S.; Litvinova, V.I.; Martynenko, T.L.; Raykhelson, L.B.; Sokolov, L.A.; Strizhko, A.S.

    1984-01-01

    Lithium current sources with an electrolyte based on aprotonic solvents are examined. The effect of the composition of the electrolyte solution on the solubility of SO2 and the excess pressure of the gas above the electrolyte solution is established. The temperature characteristics of the electrolyte are studied from the standpoint of salt solubility, the association between the discharge conditions, the macrostructure of the porous inert cathode and the degree of usage of the active cathode substance of the SO2 as the necessary aspects for solving the problems of optimizing a lithium and SO2 system.

  9. Modeling of the Mixed Solvent Electrolyte System CO2-Na2CO3-NaHCO3-Monoethylene Glycol-Water

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Thomsen, Kaj; Stenby, Erling Halfdan

    2009-01-01

    The extended UNIQUAC electrolyte activity coefficient model has been correlated to 751 experimental solid−liquid equilibrium (SLE), vapor−liquid equilibrium (VLE), and excess enthalpy data for the mixed solvent CO2−NaHCO3−Na2CO3−monoethylene glycol(MEG)−H2O electrolyte system. The model...

  10. Influence of electrolyte ion-solvent interactions on the performances of supercapacitors porous carbon electrodes

    Science.gov (United States)

    Decaux, C.; Matei Ghimbeu, C.; Dahbi, M.; Anouti, M.; Lemordant, D.; Béguin, F.; Vix-Guterl, C.; Raymundo-Piñero, E.

    2014-10-01

    The development of advanced and safe electrochemical supercapacitors or hybrid supercapacitors combining a battery electrode material such as graphite and a porous carbon electrode implies the use of new electrolytes containing a tetra-alkylammonium or lithium salt dissolved preferentially in a safe and environmentally friendly solvent such as alkylcarbonates. In those systems, the carbon porosity of the activated carbon electrode controls the electrochemical behavior of the whole device. In this work, it is demonstrated that electrolytes containing highly polarizing ions such as Li+ dissolved in polar solvents such as alkylcarbonates do not completely loss their solvation shell at the opposite of what is observed for poorly solvated cations like TEABF4. As a consequence, the optimal carbon pore size for obtaining the largest energy density, while keeping a high power density, is wider when strongly solvated cations, like Li+ are used than for conventional organic electrolytes using acetonitrile as solvent and TEA+ as salt cations. TEA+ cations are easily desolvated and hence are able to penetrate in small pores matching the dimensions of bare ions. The dissimilarity of behavior of alkylcarbonates and acetonitrile based electrolytes highlights the importance of ion-solvent interactions when searching the optimal porous texture for the electrode material.

  11. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, D.J. [Department of Engineering Technology, College of Engineering and Engineering Technology, Northern Illinois University, 301B Still Gym, DeKalb, IL 60115 (United States); Hubaud, A.A. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States); Vaughey, J.T., E-mail: vaughey@anl.gov [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439-4837 (United States)

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stability of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.

  12. Comparison of activity coefficient models for electrolyte systems

    DEFF Research Database (Denmark)

    Lin, Yi; ten Kate, Antoon; Mooijer, Miranda

    2010-01-01

    Three activity coefficient models for electrolyte solutions were evaluated and compared. The activity coefficient models are: The electrolyte NRTL model (ElecNRTL) by Aspentech, the mixed solvent electrolyte model (MSE) by OLI Systems Inc., and the Extended UNIQUAC model from the Technical Univer...

  13. Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2

    International Nuclear Information System (INIS)

    Hayamizu, Kikuko; Aihara, Yuichi

    2004-01-01

    Two binary mixed solvent systems typically used for lithium batteries were studied by measuring the self-diffusion coefficients of the solvent, lithium ion and anion, independently by using the multi-nuclear pulsed field-gradient spin-echo (PGSE) 1 H, 7 Li and 19 F NMR method. One system was propylene carbonate (PC) and diethyl carbonate (DEC) system and the other binary system was PC and 1,2-dimethoxyethane (DME), and the lithium salt used was LiN(SO 2 CF 3 ) 2 (LiTFSI). The relative ratio of the PC was changed from zero (pure DME and DEC) to 100% (pure PC) in the DME-PC and the DEC-PC systems, respectively. The self-diffusion coefficients of the solvents were measured with and without the lithium salt, and the two solvents had almost the same diffusion coefficient in the DEC-PC system, while DME diffused faster than PC in the DME-PC system. In the electrolytes the solvents diffused the fastest, followed by the anion with the lithium ion diffusing the slowest. The degree of ion dissociation was estimated for each electrolyte by comparing the ionic conductivities estimated from the ion diffusion and those measured directly by the electrochemical method

  14. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    International Nuclear Information System (INIS)

    Clark, Sue B.

    2016-01-01

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  15. Controlling Actinide Hydration in Mixed Solvent Systems: Towards Tunable Solvent Systems to Close the Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Sue B. [Washington State Univ., Pullman, WA (United States). Dept. of Chemistry

    2016-10-31

    The goal of this project has been to define the extent of hydration the f-elements and other cations in mixed solvent electrolyte systems. Methanol-water and other mixed solvent systems have been studied, where the solvent dielectric constant was varied systematically. Thermodynamic and spectroscopic studies provide details concerning the energetics of complexation and other reactions of these cations. This information has also been used to advance new understanding of the behavior of these cations in a variety of systems, ranging from environmental studies, chromatographic approaches, and ionization processes for mass spectrometry.

  16. Investigation of Ion-Solvent Interactions in Nonaqueous Electrolytes Using in Situ Liquid SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanyan; Su, Mao; Yu, Xiaofei; Zhou, Yufan; Wang, Jungang; Cao, Ruiguo; Xu, Wu; Wang, Chongmin; Baer, Donald R.; Borodin, Oleg; Xu, Kang; Wang, Yanting; Wang, Xue-Lin; Xu, Zhijie; Wang, Fuyi; Zhu, Zihua

    2018-02-06

    Ion-solvent interactions in non-aqueous electrolytes are of fundamental interest and practical importance, yet debates regarding ion preferential solvation and coordination numbers persist. In this work, in situ liquid SIMS was used to examine ion-solvent interactions in three representative electrolytes, i.e., lithium hexafluorophosphate (LiPF6) at 1.0 M in ethylene carbonate (EC)-dimethyl carbonate (DMC), and lithium bis(fluorosulfonyl)imide (LiFSI) at both low (1.0 M) and high (4.0 M) concentrations in 1,2-dimethoxyethane (DME). In the positive ion mode, solid molecular evidence strongly supports the preferential solvation of Li+ by EC. Besides, from the negative spectra, we also found that PF6- forms association with EC, which has been neglected by previous studies due to the relatively weak interaction. While in both LiFSI in DME electrolytes, no evidence shows that FSI- is associated with DME. Furthermore, strong salt ion cluster signals were observed in the 1.0 M LiPF6 in EC-DMC electrolyte, suggesting that a significant amount of Li+ ions stay in vicinity of anions. In sharp comparison, weak ion cluster signals were detected in dilute LiFSI in DME electrolyte, suggesting most ions are well separated, in agreement with our molecular dynamics (MD) simulation results. These findings indicate that with virtues of little bias on detecting positive and negative ions and the capability of directly analyzing concentrated electrolytes, in situ liquid SIMS is a powerful tool that can provide key evidence for improved understanding on the ion-solvent interactions in non-aqueous electrolytes. Therefore, we anticipate wide applications of in situ liquid SIMS on investigations of various ion-solvent interactions in the near future.

  17. Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries

    International Nuclear Information System (INIS)

    Pohl, Benjamin; Grünebaum, Mariano; Drews, Mathias; Passerini, Stefano; Winter, Martin; Wiemhöfer, Hans‑Dieter

    2015-01-01

    Highlights: • A new electrolyte based on a nitrile-silyl ether solvent and LiTFSI as lithium salt was successfully tested. • This electrolyte shows higher ionic conductivities as compared to earlier published silicon based solvents. • Due to the absence of ether groups, the electrochemical stability is extended to 5.4 V vs. Li/Li + . • With LiTFSI, the electrolyte can be cycled up to 4.15 V vs. Li/Li + without causing anodic aluminum dissolution. - Abstract: 3-((Trimethylsilyl) oxy) propionitrile is introduced as non-volatile solvent for lithium-ion battery electrolytes using LiTFSI as lithium salt. The thermal and chemical stability of the electrolytes offer an enhanced safety as compared to conventional volatile carbonate electrolytes. In cell tests, the investigated LiTFSI nitrile silyl ether electrolyte shows compatibility with LiFePO 4 , LiNi 0.33 Mn 0.33 Co 0.33 O 2 and graphite active materials.

  18. Electrochemical performances of lithium ion battery using alkoxides of group 13 as electrolyte solvent

    International Nuclear Information System (INIS)

    Kaneko, Fuminari; Masuda, Yuki; Nakayama, Masanobu; Wakihara, Masataka

    2007-01-01

    Tris(methoxy polyethylenglycol) borate ester (B-PEG) and aluminum tris(polyethylenglycoxide) (Al-PEG) were used as electrolyte solvent for lithium ion battery, and the electrochemical property of these electrolytes were investigated. These electrolytes, especially B-PEG, showed poor electrochemical stability, leading to insufficient discharge capacity and rapid degradation with cycling. These observations would be ascribed to the decomposition of electrolyte, causing formation of unstable passive layer on the surface of electrode in lithium ion battery at high voltage. However, significant improvement was observed by the addition of aluminum phosphate (AlPO 4 ) powder into electrolyte solvent. AC impedance technique revealed that the increase of interfacial resistance of electrode/electrolyte during cycling was suppressed by adding AlPO 4 , and this suppression could enhance the cell capabilities. We infer that dissolved AlPO 4 components formed electrochemically stable layer on the surface of electrode

  19. Triethyl orthoformate as a new film-forming electrolytes solvent for lithium-ion batteries with graphite anodes

    International Nuclear Information System (INIS)

    Wang Lishi; Huang Yudai; Jia Dianzeng

    2006-01-01

    Triethyl orthoformate (TEOF) as a new solvent used in propylene carbonate (PC)-based electrolytes together with graphitic anodes in lithium-ion batteries has been investigated. It can be observed that TEOF was capable of suppressing the co-intercalation of PC solvated lithium-ions into the graphite layer during the first lithiation process and the irreversible discharge capacity of the first cycle is the smallest when using 1.0 M LiPF 6 in PC and TEOF at solvent ratio of 1:1 as the electrolytes. The CV, FTIR, EIS, SEM results show that the PC-based electrolytes containing the solvent TEOF can generate an effective solid electrolytes interphase (SEI) film during the first cycling process, and the film is probably mainly composed of ROCO 2 Li, ROLi, Li 2 CO 3 , etc. The formation of a stable passivating film on the graphite surface is believed to be the reason for the improved cell performance. All these results show that TEOF possesses a promising performance for use as an effective film-forming electrolytes solvent in lithium-ion batteries with graphitic anodes

  20. An electrolyte CPA equation of state for mixed solvent electrolytes

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn; Thomsen, Kaj; Kontogeorgis, Georgios M.

    2015-01-01

    Despite great efforts over the past decades, thermodynamic modeling of electrolytes in mixed solvents is still a challenge today. The existing modeling frameworks based on activity coefficient models are data-driven and require expert knowledge to be parameterized. It has been suggested...... using a self-consistent model for the static permittivity. A simple scheme for parameterization of salts with a limited number of parameters is proposed and model parameters for a range of salts are determined from experimental data of activity and osmotic coefficients as well as freezing point...

  1. Partially Fluorinated Solvent as a co-solvent for the Non-aqueous Electrolyte of Li/air Battery

    Science.gov (United States)

    2010-11-11

    ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP), respectively, as a co-solvent for the non-aqueous electrolyte of Li–air battery. Results...fluorinated solvents on the discharge performance of Li–air bat- tery. For this purpose, we here selectmethyl nonafluorobutyl ether ( MFE ) and tris...196, (2011) pgs. 2867-2870 14. ABSTRACT In this workwestudy methyl nonafluorobutyl ether ( MFE ) and tris(2,2,2-trifluoroethyl) phosphite (TTFP

  2. Low molecular weight salts combined with fluorinated solvents for electrolytes

    Science.gov (United States)

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W.

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte includes at least one salt having a molecular weight less than about 250. Such salts allow forming electrolytes with higher salt concentrations and ensure high conductivity and ion transport in these electrolytes. The low molecular weight salt may have a concentration of at least about 0.5M and may be combined with one or more other salts, such as linear and cyclic imide salts and/or methide salts. The concentration of these additional salts may be less than that of the low molecular weight salt, in some embodiments, twice less. The additional salts may have a molecular weight greater than about 250. The electrolyte may also include one or more fluorinated solvents and may be capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C.

  3. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt-Solvent Coordination for Li-O 2 Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Xu, Wu [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Yan, Pengfei [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Kim, Sun Tai [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Engelhard, Mark H. [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Sun, Xiuliang [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Mei, Donghai [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA; Cho, Jaephil [Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 South Korea; Wang, Chong-Min [Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99354 USA; Zhang, Ji-Guang [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland WA 99354 USA

    2017-03-08

    The conventional DMSO-based electrolyte (1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in DMSO) is unstable against the Li metal anode and therefore cannot be used directly in practical Li-O2 batteries. Here, we demonstrate that a highly concentrated electrolyte based on LiTFSI in DMSO (with a molar ratio of 1:3) can greatly improve the stability of the Li metal anode against DMSO and significantly improve the cycling stability of Li-O2 batteries. This highly concentrated electrolyte contains no free DMSO solvent molecules, but only complexes of (TFSI–)a-Li+-(DMSO)b (where a + b = 4), and thus enhances their stability with Li metal anodes. In addition, such salt-solvent complexes have higher Gibbs activation energy barriers than the free DMSO solvent molecules, indicating improved stability of the electrolyte against the attack of superoxide radical anions. Therefore, the stability of this highly concentrated electrolyte at both Li metal anodes and carbon-based air electrodes has been greatly enhanced, resulting in improved cyclic stability of Li-O2 batteries. The fundamental stability of the electrolyte with free-solvent against the chemical and electrochemical reactions can also be used to enhance the stability of other electrochemical systems.

  4. Li-Ion Cells Employing Electrolytes With Methyl Propionate and Ethyl Butyrate Co-Solvents

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.

    2011-01-01

    Future NASA missions aimed at exploring Mars and the outer planets require rechargeable batteries that can operate at low temperatures to satisfy the requirements of such applications as landers, rovers, and penetrators. A number of terrestrial applications, such as hybrid electric vehicles (HEVs) and electric vehicles (EVs) also require energy storage devices that can operate over a wide temperature range (i.e., -40 to +70 C), while still providing high power capability and long life. Currently, the state-of-the-art lithium-ion system has been demonstrated to operate over a wide range of temperatures (-30 to +40 C); however, the rate capability at the lower temperatures is very poor. These limitations at very low temperatures are due to poor electrolyte conductivity, poor lithium intercalation kinetics over the electrode surface layers, and poor ionic diffusion in the electrode bulk. Two wide-operating-temperature-range electrolytes have been developed based on advances involving lithium hexafluorophosphate-based solutions in carbonate and carbonate + ester solvent blends, which have been further optimized in the context of the technology and targeted applications. The approaches employed include further optimization of electrolytes containing methyl propionate (MP) and ethyl butyrate (EB), which are effective co-solvents, to widen the operating temperature range beyond the baseline systems. Attention was focused on further optimizing ester-based electrolyte formulations that have exhibited the best performance at temperatures ranging from -60 to +60 C, with an emphasis upon improving the rate capability at -20 to -40 C. This was accomplished by increasing electrolyte salt concentration to 1.20M and increasing the ester content to 60 percent by volume to increase the ionic conductivity at low temperatures. Two JPL-developed electrolytes 1.20M LiPF6 in EC+EMC+MP (20:20:60 v/v %) and 1.20M LiPF6 in EC+EMC+EB (20:20:60 v/v %) operate effectively over a wide

  5. Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models.

    Science.gov (United States)

    Scheers, Johan; Niedzicki, Leszek; Zukowska, Grażyna Z; Johansson, Patrik; Wieczorek, Władysław; Jacobsson, Per

    2011-06-21

    Molecular level interactions are of crucial importance for the transport properties and overall performance of ion conducting electrolytes. In this work we explore ion-ion and ion-solvent interactions in liquid and solid polymer electrolytes of lithium 4,5-dicyano-(2-trifluoromethyl)imidazolide (LiTDI)-a promising salt for lithium battery applications-using Raman spectroscopy and density functional theory calculations. High concentrations of ion associates are found in LiTDI:acetonitrile electrolytes, the vibrational signatures of which are transferable to PEO-based LiTDI electrolytes. The origins of the spectroscopic changes are interpreted by comparing experimental spectra with simulated Raman spectra of model structures. Simple ion pair models in vacuum identify the imidazole nitrogen atom of the TDI anion to be the most important coordination site for Li(+), however, including implicit or explicit solvent effects lead to qualitative changes in the coordination geometry and improved correlation of experimental and simulated Raman spectra. To model larger aggregates, solvent effects are found to be crucial, and we finally suggest possible triplet and dimer ionic structures in the investigated electrolytes. In addition, the effects of introducing water into the electrolytes-via a hydrate form of LiTDI-are discussed.

  6. High-Performance Lithium-Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt.

    Science.gov (United States)

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kang, Yongku; Kim, Hwan Kyu; Kim, Dong Wook

    2017-10-01

    To fabricate a sustainable lithium-oxygen (Li-O 2 ) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO 3 ) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO 3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO 3 electrolyte efficiently produces NO 2 - , which initiates a redox shuttle reaction. Interestingly, this NO 2 - /NO 2 redox reaction derived from the LiNO 3 salt is not very effective in solvents other than TMS. Compared with other common Li-O 2 solvents, TMS seems optimum solvent for the efficient use of LiNO 3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO 2 - /NO 2 redox reaction, which results in a high-performance Li-O 2 battery.

  7. Novel Nonflammable Electrolytes for Secondary Magnesium Batteries and High Voltage Electrolytes for Electrochemcial Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Brian

    2008-12-30

    Magnesium has been used successfully in primary batteries, but its use in rechargeable cells has been stymied by the lack of suitable non-aqueous electrolyte that can conduct Mg+2 species, combined with poor stripping and plating properties. The development of a suitable cathode material for rechargeable magnesium batteries has also been a roadblock, but a nonflammable electrolyte is key. Likewise, the development of safe high voltage electrochemical supercapaitors has been stymied by the use of flammable solvents in the liquid electrolyte; to wit, acetonitrile. The purpose of the research conducted in this effort was to identify useful compositions of magnesium salts and polyphosphate solvents that would enable magnesium ions to be cycled within a secondary battery design. The polyphosphate solvents would provide the solvent for the magnesium salts while preventing the electrolyte from being flammable. This would enable these novel electrolytes to be considered as an alternative to THF-based electrolytes. In addition, we explored several of these solvents together with lithium slats for use as high voltage electrolytes for carbon-based electrochemical supercapacitors. The research was successful in that: 1) Magnesium imide dissolved in a phosphate ester solvent that contains a halogented phosphate ester appears to be the preferred electrolyte for a rechargeable Mg cell. 2) A combination of B-doped CNTs and vanadium phosphate appear to be the cathode of choice for a rechargeable Mg cell by virtue of higher voltage and better reversibility. 3) Magnesium alloys appear to perform better than pure magnesium when used in combination with the novel polyphosphate electrolytes. Also, this effort has established that Phoenix Innovation's family of phosphonate/phosphate electrolytes together with specific lithium slats can be used in supercapacitor systems at voltages of greater than 10V.

  8. Insights into the effects of solvent properties in graphene based electric double-layer capacitors with organic electrolytes

    Science.gov (United States)

    Zhang, Shuo; Bo, Zheng; Yang, Huachao; Yang, Jinyuan; Duan, Liangping; Yan, Jianhua; Cen, Kefa

    2016-12-01

    Organic electrolytes are widely used in electric double-layer capacitors (EDLCs). In this work, the microstructure of planar graphene-based EDLCs with different organic solvents are investigated with molecular dynamics simulations. Results show that an increase of solvent polarity could weaken the accumulation of counter-ions nearby the electrode surface, due to the screen of electrode charges and relatively lower ionic desolvation. It thus suggests that solvents with low polarity could be preferable to yield high EDL capacitance. Meanwhile, the significant effects of the size and structure of solvent molecules are reflected by non-electrostatic molecule-electrode interactions, further influencing the adsorption of solvent molecules on electrode surface. Compared with dimethyl carbonate, γ-butyrolactone, and propylene carbonate, acetonitrile with relatively small-size and linear structure owns weak non-electrostatic interactions, which favors the easy re-orientation of solvent molecules. Moreover, the shift of solvent orientation in surface layer, from parallel orientation to perpendicular orientation relative to the electrode surface, deciphers the solvent twin-peak behavior near negative electrode. The as-obtained insights into the roles of solvent properties on the interplays among particles and electrodes elucidate the solvent influences on the microstructure and capacitive behavior of EDLCs using organic electrolytes.

  9. Solvent sorting in (mixed solvent electrolyte) systems: Time-resolved ...

    Indian Academy of Sciences (India)

    lar solvents as an effective single component dipo- lar liquid that is characterized ... and time (t) dependent solvation energy of mobile dipo- lar solute with density ..... Even though this way for modification of C is purely ad- hoc, the observation ...

  10. Electrolyte Suitable for Use in a Lithium Ion Cell or Battery

    Science.gov (United States)

    McDonald, Robert C. (Inventor)

    2014-01-01

    Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.

  11. Interaction between like-charged colloidal particles in aqueous electrolyte solution: Attractive component arising from solvent granularity

    Directory of Open Access Journals (Sweden)

    R.Akiyama

    2007-12-01

    Full Text Available The potential of mean force (PMF between like-charged colloidal particles immersed in aqueous electrolyte solution is studied using the integral equation theory. Solvent molecules are modeled as neutral hard spheres, and ions and colloidal particles are taken to be charged hard spheres. The Coulomb potentials for ion-ion, ion-colloidal particle, and colloidal particle-colloidal particle pairs are divided by the dielectric constant of water. This simple model is employed to account for the effects of solvent granularity neglected in the so-called primitive model. The van der Waals attraction between colloidal particles, which is an essential constituent of conventional DLVO theory, is omitted in the present model. Nevertheless, when the electrolyte concentration is sufficiently high, attractive regions appear in the PMF. In particular, the interaction at small separations is significantly attractive and the contact of colloidal particles is stabilized. This interesting behavior arises from the effects of the translational motion of solvent molecules.

  12. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents.

    Science.gov (United States)

    Mazzini, Virginia; Craig, Vincent S J

    2017-10-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific

  13. Morphology and Doping Level of Electropolymerized Biselenophene-Flanked 3,4- Ethylenedioxythiophene Polymer: Effect of Solvents and Electrolytes

    International Nuclear Information System (INIS)

    Agrawal, Vikash; Shahjad; Bhardwaj, Dinesh; Bhargav, Ranoo; Sharma, Gauri Datt; Bhardwaj, Ramil Kumar; Patra, Asit; Chand, Suresh

    2016-01-01

    Highlights: • Biselenophene-flanked 3,4-ethylenedioxythiophene polymer films were obtained by electrochemical polymerization. • Supporting electrolyte has significant effect on the doping level, whereas electropolymerized solvent has a major effect on morphology of the polymer films. • Optoelectronic properties and morphology of the electropolymerized films were studied. • Density functional theory (DFT) calculation has been made for optoelectronic properties. - Abstract: Biselenophene-flanked 3,4-ethylenedioxythiophene (EDOT) based polymer films were obtained by electrochemical polymerization. The effects of polymerization conditions such as supporting electrolytes and solvents on doping level, optical property and morphology of the polymer films were systematically studied. Interestingly, we found that polymer prepared by using different supporting electrolytes (TBAPF 6 , TBABF 4 and TBAClO 4 ) has significant effects on the doping level of the polymer films, whereas electropolymerized solvents (acetonitrile and dichloromethane) has no such effects on doping level. The polymer films show reversible dedoping and doping behavior upon treatment with hydrazine hydrate and iodine respectively. Biselenophene-flanked EDOT polymer shows a band gap of about 1.6 eV which is comparable to poly(3,4- ethylenedioxythiophene) (PEDOT) and parent polyselenophene, whereas fine-tuning of HOMO and LUMO energy levels has been found. In contrast, we observed that electropolymerized solvent has a major effect on morphology of the polymer films, while supporting electrolyte has very minor effects on the morphology. The surface morphologies of the polymer films were characterized by scanning electron microscope (SEM) and atomic force microscope (AFM) techniques. We also present an efficient synthesis of bisthiophene-flanked bridged EDOT (ETTE), and biselenophene-flanked bridged EDOT (ESeSeE), and their electrochemical polymerization, characterizations and throughout comparison

  14. Li-Ion Electrolytes with Improved Safety and Tolerance to High-Voltage Systems

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, Surya; Krause, Frederick C.

    2013-01-01

    Given that lithium-ion (Li-ion) technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. Therefore, extensive effort has been devoted to developing nonflammable electrolytes to reduce the flammability of the cells/battery. A number of promising electrolytes have been developed incorporating flame-retardant additives, and have been shown to have good performance in a number of systems. However, these electrolyte formulations did not perform well when utilizing carbonaceous anodes with the high-voltage materials. Thus, further development was required to improve the compatibility. A number of Li-ion battery electrolyte formulations containing a flame-retardant additive [i.e., triphenyl phosphate (TPP)] were developed and demonstrated in high-voltage systems. These electrolytes include: (1) formulations that incorporate varying concentrations of the flame-retardant additive (from 5 to 15%), (2) the use of mono-fluoroethylene carbonate (FEC) as a co-solvent, and (3) the use of LiBOB as an electrolyte additive intended to improve the compatibility with high-voltage systems. Thus, improved safety has been provided without loss of performance in the high-voltage, high-energy system.

  15. Fluoro-Carbonate Solvents for Li-Ion Cells

    International Nuclear Information System (INIS)

    NAGASUBRAMANIAN, GANESAN

    1999-01-01

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF(sub 6) was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF(sub 6) electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to and lt;5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature

  16. Influence of solvent on the poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and the performance of quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wu, Jihuai; Lan, Zhang; Lin, Jianming; Huang, Miaoliang; Hao, Shancun; Fang, Leqing

    2007-01-01

    The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm -1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I 2 . By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm -2 (AM 1.5)

  17. Extended UNIQUAC model for correlation and prediction of vapour-liquid-solid equilibria in aqueous salt systems containing non-electrolytes

    DEFF Research Database (Denmark)

    Iliuta, Maria C.; Thomsen, Kaj; Rasmussen, Peter

    2000-01-01

    to aqueous salt systems containing non-electrolytes in order to demonstrate its ability in representing solid-liquid-vapour (SLV) equilibrium and thermal property data for these strongly non-ideal systems. The model requires only pure component and binary temperature-dependent interaction parameters....... The calculations are based on an extensive database consisting of salt solubility data in pure and mixed solvents, VLE data for solvent mixtures and mixed solvent-electrolyte systems and thermal properties for mixed solvent solutions. Application of the model to the methanol-water system in the presence of several...... ions (Na+, K+, NH4+, Cl-, NO3-, SO42-, CO2- and HCO3-) shows that the Extended UNIQUAC model is able to give an accurate description of VLE and SLE in ternary add quaternary mixtures, using the name set of binary interaction parameters. The capability of the model to predict accurately the phase...

  18. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer

    Science.gov (United States)

    Puspitasari, Nurrisma; Nurul Amalia, Silviyanti S.; Yudoyono, Gatut; Endarko

    2017-07-01

    Dye Sensitized Solar Cell (DSSC) using natural dyes (chlorophyll, curcumin from turmeric extract, and anthocyanin from mangosteen extract) have been successfully fabricated for determining the effect of variation natural dyes, mixing dyes and acetonitrile in electrolyte toward characterization of DSSC. DSSC consists of five parts namely ITO (Indium Tin Oxide) as a substrate; TiO2 as semiconductor materials; natural dyes as an electron donor; electrolyte as electron transfer; and carbon as a catalyst that can convert light energy into electric energy. Two types of gel electrolyte based on PEG that mixed with liquid electrolyte have utilized for analyzing the lifetime of DSSC. Type I used distilled water as a solvent whilst type II used acetonitrile as a solvent with addition of concentration of KI and iodine. The main purpose of study was to investigate influence of solvent in electrolyte, variation of natural dyes and mixing dyes toward an efficiency that resulted by DSSC. The result showed that electrolyte type II is generally better than type I with efficiency 0,0556 and 0,0456 %, respectively. An efficiency values which resulted from a variation of mixed three natural dyes showed the greatest efficiency compared to mixed two natural dyes and one dye, with an efficiency value can be achieved at 0,0194 % for chlorophyll; 0,111 % for turmeric; 0,0105 % for mangosteen; 0,0244% (mangosteen and chlorophyll); 0,0117 % (turmeric and mangosteen); 0,0158 % (turmeric and chlorophyll); and 0.0566 % (mixed three natural dyes).

  19. Organosilicon-Based Electrolytes for Long-Life Lithium Primary Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fenton, Kyle R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Nagasubramanian, Ganesan [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Staiger, Chad L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Pratt, III, Harry D. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Rempe, Susan B. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Leung, Kevin [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Chaudhari, Mangesh I. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Anderson, Travis Mark [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    This report describes advances in electrolytes for lithium primary battery systems. Electrolytes were synthesized that utilize organosilane materials that include anion binding agent functionality. Numerous materials were synthesized and tested in lithium carbon monofluoride battery systems for conductivity, impedance, and capacity. Resulting electrolytes were shown to be completely non-flammable and showed promise as co-solvents for electrolyte systems, due to low dielectric strength.

  20. The effect of solvent component on the discharge performance of Lithium-sulfur cell containing various organic electrolytes

    International Nuclear Information System (INIS)

    Kim, Seok; Jung, Yongju; Lim, Hong S.

    2004-01-01

    The effect of solvent component on the discharge performance of lithium-sulfur (Li/S) cell and the optimal composition of ternary electrolyte for the improved discharge performance of the cell have been investigated. The capacity value and capacity stability with cycle are dependent on the nature of solvent as well as the composition of mixed solvent. The change trend of discharge performance as a function of content of each solvent component is studied. Capacity value increases as the 1,3-dioxolane (DOX) content decreases. Average discharge voltage shows larger value when the 1,2-dimethoxy ethane (DME) content is small. Finally, we have obtained the optimal solvent composition by using a statistical method

  1. The use of deuterated ethyl acetate in highly concentrated electrolyte as a low-cost solvent for in situ neutron diffraction measurements of Li-ion battery electrodes

    International Nuclear Information System (INIS)

    Petibon, R.; Li, Jing; Sharma, Neeraj; Pang, Wei Kong; Peterson, Vanessa K.; Dahn, J.R.

    2015-01-01

    A low-cost deuterated electrolyte suitable for in situ neutron diffraction measurements of normal and high voltage Li-ion battery electrodes is reported here. Li[Ni 0.4 Mn 0.4 Co 0.2 ]O 2 /graphite (NMC(442)/graphite) pouch cells filled with 1:0.1:2 (molar ratio) of lithium bis(fluorosulfonyl) imide (LiFSi):LiPF 6 : ethyl acetate (EA) and LiFSi:LiPF 6 :deuterated EA (d8-EA) electrolytes were successfully cycled between 2.8 V and 4.7 V at 40°C for 250 h without significant capacity loss, polarization growth, or gas production. The signal-to-noise ratio of neutron powder diffraction patterns taken on NMC(442) powder with a conventional deuterated organic carbonate-based electrolyte and filled with LiFSi:LiPF 6 :d8-EA electrolyte were virtually identical. Out of all the solvents widely available in deuterated form tested in highly-concentrated systems, EA was the only one providing a good balance between cost and charge-discharge capacity retention to 4.7 V. The use of such an electrolyte blend would half the cost of deuterated solvents needed for in situ neutron diffraction measurements of Li-ion batteries compared to conventional deuterated carbonate-based electrolytes

  2. Microfluidic process monitor for industrial solvent extraction system

    Science.gov (United States)

    Gelis, Artem; Pereira, Candido; Nichols, Kevin Paul Flood

    2016-01-12

    The present invention provides a system for solvent extraction utilizing a first electrode with a raised area formed on its surface, which defines a portion of a microfluidic channel; a second electrode with a flat surface, defining another portion of the microfluidic channel that opposes the raised area of the first electrode; a reversibly deformable substrate disposed between the first electrode and second electrode, adapted to accommodate the raised area of the first electrode and having a portion that extends beyond the raised area of the first electrode, that portion defining the remaining portions of the microfluidic channel; and an electrolyte of at least two immiscible liquids that flows through the microfluidic channel. Also provided is a system for performing multiple solvent extractions utilizing several microfluidic chips or unit operations connected in series.

  3. Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries

    International Nuclear Information System (INIS)

    Barchasz, Céline; Leprêtre, Jean-Claude; Patoux, Sébastien; Alloin, Fannie

    2013-01-01

    Highlights: ► Liquid electrolyte composition for lithium/sulfur secondary batteries. ► Carbonate-based electrolytes prove not to be compatible with the sulfur electrode. ► Poor electrochemical performances related to low polysulfide solubility. ► Increase in the discharge capacity using ether solvents with high solvating ability such as PEGDME. ► Evidence of DIOX polymerization during cycling. -- Abstract: The lithium/sulfur (Li/S) battery is a promising electrochemical system that has a high theoretical capacity of 1675 mAh g −1 . However, the system suffers from several drawbacks: poor active material conductivity, active material dissolution, and use of the highly reactive lithium metal electrode. In this study, we investigated the electrolyte effects on electrochemical performances of the Li/S cell, by acting on the solvent composition. As conventional carbonate-based electrolytes turned out to be unusable in Li/S cells, alternative ether solvents had to be considered. Different kinds of solvent structures were investigated by changing the ether/alkyl moieties ratio to vary the lithium polysulfide solubility. This allowed to point out the importance of the solvent solvation ability on the discharge capacity. As the end of discharge is linked to the positive electrode passivation, an electrolyte having high solvation ability reduces the polysulfide precipitation and delays the positive electrode passivation

  4. Poly(thieno[3,4–b]–1,4–oxathiane): Effect of solvent on the chemical synthesis and capacitance comparison in different electrolytes

    International Nuclear Information System (INIS)

    Wang, Zhipeng; Mo, Daize; Ma, Xiumei; Xu, Jingkun; Zhou, Weiqiang; Jiang, Qinglin; Feng, Zilan; Xiong, Jinhua; Zhu, Danhua; Zhou, Qianjie

    2015-01-01

    Graphical abstract: The electrochemical capacitance performance of PEOTT electrode from water was comparatively investigated using cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscope methods in the four solvent-electrolyte systems, i.e., H 2 O–H 2 SO 4 , H 2 O–HClO 4 , H 2 O–LiClO 4 , and ACN–LiClO 4 . The results revealed that the specific capacitance of PEOTT electrode was superior in acidic aqueous electrolytes than that in neutral pH aqueous or organic electrolyte. With these results, it is implied that PEOTT electrode employing HClO 4 aqueous electrolyte may be a promising electrode for supercapacitor applications. - Highlights: • A PEDOT sulfur analog was synthesized via chemical oxidation method firstly. • Effect of solvent on polymer structure was evaluated. • Effect of electrolyte on the capacitance performance was investigated. • PEOTT should be a promising supercapacitor material. - Abstract: Thieno[3,4-b]-1,4-oxathiane (EOTT), one asymmetrical analog of 3,4-ethylenedioxythiophene (EDOT), was synthesized and its chemical oxidative polymerization was carried out in different solvents (dichloromethane, water, and acetonitrile (CH 2 Cl 2 , H 2 O, and ACN)). The effect of the solvent on the structure, crystalline characteristic, morphology, and thermal stability of poly(thieno[3,4-b]-1,4-oxathiane) (PEOTT) were investigated by fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetry, respectively. PEOTT prepared from H 2 O exhibited higher electrical conductivity (∼10 0 S/cm) and more robust thermal stability. The electrochemical capacitance performance of PEOTT electrode in ACN–LiClO 4 was initially found dissatisfactory. Furthermore, the electrochemical properties of this electrode in another three aqueous electrolytes (H 2 SO 4 , HClO 4 , and LiClO 4 ) were also investigated comparatively by cyclic

  5. Minimization of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion Batteries.

    Science.gov (United States)

    Chen, Yen-Ming; Hsu, Shih-Ting; Tseng, Yu-Hsien; Yeh, Te-Fu; Hou, Sheng-Shu; Jan, Jeng-Shiung; Lee, Yuh-Lang; Teng, Hsisheng

    2018-03-01

    This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + -ion mobility of a gel polymer electrolyte (GPE) for lithium-ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile-co-vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3-11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion-solvent clusters and immobilize PF6- anions, affording the GPE a high ionic conductivity and a high Li + -ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge-discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion-solvent clusters and degree of Li + -ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li-metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion-solvent coordination in GPEs and thus improve the performance and lifespan of LIBs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Formation of Reversible Solid Electrolyte Interface on Graphite Surface from Concentrated Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Dongping; Tao, Jinhui; Yan, Pengfei; Henderson, Wesley A.; Li, Qiuyan; Shao, Yuyan; Helm, Monte L.; Borodin, Oleg; Graff, Gordon L.; Polzin, Bryant; Wang, Chong-Min; Engelhard, Mark; Zhang, Ji-Guang; De Yoreo, James J.; Liu, Jun; Xiao, Jie

    2017-02-10

    Interfacial phenomena have always been key determinants for the performance of energy storage technologies. The solid electrolyte interfacial (SEI) layer, pervasive on the surfaces of battery electrodes for numerous chemical couples, directly affects the ion transport, charge transfer and lifespan of the entire energy system. Almost all SEI layers, however, are unstable resulting in the continuous consumption of the electrolyte. Typically, this leads to the accumulation of degradation products on/restructuring of the electrode surface and thus increased cell impedance, which largely limits the long-term operation of the electrochemical reactions. Herein, a completely new SEI formation mechanism has been discovered, in which the electrolyte components reversibly self-assemble into a protective surface coating on a graphite electrode upon changing the potential. In contrast to the established wisdom regarding the necessity of employing the solvent ethylene carbonate (EC) to form a protective SEI layer on graphite, a wide range of EC-free electrolytes are demonstrated for the reversible intercalation/deintercalation of Li+ cations within a graphite lattice, thereby providing tremendous flexibility in electrolyte tailoring for battery couples. This novel finding is broadly applicable and provides guidance for how to control interfacial reactions through the relationship between ion aggregation and solvent decomposition at polarized interfaces.

  7. Electrolyte for a lithium/thionyl chloride electric cell, a method of preparing said electrolyte and an electric cell which includes said electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gabano, J.

    1983-03-01

    An electrolyte for an electric cell whose negative active material is constituted by lithium and whose positive active material is constituted by thionyl chloride. The electrolyte contains at least one solvent and at least one solute, said solvent being thionyl chloride and said solute being chosen from the group which includes lithium tetrachloroaluminate and lithium hexachloroantimonate. According to the invention said electrolyte further includes a complex chosen from the group which includes AlCl/sub 3/,SO/sub 2/ and SbCl/sub 5/,SO/sub 2/. The voltage rise of electric cells which include such an electrolyte takes negligible time.

  8. Influence of solvent polarization and non-uniform ion size on electrostatic properties between charged surfaces in an electrolyte solution

    Science.gov (United States)

    Sin, Jun-Sik

    2017-12-01

    In this paper, we study electrostatic properties between two similar or oppositely charged surfaces immersed in an electrolyte solution by using the mean-field approach accounting for solvent polarization and non-uniform size effects. Applying a free energy formalism accounting for unequal ion sizes and orientational ordering of water dipoles, we derive coupled and self-consistent equations to calculate electrostatic properties between charged surfaces. Electrostatic properties for similarly charged surfaces depend on the counterion size but not on the coion size. Moreover, electrostatic potential and osmotic pressure between similarly charged surfaces are found to be increased with increasing counterion size. On the other hand, the corresponding ones between oppositely charged surfaces are related to both sizes of positive and negative ions. For oppositely charged surfaces, the electrostatic potential, number density of solvent molecules, and relative permittivity of an electrolyte having unequal ion sizes are not symmetric about the centerline between the charged surfaces. For either case, the consideration of solvent polarization results in a decrease in the electrostatic potential and the osmotic pressure compared to the case without the effect.

  9. Molecular Level Structure and Dynamics of Electrolytes Using 17O Nuclear Magnetic Resonance Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Vijayakumar; Han, Kee Sung; Hu, Jianzhi; Mueller, Karl T.

    2017-03-19

    Electrolytes help harness the energy from electrochemical processes by serving as solvents and transport media for redox-active ions. Molecular-level interactions between ionic solutes and solvent molecules – commonly referred to as solvation phenomena – give rise to many functional properties of electrolytes such as ionic conductivity, viscosity, and stability. It is critical to understand the evolution of solvation phenomena as a function of competing counterions and solvent mixtures to predict and design the optimal electrolyte for a target application. Probing oxygen environments is of great interest as oxygens are located at strategic molecular sites in battery solvents and are directly involved in inter- and intramolecular solvation interactions. NMR signals from 17O nuclei in battery electrolytes offer nondestructive bulk measurements of isotropic shielding, electric field gradient tensors, and transverse and longitudinal relaxation rates, which are excellent means for probing structure, bonding, and dynamics of both solute and solvent molecules. This article describes the use of 17O NMR spectroscopy in probing the solvation structures of various electrolyte systems ranging from transition metal ions in aqueous solution to lithium cations in organic solvent mixtures.

  10. Mechanistic Study of Electrolyte Additives to Stabilize High-Voltage Cathode–Electrolyte Interface in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Han [Chemical; Maglia, Filippo [BMW Group, Munich 80788, Germany; Lamp, Peter [BMW Group, Munich 80788, Germany; Amine, Khalil [Chemical; Chen, Zonghai [Chemical

    2017-12-13

    Current developments of electrolyte additives to stabilize electrode-electrolyte interface in Li-ion batteries highly rely on a trial-and-error search, which involves repetitive testing and intensive amount of resources. The lack of understandings on the fundamental protection mechanisms of the additives significantly increases the difficulty for the transformational development of new additives. In this study, we investigated two types of individual protection routes to build a robust cathode-electrolyte interphase at high potentials: (i) a direct reduction in the catalytic decomposition of the electrolyte solvent; and (ii) formation of a “corrosion inhibitor film” that prevents severely attack and passivation from protons that generated from the solvent oxidation, even the decomposition of solvent cannot not mitigated. Effect of three exemplary electrolyte additives: (i) lithium difluoro(oxalato)borate (LiDFOB); (ii) 3-hexylthiophene (3HT); and (iii) tris(hexafluoro-iso-propyl)phosphate (HFiP), on LiNi0.6Mn0.2Co0.2O2 (NMC 622) cathode were investigated to validate our hypothesis. It is demonstrated that understandings of both electrolyte additives and solvent are essential and careful balance between the cathode protection mechanism of additives and their side effects is critical to obtain optimum results. More importantly, this study opens up new directions of rational design of functional electrolyte additives for the next generation high-energy density lithium-ion chemistries.

  11. High flash point electrolyte for use in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Isken, P.; Dippel, C.; Schmitz, R.; Schmitz, R.W.; Kunze, M.; Passerini, S.; Winter, M. [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany); Lex-Balducci, A., E-mail: a.lex-balducci@uni-muenster.de [Institute of Physical Chemistry, Westfaelische Wilhelms-University Muenster, Corrensstrasse 28/30, 48149 Muenster (Germany)

    2011-09-01

    Highlights: > Substitution of linear carbonates in conventional electrolytes with adiponitrile allows the realization of high flash point electrolytes. > EC:ADN based electrolytes display a higher anodic stability than a conventional electrolyte based on EC:DEC. > Graphite and NCM electrodes used in combination with the EC:ADN based electrolyte display a performance comparable with that of conventional electrolytes. - Abstract: The high flash point solvent adiponitrile (ADN) was investigated as co-solvent with ethylene carbonate (EC) for use as lithium-ion battery electrolyte. The flash point of this solvent mixture was more than 110 deg. C higher than that of conventional electrolyte solutions involving volatile linear carbonate components, such as diethyl carbonate (DEC) or dimethyl carbonate (DMC). The electrolyte based on EC:ADN (1:1 wt) with lithium tetrafluoroborate (LiBF{sub 4}) displayed a conductivity of 2.6 mS cm{sup -1} and no aluminum corrosion. In addition, it showed higher anodic stability on a Pt electrode than the standard electrolyte 1 M lithium hexafluorophosphate (LiPF{sub 6}) in EC:DEC (3:7 wt). Graphite/Li half cells using this electrolyte showed excellent rate capability up to 5C and good cycling stability (more than 98% capacity retention after 50 cycles at 1C). Additionally, the electrolyte was investigated in NCM/Li half cells. The cells were able to reach a capacity of 104 mAh g{sup -1} at 5C and capacity retention of more than 97% after 50 cycles. These results show that an electrolyte with a considerably increased flash point with respect to common electrolyte systems comprising linear carbonates, could be realized without any negative effects on the electrochemical performance in Li-half cells.

  12. Electrolytes for lithium ion batteries

    Science.gov (United States)

    Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

    2014-08-05

    A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

  13. Solid polymer electrolyte lithium batteries

    Science.gov (United States)

    Alamgir, Mohamed; Abraham, Kuzhikalail M.

    1993-01-01

    This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

  14. "Solvent-in-salt" systems for design of new materials in chemistry, biology and energy research.

    Science.gov (United States)

    Azov, Vladimir A; Egorova, Ksenia S; Seitkalieva, Marina M; Kashin, Alexey S; Ananikov, Valentine P

    2018-02-21

    Inorganic and organic "solvent-in-salt" (SIS) systems have been known for decades but have attracted significant attention only recently. Molten salt hydrates/solvates have been successfully employed as non-flammable, benign electrolytes in rechargeable lithium-ion batteries leading to a revolution in battery development and design. SIS with organic components (for example, ionic liquids containing small amounts of water) demonstrate remarkable thermal stability and tunability, and present a class of admittedly safer electrolytes, in comparison with traditional organic solvents. Water molecules tend to form nano- and microstructures (droplets and channel networks) in ionic media impacting their heterogeneity. Such microscale domains can be employed as microreactors for chemical and enzymatic synthesis. In this review, we address known SIS systems and discuss their composition, structure, properties and dynamics. Special attention is paid to the current and potential applications of inorganic and organic SIS systems in energy research, chemistry and biochemistry. A separate section of this review is dedicated to experimental methods of SIS investigation, which is crucial for the development of this field.

  15. Lithium-Ion Electrolytes with Improved Safety Tolerance to High Voltage Systems

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick C. (Inventor)

    2015-01-01

    The invention discloses various embodiments of electrolytes for use in lithium-ion batteries, the electrolytes having improved safety and the ability to operate with high capacity anodes and high voltage cathodes. In one embodiment there is provided an electrolyte for use in a lithium-ion battery comprising an anode and a high voltage cathode. The electrolyte has a mixture of a cyclic carbonate of ethylene carbonate (EC) or mono-fluoroethylene carbonate (FEC) co-solvent, ethyl methyl carbonate (EMC), a flame retardant additive, a lithium salt, and an electrolyte additive that improves compatibility and performance of the lithium-ion battery with a high voltage cathode. The lithium-ion battery is charged to a voltage in a range of from about 2.0 V (Volts) to about 5.0 V (Volts).

  16. The commercialization of the FENIX iron control system for purifying copper electrowinning electrolytes

    Science.gov (United States)

    Shaw, D. R.; Dreisinger, D. B.; Lancaster, T.; Richmond, G. D.; Tomlinson, M.

    2004-07-01

    The FENIX Hydromet Iron Control System was installed at Western Metals Copper Ltd.’s Mt. Gordon Operations in Queensland, Australia. The system uses a novel and patented ion-exchange resin to selectively remove iron from copper electrolyte at the solvent extraction/electrowinning plant. At Mt. Gordon, the system delivered significant savings in reagent consumption (acid and cobalt sulfate for electrowinning and lime for neutralization of the raffinate bleed) and has the potential to deliver higher current efficiencies in copper electrowinning, leading to increased copper production.

  17. Fire-extinguishing organic electrolytes for safe batteries

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Watanabe, Eriko; Takada, Koji; Tateyama, Yoshitaka; Yamada, Atsuo

    2018-01-01

    Severe safety concerns are impeding the large-scale employment of lithium/sodium batteries. Conventional electrolytes are highly flammable and volatile, which may cause catastrophic fires or explosions. Efforts to introduce flame-retardant solvents into the electrolytes have generally resulted in compromised battery performance because those solvents do not suitably passivate carbonaceous anodes. Here we report a salt-concentrated electrolyte design to resolve this dilemma via the spontaneous formation of a robust inorganic passivation film on the anode. We demonstrate that a concentrated electrolyte using a salt and a popular flame-retardant solvent (trimethyl phosphate), without any additives or soft binders, allows stable charge-discharge cycling of both hard-carbon and graphite anodes for more than 1,000 cycles (over one year) with negligible degradation; this performance is comparable or superior to that of conventional flammable carbonate electrolytes. The unusual passivation character of the concentrated electrolyte coupled with its fire-extinguishing property contributes to developing safe and long-lasting batteries, unlocking the limit toward development of much higher energy-density batteries.

  18. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    Science.gov (United States)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  19. Ionic liquid electrolytes for dye-sensitized solar cells.

    Science.gov (United States)

    Gorlov, Mikhail; Kloo, Lars

    2008-05-28

    The potential of room-temperature molten salts (ionic liquids) as solvents for electrolytes for dye-sensitized solar cells has been investigated during the last decade. The non-volatility, good solvent properties and high electrochemical stability of ionic liquids make them attractive solvents in contrast to volatile organic solvents. Despite this, the relatively high viscosity of ionic liquids leads to mass-transport limitations. Here we review recent developments in the application of different ionic liquids as solvents or components of liquid and quasi-solid electrolytes for dye-sensitized solar cells.

  20. Novel polymeric systems for lithium ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-PietraSanta, F.

    2005-01-01

    Cross-linked, self-supporting, membranes for lithium ion battery gel electrolytes were obtained by cross-linking a mixture of polyfluorosilicone (PFSi) and polysilicone containing ethylene oxide (EO) units [P(Si-EO)]. The membranes were also reinforced with nanosized silica. The two polymer precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional, polymer matrices. The precursors were dissolved in a common solvent and cross-linked to obtain free-standing PFSi/P(Si-EO):SiO 2 composite films. The latter were undergone to swelling processes in (non-aqueous, aprotic, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. The properties of the swelled PFSi/P(Si-EO):SiO 2 samples were evaluated as a function of the electrolytic solutions and the dipping time. The PFSi/P(Si-EO):SiO 2 membranes exhibited large swelling properties, high ionic conductivity and good electrochemical stability

  1. Instability of Ionic Liquid-Based Electrolytes in Li−O2 Batteries

    DEFF Research Database (Denmark)

    Das, Supti; Højberg, Jonathan; Knudsen, Kristian Bastholm

    2015-01-01

    Ionic liquids (ILs) have been proposed as promising solvents for Li−air battery electrolytes. Here, several ILs have been investigated using differential electrochemical mass spectrometry (DEMS) to investigate the electrochemical stability in a Li−O2 system, by means of quantitative determination...... of the rechargeability (OER/ORR), and thereby the Coulombic efficiency of discharge and charge. None of the IL-based electrolytes are found to behave as needed for a functional Li−O2 battery but perform better than commonly used organic solvents. Also the extent of rechargeability/reversibility has been found...

  2. PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries

    DEFF Research Database (Denmark)

    Miao, Ruiying; Liu, Bowen; Zhu, Zhongzheng

    2008-01-01

    As a potential electrolyte for lithium-ion batteries, a porous polymer electrolyte membrane based on poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP) was prepared by a phase inversion method. The casting solution, effects of the solvent and non-solvent and addition of micron scale TiO2...... particles were investigated. The membranes were characterized by SEM, XRD, AC impedance, and charge/discharge tests. By using acetone as the solvent and water as the non-solvent, the prepared membranes showed good ability to absorb and retain the lithium ion containing electrolyte. Addition of micron TiO2...

  3. Effect of solvent blending on cycling characteristics of lithium

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masayuki; Matsuda, Yoshiharu

    1987-07-01

    The suitability of electrolytes using mixed solvents has been examined for ambient temperature, rechargeable lithium batteries. Sulfolane (S) and dimethylsulfoxide (DMSO) have been used as base solvents because of their high permittivity, and ethers such as 1,2-dimethoxyethane (DME) have been blended as a low viscosity co-solvent. This blending has been found to yield electrolytes with a high conductivity, and maximum values are observed in solutions with 40-90 mol% ether. The cycling characteristics of lithium are also improved by blending the ethers. The coulombic efficiencies on a nickel substrate are greater than or equal to 80% in S-DME/LiPF/sub 6/ and DMSO-DME/LiPF/sub 6/ solutions. The lithium electrode characteristics are markedly dependent on the type of co-solvent ether, as well as on the electrolytic salt. The results of the conductance behaviour and the electrode characteristics are discussed in terms of ionic structure in the mixed solvent and the state of the electrode/electrolyte interphase.

  4. Electrolyte materials - Issues and challenges

    International Nuclear Information System (INIS)

    Balbuena, Perla B.

    2014-01-01

    Electrolytes are vital components of an electrochemical energy storage device. They are usually composed of a solvent or mixture of solvents and a salt or a mixture of salts which provide the appropriate environment for ionic conduction. One of the main issues associated with the selection of a proper electrolyte is that its electronic properties have to be such that allow a wide electrochemical window - defined as the voltage range in which the electrolyte is not oxidized or reduced - suitable to the battery operating voltage. In addition, electrolytes must have high ionic conductivity and negligible electronic conductivity, be chemically stable with respect to the other battery components, have low flammability, and low cost. Weak stability of the electrolyte against oxidation or reduction leads to the formation of a solid-electrolyte interphase (SEI) layer at the surface of the cathode and anode respectively. Depending on the materials of the electrolyte and those of the electrode, the SEI layer may be composed by combinations of organic and inorganic species, and it may exert a passivating role. In this paper we discuss the current status of knowledge about electrolyte materials, including non-aqueous liquids, ionic liquids, solid ceramic and polymer electrolytes. We also review the basic knowledge about the SEI layer formation, and challenges for a rational design of stable electrolytes

  5. Electrochemical Properties and Speciation in Mg(HMDS)2-Based Electrolytes for Magnesium Batteries as a Function of Ethereal Solvent Type and Temperature.

    Science.gov (United States)

    Merrill, Laura C; Schaefer, Jennifer L

    2017-09-19

    Magnesium batteries are a promising alternative to lithium-ion batteries due to the widespread abundance of magnesium and its high specific volumetric energy capacity. Ethereal solvents such as tetrahydrofuran (THF) are commonly used for magnesium-ion electrolytes due to their chemical compatibility with magnesium metal, but the volatile nature of THF is a concern for practical application. Herein, we investigate magnesium bis(hexamethyldisilazide) plus aluminum chloride (Mg(HMDS) 2 -AlCl 3 ) electrolytes in THF, diglyme, and tetraglyme at varying temperature. We find that, despite the higher thermal stability of the glyme-based electrolytes, THF-based electrolytes have better reversibility at room temperature. Deposition/stripping efficiency is found to be a strong function of temperature. Diglyme-based Mg(HMDS) 2 -AlCl 3 electrolytes are found to not exchange as quickly as THF and tetraglyme, stabilizing AlCl 2 + and facilitating undesired aluminum deposition. Raman spectroscopy, 27 Al NMR, and mass spectrometry are used to identify solution speciation.

  6. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Sarker, Subrata; Nath, Narayan Chandra Deb [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Choi, Seung-Woo [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Ahammad, A.J. Saleh [Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Lee, Jae-Joon, E-mail: jjlee@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of); Department of Advanced Technology Fusion, Konkuk University, Seoul (Korea, Republic of); Kim, Whan-Gi, E-mail: wgkim@kku.ac.k [Department of Applied Chemistry, Konkuk University, 322 Danwol-dong, 380-701 Chungju (Korea, Republic of)

    2010-01-25

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  7. Synthesis of a novel imidazolium-based electrolytes and application for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Dong-Wan; Sarker, Subrata; Nath, Narayan Chandra Deb; Choi, Seung-Woo; Ahammad, A.J. Saleh; Lee, Jae-Joon; Kim, Whan-Gi

    2010-01-01

    A series of new imidazolium-based oligomers with different length of a poly(ethylene glycol) moiety as a linker were synthesized and studied as electrolytes for dye-sensitized solar cell (DSSC). These oligomeric molecules are expected to have an intra- or inter-molecular hydrogen bonding interaction through its urethane and urea bonds. They can be used to prepare the liquid-type electrolytes for DSSC by dissolving them into conventional solvent system or to develop solvent-free electrolytes by incorporating an extra redox mediator and other functional materials together as additives. It was found that these oligomers could replace the cationic component of the conventional electrolytes and became the source of redox species when iodine is added. The photocurrent-voltage characteristics of DSSCs with the electrolytes containing these oligomers demonstrated that they can successfully replace the conventional ionic liquid-type electrolytes such as 1-methyl-3-propyl imidazolium iodide (PMII) in 3-methoxypropionitrile (MPN) if the length of the linker is optimized.

  8. Polymer Electrolytes

    Science.gov (United States)

    Hallinan, Daniel T.; Balsara, Nitash P.

    2013-07-01

    This review article covers applications in which polymer electrolytes are used: lithium batteries, fuel cells, and water desalination. The ideas of electrochemical potential, salt activity, and ion transport are presented in the context of these applications. Potential is defined, and we show how a cell potential measurement can be used to ascertain salt activity. The transport parameters needed to fully specify a binary electrolyte (salt + solvent) are presented. We define five fundamentally different types of homogeneous electrolytes: type I (classical liquid electrolytes), type II (gel electrolytes), type III (dry polymer electrolytes), type IV (dry single-ion-conducting polymer electrolytes), and type V (solvated single-ion-conducting polymer electrolytes). Typical values of transport parameters are provided for all types of electrolytes. Comparison among the values provides insight into the transport mechanisms occurring in polymer electrolytes. It is desirable to decouple the mechanical properties of polymer electrolyte membranes from the ionic conductivity. One way to accomplish this is through the development of microphase-separated polymers, wherein one of the microphases conducts ions while the other enhances the mechanical rigidity of the heterogeneous polymer electrolyte. We cover all three types of conducting polymer electrolyte phases (types III, IV, and V). We present a simple framework that relates the transport parameters of heterogeneous electrolytes to homogeneous analogs. We conclude by discussing electrochemical stability of electrolytes and the effects of water contamination because of their relevance to applications such as lithium ion batteries.

  9. Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure.

    Science.gov (United States)

    Borodin, Oleg; Ren, Xiaoming; Vatamanu, Jenel; von Wald Cresce, Arthur; Knap, Jaroslaw; Xu, Kang

    2017-12-19

    Electroactive interfaces distinguish electrochemistry from chemistry and enable electrochemical energy devices like batteries, fuel cells, and electric double layer capacitors. In batteries, electrolytes should be either thermodynamically stable at the electrode interfaces or kinetically stable by forming an electronically insulating but ionically conducting interphase. In addition to a traditional optimization of electrolytes by adding cosolvents and sacrificial additives to preferentially reduce or oxidize at the electrode surfaces, knowledge of the local electrolyte composition and structure within the double layer as a function of voltage constitutes the basis of manipulating an interphase and expanding the operating windows of electrochemical devices. In this work, we focus on how the molecular-scale insight into the solvent and ion partitioning in the electrolyte double layer as a function of applied potential could predict changes in electrolyte stability and its initial oxidation and reduction reactions. In molecular dynamics (MD) simulations, highly concentrated lithium aqueous and nonaqueous electrolytes were found to exclude the solvent molecules from directly interacting with the positive electrode surface, which provides an additional mechanism for extending the electrolyte oxidation stability in addition to the well-established simple elimination of "free" solvent at high salt concentrations. We demonstrate that depending on their chemical structures, the anions could be designed to preferentially adsorb or desorb from the positive electrode with increasing electrode potential. This provides additional leverage to dictate the order of anion oxidation and to effectively select a sacrificial anion for decomposition. The opposite electrosorption behaviors of bis(trifluoromethane)sulfonimide (TFSI) and trifluoromethanesulfonate (OTF) as predicted by MD simulation in highly concentrated aqueous electrolytes were confirmed by surface enhanced infrared

  10. Application of non-aqueous solvents to batteries. I Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc-bromine batteries

    Science.gov (United States)

    Singh, P.; White, K.; Parker, A. J.

    1983-11-01

    The properties of bromine/propionitrile solution are investigated with a view to its use as an electrolyte in zinc-bromine batteries which use circulating electrolyte. The solution, which forms a two-phase system with water, has higher conductivity than the oils formed by complexation of bromine with organic salts such as N,N-methoxymethyl methylpiperidinium bromide and N,N-ethyl methylmorpholinium bromide. The activity of bromine in the aqueous phase of the bromine-propionitrile/water, two-phase system is very low; thus, coulombic efficiencies greater than 85 percent are achieved. Zinc-bromine batteries containing this solvent system show good charge/discharge characteristics.

