Solving potential field problems in composite media with complicated geometries
International Nuclear Information System (INIS)
Yeh, H.
1977-01-01
Recently, Yeh developed a method of solving potential field problems for complicated geometries and theorems of piecewise continuous eigenfunctions which can be used to solve boundary-value problems in composite media by the separation of variables. This paper shows that by a proper arrangement of matching conditions and boundary conditions, this method and these theorems can be applied simultaneously so that the problems in composite media with complicated geometries can be solved. To illustrate this, a heat-conduction problem in a composite cylinder with an abrupt change in cross-section area is solved. Also presented in this paper are the method of handling the nonhomogeneous boundary conditions for composite media and the extension of one of the above-mentioned theorems to include imperfect contact on material boundaries
Solving stochastic inflation for arbitrary potentials
International Nuclear Information System (INIS)
Martin, Jerome; Musso, Marcello
2006-01-01
A perturbative method for solving the Langevin equation of inflationary cosmology in the presence of backreaction is presented. In the Gaussian approximation, the method permits an explicit calculation of the probability distribution of the inflaton field for an arbitrary potential, with or without the volume effects taken into account. The perturbative method is then applied to various concrete models, namely, large field, small field, hybrid, and running mass inflation. New results on the stochastic behavior of the inflaton field in those models are obtained. In particular, it is confirmed that the stochastic effects can be important in new inflation while it is demonstrated they are negligible in (vacuum dominated) hybrid inflation. The case of stochastic running mass inflation is discussed in some details and it is argued that quantum effects blur the distinction between the four classical versions of this model. It is also shown that the self-reproducing regime is likely to be important in this case
New Method for Solving Inductive Electric Fields in the Ionosphere
Vanhamäki, H.
2005-12-01
We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.
Solving topological field theories on mapping tori
International Nuclear Information System (INIS)
Blau, M.; Jermyn, I.; Thompson, G.
1996-05-01
Using gauge theory and functional integral methods, we derive concrete expressions for the partition functions of BF theory and the U(1 modul 1) model of Rozansky and Saleur on Σ x S 1 , both directly and using equivalent two-dimensional theories. We also derive the partition function on a certain non-abelian generalization of the U(1 modul 1) model on mapping tori and hence obtain explicit expressions for the Ray-Singer torsion on these manifolds. Extensions of these results to BF and Chern-Simons theories on mapping tori are also discussed. The topological field theory actions of the equivalent two- dimensional theories we find have the interesting property of depending explicitly on the diffeomorphism defining the mapping torus while the quantum field theory is sensitive only to its isomorphism class defining the mapping torus as a smooth manifold. (author). 20 refs
Directory of Open Access Journals (Sweden)
Jordi Lucero
2009-01-01
Full Text Available This problem was to calculate the path a robot would take to navigate an obstacle field and get to its goal. Three obstacles were given as negative potential fields which the robot avoided, and a goal was given a positive potential field that attracted the robot. The robot decided each step based on its distance, angle, and influence from every object. After each step, the robot recalculated and determined its next step until it reached its goal. The robot's calculations and steps were simulated with Microsoft Excel.
Solving Witten's string field theory using the butterfly state
International Nuclear Information System (INIS)
Okawa, Yuji
2004-01-01
We solve the equation of motion of Witten's cubic open string field theory in a series expansion using the regulated butterfly state. The expansion parameter is given by the regularization parameter of the butterfly state, which can be taken to be arbitrarily small. Unlike the case of level truncation, the equation of motion can be solved for an arbitrary component of the Fock space up to a positive power of the expansion parameter. The energy density of the solution is well defined and remains finite even in the singular butterfly limit, and it gives approximately 68% of the D25-brane tension for the solution at the leading order. Moreover, it simultaneously solves the equation of motion of vacuum string field theory, providing support for the conjecture at this order. We further improve our ansatz by taking into account next-to-leading terms, and find two numerical solutions which give approximately 88% and 109%, respectively, of the D25-brane tension for the energy density. These values are interestingly close to those by level truncation at level 2 without gauge fixing studied by Rastelli and Zwiebach and by Ellwood and Taylor
Method for solving quantum field theory in the Heisenberg picture
International Nuclear Information System (INIS)
Nakanishi, Noboru
2004-01-01
This paper is a review of the method for solving quantum field theory in the Heisenberg picture, developed by Abe and Nakanishi since 1991. Starting from field equations and canonical (anti) commutation relations, one sets up a (q-number) Cauchy problem for the totality of d-dimensional (anti) commutators between the fundamental fields, where d is the number of spacetime dimensions. Solving this Cauchy problem, one obtains the operator solution of the theory. Then one calculates all multiple commutators. A representation of the operator solution is obtained by constructing the set of all Wightman functions for the fundamental fields; the truncated Wightman functions are constructed so as to be consistent with all vacuum expectation values of the multiple commutators mentioned above and with the energy-positivity condition. By applying the method described above, exact solutions to various 2-dimensional gauge-theory and quantum-gravity models are found explicitly. The validity of these solutions is confirmed by comparing them with the conventional perturbation-theoretical results. However, a new anomalous feature, called the ''field-equation anomaly'', is often found to appear, and its perturbation-theoretical counterpart, unnoticed previously, is discussed. The conventional notion of an anomaly with respect to symmetry is reconsidered on the basis of the field-equation anomaly, and the derivation of the critical dimension in the BRS-formulated bosonic string theory is criticized. The method outlined above is applied to more realistic theories by expanding everything in powers of the relevant parameter, but this expansion is not equivalent to the conventional perturbative expansion. The new expansion is BRS-invariant at each order, in contrast to that in the conventional perturbation theory. Higher-order calculations are generally extremely laborious to perform explicitly. (author)
Quadratic adaptive algorithm for solving cardiac action potential models.