  11. Preparation and characterization of nanocomposite polymer electrolytes poly(vinylidone fluoride)/nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, Suci A.; Sulistyaningsih,; Putro, Alviansyah Z. A.; Widyanto, Nugroho F.; Jumari, Arif; Purwanto, Agus; Dyartanti, Endah R., E-mail: endahrd@uns.ac.id [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    Polymer electrolytes are defined as semi solid electrolytes used as separator in lithium ion battery. Separator used as medium for transfer ions and to prevent electrical short circuits in battery cells. To obtain the optimal battery performance, separator with high porosity and electrolyte uptake is required. This can reduce the resistance in the transfer of ions between cathode and anode. The main objective of this work is to investigate the impact of different solvent (Dimethyl acetamide (DMAc), N-methyl-2-pyrrolidone (NMP) and dimethyl formamide (DMF)), pore forming agent poly(vinylpyrolidone) (PVP) and nanoclay as filler in addition of membrane using phase inversion method on the morphology, porosity, electrolyte uptake and degree of crystallinity. The membrane was prepared by the phase inversion method by adding PVP and Nanoclay using different solvents. The phase inversion method was prepared by dissolving Nanoclay and PVP in solvent for 1-2 hours, and then add the PVDF with stirring for 4 hours at 60°C. The membranes were characterized by porosity test, electrolyte uptake test, scanning electron microscope (SEM), and X-ray diffraction (XRD). The results showed that DMAc as solvent gives the highest value of porosity and electrolyte uptake. The addition of nanoclay and PVP enlarge the size of the pores and reduce the degree of crystallinity. So, the usage of DMAc as solvent is better than NMP or DMF.

  12. Wide-Temperature Electrolytes for Lithium-Ion Batteries.

    Science.gov (United States)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S; Zheng, Jianming; Cartmell, Samuel S; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-06-07

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service-temperature range of lithium (Li)-ion batteries (LIBs). In this study, we report such wide-temperature electrolyte formulations by optimizing the ethylene carbonate (EC) content in the ternary solvent system of EC, propylene carbonate (PC), and ethyl methyl carbonate (EMC) with LiPF 6 salt and CsPF 6 additive. An extended service-temperature range from -40 to 60 °C was obtained in LIBs with lithium nickel cobalt aluminum oxide (LiNi 0.80 Co 0.15 Al 0.05 O 2 , NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room temperature and elevated temperatures were systematically investigated together with the ionic conductivity and phase-transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF 6 in EC-PC-EMC (1:1:8 by wt) with 0.05 M CsPF 6 , which was demonstrated in both coin cells of graphite∥NCA and 1 Ah pouch cells of graphite∥LiNi 1/3 Mn 1/3 Co 1/3 O 2 . This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the high capacity retention (68%) at -40 °C and C/5 rate, significantly higher than that (20%) of the conventional LIB electrolyte, and the nearly identical stable cycle life as the conventional LIB electrolyte at room temperature and elevated temperatures up to 60 °C.

  13. Order of wetting transitions in electrolyte solutions.

    Science.gov (United States)

    Ibagon, Ingrid; Bier, Markus; Dietrich, S

    2014-05-07

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  14. Structure and reaction of electrolytic solution. Denkaishitsu yoeki no kozo to hanno

    Energy Technology Data Exchange (ETDEWEB)

    Otaki, H. (Okazaki National Research Inst., Aichi (Japan))

    1990-07-05

    An electrolytic solution has been recognized as an ion transporting system since the oldest time in the history of electrochemistry, and the chemistry related thereto forms the most basic field of electrochemistry. In this article, the progress of chemistry concerning electrolytic solutions since M. Faraday is briefly stated, and in view of very scanty structural knowledge available on other solutions in comparison with the structure of water on which extensive studies have been made, the respective structures of such non-aqueous solutions as the mixed solvent of N,N-dimethylformamide (DMF)-acetonitrile (AN) and the mixed solvent of dimethylsulfoxide (DMSO)-2,2,2-triphloroethanol (TFE) are studied. In addition, concerning the solvation when ions exist in such a non-aqueous solvent mixed system, the selective solvation of Cu {sup 2+} ions in the DMF-AN and Cu {sup 2+} as well as Cl {sup {minus}} ions in the DMSO-TFE is respectively explained, and the solvent effect, etc. of Cu {sup 2+} ions and Cl {sup {minus}} ions on the complex forming reaction are discussed. 17 refs., 8 figs., 2 tabs.

  15. Physical properties of a new Deep Eutectic Solvent based on lithium bis[(trifluoromethyl)sulfonyl]imide and N-methylacetamide as superionic suitable electrolyte for lithium ion batteries and electric double layer capacitors

    International Nuclear Information System (INIS)

    Boisset, Aurélien; Jacquemin, Johan; Anouti, Mérièm

    2013-01-01

    Highlights: • Preparation of new Deep Eutectic Solvent (DES) based on N-methylacetamide and TFSI. • Characterization of conductivity, viscosity and thermal properties of DES. • DES presents a superionic character in Walden classification. • DES is suitable electrolyte for lithium ion batteries and electric double layer capacitors. -- Abstract: Herein we present a study on the physical/chemical properties of a new Deep Eutectic Solvent (DES) based on N-methylacetamide (MAc) and lithium bis[(trifluoromethyl)sulfonyl]imide (LiTFSI). Due to its interesting properties, such as wide liquid-phase range from −60 °C to 280 °C, low vapor pressure, and high ionic conductivity up to 28.4 mS cm −1 at 150 °C and at x LiTFSI = 1/4, this solution can be practically used as electrolyte for electrochemical storage systems such as electric double-layer capacitors (EDLCs) and/or lithium ion batteries (LiBs). Firstly, relationships between its transport properties (conductivity and viscosity) as a function of composition and temperature were discussed through Arrhenius’ Law and Vogel–Tamman–Fulcher (VTF) equations, as well as by using the Walden classification. From this investigation, it appears that this complex electrolyte possesses a number of excellent transport properties, like a superionic character for example. Based on which, we then evaluated its electrochemical performances as electrolyte for EDLCs and LiBs applications by using activated carbon (AC) and lithium iron phosphate (LiFePO 4 ) electrodes, respectively. These results demonstrate that this electrolyte has a good compatibility with both electrodes (AC and LiFePO 4 ) in each testing cell driven also by excellent electrochemical properties in specific capacitance, rate and cycling performances, indicating that the LiTFSI/MAc DES can be a promising electrolyte for EDLCs and LiBs applications especially for those requiring high safety and stability

  16. Probing potential Li-ion battery electrolyte through first principles simulation of atomic clusters

    Science.gov (United States)

    Kushwaha, Anoop Kumar; Sahoo, Mihir Ranjan; Nayak, Saroj

    2018-04-01

    Li-ion battery has wide area of application starting from low power consumer electronics to high power electric vehicles. However, their large scale application in electric vehicles requires further improvement due to their low specific power density which is an essential parameter and is closely related to the working potential windows of the battery system. Several studies have found that these parameters can be taken care of by considering different cathode/anode materials and electrolytes. Recently, a unique approach has been reported on the basis of cluster size in which the use of Li3 cluster has been suggested as a potential component of the battery electrode material. The cluster based approach significantly enhances the working electrode potential up to 0.6V in the acetonitrile solvent. In the present work, using ab-initio quantum chemical calculation and the dielectric continuum model, we have investigated various dielectric solvent medium for the suitable electrolyte for the potential component Li3 cluster. This study suggests that high dielectric electrolytic solvent (ethylene carbonate and propylene carbonate) could be better for lithium cluster due to improvement in the total electrode potential in comparison to the other dielectric solvent.

  17. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei

    2009-08-01

    Titanium carbide (TiC) is an extremely hard conducting ceramic material often used as a coating for titanium alloys as well as steel and aluminum components to improve their surface properties. In this study, conducting ceramic nanoparticles (CCNPs) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached 1.68%, which was higher than that without adding TiC (1.18%); however, cell efficiency decreased when the TiC content reached 1.0 wt%. The electrochemical impedance spectroscopy (EIS) technique was employed to analyze the interfacial resistance in DSSCs, and it was found that the resistance of the charge-transfer process at the Pt counter electrode (Rct1) decreased when up to 1.0 wt% TiC was added. Presumably, this was due to the formation of the extended electron transfer surface (EETS) which facilitates electron transfer to the bulk electrolyte, resulting in a decrease of the dark current, whereby the open-circuit potential (VOC) could be improved. Furthermore, a significant increase in the fill factor (FF) for all TiC additions was related to the decrease in the series resistance (RS) of the DSSCs. However, at 1.0 wt% TiC, the largest charge-transfer resistance at the TiO2/dye/electrolyte interface was observed and resulted from the poor penetration of the electrolyte into the porous TiO2. The long-term stability of DSSCs with a binary ionic liquid electrolyte, which is superior to that of an organic solvent-based electrolyte, was also studied. © 2009 Elsevier B.V. All rights reserved.

  18. A new three-particle-interaction model to predict the thermodynamic properties of different electrolytes

    International Nuclear Information System (INIS)

    Ge Xinlei; Wang Xidong; Zhang Mei; Seetharaman, Seshadri

    2007-01-01

    In this study, Guggenheim charging process, which involves the radial Boltzmann distribution, was introduced to develop a new predictive model with three parameters, ion-ion distance parameter, ion-solvent parameter, and solvation parameter. In this model, the ion-ion and ion-solvent molecule interaction are all included in the charging process, and it is independent of the temperature and solvent. This new model was applied to correlate the experimental data from literatures for 208 electrolytes aqueous solution at T = 298.15 K of which the concentration range is wide. The calculated results agreed well with the experimental ones for most electrolytes, especially for the prediction in high ionic strength. The estimation of solvation parameter S also gave that the solvation tendency for cations and anions follow a trend, which is in consistent with results published in literature. Investigations were also been made in calculations for electrolytes solutions at other temperatures and non-aqueous system, which proved this model was also feasible

  19. Virus-Assembled Flexible Electrode-Electrolyte Interfaces for Enhanced Polymer-Based Battery Applications

    Directory of Open Access Journals (Sweden)

    Ayan Ghosh

    2012-01-01

    Full Text Available High-aspect-ratio cobalt-oxide-coated Tobacco mosaic virus (TMV- assembled polytetrafluoroethylene (PTFE nonstick surfaces were integrated with a solvent-free polymer electrolyte to create an anode-electrolyte interface for use in lithium-ion batteries. The virus-assembled PTFE surfaces consisted primarily of cobalt oxide and were readily intercalated with a low-molecular-weight poly (ethylene oxide (PEO based diblock copolymer electrolyte to produce a solid anode-electrolyte system. The resulting polymer-coated virus-based system was then peeled from the PTFE backing to produce a flexible electrode-electrolyte component. Electrochemical studies indicated the virus-structured metal-oxide PEO-based interface was stable and displayed robust charge transfer kinetics. Combined, these studies demonstrate the development of a novel solid-state electrode architecture with a unique peelable and flexible processing attribute.

  20. Rebalancing electrolytes in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Pham, Ai Quoc

    2014-12-23

    Embodiments of redox flow battery rebalancing systems include a system for reacting an unbalanced flow battery electrolyte with a rebalance electrolyte in a first reaction cell. In some embodiments, the rebalance electrolyte may contain ferrous iron (Fe.sup.2+) which may be oxidized to ferric iron (Fe.sup.3+) in the first reaction cell. The reducing ability of the rebalance reactant may be restored in a second rebalance cell that is configured to reduce the ferric iron in the rebalance electrolyte back into ferrous iron through a reaction with metallic iron.

  1. Electrolytes for lithium and lithium-ion batteries

    CERN Document Server

    Jow, T Richard; Borodin, Oleg; Ue, Makoto

    2014-01-01

    Electrolytes for Lithium and Lithium-ion Batteries provides a comprehensive overview of the scientific understanding and technological development of electrolyte materials in the last?several years. This book covers key electrolytes such as LiPF6 salt in mixed-carbonate solvents with additives for the state-of-the-art Li-ion batteries as well as new electrolyte materials developed recently that lay the foundation for future advances.?This book also reviews the characterization of electrolyte materials for their transport properties, structures, phase relationships, stabilities, and impurities.

  2. A solvent/non-solvent system for achieving solution-processed multilayer organic light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yue; Wu, Zhaoxin, E-mail: zhaoxinwu@mail.xjtu.edu.cn; He, Lin; Jiao, Bo; Hou, Xun

    2015-08-31

    We developed a solvent/non-solvent system to fabricate the multilayer organic light-emitting devices (OLEDs) based on poly(N-vinylcarbazole) (PVK) by solution-process. This solvent system consists of both the solvent and non-solvent of PVK, in which fluorescent small molecules could be fully dissolved and directly spin-coated on top of the PVK layer; it could effectively avoid the redissolution of PVK during the spin-coating process of small molecules emitting layer. In the further investigation of this system, we also demonstrated the three-component solvent system, and found out that the third component, a less volatile solvent of PVK, was crucial for preparing a smoother interface between PVK and emitting layer. Compared with OLEDs through the vacuum deposition, the devices fabricated by solution-process from the solvent/non-solvent system showed comparable efficiency, which indicate that the solvent/non-solvent system can be used as an alternative process to prepare the polymer and small molecule multilayer devices through all-solution-process. - Highlights: • We fabricate the multilayer OLEDs by solution-process using a novel system. • We develop a solvent/non-solvent system of polymer (PVK) to avoid redissolution. • Small molecules could be fully dissolved and directly spin-coated on PVK layer. • The devices fabricated by the system and vacuum deposition show comparable efficiency.

  3. A Suitable Polysulfide Electrolyte for CdSe Quantum Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    H. K. Jun

    2013-01-01

    Full Text Available A polysulfide liquid electrolyte is developed for the application in CdSe quantum dot-sensitized solar cells (QDSSCs. A solvent consisting of ethanol and water in the ratio of 8 : 2 by volume has been found as the optimum solvent for preparing the liquid electrolytes. This solvent ratio appears to give higher cell efficiency compared to pure ethanol or water as a solvent. Na2S and S give rise to a good redox couple in the electrolyte for QDSSC operation, and the optimum concentrations required are 0.5 M and 0.1 M, respectively. Addition of guanidine thiocyanate (GuSCN to the electrolyte further enhances the performance. The QDSSC with CdSe sensitized electrode prepared using 7 cycles of successive ionic layer adsorption and reaction (SILAR produces an efficiency of 1.41% with a fill factor of 44% on using a polysulfide electrolyte of 0.5 M Na2S, 0.1 M S, and 0.05 M GuSCN in ethanol/water (8 : 2 by volume under the illumination of 100 mW/cm2 white light. Inclusion of small amount of TiO2 nanoparticles into the electrolyte helps to stabilize the polysulfide electrolyte and thereby improve the stability of the CdSe QDSSC. The CdSe QDs are also found to be stable in the optimized polysulfide liquid electrolyte.

  4. Non-aqueous electrolytes for lithium ion batteries

    Science.gov (United States)

    Chen, Zonghai; Amine, Khalil

    2015-11-12

    The present invention is generally related to electrolytes containing anion receptor additives to enhance the power capability of lithium-ion batteries. The anion receptor of the present invention is a Lewis acid that can help to dissolve LiF in the passivation films of lithium-ion batteries. Accordingly, one aspect the invention provides electrolytes comprising a lithium salt; a polar aprotic solvent; and an anion receptor additive; and wherein the electrolyte solution is substantially non-aqueous. Further there are provided electrochemical devices employing the electrolyte and methods of making the electrolyte.

  5. Abiotic systems for the catalytic treatment of solvent-contaminated water

    Energy Technology Data Exchange (ETDEWEB)

    Betterton, E.A.; Arnold, R.G.; Liu, Zhijie; Hollan, N. [Univ. of Arizona, Tucson, AZ (United States)] [and others

    1996-12-31

    Three abiotic systems are described that catalyze the reductive dehalogenation of heavily halogenated environmental pollutants, including carbon tetrachloride, trichloroethene, and perchloroethene. These systems include (a) an electrolytic reactor in which the potential on the working electrode (cathode) is fixed by using a potentiostat, (b) a light-driven system consisting of a semiconductor and (covalently attached) macrocycle that can accept light transmitted via an optical fiber, and a light-driven, two-solvent (isopropanol/acetone) system that promotes dehalogenation reactions via an unknown mechanism. Each is capable of accelerating reductive dehalogenation reactions to very high rates under laboratory conditions. Typically, millimolar concentrations of aqueous-phase targets can be dehalogenated in minutes to hours. The description of each system includes the elements of reaction mechanism (to the extent known), typical kinetic data, and a discussion of the feasibility of applying this technology for the in situ destruction of hazardous compounds. 14 refs., 11 figs., 2 tabs.

  6. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Optimized Li-Ion Electrolytes Containing Triphenyl Phosphate as a Flame-Retardant Additive

    Science.gov (United States)

    Smart, Marshall C.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Krause, Frederick C.

    2011-01-01

    A number of future NASA missions involving the exploration of the Moon and Mars will be human-rated and thus require high-specific-energy rechargeable batteries that possess enhanced safety characteristics. Given that Li-ion technology is the most viable rechargeable energy storage device for near-term applications, effort has been devoted to improving the safety characteristics of this system. There is also a strong desire to develop Li-ion batteries with improved safety characteristics for terrestrial applications, most notably for hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) automotive applications. Therefore, extensive effort has been devoted recently to developing non-flammable electrolytes to reduce the flammability of the cells/battery. A number of electrolyte formulations have been developed, including systems that (1) incorporate greater concentrations of the flame-retardant additive (FRA); (2) use di-2,2,2-trifluoroethyl carbonate (DTFEC) as a co-solvent; (3) use 2,2,2- trifluoroethyl methyl carbonate (TFEMC); (4) use mono-fluoroethylene carbonate (FEC) as a co-solvent and/or a replacement for ethylene carbonate in the electrolyte mixture; and (5) utilize vinylene carbonate as a "SEI promoting" electrolyte additive, to build on the favorable results previously obtained. To extend the family of electrolytes developed under previous work, a number of additional electrolyte formulations containing FRAs, most notably triphenyl phosphate (TPP), were investigated and demonstrated in experimental MCMB (mesocarbon micro beads) carbon- LiNi(0.8)Co(0.2)O2 cells. The use of higher concentrations of the FRA is known to reduce the flammability of the electrolyte solution, thus, a concentration range was investigated (i.e., 5 to 20 percent by volume). The desired concentration of the FRA is the highest amount tolerable without adversely affecting the performance in terms of reversibility, ability to operate over a wide temperature range, and

  9. Electrolyte compositions for lithium ion batteries

    Science.gov (United States)

    Sun, Xiao-Guang; Dai, Sheng; Liao, Chen

    2016-03-29

    The invention is directed in a first aspect to an ionic liquid of the general formula Y.sup.+Z.sup.-, wherein Y.sup.+ is a positively-charged component of the ionic liquid and Z.sup.- is a negatively-charged component of the ionic liquid, wherein Z.sup.- is a boron-containing anion of the following formula: ##STR00001## The invention is also directed to electrolyte compositions in which the boron-containing ionic liquid Y.sup.+Z.sup.- is incorporated into a lithium ion battery electrolyte, with or without admixture with another ionic liquid Y.sup.+X.sup.- and/or non-ionic solvent and/or non-ionic solvent additive.

  10. New Insights of Graphite Anode Stability in Rechargeable Batteries: Li-Ion Coordination Structures Prevail over Solid Electrolyte Interphases

    KAUST Repository

    Ming, Jun

    2018-01-04

    Graphite anodes are not stable in most noncarbonate solvents (e.g., ether, sulfoxide, sulfone) upon Li ion intercalation, known as an urgent issue in present Li ions and next-generation Li–S and Li–O2 batteries for storage of Li ions within the anode for safety features. The solid electrolyte interphase (SEI) is commonly believed to be decisive for stabilizing the graphite anode. However, here we find that the solvation structure of the Li ions, determined by the electrolyte composition including lithium salts, solvents, and additives, plays a more dominant role than SEI in graphite anode stability. The Li ion intercalation desired for battery operation competes with the undesired Li+–solvent co-insertion, leading to graphite exfoliation. The increase in organic lithium salt LiN(SO2CF3)2 concentration or, more effectively, the addition of LiNO3 lowers the interaction strength between Li+ and solvents, suppressing the graphite exfoliation caused by Li+–solvent co-insertion. Our findings refresh the knowledge of the well-known SEI for graphite stability in metal ion batteries and also provide new guidelines for electrolyte systems to achieve reliable and safe Li–S full batteries.

  11. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha; Choudhury, Snehashis; Archer, Lynden A.

    2015-01-01

    liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room

  12. Solid electrolytes

    Science.gov (United States)

    Abraham, Kuzhikalail M.; Alamgir, Mohamed

    1993-06-15

    This invention pertains to Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized (encapsulated) in a solid organic polymer matrix. In particular, this invention relates to solid polymer electrolytes derived by immobilizing complexes (solvates) formed between a Li salt such as LiAsF.sub.6, LiCF.sub.3 SO.sub.3 or LiClO.sub.4 and a mixture of aprotic organic solvents having high dielectric constants such as ethylene carbonate (EC) (dielectric constant=89.6) and propylene carbonate (PC) (dielectric constant=64.4) in a polymer matrix such as polyacrylonitrile, poly(tetraethylene glycol diacrylate), or poly(vinyl pyrrolidinone).

  13. Aminosilicone solvent recovery methods and systems

    Science.gov (United States)

    Spiry, Irina Pavlovna; Perry, Robert James; Wood, Benjamin Rue; Singh, Surinder Prabhjot; Farnum, Rachel Lizabeth; Genovese, Sarah Elizabeth

    2018-02-13

    The present invention is directed to aminosilicone solvent recovery methods and systems. The methods and systems disclosed herein may be used to recover aminosilicone solvent from a carbon dioxide containing vapor stream, for example, a vapor stream that leaves an aminosilicone solvent desorber apparatus. The methods and systems of the invention utilize a first condensation process at a temperature from about 80.degree. C. to about 150.degree. C. and a second condensation process at a temperature from about 5.degree. C. to about 75.degree. C. The first condensation process yields recovered aminosilicone solvent. The second condensation process yields water.

  14. Wide-Temperature Electrolytes for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qiuyan; Jiao, Shuhong; Luo, Langli; Ding, Michael S.; Zheng, Jianming; Cartmell, Samuel S.; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-05-26

    Formulating electrolytes with solvents of low freezing points and high dielectric constants is a direct approach to extend the service temperature range of lithium (Li)-ion batteries (LIBs), for which propylene carbonate (PC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl butyrate (MB) are excellent candidates. In this work, we report such low temperature electrolyte formulations by optimizing the content of ethylene carbonate (EC) in the EC-PC-EMC ternary solvent system with LiPF6 salt and CsPF6 additive. An extended service temperature range from 40°C to 60°C was obtained in LIBs with lithium nickel cobalt aluminum mixed oxide (LiNi0.80Co0.15Al0.05O2, NCA) as cathode and graphite as anode. The discharge capacities at low temperatures and the cycle life at room and elevated temperatures were systematically investigated in association with the ionic conductivity and phase transition behaviors. The most promising electrolyte formulation was identified as 1.0 M LiPF6 in EC-PC-EMC (1:1:8 by wt.) with 0.05 M CsPF6, which was demonstrated in both coin cells of graphite||NCA and 1 Ah pouch cells of graphite||LiNi1/3Mn1/3Co1/3O2. This optimized electrolyte enables excellent wide-temperature performances, as evidenced by the 68% capacity retention at 40C and C/5 rate, and nearly identical stable cycle life at room and elevated temperatures up to 60C.

  15. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    National Research Council Canada - National Science Library

    Florjanczyk, Zbigniew

    2008-01-01

    This project report concerns studies on the synthesis of new polymer electrolytes for application in lithium and lithium-ion batteries characterized by limited participation of anions in the transport...

  16. Solvent cleaning system and method for removing contaminants from solvent used in resin recycling

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two step solvent and carbon dioxide based system that produces essentially contaminant-free synthetic resin material and which further includes a solvent cleaning system for periodically removing the contaminants from the solvent so that the solvent can be reused and the contaminants can be collected and safely discarded in an environmentally safe manner.

  17. Electrochemical behavior of ionically crosslinked polyampholytic gel electrolytes

    International Nuclear Information System (INIS)

    Chen Wanyu; Tang Haitao; Ou Ziwei; Wang Hong; Yang Yajiang

    2007-01-01

    An ionic complex of anionic and cationic monomers was obtained by protonation of (N,N-diethylamino)ethylmethacrylate (DEA) with acrylic acid (AAc). Free radical copolymerization of the ionic complex and acrylamide (AAm), yielded the ionically crosslinked polyampholytic gel electrolytes [poly(AAc-DEA-AAm), designated as PADA] using two types of organic solvents containing a lithium salt. The PADA gel electrolyte exhibited good thermal stability shown by the DSC thermogram. The impedance analysis at temperatures ranging from -30 to 75 deg. C indicated that the ionic conductivities of the PADA gel electrolytes were rather close to those of liquid electrolytes. The temperature dependence of the ionic conductivities was found to be in accord with the Arrhenius equation. Moreover, the ionic conductivities of PADA gel electrolytes increased with an increase of the molar ratios of cationic/anionic monomers. The ionic conductivities of PADA gels prepared in solvent mixtures of propylene carbonate, ethyl methyl ether and dioxolane (3:1:1, v/v) were higher than those of PADA gels prepared in propylene carbonate only. Significantly, the ionic conductivities of two kinds of PADA gel electrolytes were in the range of 10 -3 and 10 -4 S cm -1 even at -30 deg. C. The electrochemical windows of PADA gel electrolytes measured by cyclic voltammetry were in the range from -1 V to 4.5 V

  18. Novelionic Polymer Electrolytes for Dye Sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    Li Wang; Shibi Fang; Yuan Lin

    2005-01-01

    @@ 1Introduction In recent years, dye-sensitized solar cells(DSC) based on nanocrystalline porous TiO2 films have attracted much attention because of their relatively higher efficiency and low cost compared with conventional inorganic photovoltaic devices[1]. This type of solar cell has achieved an impressive photo-to-energy conversion efficiency of over 10% where the electrolyte is volatile organic liquid solvents containing I-/I-3- as redox couple. Because of high volatilities, solvent losses occur during long-term operations, resulting in lowered DSC performances.And leakage of liquid electrolyte also limits the durability of DSC.

  19. Method of recovering phosphoric acid type decontaminating electrolytes by electrodeposition

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Wada, Koichi; Kobayashi, Toshio.

    1985-01-01

    Purpose: To recoving phosphoric acid type highly concentrated decontaminating liquid used for the electrolytic decontamination of contaminated equipments, components, etc in nuclear power plants or the like through electrodeposition by diaphragm electrolysis. Method: Before supplying phosphoric acid decontaminating liquid at high concentration used in the electrolytic decontaminating step to an electrodeposition recovering tank, phosphoric acid in the decontaminating electrolyte is extracted with solvents and decomposed liquid extracts (electrolyte reduced with the phosphoric acid component) are supplied to the cathode chamber of the electrodeposition recovering tank, where phosphoric acid is back-extracted with water from the solvents after extraction of phosphoric acid. Then, the back-extracted liquids (aqueous phosphoric acid solution scarcely containing metal ions) are sent to the anode chamber of the electrodeposition recovering tank. Metal ions in the liquid are captured by electrodeposition in the cathode chamber, as well as phosphoric acid in the liquids is concentrated to the initial concentration of the electrolyte in the anode chamber for reuse as the decontaminating electrolyte. As the phosphoric acid extracting agent used in the electrodeposition recovering step for the decontaminating electrolyte, water-insoluble and non-combustible tributyl phosphate (TBP) is most effective. (Horiuchi, T.)

  20. The physicochemical properties of a [DEME][TFSI] ionic liquid-based electrolyte and their influence on the performance of lithium–sulfur batteries

    International Nuclear Information System (INIS)

    Drvarič Talian, Sara; Bešter-Rogač, Marija; Dominko, Robert

    2017-01-01

    Electrolyte choice is an important decision on the quest for higher-energy batteries. Besides general guidelines on the required properties of an electrolyte suitable for use in lithium–sulfur batteries, the influence of more specific physicochemical properties on its characteristics is not well understood. For this purpose, binary mixtures based on the [DEME][TFSI] and dioxolane electrolyte system for lithium–sulfur batteries was investigated in this work. Selected physicochemical properties were determined for different mixtures of solvents and lithium salt concentrations. All the electrolytes prepared were also tested in the lithium–sulfur battery system. The capacity, Coulombic efficiency, overpotentials and impedance spectra were analyzed and a connection between them and the determined electrolyte properties elucidated. We show that the electrolyte's conductivity does not have a direct connection to any of the battery system properties measured. The highest specific capacities were obtained with batteries compromising 1.0 M LiTFSI and the highest ratio of dioxolane in the binary solvent mixture. On the other hand, the best Coulombic efficiencies were obtained with batteries having high ratios of ionic liquid. Resistance and overpotential are connected parameters and are a function of the ionic liquid content. None of the monitored parameters prevail, since the best electrochemical performance in terms of specific capacity and stability was obtained with the 1.0 M LiTFSI in X[DEME][TFSI] = 0.199 electrolyte.

  1. Prediction of Corrosion of Alloys in Mixed-Solvent Environments

    Energy Technology Data Exchange (ETDEWEB)

    Anderko, Andrzej [OLI Systems Inc. Morris Plains (United States); Wang, Peiming [OLI Systems Inc. Morris Plains (United States); Young, Robert D. [OLI Systems Inc. Morris Plains (United States); Riemer, Douglas P. [OLI Systems Inc. Morris Plains (United States); McKenzie, Patrice [OLI Systems Inc. Morris Plains (United States); Lencka, Malgorzata M. [OLI Systems Inc. Morris Plains (United States); Babu, Sudarsanam Suresh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Angelini, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2003-06-05

    Corrosion is much less predictable in organic or mixed-solvent environments than in aqueous process environments. As a result, US chemical companies face greater uncertainty when selecting process equipment materials to manufacture chemical products using organic or mixed solvents than when the process environments are only aqueous. Chemical companies handle this uncertainty by overdesigning the equipment (wasting money and energy), rather than by accepting increased risks of corrosion failure (personnel hazards and environmental releases). Therefore, it is important to develop simulation tools that would help the chemical process industries to understand and predict corrosion and to develop mitigation measures. To create such tools, we have developed models that predict (1) the chemical composition, speciation, phase equilibria, component activities and transport properties of the bulk (aqueous, nonaqueous or mixed) phase that is in contact with the metal; (2) the phase equilibria and component activities of the alloy phase(s) that may be subject to corrosion and (3) the interfacial phenomena that are responsible for corrosion at the metal/solution or passive film/solution interface. During the course of this project, we have completed the following: (1) Development of thermodynamic modules for calculating the activities of alloy components; (2) Development of software that generates stability diagrams for alloys in aqueous systems; these diagrams make it possible to predict the tendency of metals to corrode; (3) Development and extensive verification of a model for calculating speciation, phase equilibria and thermodynamic properties of mixed-solvent electrolyte systems; (4) Integration of the software for generating stability diagrams with the mixed-solvent electrolyte model, which makes it possible to generate stability diagrams for nonaqueous or mixed-solvent systems; (5) Development of a model for predicting diffusion coefficients in mixed-solvent electrolyte

  2. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  3. Complex hydrides as room-temperature solid electrolytes for rechargeable batteries

    DEFF Research Database (Denmark)

    Jongh, P. E. de; Blanchard, D.; Matsuo, M.

    2016-01-01

    A central goal in current battery research is to increase the safety and energy density of Li-ion batteries. Electrolytes nowadays typically consist of lithium salts dissolved in organic solvents. Solid electrolytes could facilitate safer batteries with higher capacities, as they are compatible...... electrolytes, discussing in detail LiBH4, strategies towards for fast room-temperature ionic conductors, alternative compounds, and first explorations of implementation of these electrolytes in all-solid-state batteries....

  4. Raman spectral and electrochemical studies of lithium/electrolyte interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Odziemkowski, M

    1922-01-01

    Cyclic voltammetry, corrosion potential-time transients and Normal Raman spectroscopy have been employed to characterize the lithium-lithium salt, organic solvent, interfacial region. An in-situ cutting technique was developed to expose lithium metal. In-situ optical and ex-situ scanning electron microscopy (SEM) have been used to examine the morphology of the lithium electrode surface during exposure at open circuit and after anodic polarization. The main reaction product detected by in-situ Raman spectroscopy in the system/lithium/LiAsF[sub 6], tetrahydrofuran (THF) electrolyte was polytetrahydrofuran (PTHF). The conditions for the polymerization reaction in the presence of lithium metal have been determined. Tetrahydrofuran (THF) decomposition reaction mechanisms are discussed. Decomposition reaction products have been determined as arsenic (II) oxide, As[sub 2]O[sub 3] (arsenolite) and arsenious oxyfluoride AsF[sub 2]-O-AsF[sub 2]. Potentiodynamic polarization measurements revealed a substantial shift of the corrosion potential towards positive values and only a moderate increase of anodic dissolution current for in-situ cut lithium metal. Corrosion potential-time merits have been measured. The following electrolytes have been investigated: LiAsF[sub 6], LiPF[sub 6], LiClO[sub 4], and Li(CF[sub 3]SO[sub 2])[sub 2]N in THF, 2Me-THF, and propylene carbonate (PC). The transients permit the ranking of the reactivity of the electrolytes. These measurements have shed light on understanding the stability of various stability and and solvents in contact with lithium. Compared to purified electrolytes, small amounts of water shift the corrosion potential towards even more positive values. Intensive anodic cycling of a Li electrode in unpurified LiAsF[sub 6]/THF electrolyte leads to the breakdown of a surface film/films. While at the open circuit potential (OCP), water in this same electrolyte leads to crack formation in the bulk lithium electrode.

  5. ELECTROCHEMICAL BEHAVIOUR OF METHYLENE BLUE IN NON-AQUEOUS SOLVENTS

    International Nuclear Information System (INIS)

    Caram, J.A.; Suárez, J.F. Martínez; Gennaro, A.M.; Mirífico, M.V.

    2015-01-01

    Graphical abstract: Display Omitted - Highlights: • The dye is electro-reduced in two separated monoelectronic charge transfers. • Solvent/supporting electrolyte/acid/base modifies the electrochemical parameters. • A dissociation equilibrium of the dye in non-aqueous solvent is proposed. • The electro-generated and stable dye-radical is also chemically produced in EDA or KOH/DMF. • A new species is reversibly formed in KOH/EtOH or ACN. - Abstract: The electrochemical behaviour of methylene blue in solution of non-aqueous solvents with different supporting electrolytes was studied by cyclic voltammetry. Dye electro-reduction presents two well-defined processes of monoelectronic charge transfer yielding a free radical in the first process and an anion in the second electron transfer. Free radical and anion are long living species in some of the studied media. Effects of supporting electrolyte and solvent on the peak potentials, the peak current functions and the reversibility of the charge transfer processes are reported. A dissociation equilibrium of the dye in solution of non-aqueous solvents and the acid or base added determine markedly the electrochemical responses. In the particular cases of KOH/DMF or EDA basic media the chemical formation of the stable methylene blue radical was detected and it was characterized by EPR spectroscopy. A general reaction scheme is proposed

  6. Systems and methods for rebalancing redox flow battery electrolytes

    Science.gov (United States)

    Pham, Ai Quoc; Chang, On Kok

    2015-03-17

    Various methods of rebalancing electrolytes in a redox flow battery system include various systems using a catalyzed hydrogen rebalance cell configured to minimize the risk of dissolved catalyst negatively affecting flow battery performance. Some systems described herein reduce the chance of catalyst contamination of RFB electrolytes by employing a mediator solution to eliminate direct contact between the catalyzed membrane and the RFB electrolyte. Other methods use a rebalance cell chemistry that maintains the catalyzed electrode at a potential low enough to prevent the catalyst from dissolving.

  7. Sodium-ion transfer at the interface between ceramic and organic electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Sagane, Fumihiro; Abe, Takeshi; Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2010-11-01

    Sodium-ion transfer through the interface between ceramic and organic electrolytes was studied by AC impedance spectroscopy. Na{sub 3}Zr{sub 1.88}Y{sub 0.12}Si{sub 2}PO{sub 12} (NASICON) and Na-{beta}''-alumina were used as ceramic electrolytes, and propylene carbonate (PC) and dimethyl sulfoxide (DMSO) containing 0.05 mol dm{sup -3} NaCF{sub 3}SO{sub 3} were used as organic electrolytes. The semi-circle ascribed to interfacial charge transfer resistance (R{sub ct}) was observed. The activation energies for sodium-ion transfer at the interface between ceramic and organic electrolytes were evaluated by the temperature dependency of R{sub ct}. As a result, the activation energies depended on the ceramic electrolytes but not on the solvents. These results suggest that sodium-ion transfer from ceramic to organic electrolytes should be responsible for the activation energies, which is contrary to the case in a lithium-ion transfer system. Based on these results, the mechanism of interfacial sodium-ion transfer was discussed. (author)

  8. Self-diffusion in electrolyte solutions a critical examination of data compiled from the literature

    CERN Document Server

    Mills, R

    1989-01-01

    This compilation - the first of its kind - fills a real gap in the field of electrolyte data. Virtually all self-diffusion data in electrolyte solutions as reported in the literature have been examined and the book contains over 400 tables covering diffusion in binary and ternary aqueous solutions, in mixed solvents, and of non-electrolytes in various solvents.An important feature of the compilation is that all data have been critically examined and their accuracy assessed. Other features are an introductory chapter in which the methods of measurement are reviewed; appendices containing tables

  9. Zinc polymer electrolytes in battery systems

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, W.P.; Latham, R.J.; Linford, R.G.; Vickers, S.L. (Dept. of Chemistry, School of Applied Sciences, De Montfort Univ., Leicester (United Kingdom))

    1994-06-01

    We have previously reported results of our studies of structure-conductivity relationships for polymer electrolytes of the form PEO[sub n][center dot]ZnX[sub 2]. In this paper we report the results of investigations of battery systems based on these electrolytes. Results will be presented for OCV and discharge curves for loaded cells of the type: Zn/polymer electrolyte/MnO[sub 2]. We are particularly interested in the speciation between oxidation states of manganese as a function of the degree of cell discharge, and have carried out determinations by chemical methods based on polarography. Preliminary studies indicate the presence of Mn[sup II] in cells discharged at various rates. The discharge times for a series of optimised cells show an exponential decrease with increasing load. This is consistent with a low electrolyte conductivity and less than ideal cathode conductivity, which leads to an increased 'front face' reaction with increasing load

  10. Revealing the Solvation Structure and Dynamics of Carbonate Electrolytes in Lithium-Ion Batteries by Two-Dimensional Infrared Spectrum Modeling.

    Science.gov (United States)

    Liang, Chungwen; Kwak, Kyungwon; Cho, Minhaeng

    2017-12-07

    Carbonate electrolytes in lithium-ion batteries play a crucial role in conducting lithium ions between two electrodes. Mixed solvent electrolytes consisting of linear and cyclic carbonates are commonly used in commercial lithium-ion batteries. To understand how the linear and cyclic carbonates introduce different solvation structures and dynamics, we performed molecular dynamics simulations of two representative electrolyte systems containing either linear or cyclic carbonate solvents. We then modeled their two-dimensional infrared (2DIR) spectra of the carbonyl stretching mode of these carbonate molecules. We found that the chemical exchange process involving formation and dissociation of lithium-ion/carbonate complexes is responsible for the growth of 2DIR cross peaks with increasing waiting time. In addition, we also found that cyclic carbonates introduce faster dynamics of dissociation and formation of lithium-ion/carbonate complexes than linear carbonates. These findings provide new insights into understanding the lithium-ion mobility and its interplay with solvation structure and ultrafast dynamics in carbonate electrolytes used in lithium-ion batteries.

  11. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    Science.gov (United States)

    Xiao, Jie; Liu, Jun; Pan, Huilin; Henderson, Wesley A.

    2018-04-24

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  12. Monitoring electrolyte concentrations in redox flow battery systems

    Science.gov (United States)

    Chang, On Kok; Sopchak, David Andrew; Pham, Ai Quoc; Kinoshita, Kimio

    2015-03-17

    Methods, systems and structures for monitoring, managing electrolyte concentrations in redox flow batteries are provided by introducing a first quantity of a liquid electrolyte into a first chamber of a test cell and introducing a second quantity of the liquid electrolyte into a second chamber of the test cell. The method further provides for measuring a voltage of the test cell, measuring an elapsed time from the test cell reaching a first voltage until the test cell reaches a second voltage; and determining a degree of imbalance of the liquid electrolyte based on the elapsed time.

  13. Electrolyte for stable cycling of high-energy lithium sulfur redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jie; Liu, Jun; Pan, Huilin; Henderson, Wesley A.

    2018-04-24

    A device comprising: a lithium sulfur redox flow battery comprising an electrolyte composition comprising: (i) a dissolved Li2Sx electroactive salt, wherein x.gtoreq.4; (ii) a solvent selected from dimethyl sulfoxide, tetrahydrofuran, or a mixture thereof; and (iii) a supporting salt at a concentration of at least 2 M, as measured by moles of supporting salt divided by the volume of the solvent without considering the volume change of the electrolyte after dissolving the supporting salt.

  14. Comparative Study of Ether-Based Electrolytes for Application in Lithium-Sulfur Battery.

    Science.gov (United States)

    Carbone, Lorenzo; Gobet, Mallory; Peng, Jing; Devany, Matthew; Scrosati, Bruno; Greenbaum, Steve; Hassoun, Jusef

    2015-07-01

    Herein, we report the characteristics of electrolytes using various ether-solvents with molecular composition CH3O[CH2CH2O]nCH3, differing by chain length, and LiCF3SO3 as the lithium salt. The electrolytes, considered as suitable media for lithium-sulfur batteries, are characterized in terms of thermal properties (TGA, DSC), lithium ion conductivity, lithium interface stability, cyclic voltammetry, self-diffusion properties of the various components, and lithium transference number measured by NMR. Furthermore, the electrolytes are characterized in lithium cells using a sulfur-carbon composite cathode by galvanostatic charge-discharge tests. The results clearly evidence the influence of the solvent chain length on the species mobility within the electrolytes that directly affects the behavior in lithium sulfur cell. The results may effectively contribute to the progress of an efficient, high-energy lithium-sulfur battery.

  15. Influence of temperature and electrolyte on the performance of activated-carbon supercapacitors

    Science.gov (United States)

    Liu, Ping; Verbrugge, Mark; Soukiazian, Souren

    For hybrid electric vehicle traction applications, energy storage devices with high power density and energy efficiency are required. A primary attribute of supercapacitors is that they retain their high power density and energy efficiency even at -30 °C, the lowest temperature at which unassisted starting must be provided to customers. More abuse-tolerant electrolytes are preferred to the high-conductivity acetonitrile-based systems commonly employed. Propylene carbonate based electrolytes are a promising alternative. In this work, we compare the electrochemical performance of two high-power density electrical double layer supercapacitors employing acetonitrile and propylene carbonate as solvents. From this study, we are able to elucidate phenomena that control the resistance of supercapacitor at lower temperatures, and quantify the difference in performance associated with the two electrolytes.

  16. Role of solvents on the oxygen reduction and evolution of rechargeable Li-O2 battery

    Science.gov (United States)

    Christy, Maria; Arul, Anupriya; Zahoor, Awan; Moon, Kwang Uk; Oh, Mi Young; Stephan, A. Manuel; Nahm, Kee Suk

    2017-02-01

    The choice of electrolyte solvent is expected to play a key role in influencing the lithium-oxygen battery performance. The electrochemical performances of three electrolytes composed of lithium bis (trifluoromethane sulfonyl) imide (LiTFSI) salt and different solvents namely, ethylene carbonate/propylene carbonate (EC/PC), tetra ethylene glycol dimethyl ether (TEGDME) and dimethyl sulfoxide (DMSO) are investigated by assembling lithium oxygen cells. The electrolyte composition significantly varied the specific capacity of the battery. The choice of electrolyte also influences the overpotential, cycle life, and rechargeability of the battery. Electrochemical impedance spectra, cyclic voltammetry, and chronoamperometry were utilized to determine the reversible reactions associated with the air cathode.

  17. Application of non-aqueous solvents to batteries

    Science.gov (United States)

    Singh, P.

    1984-02-01

    The successful application of organic and aquo-organic solvents in lithium batteries and in zinc bromine batteries is discussed. Results are presented for a comparison of propylene carbonate and 50 percent propylene carbonate/acetonitrile for lithium intercalation cells at 25 C 1 M LiAsF6 as electrolyte and discharge at 2 mA/sq cm. Higher cathode utilization and energy efficiencies are achieved in PC/AN. It was found that the self-discharge problem of the zinc/bromine battery may be overcome by dissolving bromine and bromide salt in water-immiscible dipolar aprotic solvent-proprionitrile (PN). Cells using this PN/H2O two-phase system have an energy efficiency above 75 percent and coulombic efficiency above 85 percent.

  18. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  19. Density and vapour pressure of mixed-solvent desiccant systems (propylene glycol or dipropylene glycol or tripropylene glycol + magnesium chloride + water)

    International Nuclear Information System (INIS)

    Chen, Shang-Yi; Soriano, Allan N.; Leron, Rhoda B.; Li, Meng-Hui

    2014-01-01

    In this present work, new experimental data for density and vapour pressure of the mixed-solvent desiccant systems containing {40 wt% glycol (propylene or dipropylene or tripropylene) + (4 or 9 or 16 wt%) magnesium chloride salt + water} were reported for temperatures up to 343.15 K at normal atmospheric condition. The density and vapour pressure data obtained are presented as a function of temperature and composition. An empirical equation was used to correlate the temperature and compositional dependence of the density values. A model based on the mean spherical approximation for aqueous electrolyte solutions incorporating the pseudo-solvent approach was used to represent the vapour pressure as a function of temperature and composition. Satisfactory results were obtained for both density and vapour pressure calculations

  20. Measurements and correlation of viscosities and conductivities for the mixtures of ethylammonium nitrate with organic solvents

    International Nuclear Information System (INIS)

    Litaeim, Yousra; Zarrougi, Ramzi; Dhahbi, Mahmoud

    2009-01-01

    Room temperature ionic liquids (IL) as a new class of organic molten salts have been considered as an alternative of traditional organic solvents (OS). The physico-chemical transport properties of mixtures IL/OS were investigated and described by ion-ion, ion solvent and solvent-solvent interactions. Ethylammonium nitrate (EAN) was studied in presence of two types of organic solvents: the dimethyl carbonate (DMC) and the formamide (FA). The variation of the viscosity with salt concentration and temperature shows that EAN ions behave as a structure breaker for the DMC. However, no effect was recorded in the case of FA. Concentrated electrolyte solutions behave as very structured media and checked a theory of pseudo-lattice. The existence of a conductivity maximum indicates two competing effects; the increasing number of charge carriers and the higher viscosity of the electrolyte as the salt concentration was raised. The use of the Walden product to investigate ionic interactions of EAN with both solvents was discussed. A study of the effect of temperature on the conductivity and viscosity reveals that both systems (EAN/DMC and EAN/FA) obey an Arrhenius low. The activation energies for the tow transport process (Ea,L and Ea,h) as a function of the salt concentration were evaluated.

  1. Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper

    Science.gov (United States)

    Pettersson, F.; Keskinen, J.; Remonen, T.; von Hertzen, L.; Jansson, E.; Tappura, K.; Zhang, Y.; Wilén, C.-E.; Österbacka, R.

    2014-12-01

    Environmentally friendly supercapacitors are fabricated using commercial grade aluminum coated paper as a substrate and symmetrical activated carbon electrodes as large area electrodes. Different choline chloride-based eutectic solvents are used as electrolyte. These are inexpensive, environmentally friendly and have a larger operating window compared to that of water electrolytes. As the entire device is printed and the materials used are inexpensive, both small- and large-area power sources can be fabricated to be used in cheap, disposable and recyclable devices. Supercapacitors with different eutectic solvents are measured using cyclic charge-discharge and impedance spectroscopy measurements and compared to one widely used and one "green" imidazolium ionic liquid; EMIM:TFSI and EcoEng 212™, respectively. A mixture of ethylene glycol and choline chloride, Glyceline™, show the highest capacitance and power densities of the electrolytes being tested, including the imidazolium alternatives.

  2. Underscreening in concentrated electrolytes.

    Science.gov (United States)

    Lee, Alpha A; Perez-Martinez, Carla S; Smith, Alexander M; Perkin, Susan

    2017-07-01

    Screening of a surface charge by an electrolyte and the resulting interaction energy between charged objects is of fundamental importance in scenarios from bio-molecular interactions to energy storage. The conventional wisdom is that the interaction energy decays exponentially with object separation and the decay length is a decreasing function of ion concentration; the interaction is thus negligible in a concentrated electrolyte. Contrary to this conventional wisdom, we have shown by surface force measurements that the decay length is an increasing function of ion concentration and Bjerrum length for concentrated electrolytes. In this paper we report surface force measurements to test directly the scaling of the screening length with Bjerrum length. Furthermore, we identify a relationship between the concentration dependence of this screening length and empirical measurements of activity coefficient and differential capacitance. The dependence of the screening length on the ion concentration and the Bjerrum length can be explained by a simple scaling conjecture based on the physical intuition that solvent molecules, rather than ions, are charge carriers in a concentrated electrolyte.

  3. Quadrupole terms in the Maxwell equations: Debye-Hückel theory in quadrupolarizable solvent and self-salting-out of electrolytes.

    Science.gov (United States)

    Slavchov, Radomir I

    2014-04-28

    If the molecules of a given solvent possess significant quadrupolar moment, the macroscopic Maxwell equations must involve the contribution of the density of the quadrupolar moment to the electric displacement field. This modifies the Poisson-Boltzmann equation and all consequences from it. In this work, the structure of the diffuse atmosphere around an ion dissolved in quadrupolarizable medium is analyzed by solving the quadrupolar variant of the Coulomb-Ampere's law of electrostatics. The results are compared to the classical Debye-Hückel theory. The quadrupolar version of the Debye-Hückel potential of a point charge is finite even in r = 0. The ion-quadrupole interaction yields a significant expansion of the diffuse atmosphere of the ion and, thus, it decreases the Debye-Hückel energy. In addition, since the dielectric permittivity of the electrolyte solutions depends strongly on concentration, the Born energy of the dissolved ions alters with concentration, which has a considerable contribution to the activity coefficient γ± known as the self-salting-out effect. The quadrupolarizability of the medium damps strongly the self-salting-out of the electrolyte, and thus it affects additionally γ±. Comparison with experimental data for γ± for various electrolytes allows for the estimation of the quadrupolar length of water: LQ ≈ 2 Å, in good agreement with previous assessments. The effect of quadrupolarizability is especially important in non-aqueous solutions. Data for the activity of NaBr in methanol is used to determine the quadrupolarizability of methanol with good accuracy.

  4. Systematic investigations on acyclic organic carbonate solvents for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, J.; Peter, S.; Novak, P.

    2003-03-01

    Electrochemical cycling tests on cells with graphite electrodes and several alkyl methyl carbonates were performed. Experiments with mixed binary solvent electrolytes with ethylene carbonate (EC) showed that the alkyl methyl carbonates H{sub 3}CO(CO)O(CH{sub 2}){sub n}H (n = 3-5) are suitable as co-solvents in lithium-ion batteries. Ternary mixtures of EC, BMC, and propylene carbonate (PC) showed better overall performances than EC/PC electrolytes. The branched isobutyl methyl carbonate (i-BMC) outperforms its linear isomer (BMC) in terms of electrochemical performance. LiPF{sub 6} is superior to LiClO{sub 4} as conducting salt in both EC/BMC and EC/i-BMC mixtures in terms of electrolyte conductivity, rate capability, and cycling stability. (author)

  5. Properties and structures of electrolyte solutions for lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Blomgren, G. E.

    1985-01-15

    Rules which have been employed to explain and predict solvent properties of lithium battery electrolytes are described and results reviewed. The equilibrium behavior of moderate to high concentration electrolyte solutions is also reviewed. Recent theoretical approaches to explain the behavior are discussed, and a new theory incorporating contact ion pair concepts into an advanced statistical theory for free ions is proposed.

  6. Active Mechanism of the Interphase Film-Forming Process for an Electrolyte Based on a Sulfolane Solvent and a Chelato-Borate Complexe.

    Science.gov (United States)

    Li, Chunlei; Wang, Peng; Li, Shiyou; Zhao, Dongni; Zhao, Qiuping; Liu, Haining; Cui, Xiao-Ling

    2018-06-14

    Electrolytes based on sulfolane (SL) solvents and lithium bis(oxalato)borate (LiBOB) chelato-borate complexes have been reported many times for use in advanced lithium-ion batteries due to their many advantages. This study aims to clarify the active mechanism of the interphase film-forming process to optimize the properties of these batteries by experimental analysis and theoretical calculations. The results indicate that the self-repairing film-forming process during the first cycle is divided into three stages: the initial film formation with an electric field force of ~1.80 V, the further growth of the preformation solid electrolyte interface (SEI) film at ~1.73 V, and the final formation of a complete SEI film at a potential below 0.7 V. Additionally, we can deduce that the decomposition of LiBOB and SL occurs throughout nearly the entire process of the formation of the SEI film. The decomposition product of BOB- anions tends to form films with an irregular structure, while the decomposition product of SL is in favor of the formation of a uniform SEI film.

  7. Properties of ENR-50 Based Electrolyte System

    International Nuclear Information System (INIS)

    Zainal, N.; Mohamed, N.S.; Zainal, N.; Idris, R.

    2013-01-01

    In this work, epoxidized natural rubber 50 (ENR-50) has been used as a host polymer for the preparation of electrolyte system. Attenuated total reflection-fourier transform infrared spectroscopic analyses showed the presence of lithium salt-ENR interactions. The glass transition temperature displayed an increasing trend with the increase in salt concentration indicating that the ionic conductivity was not influenced by segmental motion of the ENR-50 chains. The increase in glass transition temperature with the addition of salt was due to the formation of transient cross-linking between ENR-50 chains via the coordinated interaction between ENR-50 chains and salt. The highest room temperature ionic conductivity obtained was in the order of 10 -5 S cm -1 for the film containing 50 wt % of lithium salt. The ionic conductivity of this electrolyte system increased with increasing temperature and obeyed the Vogel-Tamman-Fulcher behavior. The increase in ionic conductivity of the electrolyte system with salt concentration could also be correlated to the charge carriers concentration and/ or migration rate of charge carriers. (author)

  8. Gel electrolytes and electrodes

    Science.gov (United States)

    Fleischmann, Sven; Bunte, Christine; Mikhaylik, Yuriy V.; Viner, Veronika G.

    2017-09-05

    Gel electrolytes, especially gel electrolytes for electrochemical cells, are generally described. In some embodiments, the gel electrolyte layers comprise components a) to c). Component a) may be at least one layer of at least one polymer comprising polymerized units of: a1) at least one monomer containing an ethylenically unsaturated unit and an amido group and a2) at least one crosslinker. Component b) may be at least one conducting salt and component c) may be at least one solvent. Electrodes may comprise the components a), d) and e), wherein component a) may be at least one layer of at least one polymer as described herein. Component d) may be at least one electroactive layer and component e) may be at least one ceramic layer. Furthermore, electrochemical cells comprising component a) which may be at least one layer of at least one polymer as described herein, are also provided.

  9. Lithium sulfur batteries and electrolytes and sulfur cathodes thereof

    Science.gov (United States)

    Visco, Steven J.; Goncharenko, Nikolay; Nimon, Vitaliy; Petrov, Alexei; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Katz, Bruce D.; Loginova, Valentina

    2017-05-23

    Lithium sulfur battery cells that use water as an electrolyte solvent provide significant cost reductions. Electrolytes for the battery cells may include water solvent for maintaining electroactive sulfur species in solution during cell discharge and a sufficient amount of a cycle life-enhancing compound that facilitates charging at the cathode. The combination of these two components enhances one or more of the following cell attributes: energy density, power density and cycle life. For instance, in applications where cost per Watt-Hour (Wh) is paramount, such as grid storage and traction applications, the use of an aqueous electrolyte in combination with inexpensive sulfur as the cathode active material can be a key enabler for the utility and automotive industries, for example, providing a cost effective and compact solution for load leveling, electric vehicles and renewable energy storage. Sulfur cathodes, and methods of fabricating lithium sulfur cells, in particular for loading lithium sulfide into the cathode structures, provide further advantages.

  10. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    Science.gov (United States)

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  11. Communication: Modeling electrolyte mixtures with concentration dependent dielectric permittivity

    Science.gov (United States)

    Chen, Hsieh; Panagiotopoulos, Athanassios Z.

    2018-01-01

    We report a new implicit-solvent simulation model for electrolyte mixtures based on the concept of concentration dependent dielectric permittivity. A combining rule is found to predict the dielectric permittivity of electrolyte mixtures based on the experimentally measured dielectric permittivity for pure electrolytes as well as the mole fractions of the electrolytes in mixtures. Using grand canonical Monte Carlo simulations, we demonstrate that this approach allows us to accurately reproduce the mean ionic activity coefficients of NaCl in NaCl-CaCl2 mixtures at ionic strengths up to I = 3M. These results are important for thermodynamic studies of geologically relevant brines and physiological fluids.

  12. The effect of microwave drying on polymer electrolyte conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Latham, R.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Linford, R.G. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom)); Pynenburg, R.A.J. (Dept. of Chemistry, De Montfort Univ., Gateway, Leicester (United Kingdom))

    1993-03-01

    The morphology and conductivity of polymer electrolytes based on PEO are often substantially modified by the presence of water. A number of different approaches have commonly been used to eliminate water from polymer electrolyte films. The work reported here extends our earlier investigations of the use of microwaves for the rapid drying of solvent cast polymer electrolyte films. Films of PEO[sub n]:NiBr[sub 2] and PEO[sub n]:ZnCl[sub 2] have been prepared by normal casting techniques and then studied using EXAFS, DSC and ac conductivity measurements. (orig.)

  13. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  14. Development of an Electrolyte CPA Equation of state for Applications in the Petroleum and Chemical Industries

    DEFF Research Database (Denmark)

    Maribo-Mogensen, Bjørn

    to the CPA EoS in the absence of electrolytes, making it possible to extend the applicability of the CPA EoS while retaining backwards compatibility and resuing the parameters for non-electrolyte systems . There are many challenges related to thermodynamic modeling of mixtures containing electrolytes......This thesis extends the Cubic Plus Association (CPA) equation of state (EoS) to handle mixtures containing ions from fully dissociated salts. The CPA EoS has during the past 18 years been applied to thermodynamic modeling of a wide range of industrially important chemicals, mainly in relation...... rarely been applied to all types of thermodynamic equilibrium calculations relevant to electrolyte solutions. This project has aimed to determine the best recipe to deliver a complete thermodynamic model capable of handling electrolytes in mixed solvents and at a wide range of temperature and pressure...

  15. Hazardous Solvent Substitution Data System tutorial

    International Nuclear Information System (INIS)

    Twitchell, K.E.; Skinner, N.L.

    1993-07-01

    This manual is the tutorial for the Hazardous Solvent Substitution Data System (HSSDS), an online, comprehensive system of information on alternatives to hazardous solvents and related subjects. The HSSDS data base contains product information, material safety data sheets, toxicity reports, usage reports, biodegradable data, product chemical element lists, and background information on solvents. HSSDS use TOPIC reg-sign to search for information based on a query defined by the user. TOPIC provides a full text retrieval of unstructured source documents. In this tutorial, a series of lessons is provided that guides the user through basic steps common to most queries performed with HSSDS. Instructions are provided for both window-based and character-based applications

  16. Elucidating the Solvation Structure and Dynamics of Lithium Polysulfides Resulting from Competitive Salt and Solvent Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Nav Nidhi; Murugesan, Vijayakumar; Shin, Yongwoo; Han, Kee Sung; Lau, Kah Chun; Chen, Junzheng; Liu, Jun; Curtiss, Larry A.; Mueller, Karl T.; Persson, Kristin A.

    2017-04-10

    Fundamental molecular level understanding of functional properties of liquid solutions provides an important basis for designing optimized electrolytes for numerous applica-tions. In particular, exhaustive knowledge of solvation structure, stability and transport properties is critical for developing stable electrolytes for fast charging and high energy density next-generation energy storage systems. Here we report the correlation between solubility, solvation structure and translational dynamics of a lithium salt (Li-TFSI) and polysulfides species using well-benchmarked classical molecular dynamics simulations combined with nuclear magnetic resonance (NMR). It is observed that the polysulfide chain length has a significant effect on the ion-ion and ion-solvent interaction as well as on the diffusion coefficient of the ionic species in solution. In particular, extensive cluster formation is observed in lower order poly-sulfides (Sx2-; x≤4), whereas the longer polysulfides (Sx2-; x>4) show high solubility and slow dynamics in the solu-tion. It is observed that optimal solvent/salt ratio is essen-tial to control the solubility and conductivity as the addi-tion of Li salt increases the solubility but decreases the mo-bility of the ionic species. This work provides a coupled theoretical and experimental study of bulk solvation struc-ture and transport properties of multi-component electro-lyte systems, yielding design metrics for developing optimal electrolytes with improved stability and solubility.

  17. Qualitative and quantitative evaluation of solvent systems for countercurrent separation.

    Science.gov (United States)

    Friesen, J Brent; Ahmed, Sana; Pauli, Guido F

    2015-01-16

    Rational solvent system selection for countercurrent chromatography and centrifugal partition chromatography technology (collectively known as countercurrent separation) studies continues to be a scientific challenge as the fundamental questions of comparing polarity range and selectivity within a solvent system family and between putative orthogonal solvent systems remain unanswered. The current emphasis on metabolomic investigations and analysis of complex mixtures necessitates the use of successive orthogonal countercurrent separation (CS) steps as part of complex fractionation protocols. Addressing the broad range of metabolite polarities demands development of new CS solvent systems with appropriate composition, polarity (π), selectivity (σ), and suitability. In this study, a mixture of twenty commercially available natural products, called the GUESSmix, was utilized to evaluate both solvent system polarity and selectively characteristics. Comparisons of GUESSmix analyte partition coefficient (K) values give rise to a measure of solvent system polarity range called the GUESSmix polarity index (GUPI). Solvatochromic dye and electrical permittivity measurements were also evaluated in quantitatively assessing solvent system polarity. The relative selectivity of solvent systems were evaluated with the GUESSmix by calculating the pairwise resolution (αip), the number of analytes found in the sweet spot (Nsw), and the pairwise resolution of those sweet spot analytes (αsw). The combination of these parameters allowed for both intra- and inter-family comparison of solvent system selectivity. Finally, 2-dimensional reciprocal shifted symmetry plots (ReSS(2)) were created to visually compare both the polarities and selectivities of solvent system pairs. This study helps to pave the way to the development of new solvent systems that are amenable to successive orthogonal CS protocols employed in metabolomic studies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Electrolytes for Low Impedance, Wide Operating Temperature Range Lithium-Ion Battery Module

    Science.gov (United States)

    Hallac, Boutros (Inventor); Krause, Frederick C. (Inventor); Jiang, Junwei (Inventor); Smart, Marshall C. (Inventor); Metz, Bernhard M. (Inventor); Bugga, Ratnakumar V. (Inventor)

    2018-01-01

    A lithium ion battery cell includes a housing, a cathode disposed within the housing, wherein the cathode comprises a cathode active material, an anode disposed within the housing, wherein the anode comprises an anode active material, and an electrolyte disposed within the housing and in contact with the cathode and anode. The electrolyte consists essentially of a solvent mixture, a lithium salt in a concentration ranging from approximately 1.0 molar (M) to approximately 1.6 M, and an additive mixture. The solvent mixture includes a cyclic carbonate, an non-cyclic carbonate, and a linear ester. The additive mixture consists essentially of lithium difluoro(oxalato)borate (LiDFOB) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte, and vinylene carbonate (VC) in an amount ranging from approximately 0.5 weight percent to approximately 2.0 weight percent based on the weight of the electrolyte.

  19. The McMillan-Mayer framework and the theory of electrolyte solutions

    DEFF Research Database (Denmark)

    Breil, Martin Peter; Mollerup, Jørgen

    2006-01-01

    In electrolyte thermodynamics one often speaks of two thermodynamic frameworks; the Lewis-Randall framework (characterised by temperature, pressure. and mole numbers) and the McMillan-Mayer framework (characterised by temperature, total volume, solute mole numbers, and solvent chemical potential......). However, there is only one framework in thermodynamics; the apparent difference between the two 'frameworks' is, in electrolyte thermodynamics, due to the change in the pressure caused by the charging process at constant volume and solvent chemical potential. The so-called McMillan-Mayer framework is set...... in the context of the classical thermodynamics and the use of it is examplified by the Debye-Huckel theory. The so-called McMillan-Mayer framework is superfluous when the thermodynamics of the electrolyte solutions is described by the Helmholtz energy functions. (c) 2006 Elsevier B.V. All rights reserved....

  20. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    Applications ranging from consumer electronics to the electric grid have placed demands on current energy storage technologies. There is a drive for devices that store more energy for rapid consumption in the case of electric cars and the power grid, and safer, versatile design options for consumer electronics. Electrochemical double-layer capacitors (EDLCs) are an option that has garnered attention as a means to address these varied energy storage demands. EDLCs utilize charge separation in electrolytes to store energy. This energy storage mechanism allows for greater power density (W kg -1) than batteries and higher energy density (Wh kg-1) than conventional capacitors - along with a robust lifetime in the range of thousands to millions of charge-discharge cycles. Safety and working voltage windows of EDLCs currently on the market are limited by the organic solvents utilized in the electrolyte. A potential solution lies in the replacement of the organic solvents with ionic liquids, or room-temperature molten salts. Ionic liquids possess many superior properties in comparison to conventional solvents: wide electrochemical window, low volatility, nonflammability, and favorable ionic conductivity. It has been an endeavor of this work to exploit these advantages while altering the liquid form factor into a gel. An ionic liquid/solid support scaffold composite electrolyte, or ionogel, adds additional benefits: flexible device design, lower encapsulation weight, and elimination of electrolyte leakage. This work has focused on investigations of a UV-polymerizable monomer, poly(ethylene glycol) diacrylate, as a precursor for forming ionogels in situ. The trade-off between gaining mechanical stability at the cost of ionic conductivity has been investigated for numerous ionogel systems. While gaining a greater understanding of the interactions between the gel scaffold and ionic liquid, an ionogel with the highest known ionic conductivity to date (13.1 mS cm-1) was

  1. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    Navaratnam, S.; Ramesh, K.; Ramesh, S.; Sanusi, A.; Basirun, W.J.; Arof, A.K.

    2015-01-01

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH 3 COO) and lithium triflate (LiCF 3 SO 3 ) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF 3 SO 3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH 3 COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF 3 SO 3 dissociated more readily than LiCH 3 COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF 3 SO 3 -30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH 3 COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  2. Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent.

    Science.gov (United States)

    Abbott, Andrew P; Ballantyne, Andrew; Harris, Robert C; Juma, Jamil A; Ryder, Karl S

    2017-01-25

    Organic and inorganic additives are often added to nickel electroplating solutions to improve surface finish, reduce roughness and promote uniform surface morphology of the coatings. Such additives are usually small molecules and often referred to as brighteners or levellers. However, there have been limited investigations into the effect of such additives on electrodeposition from ionic liquids (ILs) and deep eutectic solvents (DESs). Here we study the effect of four additives on electrolytic nickel plating from an ethyleneglycol based DES; these are nicotinic acid (NA), methylnicotinate (MN), 5,5-dimethylhydantoin (DMH) and boric acid (BA). The additives show limited influence on the bulk Ni(ii) speciation but have significant influence on the electrochemical behaviour of Ni deposition. Small concentrations (ca. 15 mM) of NA and MN show inhibition of Ni(ii) reduction whereas high concentrations of DMH and BA are required for a modest difference in behaviour from the additive free system. NA and MN also show that they significantly alter the nucleation and growth mechanism when compared to the additive free system and those with DMH and BA. Each of the additive systems had the effect of producing brighter and flatter bulk electrodeposits with increased coating hardness but XRD shows that NA and MN direct crystal growth to the [111] orientation whereas DMH and BA direct crystal growth to the [220] orientation.

  3. Mixtures of glyme and aprotic-protic ionic liquids as electrolytes for energy storage devices

    Science.gov (United States)

    Stettner, T.; Huang, P.; Goktas, M.; Adelhelm, P.; Balducci, A.

    2018-05-01

    Ionic liquids (ILs) have been proven to be promising electrolytes for electrochemical energy storage devices such as supercapacitors and lithium ion batteries. In the last years, due to deficiency in storage of lithium on earth, innovative systems, such as sodium-based devices, attracted considerable attention. IL-based electrolytes have been proposed also as electrolytes for these devices. Nevertheless, in the case of these systems, the advantages and limits of IL-based electrolytes need to be further investigated. In this work we report an investigation about the chemical-physical properties of mixtures containing bis(2-methoxyethyl)ether diglyme (2G), which is presently considered as one of the most interesting solvents for sodium-based devices, and the ionic liquids 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) and 1-butylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PyrH4TFSI). The conductivities, viscosities, and densities of several mixtures of 2G and these ILs have been investigated. Furthermore, their impact on the electrochemical behaviour of activated carbon composite electrodes has been considered. The results of this investigation indicate that these mixtures are promising electrolytes for the realization of advanced sodium-based devices.

  4. Comparison of starch and gelatin hydrogels for non-toxic supercapacitor electrolytes

    Science.gov (United States)

    Railanmaa, Anna; Lehtimäki, Suvi; Lupo, Donald

    2017-06-01

    Starch and gelatin are two of the most abundantly available natural polymers. Their non-toxicity, low cost, and compatibility with aqueous solvents make them ideal for use in ubiquitous, environmentally friendly electronics systems. This work presents the results of conductivity measurements through impedance spectroscopy for gelatin- and starch-based aqueous gel electrolytes. The NaCl-based gels were physically cross-linked. The conductivity values were 84.6 mS/cm at 1.5 mol L-1 and 71.5 mS/cm at 2 mol L-1 for gelatin and starch, respectively. The mechanical properties of gelatin were found preferable to those of starch, although they deteriorated significantly when the salt concentration exceeded 2 mol L-1. The ability of the gels to successfully act as a supercapacitor electrolyte was demonstrated with printed electrodes on plastic substrate. The devices were characterized through cyclic voltammetry measurements. The results imply that these polymer gel electrolytes are very promising for replacing the traditional aqueous liquid electrolytes in supercapacitors in applications where, for example, user and environmental safety is essential.

  5. Formation of physical-gel redox electrolytes through self-assembly of discotic liquid crystals: Applications in dye sensitized solar cells

    International Nuclear Information System (INIS)

    Khan, Ammar A.; Kamarudin, Muhammad A.; Qasim, Malik M.; Wilkinson, Timothy D.

    2017-01-01

    The self-assembly of small molecules into ordered structures is of significant interest in electronic applications due to simpler device fabrication and better performance. Here we present work on the development of self-assembled fibrous networks of thermotropic triphenylene discotic liquid crystals, where 2,3,6,7,10,11-Hexakishexyloxytriphenylene (HAT6) is studied. The formation of interconnected molecular fibres in acetonitrile-based solvents facilitates thermally-reversible physical-gel (non-covalent) preparation, with the HAT6 network providing mechanical support and containment of the solvent. Furthermore, gel formation is also achieved using an acetonitrile-based iodide/tri-iodide redox liquid electrolyte, and the resulting gel mixture is utilised as an electrolyte in dye-sensitized solar cells (DSSCs). Our results show that it is indeed possible to achieve in situ gel formation in DSSCs, allowing for easy cell fabrication and electrolyte filling. In addition, the gel phase is found to increase device lifetime by limiting solvent evaporation. Differential scanning calorimetry (DSC) and polarising optical microscopy (POM) are used to study gel formation, and it is identified that the thermally reversible gels are stable up to working temperatures of 40 °C. It is found that DSSCs filled with gel electrolyte exhibit longer electron lifetime in the TiO 2 photo-anode (≈8.4 ms in the liquid electrolyte to ≈11.4 ms in the gel electrolytes), most likely due to electron screening from the electrolyte by HAT6. Current-Voltage (I–V) and electrochemical impedance spectroscopy (EIS) are used to study the effect of gel formation on conductivity and electrochemical properties, and it is found that confinement of the liquid electrolyte into a gel phase does not significantly reduce ionic conductivity, a problem common with solid-state polymer electrolytes. A 3.8 mM HAT6 gel electrolyte DSSC exhibited a PCE of 6.19% vs. a 5.86% liquid electrolyte reference. Extended

  6. Kinetics Tuning the Electrochemistry of Lithium Dendrites Formation in Lithium Batteries through Electrolytes

    International Nuclear Information System (INIS)

    Tao, Ran; Bi, Xuanxuan; The Ohio State University, Columbus, OH; Li, Shu; Yao, Ying

    2017-01-01

    Lithium batteries are one of the most advance energy storage devices in the world and have attracted extensive research interests. However, lithium dendrite growth was a safety issue which handicapped the application of pure lithium metal in the negative electrode. In this paper, two solvents, propylene carbonate (PC) and 2-methyl-tetrahydrofuran (2MeTHF), and four Li"+ salts, LiPF_6, LiAsF_6, LiBF_4 and LiClO_4 were investigated in terms of their effects on the kinetics of lithium dendrite formation in eight electrolyte solutions. The kinetic parameters of charge transfer step (exchange current density, j_0, transfer coefficient, α) of Li"+/Li redox system, the mass transfer parameters of Li"+ (transfer number of Li"+, t_L_i_+, diffusion coefficient of Li"+, D_L_i_+), and the conductivity (κ) of each electrolyte were studied separately. The results demonstrate that the solvents play a critical role in the measured j_0, t_L_i_+, D_L_i_+, and κ of the electrolyte, while the choice of Li"+ salts only slightly affect the measured parameters. Finally, the understanding of the kinetics will gain insight into the mechanism of lithium dendrite formation and provide guidelines to the future application of lithium metal.

  7. Pore-filled electrolyte membranes for facile fabrication of long-term stable dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Seo, Seok-Jun; Cha, Hyeon-Jung; Kang, Yong Soo; Kang, Moon-Sung

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: •Pore-filled film electrolytes (PFEMs) were investigated for facile DSSC fabrication. •Optimal mixed solvent was suggested to enhance the long-term stability of DSSCs. •The PFEMs promised both the excellent thermal stability and energy efficiency. •Thephotovoltaic efficiency was well correlated with porous structure of substrates. -- ABSTRACT: Pore-filled electrolyte membranes (PFEMs) have been prepared by employing an optimized porous substrate and stable electrolyte composition for a facile manufacturing process of dye-sensitized solar cells (DSSCs). The PFEMs could be easily loaded into a photovoltaic device without adding a traditional electrolyte injection through a hole. In order to meet the requirements of both high energy conversion efficiency and proper long-term stability, three different solvents with high boiling point, i.e. valeronitrile, dimethyl sulfoxide, and dimethylacetamide, were appropriately mixed as a volumetric ratio of 7:2:1, respectively. As a result, similar conductivity and viscosity as well as better chemical stability were obtained compared to those of conventional 3-methoxypropionitrile-based electrolyte. In addition, linear relations were observed between the photovoltaic efficiency and porous film properties (i.e. porosity and tortuosity). The DSSC employing the PFEM doped with the mixed solvent based electrolyte exhibited the photon-to-current conversion efficiency of 6.30% at one sun condition. Moreover, the long-term stability test fixed at an elevated temperature of 85 °C exhibited outstanding durability of DSSC for 500 h

  8. Excited state charge transfer reaction in (mixed solvent + electrolyte ...

    Indian Academy of Sciences (India)

    vent characteristics summarized in table 1 indicate that these mixed ... polarity scale,35,36 on the other hand, seems to sug- ... electrolyte than the specified ones become insoluble in ... kinetics of P4C eventhough alternative models40,41 are ...... Maurer G 1983 Fluid Phase Equilib. ... Yoon B J and Ohr Y G 2000 J. Chem.

  9. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  10. Anionic microemulsion to solvent stacking for on-line sample concentration of cationic analytes in capillary electrophoresis.

    Science.gov (United States)

    Kukusamude, Chunyapuk; Srijaranai, Supalax; Quirino, Joselito P

    2014-05-01

    The common SDS microemulsion (i.e. 3.3% SDS, 0.8% octane, and 6.6% butanol) and organic solvents were investigated for the stacking of cationic drugs in capillary zone electrophoresis using a low pH separation electrolyte. The sample was prepared in the acidic microemulsion and a high percentage of organic solvent was included in the electrolyte at anodic end of capillary. The stacking mechanism was similar to micelle to solvent stacking where the micelles were replaced by the microemulsion for the transport of analytes to the organic solvent rich boundary. This boundary is found between the microemulsion and anodic electrolyte. The effective electrophoretic mobility of the cations reversed from the direction of the anode in the microemulsion to the cathode in the boundary. Microemulsion to solvent stacking was successfully achieved with 40% ACN in the anodic electrolyte and hydrodynamic sample injection of 21 s at 1000 mbar (equivalent to 30% of the effective length). The sensitivity enhancement factors in terms of peak height and corrected peak area were 15 to 35 and 21 to 47, respectively. The linearity R(2) in terms of corrected peak area were >0.999. Interday precisions (%RSD, n = 6) were 3.3-4.0% for corrected peak area and 2.0-3.0% for migration time. Application to spiked real sample is also presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lithium-Ion Electrolytes Containing Flame Retardant Additives for Increased Safety Characteristics

    Science.gov (United States)

    Smart, Marshall C. (Inventor); Smith, Kiah A. (Inventor); Bugga, Ratnakumar V. (Inventor); Prakash, Surya G. (Inventor); Krause, Frederick Charles (Inventor)

    2014-01-01

    The invention discloses various embodiments of Li-ion electrolytes containing flame retardant additives that have delivered good performance over a wide temperature range, good cycle life characteristics, and improved safety characteristics, namely, reduced flammability. In one embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a fluorinated co-solvent, a flame retardant additive, and a lithium salt. In another embodiment of the invention there is provided an electrolyte for use in a lithium-ion electrochemical cell, the electrolyte comprising a mixture of an ethylene carbonate (EC), an ethyl methyl carbonate (EMC), a flame retardant additive, a solid electrolyte interface (SEI) film forming agent, and a lithium salt.

  12. Functional Polymer Electrolytes for Multidimensional All-Solid-State Lithium Batteries

    OpenAIRE

    Sun, Bing

    2015-01-01

    Pressing demands for high power and high energy densities in novel electrical energy storage units have caused reconsiderations regarding both the choice of battery chemistry and design. Practical concerns originating in the conventional use of flammable liquid electrolytes have renewed the interests of using solvent-free polymer electrolytes (SPEs) as solid ionic conductors for safer batteries. In this thesis work, SPEs developed from two polymer host structures, polyethers and polycarbonate...

  13. Solid State Polymer Electrolytes for Dye-sensitized Solar Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction Over the past decade,Dye-sensitized solar cells (DSSCs) have been intensively investigated as potential alternatives to conventional inorganic photovoltaic devices due to their low production cost and high energy conversion[1-4]. This type of solar cell has achieved an impressive energy conversion efficiency of over 10%,whose electrolyte is a voltaic organic liquid solvent containing iodide/triiodide as redox couple.However,the use of a liquid electrolyte brings difficulties in the practi...

  14. Conductometry of electrolyte solutions

    Science.gov (United States)

    Safonova, Lyubov P.; Kolker, Arkadii M.

    1992-09-01

    A review is given of the theories of the electrical conductance of electrolyte solutions of different ionic strengths and concentrations, and of the models of ion association. An analysis is made of the methods for mathematical processing of experimental conductometric data. An account is provided of various theories describing the dependence of the limiting value of the ionic electrical conductance on the properties of the solute and solvent. The bibliography includes 115 references.

  15. Improved performance and safety of lithium ion cells with the use of fluorinated carbonate-based electrolytes

    Science.gov (United States)

    Smart, M. C.; Ratnakumar, B. V.; Ryan, V. S.; Surampudi, S.; Prakashi, G. K. S.; Hu, J.; Cheung, I.

    2002-01-01

    There has been increasing interest in developing lithium-ion electrolytes that possess enhanced safety characteristics, while still able to provide the desired stability and performance. Toward this end, our efforts have been focused on the development of lithium-ion electrolytes which contain partially and fully fluorinated carbonate solvents. The advantage of using such solvents is that they possess the requisite stability demonstrated by the hydrocarbon-based carbonates, while also possessing more desirable physical properties imparted by the presence of the fluorine substituents, such as lower melting points, increased stability toward oxidation, and favorable SEI film forming Characteristics on carbon. Specifically, we have demonstrated the beneficial effect of electrolytes which contain the following fluorinated carbonate-based solvents: methyl 2,2,2-trifluoroethyl carbonate (MTFEC), ethyl-2,2,2 trifluoroethyl carbonate (ETFEC), propyl 2,2,2-trifluoroethyl carbonate (PTFEC), methyl-2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (MHFPC), ethyl- 2,2,2,2',2',2' -hexafluoro-i-propyl carbonate (EHFPC), and di-2,2,2-trifluoroethyl carbonate (DTFEC). These solvents have been incorporated into multi-component ternary and quaternary carbonate-based electrolytes and evaluated in lithium-carbon and carbon-LiNio.8Coo.202 cells (equipped with lithium reference electrodes). In addition to determining the charge/discharge behavior of these cells, a number of electrochemical techniques were employed (i.e., Tafel polarization measurements, linear polarization measurements, and electrochemical impedance spectroscopy (EIS)) to further characterize the performance of these electrolytes, including the SEI formation characteristics and lithium intercalatiodde-intercalation kinetics. In addition to their evaluation in experimental cells, cyclic voltammetry (CV) and conductivity measurements were performed on select electrolyte formulations to further our understanding of the trends

  16. KPF{sub 6} dissolved in propylene carbonate as an electrolyte for activated carbon/graphite capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022 (China); Yoshio, Masaki [Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2010-02-15

    KPF{sub 6} dissolved in propylene carbonate (PC) has been proposed as an electrolyte for activated carbon (AC)/graphite capacitors. The electrochemical performance of AC/graphite capacitor has been tested in XPF{sub 6}-PC or XBF{sub 4}-PC electrolytes (X stands for alkali or quaternary alkyl ammonium cations). The AC/graphite capacitor using KPF{sub 6}-PC electrolyte shows an excellent cycle-ability compared with other electrolytes containing alkali ions. The big decomposition of the PC solvent at the AC negative electrode is considerably suppressed in the case of KPF{sub 6}-PC, which fact has been correlated with the mild solvation of K{sup +} by PC solvent. The relationship between the ionic radius of cation and the corresponding specific capacitance of AC negative electrode also proves that PC-solvated K{sup +} ions are adsorbed on AC electrode instead of naked K{sup +} ions. (author)

  17. Solvent Handbook Database System user's manual

    International Nuclear Information System (INIS)

    1993-03-01

    Industrial solvents and cleaners are used in maintenance facilities to remove wax, grease, oil, carbon, machining fluids, solder fluxes, mold release, and various other contaminants from parts, and to prepare the surface of various metals. However, because of growing environmental and worker-safety concerns, government regulations have already excluded the use of some chemicals and have restricted the use of halogenated hydrocarbons because they affect the ozone layer and may cause cancer. The Solvent Handbook Database System lets you view information on solvents and cleaners, including test results on cleaning performance, air emissions, recycling and recovery, corrosion, and non-metals compatibility. Company and product safety information is also available

  18. Novel polymeric systems for lithium-ion batteries gel electrolytes

    International Nuclear Information System (INIS)

    Appetecchi, G.B.; Alessandrini, F.; Passerini, S.; Caporiccio, G.; Boutevin, B.; Guida-Pietrasanta, F.

    2004-01-01

    The investigation of chemically cross-linked, self-supporting gel-type electrolyte membranes, based on hybrid polyfluorosilicone polymers reinforced with nanosized silica, for lithium-ion battery systems is reported. The polyfluorosilicone materials were selected on the basis of their high chemical and thermal stabilities. The precursors were synthesized with functional groups capable to form inter-molecular cross-linking, thus obtaining three-dimensional polymer matrices. The latter were undergone to swelling processes in (non-aqueous, lithium salt containing) electrolytic solutions to obtain gel-type polymer electrolytes. Several kinds of membranes, based on different types of polyfluorosilicone precursor, were prepared and characterized in terms of swelling behavior, ionic conductivity and electrochemical stability. The properties of the swelled matrices were evaluated as a function of dipping time, temperature, kind of electrolytic solution and cross-linking initiator content

  19. Solid state electrolyte systems

    Energy Technology Data Exchange (ETDEWEB)

    Pederson, L.R.; Armstrong, B.L.; Armstrong, T.R. [Pacific Northwest Lab., Richland, WA (United States)] [and others

    1997-12-01

    Lanthanum gallates are a new family of solid electrolytes that exhibit high ionic conductivity and are stable to high temperatures. Compositions have been developed that are as much as a factor of two more conductive than yttria-stabilized zirconia at a given temperature, through partial replacement of lanthanum by calcium, strontium, and/or barium and through partial replacement of gallium by magnesium. Oxide powders were prepared using combustion synthesis techniques developed in this laboratory; these were sintered to >95% of theoretical density and consisted of a single crystalline phase. Electrical conductivities, electron and ion transference numbers, thermal expansion, and phase behavior were evaluated as a function of temperature and oxygen partial pressure. A key advantage of the use of lanthanum gallate electrolytes in solid oxide fuel cells is that the temperature of operation may be lowered to perhaps 800 C, yet provide approximately the same power density as zirconia-based cells operating at 1000 C. Ceramic electrolytes that conduct both oxygen ions and electrons are potentially useful to passively separate pure oxygen from an air source at low cost. In such materials, an oxygen ion flux in one direction is charge-compensated by an opposing electron flux. The authors have examined a wide range of mixed ion and electron conducting perovskite ceramics in the system La{sub 1{minus}x}M{sub x}Co{sub 1{minus}y{minus}z}Fe{sub y}N{sub z}O{sub 3{minus}{delta}}, where M = Sr, Ca, and Ba, and N = Pr, Mn, Ni, Cu, Ti, and Al, as well as mixed conducting brownmillerite ceramics, and have characterized oxygen permeation behavior, defect chemistry, structural and phase stability, and performance as cathodes.

  20. Process and electrolyte for applying barrier layer anodic coatings

    International Nuclear Information System (INIS)

    Dosch, R.G.; Prevender, T.S.

    1975-01-01

    Various metals may be anodized, and preferably barrier anodized, by anodizing the metal in an electrolyte comprising quaternary ammonium compound having a complex metal anion in a solvent containing water and a polar, water soluble organic material. (U.S.)

  1. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  2. Interface-Induced Renormalization of Electrolyte Energy Levels in Magnesium Batteries

    DEFF Research Database (Denmark)

    Kumar, Nitin; Siegel, Donald J.

    2016-01-01

    A promising strategy for increasing the energy density of Li-ion batteries is to substitute a multivalent (MV) metal for the commonly used lithiated carbon anode. Magnesium is a prime candidate for such a MV battery due to its high volumetric capacity, abundance, and limited tendency to form...... dendrites. One challenge that is slowing the implementation of Mg-based batteries, however, is the development of efficient and stable electrolytes. Computational screening for molecular species having sufficiently wide electrochemical windows is a starting point for the identification of optimal...... of several common electrolyte solvents on model electrodes of relevance for Mg batteries. Many-body perturbation theory calculations based on the G0W0 method were used to predict shifts in a solvent's electronic levels arising from interfacial interactions. In molecules exhibiting large dipole moments, our...

  3. Facilely solving cathode/electrolyte interfacial issue for high-voltage lithium ion batteries by constructing an effective solid electrolyte interface film

    International Nuclear Information System (INIS)

    Xu, Jingjing; Xia, Qingbo; Chen, Fangyuan; Liu, Tao; Li, Li; Cheng, Xueyuan; Lu, Wei; Wu, Xiaodong

    2016-01-01

    The cathode/electrolyte interface stability is the key factor for the cyclic performance and the safety performance of lithium ion batteries. Suppression of consuming key elements in the electrode materials is essential in this concern. In this purpose, we investigate a facile strategy to solve interfacial issue for high-voltage lithium ion batteries by adding an oxidable fluorinated phosphate, Bis(2,2,2-trifluoroethyl) Phosphite (BTFEP), as a sacrificial additive in electrolyte. We demonstrate that BTFEP additive could be oxidized at slightly above 4.28 V which is a relatively lower voltage than that of solvents, and the oxidative products facilitate in-situ forming a stable solid electrolyte interphase (SEI) film on the cathode surface. The results manifest the SEI film validly restrains the generation of HF and the interfacial side reaction between high-voltage charged LiNi 0.5 Mn 1.5 O 4 (LNMO) and electrolyte, hence, the dissolution of Mn and Ni is effectively suppressed. Finally, the cyclic performance of LNMO after 200 cycles was remarkably improved from 68.4% in blank electrolyte to 95% in 1 wt% BTFEP-adding electrolyte.

  4. Study on the effects of electrolytes and solvents in the determination of quaternary ammonium ions by nonaqueous capillary electrophoresis with contactless conductivity detection.

    Science.gov (United States)

    Buglione, Lucia; See, Hong Heng; Hauser, Peter C

    2013-01-01

    A study on the separation of lipophilic quaternary ammonium cations in NACE coupled with contactless conductivity detection (NACE-C(4)D) is presented. The suitability of different salts dissolved in various organic solvents as running electrolytes in NACE-C(4)D was investigated. A solvent mixture of methanol/acetonitrile at a ratio of 90%:10% v/v showed the best results. Deoxycholic acid sodium salt as BGE was found to provide exceptional high stability with low baseline noise that leads to highest S/N ratios for the target analytes among all BGEs tested. Under the optimum conditions, capillaries with different internal diameters were examined and an id of 50 μm was found to give best detection sensitivity. The proposed method was validated and showed good linearity in the range from 2.5 to 200 μM, low limits of detection (0.1-0.7 μM) and acceptable reproducibility of peak area (intraday RSD 0.1-0.7%, n = 3; interday RSD 5.9-9.4%, n = 3). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A cyclically actuated electrolytic drug delivery device

    KAUST Repository

    Yi, Ying

    2015-01-01

    This work, focusing on an implantable drug delivery system, presents the first prototype electrolytic pump that combines a catalytic reformer and a cyclically actuated mode. These features improve the release performance and extend the lifetime of the device. Using our platinum (Pt)-coated carbon fiber mesh that acts as a catalytic reforming element, the cyclical mode is improved because the faster recombination rate allows for a shorter cycling time for drug delivery. Another feature of our device is that it uses a solid-drug-in-reservoir (SDR) approach, which allows small amounts of a solid drug to be dissolved in human fluid, forming a reproducible drug solution for long-term therapies. We have conducted proof-of-principle drug delivery studies using such an electrolytic pump and solvent blue 38 as the drug substitute. These tests demonstrate power-controlled and pulsatile release profiles of the chemical substance, as well as the feasibility of this device. A drug delivery rate of 11.44 ± 0.56 μg min-1 was achieved by using an input power of 4 mW for multiple pulses, which indicates the stability of our system. © The Royal Society of Chemistry 2015.

  6. Electrolytes for high voltage electrochemical double layer capacitors: A perspective article

    Science.gov (United States)

    Balducci, A.

    2016-09-01

    The development of innovative electrolyte components is nowadays considered one of the most important aspects for the realization of high energy electrochemical double capacitors (EDLCs). Consequently, in the last years many investigations have been dedicated towards new solvents, new salts and ionic liquids able to replace the current electrolytes. This perspective article aims to supply a critical analysis about the results obtained so far on the development of new electrolytes for high energy EDLCs and to outline the advantages as well as the limits related to the use of these innovative components. Furthermore, this article aims to give indications about the strategies could be used in the future for a further development of advanced electrolytes.

  7. Comparative Study on the Solid Electrolyte Interface Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery

    International Nuclear Information System (INIS)

    Haregewoin, Atetegeb Meazah; Leggesse, Ermias Girma; Jiang, Jyh-Chiang; Wang, Fu-Ming; Hwang, Bing-Joe; Lin, Shawn D.

    2014-01-01

    Mixed alkyl carbonates are widely used as solvent for a various lithium-ion battery applications. Understanding the behavior of each solvent in the mixed system is crucial for controlling the electrolyte composition. In this paper, we report a systematic electrochemical and spectroscopic comparison of the reduction of propylene carbonate (PC), ethylene carbonate (EC), and diethyl carbonate (DEC) when used as single (PC), binary (EC/PC, EC/DEC), and ternary (EC/PC/DEC) solvent systems. The reduction products are identified based on Fourier transform infrared spectroscopy (FTIR) after employing linear sweep voltammetry to certain potential regions and their possible formation mechanisms are discussed. FTIR analyses revealed that the reduction of EC and PC was not considerably influenced by the presence of other alkyl carbonates. However, DEC exhibited a different reduction product when used in EC/DEC and EC/PC/DEC solvent systems. The reduction of EC occurred before that of PC and DEC and produced a passivating surface film that prevented carbon exfoliation caused by PC. Battery performance test, cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscope is employed to study the surface films formed. The binary EC/DEC solvent system demonstrated more favorable performance, smaller impedance, and higher Li + ion diffusivity than did the other solvent systems used in this study

  8. Modulation of solid electrolyte interphase of lithium-ion batteries by LiDFOB and LiBOB electrolyte additives

    Science.gov (United States)

    Huang, Shiqiang; Wang, Shuwei; Hu, Guohong; Cheong, Ling-Zhi; Shen, Cai

    2018-05-01

    Solid-electrolyte interphase (SEI) layer is an organic-inorganic composite layer that allows Li+ transport across but blocks electron flow across and prevents solvent diffusing to electrode surface. Morphology, thickness, mechanical and chemical properties of SEI are important for safety and cycling performance of lithium-ion batteries. Herein, we employ a combination of in-situ AFM and XPS to investigate the effects of two electrolyte additives namely lithium difluoro(oxalate)borate (LiDFOB) and lithium bis(oxalato)borate (LiBOB) on SEI layer. LiDFOB is found to result in a thin but hard SEI layer containing more inorganic species (LiF and LiCO3); meanwhile LiBOB promotes formation of a thick but soft SEI layer containing more organic species such as ROCO2Li. Findings from present study will help development of electrolyte additives that promote formation of good SEI layer.

  9. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    International Nuclear Information System (INIS)

    Li, Gaoran; Li, Zhoupeng; Zhang, Bin; Lin, Zhan

    2015-01-01

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg −1 ), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  10. Developments of Electrolyte Systems for Lithium–Sulfur Batteries: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Li, Gaoran; Li, Zhoupeng [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China); Zhang, Bin [Anhui Academy for Environmental Science Research, Hefei, Anhui (China); Lin, Zhan, E-mail: zhanlin@zju.edu.cn [College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang (China)

    2015-02-11

    With a theoretical specific energy five times higher than that of lithium–ion batteries (2,600 vs. ~500 Wh kg{sup −1}), lithium–sulfur (Li–S) batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li–S batteries. In this review, we focus on the recent developments in electrolyte systems. First, we start with a brief discussion on fundamentals of Li–S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li–S batteries are presented.

  11. Eco-friendly Energy Storage System: Seawater and Ionic Liquid Electrolyte.

    Science.gov (United States)

    Kim, Jae-Kwang; Mueller, Franziska; Kim, Hyojin; Jeong, Sangsik; Park, Jeong-Sun; Passerini, Stefano; Kim, Youngsik

    2016-01-08

    As existing battery technologies struggle to meet the requirements for widespread use in the field of large-scale energy storage, novel concepts are urgently needed concerning batteries that have high energy densities, low costs, and high levels of safety. Here, a novel eco-friendly energy storage system (ESS) using seawater and an ionic liquid is proposed for the first time; this represents an intermediate system between a battery and a fuel cell, and is accordingly referred to as a hybrid rechargeable cell. Compared to conventional organic electrolytes, the ionic liquid electrolyte significantly enhances the cycle performance of the seawater hybrid rechargeable system, acting as a very stable interface layer between the Sn-C (Na storage) anode and the NASICON (Na3 Zr2 Si2 PO12) ceramic solid electrolyte, making this system extremely promising for cost-efficient and environmentally friendly large-scale energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Developments of Electrolyte Systems for Lithium-Sulfur Batteries: A Review

    Directory of Open Access Journals (Sweden)

    Zhan eLin

    2015-02-01

    Full Text Available With a theoretical specific energy 5 times higher than that of lithium-ion (Li-ion batteries (2,600 vs. ~500 Wh kg-1, lithium-sulfur (Li-S batteries have been considered as one of the most promising energy storage systems for the electrification of vehicles. However, both the polysulfide shuttle effects of the sulfur cathode and dendrite formation of the lithium anode are still key limitations to practical use of traditional Li-S batteries. In this review, we focus on the recent developments in electrolyte systems. First we start with a brief discussion on fundamentals of Li-S batteries and key challenges associated with traditional liquid cells. We then introduce the most recent progresses in liquid systems, including ether-based, carbonate-based, and ionic liquid-based electrolytes. And then we move on to the advances in solid systems, including polymer and non-polymer electrolytes. Finally, the opportunities and perspectives for future research in both the liquid and solid Li-S batteries are presented.

  13. Investigations of oxygen reduction reactions in non-aqueous electrolytes and the lithium-air battery

    Science.gov (United States)

    O'Laoire, Cormac Micheal

    Unlocking the true energy capabilities of the lithium metal negative electrode in a lithium battery has until now been limited by the low capacity intercalation and conversion reactions at the positive electrodes. This is overcome by removing these electrodes and allowing lithium to react directly with oxygen in the atmosphere forming the Li-air battery. Chapter 2 discusses the intimate role of electrolyte, in particular the role of ion conducting salts on the mechanism and kinetics of oxygen reduction in non-aqueous electrolytes designed for such applications and in determining the reversibility of the electrode reactions. Such fundamental understanding of this high energy density battery is crucial to harnessing its full energy potential. The kinetics and mechanisms of O2 reduction in solutions of hexafluorophosphate salts of the general formula X+ PF6-, where, X = tetra butyl ammonium (TBA), K, Na and Li, in acetonitrile have been studied on glassy carbon electrodes using cyclic voltammetry (CV) and rotating disk electrode (RDE) techniques. Our results show that cation choice strongly influences the reduction mechanism of O2. Electrochemical data supports the view that alkali metal oxides formed via electrochemical and chemical reactions passivate the electrode surface inhibiting the kinetics and reversibility of the processes. The O2 reduction mechanisms in the presence of the different cations have been supplemented by kinetic parameters determined from detailed analyses of the CV and RDE data. The organic solvent present in the Li+-conducting electrolyte has a major role on the reversibility of each of the O2 reduction products as found from the work discussed in the next chapter. A fundamental study of the influence of solvents on the oxygen reduction reaction (ORR) in a variety of non-aqueous electrolytes was conducted in chapter 4. In this work special attention was paid to elucidate the mechanism of the oxygen electrode processes in the rechargeable Li

  14. Electrolytic conductivity-the hopping mechanism of the proton and beyond

    International Nuclear Information System (INIS)

    Gileadi, E.; Kirowa-Eisner, E.

    2006-01-01

    The hopping mechanism of electrolytic conductivity is analyzed, employing mixtures of two solvents: one that sustains the hopping mechanism and the other that does not inhibit it directly, but interferes with it by diluting the solvent that sustains hopping. Measurement of the equivalent conductivity shows that the excess proton conductivities of H 3 O + and OH - increases with increasing temperature, although the number of hydrogen bonds is known to decrease. In mixtures of acetonitrile with water, proton hopping does not start until a threshold concentration of about 20 vol.% water has been reached, while no such threshold concentration is observed upon addition of methanol to acetonitrile. It is concluded that in the former the proton is transferred to a cluster of water molecules, which can be formed only if there is enough water in the solvent mixture. This observation leads to the concept of mono-water, which is the state of water molecules when they constitute a small minority in the solvent mixtures, as opposed to bulk water, which consists of clusters of variable sizes. Systems in which a hopping mechanism of heavy ions has been observed include Br - /Br 2 and I - /I 2 . In these cases the triple ions Br 3 - and I 3 - , respectively are formed, and serve as the mediators for the transfer of the simple halogen ion. A very large increase of conductivity was observed upon solidification of the Br - /Br 3 - system, probably caused by favorable linear alignment of ions in the solid. The conductivity of acidified methanol decreases upon addition of water, because the affinity of the proton to water is higher than to methanol, thus water can act as a scavenger for protons. This behavior exemplifies a general observation, namely that conductivity by hopping can only occur when the Gibbs energy of the system does not change significantly following ion transfer; otherwise the ions would be trapped in the more stable state, hindering further propagation by hopping

  15. Non-Ideal Behavior in Solvent Extraction

    International Nuclear Information System (INIS)

    Zalupski, Peter

    2011-01-01

    This report presents a summary of the work performed to meet FCR and D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR and D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  16. Non-Ideal Behavior in Solvent Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Peter Zalupski

    2011-09-01

    This report presents a summary of the work performed to meet FCR&D level 3 milestone M31SW050801, 'Complete the year-end report summarizing FY11 experimental and modeling activities.' This work was carried out under the auspices of the Non-Ideality in Solvent Extraction Systems FCR&D work package. The report summarizes our initial considerations of potential influences that non-ideal chemistry may impose on computational prediction of outcomes in solvent extraction systems. The report is packaged into three separate test cases where a robustness of the prediction by SXFIT program is under scrutiny. The computational exercises presented here emphasize the importance of accurate representation of both an aqueous and organic mixtures when modeling liquid-liquid distribution systems. Case No.1 demonstrates that non-ideal behavior of HDEHP in aliphatic diluents, such as n-dodecane, interferes with the computation. Cases No.2 and No.3 focus on the chemical complexity of aqueous electrolyte mixtures. Both exercises stress the need for an improved thermodynamic model of an aqueous environment present in the europium distribution experiments. Our efforts for year 2 of this project will focus on the improvements of aqueous and non-aqueous solution models using fundamental physical properties of mixtures acquired experimentally in our laboratories.

  17. An element with an anhydrous liquid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Toda, K; Isiguro, Y; Ota, K; Sinoda, K; Yamamoto, K

    1983-01-01

    A light element metal of the lithium or sodium type is used in the element, along with a cathode of Mo02 or CuF2 and an anyhdrous liquid electrolyte from an oganic solvent with an ionogenic additive. An adsorbent which has a composition corresponding to the formula Mx/n((A102)x(Si02)y) with zH20, where M is the ion of sodium, potassium or calcium; n is the valency M and x, y and z are the coefficients which show the content of A102, Si02 and H20, respectively, is introduced into the cathode, separator or electrolyte. The element has high storage life.

  18. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    Unknown

    of a container that can hold a large amount of solvent and as a result possesses the ... having high value of conductivity results in polymer gel electrolytes. They are ..... the availability of free ions provided by the acid. It gene- rally reaches a ...

  19. Potential-specific structure at the hematite-electrolyte interface

    Energy Technology Data Exchange (ETDEWEB)

    McBriarty, Martin E.; Stubbs, Joanne; Eng, Peter; Rosso, Kevin M.

    2018-02-21

    The atomic-scale structure of interfaces between metal oxides and aqueous electrolytes controls their catalytic, geochemical, and corrosion behavior. Measurements that probe these interfaces in situ provide important details of ion and solvent arrangements, but atomically precise structural models do not exist for common oxide-electrolyte interfaces far from equilibrium. Using a novel cell, we measured the structure of the hematite (a-Fe2O3) (110$\\bar{2}$)-electrolyte interface under controlled electrochemical bias using synchrotron crystal truncation rod X ray scattering. At increasingly cathodic potentials, charge-compensating protonation of surface oxygen groups increases the coverage of specifically bound water while adjacent water layers displace outwardly and became disordered. Returning to open circuit potential leaves the surface in a persistent metastable protonation state. The flux of current and ions at applied potential is thus regulated by a unique interfacial electrolyte environment, suggesting that electrical double layer models should be adapted to the dynamically changing interfacial structure far from equilibrium.

  20. Solvent-free ZnO dye-sensitised solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, E.; Anta, J.A. [Departamento de Sistemas Fisicos, Quimicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Fernandez-Lorenzo, C.; Alcantara, R.; Martin-Calleja, J. [Departamento de Quimica Fisica, Universidad de Cadiz, Cadiz (Spain)

    2009-10-15

    Dye-sensitised solar cells (DSSC) based on commercial nanostructured zinc oxide combined with imidazolium-based room temperature ionic-liquid electrolytes are characterized. The electrolytes are based on a binary mixture of two ionic liquids, one of them used as source of iodide ions. The composition of this solvent-free electrolyte is optimized with respect to the concentration of iodine and iodide and the effect of additives such as lithium and tert-butylpyridine (TBP) on the photovoltaic performance and the recombination rate is analyzed and discussed. A maximum photoconversion efficiency of 3.4% at 1 sun illumination has been obtained for cells of 0.64 cm{sup 2} active area with the best performing compositions. Diffusion limitations due to slow transport processes are analyzed and discussed. (author)

  1. Functional electrolyte for lithium-ion batteries

    Science.gov (United States)

    Zhang, Lu; Zhang, Zhengcheng; Amine, Khalil

    2015-04-14

    Functional electrolyte solvents include compounds having at least one aromatic ring with 2, 3, 4 or 5 substituents, at least one of which is a substituted or unsubstituted methoxy group, at least one of which is a tert-butyl group and at least one of which is a substituted or unsubstituted polyether or poly(ethylene oxide) (PEO) group bonded through oxygen to the aromatic ring, are provided.

  2. Novel, Solvent-Free, Single Ion Conductive Polymer Electrolytes

    Science.gov (United States)

    2008-01-20

    liquid oligomeric analogue PEODME (ε = 8, dioxane:CH3CN mass ratio 48:7). The choice of the solvent mixture was a compromise between the...trifluoride – a derivative of Lewis acid properties. An increase in the degree of dissociation, decrease in the share of ionic associates and increase in...diphenylphosphinate this product is a solid, and in reaction with lithium diphenylphosphate the second fraction is a viscous, light-brown liquid , and

  3. Apparatus and method for removing solvent from carbon dioxide in resin recycling system

    Science.gov (United States)

    Bohnert, George W [Harrisonville, MO; Hand, Thomas E [Lee's Summit, MO; DeLaurentiis, Gary M [Jamestown, CA

    2009-01-06

    A two-step resin recycling system and method solvent that produces essentially contaminant-free synthetic resin material. The system and method includes one or more solvent wash vessels to expose resin particles to a solvent, the solvent contacting the resin particles in the one or more solvent wash vessels to substantially remove contaminants on the resin particles. A separator is provided to separate the solvent from the resin particles after removal from the one or more solvent wash vessels. The resin particles are next exposed to carbon dioxide in a closed loop carbon dioxide system. The closed loop system includes a carbon dioxide vessel where the carbon dioxide is exposed to the resin, substantially removing any residual solvent remaining on the resin particles after separation. A separation vessel is also provided to separate the solvent from the solvent laden carbon dioxide. Both the carbon dioxide and the solvent are reused after separation in the separation vessel.

  4. Electrode-electrolyte BIMEVOX system for moderate temperature oxygen separation

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, J.C.; Pirovano, C.; Nowogrocki, G.; Mairesse, G. [Laboratoire de Cristallochimie et Physicochimie du Solide, URA CNRS 452, USTL-ENSCL BP 108, 59652 Villeneuve d`Ascq (France); Labrune, Ph.; Lagrange, G. [Centre de recherches Claude Delorme, Air Liquide, Jouy en Josas (France)

    1998-12-01

    Electrochemical separation of oxygen from air is a promising application for oxide conductor solid electrolytes. However, several important specifications are required in order to obtain an efficient separation device. First of all, the electrolyte material must exhibit a high conductivity at moderate temperature. From this point of view, a new family of materials called BIMEVOX ideally fulfils this condition. Secondly, a typical separation device must comport two electrodes on opposite faces of the electrolyte. These electrodes must act as electronic collectors but also, at the cathodic side, as an oxygen dissociation catalyst. BIMEVOX electrolytes exhibit ionic conductivity values that can allow work at temperature below 500C. The classical electrode approach, like in solid oxide fuel cells, consists in using a specific mixed oxide, for instance strontium lanthanum manganite or cobaltite. However, the lower the temperature, the lower the efficiency of these electrodes which quickly appears as the limiting factor. In previous work on bismuth lead oxide electrolytes, we proposed a new approach that consists of using the surface of the bismuth-based electrolyte itself as the catalyst, the electron collection being then performed by a co-sintered metallic grid. This `in-situ` electrode system provides many advantages, particularly it eliminates the problem of the chemical compatibility between electrode and electrolyte materials. Taking into account the presence of both catalytic vanadium and bismuth cations in BIMEVOX, we checked under these conditions the separation of oxygen from air for different electrolytes (BICOVOX, BICUVOX, BIZNVOX) at various temperatures in the range 430-600C. For instance, using a BICOVOX pellet with a gold grid inserted on each side makes it possible to separate oxygen with nearly 100% efficiency for current density values up to 1000 mA/cm{sup -2}. For higher intensity values, the faradic efficiency progressively but reversibly decreases

  5. The development of Gallstone solvent temperature adaptive PID control system

    Institute of Scientific and Technical Information of China (English)

    MA; BING; QIAO; BO; YAN

    2012-01-01

    The paper expatiated the work principle,general project,and the control part of the corresponding program of the temperature system in the gallstone dissolving instrument.Gallstone dissolving instrument adopts automatic control solvent cycle of direct solution stone treatment,replacing the traditional external shock wave rock row stone and gallblad-der surgery method.PID control system to realize the gall stone solvent temperature intelligent control,the basic principle of work is as solvent temperature below the set temperature,the relay control heater to solvent to be heated,conversely,no heating,achieve better able to dissolve the the rapeutic effect of gallstones.

  6. Effects of electrolytic composition on the electric double-layer capacitance at smooth-surface carbon electrodes in organic media

    International Nuclear Information System (INIS)

    Kim, In-Tae; Egashira, Minato; Yoshimoto, Nobuko; Morita, Masayuki

    2010-01-01

    As a fundamental research on the optimization of electrolyte composition in practical electrochemical capacitor device, double-layer capacitance at Glassy Carbon (GC) and Boron-doped Diamond (BDD), as typical smooth-surface carbon electrodes, has been studied as a function of the electrolyte composition in organic media. Specific capacitance (differential capacitance: F cm -2 ) determined by an AC impedance method, in which no contribution of mass-transport effects is included, corresponded well to integrated capacitance evaluated by conventional cyclic voltammetry. The specific capacitance at the GC electrode varied with polarized potential and showed clear PZC (potential of zero charge), while the potential dependence of the capacitance at BDD was very small. The effects of the solvent and the electrolytic salt on the capacitance behavior were common for both electrodes. That is, the sizes of the solvent molecule and the electrolytic ion (cation) strongly affected the capacitance at these smooth-surface carbon electrodes.

  7. Characterization of proton conducting blend polymer electrolyte using PVA-PAN doped with NH{sub 4}SCN

    Energy Technology Data Exchange (ETDEWEB)

    Premalatha, M. [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Materials Research Center, Coimbatore-641 045 (India); Mathavan, T., E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com [PG & Research Department of Physics, N.M.S.S.Vellaichamy Nadar College, Madurai-625 019 (India); Selvasekarapandian, S. [Materials Research Center, Coimbatore-641 045 (India); Genova, F. Kingslin Mary, E-mail: tjmathavan@gmail.com, E-mail: kingslin.genova20@gmail.com; Umamaheswari, R. [Department of physics, S.F.R College for Women, Sivakasi-626 128 (India)

    2016-05-23

    Polymer electrolytes with proton conductivity based on blend polymer using polyvinyl alcohol (PVA) and poly acrylo nitrile (PAN) doped with ammonium thiocyanate have been prepared by solution casting method using DMF as solvent. The complex formation between the blend polymer and the salt has been confirmed by FTIR Spectroscopy. The amorphous nature of the blend polymer electrolytes have been confirmed by XRD analysis. The highest conductivity at 303 K has been found to be 3.25 × 10{sup −3} S cm{sup −1} for 20 mol % NH{sub 4}SCN doped 92.5PVA:7.5PAN system. The increase in conductivity of the doped blend polymer electrolytes with increasing temperature suggests the Arrhenius type thermally activated process. The activation energy is found to be low (0.066 eV) for the highest conductivity sample.

  8. Ionic properties of non-aqueous liquid and PVDF-based gel electrolytes containing a cesium thiolate/disulfide redox couple

    International Nuclear Information System (INIS)

    Renard, Ingrid; Li Hongmei; Marsan, Benoit

    2003-01-01

    Liquid electrolytes containing a cesium thiolate/disulfide redox couple, prepared from 5-mercapto-1-methyltetrazole cesium salt (CsT) and di-5-(1-methyltetrazole)disulfide (T 2 ) dissolved in several aprotic solvents and solvent mixtures, have been studied using various techniques. FTIR spectroscopy reveals that relatively strong interactions occur between the reduced species T - and DMSO or DMF while Cs + ions are very weakly coordinated to the S=O or C=O bond. It is shown that the electrolyte consisting of 1.55 mol kg -1 CsT in the solvent mixture DMSO/DMF (40/60%) exhibits the highest conductivity (1.1x10 -2 and 2.3x10 -2 S cm -1 at 23 and 80 deg. C, respectively), and that the presence of the oxidized species T 2 does not affect significantly its electrical properties up to a CsT:T 2 molar ratio of 5:1. Conductivity values as a function of salt concentration are discussed in terms of the effective number of charge carriers, taking into account the level of ionic association, and of the ionic mobility. Optically transparent gel electrolytes have been prepared by incorporation of the optimal liquid electrolyte into various amounts of poly(vinylidene fluoride) (PVDF). It is shown that ionic mobility is not much affected by the polymer concentration, suggesting that migration of ions occurs mainly through the solvent mixture surrounded by the PVDF matrix

  9. X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell.

    Science.gov (United States)

    Ketenoglu, Didem; Spiekermann, Georg; Harder, Manuel; Oz, Erdinc; Koz, Cevriye; Yagci, Mehmet C; Yilmaz, Eda; Yin, Zhong; Sahle, Christoph J; Detlefs, Blanka; Yavaş, Hasan

    2018-03-01

    The effects of varying LiPF 6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li + ion concentration in the solvent manifests itself as a blue-shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF 4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.

  10. Effect of salt species on electrochemical properties of gel-type polymer electrolyte based on chemically crosslinking rubber

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kab Youl; Jo, Nam Ju [Pusan National Univ., Busan (Korea). Dept. of Polymer Science and Engineering; Chung, Won Sub [Pusan National Univ., Busan (Korea). School of Materials Science and Engineering

    2004-11-30

    In our study, for ion-polymer interaction in gel-type polymer electrolyte (GPE), two kinds of ions were used. GPE systems were composed of Mg or Li salt, organic solvent ({gamma}-BL), and polymer matrix prepared by chemical crosslinking of NBR with poly(ethylene glycol) methylethermethacrylate (PEGMEM) having polar group (--CH{sub 2}--CH{sub 2}--O--) in the side chain of monomer. GPE consisting of Li{sup +} ion had higher ionic conductivity than that of Mg{sup 2+} ion at below 100 wt.% of electrolyte content (1 M salt/{gamma}-BL). On the other hand, GPE consisting of Mg{sup 2+} ion had higher ionic conductivity than that consisting of Li{sup +} ion at over 120 wt.% of electrolyte content (1 M salt/{gamma}-BL). The maximum liquid electrolyte content was 200 wt.% for all GPE systems. And the highest ionic conductivity of 3.3 x 10{sup -2} S cm{sup -1} was achieved for the case of Mg{sup 2+}-GPE with 200 wt.% of liquid electrolyte contents at 20 C. The interaction between ionic species and polymer matrix in GPE was investigated by using Fourier transform infrared spectroscopy (FT-IR). Also, cyclic voltammogram of Mg{sup 2+}-GPE confirmed the electrochemical property of divalent cation with two electron-transfer reactions.

  11. [A toxicologic hygiene evaluation of electrolytic oxygen obtained from the water in a system with a solid polymeric electrolyte].

    Science.gov (United States)

    Bardov, V G; Koziarin, I P; Suk, V G; Maslenko, A A; Shmuter, G M

    1990-01-01

    The authors evaluated the problems of hygienic aspects of oxygen obtained by the method of electrolytic decomposition of water with a different content of chemical substances in the system with a hard polymere electrolyte. On the basis of sanitary-chemical qualities and toxicological properties electrolysis gaseous oxygen may be recommended for use in creating an artificial gaseous atmosphere in hermetically sealed compartments in mixture with gaseous nitrogen (ratio 1:4).

  12. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  13. Transport and spectroscopic studies of liquid and polymer electrolytes

    Science.gov (United States)

    Bopege, Dharshani Nimali

    Liquid and polymer electrolytes are interesting and important materials to study as they are used in Li rechargeable batteries and other electrochemical devices. It is essential to investigate the fundamental properties of electrolytes such as ionic conductivity, diffusion, and ionic association to enhance battery performance in different battery markets. This dissertation mainly focuses on the temperature-dependent charge and mass transport processes and ionic association of different electrolyte systems. Impedance spectroscopy and pulsed field gradient nuclear magnetic resonance spectroscopy were used to measure the ionic conductivity and diffusion coefficients of ketone and acetate based liquid electrolytes. In this study, charge and mass transport in non-aqueous liquid electrolytes have been viewed from an entirely different perspective by introducing the compensated Arrhenius formalism. Here, the conductivity and diffusion coefficient are written as an Arrhenius-like expression with a temperature-dependent static dielectric constant dependence in the exponential prefactor. The compensated Arrhenius formalism reported in this dissertation very accurately describes temperature-dependent conductivity data for acetate and ketone-based electrolytes as well as temperature-dependent diffusion data of pure solvents. We found that calculated average activation energies of ketone-based electrolytes are close to each other for both conductivity and diffusion data (in the range 24-26 kJ/mol). Also, this study shows that average activation energies of acetate-based electrolytes are higher than those for the ketone systems (in the range 33-37 kJ/mol). Further, we observed higher dielectric constants and ionic conductivities for both dilute and concentrated ketone solutions with temperature. Vibrational spectroscopy (Infrared and Raman) was used to probe intermolecular interactions in both polymer and liquid electrolytes, particularly those which contain lithium

  14. Liquid Quinones for Solvent-Free Redox Flow Batteries.

    Science.gov (United States)

    Shimizu, Akihiro; Takenaka, Keisuke; Handa, Naoyuki; Nokami, Toshiki; Itoh, Toshiyuki; Yoshida, Jun-Ichi

    2017-11-01

    Liquid benzoquinone and naphthoquinone having diethylene glycol monomethyl ether groups are designed and synthesized as redox active materials that dissolve supporting electrolytes. The Li-ion batteries based on the liquid quinones using LiBF 4 /PC show good performance in terms of voltage, capacity, energy efficiency, and cyclability in both static and flow modes. A battery is constructed without using intentionally added organic solvent, and its high energy density (264 W h L -1 ) demonstrates the potential of solvent-free organic redox flow batteries using liquid active materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An investigation of 2,5-di-tertbutyl-1,4-bis(methoxyethoxy)benzene in ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Su, Liang; Ferrandon, Magali; Barton, John L.; de la Rosa, Noel Upia; Vaughey, John T.; Brushett, Fikile R.

    2017-08-01

    The identification and development of conductive electrolytes with high concentrations of redox active species is key to realizing energy-dense nonaqueous flow batteries. Herein, we explore the use of ether solvents (1,3-dioxolane (DOL), 1,2-dimethoxyethane (DME), diethylene glycol dimethyl ether (DEGDME), and tetraethylene glycol dimethyl ether (TEGDME)) as the basis for redox electrolytes containing a lithium ion supporting salt (LiBF4 or LiTFSI) and 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene (DBBB) as an active material. An automated high-throughput platform is employed to screen various electrolyte compositions by measuring solution conductivity and solute solubility as a function of solvent and salt type, component concentration, and temperature. Subsequently, the electrochemical and transport properties of select redox electrolytes are characterized by cyclic voltammetry using glassy carbon disk electrodes and by linear sweep voltammetry using carbon fiber ultramicroelectrodes. In general, improvements in electrolyte conductivity and solute solubility are observed with ether-based formulations as compared to previously reported propylene carbonate (PC)-based formulations. In particular, the addition of DOL to a DME-based electrolyte increases the conductivity and decreases the temperature for solubilization at high LiTFSI and DBBB concentrations. The redox behavior of DBBB remains consistent across the range of concentrations tested while the diffusion coefficient scales with changes in solution viscosity.

  16. Industrial and simulation analysis of the nitrogen trichloride decomposition process in electrolytic chlorine production

    International Nuclear Information System (INIS)

    Tavares Neto, J.I.H.; Brito, K.D.; Vasconcelos, L.G.S.; Alves, J.J.N.; Fossy, M.F.; Brito, R.P.