Chen, Min-Hung; Chen, Po-Yuan; Luo, Ching-Hsing
2016-10-01
An adaptive integration method is proposed for computing cardiac action potential models accurately and efficiently. Time steps are adaptively chosen by solving a quadratic formula involving the first and second derivatives of the membrane action potential. To improve the numerical accuracy, we devise an extremum-locator (el) function to predict the local extremum when approaching the peak amplitude of the action potential. In addition, the time step restriction (tsr) technique is designed to limit the increase in time steps, and thus prevent the membrane potential from changing abruptly. The performance of the proposed method is tested using the Luo-Rudy phase 1 (LR1), dynamic (LR2), and human O'Hara-Rudy dynamic (ORd) ventricular action potential models, and the Courtemanche atrial model incorporating a Markov sodium channel model. Numerical experiments demonstrate that the action potential generated using the proposed method is more accurate than that using the traditional Hybrid method, especially near the peak region. The traditional Hybrid method may choose large time steps near to the peak region, and sometimes causes the action potential to become distorted. In contrast, the proposed new method chooses very fine time steps in the peak region, but large time steps in the smooth region, and the profiles are smoother and closer to the reference solution. In the test on the stiff Markov ionic channel model, the Hybrid blows up if the allowable time step is set to be greater than 0.1ms. In contrast, our method can adjust the time step size automatically, and is stable. Overall, the proposed method is more accurate than and as efficient as the traditional Hybrid method, especially for the human ORd model. The proposed method shows improvement for action potentials with a non-smooth morphology, and it needs further investigation to determine whether the method is helpful during propagation of the action potential. Copyright © 2016 Elsevier Ltd. All rights
Extensions of the auxiliary field method to solve Schroedinger equations
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2008-01-01
It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed
Extensions of the auxiliary field method to solve Schroedinger equations
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2008-10-24
It has recently been shown that the auxiliary field method is an interesting tool to compute approximate analytical solutions of the Schroedinger equation. This technique can generate the spectrum associated with an arbitrary potential V(r) starting from the analytically known spectrum of a particular potential P(r). In the present work, general important properties of the auxiliary field method are proved, such as scaling laws and independence of the results on the choice of P(r). The method is extended in order to find accurate analytical energy formulae for radial potentials of the form aP(r) + V(r), and several explicit examples are studied. Connections existing between the perturbation theory and the auxiliary field method are also discussed.
Problem solving in magnetic field: Animation in mobile application
Najib, A. S. M.; Othman, A. P.; Ibarahim, Z.
2014-09-01
This paper is focused on the development of mobile application for smart phone, Android, tablet, iPhone, and iPad as a problem solving tool in magnetic field. Mobile application designs consist of animations that were created by using Flash8 software which could be imported and compiled to prezi.com software slide. The Prezi slide then had been duplicated in Power Point format and instead question bank with complete answer scheme was also additionally generated as a menu in the application. Results of the published mobile application can be viewed and downloaded at Infinite Monkey website or at Google Play Store from your gadgets. Statistics of the application from Google Play Developer Console shows the high impact of the application usage in all over the world.
A new method for solving the two-center problem with relativistic potentials
International Nuclear Information System (INIS)
Gareev, F.A.; Gizzatkulov, M.Ch.