    2007-01-01

    This work presents the dynamic simulation of the thermal decomposition of nitrogen trichloride (NCl 3 ) during electrolytic chlorine (Cl 2 ) production, using an industrial plant as a case study. NCl 3 is an extremely unstable and explosive compound and the decomposition process has the following main problems: changeability of the reactor temperature and loss of solvent. The results of this work will be used to establish a more efficient and safe control strategy and to analyze the loss of solvent during the dynamic period. The implemented model will also be used to study the use of a new solvent, considering that currently used solvent will be prohibited from commercial use in 2010. The process was simulated by using the commercial simulator Aspen TM and the simulations were validated with plant data. From the results of the simulation it can be concluded that the rate of decomposition depends strongly on the temperature of the reactor, which has a stronger relationship to the liquid Cl 2 (reflux) and gaseous Cl 2 flow rates which feed the system. The results also showed that the loss of solvent changes strongly during the dynamic period

  17. Energy storage devices having anodes containing Mg and electrolytes utilized therein

    Science.gov (United States)

    Shao, Yuyan; Liu, Jun

    2015-08-18

    For a metal anode in a battery, the capacity fade is a significant consideration. In energy storage devices having an anode that includes Mg, the cycling stability can be improved by an electrolyte having a first salt, a second salt, and an organic solvent. Examples of the organic solvent include diglyme, triglyme, tetraglyme, or a combination thereof. The first salt can have a magnesium cation and be substantially soluble in the organic solvent. The second salt can enhance the solubility of the first salt and can have a magnesium cation or a lithium cation. The first salt, the second salt, or both have a BH.sub.4 anion.

  18. New Polymer and Liquid Electrolytes for Lithium Batteries

    International Nuclear Information System (INIS)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    1999-01-01

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they don't interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in PEO based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation completing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion completing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3 SO 3- . The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2M LiF solutions in DME, an increase in volubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6 x 10 -3 Scm -1 . The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2 O 4 cells

  19. Crystal formation involving 1-methylbenzimidazole in iodide/triiodide electrolytes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Andreas; Hagfeldt, Anders; Boschloo, Gerrit; Kloo, Lars; Gorlov, Mikhail [Center of Molecular Devices, Department of Chemistry, Royal Institute of Technology (KTH), S-100 44 Stockholm (Sweden); Pettersson, Henrik [IVF Industrial Research and Development Corporation, S-431 53 Moelndal (Sweden)

    2007-07-23

    Nitrogen heterocyclic compounds, such as N-methylbenzimidazole (MBI), are commonly used as additives to electrolytes for dye-sensitized solar cells (DSCs), but the chemical transformation of additives in electrolyte solutions remains poorly understood. Solid crystalline compound (MBI){sub 6}(MBI-H{sup +}){sub 2}(I{sup -})(I{sub 3}{sup -}) (1) was isolated from different electrolytes for DSCs containing MBI as additive. The crystal structure of 1 was determined by single-crystal X-ray diffraction. In the crystal structure, 1 contains neutral and protonated MBI fragments; iodide and triiodide anions form infinite chains along the crystallographic a-axis. The role of the solvent and additives in the crystallization process in electrolytes is discussed. (author)

  20. CONDUCTIVITY STUDIES OF (PEO +KHCO3 SOLID ELECTROLYTE SYSTEM AND ITS APPLICATION AS AN ELECTROCHEMICAL CELL

    Directory of Open Access Journals (Sweden)

    K. VIJAY KUMAR

    2010-06-01

    Full Text Available Solid polymer electrolyte system, polyethylene oxide (PEO complexed with potassium bicarbonate (KHCO3 salt was prepared by solution-cast technique. Several experimental techniques such as infrared radiation (IR, differential scanning calorimeter (DSC, and composition dependence conductivity, temperature dependence conductivity in the temperature range of 308–368 K and transport number measurements were employed to characterize this polymer electrolyte system. The conductivity of the (PEO+KHCO3 electrolyte was found to be about 3 times larger than that of pure PEO at room temperature. The transference data indicated that the charge transport in these polymer electrolyte systems is predominantly due to K+ ions. Using this polymer electrolyte an electrochemical cell with configuration K+/(PEO+KHCO3/(I2+C+electrolyte was fabricated and its discharge characteristics are studied. A number of other cell parameters associated with the cell were evaluated and are reported in this paper.

  1. New electrolytes for aluminum production: Ionic liquids

    Science.gov (United States)

    Zhang, Mingming; Kamavarum, Venkat; Reddy, Ramana G.

    2003-11-01

    In this article, the reduction, refining/recycling, and electroplating of aluminum from room-temperature molten salts are reviewed. In addition, the characteristics of several non-conventional organic solvents, electrolytes, and molten salts are evaluated, and the applicability of these melts for production of aluminum is discussed with special attention to ionic liquids. Also reviewed are electrochemical processes and conditions for electrodeposition of aluminum using ionic liquids at near room temperatures.

  2. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  3. Thermodynamics of ionic migration of simple and complex rare earth salts in mixed alcohol solvents

    International Nuclear Information System (INIS)

    Gorodyskij, A.V.; Fialkov, Yu.Ya.; Chernyj, D.B.

    1982-01-01

    The influence of the composition of double mixed solvents (water-methanol and methanol-propanol) on thermodynamic characteristics of electrolytic dissociation process-enthalpy and entropy, dissociation constants of chlorides and diphenanthroline chlorides of lanthanum, neodymium, europium and dysprosium, is analyzed. It is shown that when passing from water to methanol, that is, with decrease of dielectric permeability, the endothermicity of electrolytic dissociation process increases

  4. Thermodynamics of ionic migration of simple and complex rare earth salts in mixed alcohol solvents

    Energy Technology Data Exchange (ETDEWEB)

    Gorodyskij, A.V.; Fialkov, Yu.Ya.; Chernyj, D.B. (AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii; Kievskij Politekhnicheskij Inst. (Ukrainian SSR))

    1982-04-01

    The influence of the composition of double mixed solvents (water-methanol and methanol-propanol) on thermodynamic characteristics of electrolytic dissociation process-enthalpy and entropy, dissociation constants of chlorides and diphenanthroline chlorides of lanthanum, neodymium, europium and dysprosium, is analyzed. It is shown that when passing from water to methanol, that is, with decrease of dielectric permeability, the endothermicity of electrolytic dissociation process increases.

  5. Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries

    International Nuclear Information System (INIS)

    Li Shiyou; Zhao Yangyu; Shi Xinming; Li Bucheng; Xu Xiaoli; Zhao Wei; Cui Xiaoling

    2012-01-01

    Highlights: ► High purity of LiBOB is obtained by the compressing dry granulation method. ► LiBOB-SL/DEC electrolyte is an excellent candidate electrolyte for lithium ion batteries. ► It shows high oxidation potentials (>5.3 V) and satisfactory conductivities. ► In Li/MCMB cells, this novel electrolyte exhibits excellent film-forming characteristics and low impedances of the interface films. ► In LiFePO 4 /Li cells, this novel electrolyte exhibits stable cycle performance and high discharge voltage plateau (>3.35 V). - Abstract: Lithium bis(oxalato)borate (LiBOB) is a promising salt for lithium ion batteries. However, before applying in lithium ion batteries, it is necessary to prepare high purity LiBOB with a simple method, and find more appropriate solvent systems to exert the perfect electrochemical performance of LiBOB. In this paper, LiBOB is synthesized by the compressing dry granulation method, with the yield of 97%. Moreover, the electrochemical performances of LiBOB-sulfolane (SL)/diethyl carbonate (DEC) electrolyte are investigated. It shows high oxidation potentials (>5.3 V) and satisfactory conductivities, also the temperature dependence of the conductivity is well in accord with the Vogel–Tamman–Fulcher (VTF) behavior. When used in Li/MCMB (mesophase carbon microbeads) cells, this novel electrolyte exhibits not only excellent film-forming characteristics, but also low impedances of the interface films. When used in LiFePO 4 /Li cells, compared to the cell with the electrolyte system of LiBOB-EC/DEC electrolyte, LiBOB-SL/DEC electrolyte exhibit several advantages, such as more stable cycle performance, and higher discharge voltage plateau (>3.35 V).

  6. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.

    Science.gov (United States)

    Bonthuis, Douwe Jan; Netz, Roland R

    2013-10-03

    Standard continuum theory fails to predict several key experimental results of electrostatic and electrokinetic measurements at aqueous electrolyte interfaces. In order to extend the continuum theory to include the effects of molecular solvent structure, we generalize the equations for electrokinetic transport to incorporate a space dependent dielectric profile, viscosity profile, and non-electrostatic interaction potential. All necessary profiles are extracted from atomistic molecular dynamics (MD) simulations. We show that the MD results for the ion-specific distribution of counterions at charged hydrophilic and hydrophobic interfaces are accurately reproduced using the dielectric profile of pure water and a non-electrostatic repulsion in an extended Poisson-Boltzmann equation. The distributions of Na(+) at both surface types and Cl(-) at hydrophilic surfaces can be modeled using linear dielectric response theory, whereas for Cl(-) at hydrophobic surfaces it is necessary to apply nonlinear response theory. The extended Poisson-Boltzmann equation reproduces the experimental values of the double-layer capacitance for many different carbon-based surfaces. In conjunction with a generalized hydrodynamic theory that accounts for a space dependent viscosity, the model captures the experimentally observed saturation of the electrokinetic mobility as a function of the bare surface charge density and the so-called anomalous double-layer conductivity. The two-scale approach employed here-MD simulations and continuum theory-constitutes a successful modeling scheme, providing basic insight into the molecular origins of the static and kinetic properties of charged surfaces, and allowing quantitative modeling at low computational cost.

  7. ODC-Free Solvent Implementation Issues for Vulcanized Rubber and Bond Systems

    Science.gov (United States)

    Hodgson, James R.; McCool, Alex (Technical Monitor)

    2001-01-01

    Thiokol Propulsion has worked extensively to replace 1,1,1-trichloroethane (TCA) with ozone depleting chemicals (ODC)-free solvents for use in the manufacture of the Reusable Solid Rocket Motor (RSRM) for the Space Shuttle Program. As Thiokol has transitioned from sub-scale to full-scale testing and implementation of these new solvents, issues have been discovered which have required special attention. The original intent of Thiokol's solvent replacement strategy was to replace TCA with a single drop-in solvent for all equivalent applications. We have learned that a single candidate does not exist for replacing TCA. Solvent incompatibility with process materials has caused us to seek for niche solvents and/or processing changes that provide an ODC-free solution for special applications. This paper addresses some of the solvent incompatibilities, which have lead to processes changes and possible niche solvent usage. These incompatibilities were discovered during full-scale testing of ODC-free solvents and relate to vulcanized rubber and bond systems in the RSRM. Specifically, the following items are presented: (1) Cure effects of d-limonene based solvents on Silica Filled Ethylene Propylene Diene Monomer (SF-EPDM) rubber. During full-scale test operations, Thiokol discovered that d-limonene (terpene) based solvents inhibit the cure of EPDM rubber. Subsequent testing showed the same issue with Nitrile Butadiene Rubber (NBR). Also discussed are efforts to minimize uncured rubber exposure to solvents; and (2) Cured bond system sensitivity to ODC-free solvents. During full scale testing it was discovered that a natural rubber to steel vulcanized bond could degrade after prolonged exposure to ODC-free solvents. Follow on testing showed that low vapor pressure and residence time seemed to be most likely cause for failure.

  8. Non-conventional solvents in liquid phase microextraction and aqueous biphasic systems.

    Science.gov (United States)

    An, Jiwoo; Trujillo-Rodríguez, María J; Pino, Verónica; Anderson, Jared L

    2017-06-02

    The development of rapid, convenient, and high throughput sample preparation approaches such as liquid phase microextraction techniques have been continuously developed over the last decade. More recently, significant attention has been given to the replacement of conventional organic solvents used in liquid phase microextraction techniques in order to reduce toxic waste and to improve selectivity and/or extraction efficiency. With these objectives, non-conventional solvents have been explored in liquid phase microextraction and aqueous biphasic systems. The utilized non-conventional solvents include ionic liquids, magnetic ionic liquids, and deep eutectic solvents. They have been widely used as extraction solvents or additives in various liquid phase microextraction modes including dispersive liquid-liquid microextraction, single-drop microextraction, hollow fiber-liquid phase microextraction, as well as in aqueous biphasic systems. This review provides an overview into the use of non-conventional solvents in these microextraction techniques in the past 5 years (2012-2016). Analytical applications of the techniques are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    Science.gov (United States)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  10. Construction of isotherms in solvent extraction of copper

    Directory of Open Access Journals (Sweden)

    Cvetkovski Vladimir B.

    2009-01-01

    Full Text Available The aim of this work is construction of equilibrium isotherms in solvent extraction. Technological parameters have been predicted for treatment of mine water by solvent extraction and electrowining. Two stages of extractions and one stage of stripping have been predicted for copper recovery by analyzing the equilibrium isotherms. The process was performed on mine water with 2,5 g/dm3 Cu2+, 3 g/dm Fe2+, pH 1,8, using 9 vol% LIX 984N in kerosene (organic solvent, with 95 and 98% stages efficiencies, respectively. This course produced an advanced electrolyte solution, suitable for electrowining and cathodic copper recovery, containing 51 g/dm3 Cu2+ and 160g/dm3 H2SO4 from a 30 g/dm3 Cu and 190 g/dm3 H2SO4.

  11. Conductivity of liquid lithium electrolytes with dispersed mesoporous silica particles

    International Nuclear Information System (INIS)

    Sann, K.; Roggenbuck, J.; Krawczyk, N.; Buschmann, H.; Luerßen, B.; Fröba, M.; Janek, J.

    2012-01-01

    Highlights: ► The conductivity of disperse lithium electrolytes with mesoporous fillers is studied. ► In contrast to other investigations in literature, no conductivity enhancement could be observed for standard battery electrolytes and typical mesoporous fillers in various combinations. ► Disperse electrolytes can become relevant in terms of battery safety. ► Dispersions of silicas and electrolyte with LiPF 6 as conducting salt are not stable, although the silicas were dried prior to preparation and the electrolyte water content was controlled. Surface modification of the fillers improved the stability. ► The observed conductivity decrease varied considerably for various fillers. - Abstract: The electrical conductivity of disperse electrolytes was systematically measured as a function of temperature (0 °C to 60 °C) and filler content for different types of fillers with a range of pore geometry, pore structure and specific surface area. As fillers mesoporous silicas SBA-15, MCM-41 and KIT-6 with pore ranges between 3 nm and 15 nm were dispersed in commercially available liquid lithium electrolytes. As electrolytes 1 M of lithium hexafluorophosphate (LiPF 6 ) in a mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) at the ratio 3:7 (wt/wt) and the same solvent mixture with 0.96 M lithium bis(trifluoromethanesulfon)imide (LiTFSI) were used. No conductivity enhancement could be observed, but with respect to safety aspects the highly viscous disperse pastes might be useful. The conductivity decrease varied considerably for the different fillers.

  12. What is the fundamental ion-specific series for anions and cations? Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02691a Click here for additional data file.

    Science.gov (United States)

    Mazzini, Virginia

    2017-01-01

    The importance of electrolyte solutions cannot be overstated. Beyond the ionic strength of electrolyte solutions the specific nature of the ions present is vital in controlling a host of properties. Therefore ion specificity is fundamentally important in physical chemistry, engineering and biology. The observation that the strengths of the effect of ions often follows well established series suggests that a single predictive and quantitative description of specific-ion effects covering a wide range of systems is possible. Such a theory would revolutionise applications of physical chemistry from polymer precipitation to drug design. Current approaches to understanding specific-ion effects involve consideration of the ions themselves, the solvent and relevant interfaces and the interactions between them. Here we investigate the specific-ion effects trends of standard partial molar volumes and electrostrictive volumes of electrolytes in water and eleven non-aqueous solvents. We choose these measures as they relate to bulk properties at infinite dilution, therefore they are the simplest electrolyte systems. This is done to test the hypothesis that the ions alone exhibit a specific-ion effect series that is independent of the solvent and unrelated to surface properties. The specific-ion effects trends of standard partial molar volumes and normalised electrostrictive volumes examined in this work show a fundamental ion-specific series that is reproduced across the solvents, which is the Hofmeister series for anions and the reverse lyotropic series for cations, supporting the hypothesis. This outcome is important in demonstrating that ion specificity is observed at infinite dilution and demonstrates that the complexity observed in the manifestation of specific-ion effects in a very wide range of systems is due to perturbations of solvent, surfaces and concentration on the underlying fundamental series. This knowledge will guide a general understanding of specific

  13. Non-Ideality in Solvent Extraction Systems: PNNL FY 2014 Status Report

    Energy Technology Data Exchange (ETDEWEB)

    Levitskaia, Tatiana G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chatterjee, Sayandev [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pence, Natasha K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-09-30

    The overall objective of this project is to develop predictive modeling capabilities for advanced fuel cycle separation processes by gaining a fundamental quantitative understanding of non-ideality effects and speciation in relevant aqueous and organic solutions. Aqueous solutions containing actinides and lanthanides encountered during nuclear fuel reprocessing have high ionic strength and do not behave as ideal solutions. Activity coefficients must be calculated to take into account the deviation from ideality and predict their behavior. In FY 2012-2013, a convenient method for determining activity effects in aqueous electrolyte solutions was developed. Our initial experiments demonstrated that water activity and osmotic coefficients of the electrolyte solutions can be accurately measured by the combination of two techniques, a Water Activity Meter and Vapor Pressure Osmometry (VPO). The water activity measurements have been conducted for binary lanthanide solutions in wide concentration range for all lanthanides (La-Lu with the exception of Pm). The osmotic coefficients and Pitzer parameters for each binary system were obtained by the least squares fitting of the water activity data. However, application of Pitzer model for the quantitative evaluation of the activity effects in the multicomponent mixtures is difficult due to the large number of the required interaction parameters. In FY 2014, the applicability of the Bromley model for the determination of the Ln(NO3)3 activity coefficients was evaluated. The new Bromley parameters for the binary Ln(NO3)3 electrolytes were obtained based on the available literature and our experimental data. This allowed for the accurate prediction of the Ln(NO3)3 activity coefficients for the binary Ln(NO3)3 electrolytes. This model was then successfully implemented for the determination of the Ln(NO3)3 activity

  14. Solidification of liquid electrolyte with imidazole polymers for quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wang Miao; Lin Yuan; Zhou Xiaowen; Xiao Xurui; Yang Lei; Feng Shujing; Li Xueping

    2008-01-01

    Quasi-solid-state electrolytes were prepared by employing the imidazole polymers to solidify the liquid electrolyte containing lithium iodide, iodine and ethylene carbonate (EC)/propylene carbonate (PC) mixed solvent. The ionic conductivity and diffusion behavior of triiodide in the quasi-solid-state electrolytes were examined in terms of the polymer content. Application of the quasi-solid-state electrolytes to the dye-sensitized solar cells, the maximum energy conversion efficiency of 7.6% (AM 1.5, 100 mW cm -2 ) was achieved. The dependence of the photovoltaic performance on the polymer content and on the different anions of the imidazole polymers was studied by electrochemical impedance spectroscopy and cyclic voltammetry. The results indicate the charge transfer behaviors occurred at nanocrystalline TiO 2 /electrolyte and Pt/electrolyte interface play an important role in influencing the photovoltaic performance of quasi-solid-state dye-sensitized solar cells

  15. Advanced integrated solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, E.P.; Dietz, M.L.; Leonard, R.A. [Argonne National Lab., IL (United States)

    1997-10-01

    Advanced integrated solvent extraction systems are a series of novel solvent extraction (SX) processes that will remove and recover all of the major radioisotopes from acidic-dissolved sludge or other acidic high-level wastes. The major focus of this effort during the last 2 years has been the development of a combined cesium-strontium extraction/recovery process, the Combined CSEX-SREX Process. The Combined CSEX-SREX Process relies on a mixture of a strontium-selective macrocyclic polyether and a novel cesium-selective extractant based on dibenzo 18-crown-6. The process offers several potential advantages over possible alternatives in a chemical processing scheme for high-level waste treatment. First, if the process is applied as the first step in chemical pretreatment, the radiation level for all subsequent processing steps (e.g., transuranic extraction/recovery, or TRUEX) will be significantly reduced. Thus, less costly shielding would be required. The second advantage of the Combined CSEX-SREX Process is that the recovered Cs-Sr fraction is non-transuranic, and therefore will decay to low-level waste after only a few hundred years. Finally, combining individual processes into a single process will reduce the amount of equipment required to pretreat the waste and therefore reduce the size and cost of the waste processing facility. In an ongoing collaboration with Lockheed Martin Idaho Technology Company (LMITCO), the authors have successfully tested various segments of the Advanced Integrated Solvent Extraction Systems. Eichrom Industries, Inc. (Darien, IL) synthesizes and markets the Sr extractant and can supply the Cs extractant on a limited basis. Plans are under way to perform a test of the Combined CSEX-SREX Process with real waste at LMITCO in the near future.

  16. Solvent effect on redox properties of hexanethiolate monolayer-protected gold nanoclusters.

    Science.gov (United States)

    Su, Bin; Zhang, Meiqin; Shao, Yuanhua; Girault, Hubert H

    2006-11-02

    The capacitance of monolayer-protected gold nanoclusters (MPCs), C(MPC), in solution has been theoretically reconsidered from an electrostatic viewpoint, in which an MPC is considered as an isolated charged sphere within two dielectric layers, the intrinsic coating monolayer, and the bulk solvent. The model predicts that the bulk solvent provides an important contribution to C(MPC) and influences the redox properties of MPCs. This theoretical prediction is then examined experimentally by comparing the redox properties of MPCs in four organic solvents: 1,2-dichloroethane (DCE), dichloromethane (DCM), chlorobenzene (CB), and toluene (TOL), in all of which MPCs have excellent solubility. Furthermore, this set of organic solvents features a dielectric constant in a range from 10.37 (DCE) to 2.38 (TOL), which is wide enough to probe the solvent effect. In these organic solvents, tetrahexylammonium bis(trifluoromethylsulfonyl)imide (THATf2N) is used as the supporting electrolyte. Cyclic and differential pulse voltammetric results provide concrete evidence that, despite the monolayer protection, the solvent plays a significant effect on the properties of MPCs in solution.

  17. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED

    Energy Technology Data Exchange (ETDEWEB)

    Sunstrom, Joseph [Daikin America, Inc., Orangeburg, NY (United States); Hendershot, Ron E. [Daikin America, Inc., Orangeburg, NY (United States)

    2017-03-06

    An evaluation of high voltage electrolytes which contain fluorochemicals as solvents/additive has been completed with the objective of formulating a safe, stable electrolyte capable of operation to 4.6 V. Stable cycle performance has been demonstrated in LiNi1/3Mn1/3Co1/3O2 (NMC111)/graphite cells to 4.5 V. The ability to operate at high voltage results in significant energy density gain (>30%) which would manifest as longer battery life resulting in higher range for electric vehicles. Alternatively, a higher energy density battery can be made smaller without sacrificing existing energy. In addition, the fluorinated electrolytes examined showed better safety performance when tested in abuse conditions. The results are promising for future advanced battery development for vehicles as well as other applications.

  18. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique

    Science.gov (United States)

    Harshlata, Mishra, Kuldeep; Rai, D. K.

    2018-04-01

    A mechanically stable porous polymer membrane of Poly(vinylidene fluoride-hexafluoropropylene) has been prepared by phase inversion technique using steam as a non-solvent. The membrane possesses semicrystalline network with enhanced amorphicity as observed by X-ray diffraction. The membrane has been soaked in an electrolyte solution of 0.5M NaPF6 in Ethylene Carbonate/Propylene Carbonate (1:1) to obtain the gel polymer electrolyte. The porosity and electrolyte uptake of the membrane have been found to be 67% and 220% respectively. The room temperature ionic conductivity of the membrane has been obtained as ˜ 0.3 mS cm-1. The conductivity follows Arrhenius behavior with temperature and gives activation energy as 0.8 eV. The membrane has been found to possess significantly large electrochemical stability window of 5.0 V.

  19. Solubility and solvation of alkali metal perchlorates, tetramethyl and tetraethylammonium in aqua-ketone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1998-01-01

    The KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 solubility in water and water-acetone, water-methylethylketone mixtures is determined through the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metals perchlorates in acetone and its 90% mixtures (by volume) are determined conductometrically. Solubility products and standard energies of the Gibbs transfer of the studied electrolytes from water into water-acetone and water-methylethylketone solvents. It is established that the Gibbs standard energies of Na + , K + , Rb + and Cs + cations transfer from water to water-ketone solvents are close to each other. It is shown that the effect of acetone and methylethylketone on solvation of the studied electrolytes is practically similar

  20. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  1. Porous fiber formation in polymer-solvent system undergoing solvent evaporation

    Science.gov (United States)

    Dayal, Pratyush; Kyu, Thein

    2006-08-01

    Temporal evolution of the fiber morphology during dry spinning has been investigated in the framework of Cahn-Hilliard equation [J. Chem. Phys. 28, 258 (1958)] pertaining to the concentration order parameter or volume fraction given by the Flory-Huggins free energy of mixing [P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953), p. 672] in conjunction with the solvent evaporation rate. To guide the solvent evaporation induced phase separation, equilibrium phase diagram of the starting polymer solution was established on the basis of the Flory-Huggins free energy of mixing. The quasi-steady-state approximation has been adopted to account for the nonconserved nature of the concentration field caused by the solvent loss. The process of solvent evaporation across the fiber skin-air interface was treated in accordance with the classical Fick's law [R. B. Bird et al., Transport Phenomena (J. Wiley, New York, 1960), p. 780]. The simulated morphologies include gradient type, hollow fiber type, bicontinuous type, and host-guest type. The development of these diverse fiber morphologies is explicable in terms of the phase diagram of the polymer solution in a manner dependent on the competition between the phase separation dynamics and rate of solvent evaporation.

  2. Light-cured polymer electrolytes for safe, low-cost and sustainable sodium-ion batteries

    Science.gov (United States)

    Colò, Francesca; Bella, Federico; Nair, Jijeesh R.; Gerbaldi, Claudio

    2017-10-01

    In this work we present a very simple preparation procedure of a poly(ethylene oxide) (PEO)-based crosslinked polymer electrolyte (XPE) for application in sodium-ion batteries (NIBs). The polymer electrolyte, containing NaClO4 as Na+ source, is prepared by rapid, energy saving, solvent-free photopolymerization technique, in a single step. Thermal, mechanical, morphological and electrochemical properties of the resulting XPE are thoroughly investigated. The highly ionic conducting (>1 mS cm-1 at 25 °C) polymer electrolyte is used in a lab-scale sodium cell with nanostructured TiO2 working electrode. The obtained results in terms of ambient temperature cycling behaviour (stable specific capacity of about 250 mAh g-1 at 0.1 mA cm-2 and overall remarkable stability, for a quasi-solid state Na polymer cell, upon very long term cycling exceeding 1000 reversible cycles at 0.5 mA cm-2 corresponding to > 5000 h of continuous operation) demonstrate the promising prospects of this novel XPE to be implemented in the next-generation NIBs conceived for large-scale energy storage systems, such as those connected to photovoltaic and wind factories.

  3. Mean activity coefficient measurement and thermodynamic modelling of the ternary mixed electrolyte (MgCl_2 + glucose + water) system at T = 298.15 K

    International Nuclear Information System (INIS)

    Rouhi, Azam; Bagherinia, Mohammad Ali

    2015-01-01

    Highlights: • The main goal of the work is to provide precise thermodynamic data for the system. • The method used was potentiometric method. • Pitzer ion interaction model and modified TCPC model were used. • The mass fractions of glucose were (0, 10, 20, 30 and 40)%. • The ionic strengths were from 0.0010 to 6.0000 mol · kg"−"1. - Abstract: In this work, the mean activity coefficients of MgCl_2 in pure water and (glucose + water) mixture solvent were determined using a galvanic cell without liquid junction potential of type: (Mg"2"+ + ISE)|MgCl_2 (m), glucose (wt.%), H_2O (100 wt.%)|AgCl|Ag. The measurements were performed at T = 298.15 K. Total ionic strengths were from (0.0010 to 6.0000) mol · kg"−"1. The various (glucose + water) mixed solvents contained (0, 10, 20, 30 and 40)% mass fractions percentage of glucose respectively. The mean activity coefficients measured were correlated with Pitzer ion interaction model and the Pitzer adjustable parameters were determined. Then these parameters were used to calculate the thermodynamics properties for under investigated system. The results showed that Pitzer ion interaction model can satisfactory describe the investigated system. The modified three-characteristic-parameter correlation (TCPC) model was applied to correlate the experimental activity coefficient data for under investigation electrolyte system, too.

  4. Thermodynamic equilibrium of hydroxyacetic acid in pure and binary solvent systems

    International Nuclear Information System (INIS)

    Huang, Qiaoyin; Xie, Chuang; Li, Yang; Su, Nannan; Lou, Yajing; Hu, Xiaoxue; Wang, Yongli; Bao, Ying; Hou, Baohong

    2017-01-01

    Highlights: • Solubility of hydroxyacetic acid in mono-solvents and binary solvent mixtures was measured. • Modified Apelblat, NRTL and Wilson model were used to correlate the solubility data in pure solvents. • CNIBS/R-K and Jouyban-Acree model were used to correlate the solubility in binary solvent mixtures. • The mixing properties were calculated based on the NRTL model. - Abstract: The solubility of hydroxyacetic acid in five pure organic solvents and two binary solvent mixtures were experimentally measured from 273.15 K to 313.15 K at atmospheric pressure (p = 0.1 MPa) by using a dynamic method. The order of solubility in pure organic solvents is ethanol > isopropanol > n-butanol > acetonitrile > ethyl acetate within the investigated temperature range, except for temperature lower than 278 K where the solubility of HA in ethyl acetate is slightly larger than that in acetonitrile. Furthermore, the solubility data in pure solvents were correlated with the modified Apelblat model, NRTL model, and Wilson model and that in the binary solvents mixtures were fitted to the CNIBS/R-K model and Jouyban-Acree model. Finally, the mixing thermodynamic properties of hydroxyacetic acid in pure and binary solvent systems were calculated and discussed.

  5. Comparison of chitosan and chitosan nanoparticles on the performance and charge recombination of water-based gel electrolyte in dye sensitized solar cells.

    Science.gov (United States)

    Khalili, Malihe; Abedi, Mohammad; Amoli, Hossein Salar; Mozaffari, Seyed Ahmad

    2017-11-01

    In commercialization of liquid dye-sensitized solar cells (DSSCs), whose leakage, evaporation and toxicity of organic solvents are limiting factors, replacement of organic solvents with water-based gel electrolyte is recommended. This work reports on utilizing and comparison of chitosan and chitosan nanoparticle as different gelling agents in preparation of water-based gel electrolyte in fabrication of dye sensitized solar cells. All photovoltaic parameters such as open circuit voltage (V oc ), fill factor (FF), short circuit current density (J sc ) and conversion efficiency (η) were measured. For further characterization, electrochemical impedance spectroscopy (EIS) was used to study the charge transfer at Pt/electrolyte interface and charge recombination and electron transport at TiO 2 /dye/electrolyte interface. Significant improvements in conversion efficiency and short circuit current density of DSSCs fabricated by chitosan nanoparticle were observed that can be attributed to the higher mobility of I 3 - due to the lower viscosity and smaller size of chitosan nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of solvents on species crossover and capacity decay in non-aqueous vanadium redox flow batteries: Characterization of acetonitrile and 1, 3 dioxolane solvent mixture

    Science.gov (United States)

    Bamgbopa, Musbaudeen O.; Almheiri, Saif

    2017-02-01

    The importance of the choice of solvent in a non-aqueous redox flow battery (NARFB) cannot be overemphasized. Several studies demonstrated the influence of the solvent on electrolyte performance in terms of reaction rates, energy/power densities, and efficiencies. In this work, we investigate capacity decay as a direct consequence of varying reactant crossover rates through membranes in different solvent environments. Specifically, we demonstrate the superiority of an 84/16 vol% acetonitrile/1,3 dioxolane solvent mixture over pure acetonitrile in terms of energy efficiency (up to 89%) and capacity retention for vanadium NARFBs - while incorporating a Nafion 115 membrane. The permeability of Nafion to the vanadium acetylacetonate active species is an order of magnitude lower when pure acetonitrile is replaced by the solvent mixture. A method to estimate relative membrane permeability is formulated from numerical analysis of self-discharge experimental data. Furthermore, tests on a modified Nafion/SiO2 membrane, which generally offered low species permeability, also show that different solvents alter membrane permeability. Elemental and morphological analyses of cycled Nafion and NafionSi membranes in different solvent environments indicate that different crossover rates induced by the choice of solvent during cycling are due to changes in the membrane microstructure, intrinsic permeability, swelling rates, and chemical stability.

  7. Conductivity enhancement induced by casting of polymer electrolytes under a magnetic field

    International Nuclear Information System (INIS)

    Kovarsky, R.; Golodnitsky, D.; Peled, E.; Khatun, S.; Stallworth, P.E.; Greenbaum, S.; Greenbaum, A.

    2011-01-01

    Highlights: ► Ordering of polymer electrolytes under applied magnetic field. ► Positive effect of nanosize ferromagnetic filler. ► Structure-ion conductivity interrelationship. - Abstract: We recently presented a procedure for orienting the polyethylene-oxide (PEO) helices in a direction perpendicular to the film plane by casting the polymer electrolytes (PE) under a magnetic field (MF). Here we study the influence of magnetic fields of different strengths and configurations on the structural properties and ionic conductivity of concentrated LiCF 3 SO 3 (LiTf) and LiAsF 6 :P(EO) pristine and composite polymer electrolytes containing γ-Fe 2 O 3 nanoparticles. Some data of LiI:P(EO) system are shown for comparison. We suggest that the effect of type of salt (LiI, LiTf and LiAsF 6 ) on the structure–conductivity relationship of the polymer electrolytes cast under magnetic field is closely connected to the crystallinity of the PEO–LiX system. It was found that the higher the content of the crystalline phase and the size of spherulites in the typically cast salt-polymer system, the stronger the influence of the magnetic field on the conductivity enhancement when the electrolyte is cast and dried under MF. Casting of the PE from a high-dielectric-constant solvent results in disentanglement of the PEO chains, which facilitates even more the perpendicular orientation of helices under applied MF. The enhancement of ionic conductivity was appreciably higher in the PEs cast under strong NdFeB magnets than under SmCo. Both bulk (intrachain) and grain-boundary conductivities increase when a MF is applied, but the improvement in the grain-boundary conductivity – associated with ion-hopping between polymer chains – is more pronounced. For LiAsF 6 :(PEO) 3 at 65 °C, the interchain conductivity increased by a factor of 75, while the intrachain conductivity increased by a factor of 11–14. At room temperature, the SEI resistance of these PEs, cast under NdFeB HMF

  8. Solvent extraction and its practical application for the recovery of copper and uranium

    International Nuclear Information System (INIS)

    Reuter, J.

    1975-01-01

    In recent years solvent extraction has been developed to a stage that allows practical application first for the recovery of uranium and later also for winning copper from low-grade acid-soluble ores. By now it has been realized in several plants with great technical and ecomomic success. Solvent extraction includes the following essential operations: leaching, solvent extraction, back extraction of the organically bonded valuable mineral to an acid, aqueous solution and finally separation of the valuable metal from the final acid by precipitation or electrolytic procedures. Upon assessing the cost of the solvent extraction process for the recovery of copper it turns out that from an economic point of view it is significantly superior to the conventional cementation process. (orig.) [de

  9. Characterizations of Chitosan-Based Polymer Electrolyte Photovoltaic Cells

    International Nuclear Information System (INIS)

    Buraidah, M.H.; Teo, L.P.; Majid, S.R.; Yahya, R.; Taha, R.M.; Arof, A.K.

    2010-01-01

    The membranes 55 wt.% chitosan-45 wt.% NH4I, 33 wt.% chitosan-27 wt.% NH4I-40 wt.% EC, and 27.5 wt.% chitosan-22.5 wt.%?NH4I-50 wt.% buthyl-methyl-imidazolium-iodide (BMII) exhibit conductivity of 3.73 x 10-7, 7.34x10-6, and 3.43x10-5 S cm -1 , respectively, at room temperature. These membranes have been used in the fabrication of solid-state solar cells with configuration ITO/TiO 2 /polymer electrolyte membrane/ITO. It is observed that the short-circuit current density increases with conductivity of the electrolyte. The use of anthocyanin pigment obtained by solvent extraction from black rice and betalain from the callus of Celosia plumosa also helps to increase the short-circuit current.

  10. Electrical transport study of potato starch-based electrolyte system-II

    International Nuclear Information System (INIS)

    Tiwari, Tuhina; Kumar, Manindra; Srivastava, Neelam; Srivastava, P.C.

    2014-01-01

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10 −3 Scm −1 . • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10 −3 S/cm and ionic transference number (t ion ) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity

  11. Relation between the interfacial tension in an organic solvent-water system and the parameters of the solvating capacity of the solvent

    International Nuclear Information System (INIS)

    Nikitin, S.D.; Shmidt, V.S.

    1987-01-01

    It was shown that there is a linear relation between the empirical DE (diluent effect) and E/sub T/ parameters, which characterize the solvating capacity of the solvent, and the interfacial tension in an organic solvent-water two-phase system. Analysis of the sample correlation coefficients shows that the relation between the interfacial tension and the DE parameters of the solvents is closer to linear than the corresponding relation for the E/sub T/ parameters. During analysis of the data for 31 solvents it was established that the largest inverse correlation coefficient r = -0.98 is obtained with an equation of the DE = a + bσ/rho 1/3, type, were a and b are constants, and rho is the density of the solvent. The regression equation has the following form: DE = 7.586 - 0.147 σ/rho 1/3. Since the interfacial activity of hydrophobic surfactants decreases linearly with increase in the DE values, it follows from the obtained equation that decrease of the interfacial tension at the water-organic solvent interface must lead to a decrease in the interfacial activity of hydrophobic surfactants present in the system

  12. Simulation of equilibrium distribution data in a solvent extraction system

    International Nuclear Information System (INIS)

    Mondal, S.; Giriyalkar, A.B.; Singh, A.K.; Singh, D.K.; Hubli, R.C.

    2014-01-01

    In hydrometallurgy, solvent extraction has been proved to be the purification method to recover metal in high-pure form from impure solution. Any solvent extraction process is complex and based on some operating parameters which always lure the scientists to model them. Operating parameters like aqueous to organic volume ratio and concentration of feed are related to required number of stages for a product with specific recovery. So to determine final feed concentration or aqueous to organic volume ratio for a specific extractant concentration, one needs to carry out a number of extraction experiments tediously supported by analysis. Here an attempt is being made to model the distribution of solute between organic and aqueous phases with minimum analytical and experimental support for any system. The model can predict the effect on solvent extraction for a change in the aqueous to organic volume ratio i.e. slope of operating line, percentage loading of solvent, feed concentration, solvent concentration, number of stages and in the process it can help in optimizing conditions for the best result from a solvent extraction system. Uranium-7% TBP in dodecane system was taken up to validate the model. The predicted values of the model was tallied against uranium distribution between aqueous and organic phases in a running mixer settler. The equation for operating line i.e. straight line is derived from O/A=1.5 and considering barren organic contains 2 ppm uranium: y 1 = 0.667x 0 - .002. The extraction isotherm i.e. parabola equation came as : x 1 = 0.003y 0 2 + 0.723y 0 considering three points i.e. (0,0), (13,16.7) (uranium analysis for first stage of mixer-settler) and (25, 30.69) (feed concentration, loading capacity of solvent). Using these two equations the results that were obtained, predicted the solute distribution across different stages exactly as it is in the running mixer settler. Individual isotherms could also be drawn with the predicted results from the

  13. Cost-driven materials selection criteria for redox flow battery electrolytes

    Science.gov (United States)

    Dmello, Rylan; Milshtein, Jarrod D.; Brushett, Fikile R.; Smith, Kyle C.

    2016-10-01

    Redox flow batteries show promise for grid-scale energy storage applications but are presently too expensive for widespread adoption. Electrolyte material costs constitute a sizeable fraction of the redox flow battery price. As such, this work develops a techno-economic model for redox flow batteries that accounts for redox-active material, salt, and solvent contributions to the electrolyte cost. Benchmark values for electrolyte constituent costs guide identification of design constraints. Nonaqueous battery design is sensitive to all electrolyte component costs, cell voltage, and area-specific resistance. Design challenges for nonaqueous batteries include minimizing salt content and dropping redox-active species concentration requirements. Aqueous battery design is sensitive to only redox-active material cost and cell voltage, due to low area-specific resistance and supporting electrolyte costs. Increasing cell voltage and decreasing redox-active material cost present major materials selection challenges for aqueous batteries. This work minimizes cost-constraining variables by mapping the battery design space with the techno-economic model, through which we highlight pathways towards low price and moderate concentration. Furthermore, the techno-economic model calculates quantitative iterations of battery designs to achieve the Department of Energy battery price target of 100 per kWh and highlights cost cutting strategies to drive battery prices down further.

  14. Charge Relaxation Dynamics of an Electrolytic Nanocapacitor

    Science.gov (United States)

    2015-01-01

    Understanding ion relaxation dynamics in overlapping electric double layers (EDLs) is critical for the development of efficient nanotechnology-based electrochemical energy storage, electrochemomechanical energy conversion, and bioelectrochemical sensing devices as well as the controlled synthesis of nanostructured materials. Here, a lattice Boltzmann (LB) method is employed to simulate an electrolytic nanocapacitor subjected to a step potential at t = 0 for various degrees of EDL overlap, solvent viscosities, ratios of cation-to-anion diffusivity, and electrode separations. The use of a novel continuously varying and Galilean-invariant molecular-speed-dependent relaxation time (MSDRT) with the LB equation recovers a correct microscopic description of the molecular-collision phenomena and enhances the stability of the LB algorithm. Results for large EDL overlaps indicated oscillatory behavior for the ionic current density, in contrast to monotonic relaxation to equilibrium for low EDL overlaps. Further, at low solvent viscosities and large EDL overlaps, anomalous plasmalike spatial oscillations of the electric field were observed that appeared to be purely an effect of nanoscale confinement. Employing MSDRT in our simulations enabled modeling of the fundamental physics of the transient charge relaxation dynamics in electrochemical systems operating away from equilibrium wherein Nernst–Einstein relation is known to be violated. PMID:25678941

  15. P(AN-MMA)/TiO_2 Nano-composite Polymer Electrolyte by in-situ Polymerization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    1 Introduction With the development of portable electric devices,polymer lithium ion batteries (PLiBs) have been widely used as the power sources because of their high energy density and safe property[1].P(AN-MMA) copolymer is a kind of cheap macromolecules easily dissolving in the polar solvents such as carbonate,it has been applied as gel polymer electrolyte in PLiBs.Here we prepare a kind of highly conductive nano-composite polymer electrolytes using the P(AN-MMA) copolymer incorporated with TiO2 nan...

  16. Ternary polymer electrolytes with 1-methylimidazole based ionic liquids and aprotic solvents

    Czech Academy of Sciences Publication Activity Database

    Reiter, Jakub; Vondrák, Jiří; Michálek, Jiří; Mička, Z.

    2006-01-01

    Roč. 52, č. 3 (2006), s. 1398-1408 ISSN 0013-4686 R&D Projects: GA MŠk LC523; GA MŽP SN/3/171/05 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505 Keywords : polymer gel electrolyte * ionic liquids * lithium-ion batteries Subject RIV: CA - Inorganic Chemistry Impact factor: 2.955, year: 2006

  17. Lithium-conducting ionic melt electrolytes from polyether-functionalized fluorosulfonimide anions

    International Nuclear Information System (INIS)

    Hallac, B.B.; Geiculescu, O.E.; Rajagopal, R.V.; Creager, S.E.; DesMarteau, D.D.

    2008-01-01

    Solvent-free lithium-conducting ionic melt (IM) electrolytes were synthesized and characterized with respect to chemical structure, purity, and ion transport properties. The melts consist of lithium (perfluorovinylether)sulfonimide salts attached covalently to a lithium-solvating polyether chain. Ionic conductivities are relatively high which is a consequence of the favorable combination of the low lattice energy of the lithium fluorosulfonimide salt (low basicity of the fluorosulfonimide anion), the relatively low viscosity of the polyether matrix, and the relatively high salt content of the melts. Galvanostatic dc polarization experiments, using cells with non-blocking Li electrodes, indicate that salt concentration polarization does not occur in these electrolytes as dc current is passed through them

  18. New Microporous Polymer Electrolyte Based on Polysiloxane Grafted with Imidazolium Iodide Moieties for DSSC

    Directory of Open Access Journals (Sweden)

    Yan Yang

    2011-01-01

    Full Text Available Two types of polysiloxane grafted with different ratio of imidazolium iodide moieties (IL-SiO2 have been synthesized to develop a micro-porous polymer electrolyte for quasi-solid-state dye-sensitized solar cells. The samples were characterized by 1HNMR, FT-IR spectrum, XRD, TEM and SEM, respectively. Moreover, the ionic conductivity of the electrolytes was measured by electrochemical workstation. Nanostructured polysiloxane containing imidazolium iodide showed excellent compatibility with organic solvent and polymer matrix for its ionic liquid characteristics. Increasing the proportion of imidazolium iodide moieties in polysiloxane improved the electrochemical behavior of the gel polymer electrolyte. A dye-sensitized solar cell with gel polymer electrolyte yielded an open-circuit voltage of 0.70 V, short-circuit current of 11.19 mA cm−2, and the conversion efficiency of 3.61% at 1 sun illumination.

  19. Influence of the lithium salt electrolyte on the electrochemical performance of copper/LiFePO4 composites

    International Nuclear Information System (INIS)

    Trócoli, Rafael; Morales, Julián; Franger, Sylvain; Santos-Peña, Jesús

    2012-01-01

    In this work, we studied the influence of the electrolyte salt, LiPF 6 or LiClO 4 , on the electrochemical properties of copper/LiFePO 4 composites. We found a different stability voltage window for the two electrolytes that was remarkably wide for LiPF 6 . Also, copper addition is commonly accepted to increase electrode conductivity, which is beneficial for electrochemical purposes. However, copper is always oxidised to a variable extent depending on the particular electrolyte during the charge phase. Oxidation of the electrolyte solvent (especially with LiClO 4 ) was also observed during the first charge. In the first cycle, copper was more or less efficiently removed from the electrode surface. In subsequent cycles, however, these phenomena failed to occur (LiPF 6 ) or were weaker (LiClO 4 ). In all these configurations, iron is partially dissolved, to an extent dependent on the amount of copper present in the composite and differing with the particular electrolyte used. Electrochemical impedance spectroscopy allowed us to identify the process taking place close to 3.6 V in LiPF 6 configuration: Fe(II) from the composites are oxidised and irreversibly complexed by the joint action of HF formed from LiPF 6 and water traces and Cu(I) formed upon charging. Our hypothesis accurately explains the results observed in terms of charge/discharge profiles, capacities provided and capacities evolution upon cycling. Also, our test results testify to the importance of using low contents of copper in the composites and the good properties of LiPF 6 as electrolyte solvent.

  20. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Engelhard, Mark H.; Mei, Donghai; Jiao, Shuhong; Polzin, Bryant J.; Zhang, Ji-Guang; Xu, Wu

    2017-03-01

    Batteries using lithium (Li) metal as anodes are considered promising energy storage systems because of their high energy densities. However, safety concerns associated with dendrite growth along with limited cycle life, especially at high charge current densities, hinder their practical uses. Here we report that an optimal amount (0.05 M) of LiPF6 as an additive in LiTFSI-LiBOB dual-salt/carbonate-solvent-based electrolytes significantly enhances the charging capability and cycling stability of Li metal batteries. In a Li metal battery using a 4-V Li-ion cathode at a moderately high loading of 1.75mAh cm(-2), a cyclability of 97.1% capacity retention after 500 cycles along with very limited increase in electrode overpotential is accomplished at a charge/discharge current density up to 1.75 mA cm(-2). The fast charging and stable cycling performances are ascribed to the generation of a robust and conductive solid electrolyte interphase at the Li metal surface and stabilization of the Al cathode current collector.

  1. Enhancing Capacity Performance by Utilizing the Redox Chemistry of the Electrolyte in a Dual-Electrolyte Sodium-Ion Battery.

    Science.gov (United States)

    Senthilkumar, Sirugaloor Thangavel; Bae, Hyuntae; Han, Jinhyup; Kim, Youngsik

    2018-05-04

    A strategy is described to increase charge storage in a dual electrolyte Na-ion battery (DESIB) by combining the redox chemistry of the electrolyte with a Na + ion de-insertion/insertion cathode. Conventional electrolytes do not contribute to charge storage in battery systems, but redox-active electrolytes augment this property via charge transfer reactions at the electrode-electrolyte interface. The capacity of the cathode combined with that provided by the electrolyte redox reaction thus increases overall charge storage. An aqueous sodium hexacyanoferrate (Na 4 Fe(CN) 6 ) solution is employed as the redox-active electrolyte (Na-FC) and sodium nickel Prussian blue (Na x -NiBP) as the Na + ion insertion/de-insertion cathode. The capacity of DESIB with Na-FC electrolyte is twice that of a battery using a conventional (Na 2 SO 4 ) electrolyte. The use of redox-active electrolytes in batteries of any kind is an efficient and scalable approach to develop advanced high-energy-density storage systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Application of New Electrolyte Model to Phase Transfer Catalyst (PTC) Systems

    DEFF Research Database (Denmark)

    Hyung Kim, Sun; Anantpinijwatna, Amata; Kang, Jeong Won

    2015-01-01

    Abstract Phase transfer catalyst (PTC) is used to transfer the desirable active form of an anion from the aqueous phase to organic phase where the reaction occurs. One of major challenges for process design of the PTC system is to establish a reliable thermodynamic model capable of describing pha...... in PTC systems, thereby, extending the application range of the PTC-system model. The solubility of PTC in organic solvents, which is a key factor for strategy of PTC and solvent selection, has been calculated using the e-NRTL-SAC model....

  3. THE INFLUENCE OF THE SOLVENT ON THE THERMODYNAMICS OF ION ASSOCIATION

    Directory of Open Access Journals (Sweden)

    Vitalii Chumak

    2011-03-01

    Full Text Available Abstract. Some approaches which allow to divide thermodynamic functions of the ion associationprocess in two components have been developed. The first component belongs to the process, the second oneis caused by the temperature dependence of the dielectric permittivity of the solvent. The theory is confirmedby numerous examples of the ion association process of different electrolytes in the binary mixed solvents.Keywords: covalent part of the constant of ionic association, electrostatic part of the constant of ionicassociation, enthalpy of the chemical equilibria in solution, enthropy of the chemical equilibria in solution,ionic association, ionic equilibrias, the equilibrium constant.

  4. Separation of lanthanides using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2006-01-01

    A micro solvent extraction system for the separation of lanthanides has been investigated. The micro flow channel is fabricated on a poly(methyl methacrylate) (PMMA) plate, and solvent extraction progresses by feeding aqueous and organic solutions into the channel simultaneously. The extraction equilibrium is quickly achieved, without any mechanical mixing, when a narrow channel (100 μm width and 100 μm depth) is used. The results of solvent extraction from the Pr/Nd and Pr/Sm binary solutions revealed that both lanthanides are firstly extracted together, and then, the lighter lanthanide extracted in the organic solution alternatively exchanges to the heavier one in the aqueous solution to achieve the extraction equilibrium. The phase separation of the aqueous and organic phases after extraction can also be successively achieved by contriving the cross section of the flow channel, and the extractive separation of Pr/Sm is demonstrated. (authors)

  5. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.; Buttner, Ulrich; Yi, Ying

    2016-01-01

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  6. Drug delivery device including electrolytic pump

    KAUST Repository

    Foulds, Ian G.

    2016-03-31

    Systems and methods are provided for a drug delivery device and use of the device for drug delivery. In various aspects, the drug delivery device combines a “solid drug in reservoir” (SDR) system with an electrolytic pump. In various aspects an improved electrolytic pump is provided including, in particular, an improved electrolytic pump for use with a drug delivery device, for example an implantable drug delivery device. A catalytic reformer can be incorporated in a periodically pulsed electrolytic pump to provide stable pumping performance and reduced actuation cycle.

  7. Electrolytic conductivity and molar heat capacity of two aqueous solutions of ionic liquids at room-temperature: Measurements and correlations

    International Nuclear Information System (INIS)

    Lin Peiyin; Soriano, Allan N.; Leron, Rhoda B.; Li Menghui

    2010-01-01

    As part of our systematic study on physicochemical characterization of ionic liquids, in this work, we report new measurements of electrolytic conductivity and molar heat capacity for aqueous solutions of two 1-ethyl-3-methylimidazolium-based ionic liquids, namely: 1-ethyl-3-methylimidazolium dicyanamide and 1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate, at normal atmospheric condition and for temperatures up to 353.2 K. The electrolytic conductivity and molar heat capacity were measured by a commercial conductivity meter and a differential scanning calorimeter (DSC), respectively. The estimated experimental uncertainties for the electrolytic conductivity and molar heat capacity measurements were ±1% and ±2%, respectively. The property data are reported as functions of temperature and composition. A modified empirical equation from another researcher was used to correlate the temperature and composition dependence of the our electrolytic conductivity results. An excess molar heat capacity expression derived using a Redlich-Kister type equation was used to represent the temperature and composition dependence of the measured molar heat capacity and calculated excess molar heat capacity of the solvent systems considered. The correlations applied represent the our measurements satisfactorily as shown by an acceptable overall average deviation of 6.4% and 0.1%, respectively, for electrolytic conductivity and molar heat capacity.

  8. Solid electrolyte fuel cells

    Science.gov (United States)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  9. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  10. Electrical transport study of potato starch-based electrolyte system-II

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Tuhina; Kumar, Manindra [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, Neelam, E-mail: neelamsrivastava_bhu@yahoo.co.in [Department of Physics (Mahila Mahavidyalay), Banaras Hindu University, Varanasi (India); Srivastava, P.C. [Department of Physics, Banaras Hindu University, Varanasi (India)

    2014-03-15

    Highlights: • Cheap and bio-degradable polymer electrolyte. • High conductivity ∼ 9.59 × 10{sup −3} Scm{sup −1}. • Detailed ion dynamics stud. -- Abstract: Glutaraldehyde (GA) crosslinked potato starch, after mixing with sodium iodide (NaI), resulted in electrolyte film having conductivity (σ) ∼ 10{sup −3} S/cm and ionic transference number (t{sub ion}) ≥ 0.99. Out of two preparation mediums, namely methanol and acetone, methanol based electrolyte system seems to be better. Super-linear power law (SLPL) phenomenon is observed in MHz frequency range and both lattice site potential and coulomb cage potential due to neighboring mobile charge carriers seems to be responsible for existence of SLPL, and variation of power law exponent ‘n’ with salt concentration. These ion dynamics results are supported by dielectric data also. Estimated number of charge carriers ‘N’ and mobility ‘μ’ are discussed with reference to different variants (medium of preparation, plasticizer, and salt content). Material's conductivity strongly depends on humidity.

  11. Dual Alkali Solvent System for CO2 Capture from Flue Gas.

    Science.gov (United States)

    Li, Yang; Wang, H Paul; Liao, Chang-Yu; Zhao, Xinglei; Hsiung, Tung-Li; Liu, Shou-Heng; Chang, Shih-Ger

    2017-08-01

    A novel two-aqueous-phase CO 2 capture system, namely the dual alkali solvent (DAS) system, has been developed. Unlike traditional solvent-based CO 2 capture systems in which the same solvent is used for both CO 2 absorption and stripping, the solvent of the DAS system consists of two aqueous phases. The upper phase, which contains an organic alkali 1-(2-hydroxyethyl) piperazine (HEP), is used for CO 2 absorption. The lower phase, which consists of a mixture of K 2 CO 3 /KHCO 3 aqueous solution and KHCO 3 precipitate, is used for CO 2 stripping. Only a certain kind of amine (such as HEP) is able to ensure the phase separation, satisfactory absorption efficiency, effective CO 2 transfer from the upper phase to the lower phase, and regeneration of the upper phase. In the meantime, due to the presence of K 2 CO 3 /KHCO 3 in the lower phase, HEP in the upper phase is capable of being regenerated from its sulfite/sulfate heat stable salt, which enables the simultaneous absorption of CO 2 and SO 2 /SO 3 from the flue gas. Preliminary experiments and simulations indicate that the implementation of the DAS system can lead to 24.0% stripping energy savings compared to the Econamine process, without significantly lowering the CO 2 absorption efficiency (∼90%).

  12. Ion conducting fluoropolymer carbonates for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Balsara, Nitash P.; Thelen, Jacob; Devaux, Didier

    2017-09-05

    Liquid or solid electrolyte compositions are described that comprise a homogeneous solvent system and an alkali metal salt dissolved in said solvent system. The solvent system may comprise a fluoropolymer, having one or two terminal carbonate groups covalently coupled thereto. Batteries containing such electrolyte compositions are also described.

  13. A Combustion Chemistry Analysis of Carbonate Solvents in Li-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, S J; Timmons, A; Pitz, W J

    2008-11-13

    Under abusive conditions Li-ion batteries can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical properties of these gases that will determine whether they ignite and how energetically they burn. We show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this difference is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak energy release rate of an analogous propane flame. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. This result suggests that thermochemical and kinetic factors might well be considered when choosing solvent mixtures.

  14. Efficient and Stable Photovoltaic Characteristics of Quasi-Solid State DSSC using Polymer Gel Electrolyte Based on Ionic Liquid in Organosiloxane Polymer Gels

    Science.gov (United States)

    Pujiarti, H.; Arsyad, W. S.; Shobih; Muliani, L.; Hidayat, R.

    2018-04-01

    Dye-Sensitized Solar Cell (DSSC) is still one of the promising solar cell types among the third generation of solar cells because of easiness of fabrication and variety of available materials. In this type of solar cell, the electrolyte is one of the important components for regenerating excited dyes and transporting electric charge carriers to the counter electrode. Indeed, the power conversion efficiency of DSSC can be then significantly affected by the chemical and physical properties of the electrolyte. The simplest electrolyte system of an I-/I3 - redox couple in an organic solvent, however, has some drawbacks due to corrosive properties, volatile and leakage problem. Use of solid phase or gel phase electrolyte may overcome those problems, but it is often considered to suppress the efficiency due to low ion diffusion. Here, we report the photovoltaic characteristics of DSSC using polymer gel electrolyte (PGE), which is composed of ionic liquid and an organosiloxane polymer gel. The better cell performance with power conversion efficiency of about 6% has been obtained by optimizing the mesoporous size of the TiO2 layer and the PGE viscosity.

  15. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  16. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  17. Unimolecular Solvolyses in Ionic Liquid: Alcohol Dual Solvent Systems

    Directory of Open Access Journals (Sweden)

    Elizabeth D. Kochly

    2016-01-01

    Full Text Available A study was undertaken of the solvolysis of pivaloyl triflate in a variety of ionic liquid:alcohol solvent mixtures. The solvolysis is a kΔ process (i.e., a process in which ionization occurs with rearrangement, and the resulting rearranged carbocation intermediate reacts with the alcohol cosolvent via two competing pathways: nucleophilic attack or elimination of a proton. Five different ionic liquids and three different alcohol cosolvents were investigated to give a total of fifteen dual solvent systems. 1H-NMR analysis was used to determine relative amounts of elimination and substitution products. It was found, not surprisingly, that increasing the bulkiness of alcohol cosolvent led to increased elimination product. The change in the amount of elimination product with increasing ionic liquid concentration, however, varied greatly between ionic liquids. These differences correlate strongly, though not completely, to the Kamlet–Taft solvatochromic parameters of the hydrogen bond donating and accepting ability of the solvent systems. An additional factor playing into these differences is the bulkiness of the ionic liquid anion.

  18. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries

    Science.gov (United States)

    Noelle, Daniel J.; Shi, Yang; Wang, Meng; Le, Anh V.; Qiao, Yu

    2018-04-01

    Electrolyte poisons comprised of diols and diamines are investigated for the intended function of exacerbating internal resistance in lithium-ion batteries upon short circuit failure, to quickly arrest uncontrolled joule heat generation in the earliest stages. The competing dynamics of powerful short circuit currents and electrolyte poisoning interactions are evaluated via simultaneous nail penetration and poison injection of LIR2450 format LiCoO2/graphite 120 mAh coin cells. To forcibly increase electrolyte impedance, diols serve to hinder charge-carrying ion mobility by raising solution viscosity, while diamines disrupt solvent permittivity by rapidly polymerizing the ethylene carbonate solvent. Diamines demonstrate great potency, and are suitable for integration into battery cells within chemically-inert, breakable containers, rigged for release upon mechanical activation. Mixtures of 1,2-ethanediol and 1,2-ethanediamine show synergistic poisoning effects, decreasing peak temperature accrued by 70% when introduced simultaneously upon nail penetration. With the innate presence and abundance of diols and diamines in electric vehicle heat exchangers, they may be employed for multifunctional applications.

  19. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system

    Energy Technology Data Exchange (ETDEWEB)

    Hu Ren [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Department of Biology, College of Life Science, Xiamen University, Xiamen, Fujian 361005 (China); Lin Changjian, E-mail: cjlin@xmu.edu.cn [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China); Shi Haiyan; Wang Hui [State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, CNRS Laboratoire International Associe XiamENS, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005 (China)

    2009-06-15

    In this work, the electrochemical deposition behavior of calcium phosphate coating from an aqueous electrolyte containing very dilute calcium and phosphorus species (Ca-P) was studied. The effects of three process parameters, i.e. temperature, current density and duration, were systematically investigated and the underlying mechanism was thoroughly analyzed. It was observed that the coating is mainly composed of hydroxyapatite (HA) in a wide range of temperature and current densities. The temperature had a significant effect on the deposition velocity. An apparent activation energy of 174.9 kJ mol{sup -1} was subsequently derived, indicating the mass-transfer control mechanism for the coating formation. The current density was identified to be an important parameter for structure controllability. The results of DR-FTIR/Raman spectroscopic studies of the initial deposition phase strongly suggested that the HA coating was instantaneously and directly precipitated on the substrate; neither induction period nor precursor was detected in this dilute Ca-P electrolyte system. Finally, a phase diagram of the Ca-P electrolyte system was constructed, which offered a thermodynamic reason for the direct single-phase HA precipitation observed only in this system, but not in conventional concentrated systems.

  20. Electrochemical deposition mechanism of calcium phosphate coating in dilute Ca-P electrolyte system

    International Nuclear Information System (INIS)

    Hu Ren; Lin Changjian; Shi Haiyan; Wang Hui

    2009-01-01

    In this work, the electrochemical deposition behavior of calcium phosphate coating from an aqueous electrolyte containing very dilute calcium and phosphorus species (Ca-P) was studied. The effects of three process parameters, i.e. temperature, current density and duration, were systematically investigated and the underlying mechanism was thoroughly analyzed. It was observed that the coating is mainly composed of hydroxyapatite (HA) in a wide range of temperature and current densities. The temperature had a significant effect on the deposition velocity. An apparent activation energy of 174.9 kJ mol -1 was subsequently derived, indicating the mass-transfer control mechanism for the coating formation. The current density was identified to be an important parameter for structure controllability. The results of DR-FTIR/Raman spectroscopic studies of the initial deposition phase strongly suggested that the HA coating was instantaneously and directly precipitated on the substrate; neither induction period nor precursor was detected in this dilute Ca-P electrolyte system. Finally, a phase diagram of the Ca-P electrolyte system was constructed, which offered a thermodynamic reason for the direct single-phase HA precipitation observed only in this system, but not in conventional concentrated systems.

  1. Design and construction of an interceptor system for radioactively contaminated solvent

    International Nuclear Information System (INIS)

    Weiss, T.G. Jr.; Blickwedehl, R.R.

    1991-01-01

    During the conduct of fuel reprocessing operations at the Western New York Nuclear Service Center from 1966 to 1972, the site operator disposed of spent solvent by shallow land burial in the area used for disposal of solid radioactive waste. The spent solvent was placed in twenty-two 3785 liter (1000-gallon) steel tanks which were then placed in eight 6-meter-deep burial holes. With the passage of time groundwater entered the tanks displacing the solvent (a mixture of tributyl phosphate and n-dodecane) and allowing it to enter the surrounding groundwater system. The solvent, which is lighter than water, floated to the surface of the groundwater within the burial holes and began to migrate laterally through cracks caused by weathering. In 1983, after the US Department of Energy (DOE) initiated efforts for the West Valley Demonstration Project (WVDP), trace amounts of solvent were encountered in a monitoring well near the perimeter of the burial area. Since the initial discovery, extensive studies and continued monitoring have been conducted of the solvent migration. In the fall of 1989, this monitoring showed evidence of further on-site migration of the solvent within the disposal area. In response, the DOE authorized West Valley Nuclear Services Company, Inc. (WVNS) to proceed with the design and construction of a trench system to intercept the flow of solvent and prevent it from discharging to nearby streams. Since the solvent and the contaminated groundwater samples taken in the area exhibited high levels of Iodine-129 in an organic complex, it was necessary to construct a pretreatment facility. An important aspect of the trench construction was the management of contaminated soil and construction water. Contaminated soils were placed into storage containers and held for future treatment and disposal. All water pumped from the trench during construction was stored in large bladder tanks, analyzed for hazardous constituents, and upon finding none, was discharged

  2. Characterization of plasticized PEO-PAM blend polymer electrolyte system

    Science.gov (United States)

    Dave, Gargi; Kanchan, Dinesh

    2017-05-01

    Present study reports characterization studies of NaCF3SO3 based PEO-PAM Blend Polymer Electrolyte (BPE) system with varying amount of EC+PC as plasticizer prepared by solution cast technique. Structural analysis and surface topography have been performed using FTIR and SEM studies. To understand, thermal properties, DSC studies have been undertaken in the present paper

  3. Selective determination of cyanide complexes of copper, zinc and cadmium in electrolytes by spectrophotometric titration

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Korchagina, O.A.; Samorukova, O.L.

    1986-01-01

    Selective, sensitive and rapid method for determining Cd, Zn, Cu and their mixtures in cyanide electrolytes of galvanic bathes has been developed. Analysis is performed by means of indicator spectrophotometric titration with barium and strontium salts of cadmium cyanide complexes in organic-aqueous solvents

  4. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  5. Electrolytic polishing system for space age materials

    International Nuclear Information System (INIS)

    Coons, W.C.; Iosty, L.R.

    1976-01-01

    A simple electrolytic polishing technique was developed for preparing Cr, Co, Hf, Mo, Ni, Re, Ti, V, Zr, and their alloys for structural analysis on the optical microscope. The base electrolyte contains 5g ZnCl 2 and 15g AlCl 3 . 6H 2 O in 200 ml methyl alcohol, plus an amount of H 2 SO 4 depending on the metal being polished. Five etchants are listed

  6. Improving rate capability and reducing over-potential of lithium-oxygen batteries through optimization of Dimethylsulfoxide-N/N-dimethylacetamide mixed electrolyte

    International Nuclear Information System (INIS)

    Chen, Chunguang; Li, Liangyu; Su, Junming; Zhang, Congcong; Chen, Xiang; Huang, Tao; Yu, Aishui

    2017-01-01

    Although dimethylsulfoxide (DMSO) solvent has been widely researched in rechargeable lithium-oxygen (Li-O 2 ) batteries, high polarization voltage and low rate capability limited its application. In this work, we reported a DMSO-based electrolyte system by adding N, N-dimethylacetamide (DMA) to adjust its physical and electrochemical properties. The ionic conductivity, viscosity, oxygen solubility and diffusion coefficient of the mixed electrolytes as well as their electrochemical performance in Li-O 2 batteries are researched. The electrochemical tests show that the optimized DMSO/DMA volume ratio is 30 to 70 based on the rate performance and polarization voltage of the cell. Compared with that of the pure DMSO-based electrolyte, the cell with the mixed electrolyte shows improved rate capability and reduced charge-discharge over-potential. When increasing current density from 0.2 to 0.5 mA cm −2 , the capability retention improves from 32% to 59%. Meanwhile, the charge-discharge voltage gap drops from 1.4V to 0.9V at a current density of 0.2 mA cm −2 . The improved electrochemical performance could be attributed to low viscosity, high oxygen solubility and diffusion coefficient as well as the low charge-transfer resistance with the mixed electrolyte.

  7. Interplay Between Structure and Conductivity in 1-Ethyl-3-methylimidazolium tetrafluoroborate/(δ-MgCl2)f Electrolytes for Magnesium Batteries

    International Nuclear Information System (INIS)

    Bertasi, Federico; Vezzù, Keti; Nawn, Graeme; Pagot, Gioele; Di Noto, Vito

    2016-01-01

    The synthesis, physicochemical properties and conductivity mechanism of a family of ionic liquid-based electrolytes for use in secondary Mg batteries are reported. The electrolytes are obtained by dissolving controlled amounts of δ-MgCl 2 salt into the ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate (EMImBF 4 ) which acts as a solvent. δ-MgCl 2 consists of an inorganic ribbon of Mg atoms covalently bonded together through bridging chlorine atoms. Due to this peculiar structural motif, with respect to the electrolytes based on conventional Mg salts, it is possible to achieve electrolytes of higher Mg concentration. Thus, concatenated anionic complexes bridged via halogen atoms are formed, improving the electrochemical performance of these materials. Electrolytes with a general formula EMImBF 4 /(δ-MgCl 2 ) f with f ranging from 0 to 0.117 are obtained. The composition of the obtained materials is determined by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). The properties of these systems are investigated by means of Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), and vibrational spectroscopy in both medium (MIR) and far infrared (FIR). Finally, Broadband Electrical Spectroscopy (BES) is carried out with the aim to elucidate the electrical response of the electrolytes in terms of their polarization and relaxation phenomena and to propose a conductivity mechanism. At 20 °C the highest conductivity (0.007 S/cm) is observed for the electrolyte with c Mg = 0.00454 mol Mg /kg IL .

  8. Enabling electrolyte compositions for columnar silicon anodes in high energy secondary batteries

    Science.gov (United States)

    Piwko, Markus; Thieme, Sören; Weller, Christine; Althues, Holger; Kaskel, Stefan

    2017-09-01

    Columnar silicon structures are proven as high performance anodes for high energy batteries paired with low (sulfur) or high (nickel-cobalt-aluminum oxide, NCA) voltage cathodes. The introduction of a fluorinated ether/sulfolane solvent mixture drastically improves the capacity retention for both battery types due to an improved solid electrolyte interface (SEI) on the surface of the silicon electrode which reduces irreversible reactions normally causing lithium loss and rapid capacity fading. For the lithium silicide/sulfur battery cycling stability is significantly improved as compared to a frequently used reference electrolyte (DME/DOL) reaching a constant coulombic efficiency (CE) as high as 98%. For the silicon/NCA battery with higher voltage, the addition of only small amounts of fluoroethylene carbonate (FEC) to the novel electrolyte leads to a stable capacity over at least 50 cycles and a CE as high as 99.9%. A high volumetric energy density close to 1000 Wh l-1 was achieved with the new electrolyte taking all inactive components of the stack into account for the estimation.

  9. Thermodynamic modelling of the absorption of acid gas in mixed solvent (water-di-ethanolamine-methanol); Modelisation thermodynamique de l'absorption des gaz acides dans un solvant mixte (eau-diethanolamine-methanol)

    Energy Technology Data Exchange (ETDEWEB)

    Habchi tounsi, K.N.

    2003-10-01

    This work is related to the development of new processes about gas sweetening with mixed solvent coupling a chemical one (aqueous solution of di-ethanolamine) and a physical one (Methanol). These systems are electrolyte solutions constituted by ions and molecular species related each others by chemical reactions. This work is also relevant to the problematic of solvent mixtures (water-methanol). In a first stage we focus our interest over the measurement of original data covering a large experimental interval: five compositions in condition of pressures and temperatures up to 30 and 120 deg C respectively. In a second stage the simultaneous representation of chemical and phase equilibrium was successfully realised. The non stoichiometric method is used for the determination of chemical equilibrium. The heterogeneous method (Peng Robinson + NRTL electrolyte) is used for the representation of vapour liquid equilibrium. (author)

  10. Synthesis and characterization of ionomers as polymer electrolytes for energy conversion devices

    Science.gov (United States)

    Oh, Hyukkeun

    Single-ion conducting electrolytes present a unique alternative to traditional binary salt conductors used in lithium-ion batteries. Secondary lithium batteries are considered as one of the leading candidates to replace the combustible engines in automotive technology, however several roadblocks are present which prevent their widespread commercialization. Power density, energy density and safety properties must be improved in order to enable the current secondary lithium battery technology to compete with existing energy technologies. It has been shown theoretically that single-ion electrolytes can eliminate the salt concentration gradient and polarization loss in the cell that develops in a binary salt system, resulting in substantial improvements in materials utilization for high power and energy densities. While attempts to utilize single-ion conducting electrolytes in lithium-ion battery systems have been made, the low ionic conductivities prevented the successful operation of the battery cells in ambient conditions. This work focuses on designing single-ion conducting electrolytes with high ionic conductivities and electrochemical and mechanical stability which enables the stable charge-discharge performance of battery cells. Perfluorosulfonate ionomers are known to possess exceptionally high ionic conductivities due to the electron-withdrawing effect caused by the C-F bonds which stabilizes the negative charge of the anion, leading to a large number of free mobile cations. The effect of perfluorinated sulfonic acid side chains on transport properties of proton exchange membrane polymers was examinated via a comparison of three ionomers, having different side chain structures and a similar polymer backbone. The three different side chain structures were aryl-, pefluoro alkyl-, and alkyl-sulfonic acid groups, respectively. All ionomers were synthesized and characterized by 1H and 19F NMR. A novel ionomer synthesized with a pendant perfluorinated sulfonic acid

  11. Solvation behavior of carbonate-based electrolytes in sodium ion batteries.

    Science.gov (United States)

    Cresce, Arthur V; Russell, Selena M; Borodin, Oleg; Allen, Joshua A; Schroeder, Marshall A; Dai, Michael; Peng, Jing; Gobet, Mallory P; Greenbaum, Steven G; Rogers, Reginald E; Xu, Kang

    2016-12-21

    Sodium ion batteries are on the cusp of being a commercially available technology. Compared to lithium ion batteries, sodium ion batteries can potentially offer an attractive dollar-per-kilowatt-hour value, though at the penalty of reduced energy density. As a materials system, sodium ion batteries present a unique opportunity to apply lessons learned in the study of electrolytes for lithium ion batteries; specifically, the behavior of the sodium ion in an organic carbonate solution and the relationship of ion solvation with electrode surface passivation. In this work the Li + and Na + -based solvates were characterized using electrospray mass spectrometry, infrared and Raman spectroscopy, 17 O, 23 Na and pulse field gradient double-stimulated-echo pulse sequence nuclear magnetic resonance (NMR), and conductivity measurements. Spectroscopic evidence demonstrate that the Li + and Na + cations share a number of similar ion-solvent interaction trends, such as a preference in the gas and liquid phase for a solvation shell rich in cyclic carbonates over linear carbonates and fluorinated carbonates. However, quite different IR spectra due to the PF 6 - anion interactions with the Na + and Li + cations were observed and were rationalized with the help of density functional theory (DFT) calculations that were also used to examine the relative free energies of solvates using cluster - continuum models. Ion-solvent distances for Na + were longer than Li + , and Na + had a greater tendency towards forming contact pairs compared to Li + in linear carbonate solvents. In tests of hard carbon Na-ion batteries, performance was not well correlated to Na + solvent preference, leading to the possibility that Na + solvent preference may play a reduced role in the passivation of anode surfaces and overall Na-ion battery performance.

  12. Effects of Propylene Carbonate Content in CsPF6-Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa; Engelhard, Mark H.; Polzin, Bryant; Wang, Chong M.; Zhang, Jiguang; Xu, Wu

    2016-02-10

    Cesium salt has been demonstrated as an efficient electrolyte additive in suppressing the lithium (Li) dendrite formation and directing the formation of an ultrathin and stable solid electrolyte interphase (SEI) even in propylene carbonate (PC)-ethylene carbonate (EC)-based electrolytes. Here, we further investigate the effect of PC content in the presence of CsPF6 additive (0.05 M) on the performances of graphite electrode in Li||graphite half cells and in graphite||LiNi0.80Co0.15Al0.05O2 (NCA) full cells. It is found that the performance of graphite electrode is also affected by PC content even though CsPF6 additive is present in the electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode is attributed to the synergistic effects of the Cs+ additive and the PC solvent. The formation of a robust, ultrathin and compact SEI layer containing lithium-enriched species on the graphite electrode, directed by Cs+, effectively suppresses the PC co-intercalation and thus prevents the graphite exfoliation. This SEI layer is only permeable for de-solvated Li+ ions and allows fast Li+ ion transport through it, which therefore largely alleviates the Li dendrite formation on graphite electrode during lithiation even at high current densities. The presence of low-melting-point PC solvent also enables the sustainable operation of the graphite||NCA full cells under a wide spectrum of temperatures. The fundamental findings of this work shed light on the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in a variety of energy storage devices.

  13. Gel polymer electrolyte lithium-ion cells with improved low temperature performance

    Energy Technology Data Exchange (ETDEWEB)

    Smart, M.C.; Ratnakumar, B.V.; Behar, A.; Whitcanack, L.D. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Yu, J.-S. [LG Chem/Research Park, P.O. Box 61Yu Song, Science Town, Daejon (Korea); Alamgir, M. [Compact Power, Inc., 1857 Technology Drive, Troy, MI 48083 (United States)

    2007-03-20

    For a number of NASA's future planetary and terrestrial applications, high energy density rechargeable lithium batteries that can operate at very low temperature are desired. In the pursuit of developing Li-ion batteries with improved low temperature performance, we have also focused on assessing the viability of using gel polymer systems, due to their desirable form factor and enhanced safety characteristics. In the present study we have evaluated three classes of promising liquid low-temperature electrolytes that have been impregnated into gel polymer electrolyte carbon-LiMn{sub 2}O{sub 4}-based Li-ion cells (manufactured by LG Chem. Inc.), consisting of: (a) binary EC + EMC mixtures with very low EC-content (10%), (b) quaternary carbonate mixtures with low EC-content (16-20%), and (c) ternary electrolytes with very low EC-content (10%) and high proportions of ester co-solvents (i.e., 80%). These electrolytes have been compared with a baseline formulation (i.e., 1.0 M LiPF{sub 6} in EC + DEC + DMC (1:1:1%, v/v/v), where EC, ethylene carbonate, DEC, diethyl carbonate, and DMC, dimethyl carbonate). We have performed a number of characterization tests on these cells, including: determining the rate capacity as a function of temperature (with preceding charge at room temperature and also at low temperature), the cycle life performance (both 100% DOD and 30% DOD low earth orbit cycling), the pulse capability, and the impedance characteristics at different temperatures. We have obtained excellent performance at low temperatures with ester-based electrolytes, including the demonstration of >80% of the room temperature capacity at -60 C using a C/20 discharge rate with cells containing 1.0 M LiPF{sub 6} in EC + EMC + MB (1:1:8%, v/v/v) (MB, methyl butyrate) and 1.0 M LiPF{sub 6} in EC + EMC + EB (1:1:8%, v/v/v) (EB, ethyl butyrate) electrolytes. In addition, cells containing the ester-based electrolytes were observed to support 5C pulses at -40 C, while still

  14. Effects of Propylene Carbonate Content in CsPF 6 -Containing Electrolytes on the Enhanced Performances of Graphite Electrode for Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jianming; Yan, Pengfei; Cao, Ruiguo; Xiang, Hongfa [School of; Engelhard, Mark H.; Polzin, Bryant J. [Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States; Wang, Chongmin; Zhang, Ji-Guang; Xu, Wu

    2016-02-15

    The effects Of propylene carbonate (PC) content in CsPF6-containing electrolytes on the performances of graphite electrode in lithium half cells and in graphite parallel to LiNi0.80Co0.15Al0.05O2 (NCA) full cells are investigated. It is found that the performance of graphite electrode is significantly-affected by PC content in the CsPF6-containing electrolytes. An optimal PC content of 20% by weight in the solvent mixtures is identified. The enhanced electrochemical performance of graphite electrode can be attributed to the synergistic effects of the PC solvent and the Cs+ additive. The synergistic effects of Cs+ additive and appropriate amount of PC enable the formation of a robust, ultrathin, and compact solid electrolyte interphase (SEI) layer on the surface of graphite electrode, which is only permeable for desolvated Li+ ions and allows fast Li+ ion transport through it. Therefore, this SEI layer effectively suppresses the PC cointercalation and largely alleviates the Li dendrite formation on graphite electrode during lithiation even at relatively high current densities. The presence of low-melting-point PC solvent improves the sustainable operation of graphite parallel to NCA full cells under a wide temperature range. The fundamental findings also shed light On the importance of manipulating/maintaining the electrode/electrolyte interphasial stability in various energy-storage devices.

  15. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy

    Science.gov (United States)

    Bertilsson, Simon; Larsson, Fredrik; Furlani, Maurizio; Albinsson, Ingvar; Mellander, Bengt-Erik

    2017-10-01

    In the last few years the use of Li-ion batteries has increased rapidly, powering small as well as large applications, from electronic devices to power storage facilities. The Li-ion battery has, however, several safety issues regarding occasional overheating and subsequent thermal runaway. During such episodes, gas emissions from the electrolyte are of special concern because of their toxicity, flammability and the risk for gas explosion. In this work, the emissions from heated typical electrolyte components as well as from commonly used electrolytes are characterized using FT-IR spectroscopy and FT-IR coupled with thermogravimetric (TG) analysis, when heating up to 650 °C. The study includes the solvents EC, PC, DEC, DMC and EA in various single, binary and ternary mixtures with and without the LiPF6 salt, a commercially available electrolyte, (LP71), containing EC, DEC, DMC and LiPF6 as well as extracted electrolyte from a commercial 6.8 Ah Li-ion cell. Upon thermal heating, emissions of organic compounds and of the toxic decomposition products hydrogen fluoride (HF) and phosphoryl fluoride (POF3) were detected. The electrolyte and its components have also been extensively analyzed by means of infrared spectroscopy for identification purposes.

  16. Enhanced Cycling Stability of Rechargeable Li-O2 Batteries Using High Concentration Electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Yan, Pengfei; Sun, Xiuliang; Bowden, Mark E.; Read, Jeffrey; Qian, Jiangfeng; Mei, Donghai; Wang, Chong M.; Zhang, Jiguang

    2016-01-26

    The electrolyte stability against reactive reduced-oxygen species is crucial for the development of rechargeable Li-O2 batteries. In this work, we systematically investigated the effect of lithium salt concentration in 1,2-dimethoxyethane (DME)-based electrolytes on the cycling stability of Li-O2 batteries. Cells with high concentration electrolyte illustrate largely enhanced cycling stability under both the full discharge/charge (2.0-4.5 V vs. Li/Li+) and the capacity limited (at 1,000 mAh g-1) conditions. These cells also exhibit much less reaction-residual on the charged air electrode surface, and much less corrosion to the Li metal anode. The density functional theory calculations are conducted on the molecular orbital energies of the electrolyte components and the Gibbs activation barriers for superoxide radical anion to attack DME solvent and Li+-(DME)n solvates. In a highly concentrated electrolyte, all DME molecules have been coordinated with salt and the C-H bond scission of a DME molecule becomes more difficult. Therefore, the decomposition of highly concentrated electrolyte in a Li-O2 battery can be mitigated and both air-cathodes and Li-metal anodes exhibits much better reversibility. As a results, the cyclability of Li-O2 can be largely improved.

  17. Lithium/sulfur batteries with mixed liquid electrolytes based on ethyl 1,1,2,2-tetrafluoroethyl ether

    International Nuclear Information System (INIS)

    Lu, Hai; Zhang, Kai; Yuan, Yan; Qin, Furong; Zhang, Zhian; Lai, Yanqing; Liu, Yexiang

    2015-01-01

    Highlights: • Electrolyte based on fluorinated ether of ETFE is used in Li/S battery. • ETFE improves cycling, rate and self-discharging performances of Li/S battery. • Surface film on Li anode modified by ETFE inhibits the shuttle of polysulfides. - Abstract: Fluorinated ether of ethyl 1,1,2,2-tetrafluoroethyl ether (ETFE) was selected as electrolyte solvent for lithium/sulfur battery, and the influence of ETFE in electrolyte on cell properties was first investigated. The enhanced stability of electrolyte/anode interface and improved electrochemical performances (cycling, rate and self-discharging) of the Li/S cell are presented by using ETFE-containing electrolyte, especially for complete replacement of tetraethylene glycol dimethyl ether (TEGDME) by ETFE in combine with 1,3-dioxolane (DOL). It is found that ETFE plays a key role in modifying the surface composition and structure of the metallic Li, forming a strengthened protective film on the anode during cycling. Besides, ETFE is considered to decrease the dissolution of polysulfides in the electrolyte. These factors together restrict the contact and reaction between polysulfides and Li anode

  18. Investigation of Novel Electrolytes for Use in Lithium-Ion Batteries and Direct Methanol Fuel Cells

    Science.gov (United States)

    Pilar, Kartik

    Energy storage and conversion plays a critical role in the efficient use of available energy and is crucial for the utilization of renewable energy sources. To achieve maximum efficiency of renewable energy sources, improvements to energy storage materials must be developed. In this work, novel electrolytes for secondary batteries and fuel cells have been studied using nuclear magnetic resonance and high pressure x-ray scattering techniques to form a better understanding of dynamic and structural properties of these materials. Ionic liquids have been studied due to their potential as a safer alternative to organic solvent-based electrolytes in lithium-ion batteries and composite sulfonated polyetheretherketone (sPEEK) membranes have been investigated for their potential use as a proton exchange membrane electrolyte in direct methanol fuel cells. The characterization of these novel electrolytes is a step towards the development of the next generation of improved energy storage and energy conversion devices.

  19. Innovative polymeric system (IPS) for solvent-free lipophilic drug transdermal delivery via dissolving microneedles.

    Science.gov (United States)

    Dangol, Manita; Yang, Huisuk; Li, Cheng Guo; Lahiji, Shayan Fakhraei; Kim, Suyong; Ma, Yonghao; Jung, Hyungil

    2016-02-10

    Lipophilic drugs are potential drug candidates during drug development. However, due to the need for hazardous organic solvents for their solubilization, these drugs often fail to reach the pharmaceutical market, and in doing so highlight the importance of solvent free systems. Although transdermal drug delivery systems (TDDSs) are considered prospective safe drug delivery routes, a system involving lipophilic drugs in solvent free or powder form has not yet been described. Here, we report, for the first time, a novel approach for the delivery of every kind of lipophilic drug in powder form based on an innovative polymeric system (IPS). The phase transition of powder form of lipophilic drugs due to interior chemical bonds between drugs and biodegradable polymers and formation of nano-sized colloidal structures allowed the fabrication of dissolving microneedles (DMNs) to generate a powerful TDDS. We showed that IPS based DMN with powder capsaicin enhances the therapeutic effect for treatment of the rheumatic arthritis in a DBA/1 mouse model compared to a solvent-based system, indicating the promising potential of this new solvent-free platform for lipophilic drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Optimization of a flow injection analysis system for multiple solvent extraction

    International Nuclear Information System (INIS)

    Rossi, T.M.; Shelly, D.C.; Warner, I.M.

    1982-01-01

    The performance of a multistage flow injection analysis solvent extraction system has been optimized. The effect of solvent segmentation devices, extraction coils, and phase separators on performance characteristics is discussed. Theoretical consideration is given to the effects and determination of dispersion and the extraction dynamics within both glass and Teflon extraction coils. The optimized system has a sample recovery similar to an identical manual procedure and a 1.5% relative standard deviation between injections. Sample throughput time is under 5 min. These characteristics represent significant improvements over the performance of the same system before optimization. 6 figures, 2 tables

  1. Room-Temperature-Cured Copolymers for Lithium Battery Gel Electrolytes

    Science.gov (United States)

    Meador, Mary Ann B.; Tigelaar, Dean M.

    2009-01-01

    Polyimide-PEO copolymers (PEO signifies polyethylene oxide) that have branched rod-coil molecular structures and that can be cured into film form at room temperature have been invented for use as gel electrolytes for lithium-ion electric-power cells. These copolymers offer an alternative to previously patented branched rod-coil polyimides that have been considered for use as polymer electrolytes and that must be cured at a temperature of 200 C. In order to obtain sufficient conductivity for lithium ions in practical applications at and below room temperature, it is necessary to imbibe such a polymer with a suitable carbonate solvent or ionic liquid, but the high-temperature cure makes it impossible to incorporate and retain such a liquid within the polymer molecular framework. By eliminating the high-temperature cure, the present invention makes it possible to incorporate the required liquid.

  2. Solvents and solvent effects in organic chemistry

    National Research Council Canada - National Science Library

    Reichardt, C; Welton, T

    2011-01-01

    .../guest complexation equilibria and reactions in biphasic solvent systems and neoteric solvents, respectively. More than 900 new references have been added, giving preference to review articles, and many older ones have been deleted. New references either replace older ones or are added to the end of the respective reference list of each chapter. Th...

  3. Effects of solvation on partition and dimerization of benzoic acid in mixed solvent systems.

    Science.gov (United States)

    Yamada, H; Yajima, K; Wada, H; Nakagawa, G

    1995-06-01

    The partition of benzoic acid between 0.1M perchloric acid solution and two kinds of mixed solvents has been carried out at 25 degrees C. The partition and dimerization constants of benzoic acid have been determined in the 1-octanol-benzene and 2-octanone-benzene systems. In both the mixed solvent systems, with increasing content of 1-octanol and 2-octanone in each mixed solvent, the partition constant of benzoic acid has been found to increase, and the dimerization constant of benzoic acid in each organic phase to decrease. These phenomena are attributable to solvation of monomeric benzoic acid by 1-octanol and 2-octanone molecules in each mixed solvent.

  4. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements. Investigati......The electrochemical characteristics during the redox process of polypyrrole (PPy) films, prepared using dodecylbenzenesulphonate (DBS-) dopant species, have been investigated using a combination of cyclic voltammetry and Electrochemical Quartz Crystal Microbalance (EQCM) measurements....... Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...

  5. Ionic Conductivity and Cycling Stability Improvement of PVDF/Nano-Clay Using PVP as Polymer Electrolyte Membranes for LiFePO4 Batteries

    Directory of Open Access Journals (Sweden)

    Endah R. Dyartanti

    2018-07-01

    Full Text Available In this paper, we present the characteristics and performance of polymer electrolyte membranes (PEMs based on poly(vinylidene fluoride (PVDF. The membranes were prepared via a phase-inversion method (non-solvent-induced phase separation (NIPS. As separators for lithium battery systems, additive modified montmorillonite (MMT nano-clay served as a filler and poly(vinylpyrrolidone (PVP was used as a pore-forming agent. The membranes modified with an additive (8 wt % nano-clay and 7 wt % PVP showed an increased porosity (87% and an uptake of a large amount of electrolyte (801.69%, which generated a high level of ionic conductivity (5.61 mS cm−1 at room temperature. A graphite/PEMs/LiFePO4 coin cell CR2032 showed excellent stability in cycling performance (average discharge capacity 127 mA h g−1. Based on these results, PEMs are promising materials to be used in Polymer Electrolyte Membranes in lithium-ion batteries.

  6. Density Changes in the Optimized CSSX Solvent System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.D.

    2002-11-25

    Density increases in caustic-side solvent extraction (CSSX) solvent have been observed in separate experimental programs performed by different groups of researchers. Such changes indicate a change in chemical composition. Increased density adversely affects separation of solvent from denser aqueous solutions present in the CSSX process. Identification and control of factors affecting solvent density are essential for design and operation of the centrifugal contactors. The goals of this research were to identify the factors affecting solvent density (composition) and to develop correlations between easily measured solvent properties (density and viscosity) and the chemical composition of the solvent, which will permit real-time determination and adjustment of the solvent composition. In evaporation experiments, virgin solvent was subjected to evaporation under quiescent conditions at 25, 35, and 45 C with continuously flowing dry air passing over the surface of the solvent. Density and viscosity were measured periodically, and chemical analysis was performed on the solvent samples. Chemical interaction tests were completed to determine if any chemical reaction takes place over extended contact time that changes the composition and/or physical properties. Solvent and simulant, solvent and strip solution, and solvent and wash solution were contacted continuously in agitated flasks. They were periodically sampled and the density measured (viscosity was also measured on some samples) and then submitted to the Chemical Sciences Division of Oak Ridge National Laboratory for analysis by nuclear magnetic resonance (NMR) spectrometry and high-performance liquid chromatography (HPLC) using the virgin solvent as the baseline. Chemical interaction tests showed that solvent densities and viscosities did not change appreciably during contact with simulant, strip, or wash solution. No effects on density and viscosity and no chemical changes in the solvent were noted within

  7. Inhibition of anodic corrosion of aluminium cathode current collector on recharging in lithium imide electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianming; Yasukawa, Eiki; Mori, Shoichiro [Tsukuba Research Center, Mitsubishi Chemical Corp., Ibaraki (Japan)

    2000-07-01

    Pitting corrosion of aluminum as cathode current collector for lithium rechargeable batteries was found to take place at potential positive of 3.5 V in 1 mol dm {sup -3} LiN(SO{sub 2}CF{sub 3}){sub 2} /EC + DME (1:1) electrolyte. The corrosion mechanism of aluminum in the presence of LiN(SO{sub 2}CF{sub 3}){sub 2} was proposed, and three methods were deduced to inhibit the aluminum corrosion based on this mechanism. As a result, an additive of lithium salts based on perfluorinated inorganic anions, especially LiPF{sub 6}, was found to inhibit the aluminum corrosion to a certain extent by forming a protective film on aluminum surface. The oxidation stability of aluminum in LiN(SO{sub 2}CF{sub 3}){sub 2} -containing electrolytes depended strongly on the solvent structure. The ether solvents such as tetrahydrofuran (THF) and dimethoxyethane (DME) were effective in preventing aluminum corrosion due to their low dielectric constants. Furthermore, LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} salt with a larger anion than that of LiN(SO{sub 2}CF{sub 3}){sub 2} was evaluated and good oxidation stability of aluminum was obtained regardless of the kind of solvents. (Author)

  8. Activity and conformation of lysozyme in molecular solvents, protic ionic liquids (PILs) and salt-water systems.

    Science.gov (United States)

    Wijaya, Emmy C; Separovic, Frances; Drummond, Calum J; Greaves, Tamar L

    2016-09-21

    Improving protein stabilisation is important for the further development of many applications in the pharmaceutical, specialty chemical, consumer product and agricultural sectors. However, protein stabilization is highly dependent on the solvent environment and, hence, it is very complex to tailor protein-solvent combinations for stable protein maintenance. Understanding solvent features that govern protein stabilization will enable selection or design of suitable media with favourable solution environments to retain protein native conformation. In this work the structural conformation and activity of lysozyme in 29 solvent systems were investigated to determine the role of various solvent features on the stability of the enzyme. The solvent systems consisted of 19 low molecular weight polar solvents and 4 protic ionic liquids (PILs), both at different water content levels, and 6 aqueous salt solutions. Small angle X-ray scattering, Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to investigate the tertiary and secondary structure of lysozyme along with the corresponding activity in various solvation systems. At low non-aqueous solvent concentrations (high water content), the presence of solvents and salts generally maintained lysozyme in its native structure and enhanced its activity. Due to the presence of a net surface charge on lysozyme, electrostatic interactions in PIL-water systems and salt solutions enhanced lysozyme activity more than the specific hydrogen-bond interactions present in non-ionic molecular solvents. At higher solvent concentrations (lower water content), solvents with a propensity to exhibit the solvophobic effect, analogous to the hydrophobic effect in water, retained lysozyme native conformation and activity. This solvophobic effect was observed particularly for solvents which contained hydroxyl moieties. Preferential solvophobic effects along with bulky chemical structures were postulated to result in less

  9. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    Science.gov (United States)

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  10. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  11. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  12. Electrolyte solutions at curved electrodes. II. Microscopic approach.

    Science.gov (United States)

    Reindl, Andreas; Bier, Markus; Dietrich, S

    2017-04-21

    Density functional theory is used to describe electrolyte solutions in contact with electrodes of planar or spherical shape. For the electrolyte solutions, we consider the so-called civilized model, in which all species present are treated on equal footing. This allows us to discuss the features of the electric double layer in terms of the differential capacitance. The model provides insight into the microscopic structure of the electric double layer, which goes beyond the mesoscopic approach studied in Paper I. This enables us to judge the relevance of microscopic details, such as the radii of the particles forming the electrolyte solutions or the dipolar character of the solvent particles, and to compare the predictions of various models. Similar to Paper I, a general behavior is observed for small radii of the electrode in that in this limit the results become independent of the surface charge density and of the particle radii. However, for large electrode radii, non-trivial behaviors are observed. Especially the particle radii and the surface charge density strongly influence the capacitance. From the comparison with the Poisson-Boltzmann approach, it becomes apparent that the shape of the electrode determines whether the microscopic details of the full civilized model have to be taken into account or whether already simpler models yield acceptable predictions.

  13. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  14. Aqueous dye-sensitized solar cell electrolytes based on the ferricyanide-ferrocyanide redox couple

    Energy Technology Data Exchange (ETDEWEB)

    Daeneke, Torben; Spiccia, Leone [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, Monash University, Victoria (Australia); Uemura, Yu.; Koumura, Nagatoshi [Research Institute for Photovoltaic Technology, National Institute of Advanced Industrial Science and Technology AIST, Ibaraki (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki (Japan); Duffy, Noel W. [CSIRO Energy Technology, Clayton, VIC (Australia); Mozer, Attila J. [School of Chemistry and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, NSW (Australia); Bach, Udo [Department of Materials Engineering, Monash University, Victoria (Australia)

    2012-03-02

    Solar energy conversion efficiencies of over 4% have been achieved in DSCs constructed with aqueous electrolytes based on the ferricyanide-ferrocyanide redox couple, thereby avoiding the use of expensive, flammable and toxic solvents. This paradigm shift was made possible by the use of a hydrophobic organic carbazole dye. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. New approaches to the design of polymer and liquid electrolytes for lithium batteries

    Science.gov (United States)

    McBreen, J.; Lee, H. S.; Yang, X. Q.; Sun, X.

    All non-aqueous lithium battery electrolytes are Lewis bases that interact with cations. Unlike water, they do not interact with anions. The result is a high degree of ion pairing and the formation of triplets and higher aggregates. This decreases the conductivity and the lithium ion transference, and results in polarization losses in batteries. Approaches that have been used to increase ion dissociation in poly(ethylene oxide) (PEO)-based electrolytes are the use of salts with low lattice energy, the addition of polar plasticizers to the polymer, and the addition of cation complexing agents such as crown ethers or cryptands. Complexing of the anions is a more promising approach, since it should increase both ion dissociation and the lithium transference. At Brookhaven National Laboratory (BNL) we have synthesized two new families of neutral anion complexing agents, each based on Lewis acid centers. One is based on electron deficient nitrogen sites on substituted aza-ethers, wherein the hydrogen on the nitrogen is replaced by electron withdrawing groups such as CF 3SO 3-. The other is based on electron deficient boron sites on borane or borate compounds with various fluorinated aryl or alkyl groups. Some of the borane-based anion receptors can promote the dissolution of LiF in several solvents. Several of these compounds, when added in equivalent amounts, produce 1.2 M LiF solutions in DME, an increase in solubility of LiF by six orders of magnitude. Some of these LiF electrolytes have conductivities as high as 6×10 -3 S cm -1. The LiF electrolytes with borane anion acceptors in PC:EC:DEC solvents have excellent electrochemical stability. This has been demonstrated in small Li/LiMn 2O 4 cells.

  16. Separation of rare earth metal using micro solvent extraction system

    International Nuclear Information System (INIS)

    Nishihama, S.; Tajiri, Y.; Yoshizuka, K.

    2005-01-01

    A micro solvent extraction system for the separation of rare earth metals has been investigated. The micro flow channel was fabricated on a PMMA plate. Extraction equilibrium was quickly achieved, without any mechanical mixing. The solvent extraction results obtained for the Pr/Sm binary solutions revealed that both rare earth metals are firstly extracted together. Following, the Pr is extracted in the organic solution and Sm remains in the aqueous phase. The phase separation can be successively achieved by contriving the cross section of the flow channel

  17. Modeling of vapor-liquid-solid equilibrium in gas - aqueous electrolyte systems

    DEFF Research Database (Denmark)

    Thomsen, Kaj; Rasmussen, Peter

    1999-01-01

    A thermodynamic model for the description of vapor-liquid-solid equilibria is introduced. This model is a combination of the extended UNIQUAC model for electrolytes and the Soave-Redlich-Kwong cubic equation of state. The model has been applied to aqueous systems containing ammonia and/or carbon ...

  18. Conductivity enhancement of silver nanowire networks via simple electrolyte solution treatment and solvent washing

    Science.gov (United States)

    Gu, Jiahui; Wang, Xuelin; Chen, Hongtao; Yang, Shihua; Feng, Huanhuan; Ma, Xing; Ji, Hongjun; Wei, Jun; Li, Mingyu

    2018-06-01

    As a promising replacement material for indium tin oxide in flexible electronics, silver nanowires (AgNWs) usually need complicated post-treatment to reduce the high contact resistance across the intersections when used as transparent conductive films. In this work, a widely applicable nano-joining method for improving the overall conductivity of AgNW networks with different kinds of electrolyte solutions is presented. By treatment with an electrolyte solution with appropriate ionic strengths, the insulating surfactant layer (polyvinylpyrrolidone, PVP) on the AgNWs could be desorbed, and the AgNW network could be densified. The sheet resistance of the AgNW film on a glass slide is reduced by 60.9% (from 67.5 to 26.4 Ohm sq‑1) with a transmittance of 92.5%. High-resolution transmission electron microscopy analysis indicates that atomic diffusion occurs at the intersection of two AgNWs. Thus, metallurgical bonding on the nanometer scale is achieved across the junctions of the AgNWs, leading to a significant enhancement in the conductivity of the AgNW network.

  19. The chemistry of nonaqueous solvents v.4 solution phenomena and aprotic solvents

    CERN Document Server

    Lagowski, J J

    1976-01-01

    The Chemistry of Nonaqueous Solvents, Volume IV: Solution Phenomena and Aprotic Solvents focuses on the chemistry of nonaqueous solvents, with emphasis on solution phenomena and aprotic solvents such as tetramethylurea, inorganic acid chlorides, cyclic carbonates, and sulfolane. This book is organized into seven chapters and begins with an overview of the theory of electrical conductivity and elementary experimental considerations, along with some of the interesting research on nonaqueous solvents. It then turns to a discussion on hydrogen bonding phenomena in nonaqueous systems as probed

  20. On the use of voltammetric methods to determine electrochemical stability limits for lithium battery electrolytes

    Science.gov (United States)

    Georén, Peter; Lindbergh, Göran

    In previous studies a novel amphiphilic co-polymer was developed for use in lithium-ion batteries. In order to evaluate the electrochemical stability of that electrolyte and compare it with others, a voltammetric method was applied on a set of electrolytes with different salts, solvents and polymers. However, initially the voltammetric methodology was studied. Platinum was found to be the most suited electrode material, experiencing no significant interfering reactions and a proper diffusion-controlled kinetic behaviour when sweep rate was varied. Furthermore, the influence on the voltammograms of adding water traces to the electrolytes was studied. It could be established that the oxidation peak around 3.8 V versus Li was related to water reactions. It was concluded that quantitative voltage values of the stability limits were difficult to assess using voltammetry. On the other hand, the method seemed well suited for comparison of electrolytes and to investigate the influences of electrolyte components on the stability. The voltammetric results varied little between the different electrolytes evaluated and the anodic and cathodic limits, as defined here, were in the range of 1 and 4.5 V vs. Li, respectively. Although the novel polymer did not affect the stability limit significantly it seemed to promote the breakdown reaction rate in all electrolytes tested. Furthermore, the use of LiTFSI salt reduced the stability window.

  1. Comparative Assessment of Nonlocal Continuum Solvent Models Exhibiting Overscreening

    Directory of Open Access Journals (Sweden)

    Ren Baihua

    2017-01-01

    Full Text Available Nonlocal continua have been proposed to offer a more realistic model for the electrostatic response of solutions such as the electrolyte solvents prominent in biology and electrochemistry. In this work, we review three nonlocal models based on the Landau-Ginzburg framework which have been proposed but not directly compared previously, due to different expressions of the nonlocal constitutive relationship. To understand the relationships between these models and the underlying physical insights from which they are derive, we situate these models into a single, unified Landau-Ginzburg framework. One of the models offers the capacity to interpret how temperature changes affect dielectric response, and we note that the variations with temperature are qualitatively reasonable even though predictions at ambient temperatures are not quantitatively in agreement with experiment. Two of these models correctly reproduce overscreening (oscillations between positive and negative polarization charge densities, and we observe small differences between them when we simulate the potential between parallel plates held at constant potential. These computations require reformulating the two models as coupled systems of local partial differential equations (PDEs, and we use spectral methods to discretize both problems. We propose further assessments to discriminate between the models, particularly in regards to establishing boundary conditions and comparing to explicit-solvent molecular dynamics simulations.

  2. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  3. Electrolyte for batteries with regenerative solid electrolyte interface

    Science.gov (United States)

    Xiao, Jie; Lu, Dongping; Shao, Yuyan; Bennett, Wendy D.; Graff, Gordon L.; Liu, Jun; Zhang, Ji-Guang

    2017-08-01

    An energy storage device comprising: an anode; and a solute-containing electrolyte composition wherein the solute concentration in the electrolyte composition is sufficiently high to form a regenerative solid electrolyte interface layer on a surface of the anode only during charging of the energy storage device, wherein the regenerative layer comprises at least one solute or solvated solute from the electrolyte composition.

  4. Kinetic features of cadmium electrodeposition in iodide water-acetone electrolytes

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Skibina, L.M.; Khalikov, R.R.

    2006-01-01

    Based on the data of chronopotentiometric, galvanostatic, potentiodynamic, and impedance measurements, the composition of aqueous acetone electrolyte is studied for its effect on the rate of cadmium(II) electroreduction in iodide media. The adsorption of I - ions on the cadmium cathode surface is shown to depend on the interaction mechanism between the components of water-acetone mixtures. During a competitive adsorption of anions and organic solvent molecules, this affects the mechanism and the rate of electrodeposition and also the coating quality [ru

  5. Influence of Solvent-Solvent and Solute-Solvent Interaction Properties on Solvent-Mediated Potential

    International Nuclear Information System (INIS)

    Zhou Shiqi

    2005-01-01

    A recently proposed universal calculational recipe for solvent-mediated potential is applied to calculate excess potential of mean force between two large Lennard-Jones (LJ) or hard core attractive Yukawa particles immersed in small LJ solvent bath at supercritical state. Comparison between the present prediction with a hypernetted chain approximation adopted for solute-solute correlation at infinitely dilute limit and existing simulation data shows high accuracy for the region with large separation, and qualitative reliability for the solute particle contact region. The calculational simplicity of the present recipe allows for a detailed investigation on the effect of the solute-solvent and solvent-solvent interaction details on the excess potential of mean force. The resultant conclusion is that gathering of solvent particles near a solute particle leads to repulsive excess PMF, while depletion of solvent particles away from the solute particle leads to attractive excess PMF, and minor change of the solvent-solvent interaction range has large influence on the excess PMF.

  6. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  7. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  8. Model for Calculating Electrolytic Shunt Path Losses in Large Electrochemical Energy Conversion Systems

    Science.gov (United States)

    Prokopius, P. R.

    1976-01-01

    Generalized analysis and solution techniques were developed to evaluate the shunt power losses in electrochemical systems designed with a common or circulating electrolyte supply. Sample data are presented for a hypothetical bulk energy storage redox system, and the general applicability of the analysis technique is discussed.

  9. Measurement and prediction of aromatic solute distribution coefficients for aqueous-organic solvent systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.R.; Luthy, R.G.

    1984-06-01

    Experimental and modeling activities were performed to assess techniques for measurement and prediction of distribution coefficients for aromatic solutes between water and immiscible organic solvents. Experiments were performed to measure distribution coefficients in both clean water and wastewater systems, and to assess treatment of a wastewater by solvent extraction. The theoretical portions of this investigation were directed towards development of techniques for prediction of solute-solvent/water distribution coefficients. Experiments were performed to assess treatment of a phenolic-laden coal conversion wastewater by solvent extraction. The results showed that solvent extraction for recovery of phenolic material offered several wastewater processing advantages. Distribution coefficients were measured in clean water and wastewater systems for aromatic solutes of varying functionality with different solvent types. It was found that distribution coefficients for these compounds in clean water systems were not statistically different from distribution coefficients determined in a complex coal conversion process wastewater. These and other aromatic solute distribution coefficient data were employed for evaluation of modeling techniques for prediction of solute-solvent/water distribution coefficients. Eight solvents were selected in order to represent various chemical classes: toluene and benzene (aromatics), hexane and heptane (alkanes), n-octanol (alcohols), n-butyl acetate (esters), diisopropyl ether (ethers), and methylisobutyl ketone (ketones). The aromatic solutes included: nonpolar compounds such as benzene, toluene and naphthalene, phenolic compounds such as phenol, cresol and catechol, nitrogenous aromatics such as aniline, pyridine and aminonaphthalene, and other aromatic solutes such as naphthol, quinolinol and halogenated compounds. 100 references, 20 figures, 34 tables.

  10. Solubility of cefoxitin acid in different solvent systems

    International Nuclear Information System (INIS)

    Yuan, Fuhong; Wang, Yongli; Xiao, Liping; Huang, Qiaoyin; Xu, Jinchao; Jiang, Chen; Hao, Hongxun

    2016-01-01

    Highlights: • The solubility of cefoxitin acid in different solvent systems was measured. • Three models were used to correlate the solubility data. • The dissolution enthalpy of the dissolution process was calculated. - Abstract: Cefoxitin acid is one kind of important pharmaceutical intermediate. Its solubility is crucial for designing and optimizing the crystallization processes. In this work, the solubility of cefoxitin acid in organic solvents (methanol, acetonitrile, ethanol, isopropanol, n-propanol and ethyl acetate), water and water-methanol mixtures was measured spectrophotometrically using a shake-flask method within the temperature range 278.15–303.15 K. PXRD data and the Karl Fischer method were used to verify the crystal form stability of cefoxitin acid in the solubility measuring process. The melting points, the enthalpy and entropy of fusion were estimated. Results showed that the solubility of cefoxitin acid increases with the increasing temperature in all tested solvents in this work, and the solubility of cefoxitin acid increases with the increasing methanol concentration in water-methanol mixtures. The experimental solubility values were well correlated using the modified Apelblat equation, NRTL model and CNIBS/R-K model. An equation proposed by Williamson was adopted to calculate the molar enthalpy during the dissolution process.

  11. Electrochemical studies of ferrocene in a lithium ion conducting organic carbonate electrolyte

    International Nuclear Information System (INIS)

    Laoire, Cormac O.; Plichta, Edward; Hendrickson, Mary; Mukerjee, Sanjeev; Abraham, K.M.

    2009-01-01

    We carried out a detailed study of the kinetics of oxidation of ferrocene (Fc) to ferrocenium ion (Fc + ) in the non-aqueous lithium ion conducting electrolyte composed of a solution of 1 M LiPF 6 in 1:1 EC:EMC solvent mixture. This study using cyclic (CV) and rotating disk electrode (RDE) voltammetry showed that the Fc 0 /Fc + redox couple is reversible in this highly concentrated electrolyte. The ferrocene and ferrocenium ion diffusion coefficients (D) were calculated from these results. In addition, the electron transfer rate constant (k 0 ) and the exchange current density for the oxidation of ferrocene were determined. A comparison of the kinetic data obtained from the two electrochemical techniques appears to show that the data from the RDE experiments are more reliable because they are collected under strict mass transport control. A Tafel slope of c.a. 79 mV/decade and a transfer coefficient α of 0.3 obtained from analysis of the RDE data for ferrocene oxidation suggest that the structure of the activated complex is closer to that of the oxidized specie due to strong interactions with the carbonate solvents. The experiments reported here are relevant to the study of redox reagents for the chemical overcharge protection of Li-ion batteries.

  12. Ionic liquids as electrolytes

    International Nuclear Information System (INIS)

    Galinski, Maciej; Lewandowski, Andrzej; Stepniak, Izabela

    2006-01-01

    Salts having a low melting point are liquid at room temperature, or even below, and form a new class of liquids usually called room temperature ionic liquids (RTIL). Information about RTILs can be found in the literature with such key words as: room temperature molten salt, low-temperature molten salt, ambient-temperature molten salt, liquid organic salt or simply ionic liquid. Their physicochemical properties are the same as high temperature ionic liquids, but the practical aspects of their maintenance or handling are different enough to merit a distinction. The class of ionic liquids, based on tetraalkylammonium cation and chloroaluminate anion, has been extensively studied since late 1970s of the XX century, following the works of Osteryoung. Systematic research on the application of chloroaluminate ionic liquids as solvents was performed in 1980s. However, ionic liquids based on aluminium halides are moisture sensitive. During the last decade an increasing number of new ionic liquids have been prepared and used as solvents. The general aim of this paper was to review the physical and chemical properties of RTILs from the point of view of their possible application as electrolytes in electrochemical processes and devices. The following points are discussed: melting and freezing, conductivity, viscosity, temperature dependence of conductivity, transport and transference numbers, electrochemical stability, possible application in aluminium electroplating, lithium batteries and in electrochemical capacitors

  13. Challenge in manufacturing electrolyte solutions for lithium and lithium ion batteries quality control and minimizing contamination level

    Science.gov (United States)

    Heider, U.; Oesten, R.; Jungnitz, M.

    The quality of electrolytes for lithium batteries are a major topic in science and battery industries. The solvents and lithium salts should be of highest purity. Therefore, during preparation and handling of electrolyte solutions, the contamination level has to be minimized and the quality during packaging, storage and transportation has to be guaranteed. Especially, protic impurities are found to be very critical for LiPF 6-based electrolytes. The influence of water is reported to be tremendous. But also other protic impurities like alcohols are considered to play an important role in the electrolyte quality. The reaction of the protic impurities with LiPF 6 leads to the formation of HF which further reacts with cathode active materials (e.g., spinel) and the passivating films of the cathode and anode. For a better understanding of the protic impurities and their role in the electrolyte quality a systematic investigation of different impurities was carried out. Electrolytes were doped with different protic compounds. Then the electrolyte was analyzed for protic impurities and HF in dependence of time. First results showing the relation between protic impurities and HF are presented and discussed. In addition, different packaging materials for the electrolyte solutions were investigated. Storage tests were carried out at different temperatures and in different atmospheres. Results on contamination levels, influence of packaging, high temperature storage and handling are addressed.

  14. Mathematical modeling of the lithium, thionyl chloride static cell. I. Neutral electrolyte. II - Acid electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Tsaur, K.C.; Pollard, R.

    1984-05-01

    Mathematical models are presented for a Li-LiAlCl4/SOCl2-C static cell with neutral electrolyte and a Li/SOCl2-C static cell with acid electrolyte. The model for the Li-LiAlCl4/SOCl2-C cell with neutral solution predicts that high internal resistance can develop in the positive electrode as a result of low local porosities which are, in turn, caused by large-volume, solid reaction products. Consequently, the maximum usable cell capacity is dictated by the nonuniformity of the reaction distribution at the front of the positive electrode. In many respects, a cell with acid electrolyte can be regarded as a combination of an equivalent neutral electrolyte system and an acid reservoir. The model for the Li/SOCl2 cell suggests that the cell life depends primarily on the quantity of acid added to the electrolyte. 58 references.

  15. Mathematical modeling of the lithium, thionyl chloride static cell. I - Neutral electrolyte. II - Acid electrolyte

    Science.gov (United States)

    Tsaur, K.-C.; Pollard, R.

    1984-05-01

    Mathematical models are presented for a Li-LiAlCl4/SOCl2-C static cell with neutral electrolyte and a Li/SOCl2-C static cell with acid electrolyte. The model for the Li-LiAlCl4/SOCl2-C cell with neutral solution predicts that high internal resistance can develop in the positive electrode as a result of low local porosities which are, in turn, caused by large-volume, solid reaction products. Consequently, the maximum usable cell capacity is dictated by the nonuniformity of the reaction distribution at the front of the positive electrode. In many respects, a cell with acid electrolyte can be regarded as a combination of an equivalent neutral electrolyte system and an acid reservoir. The model for the Li/SOCl2 cell suggests that the cell life depends primarily on the quantity of acid added to the electrolyte.

  16. Apparent Molal Volumes of Sodium Fluoride in Mixed Aqueous-Ethanol Solvents

    Directory of Open Access Journals (Sweden)

    E. Gomaa

    2010-09-01

    Full Text Available The densities of different molal concentrations of sodium fluoride at ethanol-water mixtures, as solvent, have been measured over the whole composition range at three different temperatures, 293.15, 303.15 and 313.15oK. From the measured densities, the apparent and limiting molal volumes of the electrolytes have been evaluated. The limiting molal volumes for sodium and fluoride ions were estimated by splitting the ionic contributions as an asymmetric assumption.

  17. The buffer effect in neutral electrolyte supercapacitors

    DEFF Research Database (Denmark)

    Thrane Vindt, Steffen; Skou, Eivind M.

    2016-01-01

    The observation that double-layer capacitors based on neutral aqueous electrolytes can have significantly wider usable potential windows than those based on acidic or alkaline electrolytes is studied. This effect is explained by a local pH change taking place at the electrode surfaces, leading...... potassium nitrate as the electrolyte and potassium phosphates as the buffer system....

  18. Effect of dynamic surface polarization on the oxidative stability of solvents in nonaqueous Li-O 2 batteries

    Science.gov (United States)

    Khetan, Abhishek; Pitsch, Heinz; Viswanathan, Venkatasubramanian

    2017-09-01

    Polarization-induced renormalization of the frontier energy levels of interacting molecules and surfaces can cause significant shifts in the excitation and transport behavior of electrons. This phenomenon is crucial in determining the oxidative stability of nonaqueous electrolytes in high-energy density electrochemical systems such as the Li-O2 battery. On the basis of partially self-consistent first-principles Sc G W0 calculations, we systematically study how the electronic energy levels of four commonly used solvent molecules, namely, dimethylsulfoxide (DMSO), dimethoxyethane (DME), tetrahydrofuran (THF), and acetonitrile (ACN), renormalize when physisorbed on the different stable surfaces of Li2O2 , the main discharge product. Using band level alignment arguments, we propose that the difference between the solvent's highest occupied molecular orbital (HOMO) level and the surface's valence-band maximum (VBM) is a refined metric of oxidative stability. This metric and a previously used descriptor, solvent's gas phase HOMO level, agree quite well for physisorbed cases on pristine surfaces where ACN is oxidatively most stable followed by DME, THF, and DMSO. However, this effect is intrinsically linked to the surface chemistry of the solvent's interaction with the surface states and defects, and depends strongly on their nature. We conclusively show that the propensity of solvent molecules to oxidize will be significantly higher on Li2O2 surfaces with defects as compared to pristine surfaces. This suggests that the oxidative stability of a solvent is dynamic and is a strong function of surface electronic properties. Thus, while gas phase HOMO levels could be used for preliminary solvent candidate screening, a more refined picture of solvent stability requires mapping out the solvent stability as a function of the state of the surface under operating conditions.

  19. A QuaternaryPoly(ethylene carbonate)-Lithium Bis(trifluoromethanesulfonyl)imide-Ionic Liquid-Silica Fiber Composite Polymer Electrolyte for Lithium Batteries

    International Nuclear Information System (INIS)

    Kimura, Kento; Matsumoto, Hidetoshi; Hassoun, Jusef; Panero, Stefania; Scrosati, Bruno; Tominaga, Yoichi

    2015-01-01

    Highlights: • A quaternary PEC-LiTFSI-Pyr 14 TFSI-Silica fiber electrolyte was prepared by a solvent casting method. • Both electrochemical and mechanical properties were improved by the presence of the Silica fiber. • The electrolyte showed a t Li+ value of 0.36 with an anodic stability extended up to 4.5 V vs. Li/Li + . • A prototype Li/LiFePO 4 polymer cell delivered a discharge capacity of about 100 mAh g −1 (75 °C, C/15). - Abstract: Poly(ethylene carbonate) (PEC) is known as an alternating copolymer derived from carbon dioxide (CO 2 ) and an epoxide as monomers. Here, we describe a new quaternary PEC-based composite electrolyte containing lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt, N-n-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (Pyr 14 TFSI) ionic liquid, and an electrospun silica (SiO 2 ) fiber (SiF) with a submicron diameter in view of its possible applications in solid-state Li polymer batteries. A free-standing electrolyte membrane is prepared by a solvent casting method. The Pyr 14 TFSI ionic liquid enhances the ionic conductivity of the electrolyte as a result of its plasticizing effect. The electrochemical properties, such as ionic conductivity and Li transference number (t Li+ ), as well as mechanical strength of the electrolyte, are further improved by the SiF. We show that the quaternary electrolyte has a conductivity of the order of 10 −7 S cm −1 at ambient temperature and a high t Li+ value of 0.36 with an excellent flexibility. A prototype Li polymer cell using LiFePO 4 as a cathode material is assembled and tested. We demonstrate that this battery delivers a reversible charge-discharge capacity close to 100 mAh g −1 at 75 °C and C/15 rate. We believe that this work may pave the road to utilize CO 2 as a carbon source for highly-demanded, functional battery materials in future

  20. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium

    International Nuclear Information System (INIS)

    M, Sandhyarani; T, Prasadrao; N, Rameshbabu

    2014-01-01

    Highlights: • Uniform oxide films were formed on zirconium by plasma electrolytic oxidation. • Silicate in electrolyte alter the growth of m-ZrO 2 from (1 ¯ 11) to (2 0 0) orientation. • Addition of KOH to electrolyte improved the corrosion resistance of oxide films. • Silicon incorporated oxide films showed higher surface roughness and wettability. • Human osteosarcoma cells were strongly adhered and spreaded on all the oxide films. - Abstract: Development of oxide films on metallic implants with a good combination of corrosion resistance, bioactivity and cell adhesion can greatly improve its biocompatibility and functionality. Thus, the present work is aimed to fabricate oxide films on metallic Zr by plasma electrolytic oxidation (PEO) in methodically varied concentrations of phosphate, silicate and KOH based electrolyte systems using a pulsed DC power source. The oxide films fabricated on Zr are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, corrosion resistance, apatite forming ability and osteoblast cell adhesion. Uniform films with thickness varying from 6 to 11 μm are formed. XRD patterns of all the PEO films showed the predominance of monoclinic zirconia phase. The film formed in phosphate + KOH electrolyte showed superior corrosion resistance, which can be ascribed to its pore free morphology. The films formed in silicate electrolyte showed higher apatite forming ability with good cell adhesion and spreading over its surface which is attributed to its superior surface roughness and wettability characteristics. Among the five different electrolyte systems employed in the present study, the PEO film formed in an electrolyte system with phosphate + silicate + KOH showed optimum corrosion resistance, apatite forming ability and biocompatibility

  1. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  2. Influence of mixed electrolytes and pH on adsorption of bovine serum albumin in hydrophobic interaction chromatography.

    Science.gov (United States)

    Hackemann, Eva; Hasse, Hans

    2017-10-27

    Using salt mixtures instead of single salts can be beneficial for hydrophobic interaction chromatography (HIC). The effect of electrolytes on the adsorption of proteins, however, depends on the pH. Little is known on that dependence for mixed electrolytes. Therefore, the effect of the pH on protein adsorption from aqueous solutions containing mixed salts is systematically studied in the present work for a model system: the adsorption of bovine serum albumin (BSA) on the mildly hydrophobic resin Toyopearl PPG-600M. The pH is adjusted to 4.0, 4.7 or 7.0 using 25mM sodium phosphate or sodium citrate buffer. Binary and ternary salt mixtures of sodium chloride, ammonium chloride, sodium sulfate and ammonium sulfate as well as the pure salts are used at overall ionic strengths between 1500 and 4200mM. The temperature is always 25°C. The influence of the mixed electrolytes on the adsorption behavior of BSA changes completely with varying pH. Positive as well as negative cooperative effects of the mixed electrolytes are observed. The results are analyzed using a mathematical model which was recently introduced by our group. In that model the influence of the electrolytes is described by a Taylor series expansion in the individual ion molarities. After suitable parametrization using a subset of the data determined in the present work, the model successfully predicts the influence of mixed electrolytes on the protein adsorption. Furthermore, results for BSA from the present study are compared to literature data for lysozyme, which are available for the same adsorbent, temperature and salts. By calculating the ratio of the loading of the adsorbent for both proteins particularly favorable separation conditions can be selected. Hence, a model-based optimization of solvents for protein separation is possible. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Development of tritium fuel processing system using electrolytic reactor for ITER

    International Nuclear Information System (INIS)

    Yamanishi, T.; Kawamura, Y.; Iwai, Y.

    2001-01-01

    The system composed of a palladium diffuser and an electrolytic reactor was proposed, and was developed for a Fuel Cleanup system of ITER. The performance of the system was studied in a stand-alone test in detail. A fuel simulation loop of ITER was constructed by connecting the developed Fuel Cleanup and Hydrogen Isotope Separation systems; and the function of each system in the loop was demonstrated. For the tritium recovery from the exhaust gas at He glow discharge cleaning of vacuum chamber of ITER, a cryogenic molecular sieve bed system was proposed and demonstrated. (author)

  4. Development of tritium fuel processing system using electrolytic reactor for ITER

    International Nuclear Information System (INIS)

    Yamanishi, Toshihiko; Kawamura, Y.; Iwai, Y.

    1999-01-01

    The system composed of a palladium diffuser and an electrolytic reactor was proposed, and was developed for a Fuel Cleanup system of ITER. The performance of the system was studied in a stand-alone test in detail. A fuel simulation loop of ITER was constructed by connecting the developed Fuel Cleanup and Hydrogen Isotope Separation systems; and the function of each system in the loop was demonstrated. For the tritium recovery from the exhaust gas at He glow discharge cleaning of vacuum chamber of ITER, a cryogenic molecular sieve bed system was proposed and demonstrated. (author)

  5. Evaluation of electrolytes for redox flow battery applications

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.; Dryfe, R.A.W.; Roberts, E.P.L.

    2007-01-01

    A number of redox systems have been investigated in this work with the aim of identifying electrolytes suitable for testing redox flow battery cell designs. The criteria for the selection of suitable systems were fast electrochemical kinetics and minimal cross-contamination of active electrolytes. Possible electrolyte systems were initially selected based on cyclic voltammetry data. Selected systems were then compared by charge/discharge experiments using a simple H-type cell. The all-vanadium electrolyte system has been developed as a commercial system and was used as the starting point in this study. The performance of the all-vanadium system was significantly better than an all-chromium system which has recently been reported. Some metal-organic and organic redox systems have been reported as possible systems for redox flow batteries, with cyclic voltammetry data suggesting that they could offer near reversible kinetics. However, Ru(acac) 3 in acetonitrile could only be charged efficiently to 9.5% of theoretical charge, after which irreversible side reactions occurred and [Fe(bpy) 3 ](ClO 4 ) 2 in acetonitrile was found to exhibit poor charge/discharge performance

  6. Electrolytes comprising metal amide and metal chlorides for multivalent battery

    Science.gov (United States)

    Liao, Chen; Zhang, Zhengcheng; Burrell, Anthony; Vaughey, John T.

    2017-03-21

    An electrolyte includes compounds of formula M.sup.1X.sub.n and M.sup.2Z.sub.m; and a solvent wherein M.sup.1 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; M.sup.2 is Mg, Ca, Sr, Ba, Sc, Ti, Al, or Zn; X is a group forming a covalent bond with M.sup.1; Z is a halogen or pseudo-halogen; n is 1, 2, 3, 4, 5, or 6; and m is 1, 2, 3, 4, 5, or 6.

  7. Chemical stability of {gamma}-butyrolactone-based electrolytes for aluminium electrolytic capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ue, Makoto [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Takeda, Masayuki [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Suzuki, Yoko [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan); Mori, Shoichiro [Mitsubishi Chemical Corp., Tsukuba Research Center, Ibaraki (Japan)

    1996-06-01

    {gamma}-Butyrolactone-based electrolytes have been used as the operating electrolytes for aluminum electrolytic capacitors. The chemical stability of these electrolytes at elevated temperatures has been examined by monitoring the decrease in their electrolytic conductivities. The deteriorated electrolytes were analyzed by gas and liquid chromatography and the conductivity decrease was directly correlated with the loss of acid components. In quaternary ammonium hydrogen maleate/{gamma}-butyrolactone electrolytes, the maleate anion decomposed by decarboxylation resulting in a complex polymer containing polyester and polyacrylate structures. Quaternary ammonium benzoate/{gamma}-butyrolactone electrolytes decomposed by SN2 reactions giving alkyl benzoates and trialkylamines. The deterioration of the carboxylate salt/{gamma}-butyrolactone electrolytes was accelerated by electrolysis. (orig.)

  8. Theoretical study on the sound absorption of electrolytic solutions. I. Theoretical formulation

    Science.gov (United States)

    Yamaguchi, T.; Matsuoka, T.; Koda, S.

    2007-04-01

    A theory is formulated that describes the sound absorption of electrolytic solutions due to the relative motion of ions, including the formation of ion pairs. The theory is based on the Kubo-Green formula for the bulk viscosity. The time correlation function of the pressure is projected onto the bilinear product of the density modes of ions. The time development of the product of density modes is described by the diffusive limit of the generalized Langevin equation, and approximate expressions for the three- and four-body correlation functions required are given with the hypernetted-chain integral equation theory. Calculations on the aqueous solutions of model electrolytes are performed. It is demonstrated that the theory describes both the activated barrier crossing between contact and solvent-separated ion pairs and the Coulombic correlation between ions.

  9. A calorimeter for the electrolytic cell and other open systems

    International Nuclear Information System (INIS)

    Ferrari, C.; Papucci, F.; Salvetti, G.; Tognoni, E.; Tombari, E.

    1996-01-01

    It is presented a calorimetric method and the construction details of a differential calorimeter use full for studying the reaction in an electrolytic cell and more generally slow chemico-physical processes occurring in the thermodynamically open systems. The method allows measurements of the heat balance of the cell, from which the enthalpy change of the process under investigation can be calculated. the theoretical description of the calorimetric cell and the results of several studies planned to describe the performances of the instrument up to the boiling point of the electrolytic solution are reported. The features of this calorimeter fulfill most of the requirements of 'cold fusion' experiments, where the heat production is the fundamental and controversial aspect. By controlling both the heat and the matter exchanged, the calorimeter can be utilised also to study bio energetic processes, e. g. fermentation, microbial metabolism and biodegradation, and liquid phase chemical reactions, involving gases as reactants and/or products

  10. Comparisons of amine solvents for post-combustion CO{sub 2} capture: A multi-objective analysis approach

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Anita S; Eslick, John C; Miller, David C; Kitchin, John R

    2013-10-01

    Amine solvents are of great interest for post-combustion CO{sub 2} capture applications. Although the development of new solvents is predominantly conducted at the laboratory scale, the ability to assess the performance of newly developed solvents at the process scale is crucial to identifying the best solvents for CO{sub 2} capture. In this work we present a methodology to evaluate and objectively compare the process performance of different solvents. We use Aspen Plus, with the electrolyte-NRTL thermodynamic model for the solvent CO{sub 2} interactions, coupled with a multi-objective genetic algorithm optimization to determine the best process design and operating conditions for each solvent. This ensures that the processes utilized for the comparison are those which are best suited for the specific solvent. We evaluate and compare the process performance of monoethanolamine (MEA), diethanolamine (DEA), and 2-amino-2-methyl-1-propanol (AMP) in a 90% CO{sub 2} capture process from a 550 MW coal fired power plant. From our analysis the best process specifications are amine specific and with those specific, optimized specifications DEA has the potential to be a better performing solvent than MEA, with a lower energy penalty and lower capital cost investment.

  11. Low temperature solid oxide electrolytes (LT-SOE): A review

    Science.gov (United States)

    Singh, B.; Ghosh, S.; Aich, S.; Roy, B.

    2017-01-01

    Low temperature solid oxide fuel cell (LT-SOFC) can be a source of power for vehicles, online grid, and at the same time reduce system cost, offer high reliability, and fast start-up. A huge amount of research work, as evident from the literature has been conducted for the enhancement of the ionic conductivity of LT electrolytes in the last few years. The basic conduction mechanisms, advantages and disadvantages of different LT oxide ion conducting electrolytes {BIMEVOX systems, bilayer systems including doped cerium oxide/stabilised bismuth oxide and YSZ/DCO}, mixed ion conducting electrolytes {doped cerium oxides/alkali metal carbonate composites}, and proton conducting electrolytes {doped and undoped BaCeO3, BaZrO3, etc.} are discussed here based on the recent research articles. Effect of various material aspects (composition, doping, layer thickness, etc.), fabrication methods (to achieve different microstructures and particle size), design related strategies (interlayer, sintering aid etc.), characterization temperature & environment on the conductivity of the electrolytes and performance of the fuel cells made from these electrolytes are shown in tabular form and discussed. The conductivity of the electrolytes and performance of the corresponding fuel cells are compared. Other applications of the electrolytes are mentioned. A few considerations regarding the future prospects are pointed.

  12. A NOVEL GEL ELECTROLYTE FOR VALVE-REGULATED LEAD ACID BATTERY

    Directory of Open Access Journals (Sweden)

    Metin GENÇTEN

    2017-03-01

    Full Text Available A novel gel electrolyte system used in lead-acid batteries was investigated in this work. The gel systems were prepared by addition different amount of Al2O3, TiO2 and B2O3 into the gelled system consisting of 6 wt% fumed silica and 30 wt% sulfuric acid solution. The anodic peak currents and peak redox capacities of the gel electrolytes were characterized by cyclic voltammetric method. They decreased by the time B2O3 and Al2O3 were used as additives in fumed silica based gel electrolyte system. However, these values increased by the adding 3.0 wt% of TiO2. The solution and charge transfer resistances of the gel electrolytes were investigated by electrochemical impedance spectroscopy. While the solution resistances were lower in gel systems having different amount additives than pure fumed silica based gel, the charge transfer resistance was the lowest in gel electrolytes consisting fumed silica and fumed silica-TiO2. The battery performances were studied by obtaining discharge curves of prepared gel electrolytes. The performance of gelled systems were higher than that of non-gelled electrolyte at room temperature. The mixture of fumed silica-TiO2 was suggested an alternative gel formulation for gel VRLA batteries.

  13. Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Yasukawa, Eiki; Mori, Shoichiro

    1999-11-01

    To develop organic electrolytes for 4 V lithium metal rechargeable batteries, LiN(SO{sub 2}CF{sub 3}){sub 2} electrolytes with five-, six-, and seven-membered cyclic ether solvents were characterized. Among these examined electrolytes, LiN(SO{sub 2}CF{sub 3}){sub 2}/tetrahydropyran (THP) electrolyte was found to possess the most advantages, such as high cycling efficiency, good oxidation stability, and high boiling point. Furthermore, lithium cycling efficiency and conductivity were improved by mixing 50% ethylene carbonate (EC) in 1 mol/dm{sup 3} LiN(SO{sub 2}CF{sub 3}){sub 2}/THP electrolyte. By using LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2} solute as an alternative to LiN(SO{sub 2}CF{sub 3}){sub 2} in EC + THP (1:1) electrolyte, corrosion of the aluminum current collector was inhibited and therefore, excellent cycling performance of a Li/LiMn{sub 2}O{sub 4} coin cell was realized. It was also found that lithium cycling efficiency increased with decreasing deposition current density or increasing dissolution current density. Especially at deposition/dissolution current densities of 0.2/0.6 mA/cm{sup 2}, the observed lithium cycling efficiency in 1 mol/dm{sup 3} LiN(SO{sub 2}C{sub 2}F{sub 5}){sub 2}/EC + THP (1:1) electrolyte was above 99%. Thermal tests further disclosed that this mixed electrolyte has good thermal stability even in the presence of lithium metal or cathode materials.

  14. Electrolyte creepage barrier for liquid electrolyte fuel cells

    Science.gov (United States)

    Li, Jian [Alberta, CA; Farooque, Mohammad [Danbury, CT; Yuh, Chao-Yi [New Milford, CT

    2008-01-22

    A dielectric assembly for electrically insulating a manifold or other component from a liquid electrolyte fuel cell stack wherein the dielectric assembly includes a substantially impermeable dielectric member over which electrolyte is able to flow and a barrier adjacent the dielectric member and having a porosity of less than 50% and greater than 10% so that the barrier is able to measurably absorb and chemically react with the liquid electrolyte flowing on the dielectric member to form solid products which are stable in the liquid electrolyte. In this way, the barrier inhibits flow or creepage of electrolyte from the dielectric member to the manifold or component to be electrically insulated from the fuel cell stack by the dielectric assembly.

  15. The polymer gel electrolyte based on poly(methyl methacrylate) and its application in quasi-solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Yang Hongxun; Huang Miaoliang; Wu Jihuai; Lan Zhang; Hao Sancun; Lin Jianming

    2008-01-01

    Using poly(methyl methacrylate) as polymer host, ethylene carbonate, 1,2-propanediol carbonate and dimethyl carbonate as organic mixture solvents, sodium iodide and iodine as source of I - /I 3 - , a polymer gel electrolyte PMMA-EC/PC/DMC-NaI/I 2 with ionic conductivity of 6.89 mS cm -1 was prepared. Based on the polymer gel electrolyte, a quasi-solid-state dye-sensitized solar cell (DSSC) was fabricated. The quasi-solid-state DSSC possessed a good long-term stability and a light-to-electrical energy conversion efficiency of 4.78% under irradiation of 100 mW cm -2 simulated sunlight, which is almost equal to that of DSSC with a liquid electrolyte

  16. Fuel cell assembly with electrolyte transport

    Science.gov (United States)

    Chi, Chang V.

    1983-01-01

    A fuel cell assembly wherein electrolyte for filling the fuel cell matrix is carried via a transport system comprising a first passage means for conveying electrolyte through a first plate and communicating with a groove in a second plate at a first point, the first and second plates together sandwiching the matrix, and second passage means acting to carry electrolyte exclusively through the second plate and communicating with the groove at a second point exclusive of the first point.

  17. Methods of pH determination in Calcareous soils of Oman: The effect of Electrolyte and soil solution ratio

    International Nuclear Information System (INIS)

    Al-Busaidi, A.; Cookson, P.

    2002-01-01

    Determination of pH assists in understanding many reactions that occur in soil. Soil pH values are highly sensitive to the procedure used for determination. In this study, pH was measured in different electrolytes [distilled water (pHw), 0.01MCaCl2 (pHCa), 1MKCl (pHk), and 0.01MBaCl2 (pHba)] with different soil: electrolyte ratios (i.e. 1:1, 1:2.5 and 1:5). The objective was to determine the effect of each electrolyte and dilution ratio on pH of saline and non-saline soils from Oman. It was found that ph values varied significantly between electrolytes and with different dilution ratios. Linear regression equations were generated between electrolytes, dilution ratios and were mostly significant. Soil pH values determined in different electrolytes were significantly interrelated. Water appeared as a highly suitable solvent for soil pH measurements because it is simple and values familiar to soil users. However, alkaline errors and electrode instabilities due to liquid junction and soluble salt effects, affected soil pH measurements, especially in water, and resulted in alkaline errors during pH measurements. Errors were minimized when pH was measured in electrolytes rather than in water. (author)

  18. Influence of solvent on the morphology and microstructure of YSZ films obtained by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Falcade, T.; Oliveira, G.B.; Mueller, I.L.; Malfatti, C.F.

    2010-01-01

    This work aims to investigate the influence of solvent used for the deposition of thin films of yttria stabilized zirconia (YSZ) on porous substrate. The films were obtained directly on the porous LSM substrate by spray pyrolysis technique, which consists of spraying a precursor solution containing salts of zirconium (Zr (C 6 H 7 O 2 ) 4) and yttrium (YCl 3 .6H 2 O), dissolved in specific solvents, on the heated substrate. The use of solvents with different boiling points and viscosity aims the optimization of experimental operating parameters to obtain homogeneous and dense films suitable for application as electrolyte in fuel cells, solid oxide (SOFC). The films were characterized by scanning electron microscopy, infrared spectroscopy and X-ray diffraction. (author)

  19. Electrolyte solution transport in electropolar nanotubes

    International Nuclear Information System (INIS)

    Zhao Jianbing; Culligan, Patricia J; Chen Xi; Qiao Yu; Zhou Qulan; Li Yibing; Tak, Moonho; Park, Taehyo

    2010-01-01

    Electrolyte transport in nanochannels plays an important role in a number of emerging areas. Using non-equilibrium molecular dynamics (NEMD) simulations, the fundamental transport behavior of an electrolyte/water solution in a confined model nanoenvironment is systematically investigated by varying the nanochannel dimension, solid phase, electrolyte phase, ion concentration and transport rate. It is found that the shear resistance encountered by the nanofluid strongly depends on these material/system parameters; furthermore, several effects are coupled. The mechanisms of the nanofluidic transport characteristics are explained by considering the unique molecular/ion structure formed inside the nanochannel. The lower shear resistance observed in some of the systems studies could be beneficial for nanoconductors, while the higher shear resistance (or higher effective viscosity) observed in other systems might enhance the performance of energy dissipation devices.

  20. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    International Nuclear Information System (INIS)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10 -3 S cm -1 and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries

  1. Preparation of a microporous polymer electrolyte based on poly(vinyl chloride)/poly(acrylonitrile-butyl acrylate) blend for Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Zheng; Pu, Weihua; He, Xiangming; Wan, Chunrong; Jiang, Changyin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2007-02-15

    Poly(acrylonitrile-co-butyl acrylate) (P(AN-co-BuA))/poly(vinyl chloride) (PVC) blend-based gel polymer electrolyte (BGPE) was prepared for lithium-ion batteries. The P(AN-co-BuA)/PVC BGPE consists of an electrolyte-rich phase, which is mainly composed of P(AN-co-BuA) and liquid electrolyte, acting as a conducting channel and a PVC-rich phase that provides mechanical strength. The dual phase was just simply developed by the difference of miscibility properties in solvent, PC, between P(AN-co-BuA) and PVC. The mechanical strength of this new blend electrolyte was found to be much higher, with a fracture stress as high as 29 MPa in dry membrane and 21 MPa in gel state, than that of a previously reported P(AN-co-BuA)-based gel polymer electrolyte. The blended gel polymer electrolyte showed ionic conductivity of higher than 1.5 x 10{sup -3} S cm{sup -1} and electrochemical stability up to at least 4.8 V. The results showed that the as-prepared gel polymer electrolytes were promising materials for lithium-ion batteries. (author)

  2. Effect of electrode mass ratio on aging of activated carbon based supercapacitors utilizing organic electrolytes

    Science.gov (United States)

    Cericola, D.; Kötz, R.; Wokaun, A.

    2011-03-01

    The accelerated degradation of carbon based supercapacitors utilizing 1 M Et4NBF4 in acetonitrile and in propylene carbonate as electrolyte is investigated for a constant cell voltage of 3.5 V as a function of the positive over total electrode mass ratio. The degradation rate of the supercapacitor using acetonitrile as a solvent can be decreased by increasing the mass of the positive electrode. With a mass ratio (positive electrode mass/total electrode mass) of 0.65 the degradation rate is minimum. For the capacitor utilizing propylene carbonate as a solvent a similar effect was observed. The degradation rate was smallest for a mass ratio above 0.5.

  3. Hydrogel membrane electrolyte for electrochemical capacitors

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Polymer electrolytes are known to possess excellent physicochemical properties that are very useful for electrochemical energy systems. The mobility in polymer electrolytes is understood to be mainly due to the segmental motion of polymer chains and the ion transport is generally restricted to the amorphous ...

  4. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.

    Science.gov (United States)

    Moribe, Kunikazu; Fukino, Mika; Tozuka, Yuichi; Higashi, Kenjirou; Yamamoto, Keiji

    2009-10-01

    Prednisolone nanoparticles were prepared in the presence of a hydrophilic polymer and a surfactant by the aerosol solvent extraction system (ASES). A ternary mixture of prednisolone, polyethylene glycol (PEG), and sodium dodecyl sulfate (SDS) dissolved in methanol was sprayed through a nozzle into the reaction vessel filled with supercritical carbon dioxide. After the ASES process was repeated, precipitates of the ternary components were obtained by depressurizing the reaction vessel. When a methanolic solution of prednisolone/PEG 4000/SDS at a weight ratio of 1:6:2 was sprayed under the optimized ASES conditions, the mean particle size of prednisolone obtained after dispersing the precipitates in water was observed to be ca. 230 nm. Prednisolone nanoparticles were not obtained by the binary ASES process for prednisolone, in the presence of either PEG or SDS. Furthermore, ternary cryogenic cogrinding, as well as solvent evaporation, was not effective for the preparation of prednisolone nanoparticles. As the ASES process can be conducted under moderate temperature conditions, the ASES process that was applied to the ternary system appeared to be one of the most promising methods for the preparation of drug nanoparticles using the multicomponent system.

  5. Supported Silver Nanoparticle and Near-Interface Solution Dynamics in a Deep Eutectic Solvent

    Energy Technology Data Exchange (ETDEWEB)

    Hammons, Joshua A.; Ustarroz, Jon; Muselle, Thibault; Torriero, Angel A. J.; Terryn, Herman; Suthar, Kamlesh; Ilavsky, Jan

    2016-01-28

    Type III deep eutectic solvents (DES) have attracted significant interest as both environmentally friendly and functional solvents that are, in some ways, advantageous to traditional aqueous systems. While these solvents continue to produce remarkable thin films and nanoparticle assemblies, their interactions with metallic surfaces are complex and difficult to manipulate. In this study, the near-surface region (2–600 nm) of a carbon surface is investigated immediately following silver nanoparticle nucleation and growth. This is accomplished, in situ, using a novel grazing transmission small-angle X-ray scattering approach with simultaneous voltammetry and electrochemical impedance spectroscopy. With this physical and electrochemical approach, the time evolution of three distinct surface interaction phenomena is observed: aggregation and coalescence of Ag nanoparticles, multilayer perturbations induced by nonaggregated Ag nanoparticles, and a stepwise transport of dissolved Ag species from the carbon surface. The multilayer perturbations contain charge-separated regions of positively charged choline-ethylene and negatively charged Ag and Cl species. Both aggregation-coalescence and the stepwise decrease in Ag precursor near the surface are observed to be very slow (~2 h) processes, as both ion and particle transport are significantly impeded in a DES as compared to aqueous electrolytes. Finally, altogether, this study shows how the unique chemistry of the DES changes near the surface and in the presence of nanoparticles that adsorb the constituent species.

  6. Study of the effect of anions and mixed solvents on the kinetics of reduction of Eu(III)

    International Nuclear Information System (INIS)

    Chandrasekaran, V.R.; Sundaram, A.K.

    1983-01-01

    The kinetics of reduction of Eu(III) to Eu(II) in aqueous solutions of perchlorate, chloride, sulphate, acetate and lactate anions and water-methanol and water-acetone mixtures containing potassium chloride as the inert electrolyte is reported and the effect of anions and solvent on the kinetics is studied. (author)

  7. 1D and 2D NMR Spectroscopy of Bonding Interactions within Stable and Phase-Separating Organic Electrolyte-Cellulose Solutions.

    Science.gov (United States)

    Clough, Matthew T; Farès, Christophe; Rinaldi, Roberto

    2017-09-11

    Organic electrolyte solutions (i.e. mixtures containing an ionic liquid and a polar, molecular co-solvent) are highly versatile solvents for cellulose. However, the underlying solvent-solvent and solvent-solute interactions are not yet fully understood. Herein, mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate, the co-solvent 1,3-dimethyl-2-imidazolidinone, and cellulose are investigated using 1D and 2D NMR spectroscopy. The use of a triply- 13 C-labelled ionic liquid enhances the signal-to-noise ratio for 13 C NMR spectroscopy, enabling changes in bonding interactions to be accurately pinpointed. Current observations reveal an additional degree of complexity regarding the distinct roles of cation, anion, and co-solvent toward maintaining cellulose solubility and phase stability. Unexpectedly, the interactions between the dialkylimidazolium ring C 2 -H substituent and cellulose become more pronounced at high temperatures, counteracted by a net weakening of acetate-cellulose interactions. Moreover, for mixtures that exhibit critical solution behavior, phase separation is accompanied by the apparent recombination of cation-anion pairs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cathode solid electrolyte interface’s function originated from salt type additives in lithium ion batteries

    International Nuclear Information System (INIS)

    Kaneko, Yu; Park, Juyeon; Yokotsuji, Hokuto; Odawara, Makoto; Takase, Hironari; Ue, Makoto; Lee, Maeng-Eun

    2016-01-01

    Highlights: • Our chemical analysis determines the important functional groups of cathode’s solid electrolyte interface originated from salt type additives. • Our quantum chemical calculation reveals the redox character of the additives and their candidate chemical components of the solid electrolyte interface. • Our molecular dynamics simulation reproduces the selective lithium ion translocation and protective layer formation as the solid electrolyte interface function. - Abstract: This is the study about the cathode’s solid electrolyte interface (SEI) formation mechanism of salt type additives (STAs) and its function. To address this issue, we performed several types of chemical analysis and computer simulation techniques. In order to reveal the redox nature and oxidative decomposition dynamics, the electrolyte (EL) solution dynamics by Quantum mechanics and Molecular mechanics (QM/MM) method was applied. The estimation of SEI chemical components agrees with our chemical analyses data and other group’s reports. The molecular dynamics simulation of sub micro second sampling indicates that the SEI phase induced from STAs functions as a lithium ion selective translocation media and protective coating layer against the degradation of the solvent molecules. The results give us an insight how to design additive’s chemical structure to improve longevity of the cell in the high voltage regime.

  9. Theory of bulk and interface constant phase elements in electrode- electrolyte systems

    International Nuclear Information System (INIS)

    Liu, S.H.

    1991-01-01

    This paper summarizes the progress gained in the last few years in our understanding of bulk and interface constant-phase-angle (CPA) behavior in electrode-electrolyte systems. It is now fairly well established that the interface constant-phase element originates from the fractal nature of the interface. The complex geometry gives rise to a fractal distribution of parallel current paths, and the competition between these paths results in the fractional power law behavior of the impedance across the interface. On the other hand, the early hope of relating the CPA exponent to the fractal dimension of the interface has been shown to be unattainable. Our understanding of the bulk CPA behavior, which is most prevalent in solid electrolytes, is only tentative. It is illustrated using a simple model that, under nonlinear dynamical laws that govern the flow of ions in the electrolyte, a current in the solid can generate a fractal distribution of vacancies which tend to impede the flow. The current is forced to negotiate a complex path through the solid, and the resulting fluctuation in path length and flow rate could be a source of the CPA behavior. 32 refs., 18 figs

  10. Towards high throughput screening of electrochemical stability of battery electrolytes

    International Nuclear Information System (INIS)

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E; Leiter, Kenneth W; Knap, Jaroslaw

    2015-01-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5–2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi 0.5 Mn 1.5 O 4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen. (paper)

  11. Integrated system for design and analysis of industrial processes with electrolyte system

    DEFF Research Database (Denmark)

    Takano, Kiyoteru; Gani, Rafiqul

    1999-01-01

    of thermodynamic insights not only to generate process alternatives but also to obtain good initial estimates for the simulation engine and for visualization of process synthesis/design. The main steps of the algorithm are highlighted through a case study involving an industrial crystallization process.......An algorithm for design and analysis of crystallization processes with electrolyte systems is presented. This algorithm consists of a thermodynamic part, a synthesis part and a design part. The three parts are integrated through a simulation engine. The main features of the algorithm is the use...

  12. The effect of water-containing electrolyte on lithium-sulfur batteries

    Science.gov (United States)

    Wu, Heng-Liang; Haasch, Richard T.; Perdue, Brian R.; Apblett, Christopher A.; Gewirth, Andrew A.

    2017-11-01

    Dissolved polysulfides, formed during Li-S battery operation, freely migrate and react with both the Li anode and the sulfur cathode. These soluble polysulfides shuttle between the anode and cathode - the so-called shuttle effect - resulting in an infinite recharge process and poor Columbic efficiency. In this study, water present as an additive in the Li-S battery electrolyte is found to reduce the shuttle effect in Li-S batteries. Batteries where water content was below 50 ppm exhibited a substantial shuttle effect and low charge capacity. Alternatively, addition of 250 ppm water led to stable charge/discharge behavior with high Coulombic efficiency. XPS results show that H2O addition results in the formation of solid electrolyte interphase (SEI) film with more LiOH on Li anode which protects the Li anode from the polysulfides. Batteries cycled without water result in a SEI film with more Li2CO3 likely formed by direct contact between the Li metal and the solvent. Intermediate quantities of H2O in the electrolyte result in high cycle efficiency for the first few cycles which then rapidly decays. This suggests that H2O is consumed during battery cycling, likely by interaction with freshly exposed Li metal formed during Li deposition.

  13. Replacement of HCFC-225 Solvent for Cleaning NASA Propulsion Oxygen Systems

    Science.gov (United States)

    Mitchell, Mark A.; Lowrey, Nikki M.

    2015-01-01

    Since the 1990's, when the Class I Ozone Depleting Substance (ODS) chlorofluorocarbon-113 (CFC-113) was banned, NASA's rocket propulsion test facilities at Marshall Space Flight Center (MSFC) and Stennis Space Center (SSC) have relied upon hydrochlorofluorocarbon-225 (HCFC-225) to safely clean and verify the cleanliness of large scale propulsion oxygen systems. Effective January 1, 2015, the production, import, export, and new use of HCFC-225, a Class II ODS, was prohibited by the Clean Air Act. In 2012 through 2014, leveraging resources from both the NASA Rocket Propulsion Test Program and the Defense Logistics Agency - Aviation Hazardous Minimization and Green Products Branch, test labs at MSFC, SSC, and Johnson Space Center's White Sands Test Facility (WSTF) collaborated to seek out, test, and qualify a replacement for HCFC-225 that is both an effective cleaner and safe for use with oxygen systems. Candidate solvents were selected and a test plan was developed following the guidelines of ASTM G127, Standard Guide for the Selection of Cleaning Agents for Oxygen Systems. Solvents were evaluated for materials compatibility, oxygen compatibility, cleaning effectiveness, and suitability for use in cleanliness verification and field cleaning operations. Two solvents were determined to be acceptable for cleaning oxygen systems and one was chosen for implementation at NASA's rocket propulsion test facilities. The test program and results are summarized. This project also demonstrated the benefits of cross-agency collaboration in a time of limited resources.

  14. On the theory of electric double layer with explicit account of a polarizable co-solvent

    Energy Technology Data Exchange (ETDEWEB)

    Budkov, Yu. A., E-mail: urabudkov@rambler.ru [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Department of Applied Mathematics, National Research University Higher School of Economics, Moscow (Russian Federation); Kolesnikov, A. L. [Institut für Nichtklassische Chemie e.V., Universität Leipzig, Leipzig (Germany); Kiselev, M. G. [Laboratory of NMR Spectroscopy and Numerical Investigations of Liquids, G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation)

    2016-05-14

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  15. On the theory of electric double layer with explicit account of a polarizable co-solvent

    International Nuclear Information System (INIS)

    Budkov, Yu. A.; Kolesnikov, A. L.; Kiselev, M. G.

    2016-01-01

    We present a continuation of our theoretical research into the influence of co-solvent polarizability on a differential capacitance of the electric double layer. We formulate a modified Poisson-Boltzmann theory, using the formalism of density functional approach on the level of local density approximation taking into account the electrostatic interactions of ions and co-solvent molecules as well as their excluded volume. We derive the modified Poisson-Boltzmann equation, considering the three-component symmetric lattice gas model as a reference system and minimizing the grand thermodynamic potential with respect to the electrostatic potential. We apply present modified Poisson-Boltzmann equation to the electric double layer theory, showing that accounting for the excluded volume of co-solvent molecules and ions slightly changes the main result of our previous simplified theory. Namely, in the case of small co-solvent polarizability with its increase under the enough small surface potentials of electrode, the differential capacitance undergoes the significant growth. Oppositely, when the surface potential exceeds some threshold value (which is slightly smaller than the saturation potential), the increase in the co-solvent polarizability results in a differential capacitance decrease. However, when the co-solvent polarizability exceeds some threshold value, its increase generates a considerable enhancement of the differential capacitance in a wide range of surface potentials. We demonstrate that two qualitatively different behaviors of the differential capacitance are related to the depletion and adsorption of co-solvent molecules at the charged electrode. We show that an additive of the strongly polarizable co-solvent to an electrolyte solution can shift significantly the saturation potential in two qualitatively different manners. Namely, a small additive of strongly polarizable co-solvent results in a shift of saturation potential to higher surface potentials. On

  16. Study of equivalent retention among different polymer-solvent systems in thermal field-flow fractionation

    International Nuclear Information System (INIS)

    Kim, Won Suk; Park, Young Hun; Lee, Dai Woon; Moon, Myeong Hee; Yu, Euy Kyung

    1998-01-01

    An equivalent retention has been experimentally observed in thermal field-flow fractionation (ThFF) for different polymer-solvent systems. It is shown that iso-retention between two sets of polymer-solvent systems can be obtained by adjusting the temperature difference (ΔT) according to the difference in the ration of ordinary diffusion coefficient to thermal diffusion coefficient. This method uses a compensation of field strength (ΔT) in ThFFF at a fixed condition of cold wall temperature. It is applied for the calculation of molecular weight of polymers based on a calibration run of different standards obtained at an adjusted ΔT. The polymer standards used in this study are polystyrene (PS), polymethylmethacrylate (PMMA), and polytetrahydrofuran (PTHF). Three carrier solvents, tetrahydrofuran (THF), methylethylketone (MEK) and ethylacetate (ETAc) were employed. Though the accuracy in the calculation of molecular weight is dependent on the difference in the slope of log λ vs. log M which is related to Mark-Houwink constant a, it shows reasonable agreement within about 6% of relative error in molecular weight calculation for the polymer-solvent systems having similar a value

  17. An overview of industrial solvent use or is there life after chlorinated solvents?

    International Nuclear Information System (INIS)

    Green, B.

    1991-01-01

    Everyone using industrial chemicals has been affected by the fire- storm of new regulations governing solvent use. How will companies currently using hazardous solvents prepare for the changes ahead? What will the impact be on commonly used industrial solvents? What effect are environmental pressures having on solvent use and disposal? Are the responsible individuals in your company up-to-date on phase-out schedules? This paper is written for an audience of compliance coordinators, consultants, production engineers and corporate management. In it, the either addresses the above questions and discusses the specific products affected. The author reviews currently available alternatives to chlorinated and hazardous solvents and introduces a simple system for rating alternatives. The program also includes a discussion of solvent minimization programs and worker reeducation

  18. Ionic-Liquid-Based Polymer Electrolytes for Battery Applications.

    Science.gov (United States)

    Osada, Irene; de Vries, Henrik; Scrosati, Bruno; Passerini, Stefano

    2016-01-11

    The advent of solid-state polymer electrolytes for application in lithium batteries took place more than four decades ago when the ability of polyethylene oxide (PEO) to dissolve suitable lithium salts was demonstrated. Since then, many modifications of this basic system have been proposed and tested, involving the addition of conventional, carbonate-based electrolytes, low molecular weight polymers, ceramic fillers, and others. This Review focuses on ternary polymer electrolytes, that is, ion-conducting systems consisting of a polymer incorporating two salts, one bearing the lithium cation and the other introducing additional anions capable of plasticizing the polymer chains. Assessing the state of the research field of solid-state, ternary polymer electrolytes, while giving background on the whole field of polymer electrolytes, this Review is expected to stimulate new thoughts and ideas on the challenges and opportunities of lithium-metal batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Molten Triazolium Chloride Systems as New Aluminum Battery Electrolytes

    DEFF Research Database (Denmark)

    Vestergaard, B.; Bjerrum, Niels; Petrushina, Irina

    1993-01-01

    -170-degrees-C) depending on melt acidity and anode material. DMTC, being specifically adsorbed and reduced on the tungsten electrode surface, had an inhibiting effect on the aluminum reduction, but this effect was suppressed on the aluminum substrate. An electrochemical process with high current density (tens...... of milliamperes per square centimeter) was observed at 0.344 V on the acidic sodium tetrachloroaluminate background, involving a free triazolium radical mechanism. Molten DMTC-AlCl3 electrolytes are acceptable for battery performance and both the aluminum anode and the triazolium electrolyte can be used as active......The possibility of using molten mixtures of 1,4-dimethyl-1,2,4-triazolium chloride (DMTC) and aluminum chloride (AlCl3) as secondary battery electrolytes was studied, in some cases extended by the copresence of sodium chloride. DMTC-AlCl, mixtures demonstrated high specific conductivity in a wide...

  20. Gamma ray degradation of electrolytes containing alkylcarbonate solvents and a lithium salt

    Energy Technology Data Exchange (ETDEWEB)

    Caillon-Caravanier, Magaly; Jones, Jennifer; Anouti, Meriem; Lemordant, Daniel [Laboratoire CIME/PCMB (EA4244), Universite F. Rabelais, Faculte des Sciences et Techniques, Parc de Grandmont, 37200 Tours (France); Montigny, Frederic [Plateau d' Analyse Chimique, Universite F. Rabelais, Faculte de Pharmacie, 31 avenue Monge 37200 Tours (France); Willmann, Patrick [CNES, 18 avenue E. Belin, 31055 Toulouse (France); David, Jean-Pierre; Soonckindt, Sabine [Departement Environnement Spatial DSEP/ONERA, 2, avenue E. Belin, 31055 Toulouse (France)

    2010-01-15

    Lithium-ion batteries for space applications, such as satellites, are subjected to cosmic radiations, in particular, {gamma}-irradiation. In this study, the effects of this radiation on electrolytes and their components used in the lithium-ion batteries are investigated. The conductivity and viscosity of the samples have been measured before and after the irradiation. The modifications are evaluated by spectral analyses such as Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy ({sup 1}H and {sup 13}C NMR), solid phase microextraction-gas chromatography (SPME-GC) and gas chromatography-mass spectroscopy (GC-MS). The experimental results show that only the samples containing vinylene carbonate and/or the lithium salt LiPF{sub 6} are degraded by {gamma}-radiation. (author)

  1. Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio

    Directory of Open Access Journals (Sweden)

    Sheng S. Zhang

    2012-12-01

    Full Text Available A liquid electrolyte lithium/sulfur (Li/S cell is a liquid electrochemical system. In discharge, sulfur is first reduced to highly soluble Li2S8, which dissolves into the organic electrolyte and serves as the liquid cathode. In solution, lithium polysulfide (PS undergoes a series of complicated disproportionations, whose chemical equilibriums vary with the PS concentration and affect the cell’s performance. Since the PS concentration relates to a certain electrolyte/sulfur (E/S ratio, there is an optimized E/S ratio for the cyclability of each Li/S cell system. In this work, we study the optimized E/S ratio by measuring the cycling performance of Li/S cells, and propose an empirical method for determination of the optimized E/S ratio. By employing an electrolyte of 0.25 m LiSO3CF3-0.25 m LiNO3 dissolved in a 1:1 (wt:wt mixture of dimethyl ether (DME and 1,3-dioxolane (DOL in an optimized E/S ratio, we show that the Li/S cell with a cathode containing 72% sulfur and 2 mg cm−2 sulfur loading is able to retain a specific capacity of 780 mAh g−1 after 100 cycles at 0.5 mA cm−2 between 1.7 V and 2.8 V.

  2. Method to produce biomass-derived compounds using a co-solvent system containing gamma-valerolactone

    Science.gov (United States)

    Dumesic, James A.; Motagamwala, Ali Hussain

    2017-06-27

    A method to produce an aqueous solution of carbohydrates containing C5- and/or C6-sugar-containing oligomers and/or C5- and/or C6-sugar monomers in which biomass or a biomass-derived reactant is reacted with a solvent system having an organic solvent, and organic co-solvent, and water, in the presence of an acid. The method produces the desired product, while a substantial portion of any lignin present in the reactant appears as a precipitate in the product mixture.

  3. Solvation-based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation

    International Nuclear Information System (INIS)

    Senol, Aynur

    2013-01-01

    Highlights: • Vapour pressures of (solvent + salt) systems have been estimated through a solvation-based model. • Two structural forms of the generalized solvation model using the Antoine equation have been performed. • A simplified concentration-dependent vapour pressure model has been also processed. • The model reliability analysis has been performed in terms of a log-ratio objective function. • The reliability of the models has been interpreted in terms of the statistical design factors. -- Abstract: This study deals with modelling the vapour pressure of a (solvent + salt) system on the basis of the principles of LSER. The solvation model framework clarifies the simultaneous impact of several physical variables such as the vapour pressure of a pure solvent estimated by the Antoine equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been analyzed independently the performance of two structural forms of the generalized model, i.e., a relation depending on an integration of the properties of the solvent and the ionic salt and a relation on a reduced property-basis. A simplified concentration-dependent vapour pressure model has been also explored and implemented on the relevant systems. The vapour pressure data of sixteen (solvent + salt) systems have been processed to analyze statistically the reliability of existing models in terms of a log–ratio objective function. The proposed vapour pressure models match relatively well the observed performance, yielding the overall design factors of 1.066 and 1.073 for the solvation-based models with the integrated and reduced properties, and 1.008 for the concentration-based model, respectively

  4. Lithium-ion transport in inorganic solid state electrolyte

    International Nuclear Information System (INIS)

    Gao Jian; Li Hong; Zhao Yu-Sheng; Shi Si-Qi

    2016-01-01

    An overview of ion transport in lithium-ion inorganic solid state electrolytes is presented, aimed at exploring and designing better electrolyte materials. Ionic conductivity is one of the most important indices of the performance of inorganic solid state electrolytes. The general definition of solid state electrolytes is presented in terms of their role in a working cell (to convey ions while isolate electrons), and the history of solid electrolyte development is briefly summarized. Ways of using the available theoretical models and experimental methods to characterize lithium-ion transport in solid state electrolytes are systematically introduced. Then the various factors that affect ionic conductivity are itemized, including mainly structural disorder, composite materials and interface effects between a solid electrolyte and an electrode. Finally, strategies for future material systems, for synthesis and characterization methods, and for theory and calculation are proposed, aiming to help accelerate the design and development of new solid electrolytes. (topical review)

  5. Sodium conducting polymer electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Skaarup, S.; West, K. (eds.)

    1989-04-01

    This section deals with the aspects of ionic conduction in general as well as specific experimental results obtained for sodium systems. The conductivity as a function of temperature and oxygen/metal ratio are given for the systems NaI, NaCF/sub 3/SO/sub 3/ and NaClO/sub 4/ plus polyethylene oxide. Attempts have been made to produce mixed phase solid electrolytes analogous to the lithium systems that have worked well. These consist of mixtures of polymer and a solid electrolyte. The addition of both nasicon and sodium beta alumina unexpectedly decreases the ionic conductivity in contrast to the lithium systems. Addition of the nonconducting silica AEROSIL in order to increase the internal surface area has the effect of retarding the phase transition at 60 deg. C, but does not enhance the conductivity. (author) 23 refs.

  6. Physics of failure based analysis of aluminium electrolytic capacitor

    International Nuclear Information System (INIS)

    Sahoo, Satya Ranjan; Behera, S.K.; Kumar, Sachin; Varde, P.V.; Ravi Kumar, G.

    2016-01-01

    Electrolytic capacitors are one of the important devices in various power electronic systems, such as motor drives, uninterruptible power supply, electric vehicles and dc power supply. Electrolytic capacitors are also the integral part of many other electronic devices. One of the primary function of electrolytic capacitors is the smoothing of voltage ripple and storing electrical energy. However, the electrolytic capacitor has the shortest lifespan of components in power electronics. Past experiences show that electrolytic capacitor tends to degrade and fail faster under high electrical or thermal stress conditions during operations. The primary failure mechanism of an electrolytic capacitor is the evaporation of the electrolyte due to electrical or thermal overstress. This leads to the drift in the values of two important parameters-capacitance and equivalent series resistance (ESR) of the electrolytic capacitor. An attempt has been made to age the electrolytic capacitor and validate the results. The overall goal is to derive the accurate degradation model of the electrolytic capacitor. (author)

  7. Comparison of single-ion molecular dynamics in common solvents

    Science.gov (United States)

    Muralidharan, A.; Pratt, L. R.; Chaudhari, M. I.; Rempe, S. B.

    2018-06-01

    Laying a basis for molecularly specific theory for the mobilities of ions in solutions of practical interest, we report a broad survey of velocity autocorrelation functions (VACFs) of Li+ and PF6- ions in water, ethylene carbonate, propylene carbonate, and acetonitrile solutions. We extract the memory function, γ(t), which characterizes the random forces governing the mobilities of ions. We provide comparisons controlling for the effects of electrolyte concentration and ion-pairing, van der Waals attractive interactions, and solvent molecular characteristics. For the heavier ion (PF6-), velocity relaxations are all similar: negative tail relaxations for the VACF and a clear second relaxation for γ (t ), observed previously also for other molecular ions and with n-pentanol as the solvent. For the light Li+ ion, short time-scale oscillatory behavior masks simple, longer time-scale relaxation of γ (t ). But the corresponding analysis of the solventberg Li+(H2O)4 does conform to the standard picture set by all the PF6- results.

  8. Modeling vapor pressures of solvent systems with and without a salt effect: An extension of the LSER approach

    International Nuclear Information System (INIS)

    Senol, Aynur

    2015-01-01

    Highlights: • A new polynomial vapor pressure approach for pure solvents is presented. • Solvation models reproduce the vapor pressure data within a 4% mean error. • A concentration-basis vapor pressure model is also implemented on relevant systems. • The reliability of existing models was analyzed using log-ratio objective function. - Abstract: A new polynomial vapor pressure approach for pure solvents is presented. The model is incorporated into the LSER (linear solvation energy relation) based solvation model framework and checked for consistency in reproducing experimental vapor pressures of salt-containing solvent systems. The developed two structural forms of the generalized solvation model (Senol, 2013) provide a relatively accurate description of the salting effect on vapor pressure of (solvent + salt) systems. The equilibrium data spanning vapor pressures of eighteen (solvent + salt) and three (solvent (1) + solvent (2) + salt) systems have been subjected to establish the basis for the model reliability analysis using a log-ratio objective function. The examined vapor pressure relations reproduce the observed performance relatively accurately, yielding the overall design factors of 1.084, 1.091 and 1.052 for the integrated property-basis solvation model (USMIP), reduced property-basis solvation model and concentration-dependent model, respectively. Both the integrated property-basis and reduced property-basis solvation models were able to simulate satisfactorily the vapor pressure data of a binary solvent mixture involving a salt, yielding an overall mean error of 5.2%

  9. Lipophilic polyelectrolyte gel derived from phosphonium borate can absorb a wide range of organic solvents.

    Science.gov (United States)

    Sunaga, Sokuro; Kokado, Kenta; Sada, Kazuki

    2018-01-24

    Herein, we demonstrate a polyelectrolyte gel which can absorb a wide range of organic solvents from dimethylsulfoxide (DMSO, permittivity: ε = 47.0) to tetrahydrofuran (ε = 5.6). The gel consists of polystyrene chains with small amounts (∼5 mol%) of lipophilic electrolytes derived from triphenylphosphonium tetraaryl borate. The swelling ability of the polyelectrolyte gel was higher than that of the alkyl ammonium tetraaryl borate previously reported by us, and this is attributed to the higher compatibility with organic solvents, as well as the higher dissociating ability, of the triphenyl phosphonium salt. The role of the ionic moieties was additionally confirmed by post modification of the polyelectrolyte gel via a conventional Wittig reaction, resulting in a nonionic gel. Our findings introduced here will lead to a clear-cut molecular design for polyelectrolyte gels which absorb all solvents.

  10. Anomalous Capacitance Maximum of the Glassy Carbon-Ionic Liquid Interface through Dilution with Organic Solvents.

    Science.gov (United States)

    Bozym, David J; Uralcan, Betül; Limmer, David T; Pope, Michael A; Szamreta, Nicholas J; Debenedetti, Pablo G; Aksay, Ilhan A

    2015-07-02

    We use electrochemical impedance spectroscopy to measure the effect of diluting a hydrophobic room temperature ionic liquid with miscible organic solvents on the differential capacitance of the glassy carbon-electrolyte interface. We show that the minimum differential capacitance increases with dilution and reaches a maximum value at ionic liquid contents near 5-10 mol% (i.e., ∼1 M). We provide evidence that mixtures with 1,2-dichloroethane, a low-dielectric constant solvent, yield the largest gains in capacitance near the open circuit potential when compared against two traditional solvents, acetonitrile and propylene carbonate. To provide a fundamental basis for these observations, we use a coarse-grained model to relate structural variations at the double layer to the occurrence of the maximum. Our results reveal the potential for the enhancement of double-layer capacitance through dilution.

  11. Electrical and mechanical properties of poly(ethylene oxide)/intercalated clay polymer electrolyte

    International Nuclear Information System (INIS)

    Moreno, Mabel; Quijada, Raúl; Santa Ana, María A.; Benavente, Eglantina; Gomez-Romero, Pedro; González, Guillermo

    2011-01-01

    Highlights: ► Poly(ethylene oxide)/intercalated clay nanocomposite as filler in solid poly(ethylene oxide) electrolytes. ► Nanocomposite filler improves mechanical properties, transparency, and conductivity of poly(ethylene oxide) electrolyte films. ► Nanocomposite is more effective than unmodified clay in improving polymer electrolyte properties. ► Low Li/polymer ratio avoids crystalline Li complexes, so effects mainly arise from the polymer. ► High nanocomposite/poly(ethylene oxide)-matrix affinity enhances microhomogeneity in the polyelectrolyte. - Abstract: Solvent-free solid polymer electrolytes (SPEs) based on two different poly(ethylene oxide), PEO Mw 600,000 and 4,000,000 and intercalated clays are reported. The inorganic additives used were lithiated bentonite and the nanocomposite PEO-bentonite with the same polymer used as matrix. SPE films, obtained in the scale of grams by mixing the components in a Brabender-type batch mixer and molding at 130 °C, were characterized by X-ray diffraction analysis, UV–vis spectroscopy, and thermal analysis. During the preparation of the films, the unmodified clay got intercalated in situ. Comparative analysis of ionic conductivity and mechanical properties of the films show that the conductivity increases with the inclusion of fillers, especially for the polymer with low molecular weight. This effect is more pronounced when using PEO-bentonite as additive. Under selected work conditions, avoiding the presence of crystalline lithium complexes, observed effects are mainly centered on the polymer. An explanation, considering the higher affinity between the modified clay and PEO matrix which leads to differences in the micro homogeneity degree between both types of polymer electrolytes is proposed.

  12. Facile and Reliable in Situ Polymerization of Poly(Ethyl Cyanoacrylate)-Based Polymer Electrolytes toward Flexible Lithium Batteries.

    Science.gov (United States)

    Cui, Yanyan; Chai, Jingchao; Du, Huiping; Duan, Yulong; Xie, Guangwen; Liu, Zhihong; Cui, Guanglei

    2017-03-15

    Polycyanoacrylate is a very promising matrix for polymer electrolyte, which possesses advantages of strong binding and high electrochemical stability owing to the functional nitrile groups. Herein, a facile and reliable in situ polymerization strategy of poly(ethyl cyanoacrylate) (PECA) based gel polymer electrolytes (GPE) via a high efficient anionic polymerization was introduced consisting of PECA and 4 M LiClO 4 in carbonate solvents. The in situ polymerized PECA gel polymer electrolyte achieved an excellent ionic conductivity (2.7 × 10 -3 S cm -1 ) at room temperature, and exhibited a considerable electrochemical stability window up to 4.8 V vs Li/Li + . The LiFePO 4 /PECA-GPE/Li and LiNi 1.5 Mn 0.5 O 4 /PECA-GPE/Li batteries using this in-situ-polymerized GPE delivered stable charge/discharge profiles, considerable rate capability, and excellent cycling performance. These results demonstrated this reliable in situ polymerization process is a very promising strategy to prepare high performance polymer electrolytes for flexible thin-film batteries, micropower lithium batteries, and deformable lithium batteries for special purpose.

  13. Cosolvent electrolytes for electrochemical devices

    Science.gov (United States)

    Wessells, Colin Deane; Firouzi, Ali; Motallebi, Shahrokh; Strohband, Sven

    2018-02-13

    A system and method for stabilizing electrodes against dissolution and/or hydrolysis including use of cosolvents in liquid electrolyte batteries for three purposes: the extension of the calendar and cycle life time of electrodes that are partially soluble in liquid electrolytes, the purpose of limiting the rate of electrolysis of water into hydrogen and oxygen as a side reaction during battery operation, and for the purpose of cost reduction.

  14. Characterization and antioxidant activity of bovine serum albumin and sulforaphane complex in different solvent systems

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xueyan; Zhou, Rui; Jing, Hao, E-mail: h200521@cau.edu.cn

    2014-02-15

    Modes and influencing factors of bovine serum albumin (BSA) and sulforaphane (SFN) interaction will help us understand the interaction mechanisms and functional changes of bioactive small molecule and biomacromolecule. This study investigated interaction mechanisms of BSA and SFN and associated antioxidant activity in three solvent systems of deionized water (dH{sub 2}O), dimethyl sulfoxide (DMSO) and ethanol (EtOH), using Fourier transform infrared spectroscopy (FT-IR), fluorescence spectroscopy, synchronous fluorescence spectroscopy, DPPH and ABTS radical scavenging assays. The results revealed that SFN had ability to quench BSA's fluorescence in static modes, and to interact with BSA at both tyrosine (Tyr) and tryptophan (Trp) residues, while the Trp residues were highly sensitive, which was demonstrated by fluorescence at 340 nm. Hydrophobic forces, hydrogen bonds and van der Waals interactions were all involved in BSA and SFN interaction, which were not significantly changed by three solvents. The binding constant values and binding site numbers were in a descending order of dH{sub 2}O>DMSO>EtOH. The values of free energy change were in a descending order of dH{sub 2}O>DMSO>EtOH, which indicated that the binding forces were in a descending order of dH{sub 2}O>DMSO>EtOH. There was no significant difference in antioxidant activity between SFN and BSA–SFN. Moreover, three solvents had not significant influence on antioxidant activity of SFN and BSA–SFN. -- Highlights: • We report interaction mechanisms of BSA and sulforaphane in three solvent systems. • We report antioxidant activity of BSA–sulforaphane complex in three solvent systems. • Decreasing the solvent polarity will decrease the binding of BSA and sulforaphane. • Three solvents had not influence on antioxidant activity of BSA–sulforaphane.

  15. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh; Vittal, R.; Ho, Kuo-Chuan

    2010-01-01

    I) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar

  16. Anodic behavior of stainless-steel substrate in organic electrolyte solutions containing different lithium salts

    International Nuclear Information System (INIS)

    Furukawa, Kazuki; Yoshimoto, Nobuko; Egashira, Minato; Morita, Masayuki

    2014-01-01

    Highlights: • We investigated anodic behavior of stainless-steel in organic electrolytes for advanced capacitor. • Anion of the electrolyte affected the anodic stability of the alloy. • Anodic passivation occurs in LiPF 6 solution but pitting or active dissolution proceeds in other electrolyte solutions. • Fluoride source in the solution contributes to forming a stable surface layer on the stainless steel. - Abstract: The anodic behavior of austenitic stainless-steel, SUS304, as a current collector of positive electrode in lithium-ion battery/capacitor has been investigated in organic electrolyte solutions based on a mixed alkyl carbonate solvent with different lithium salts. Stable passivation characteristics were observed for the stainless-steel in the LiPF 6 solution, but pitting corrosion or active dissolution proceeded in the solutions containing other anions, BF 4 - , (CF 3 SO 2 ) 2 N - (TFSA - ) and ClO 4 - . The mass ratios of the dissolved metal species in the solutions of LiTFSA and LiClO 4 were equivalent to that of the alloy composition, which suggests that no preferential dissolution occurs during the anodic polarization in these electrolyte solutions. An HF component formed by decomposition of PF 6 - with the contaminate water will act as an F - source for the formation of a surface fluoride layer, that will contribute to the anodic stability of SUS304 in the LiPF 6 solution. The anodic corrosion in the LiTFSA solution was suppressed in part by mixing the PF 6 salt or adding HF in the electrolyte

  17. Application of several activity coefficient models to water-organic-electrolyte aerosols of atmospheric interest

    Directory of Open Access Journals (Sweden)

    T. Raatikainen

    2005-01-01

    Full Text Available In this work, existing and modified activity coefficient models are examined in order to assess their capabilities to describe the properties of aqueous solution droplets relevant in the atmosphere. Five different water-organic-electrolyte activity coefficient models were first selected from the literature. Only one of these models included organics and electrolytes which are common in atmospheric aerosol particles. In the other models, organic species were solvents such as alcohols, and important atmospheric ions like NH4+ could be missing. The predictions of these models were compared to experimental activity and solubility data in aqueous single electrolyte solutions with 31 different electrolytes. Based on the deviations from experimental data and on the capabilities of the models, four predictive models were selected for fitting of new parameters for binary and ternary solutions of common atmospheric electrolytes and organics. New electrolytes (H+, NH4+, Na+, Cl-, NO3- and SO42- and organics (dicarboxylic and some hydroxy acids were added and some modifications were made to the models if it was found useful. All new and most of the existing parameters were fitted to experimental single electrolyte data as well as data for aqueous organics and aqueous organic-electrolyte solutions. Unfortunately, there are very few data available for organic activities in binary solutions and for organic and electrolyte activities in aqueous organic-electrolyte solutions. This reduces model capabilities in predicting solubilities. After the parameters were fitted, deviations from measurement data were calculated for all fitted models, and for different data types. These deviations and the calculated property values were compared with those from other non-electrolyte and organic-electrolyte models found in the literature. Finally, hygroscopic growth factors were calculated for four 100 nm organic-electrolyte particles and these predictions were compared to

  18. Influence of Mixed Solvent on the Electrochemical Property of Hybrid Capacitor.

    Science.gov (United States)

    Lee, Byunggwan; Yoon, J R

    2015-11-01

    The hybrid capacitors (2245 size, cylindrical type) were prepared by using activated carbon cathode and Li4Ti5O12 anode. In order to improve the cell operation at high temperature range, propylene carbonate (PC) was used in combination with acetonitrile (AN) with volume ratio of 7:3, 5:5, and 3:7, respectively. We investigated the electrochemical behavior of the hybrid capacitors that enabled cell operation with stability at high temperature. The organic electrolyte of hybrid capacitor containing PC and AN with a volume ratio 7:3 intended to exhibit highly reversible cycle performance with good capacity retention at 60 degrees C after 2200 cycles. From this study, it has been found that the very strong influence of the solvent nature on the characteristics of hybrid capacitor, and the difference in performance associated with the two solvents.

  19. Hydrofluoroether electrolytes for lithium-ion batteries: Reduced gas decomposition and nonflammable

    Science.gov (United States)

    Nagasubramanian, Ganesan; Orendorff, Christopher J.

    2011-10-01

    The optimum combination of high energy density at the desired power sets lithium-ion battery technology apart from the other well known secondary battery chemistries. However, this is besieged by thermal instability of the electrolyte. This "Achilles heel" still remains a significant safety issue and unless this propensity is improved the promise of widespread adoption of Li-ion batteries for Transportation application may not be realized. With this in mind we launched a systematic study to evaluate fluoro solvents that are known to be nonflammable, for thermal and electrochemical performances. We investigated hydro-fluoro-ethers (HFE) (1) 2-trifluoromethyl-3-methoxyperfluoropentane {TMMP} and (2) 2-trifluoro-2-fluoro-3-difluoropropoxy-3-difluoro-4-fluoro-5-trifluoropentane {TPTP} in Sandia-built cells. Thermal properties under near abuse conditions that exist in thermal runaway environment and the electrochemical characteristics for these electrolytes were measured. In the thermal ramp (TR) measurement, EC:DEC:TPTP-1 M LiBETI (or TFSI or LiPF6) electrolytes exhibited no ignition/fire. Similar behavior was observed for the EC:DEC:TMMP-1 M LiBETI. Further, in ARC studies the HFE electrolytes generated less gas by 50% compared to the EC:EMC-1.2 M LiPF6 {CAR-1} electrolyte. Although in all cases the HFEs generated less gas, the onset of gas generation appears to depend on the salt. For the LiBETI and TFSI containing HFEs the onset is pushed out by ∼80 °C and for the LiPF6 the onset is comparable to that of the CAR-1. The solution ionic conductivity of these HFE electrolytes was lower (4-5 times) than that of the CAR-1 electrolyte however, the electrochemical performance was comparable. For example, full cells in 2032 type coin cells containing LiMN0.33Ni0.33Co0.33O2 cathode and carbon anode showed around 5 mA h capacity and the computed specific capacity was ∼154 mA h for all the electrolytes. In half-cells against lithium the cathode and anode gave specific

  20. Synthesis and characterization of an electrolyte system based on a biodegradable polymer

    Directory of Open Access Journals (Sweden)

    K. Sownthari

    2013-06-01

    Full Text Available A polymer electrolyte system has been developed using a biodegradable polymer namely poly-ε-caprolactone (PCL in combination with zinc triflate [Zn(CF3SO32] in different weight percentages and characterized during this investigation. Free-standing thin films of varying compositions were prepared by solution casting technique. The successful doping of the polymer has been confirmed by means of Fourier transform infrared spectroscopy (FTIR by analyzing the carbonyl (C=O stretching region of the polymer. The maximum ionic conductivity obtained at room temperature (25°C was found to be 8.8x10–6 S/cm in the case of PCL complexed with 25 wt% Zn(CF3SO32 which is five orders of magnitude higher than that of the pure polymer host material. The increase in amorphous phase with an increase in salt concentration of the prepared polymer electrolyte has also been confirmed from the concordant results obtained from X-ray diffraction (XRD, differential scanning calorimetry (DSC and scanning electron microscopic (SEM analyses. Furthermore, the electrochemical stability window of the prepared polymer electrolyte was found to be 3.7 V. An electrochemical cell has been fabricated based on Zn/MnO2 electrode couple as an application area and its discharge characteristics were evaluated.

  1. Enhanced cycling performance of a Li metal anode in a dimethylsulfoxide-based electrolyte using highly concentrated lithium salt for a lithium-oxygen battery

    Science.gov (United States)

    Togasaki, Norihiro; Momma, Toshiyuki; Osaka, Tetsuya

    2016-03-01

    Stable charge-discharge cycling behavior for a lithium metal anode in a dimethylsulfoxide (DMSO)-based electrolyte is strongly desired of lithium-oxygen batteries, because the Li anode is rapidly exhausted as a result of side reactions during cycling in the DMSO solution. Herein, we report a novel electrolyte design for enhancing the cycling performance of Li anodes by using a highly concentrated DMSO-based electrolyte with a specific Li salt. Lithium nitrate (LiNO3), which forms an inorganic compound (Li2O) instead of a soluble product (Li2S) on a lithium surface, exhibits a >20% higher coulombic efficiency than lithium bis(trifluoromethanesulfonyl)imide, lithium bis(fluorosulfonyl)imide, and lithium perchlorate, regardless of the loading current density. Moreover, the stable cycling of Li anodes in DMSO-based electrolytes depends critically on the salt concentration. The highly concentrated electrolyte 4.0 M LiNO3/DMSO displays enhanced and stable cycling performance comparable to that of carbonate-based electrolytes, which had not previously been achieved. We suppose this enhancement is due to the absence of free DMSO solvent in the electrolyte and the promotion of the desolvation of Li ions on the solid electrolyte interphase surface, both being consequences of the unique structure of the electrolyte.

  2. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  3. Evaluation of a novel and efficient solvent system containing chlorinated cobalt dicarbollide for radio-cesium recovery from acidic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kandwal, Pankaj; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.

    2014-11-01

    A novel solvent system containing chlorinated cobalt dicarbollide (CCD) in a diluent mixture containing 2-nitrophenyloctyl ether (NPOE) and n-dodecane was found to be highly efficient for the extraction of radio-cesium from acidic feed conditions. When PEG-400 (polyethylene glycol with average molecular weight of 400) was added to the solvent system, it was found to extract radio-strontium as well similar to that reported with the UNEX (Universal Extractant) solvent. The solvent system was found to be superior as compared to analogous solvent systems reported previously using CCD in either nitrobenzene or PTMS (phenyltrifluoromethyl sulphone, a fluorinated diluent). The present work deals with less toxic solvent formulation which can be used as an alternative to these hazardous/toxic chemicals for simultaneous recovery of Cs(I) and Sr(II) from acidic solutions. Batch co-current extraction data are also presented for the simultaneous recovery of Cs and Sr which indicated near quantitative extraction (>99.5%) of the metal ions in 4 and 3 stages, respectively. The reusability and radiolytic stability studies were also carried out which suggested highly encouraging results.

  4. Conductivity enhancement via chemical modification of chitosan based green polymer electrolyte

    International Nuclear Information System (INIS)

    Mobarak, N.N.; Ahmad, A.; Abdullah, M.P.; Ramli, N.; Rahman, M.Y.A.

    2013-01-01

    The potential of carboxymethyl chitosan as a green polymer electrolyte has been explored. Chitosan produced from partial deacetylation of chitin was reacted with monochloroacetic acid to form carboxymethyl chitosan. A green polymer electrolyte based chitosan and carboxymethyl chitosan was prepared by solution-casting technique. The powder and films were characterized by reflection Fourier transform infrared (ATR-FTIR) spectroscopy, 1 H nuclear magnetic resonance, elemental analysis and X-ray diffraction, electrochemical impedance spectroscopy, and scanning electron microscopy. The shift of wavenumber that represents hydroxyl and amine stretching confirmed the polymer solvent complex formation. The XRD spectra results show that chemical modification of chitosan has improved amorphous properties of chitosan. The ionic conductivity was found to increase by two magnitudes higher with the chemical modification of chitosan. The highest conductivity achieved was 3.6 × 10 −6 S cm −1 for carboxymethyl chitosan at room temperature and 3.7 × 10 −4 S cm −1 at 60 °C

  5. A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide

    Directory of Open Access Journals (Sweden)

    Martin Winter

    2013-08-01

    Full Text Available We report on studies of an inorganic electrolyte: LiAlCl4 in liquid sulfur dioxide. Concentrated solutions show a very high conductivity when compared with typical electrolytes for lithium ion batteries that are based on organic solvents. Our investigations include conductivity measurements and measurements of transference numbers via nuclear magnetic resonance (NMR and by a classical direct method, Hittorf’s method. For the use of Hittorf’s method, it is necessary to measure the concentration of the electrolyte in a selected cell compartment before and after electrochemical polarization very precisely. This task was finally performed by potentiometric titration after hydrolysis of the salt. The Haven ratio was determined to estimate the association behavior of this very concentrated electrolyte solution. The measured unusually high transference number of the lithium cation of the studied most concentrated solution, a molten solvate LiAlCl4 × 1.6SO2, makes this electrolyte a promising alternative for lithium ion cells with high power ability.

  6. Processing of polymers using reactive solvents

    NARCIS (Netherlands)

    Lemstra, P.J.; Kurja, J.; Meijer, H.E.H.; Meijer, H.E.H.

    1997-01-01

    A review with many refs. on processing of polymers using reactive solvents including classification of synthetic polymers, guidelines for the selection of reactive solvents, basic aspects of processing, examples of intractable and tractable polymer/reactive solvent system

  7. Universal low-temperature MWCNT-COOH-based counter electrode and a new thiolate/disulfide electrolyte system for dye-sensitized solar cells.

    Science.gov (United States)

    Hilmi, Abdulla; Shoker, Tharallah A; Ghaddar, Tarek H

    2014-06-11

    A new thiolate/disulfide organic-based electrolyte system composed of the tetrabutylammonium salt of 2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole-3-thiol (S(-)) and its oxidized form 3,3'-dithiobis(2-methyl-5-trifluoromethyl-2H-[1,2,4]triazole) (DS) has been formulated and used in dye-sensitized solar cells (DSSCs). The electrocatalytic activity of different counter electrodes (CEs) has been evaluated by means of measuring J-V curves, cyclic voltammetry, Tafel plots, and electrochemical impedance spectroscopy. A stable and low-temperature CE based on acid-functionalized multiwalled carbon nanotubes (MWCNT-COOH) was investigated with our S(-)/DS, I(-)/I3(-), T(-)/T2, and Co(II/III)-based electrolyte systems. The proposed CE showed superb electrocatalytic activity toward the regeneration of the different electrolytes. In addition, good stability of solar cell devices based on the reported electrolyte and CE was shown.

  8. Ethylene carbonate-free fluoroethylene carbonate-based electrolyte works better for freestanding Si-based composite paper anodes for Li-ion batteries

    Science.gov (United States)

    Yao, K.; Zheng, J. P.; Liang, R.

    2018-03-01

    Fluoroethylene carbonate (FEC)-based electrolytes using FEC as the co-solvent (50 wt%) are investigated and compared with the electrolyte using FEC as the additive (10 wt%) for freestanding Si-carbon nanotubes (CNTs) composite paper anodes for Li-ion batteries. The ethylene carbonate (EC)-free FEC-based electrolyte is found to achieve higher specific capacity and better capacity retention in terms of long-term cycling. After 500 cycles, the capacity retention of the cell using diethyl carbonate (DEC)-FEC (1:1 w/w) is increased by 88% and 60% compared to the cells using EC-DEC-FEC (45:45:10 w/w/w) and EC-FEC (1:1 w/w), respectively. Through SEM-EDX and XPS analyses, a possible reaction route of formation of fluorinated semicarbonates and polyolefins from FEC is proposed. The inferior cell performance related to the EC-containing electrolytes is likely due to the formation of more polyolefins, which do not favor Li ion migration.

  9. Electrolytic decontamination of stainless steel using a basic electrolyte

    International Nuclear Information System (INIS)

    Childs, E.L.; Long, J.L.

    1981-01-01

    An electrolytic plutonium decontamination process or stainless steel was developed for use as the final step in a proposed radioactive waste handling and decontamination facility to be construced at the Rockwell International Rocky Flats plutonium handling facility. This paper discusses test plan, which was executed to compare the basic electrolyte with phosphoric acid and nitric acid electrolytes. 1 ref

  10. Molecular motion in polymer electrolytes. An investigation of methods for improving the conductivity of solid polymer electrolytes

    International Nuclear Information System (INIS)

    Webster, Mark Ian

    2002-01-01

    Three methods were explored with a view to enhancing the ionic conductivity of polymer electrolytes; namely the addition of an inert, inorganic filler, the addition of a plasticizer and the incorporation of the electrolyte in the pores of silica matrices. There have been a number of reports, which suggest the addition of nanocrystalline oxides to polymer electrolytes increases the ionic conductivities by about a factor of two. In this thesis studies of the polymer electrolyte NaSCN.P(EO) 8 with added nanocrystalline alumina powder are reported which show no evidence of enhanced conductivity. The addition of a plasticizer to polymer electrolytes will increase the ionic conductivity. A detailed study was made of the polymer electrolytes LiT.P(EO) 10 and LiClO 4 .P(EO) 10 with added ethylene carbonate plasticizer. The conductivities showed an enhancement, however this disappeared on heating under vacuum. The present work suggests that the plasticised system is not thermodynamically stable and will limit the applications of the material. A series of samples were prepared from the polymer electrolyte LiT.P(EO) 8 and a range of porous silicas. The silicas were selected to give a wide range of pore size and included Zeolite Y, ZSM5, mesoporous silica and a range of porous glasses. This gave pore sizes from less than one nm to 50 nm. A variety of experiments, including X-ray diffraction, DSC and NMR, showed that the polymer electrolyte entered to pores of the silica. As a result the polymer was amorphous and the room temperature conductivity was enhanced. The high temperature conductivity was not increased above that for the pure electrolyte. The results suggest that this could be employed in applications, however would require higher conducting electrolytes to be of practical benefit. (author)

  11. Materials system for intermediate temperature solid oxide fuel cells based on doped lanthanum-gallate electrolyte

    Science.gov (United States)

    Gong, Wenquan

    2005-07-01

    The objective of this work was to identify a materials system for intermediate temperature solid oxide fuel cells (IT-SOFCs). Towards this goal, alternating current complex impedance spectroscopy was employed as a tool to study electrode polarization effects in symmetrical cells employing strontium and magnesium doped lanthanum gallate (LSGM) electrolyte. Several cathode materials were investigated including strontium doped lanthanum manganite (LSM), Strontium and iron doped lanthanum cobaltate (LSCF), LSM-LSGM, and LSCF-LSGM composites. Investigated Anode materials included nickel-gadolinium or lanthanum doped cerium oxide (Ni-GDC, or Ni-LDC) composites. The ohmic and the polarization resistances of the symmetrical cells were obtained as a function of temperature, time, thickness, and the composition of the electrodes. Based on these studies, the single phase LSM electrode had the highest polarization resistance among the cathode materials. The mixed-conducting LSCF electrode had polarization resistance orders of magnitude lower than that of the LSM-LSGM composite electrodes. Although incorporating LSGM in the LSCF electrode did not reduce the cell polarization resistance significantly, it could reduce the thermal expansion coefficient mismatch between the LSCF electrodes and LSGM electrolyte. Moreover, the polarization resistance of the LSCF electrode decreased asymptotically as the electrode thickness was increased thus suggesting that the electrode thickness needed not be thicker than this asymptotic limit. On the anode side of the IT-SOFC, Ni reacted with LSGM electrolyte, and lanthanum diffusion occurred from the LSGM electrolyte to the GDC barrier layer, which was between the LSGM electrolyte and the Ni-composite anode. However, LDC served as an effective barrier layer. Ni-LDC (70 v% Ni) anode had the largest polarization resistance, while all other anode materials, i.e. Ni-LDC (50 v% Ni), Ni-GDC (70 v% NO, and Ni-GDC (50 v% Ni), had similar polarization

  12. Preparation and characterization of novel solid polymer blend electrolytes based on poly (vinyl pyrrolidone) with various concentrations of lithium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kesavan, K., E-mail: kesavanphysics@gmail.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Mathew, Chithra M. [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Rajendran, S., E-mail: sraj54@yahoo.com [School of Physics, Alagappa University, Karaikudi 630003, Tamilnadu (India); Ulaganathan, M. [Energy Research Institute @ NTU, Nanyang Technological University, Singapore 637 553 (Singapore)

    2014-05-01

    Graphical abstract: - Highlights: • The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for PEO(90 wt%)/PVP(10 wt%)/LiClO{sub 4}(8 wt%) based electrolyte at room temperature. • The structural and functional groups were studied by XRD and FTIR. • Both direct and indirect optical band gap values were evaluated from UV–vis analysis. • The change in viscosity of the polymer electrolytes was studied by photoluminescence spectra. - Abstract: A series of conducting novel solid polymer blend electrolytes (SPE) based on the fixed ratio of poly (ethylene oxide)/poly (vinyl pyrrolidone) (PEO/PVP) and various concentrations of salt lithium perchlorate (LiClO{sub 4}) were prepared by solvent casting technique. Structural and complex formation of the prepared electrolytes was confirmed by X-ray diffraction and FTIR analyses. The maximum ionic conductivity value was found to be 0.2307 × 10{sup −5} S cm{sup −1} for 8 wt% of LiClO{sub 4} based system at ambient temperature. Thermal stability of the present system was studied by thermo gravimetric/differential thermal analysis (TG/DTA). Surface morphology of the sample having maximum ionic conductivity was studied by atomic force microscope (AFM). Optical properties like direct and indirect band gaps were investigated by UV–vis analysis. The change in viscosity of the polymer complexes were also identified using photoluminescence emission spectra. PEO(90)/PVP(10)/LiClO{sub 4}(8) has the highest conductivity which is supported by the lowest optical band gap and lowest intensity in photoluminescence spectroscopy near 400–450 nm.

  13. Highly Quantitative Electrochemical Characterization of Non-Aqueous Electrolytes & Solid Electrolyte Interphases

    Energy Technology Data Exchange (ETDEWEB)

    Sergiy V. Sazhin; Kevin L. Gering; Mason K. Harrup; Harry W. Rollins

    2012-10-01

    The methods to measure solid electrolyte interphase (SEI) electrochemical properties and SEI formation capability of non-aqueous electrolyte solutions are not adequately addressed in the literature. And yet, there is a strong demand in new electrolyte generations that promote stabilized SEIs and have an influence to resolve safety, calendar life and other limitations of Li-ion batteries. To fill this gap, in situ electrochemical approach with new descriptive criteria for highly quantitative characterization of SEI and electrolytes is proposed. These criteria are: SEI formation capacity, SEI corrosion rate, SEI maintenance rate, and SEI kinetic stability. These criteria are associated with battery parameters like irreversible capacity, self-discharge, shelf-life, power, etc. Therefore, they are especially useful for electrolyte development and standard fast screening, allowing a skillful approach to narrow down the search for the best electrolyte. The characterization protocol also allows retrieving information on interfacial resistance for SEI layers and the electrochemical window of electrolytes, the other important metrics of characterization. The method validation was done on electrolyte blends containing phosphazenes, developed at Idaho National Laboratory, as 1.2M LiPF6 [80 % EC-MEC (2:8) (v/v) + 20% Phosphazene variety] (v/v), which were targeted for safer electrolyte variations.

  14. A combustion chemistry analysis of carbonate solvents used in Li-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Stephen J.; Timmons, Adam [General Motors R and D Center, MC 480-102-000, Warren, MI 48090-9055 (United States); Pitz, William J. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2009-09-05

    Under abusive conditions Li-ion cells can rupture, ejecting electrolyte and other flammable gases. In this paper we consider some of the thermochemical and combustion properties of these gases that determine whether they ignite and how energetically they burn. We find a significant variation among the carbonate solvents in the factors that are important to determining flammability, such as combustion enthalpy and vaporization enthalpy. We also show that flames of carbonate solvents are fundamentally less energetic than those of conventional hydrocarbons. An example of this contrast is given using a recently developed mechanism for dimethyl carbonate (DMC) combustion, where we show that a diffusion flame burning DMC has only half the peak heat release rate of an analogous propane flame. Interestingly, peak temperatures differ by only 25%. We argue that heat release rate is a more useful parameter than temperature when evaluating the likelihood that a flame in one cell will ignite a neighboring cell. Our results suggest that thermochemical and combustion property factors might well be considered when choosing solvent mixtures when flammability is a concern. (author)

  15. Enhanced lithium battery with polyethylene oxide-based electrolyte containing silane-Al2 O3 ceramic filler.

    Science.gov (United States)

    Zewde, Berhanu W; Admassie, Shimelis; Zimmermann, Jutta; Isfort, Christian Schulze; Scrosati, Bruno; Hassoun, Jusef

    2013-08-01

    A solid polymer electrolyte prepared by using a solvent-free, scalable technique is reported. The membrane is formed by low-energy ball milling followed by hot-pressing of dry powdered polyethylene oxide polymer, LiCF3 SO3 salt, and silane-treated Al2 O3 (Al2 O3 -ST) ceramic filler. The effects of the ceramic fillers on the properties of the ionically conducting solid electrolyte membrane are characterized by using electrochemical impedance spectroscopy, XRD, differential scanning calorimeter, SEM, and galvanostatic cycling in lithium cells with a LiFePO4 cathode. We demonstrate that the membrane containing Al2 O3 -ST ceramic filler performs well in terms of ionic conductivity, thermal properties, and lithium transference number. Furthermore, we show that the lithium cells, which use the new electrolyte together with the LiFePO4 electrode, operate within 65 and 90 °C with high efficiency and long cycle life. Hence, the Al2 O3 -ST ceramic can be efficiently used as a ceramic filler to enhance the performance of solid polymer electrolytes in lithium batteries. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrochemical separation of actinides and fission products in molten salt electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Gay, R.L.; Grantham, L.F.; Fusselman, S.P. [Rockwell International/Rocketdyne Division, Canoga Park, CA (United States)] [and others

    1995-10-01

    Molten salt electrochemical separation may be applied to accelerator-based conversion (ABC) and transmutation systems by dissolving the fluoride transport salt in LiCl-KCl eutectic solvent. The resulting fluoride-chloride mixture will contain small concentrations of fission product rare earths (La, Nd, Gd, Pr, Ce, Eu, Sm, and Y) and actinides (U, Np, Pu, Am, and Cm). The Gibbs free energies of formation of the metal chlorides are grouped advantageously such that the actinides can be deposited on a solid cathode with the majority of the rare earths remaining in the electrolyte. Thus, the actinides are recycled for further transmutation. Rockwell and its partners have measured the thermodynamic properties of the metal chlorides of interest (rare earths and actinides) and demonstrated separation of actinides from rare earths in laboratory studies. A model is being developed to predict the performance of a commercial electrochemical cell for separations starting with PUREX compositions. This model predicts excellent separation of plutonium and other actinides from the rare earths in metal-salt systems.

  17. Ethylene bis-carbonates as telltales of SEI and electrolyte health, role of carbonate type and new additives

    International Nuclear Information System (INIS)

    Kim, Huikyong; Grugeon, Sylvie; Gachot, Grégory; Armand, Michel; Sannier, Lucas; Laruelle, Stéphane

    2014-01-01

    The ethylene bis-carbonate compounds formation is responsible for the earliest change in electrolyte composition which can be one of the reasons for battery performance decay. In this study, liquid GC/MS technique is used to detect their formation in electrolytes based on solvent mixtures of EC and different linear carbonates (DMC, DEC and EMC), after the first cycle in full cells composed of synthetic graphite powder/commercial positive films. These compounds stem from linear carbonate electrochemical reduction leading to alkoxide compounds and can be quantified using a selective bicyclic boron ester Lewis acid as an electrolyte additive. Moreover, a quantitative study on ethylene bis-carbonate compounds for which the generation profile is different depending on the linear carbonate type, shows that either in batteries or in a simple chemical mixture of electrolyte and lithium alkoxide, their formation stops when it reaches a threshold concentration due to the thermodynamic equilibrium. The overall information is useful for investigating the passivation ability and the dissolution of the Solid Electrolyte Interphase (SEI) that is formed on the negative electrode material. Finally, the passivation property of the SEI freshly formed with four additives - Vinylene Carbonate (VC), Vinyl Ethylene Carbonate (VEC), Fluoro Ethylene Carbonate (FEC) and 1,3-Propane Sultone (1,3-PS)- is studied

  18. Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Suri, Poonam; Mehra, R.M. [Department of Electronic Science, University of Delhi South Campus, New Delhi 110021 (India)

    2007-03-23

    The efficiency of dye sensitized solar cell depends on the number of factors such as impedance due to anions in the electrolytes, oxidation-reduction process of anions and size of cations of the electrolyte. This paper reports the effect of electrolytes on the photovoltaic performance of hybrid dye sensitized ZnO solar cells based on Eosin Y dye. The size of the cations has been varied by choosing different electrolytes such as LiBr+Br{sub 2}, LiI+I{sub 2}, tetrapropylammonium iodide +I{sub 2} in mixed solvent of acetronitrile and ethylene carbonate. The impedance of anions has been determined by electrochemical impedance spectra. It is observed that Br{sup -}/Br{sub 3}{sup -} offers high impedance as compared to I{sup -}/I{sub 3}{sup -} couple. The oxidation-reduction reactions of electrolytes are measured by linear sweep voltammogram. It is found that Br{sup -}/Br{sub 3}{sup -} is more suitable than an I{sup -}/I{sub 3}{sup -} couple in dye sensitized solar cell (DSSC) in terms of higher open-circuit photovoltage production and higher overall energy conversion efficiency. This is attributed to more positive potential of the dye sensitizer than that of Br{sup -}/Br{sub 3}{sup -}. The gain in V{sub oc} was due to the enlarged energy level difference between the redox potential of the electrolyte and the Fermi level (E{sub f}) of ZnO and the suppressed charge recombination as well. (author)

  19. Electrical double layer structure at the gallium metals in a methanol solution of a surface-inactive electrolyte

    International Nuclear Information System (INIS)

    Emets, V.V.

    1997-01-01

    The structure of double electric layer on Ga-, In-Ga- and Tl-Ga-electrodes in methanol solutions of surface-inactive electrolyte has been studied. It is shown that in the absence of chemisorption interaction between metal and solvent, the distance of the nearest approach of methanol dipoles to the surface of Ga-, In-Ga- and Tl-Ga-electrodes is practically the same. Accordingly, the specificity of the metals contact with solvent is reduced solely to their chemisorption interaction. In the zero charge area and for negative charges the chemisorption interaction with methanol molecules increases in the sequence Tl-Ga< In-Ga< Ga. The growth correlates both with the metals acceptor ability towards electron, which is characterized by the work of metal electron escape to vacuum, and donor ability of the solvent characterized by its donor number

  20. Structural, vibrational and electrical characterization of PVA-NH4Br polymer electrolyte system

    International Nuclear Information System (INIS)

    Hema, M.; Selvasekerapandian, S.; Sakunthala, A.; Arunkumar, D.; Nithya, H.

    2008-01-01

    Polymer electrolyte based on PVA doped with different concentrations of NH 4 Br has been prepared by solution casting technique. The complexation of the prepared polymer electrolytes has been studied using X-ray diffraction (XRD) and Fourier transform infra red (FTIR) spectroscopy. The maximum ionic conductivity (5.7x10 -4 S cm -1 ) has been obtained for 25 mol% NH 4 Br-doped PVA polymer electrolyte. The temperature dependence of ionic conductivity of the prepared polymer electrolytes obeys Arrhenius law. The ionic transference number of mobile ions has been estimated by dc polarization method and the results reveal that the conducting species are predominantly ions. The dielectric behavior of the polymer electrolytes has been analyzed using dielectric permittivity and electric modulus spectra

  1. Electrodeposition of compact zinc from the hydrophobic Brønsted acidic ionic liquid-based electrolytes and the study of zinc stability along with the acidity manipulation

    International Nuclear Information System (INIS)

    Chen, Yi-Han; Yeh, Hsin-Wen; Lo, Nai-Chang; Chiu, Chen-Wei; Sun, I-Wen; Chen, Po-Yu

    2017-01-01

    Highlights: • Compact Zn with no crack is deposited from protic ionic liquid-based electrolytes. • The ionic liquid is composed of the protonated betaine ion. • This ionic liquid is hydrophobic and zinc oxide is soluble in it. • The effects of co-solvents, propylene carbonate and water, are studied. • The Zn stripping/deposition efficiency can be manipulated via acidity adjustment. - Abstract: Compact crystalline zinc was electrodeposited on stainless-steel electrode (SS) via potentiostatic/galvanostatic electrolysis from the hydrophobic Brønsted acidic ionic liquid, protonated betaine bis((trifluoromethyl)sulfonyl)imide (IL [Hbet][TFSI]), −based electrolytes containing ZnCl 2 or ZnO under argon or ambient air atmosphere. Approximate 10 wt% of propylene carbonate and water, respectively, were used as the co-solvents for [Hbet][TFSI] to form the IL-based electrolytes. The efficiency of zinc deposition/stripping, which is significantly affected by the Brønsted acidity of the IL-based electrolytes, was studied at glassy carbon electrode (GC) to evaluate the stability of the zinc electrodeposits along with the electrolyte acidity. The stability is very poor for the zinc electrodeposits obtained from ZnCl 2 solution. However, it increases with increasing the quantity of ZnO or urea in the electrolytes; the former neutralize the dissociable protons in [Hbet] cations to form water, and the latter may form H-bonding with [Hbet] or be protonated to form the weakly acidic cations [HUrea]. Both suppress the reaction between the Zn electrodeposits and protons. The stability of the Zn electrodeposits, therefore, can be improved via the manipulation of the IL acidity.

  2. Fuel cell system with separating structure bonded to electrolyte

    Science.gov (United States)

    Bourgeois, Richard Scott; Gudlavalleti, Sauri; Quek, Shu Ching; Hasz, Wayne Charles; Powers, James Daniel

    2010-09-28

    A fuel cell assembly comprises a separating structure configured for separating a first reactant and a second reactant wherein the separating structure has an opening therein. The fuel cell assembly further comprises a fuel cell comprising a first electrode, a second electrode, and an electrolyte interposed between the first and second electrodes, and a passage configured to introduce the second reactant to the second electrode. The electrolyte is bonded to the separating structure with the first electrode being situated within the opening, and the second electrode being situated within the passage.

  3. Adiponitrile-Lithium Bis(trimethylsulfonyl)imide Solutions as Alkyl Carbonate-free Electrolytes for Li4 Ti5 O12 (LTO)/LiNi1/3 Co1/3 Mn1/3 O2 (NMC) Li-Ion Batteries.

    Science.gov (United States)

    Farhat, Douaa; Ghamouss, Fouad; Maibach, Julia; Edström, Kristina; Lemordant, Daniel

    2017-05-19

    Recently, dinitriles (NC(CH 2 ) n CN) and especially adiponitrile (ADN, n=4) have attracted attention as safe electrolyte solvents owing to their chemical stability, high boiling points, high flash points, and low vapor pressure. The good solvation properties of ADN toward lithium salts and its high electrochemical stability (≈6 V vs. Li/Li + ) make it suitable for safer Li-ions cells without performance loss. In this study, ADN is used as a single electrolyte solvent with lithium bis(trimethylsulfonyl)imide (LiTFSI). This electrolyte allows the use of aluminium collectors as almost no corrosion occurs at voltages up to 4.2 V. The physicochemical properties of the ADN-LiTFSI electrolyte, such as salt dissolution, conductivity, and viscosity, were determined. The cycling performances of batteries using Li 4 Ti 5 O 12 (LTO) as the anode and LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NMC) as the cathode were determined. The results indicate that LTO/NMC batteries exhibit excellent rate capabilities with a columbic efficiency close to 100 %. As an example, cells were able to reach a capacity of 165 mAh g -1 at 0.1 C and a capacity retention of more than 98 % after 200 cycles at 0.5 C. In addition, electrodes analyses by SEM, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy after cycling confirming minimal surface changes of the electrodes in the studied battery system. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Non-aqueous electrolyte for high voltage rechargeable magnesium batteries

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E; Hwang, Jaehee

    2015-02-10

    An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  5. Investigation of a nanoconfined, ceramic composite, solid polymer electrolyte

    International Nuclear Information System (INIS)

    Jayasekara, Indumini; Poyner, Mark; Teeters, Dale

    2017-01-01

    The challenges for further development of lithium rechargeable batteries are finding electrolyte materials that are safe, have mechanical and thermal stability and have sufficiently high ionic conduction. Polymer electrolytes have many of these advantages, but suffer with low ionic conduction. This study involves the use of anodic aluminum oxide (AAO) membranes having nanochannels filled with polymer electrolyte to make composite solid electrolytes having ionic conductivity several orders of magnitude higher (10 −4 Ω ‐1 cm −1 ) than non-confined polymer. SEM, ac impedance spectroscopy, temperature dependence studies, XRD, ATR- FTIR and DSC studies were done in order to characterize and understand the behavior of nanoconfined polymer electrolytes. The composite polymer electrolyte was found to be more amorphous with polymer chains aligned in the direction of the nanochannels, which is felt to promote ion conduction. The electrolyte systems, confined in nanoporous membranes, can be used as electrolytes for the fabrication of a room temperature all solid state battery.

  6. Advanced Proton Conducting Polymer Electrolytes for Electrochemical Capacitors

    Science.gov (United States)

    Gao, Han

    Research on solid electrochemical energy storage devices aims to provide high performance, low cost, and safe operation solutions for emerging applications from flexible consumer electronics to microelectronics. Polymer electrolytes, minimizing device sealing and liquid electrolyte leakage, are key enablers for these next-generation technologies. In this thesis, a novel proton-conducing polymer electrolyte system has been developed using heteropolyacids (HPAs) and polyvinyl alcohol for electrochemical capacitors. A thorough understanding of proton conduction mechanisms of HPAs together with the interactions among HPAs, additives, and polymer framework has been developed. Structure and chemical bonding of the electrolytes have been studied extensively to identify and elucidate key attributes affecting the electrolyte properties. Numerical models describing the proton conduction mechanism have been applied to differentiate those attributes. The performance optimization of the polymer electrolytes through additives, polymer structural modifications, and synthesis of alternative HPAs has achieved several important milestones, including: (a) high proton mobility and proton density; (b) good ion accessibility at electrode/electrolyte interface; (c) wide electrochemical stability window; and (d) good environmental stability. Specifically, high proton mobility has been addressed by cross-linking the polymer framework to improve the water storage capability at normal-to-high humidity conditions (e.g. 50-80% RH) as well as by incorporating nano-fillers to enhance the water retention at normal humidity levels (e.g. 30-60% RH). High proton density has been reached by utilizing additional proton donors (i.e. acidic plasticizers) and by developing different HPAs. Good ion accessibility has been achieved through addition of plasticizers. Electrochemical stability window of the electrolyte system has also been investigated and expanded by utilizing HPAs with different heteroatoms

  7. Influence of solvent on the infared spectrum of carbon monoxide adsorbed on platinum electrodes

    OpenAIRE

    Feltovich, Susanne D.

    1993-01-01

    The behavior of adsorbed carbon monoxide on platinum was studied using potential difference infrared spectroscopy. Three solvents and three electrolytes were chosen, and data gathered at both high and low adsorbate coverages. The rate of change of IR peak position with applied potential, the Stark tuning rate, was used as an indicator of the local electric field strength at the interface. It was determined that neither solvated cation size nor bulk dielectric constant accoun...

  8. Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors

    Science.gov (United States)

    Pandey, Gaind P.; Liu, Tao; Hancock, Cody; Li, Yonghui; Sun, Xiuzhi Susan; Li, Jun

    2016-10-01

    A flexible, free-standing, thermostable gel polymer electrolyte based on plastic crystalline succinonitrile (SN) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF4) entrapped in copolymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) is prepared and optimized for application in solvent-free solid-state supercapacitors. The synthesized gel polymer electrolyte exhibits a high ionic conductivity over a wide temperature range (from ∼5 × 10-4 S cm-1 at -30 °C up to ∼1.5 × 10-2 S cm-1 at 80 °C) with good electrochemical stability window (-2.9 to 2.5 V). Thermal studies confirm that the SN containing gel polymer electrolyte remains stable in the same gel phase over a wide temperature range from -30 to 90 °C. The electric double layer capacitors (EDLCs) have been fabricated using activated carbon as active materials and new gel polymer electrolytes. Electrochemical performance of the EDLCs is assessed through cyclic voltammetry, galvanostatic charge-discharge cycling and impedance spectroscopy. The EDLC cells with the proper SN-containing gel polymer electrolyte has been found to give high specific capacitance 176 F g-1 at 0.18 A g-1 and 138 F g-1 at 8 A g-1. These solid-state EDLC cells show good cycling stability and the capability to retain ∼80% of the initial capacitance after 10,000 cycles.

  9. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-01-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g−1 at 1.5 A g−1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g−1 at 1.5 A g−1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors. PMID:28989753

  10. Influence of solvents in the preparation of cobalt sulfide for supercapacitors

    Science.gov (United States)

    Anil Kumar, Yedluri; Srinivasa Rao, S.; Punnoose, Dinah; Venkata Tulasivarma, Chebrolu; Gopi, Chandu V. V. M.; Prabakar, Kandasamy; Kim, Hee-Je

    2017-09-01

    In this study, cobalt sulfide (CoS) electrodes are synthesized using various solvents such as water, ethanol and a combination of the two via a facile chemical bath deposition method on Ni foam. The crystalline nature, chemical states and surface morphology of the prepared CoS nanoparticles are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transition electron microscopy. The electrochemical properties of CoS electrodes are also evaluated using cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. When used as an electrode for a supercapacitor, CoS prepared with ethanol as a solvent exhibits a capacitance of 41.36 F g-1 at 1.5 A g-1, which is significantly better than that prepared using water and water/ethanol-based solvents (31.66 and 18.94 F g-1 at 1.5 A g-1, respectively). This superior capacitance is attributed to the ideal surface morphology of the solvent, which allows for easy diffusion of electrolyte ions into the inner region of the electrode. High electrical conduction enables a high rate capability. These results suggest that CoS nanoparticles are highly promising for energy storage applications as well as photocatalysis, electrocatalysis, water splitting and solar cells, among others. These results show that CoS is a promising positive electrode material for practical supercapacitors.

  11. Two novel solvent system compositions for protected synthetic peptide purification by centrifugal partition chromatography.

    Science.gov (United States)

    Amarouche, Nassima; Giraud, Matthieu; Forni, Luciano; Butte, Alessandro; Edwards, F; Borie, Nicolas; Renault, Jean-Hugues

    2014-04-11

    Protected synthetic peptide intermediates are often hydrophobic and not soluble in most common solvents. They are thus difficult to purify by preparative reversed-phase high-performance liquid chromatography (RP-HPLC), usually used for industrial production. It is then challenging to develop alternative chromatographic purification processes. Support-free liquid-liquid chromatographic techniques, including both hydrostatic (centrifugal partition chromatography or CPC) and hydrodynamic (counter-current chromatography or CCC) devices, are mainly involved in phytochemical studies but have also been applied to synthetic peptide purification. In this framework, two new biphasic solvent system compositions covering a wide range of polarity were developed to overcome solubility problems mentioned above. The new systems composed of heptane/tetrahydrofuran/acetonitrile/dimethylsulfoxide/water and heptane/methyl-tetrahydrofuran/N-methylpyrrolidone/water were efficiently used for the CPC purification of a 39-mer protected exenatide (Byetta®) and a 8-mer protected peptide intermediate of bivalirudin (Angiox®) synthesis. Phase compositions of the different biphasic solvent systems were determined by (1)H nuclear magnetic resonance. Physico-chemical properties including viscosity, density and interfacial tension of these biphasic systems are also described. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Low temperature electrochemistry at normal conductor/frozen electrolyte interface

    International Nuclear Information System (INIS)

    Borkowska, Z.; Stimming, U.

    1991-01-01

    The frozen electrolyte technique (FREECE = FRozen Electrolyte ElectroChEmistry) is based on the experimental result that frozen electrolytes are suitable for electrochemical studies. This technique has been used in our laboratory and also by others to investigate interfacial electrochemical behavior. An argument will be given as to why the FREECE technique is advantageous in a number of respects and what kind of electrolyte systems can be used. Reference is made to electrochemical results such as interfacial reactions and double layer properties. 26 refs

  13. Understanding the thermal instability of fluoroethylene carbonate in LiPF6-based electrolytes for lithium ion batteries

    International Nuclear Information System (INIS)

    Kim, Koeun; Park, Inbok; Ha, Se-Young; Kim, Yeonkyoung; Woo, Myung-Heuio; Jeong, Myung-Hwan; Shin, Woo Cheol; Ue, Makoto; Hong, Sung You; Choi, Nam-Soon

    2017-01-01

    Highlights: • The FEC in LiPF 6 -based electrolytes thermally decomposes at elevated temperatures. • Lewis acids in the electrolyte promote de-fluorination of the FEC to form HF. • The HF causes the SEI destruction and severe metal ion dissolution from the cathode. - Abstract: The cycling and storage performances of LiCoO 2 (LCO)-LiNi 0.5 Co 0.2 Mn 0.3 O 2 (NCM)/pitch-coated silicon alloy-graphite (Si-C) full cells with ethylene carbonate (EC)–based and fluoroethylene carbonate (FEC)–based electrolytes are investigated at elevated temperatures. Excess FEC (used as a co-solvent in LiPF 6 -based electrolytes), which is not completely consumed during the formation of the solid electrolyte interphase (SEI) layer on the electrodes, is prone to defluorination in the presence of Lewis acids such as PF 5 ; this reaction can generate unwanted HF and various acids (H 3 OPF 6 , HPO 2 F 2 , H 2 PO 3 F, H 3 PO 4 ) at elevated temperatures. Our investigation reveals that the HF and acid compounds that are formed by FEC decomposition causes significant dissolution of transition metal ions (from the LCO-NCM cathode) into the electrolyte at elevated temperatures; as a result, the reversible capacity of the full cells reduces because of the deposition of the dissolved metal ions onto the anode. Moreover, we demonstrate possible mechanisms that account for the thermal instability of FEC in LiPF 6 -based electrolytes at elevated temperatures using model experiments.

  14. Diluent effects in solvent extraction. The Effects of Diluents in Solvent Extraction - a literature study

    International Nuclear Information System (INIS)

    Loefstroem-Engdahl, Elin; Aneheim, Emma; Ekberg, Christian; Foreman, Mark; Skarnemark, Gunnar

    2010-01-01

    The fact that the choice of organic diluent is important for a solvent extraction process goes without saying. Several factors, such as e.g. price, flash point, viscosity, polarity etc. each have their place in the planning of a solvent extraction system. This high number of variables makes the lack of compilations concerning diluent effects to an interesting topic. Often the interest for the research concerning a specific extraction system focuses on the extractant used and the complexes built up during an extraction. The diluents used are often classical ones, even if it has been shown that choice of diluent can affect extraction as well as separation in an extraction system. An attempt to point out important steps in the understanding of diluent effects in solvent extraction is here presented. This large field is, of course, not summarized in this article, but an attempt is made to present important steps in the understanding of diluents effects in solvent extraction. Trying to make the information concerning diluent effects and applications more easily accessible this review offers a selected summarizing of literature concerning diluents effects in solvent extraction. (authors)

  15. Electrode structures of polymer-electrolyte fuel cells (PEFC). An electron microscopy approach to the characterization of the electrode structure of polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Scheiba, Frieder

    2009-01-28

    Polymer electrolyte fuel cells (PEFC) have a complex electrode structure, which usually consists of a catalyst, a catalyst support, a polymer electrolyte and pores. The materials used are largely amorphous, have a strong defective structure or have particle diameter of only a few nanometers. In the electrode the materials form highly disordered aggregated structures. Both aspects complicate a systematic structural analysis significantly. However, thorough knowledge of the electrode structure, is needed for systematic advancement of fuel cell technology and to obtain a better understanding of mass and charge carrier transport processes in the electrode. Because of the complex structure of the electrode, an approach based on the examination of electrode thin-sections by electron microscopy was chosen in this work to depicting the electrode structure experimentally. The present work presents these studies of the electrode structure. Some fundamental issues as the influence of the polymer electrolyte concentration and the polarity of the solvent used in the electrode manufacturing process were addressed. During the analysis particular attention was payed to the distribution and structure of the polymer electrolyte. A major problem to the investigations, were the low contrast between the polymer electrolyte, the catalyst support material and the embedding resin. Therefore, dilerent techniques were investigated in terms of their ability to improve the contrast. In this context, a computer-assisted acquisition procedure for energy filtered transmission electron microscopy (EF-TEM) was developed. The acquisition procedure permits a significant extension of the imageable sample. At the same time, it was possible to substantially reduce beam damage of the specimen and to minimize drift of the sample considerably. This allowed unambiguous identification of the polymer electrolyte in the electrode. It could further be shown, that the polymer electrolyte not only coats the

  16. A Rational Electrode-Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions

    KAUST Repository

    Suryanto, Bryan Harry Rahmat

    2018-04-25

    Renewable energy driven ammonia electrosynthesis by N2 reduction reaction (NRR) at ambient conditions is vital for the sustainability of the global population and energy demand. However, NRR under ambient conditions to date has been plagued with low yield rate and selectivity (<10%) due to the more favourable hydrogen evolution reaction (HER) in aqueous media. Herein, surface area enhanced α-Fe nanorods grown on carbon fibre paper was used as a NRR cathode in an aprotic fluorinated solvent – ionic liquid mixture. Through this design, a significantly enhanced NRR activity with NH3 yield rate of ~2.35 × 10-11 mol s-1 cmGSA-2, (3.71 × 10-13 mol s-1 cmECSA-2) and selectivity of ~32% has been achieved under ambient conditions. This study reveals that the use of hydrophobic fluorinated aprotic electrolyte effectively limits the availability of protons and thus suppresses the competing HER. Therefore, electrode-electrolyte engineering is essential in advancing the NH3 electrosynthesis technology.

  17. The early indicators of financial failure: a study of bankrupt and solvent health systems.

    Science.gov (United States)

    Coyne, Joseph S; Singh, Sher G

    2008-01-01

    This article presents a series of pertinent predictors of financial failure based on analysis of solvent and bankrupt health systems to identify which financial measures show the clearest distinction between success and failure. Early warning signals are evident from the longitudinal analysis as early as five years before bankruptcy. The data source includes seven years of annual statements filed with the Securities and Exchange Commission by 13 health systems before they filed bankruptcy. Comparative data were compiled from five solvent health systems for the same seven-year period. Seven financial solvency ratios are included in this study, including four cash liquidity measures, two leverage measures, and one efficiency measure. The results show distinct financial trends between solvent and bankrupt health systems, in particular for the operating-cash-flow-related measures, namely Ratio 1: Operating Cash Flow Percentage Change, from prior to current period; Ratio 2: Operating Cash Flow to Net Revenues; and Ratio 4: Cash Flow to Total Liabilities, indicating sensitivity in the hospital industry to cash flow management. The high dependence on credit from third-party payers is cited as a reason for this; thus, there is a great need for cash to fund operations. Five managerial policy implications are provided to help health system managers avoid financial solvency problems in the future.

  18. In situ electrochemical-mass spectroscopic investigation of solid electrolyte interphase formation on the surface of a carbon electrode

    International Nuclear Information System (INIS)

    Gourdin, Gerald; Zheng, Dong; Smith, Patricia H.; Qu, Deyang

    2013-01-01

    The energy density of an electrochemical capacitor can be significantly improved by utilizing a lithiated negative electrode and a high surface area positive electrode. During lithiation of the negative carbon electrode, the electrolyte reacts with the electrode surface and undergoes decomposition to form a solid electrolyte interphase (SEI) layer that passivates the surface of the carbon electrode from further reactions between Li and the electrolyte. The reduction reactions that the solvent undergoes also form insoluble and gaseous by-products. In this work, those gaseous by-products generated by reductive decomposition of a carbonate-based electrolyte, 1.2 M LiPF 6 in EC/PC/DEC (3:1:4), were analyzed at different stages during the lithiation process of an amorphous carbon electrode. The stages in the generation of gaseous by-products were determined to come as a result of two, 1-electron reduction steps of the cyclic carbonate components of the electrolyte. Electrochemical impedance spectroscopy was also used to investigate the two distinct electrochemical processes and the development of the two phases of the SEI structure. This is the first time that the state of an electrochemical cell during the formation of the SEI layer has been systematically correlated with theoretical reaction mechanisms through the use of in situ electrochemical-MS and impedance spectroscopy analyses

  19. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  20. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    Science.gov (United States)

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  1. Phase Behavior and Evaporation Profile of Tween 20 - Eugenol System. Effect of Different Alkane Chain Length and Solvent System

    International Nuclear Information System (INIS)

    Kassim, A.; Lim, W.H.; Kuangl, D.; Rusmawati, W.W.M.; Abdullah, A.H.; Teoh, S.P.

    2003-01-01

    The isotropic region of Tween 20/eugenol/n-alkane in aqueous systems was determined. The solubilisation trend of isotropic solution formed in the presence of eugenol was studied as a function of different alkyl chain length of n-alkane. The solubility of solvent in surfactant solution is dependent on their molecular polarity. An increase in n-alkane chain length (lower polarity) lead to smaller isotropic region which will affect the surfactant partitioning between the interface, the oil phase and the aqueous phase of the microemulsion as the oil chain length is varied. The changes of evaporation behaviour were affected strongly by the types of phases existed in the systems. The increment of n-alkane and water content led to higher evaporation rate. But the formation of w/o microemulsion would lower the evaporation rate because water molecules were trapped in the core of aggregates. In solubilisation system, evaporation rate is dependent on the solvent content and the interaction between Tween 20 and solvent molecules in the mixed composition. (author)

  2. Electrolyte system strategies for anionic isotachophoresis with electrospray-ionization mass-spectrometric detection. 2. Isotachophoresis in moving-boundary systems

    Czech Academy of Sciences Publication Activity Database

    Gebauer, Petr; Malá, Zdeňka; Boček, Petr

    2013-01-01

    Roč. 34, č. 24 (2013), s. 3245-3251 ISSN 0173-0835 R&D Project s: GA ČR(CZ) GA13-05762S Institutional support: RVO:68081715 Keywords : electrolyte systems * ESI-MS detection * isotachophoresis * moving-boundary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.161, year: 2013

  3. Studies on the partial specific volume of a poly(ethylene glycol) derivative in different solvent systems

    NARCIS (Netherlands)

    Tziatzios, C.; Precup, A.A.; Weidl, C.H.; Schubert, U.S.; Schuck, P.; Durchschlag, H.; Mächtle, W.; Broek, van den J.A.; Schubert, D.

    2002-01-01

    The specific volume of charged supramolecular compounds dissolved in organic solvents varies considerably with the solvent system applied; in addition, it is influenced by the presence of salt. In this study we determined the specific volume of an uncharged molecule from the same molar mass range in

  4. Assessment of Purex solvent cleanup methods using a mixer-settler system

    International Nuclear Information System (INIS)

    Mailen, J.C.; Tallent, O.K.

    1984-11-01

    A test system consisting of three mixer-settlers in series has been used to determine the usefulness of several possible aqueous scrub solutions for cleanup of TBP solvent in fuel reprocessing plants. The simulated solvent that was treated was nominally 0.1 mM zirconium, 0.2 mM uranium, 0.4 mM dibutyl phosphate, and 0.3 mM HNO 3 . Five aqueous scrub solutions - sodium carbonate/tartrate, hydroxylamine/tartaric acid, hydroxylamine/citric acid, hydrazine/oxalic acid, and LiOH/sucrose - were evaluated. The order of effectiveness of these solutions for removal of contaminants was: sodium carbonate/tartrate, hydrazine/oxalic acid, LiOH/sucrose, and the two hydroxylamine solutions. Interfacial crud, which was related to the presence of zirconium and DBP, was observed in all cases except the LiOH/sucrose solution. The recommended system would use sodium carbonate/tartrate. If sodium usage must be minimized, a hydroxylamine-containing scrub followed by a sodium carbonate/tartrate scrub is recommended. 13 references, 11 figures, 21 tables

  5. The properties of anion-exchange resines in mixtures of organic solvents and water

    International Nuclear Information System (INIS)

    Naveh, J.

    1978-02-01

    The behaviour of anion-exchange resins in water and mixtures of organic solvents and water was studied with special reference to the swelling of the polymer and to the density and enthalpy changes accompanying the swelling. A linear dependence was found between the swelling of dry resin and 1/X (X being the nominal cross-linking percent of the polymer). This dependence is interpreted theoretically. The nominal cross-linking percent,defined by the quantity ratio of the components, is corrected for real cross-linking percent. For the swelling of the resin in dilute aqueous alcohols, a preference for the alcohol was found which is enhanced as the molecular weight of the alcohol increases. Moreover, for certain mole fractions, the preference of the perchlorate form of the resin is greater than that of the chloride form. The temperature dependence of the swelling was measured and the invasion of an electrolyte (LiCl), dissolved in the aqueous-organic phase, into the resine phase was determined. Contrary to what usually happens in pure aqueous phase, where the electrolyte is rejected in accordance with the Donnan law, an almost total invasion of the electrolyte into the resin phase occurs. (author)

  6. Enhanced performance of ultracapacitors using redox additive-based electrolytes

    Science.gov (United States)

    Jain, Dharmendra; Kanungo, Jitendra; Tripathi, S. K.

    2018-05-01

    Different concentrations of potassium iodide (KI) as redox additive had been added to 1 M sulfuric acid (H2SO4) electrolyte with an aim of enhancing the capacitance and energy density of ultracapacitors via redox reactions at the interfaces of electrode-electrolyte. Ultracapacitors were fabricated using chemically treated activated carbon as electrode with H2SO4 and H2SO4-KI as an electrolyte. The electrochemical performances of fabricated supercapacitors were investigated by impedance spectroscopy, cyclic voltammetry and charge-discharge techniques. The maximum capacitance ` C' was observed with redox additives-based electrolyte system comprising 1 M H2SO4-0.3 M KI (1072 F g- 1), which is very much higher than conventional 1 M H2SO4 (61.3 F g- 1) aqueous electrolyte-based ultracapacitors. It corresponds to an energy density of 20.49 Wh kg- 1 at 2.1 A g- 1 for redox additive-based electrolyte, which is six times higher as compared to that of pristine electrolyte (1 M H2SO4) having energy density of only 3.36 Wh kg- 1. The temperature dependence behavior of fabricated cell was also analyzed, which shows increasing pattern in its capacitance values in a temperature range of 5-70 °C. Under cyclic stability test, redox electrolyte-based system shows almost 100% capacitance retention up to 5000 cycles and even more. For comparison, ultracapacitors based on polymer gel electrolyte polyvinyl alcohol (PVA) (10 wt%)—{H2SO4 (1 M)-KI (0.3 M)} (90 wt%) have been fabricated and characterized with the same electrode materials.

  7. Dynamic behaviour of the silica-water-bio electrical double layer in the presence of a divalent electrolyte.

    Science.gov (United States)

    Lowe, B M; Maekawa, Y; Shibuta, Y; Sakata, T; Skylaris, C-K; Green, N G

    2017-01-25

    Electronic devices are becoming increasingly used in chemical- and bio-sensing applications and therefore understanding the silica-electrolyte interface at the atomic scale is becoming increasingly important. For example, field-effect biosensors (BioFETs) operate by measuring perturbations in the electric field produced by the electrical double layer due to biomolecules binding on the surface. In this paper, explicit-solvent atomistic calculations of this electric field are presented and the structure and dynamics of the interface are investigated in different ionic strengths using molecular dynamics simulations. Novel results from simulation of the addition of DNA molecules and divalent ions are also presented, the latter of particular importance in both physiological solutions and biosensing experiments. The simulations demonstrated evidence of charge inversion, which is known to occur experimentally for divalent electrolyte systems. A strong interaction between ions and DNA phosphate groups was demonstrated in mixed electrolyte solutions, which are relevant to experimental observations of device sensitivity in the literature. The bound DNA resulted in local changes to the electric field at the surface; however, the spatial- and temporal-mean electric field showed no significant change. This result is explained by strong screening resulting from a combination of strongly polarised water and a compact layer of counterions around the DNA and silica surface. This work suggests that the saturation of the Stern layer is an important factor in determining BioFET response to increased salt concentration and provides novel insight into the interplay between ions and the EDL.

  8. Extraction of Trivalent Actinides and Lanthanides from Californium Campaign Rework Solution Using TODGA-based Solvent Extraction System

    Energy Technology Data Exchange (ETDEWEB)

    Benker, Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Delmau, Laetitia Helene [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dryman, Joshua Cory [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-07-01

    This report presents the studies carried out to demonstrate the possibility of quantitatively extracting trivalent actinides and lanthanides from highly acidic solutions using a neutral ligand-based solvent extraction system. These studies stemmed from the perceived advantage of such systems over cationexchange- based solvent extraction systems that require an extensive feed adjustment to make a low-acid feed. The targeted feed solutions are highly acidic aqueous phases obtained after the dissolution of curium targets during a californium (Cf) campaign. Results obtained with actual Cf campaign solutions, but highly diluted to be manageable in a glove box, are presented, followed by results of tests run in the hot cells with Cf campaign rework solutions. It was demonstrated that a solvent extraction system based on the tetraoctyl diglycolamide molecule is capable of quantitatively extracting trivalent actinides from highly acidic solutions. This system was validated using actual feeds from a Cf campaign.

  9. Real-time mass spectroscopy analysis of Li-ion battery electrolyte degradation under abusive thermal conditions

    Science.gov (United States)

    Gaulupeau, B.; Delobel, B.; Cahen, S.; Fontana, S.; Hérold, C.

    2017-02-01

    The lithium-ion batteries are widely used in rechargeable electronic devices. The current challenges are to improve the capacity and safety of these systems in view of their development to a larger scale, such as for their application in electric and hybrid vehicles. Lithium-ion batteries use organic solvents because of the wide operating voltage. The corresponding electrolytes are usually based on combinations of linear, cyclic alkyl carbonates and a lithium salt such as LiPF6. It has been reported that in abusive thermal conditions, a catalytic effect of the cathode materials lead to the formation fluoro-organics compounds. In order to understand the degradation phenomenon, the study at 240 °C of the interaction between positive electrode materials (LiCoO2, LiNi1/3Mn1/3Co1/3O2, LiMn2O4 and LiFePO4) and electrolyte in dry and wet conditions has been realized by an original method which consists in analyzing by mass spectrometry in real time the volatile molecules produced. The evolution of specific gases channels coupled to the NMR reveal the formation of rarely discussed species such as 2-fluoroethanol and 1,4-dioxane. Furthermore, it appears that the presence of water or other protic impurities greatly influence their formation.

  10. Measurement and prediction of dabigatran etexilate mesylate Form II solubility in mono-solvents and mixed solvents

    International Nuclear Information System (INIS)

    Xiao, Yan; Wang, Jingkang; Wang, Ting; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun; Bao, Ying; Fang, Wen; Yin, Qiuxiang

    2016-01-01

    Highlights: • Solubility of DEM Form II in mono-solvents and binary solvent mixtures was measured. • Regressed UNIFAC model was used to predict the solubility in solvent mixtures. • The experimental solubility data were correlated by different models. - Abstract: UV spectrometer method was used to measure the solubility data of dabigatran etexilate mesylate (DEM) Form II in five mono-solvents (methanol, ethanol, ethane-1,2-diol, DMF, DMAC) and binary solvent mixtures of methanol and ethanol in the temperature range from 287.37 K to 323.39 K. The experimental solubility data in mono-solvents were correlated with modified Apelblat equation, van’t Hoff equation and λh equation. GSM model and Modified Jouyban-Acree model were employed to correlate the solubility data in mixed solvent systems. And Regressed UNIFAC model was used to predict the solubility of DEM Form II in the binary solvent mixtures. Results showed that the predicted data were consistent with the experimental data.

  11. A green deep eutectic solvent-based aqueous two-phase system for protein extracting

    International Nuclear Information System (INIS)

    Xu, Kaijia; Wang, Yuzhi; Huang, Yanhua; Li, Na; Wen, Qian

    2015-01-01

    Highlights: • A strategy for the protein purification with a deep eutectic solvent(DES)-based aqueous two-phase system. • Choline chloride-glycerin DES was selected as the extraction solvent. • Bovine serum albumin and trypsin were used as the analytes. • Aggregation phenomenon was detected in the mechanism research. - Abstract: As a new type of green solvent, deep eutectic solvent (DES) has been applied for the extraction of proteins with an aqueous two-phase system (ATPS) in this work. Four kinds of choline chloride (ChCl)-based DESs were synthesized to extract bovine serum albumin (BSA), and ChCl-glycerol was selected as the suitable extraction solvent. Single factor experiments have been done to investigate the effects of the extraction process, including the amount of DES, the concentration of salt, the mass of protein, the shaking time, the temperature and PH value. Experimental results show 98.16% of the BSA could be extracted into the DES-rich phase in a single-step extraction under the optimized conditions. A high extraction efficiency of 94.36% was achieved, while the conditions were applied to the extraction of trypsin (Try). Precision, repeatability and stability experiments were studied and the relative standard deviations (RSD) of the extraction efficiency were 0.4246% (n = 3), 1.6057% (n = 3) and 1.6132% (n = 3), respectively. Conformation of BSA was not changed during the extraction process according to the investigation of UV–vis spectra, FT-IR spectra and CD spectra of BSA. The conductivity, dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to explore the mechanism of the extraction. It turned out that the formation of DES–protein aggregates play a significant role in the separation process. All the results suggest that ChCl-based DES-ATPS are supposed to have the potential to provide new possibilities in the separation of proteins

  12. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  13. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  14. Advanced integrated solvent extraction and ion exchange systems

    International Nuclear Information System (INIS)

    Horwitz, P.

    1996-01-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products 90 Sr, 99 Tc, and 137 Cs from acidic high-level liquid waste and that sorb and recover 90 Sr, 99 Tc, and 137 Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste

  15. Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

    Directory of Open Access Journals (Sweden)

    Tuhina Tiwari

    2013-01-01

    Full Text Available The effect of different anions, namely, SCN−, I−, and ClO4−, on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

  16. Novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of lipophilic cyclosporine A: in vitro and in vivo results.

    Science.gov (United States)

    Gan, Li; Gan, Yong; Zhu, Chunliu; Zhang, Xinxin; Zhu, Jiabi

    2009-01-05

    The objective of the present study was to design a novel microemulsion in situ electrolyte-triggered gelling system for ophthalmic delivery of a lipophilic drug, cyclosporine A (CsA). A CsA-loaded microemulsion was prepared using castor oil, Solutol HS 15 (surfactant), glycerol and water. This microemulsion was then dispersed in a Kelcogel solution to form the final microemulsion in situ electrolyte-triggered gelling system. In vitro, the viscosity of the CsA microemulsion Kelcogel system increased dramatically on dilution with artificial tear fluid and exhibited pseudo-plastic rheology. In vivo results revealed that the AUC(0-->32 h) of corneal CsA for the microemulsion Kelcogel system was approximately three-fold greater than for a CsA emulsion. Moreover, at 32 h after administration, CsA concentrations delivered by the microemulsion Kelcogel system remained at therapeutic levels in the cornea. This CsA microemulsion in situ electrolyte-triggered gelling system might provide an alternative approach to deliver prolonged precorneal residence time of CsA for preventing cornea allograft rejection.

  17. On the addition of conducting ceramic nanoparticles in solvent-free ionic liquid electrolyte for dye-sensitized solar cells

    KAUST Repository

    Lee, Chuan-Pei; Lee, Kun-Mu; Chen, Po-Yen; Ho, Kuo-Chuan

    2009-01-01

    ) have been used, for the first time, in dye-sensitized solar cells (DSSCs), and the incorporation of TiC nanoparticles in a binary ionic liquid electrolyte on the cell performance has been investigated. Cell conversion efficiency with 0.6 wt% TiC reached

  18. Isotope effects in ion-exchange equilibria in aqueous and mixed solvent systems

    International Nuclear Information System (INIS)

    Gupta, A.R.

    1979-01-01

    Isotope effects in ion-exchange equilibria in aqueous and mixed solvents are analyzed in terms of the general features of ion-exchange equilibria and of isotope effects in chemical equilibria. The special role of solvent fractionation effects in ion-exchange equilibria in mixed solvents is pointed out. The various situations arising in isotope fractionation in ion exchange in mixed solvents due to solvent fractionation effects are theoretically discussed. The experimental data on lithium isotope effects in ion-exchange equilibria in mixed solvents are shown to conform to the above situations. The limitations of ion-exchange equilibria in mixed solvents for isotope fractionation are pointed out. 3 tables

  19. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    Institute of Scientific and Technical Information of China (English)

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  20. Solvent oriented hobbies and the risk of systemic sclerosis.

    Science.gov (United States)

    Nietert, P J; Sutherland, S E; Silver, R M; Pandey, J P; Dosemeci, M

    1999-11-01

    To examine whether those participating in solvent oriented hobbies (SOH) are at greater risk of developing systemic sclerosis (SSc), and if the association is modified by the presence of the anti-Scl70 antibody. Patients with SSc and controls were recruited from a university hospital rheumatology clinic. Recreational hobby and occupational histories were obtained along with blood samples. Cumulative scores were created for participation in SOH. Logistic regression was used to calculate odds ratios associated with SOH exposure after adjustment for sex, age at diagnosis, and occupational solvent exposure, and to examine the association between SOH exposure and the presence of anti-Scl70. Solvent exposure based on hobbies and occupations was determined for 178 cases (141 women, 37 men) and 200 controls (138 women, 62 men). Overall participation in SOH was not associated with SSc. However, odds of high cumulative SOH exposure was 3 times greater in those patients with SSc testing positive for the anti-Scl70 antibody compared to patients testing negative (OR 2.9, 95% CI 1.1, 7.9), and twice as great as controls (OR 2.5, 95% CI 1.1, 5.9). While patients with SSc did not participate more often in SOH than controls over all, odds of high cumulative SOH exposure was greater among patients with SSc testing positive for anti-Scl70 compared to those testing negative and compared to controls. These results provide further evidence that environmental agents may play a role in the development of Ssc.

  1. High voltage rechargeable magnesium batteries having a non-aqueous electrolyte

    Science.gov (United States)

    Doe, Robert Ellis; Lane, George Hamilton; Jilek, Robert E.; Hwang, Jaehee

    2016-03-22

    A rechargable magnesium battery having an non-aqueous electrolyte is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg.sup.+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.

  2. Lithium Polymer Electrolytes Based On PMMA / PEG And Penetrant Diffusion In Kraton Penta-Block Ionomer

    Science.gov (United States)

    Meng, Yan

    permeability to hazardous organic chemicals. In addition, this work also contributes to study of polymer electrolyte membrane for fuel cell systems, because water transport in polymer electrolyte membranes (PEMs) has a profound effect on the performance of a fuel cell, yet is surprisingly the least studied property of PEMs[19]. The self-diffusion coefficients of different penetrant molecules, i.e., water, dimethyl methylphosphonate (DMMP), and ethanol in the said ionomer were accurately measured with PFG NMR as functions of temperature and concentration of solvents. Water exhibited self-diffusion coefficients two orders of magnitude higher than DMMP, while ethanol lies in between. Their effective volume to surface ratios of domains where diffusion took place were determined. The volume to surface ratios of water and DMMP are quite different, suggesting they may have different local geometry of the pores they reside in, while the V p/Seff ratios for water and ethanol are similar, thereby suggesting similar local environments of these solvents in the ionomer.

  3. Thermally responsive polymer electrolytes for inherently safe electrochemical energy storage

    Science.gov (United States)

    Kelly, Jesse C.

    Electrochemical double layer capacitors (EDLCs), supercapacitors and Li-ion batteries have emerged as premier candidates to meet the rising demands in energy storage; however, such systems are limited by thermal hazards, thermal runaway, fires and explosions, all of which become increasingly more dangerous in large-format devices. To prevent such scenarios, thermally-responsive polymer electrolytes (RPEs) that alter properties in electrochemical energy storage devices were designed and tested. These RPEs will be used to limit or halt device operation when temperatures increase beyond a predetermined threshold, therefore limiting further heating. The development of these responsive systems will offer an inherent safety mechanism in electrochemical energy storage devices, while preserving the performance, lifetimes, and versatility that large-format systems require. Initial work focused on the development of a model system that demonstrated the concept of RPEs in an electrochemical device. Aqueous electrolyte solutions of polymers exhibiting properties that change in response to temperature were developed for applications in EDLCs and supercapacitors. These "smart materials" provide a means to control electrochemical systems where polymer phase separation at high temperatures affects electrolyte properties and inhibits device performance. Aqueous RPEs were synthesized using N-isopropylacrylamide, which governs the thermal properties, and fractions of acrylic acid or vinyl sulfonic acids, which provide ions to the solution. The molecular properties of these aqueous RPEs, specifically the ionic composition, were shown to influence the temperature-dependent electrolyte properties and the extent to which these electrolytes control the energy storage characteristics of a supercapacitor device. Materials with high ionic content provided the highest room temperature conductivity and electrochemical activity; however, RPEs with low ionic content provided the highest "on

  4. DEMONSTRATION OF THE NEXT-GENERATION CAUSTIC-SIDE SOLVENT EXTRACTION SOLVENT WITH 2-CM CENTRIGUGAL CONTRACTORS USING TANK 49H WASTE AND WASTE SIMULANT

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, R.; Peters, T.; Crowder, M.; Pak, D.; Fink, S.; Blessing, R.; Washington, A.; Caldwell, T.

    2011-11-29

    Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

  5. Enhanced Furfural Yields from Xylose Dehydration in the gamma-Valerolactone/Water Solvent System at Elevated Temperatures.

    Science.gov (United States)

    Sener, Canan; Motagamwala, Ali Hussain; Alonso, David Martin; Dumesic, James

    2018-05-18

    High yields of furfural (>90%) were achieved from xylose dehydration in a sustainable solvent system composed of -valerolactone (GVL), a biomass derived solvent, and water. It is identified that high reaction temperatures (e.g., 498 K) are required to achieve high furfural yield. Additionally, it is shown that the furfural yield at these temperatures is independent of the initial xylose concentration, and high furfural yield is obtained for industrially relevant xylose concentrations (10 wt%). A reaction kinetics model is developed to describe the experimental data obtained with solvent system composed of 80 wt% GVL and 20 wt% water across the range of reaction conditions studied (473 - 523 K, 1-10 mM acid catalyst, 66 - 660 mM xylose concentration). The kinetic model demonstrates that furfural loss due to bimolecular condensation of xylose and furfural is minimized at elevated temperature, whereas carbon loss due to xylose degradation increases with increasing temperature. Accordingly, the optimal temperature range for xylose dehydration to furfural in the GVL/H2O solvent system is identified to be from 480 to 500 K. Under these reaction conditions, furfural yield of 93% is achieved at 97% xylan conversion from lignocellulosic biomass (maple wood). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cochlear condition and olivocochlear system of gas station attendants exposed to organic solvents

    Directory of Open Access Journals (Sweden)

    Tochetto, Tania Maria

    2012-01-01

    Full Text Available Introduction: Organic solvents have been increasingly studied due to its ototoxic action. Objective: Evaluate the conditions of outer hair cells and olivocochlear system in individuals exposed to organic solvents. Method: This is a prospective study. 78 gas station attendants exposed to organic solvents had been evaluated from three gas stations from Santa Maria city, Rio Grande do Sul (RS. After applying the inclusion criteria, the sample was constituted by 24 individuals. The procedures used on the evaluation were audiological anamnesis, Transient otoacoustic emissions (TEOAES and research for the suppressive effect of TEOAES. A group control (GC compounded by 23 individuals was compared to individuals exposed and non-exposed individuals. The data collection has been done in the room of Speech Therapy of Workers Health Reference Center of Santa Maria. Results: The TEOAES presence was major in the left ear in both groups; the average relation of TEOAES signal/noise in both ears was greater in GE; the TEOAES suppressive effect in the right ear was higher in the individual of GE (62,5% and in the left ear was superior in GC (86,96%, with statistically significant difference. The median sign/noise ratio of TEOAES, according to the frequency range, it was higher in GC in three frequencies ranges in the right ear and one in the left ear. Conclusion: It was not found signs of alteration on the outer hair cells neither on the olivocochlear medial system in the individuals exposed to organic solvents.

  7. Electrochemical deposition of Ni coating on Cu substrate in ethylene glycol + iCl/sub 2/.6H/sub 2/0 electrolyte characterization of Ni coatings

    International Nuclear Information System (INIS)

    Ghaffar, A.

    2011-01-01

    The primary objective of this work was to develop the technical know-how regarding the electrodeposition technique and the parameters affecting the quality of the electrodeposit such as electrolyte nature, its pH, current density, potential, substrate material etc. The ethylene glycol based organic electrolyte was employed to improve the aesthetics, surface and structural properties of nickel electroplatings. For the purpose of achieving improvements in nickel plating, a comparative work-study was carried out using aqueous and organic electrolytes. The voltammetric experiments were performed to find out the electroactive potential domain of ethylene glycol electrolyte, or in other words, to get the current density and potential ranges suitable for electrodeposition of nickel on copper substrate. Electroplating was carried out galvanostatically at different current densities and concentrations to find out the quality of Ni electrodeposit in both aqueous and organic electrolytes. The most suited electrolyte concentration (0.6 M hydrated nickel chloride dissolved in corresponding electrolytic solvent) and current density (1 mA/cm/sup 2/) were chosen to carry out nickel plating in aqueous electrolyte as well as in ethylene glycol electrolyte. Subsequently, current efficiencies were calculated for both electrolytes to find out the improvement in the quality of Ni deposit. Finally, the material characterization techniques such as X-ray diffraction, scanning electron microscopy, atomic force microscopy and adhesion testing were performed to fully access the composition, structure and surface morphology of nickel coating. (author)

  8. Effect of Anion on Behaviour of Li-S Battery Electrolyte Solutions Based on N-Methyl-N-Butyl-Pyrrolidinium Ionic Liquids

    International Nuclear Information System (INIS)

    Barghamadi, Marzieh; Best, Adam S.; Bhatt, Anand I.; Hollenkamp, Anthony F.; Mahon, Peter J.; Musameh, Mustafa; Rüther, Thomas

    2015-01-01

    The electrochemical behaviour and electrical performance are investigated for a series of lithium-sulfur (Li-S) cells in which the electrolyte solutions are organic solvent-ionic liquid mixtures that are based on the 1-butyl-1-methylpyrrolidinium (C 4 mpyr) cation with a range of anions. In each case, performance is compared with cells that are based on a standard mixed-ether organic electrolyte. The capacity of cells assembled with electrolytes containing 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (C 4 mpyr-FAP), 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate (C 4 mpyr-OTf), or 1-butyl-1-methylpyrrolidinium tricyanomethanide (C 4 mpyr-TCM) decline rapidly due to low conductivity, high polysulfide solubility and side reaction of electrolyte with electrodes, respectively. Our results confirm that polysulfide solubility is strongly controlled by the anion of the ionic liquid and verify that not all ionic liquids decrease polysulfide solubility. In agreement with previous reports, 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide (C 4 mpyr-TFSI) shows the best compatibility in Li-S batteries and has a higher coulombic efficiency of greater than 99% over 100 cycles. Furthermore, impedance spectroscopy confirms that electrolyte composition influences the SEI layer formed on the lithium anode and its subsequent impedance.

  9. Solid electrolyte batteries and fast ion conducting glasses, factors affecting a proposed merger

    Energy Technology Data Exchange (ETDEWEB)

    Uhlmann, D R; Tuller, H L; Button, D P; Valez, M [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Materials Science and Engineering

    1983-01-01

    The present paper is concerned with advanced battery systems employing glass as a solid electrolyte. After an initial discussion of battery systems employing solid electrolytes, and of the attractive features offered by glass electrolytes, consideration is given to batteries fabricated with such electrolytes and to their performance characteristics. Subsequent discussion is directed to the two principal characteristics of glasses which are critical to their use as solid electrolytes - viz., their electrical conductivity and resistance to corrosive attack. The present state of knowledge in each of these areas is summarized, with particular focus on glasses with exceptionally high ionic conductivities - so-called fast ion conductors or FIC's.

  10. Electrolytes concentration patterns in the three trimesters of pregnancy

    African Journals Online (AJOL)

    The physiologic adaptations of the pregnant woman involve the renal, cardiovascular and other systems of the body. This study aimed at evaluating electrolyte concentrations in the three trimesters of pregnancy. Blood samples were collected by aseptic techniques and the concentrations of electrolytes were determined ...

  11. Progress in electrolytes for rechargeable Li-based batteries and beyond

    Directory of Open Access Journals (Sweden)

    Qi Li

    2016-04-01

    Full Text Available Owing to almost unmatched volumetric energy density, Li-based batteries have dominated the portable electronic industry for the past 20 years. Not only will that continue, but they are also now powering plug-in hybrid electric vehicles and zero-emission vehicles. There is impressive progress in the exploration of electrode materials for lithium-based batteries because the electrodes (mainly the cathode are the limiting factors in terms of overall capacity inside a battery. However, more and more interests have been focused on the electrolytes, which determines the current (power density, the time stability, the reliability of a battery and the formation of solid electrolyte interface. This review will introduce five types of electrolytes for room temperature Li-based batteries including 1 non-aqueous electrolytes, 2 aqueous solutions, 3 ionic liquids, 4 polymer electrolytes, and 5 hybrid electrolytes. Besides, electrolytes beyond lithium-based systems such as sodium-, magnesium-, calcium-, zinc- and aluminum-based batteries will also be briefly discussed. Keywords: Electrolyte, Ionic liquid, Polymer, Hybrid, Battery

  12. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)

    2015-06-15

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.

  13. Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor

    International Nuclear Information System (INIS)

    Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno

    2015-01-01

    Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1

  14. Mixed Solvent + Electrolyte

    Indian Academy of Sciences (India)

    Prof.Biswas

    Bagchi B and Biswas R. 1999 Adv. Chem. Phys.109 207. 2. Kashyap H K and Biswas R. 2008 J. Phys. Chem. B112 12431. 3. Kashyap H K and Biswas R. 2010J. Phys. Chem. B114, 254. 4. Kashyap H K and Biswas R. 2010 J. Phys. Chem. B114, 16811. 5. Kashyap H K and Biswas R. 2010 Ind. J. Chem. 49A, 685. 6.

  15. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  16. Control of Evaporation Behavior of an Inkjet-Printed Dielectric Layer Using a Mixed-Solvent System

    Science.gov (United States)

    Yang, Hak Soon; Kang, Byung Ju; Oh, Je Hoon

    2016-01-01

    In this study, the evaporation behavior and the resulting morphology of inkjet-printed dielectric layers were controlled using a mixed-solvent system to fabricate uniform poly-4-vinylphenol (PVP) dielectric layers without any pinholes. The mixed-solvent system consisted of two different organic solvents: 1-hexanol and ethanol. The effects of inkjet-printing variables such as overlap condition, substrate temperature, and different printing sequences (continuous and interlacing printing methods) on the inkjet-printed dielectric layer were also investigated. Increasing volume fraction of ethanol (VFE) is likely to reduce the evaporation rate gradient and the drying time of the inkjet-printed dielectric layer; this diminishes the coffee stain effect and thereby improves the uniformity of the inkjet-printed dielectric layer. However, the coffee stain effect becomes more severe with an increase in the substrate temperature due to the enhanced outward convective flow. The overlap condition has little effect on the evaporation behavior of the printed dielectric layer. In addition, the interlacing printing method results in either a stronger coffee stain effect or wavy structures of the dielectric layers depending on the VFE of the PVP solution. All-inkjet-printed capacitors without electrical short circuiting can be successfully fabricated using the optimized PVP solution (VFE = 0.6); this indicates that the mixed-solvent system is expected to play an important role in the fabrication of high-quality inkjet-printed dielectric layers in various printed electronics applications.

  17. Ionization and thermodynamic constants of 6-methylquinoline by potentiometry in aqueous and mixed organic-water solvent systems

    International Nuclear Information System (INIS)

    Hafiz, A; Indhar, B.; Khanzada, A.W.K.

    2000-01-01

    The ionization constant pKa and Gibbs's free energy DG of 6-methylquinoline are determined in aqueous solution at different temperatures and in three mixed organic-water solvent systems at 25 deg. C. It is observed that dissociation constant of 6-methylquinoline in aqueous system decreases with the increase of temperature. The curve is a parabolic. It is noted that pKa values of this compound are higher than those of quinoline and 8-methylquinoline. In case of mixed organic-water solvent systems, the influence of these solvents on the ionization equilibria of NH/sub 2/ group has been observed. The pK M/A and pK T/A values versus percent composition decrease gradually with increase in percent of organic solvents The curve of the pK/sub a/ versus percent composition is a distorted parabola. The data have been obtained potentiometrically by titrating 6-methylquinoline solutions with HCl. The values of dissociation constant were obtained from these data by a computer program written in GW-BASIC. From pKa values Gibbs's free energies DG for the respective pKa values have also been calculated. (author)

  18. Acetone-based cellulose solvent.

    Science.gov (United States)

    Kostag, Marc; Liebert, Tim; Heinze, Thomas

    2014-08-01

    Acetone containing tetraalkylammonium chloride is found to be an efficient solvent for cellulose. The addition of an amount of 10 mol% (based on acetone) of well-soluble salt triethyloctylammonium chloride (Et3 OctN Cl) adjusts the solvent's properties (increases the polarity) to promote cellulose dissolution. Cellulose solutions in acetone/Et3 OctN Cl have the lowest viscosity reported for comparable aprotic solutions making it a promising system for shaping processes and homogeneous chemical modification of the biopolymer. Recovery of the polymer and recycling of the solvent components can be easily achieved. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Approaches and Recent Development of Polymer Electrolyte Membranes For Fuel Cells Operational Above 100°C

    DEFF Research Database (Denmark)

    Li, Qingfeng; He, Ronghuan; Jensen, Jens Oluf

    2003-01-01

    The state-of-the-art of polymer electrolyte membrane fuel cell (PEMFC) technology is based on perfluorosulfonic acid (PFSA) polymer membranes operating at a typical temperature of 80 °C. Some of the key issues and shortcomings of the PFSA-based PEMFC technology are briefly discussed. These include...... water management, CO poisoning, hydrogen, reformate and methanol as fuels, cooling, and heat recovery. As a means to solve these shortcomings, hightemperature polymer electrolyte membranes for operation above 100 °C are under active development. This treatise is devoted to a review of the area...... encompassing modified PFSA membranes, alternative sulfonated polymer and their composite membranes, and acidbase complex membranes. PFSA membranes have been modified by swelling with nonvolatile solvents and preparing composites with hydrophilic oxides and solid proton conductors. DMFC and H2/O2(air) cells...

  20. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO_4

    International Nuclear Information System (INIS)

    Nair, Jijeesh R.; Cíntora-Juárez, Daniel; Pérez-Vicente, Carlos; Tirado, José L.; Ahmad, Shahzada; Gerbaldi, Claudio

    2016-01-01

    Highlights: • Carbonate free truly quasi-solid-state polymer electrolytes for lithium batteries. • Simple and easy up scalable preparation by solvent free thermal curing. • LiFePO_4 cathode engineered by PEDOT:PSS interphase at the current collector. • Direct polymerization over the engineered electrode surface in one pot. • Stable lithium polymer cells operating in a wide temperature range. - Abstract: Stable and safe functioning of a Li-ion battery is the demand of modern generation. Herein, we are demonstrating the application of an in-situ free radical polymerisation process (thermal curing) to fabricate a polymer electrolyte that possesses mechanical robustness, high thermal stability, improved interfacial and ion transport characteristics along with stable cycling at ambient conditions. The polymer electrolyte is obtained by direct polymerization over the electrode surface in one pot starting from a reactive mixture comprising an ethylene oxide-based dimethacrylic oligomer (BDM), dimethyl polyethylene glycol (DPG) and lithium salt. Furthermore, an engineered cathode is used, comprising a LiFePO_4/PEDOT:PSS interface at the current collector that improves the material utilization at high rates and mitigates the corrosive effects of LiTFSI on aluminium current collector. The lithium cell resulting from the newly elaborated multiphase assembly of the composite cathode with the DPG-based carbonate-free polymer electrolyte film exhibits excellent reversibility upon prolonged cycling at ambient as well as elevated temperatures, which is found to be superior compared to previous reports on uncoated electrodes with polymer electrolytes.

  1. Thermal regeneration of an electrochemical concentration cell

    Science.gov (United States)

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  2. Nonelectrolyte NRTL-NRF model to study thermodynamics of strong and weak electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Haghtalab, Ali, E-mail: haghtala@modares.ac.i [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Shojaeian, Abolfazl; Mazloumi, Seyed Hossein [Department of Chemical Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of)

    2011-03-15

    An electrolyte activity coefficient model is proposed by combining non-electrolyte NRTL-NRF local composition model and Pitzer-Debye-Hueckel equation as short-range and long-range contributions, respectively. With two adjustable parameters per each electrolyte, the present model is applied to correlation of the mean activity coefficients of more than 150 strong aqueous electrolyte solutions at 298.15 K. Also the results of the present model are compared with the other local composition models such as electrolyte-NRTL, electrolyte-NRTL-NRF and electrolyte-Wilson-NRF models. Moreover, the present model is used for prediction of the osmotic coefficient of several aqueous binary electrolytes systems at 298.15 K. Also the present activity coefficient model is adopted for representation of nonideality of the acid gases, as weak gas electrolytes, soluble in alkanolamine solutions. The model is applied for calculation of solubility and heat of absorption (enthalpy of solution) of acid gas in the two {l_brace}(H{sub 2}O + MDEA + CO{sub 2}) and (H{sub 2}O + MDEA + H{sub 2}S){r_brace} systems at different conditions. The results demonstrate that the present model can be successfully applied to study thermodynamic properties of both strong and weak electrolyte solutions.

  3. Application of the e-KT-UNIFAC Model for the Improved and Innovative Design of Biphasic Reacting Systems

    DEFF Research Database (Denmark)

    Anantpinijwatna, Amata; Kim, Sun H.; Sales-Cruz, Mauricio

    2016-01-01

    framework of three modules has been developed to describe phase equilibria, reactions, mass transfer, and material balances of such processes. The recently developed group-contribution electrolyte model, e-KT-UNIFAC, is used to predict the-partitioning and equilibria of electrolyte and nonelectrolyte...... to a minimum of time-dependent data. In addition to describing the behavior of such systems, predictions can be made of the effectiveness in rates and ultimate amounts of product formation using different organic solvents. The present paper briefly describes the framework and applies it to the cases...

  4. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  5. Preferential Solvation of an Asymmetric Redox Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kee Sung; Rajput, Nav Nidhi; Vijayakumar, M.; Wei, Xiaoliang; Wang, Wei; Hu, Jian Z.; Persson, Kristin A.; Mueller, Karl T.

    2016-12-15

    The fundamental correlations between inter-molecular interactions, solvation structure and functionality of electrolytes are in many cases unknown, particularly for multi-component liquid systems. In this work, we explore such correlations by investigating the complex interplay between solubility and solvation structure for the electrolyte system comprising N-(ferrocenylmethyl)-N,N-dimethyl-N-ethylammonium bistrifluoromethylsulfonimide (Fc1N112-TFSI) dissolved in a ternary carbonate solvent mixture using combined NMR relaxation and computational analyses. Probing the evolution of the solvent-solvent, ion-solvent and ion-ion interactions with an increase in solute concentration provides a molecular level understanding of the solubility limit of the Fc1N112-TFSI system. An increase in solute con-centration leads to pronounced Fc1N112-TFSI contact-ion pair formation by diminishing solvent-solvent and ion-solvent type interactions. At the solubility limit, the precipitation of solute is initiated through agglomeration of contact-ion pairs due to overlapping solvation shells.

  6. Electrochemical behavior and stability of a commercial activated carbon in various organic electrolyte combinations containing Li-salts

    International Nuclear Information System (INIS)

    Zhang, Tong; Fuchs, Bettina; Secchiaroli, Marco; Wohlfahrt-Mehrens, Margret; Dsoke, Sonia

    2016-01-01

    Highlights: • 1 M LiPF 6 in PC displays the widest electrochemical stability window among others couples electrolyte/activated carbon. • Electrolytes based on EC-DMC show lower impedance than electrolytes containing PC. • 1 M LiPF 6 in PC has the highest cycling stability with 75% of capacitance retention after 20 000 cycles. - Abstract: The fast development of Li-ion capacitor (LIC) technologies requires the use of low resistance and stable electrolytes. An electrolyte for a LIC not only has to provide Li for the intercalation/deintercalation of the battery-type materials, but it also needs to be compatible with the supercapacitor material. Before designing a hybrid Li-ion capacitor device containing Li-insertion and double layer-type materials, it is necessary to understand and separate the contribution of each electrode material to the resistance, capacity and stability in the chosen electrolyte. Due to the intensive research on Li-ion batteries, the interactions of Li-salt containing electrolytes combined with Li insertion materials have been extensively investigated, and a lot of literature is available on this field. In contrast, there is only little knowledge about the exclusive interaction and compatibility of Li containing electrolytes with supercapacitor-type electrode materials (in absence of battery materials). With this purpose, this paper explores the electrochemical performance of electrodes based on commercial activated carbon (AC) in various lithium salt-containing electrolytes. A standard electrolyte for Li-ion batteries (1 M LiPF 6 in EC:DMC, 1:1) is evaluated and compared with an electrolyte prepared with the same salt dissolved in propylene carbonate (1 M LiPF 6 in PC) which is a solvent typically used in commercial supercapacitors. Furthermore, two new electrolyte solutions are proposed, based on a blend of salts 0.8 M LiPF 6 + 0.2 M NEt 4 BF 4 in EC:DMC (1:1) as well as in pure PC. The effect of the electrolyte composition is evaluated

  7. Solvent extraction of thorium(IV) with dibutyldithiophosphoric acid in various organic solvents

    International Nuclear Information System (INIS)

    Curtui, M.; Haiduc, I.

    1994-01-01

    The extraction of thorium(IV) from perchlorate solutions with di-n-butyldithiophosphoric acid (HBudtp) in various organic solvents occurs through an ion exchange mechanism. The extracted species in the organic phase is an eight-coordinate complex Th(Budtp) 4 . The higher values of the distribution ratio obtained in HBudtp-benzene-water system than in HBudtp-n-butanol-water system are explained by higher solubility of the complex species in nonpolar solvents. The position of the extraction curves in the pH-range lower than 0.7 reduces the complexation of thorium(IV) with Budtp - in the aqueous phase and also the hydrolysis process. (author) 8 refs.; 4 figs.; 1 tab

  8. Crosslinkable fumed silica-based nanocomposite electrolytes for rechargeable lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yangxing; Yerian, Jeffrey A.; Khan, Saad A.; Fedkiw, Peter S. [Department of Chemical & amp; Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (United States)

    2006-10-27

    Electrochemical and rheological properties are reported of composite polymer electrolytes (CPEs) consisting of dual-functionalized fumed silica with methacrylate and octyl groups+low-molecular weight poly(ethylene glycol) dimethyl ether (PEGdm)+lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, lithium imide)+butyl methacrylate (BMA). The role of butyl methacrylate, which aids in formation of a crosslinked network by tethering adjacent fumed silica particles, on rheology and electrochemistry is examined together with the effects of fumed silica surface group, fumed silica weight percent, salt concentration, and solvent molecular weight. Chemical crosslinking of the fumed silica with 20% BMA shows a substantial increase in the elastic modulus of the system and a transition from a liquid-like/flocculated state to an elastic network. In contrast, no change in lithium transference number and only a modest decrease (factor of 2) on conductivity of the CPE are observed, indicating that a crosslinked silica network has minimal effect on the mechanism of ionic transport. These trends suggest that the chemical crosslinks occur on a microscopic scale, as opposed to a molecular scale, between adjacent silica particles and therefore do not impede the segmental mobility of the PEGdm. The relative proportion of the methacrylate and octyl groups on the silica surface displays a nominal effect on both rheology and conductivity following crosslinking although the pre-cure rheology is a function of the surface groups. Chemical crosslinked nanocomposite polymer electrolytes offer significant higher elastic modulus and yield stress than the physical nanocomposite counterpart with a small/negligible penalty of transport properties. The crosslinked CPEs exhibit good interfacial stability with lithium metal at open circuit, however, they perform poorly in cycling of lithium-lithium cells. (author)

  9. Solvent selection methodology for pharmaceutical processes: Solvent swap

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil; Kumar Tula, Anjan; Gani, Rafiqul

    2016-01-01

    A method for the selection of appropriate solvents for the solvent swap task in pharmaceutical processes has been developed. This solvent swap method is based on the solvent selection method of Gani et al. (2006) and considers additional selection criteria such as boiling point difference...... in pharmaceutical processes as well as new solvent swap alternatives. The method takes into account process considerations such as batch distillation and crystallization to achieve the swap task. Rigorous model based simulations of the swap operation are performed to evaluate and compare the performance...

  10. Effects of solvent on the morphology of nanostructured Co3O4 and its application for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Yang, Wanlu; Gao, Zan; Ma, Jing; Wang, Jun; Wang, Bin; Liu, Lianhe

    2013-01-01

    Graphical abstract: - Highlights: • Nano-structured cobalt oxides (Co 3 O 4 ) with various morphologies (sheet-like, herbs-like and net-like) synthesized on the surfaces of nickel foam via a facile solvothermal method. • Ethanol, ethylene glycol (EG) and glycerol (GR) were used to investigate the effects of solvent on the size and morphology of nanocrystals in detail. • The open structure improves the contact between the electrode and the electrolyte. • Results showed that net-like Co 3 O 4 have good electrochemical property. - Abstract: Nano-structured cobalt oxides (Co 3 O 4 ) with various morphologies (sheet-like, herbs-like and net-like) have been in situ synthesized on the surface of nickel foam via a facile solvothermal method. Ethanol, ethylene glycol (EG) and glycerol (GR) were used to investigate the effects of solvent on the size and morphology of nanocrystals in detail. The possible formation mechanisms have been proposed that the dielectric constants and viscosity of solvents is speculated to be the main factor to determine the morphology of Co 3 O 4 crystal. Applied for supercapacitor, the fabricated Co 3 O 4 electrodes show the desired properties of macroporosity, allowing facile electrolyte flow and fast electrochemical reaction kinetics. Results show that the nanonet-like Co 3 O 4 electrode synthesized in glycerol solvothermal condition has the highest capacitance (1063 F/g at a discharge current density of 10 mA/cm 2 ), and good rate capability, excellent electrochemical stability (90.8% retention after 1000 cycles). The enhanced electrochemical performance is attributed to the open and ultrathin nanostructure of net-like Co 3 O 4 electrode, which facilitates the electron transport. The findings in this work demonstrate the importance of solvents used for solvothermal reaction, and are meaningful in understanding the self-assembly process of various Co 3 O 4 nanostructures

  11. Morphological classification of mesoporous silicas synthesized in a binary water-ether solvent system

    NARCIS (Netherlands)

    Cai, Qiang; Geng, Yi; Zhao, Xiang; Cui, Kai; Sun, Qianyao; Chen, Xihua; Feng, Qingling; Li, Hengde; Vrieling, Engel G.

    2008-01-01

    Using diethyl ether as a co-solvent, a non-stable interface of biphasic oil-water system (the so-called oil-water two-phase (OWTP) system) was employed in the preparation of mesostructured silicas with diversified particle morphologies. By adjusting the molar ratios of H2O:C2H5OC2H5:NH3 center dot

  12. Effects of crown ethers in nanocomposite silica-gel electrolytes on the performance of quasi-solid-state dye-sensitized solar cells

    KAUST Repository

    Huang, Kuan-Chieh

    2010-04-01

    The effects of crown ethers (CEs) on the performance of quasi-solid-state dye-sensitized solar cells (DSSCs) have been investigated. Nanocomposite silica was used to form gel matrices in the electrolytes, which contained lithium iodide (LiI) and iodine (I2) in 3-methoxypropionitrile (MPN) solvent. Three types of CEs, 12-crown-4 (12-C-4), 15-crown-5 (15-C-5), and 18-crown-6 (18-C-6) were used as additives to the gel electrolytes. DSSCs containing CEs showed enhancements in solar-to-electricity conversion efficiencies (η), with reference to the one without them. The crown ether, 15-C-5, with a size of cavity matching with the size of Li+ in the electrolyte rendered for its DSSC the best performance with an η of 3.60%, under 100 mW/cm2 illumination, as compared to 2.44% for the cell without any CE. Enhancements in the photovoltaic parameters of the cells with the CEs were explained based on the binding abilities of the CEs with lithium ions (Li+) in the electrolyte. Linear sweep voltammetry (LSV) measurements and electrochemical impedance spectra were used to substantiate the explanations. © 2009 Elsevier B.V. All rights reserved.

  13. Sparingly Solvating Electrolytes for High Energy Density Lithium-Sulfur Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lei; Curtiss, Larry A.; Zavadil, Kevin R.; Gewirth, Andrew A.; Shao, Yuyan; Gallagher, Kevin

    2016-07-11

    Moving to lighter and less expensive battery chemistries compared to lithium-ion requires the control of energy storage mechanisms based on chemical transformations rather than intercalation. Lithium sulfur (Li/S) has tremendous theoretical specific energy, but contemporary approaches to control this solution-mediated, precipitation-dissolution chemistry requires using large excesses of electrolyte to fully solubilize the polysulfide intermediate. Achieving reversible electrochemistry under lean electrolyte operation is the only path for Li/S to move beyond niche applications to potentially transformational performance. An emerging topic for Li/S research is the use of sparingly solvating electrolytes and the creation of design rules for discovering new electrolyte systems that fundamentally decouple electrolyte volume from reaction mechanism. This perspective presents an outlook for sparingly solvating electrolytes as the key path forward for longer-lived, high-energy density Li/S batteries including an overview of this promising new concept and some strategies for accomplishing it.

  14. Gelled-electrolyte batteries for electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Tuphorn, H. (Accumulatorenfabrik Sonnenschein GmbH, Buedingen (Germany))

    1992-09-15

    Increasing problems of air pollution have pushed activities of electric vehicle projects world-wide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles. (orig.).

  15. Gelled-electrolyte batteries for electric vehicles

    Science.gov (United States)

    Tuphorn, Hans

    Increasing problems of air pollution have pushed activities of electric vehicle projects worldwide and in spite of projects for developing new battery systems for high energy densities, today lead/acid batteries are almost the single system, ready for technical usage in this application. Valve-regulated lead/acid batteries with gelled electrolyte have the advantage that no maintenance is required and because the gel system does not cause problems with electrolyte stratification, no additional appliances for central filling or acid addition are required, which makes the system simple. Those batteries with high density active masses indicate high endurance results and field tests with 40 VW-CityStromers, equipped with 96 V/160 A h gel batteries with thermal management show good results during four years. In addition, gelled lead/acid batteries possess superior high rate performance compared with conventional lead/acid batteries, which guarantees good acceleration results of the car and which makes the system recommendable for application in electric vehicles.

  16. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    Directory of Open Access Journals (Sweden)

    Talita Baumgratz Cachapuz CHIMELI

    2014-07-01

    Full Text Available Objective: To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake and nanoleakage of adhesive systems. Material and Methods: Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness were produced (N=48 using the adhesives: Clearfil S3 Bond (CS3/Kuraray, Clearfil SE Bond - control group (CSE/Kuraray, Optibond Solo Plus (OS/Kerr and Scotchbond Universal Adhesive (SBU/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group, and then photoactivated for 80 s (550 mW/cm2. After desiccation, the specimens were weighed and stored in distilled water (N=12 or mineral oil (N=12 to evaluate the water diffusion over a 7-day period. Net water uptake (% was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%. The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results: Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05. Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control presented significantly lower net uptake (5.4%. The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions: Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  17. Part 2: Limiting apparent molar volume of organic and inorganic 1:1 electrolytes in (water + ethylammonium nitrate) mixtures at 298 K - Thermodynamic approach using Bahe-Varela pseudo-lattice theory

    International Nuclear Information System (INIS)

    Bouguerra, Sabbah; Bou Malham, Ibrahim; Letellier, Pierre; Mayaffre, Alain; Turmine, Mireille

    2008-01-01

    Values of partial molar volumes at infinite dilution of 9 inorganic and 4 organic 1:1 electrolytes have been determined in (water + ethylammonium nitrate) (EAN) binary at 298.15 K throughout the composition scale. Our theoretical analysis shows that the values of partial molar volumes at infinite dilution of a solute in a binary are linked to those of the partial molar volumes of the components of mixed solvent. This applies to mixtures of molecular solvents as well as (water + ionic liquid) media. The use of the 'pseudo-lattice theory' of Bahe recently supplemented Varela can be used for calculations and to obtain information about the interactions between 1:1 electrolytes as solutes at infinite dilution and their concentrated saline environment. We show that the 'pseudo-lattice theory' allows accurate description of the behaviours of symmetrical tetraalkylammoniums bromide between the infinitely dilute state and concentrations higher than 2 mol . L -1

  18. Computer Aided Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    A methodology for computer aided design and analysis of separation processes involving electrolyte systems is presented. The methodology consists of three main parts. The thermodynamic part "creates" the problem specific property model package, which is a collection of pure component and mixture...... property models. The design and analysis part generates process (flowsheet) alternatives, evaluates/analyses feasibility of separation and provides a visual operation path for the desired separation. The simulation part consists of a simulation/calculation engine that allows the screening and validation...... of process alternatives. For the simulation part, a general multi-purpose, multi-phase separation model has been developed and integrated to an existing computer aided system. Application of the design and analysis methodology is highlighted through two illustrative case studies....

  19. Computer Aided Design and Analysis of Separation Processes with Electrolyte Systems

    DEFF Research Database (Denmark)

    Takano, Kiyoteru; Gani, Rafiqul; Kolar, P.

    2000-01-01

    A methodology for computer aided design and analysis of separation processes involving electrolyte systems is presented. The methodology consists of three main parts. The thermodynamic part 'creates' the problem specific property model package, which is a collection of pure component and mixture...... property models. The design and analysis part generates process (flowsheet) alternatives, evaluates/analyses feasibility of separation and provides a visual operation path for the desired separation. The simulation part consists of a simulation/calculation engine that allows the screening and validation...... of process alternatives. For the simulation part, a general multi-purpose, multi-phase separation model has been developed and integrated to an existing computer aided system. Application of the design and analysis methodology is highlighted through two illustrative case studies, (C) 2000 Elsevier Science...

  20. Efficacy of two rotary retreatment systems in removing Gutta-percha and sealer during endodontic retreatment with or without solvent: A comparative in vitro study.

    Science.gov (United States)

    Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary

    2017-01-01

    The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal-Wallis test and Mann-Whitney U-test were used to compare the data. Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly ( P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system.

  1. Characterization of tin films synthesized from ethaline deep eutectic solvent

    International Nuclear Information System (INIS)

    Ghosh, Swatilekha; Roy, Sudipta

    2014-01-01

    Highlights: • Tin deposition was achieved by galvanostatic method on the basic substrates from ethaline deep eutectic solvent without use of any additives. • The current potential behaviour of tin system changes with increase in concentration of hydrated tin chloride in ethaline. • The deposition rate in ethaline display three times lower value compared to aqueous electrolytes. • Fine grained crystals of 62 ± 10 nm were obtained for tin deposits. • The deposition process is economical and can be adapted for industrial applications. - Abstract: Tin (Sn) films were electrodeposited by galvanostatic method from ethaline deep eutectic solvent (DES), without any additives. The effect of various deposition parameters on the microstructure was studied. With increase in metal salt concentration from 0.01 to 0.1 M, changes in current–potential behaviour were observed in the polarization scans. This might be due to the existence of [SnCl 3 ] − , [Sn 2 Cl 5 ] − complexes in ethaline DES. Smooth and homogeneous deposits were obtained on a steel substrate surface by applying current density of 1.57 × 10 −3 A/cm 2 at 25 °C. Under these conditions the deposition rate was found to be 0.1 ± 10% μm/min and current efficiency was obtained as 84 ± 3%. XRD analysis of the deposit confirmed the polycrystalline tetragonal structure with mostly (2 0 0) orientation having a crystallite size about 62 ± 16% nm along with an internal strain of 0.0031 ± 22%. The present deposition method is simple, economical and can be adapted for industrial applications

  2. New Supercapacitors Based on the Synergetic Redox Effect between Electrode and Electrolyte

    Directory of Open Access Journals (Sweden)

    You Zhang

    2016-08-01

    Full Text Available Redox electrolytes can provide significant enhancement of capacitance for supercapacitors. However, more important promotion comes from the synergetic effect and matching between the electrode and electrolyte. Herein, we report a novel electrochemical system consisted of a polyanilline/carbon nanotube composite redox electrode and a hydroquinone (HQ redox electrolyte, which exhibits a specific capacitance of 7926 F/g in a three-electrode system when the concentration of HQ in H2SO4 aqueous electrolyte is 2 mol/L, and the maximum energy density of 114 Wh/kg in two-electrode symmetric configuration. Moreover, the specific capacitance retention of 96% after 1000 galvanostatic charge/discharge cycles proves an excellent cyclic stability. These ultrahigh performances of the supercapacitor are attributed to the synergistic effect both in redox polyanilline-based electrolyte and the redox hydroquinone electrode.

  3. Operating mechanisms of electrolytes in magnesium ion batteries: chemical equilibrium, magnesium deposition, and electrolyte oxidation.

    Science.gov (United States)

    Kim, Dong Young; Lim, Younhee; Roy, Basab; Ryu, Young-Gyoon; Lee, Seok-Soo

    2014-12-21

    Since the early nineties there have been a number of reports on the experimental development of Mg electrolytes based on organo/amide-magnesium chlorides and their transmetalations. However, there are no theoretical papers describing the underlying operating mechanisms of Mg electrolytes, and there is no clear understanding of these mechanisms. We have therefore attempted to clarify the operating mechanisms of Mg electrolytes by studying the characteristics of Mg complexes, solvation, chemical equilibrium, Mg-deposition processes, electrolyte-oxidation processes, and oxidative degradation mechanism of RMgCl-based electrolytes, using ab initio calculations. The formation and solvation energies of Mg complexes highly depend on the characteristics of R groups. Thus, changes in R groups of RMgCl lead to changes in the equilibrium position and the electrochemical reduction and oxidation pathways and energies. We first provide a methodological scheme for calculating Mg reduction potential values in non-aqueous electrolytes and electrochemical windows. We also describe a strategy for designing Mg electrolytes to maximize the electrochemical windows and oxidative stabilities. These results will be useful not only for designing improved Mg electrolytes, but also for developing new electrolytes in the future.

  4. Increasing the energy density of the non-aqueous vanadium redox flow battery with new electrolytes; Neue Elektrolyte zur Steigerung der Energiedichte einer nicht-waessrigen Vanadium-Acetylacetonat-Redox-Flow-Batterie

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Tatjana

    2015-07-01

    Redox flow battery (RFB) is a promising energy storage technology which is similar to a polymer electrolyte membrane fuel cell. Currently, this electrochemical energy conversion device is used as a storage system for renewable energies or as uninterruptable power source. All-Vanadium-RFB (VRFB) and Zinc-Bromine-RFB are most well-known types of the aqueous RFB for these applications. But also the non-aqueous RFB is becoming more and more famous, because non-aqueous electrolytes offer wider operating temperature ranges, wider stable potential windows and a potentially higher energy density. However, current research studies show that the solubility of the most used redox active species is not sufficient. Therefore, present study aims to show concepts in order to solve this problem. Vanadium(III)acetylacetonate (V(acac){sub 3}) is used as active species, supported by tetrabutylammonium hexafluorophosphate. In acetonitrile it shows two quasi-reversible redox couples and a cell potential ∝2.2 V. The maximum solubility is ∝0.6 M. In this work other solvents and solvent mixtures were examined with the objective of increasing the solubility of V(acac){sub 3}. In 1,3-dioxolane the solubility was e.g. 0.8 M, dimethyl sulfoxide showed good battery performance with the highest energy efficiency ∝44 %. Acetylacetone is able to regenerate V(acac){sub 3} from the side product that is formed by reaction with water. The new electrolyte solution consisting of acetonitrile, 1,3-dioxolane and dimethyl sulfoxide nearly doubled the solubility of V(acac){sub 3}. In galvanostatic charge-discharge tests, single cell V(acac){sub 3} RFB exhibited energy efficiency between 25-50 % depending an test conditions. Also, the influence of water and oxygen addition an electrolyte was investigated. Finally, experiments with different ambient temperatures show that V(acac){sub 3} RFB is able to operate at temperatures such as 0 C and -25 C.

  5. 35-We polymer electrolyte membrane fuel cell system for notebook computer using a compact fuel processor

    Science.gov (United States)

    Son, In-Hyuk; Shin, Woo-Cheol; Lee, Yong-Kul; Lee, Sung-Chul; Ahn, Jin-Gu; Han, Sang-Il; kweon, Ho-Jin; Kim, Ju-Yong; Kim, Moon-Chan; Park, Jun-Yong

    A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.-d.c. converter. The compact fuel-processor system (260 cm 3) generates about 1.2 L min -1 of reformate, which corresponds to 35 We, with a low CO concentration (notebook computers.

  6. How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes.

    Science.gov (United States)

    Suo, Liumin; Oh, Dahyun; Lin, Yuxiao; Zhuo, Zengqing; Borodin, Oleg; Gao, Tao; Wang, Fei; Kushima, Akihiro; Wang, Ziqiang; Kim, Ho-Cheol; Qi, Yue; Yang, Wanli; Pan, Feng; Li, Ju; Xu, Kang; Wang, Chunsheng

    2017-12-27

    Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

  7. Effects of SOC-dependent electrolyte viscosity on performance of vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The correlations of electrolyte viscosity and SOC are obtained. • Effect of SOC-dependent electrolyte viscosity is considered in this model. • This model enables a more realistic simulation of variable distributions. • It provides accurate estimations of pumping work and system efficiency. - Abstract: The viscosity of the electrolyte in vanadium redox flow batteries (VRFBs) varies during charge and discharge as the concentrations of acid and vanadium ions in the electrolyte continuously change with the state of charge (SOC). In previous VRFB models, however, the electrolyte has been treated as a constant-viscosity solution. In this work, a mass-transport and electrochemical model taking account of the effect of SOC-dependent electrolyte viscosity is developed. The comparison between the present model and the model with the constant-viscosity simplification indicates that the consideration of the SOC-dependent electrolyte viscosity enables (i) a more realistic simulation of the distributions of overpotential and current density in the electrodes, and (ii) more accurate estimations of pumping work and the system efficiency of VRFBs

  8. Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes

    Science.gov (United States)

    Lipson, Albert L.; Han, Sang-Don; Kim, Soojeong; Pan, Baofei; Sa, Niya; Liao, Chen; Fister, Timothy T.; Burrell, Anthony K.; Vaughey, John T.; Ingram, Brian J.

    2016-09-01

    New energy storage chemistries based on Mg ions or Ca ions can theoretically improve both the energy density and reduce the costs of batteries. To date there has been limited progress in implementing these systems due to the challenge of finding a high voltage high capacity cathode that is compatible with an electrolyte that can plate and strip the elemental metal. In order to accelerate the discovery of such a system, model systems are needed that alleviate some of the issues of incompatibility. This report demonstrates the ability of nickel hexacyanoferrate to electrochemically intercalate Mg, Ca and Zn ions from a nonaqueous electrolyte. This material has a relatively high insertion potential and low overpotential in the electrolytes used in this study. Furthermore, since it is not an oxide based cathode it should be able to resist attack by corrosive electrolytes such as the chloride containing electrolytes that are often used to plate and strip magnesium. This makes it an excellent cathode for use in developing and understanding the complex electrochemistry of multivalent ion batteries.

  9. Stochastic level-set variational implicit-solvent approach to solute-solvent interfacial fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shenggao, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Jiangsu, Suzhou 215006 (China); Sun, Hui; Cheng, Li-Tien [Department of Mathematics, University of California, San Diego, La Jolla, California 92093-0112 (United States); Dzubiella, Joachim [Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany and Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Li, Bo, E-mail: sgzhou@suda.edu.cn, E-mail: bli@math.ucsd.edu [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Department of Chemistry and Biochemistry, Department of Pharmacology, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0365 (United States)

    2016-08-07

    Recent years have seen the initial success of a variational implicit-solvent model (VISM), implemented with a robust level-set method, in capturing efficiently different hydration states and providing quantitatively good estimation of solvation free energies of biomolecules. The level-set minimization of the VISM solvation free-energy functional of all possible solute-solvent interfaces or dielectric boundaries predicts an equilibrium biomolecular conformation that is often close to an initial guess. In this work, we develop a theory in the form of Langevin geometrical flow to incorporate solute-solvent interfacial fluctuations into the VISM. Such fluctuations are crucial to biomolecular conformational changes and binding process. We also develop a stochastic level-set method to numerically implement such a theory. We describe the interfacial fluctuation through the “normal velocity” that is the solute-solvent interfacial force, derive the corresponding stochastic level-set equation in the sense of Stratonovich so that the surface representation is independent of the choice of implicit function, and develop numerical techniques for solving such an equation and processing the numerical data. We apply our computational method to study the dewetting transition in the system of two hydrophobic plates and a hydrophobic cavity of a synthetic host molecule cucurbit[7]uril. Numerical simulations demonstrate that our approach can describe an underlying system jumping out of a local minimum of the free-energy functional and can capture dewetting transitions of hydrophobic systems. In the case of two hydrophobic plates, we find that the wavelength of interfacial fluctuations has a strong influence to the dewetting transition. In addition, we find that the estimated energy barrier of the dewetting transition scales quadratically with the inter-plate distance, agreeing well with existing studies of molecular dynamics simulations. Our work is a first step toward the

  10. A chromatographic determination of water in non-aqueous phases of solvent extraction systems

    International Nuclear Information System (INIS)

    Lyle, S.J.; Smith, D.B.

    1975-01-01

    The disadvantages of the Karl Fischer method for the determination of water in the non-aqueous phases of solvent extraction systems are pointed out, and a gas chromatographic method is described which is claimed to be potentially capable of overcoming these disadvantages. The method, as described, was developed to satisfy conditions relevant to measurement of the transfer rate of water from an aqueous phase into tri-n-butylphosphate in toluene, but it can be used for water determination in other solvent extraction systems. The apparatus used is described in detail. The concentration of water in water-saturated TBP was found to be 3.56 mol/litre, compared with a value of 3.55 obtained by Karl Fischer titration and previous literature values of 3.59 and 3.57. Measurements of water content in benzene solutions of long chain alkylamines were also sucessfully carried out. (U.K.)

  11. Electric-double-layer potential distribution in multiple-layer immiscible electrolytes

    NARCIS (Netherlands)

    Das, S.; Hardt, Steffen

    2011-01-01

    In this Brief Report, we calculate the electric-double-layer (EDL) electrostatic potential in a system of several layers of immiscible electrolytes. Verwey-Niessen theory predicts that at the interface between two immiscible electrolytes back-to-back EDLs are formed. The present analysis extends

  12. Gel electrolytes with ionic liquid plasticiser for electrochromic devices

    International Nuclear Information System (INIS)

    Desai, S.; Shepherd, R.L.; Innis, P.C.; Murphy, P.; Hall, C.; Fabretto, R.; Wallace, G.G.

    2011-01-01

    The comparative performance of conducting polymer electrochromic devices (ECDs) utilising gel polymer electrolytes (GPEs) plasticised with ethylene carbonate/propylene carbonate or (N-butyl-3-methylpyridinium trifluoromethanesulphonylimide (P 14 TFSI) has been made. Lithium perchlorate and lithium trifluoromethanesulphonylimide salts were used in the GPEs to provide enhanced ionic conductivity and inhibit phase separation of the polyethyleneoxide (PEO) and plasticiser. ECDs were assembled from cathodically colouring, polyethylenedioxythiophene (PEDOT), and anodically colouring, polypyrrole (PPy), conducting polymer electrochromes deposited by vapour deposition. The photopic contrast switching over the visible light spectrum, switching speeds and device stability of the ECDs were obtained. These studies demonstrate that the ionic liquid (IL) plasticised GPEs are a suitable replacement for pure IL based devices and volatile organic solvent plasticisers based upon ethylene carbonate/propylene carbonate mixtures.

  13. Gel electrolytes with ionic liquid plasticiser for electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Desai, S.; Shepherd, R.L.; Innis, P.C. [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia); Murphy, P. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Mawson Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Hall, C.; Fabretto, R. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Wallace, G.G., E-mail: gwallace@uow.edu.a [ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522 (Australia)

    2011-04-15

    The comparative performance of conducting polymer electrochromic devices (ECDs) utilising gel polymer electrolytes (GPEs) plasticised with ethylene carbonate/propylene carbonate or (N-butyl-3-methylpyridinium trifluoromethanesulphonylimide (P{sub 14}TFSI) has been made. Lithium perchlorate and lithium trifluoromethanesulphonylimide salts were used in the GPEs to provide enhanced ionic conductivity and inhibit phase separation of the polyethyleneoxide (PEO) and plasticiser. ECDs were assembled from cathodically colouring, polyethylenedioxythiophene (PEDOT), and anodically colouring, polypyrrole (PPy), conducting polymer electrochromes deposited by vapour deposition. The photopic contrast switching over the visible light spectrum, switching speeds and device stability of the ECDs were obtained. These studies demonstrate that the ionic liquid (IL) plasticised GPEs are a suitable replacement for pure IL based devices and volatile organic solvent plasticisers based upon ethylene carbonate/propylene carbonate mixtures.

  14. Analytical Methods Development in Support of the Caustic Side Solvent Extraction System

    International Nuclear Information System (INIS)

    Maskarinec, M.P.

    2001-01-01

    The goal of the project reported herein was to develop and apply methods for the analysis of the major components of the solvent system used in the Caustic-Side Solvent Extraction Process (CSSX). These include the calix(4)arene, the modifier, 1-(2,2,3,3- tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol and tri-n-octylamine. In addition, it was an objective to develop methods that would allow visualization of other components under process conditions. These analyses would include quantitative laboratory methods for each of the components, quantitative analysis of expected breakdown products (4-see-butylphenol and di-n-octylamine), and qualitative investigations of possible additional breakdown products under a variety of process extremes. These methods would also provide a framework for process analysis should a pilot facility be developed. Two methods were implemented for sample preparation of aqueous phases. The first involves solid-phase extraction and produces quantitative recovery of the solvent components and degradation products from the various aqueous streams. This method can be automated and is suitable for use in radiation shielded facilities. The second is a variation of an established EPA liquid-liquid extraction procedure. This method is also quantitative and results in a final extract amenable to virtually any instrumental analysis. Two HPLC methods were developed for quantitative analysis. The first is a reverse-phase system with variable wavelength W detection. This method is excellent from a quantitative point of view. The second method is a size-exclusion method coupled with dual UV and evaporative light scattering detectors. This method is much faster than the reverse-phase method and allows for qualitative analysis of other components of the waste. For tri-n-octylamine and other degradation products, a GC method was developed and subsequently extended to GUMS. All methods have precision better than 5%. The combination of these methods

  15. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  16. Molecular Thermodynamic Modeling of Mixed Solvent Solubility

    DEFF Research Database (Denmark)

    Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.

    2010-01-01

    A method based on statistical mechanical fluctuation solution theory for composition derivatives of activity coefficients is employed for estimating dilute solubilities of 11 solid pharmaceutical solutes in nearly 70 mixed aqueous and nonaqueous solvent systems. The solvent mixtures range from...... nearly ideal to strongly nonideal. The database covers a temperature range from 293 to 323 K. Comparisons with available data and other existing solubility methods show that the method successfully describes a variety of observed mixed solvent solubility behaviors using solute−solvent parameters from...

  17. Constructions of aluminium electrolytic cells

    International Nuclear Information System (INIS)

    Galushkin, N.V.

    1995-01-01

    This chapter of monograph is devoted to constructions of aluminium electrolytic cells. Therefore, the general characteristic and classification of aluminium electrolytic cells was considered. The anode and cathode structure was studied. The lining of cathode casing, the process of collection of anode gases, electrolytic cell cover, and electrical insulation was studied as well. The installation and dismantling of aluminium electrolytic cells was described.

  18. Thermal aging of electrolytes used in lithium-ion batteries - An investigation of the impact of protic impurities and different housing materials

    Science.gov (United States)

    Handel, Patricia; Fauler, Gisela; Kapper, Katja; Schmuck, Martin; Stangl, Christoph; Fischer, Roland; Uhlig, Frank; Koller, Stefan

    2014-12-01

    Thermal degradation products in lithium-ion batteries result mainly from hydrolysis sensitivity of lithium hexafluorophosphate (LiPF6). As organic carbonate solvents contain traces of protic impurities, the thermal decomposition of electrolytes is enhanced. Therefore, resulting degradation products are studied with nuclear magnetic resonance spectroscopy (NMR) and gas chromatography mass spectrometry (GC-MS). The electrolyte contains 1 M LiPF6 in a binary mixture of ethylene carbonate (EC) and diethylene carbonate (DEC) in a ratio of 1:2 (v/v) and is aged at ambient and elevated temperature. The impact of protic impurities, either added as deionized water or incorporated in positive electrode material, upon aging is investigated. Further, the influence of different housing materials on the electrolyte degradation is shown. Difluorophosphoric acid is identified as main decomposition product by NMR-spectroscopy. Traces of other decomposition products are determined by headspace GC-MS. Acid-base and coulometric titration are used to determine the total amount of acid and water content upon aging, respectively. The aim of this investigation is to achieve profound understanding about the thermal decomposition of one most common used electrolyte in a battery-like housing material.

  19. Relationship between some serum electrolytes and ...

    African Journals Online (AJOL)

    ADEYEYE

    2014-02-03

    Feb 3, 2014 ... The effect of Trypanosoma brucei infection on changes in concentration of some serum electrolytes and the ... the modulatory responses of the autonomic nervous system ..... Concurrent hyponatremia and hypocalcemia have.

  20. Solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, D.M.; Latimer, E.G.

    1988-01-05

    It is an object of this invention to provide for the demetallization and general upgrading of heavy oil via a solvent extracton process, and to improve the efficiency of solvent extraction operations. The yield and demetallization of product oil form heavy high-metal content oil is maximized by solvent extractions which employ either or all of the following techniques: premixing of a minor amount of the solvent with feed and using countercurrent flow for the remaining solvent; use of certain solvent/free ratios; use of segmental baffle tray extraction column internals and the proper extraction column residence time. The solvent premix/countercurrent flow feature of the invention substantially improves extractions where temperatures and pressures above the critical point of the solvent are used. By using this technique, a greater yield of extract oil can be obtained at the same metals content or a lower metals-containing extract oil product can be obtained at the same yield. Furthermore, the premixing of part of the solvent with the feed before countercurrent extraction gives high extract oil yields and high quality demetallization. The solvent/feed ratio features of the invention substanially lower the captial and operating costs for such processes while not suffering a loss in selectivity for metals rejection. The column internals and rsidence time features of the invention further improve the extractor metals rejection at a constant yield or allow for an increase in extract oil yield at a constant extract oil metals content. 13 figs., 3 tabs.