1977-01-01
A method has been proposed for the solution of the two-center problem with realistic potentials. It consists of two steps: first, a separable approximation to the single particle potentials is made and then the two-center problem with these separable potentials is solved exactly. The only approximations are introduced at the first stage in a well controllable way. As an example, we have calculated the single-particle energies and wave functions in the field of two 16 O like the Woods-Saxon potentials as functions of their distance R
Application of a Chimera Full Potential Algorithm for Solving Aerodynamic Problems
Holst, Terry L.; Kwak, Dochan (Technical Monitor)
1997-01-01
A numerical scheme utilizing a chimera zonal grid approach for solving the three dimensional full potential equation is described. Special emphasis is placed on describing the spatial differencing algorithm around the chimera interface. Results from two spatial discretization variations are presented; one using a hybrid first-order/second-order-accurate scheme and the second using a fully second-order-accurate scheme. The presentation is highlighted with a number of transonic wing flow field computations.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
Energy Technology Data Exchange (ETDEWEB)
Guerses, Metin, E-mail: gurses@fen.bilkent.edu.t [Department of Mathematics, Faculty of Sciences, Bilkent University, 06800 Ankara (Turkey)
2010-10-21
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
New method for solving inductive electric fields in the non-uniformly conducting ionosphere
Directory of Open Access Journals (Sweden)
H. Vanhamäki
2006-10-01
Full Text Available We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS. This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.
New method for solving inductive electric fields in the non-uniformly conducting ionosphere
Vanhamäki, H.; Amm, O.; Viljanen, A.
2006-10-01
We present a new calculation method for solving inductive electric fields in the ionosphere. The time series of the potential part of the ionospheric electric field, together with the Hall and Pedersen conductances serves as the input to this method. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition, no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called the Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfvén wave reflection from a uniformly conducting ionosphere.
Angeli, Charoula; Valanides, Nicos
2013-01-01
The present study investigated the problem-solving performance of 101 university students and their interactions with a computer modeling tool in order to solve a complex problem. Based on their performance on the hidden figures test, students were assigned to three groups of field-dependent (FD), field-mixed (FM), and field-independent (FI)…
Effective potentials for twisted fields
International Nuclear Information System (INIS)
Banach, R.
1981-01-01
Minus the density of the effective action, evaluated at the lowest eigenfunction of the (space-time) derivative part of the second (functional) derivative of the classical action, is proposed as a generalised definition of the effective potential, applicable to twisted as well as untwisted sectors of a field theory. The proposal is corroborated by several specific calculations in the twisted sector, namely phi 4 theory (real and complex) and wrong-sign-Gordon theory, in an Einstein cylinder, where the exact integrability of the static solutions confirms the effective potential predictions. Both models exhibit a phase transition, which the effective potential locates, and the one-loop quantum shift in the critical radius is computed for the real phi 4 model, being a universal result. Topological mass generation at the classical level is pointed out, and the exactness of the classical effective potential approximation for complex phi 4 is discussed. (author)
Potential problems with interpolating fields
Energy Technology Data Exchange (ETDEWEB)
Birse, Michael C. [The University of Manchester, Theoretical Physics Division, School of Physics and Astronomy, Manchester (United Kingdom)
2017-11-15
A potential can have features that do not reflect the dynamics of the system it describes but rather arise from the choice of interpolating fields used to define it. This is illustrated using a toy model of scattering with two coupled channels. A Bethe-Salpeter amplitude is constructed which is a mixture of the waves in the two channels. The potential derived from this has a strong repulsive core, which arises from the admixture of the closed channel in the wave function and not from the dynamics of the model. (orig.)
Solving Multi-variate Polynomial Equations in a Finite Field
2013-06-01
hardware to encrypt and decrypt messages. Many of the AES predecessors use this Feistel structure (i.e. DES, Lucifer , Blowfish). However, AES does not...However, then it is very effective . The interesting aspect about the agreeing algorithm is that it can gain momentum to solve the system once RHSs are...columns from Lh can now be removed. This can create a ‘cascade effect ’ on the system and the system quickly reduces its size and complexity. Agreeing
The effective crystal field potential
Mulak, J
2000-01-01
As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, ar...
Magnetic fields, special relativity and potential theory elementary electromagnetic theory
Chirgwin, B H; Kilmister, C W
1972-01-01
Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec
A method to solve the aircraft magnetic field model basing on geomagnetic environment simulation
International Nuclear Information System (INIS)
Lin, Chunsheng; Zhou, Jian-jun; Yang, Zhen-yu
2015-01-01
In aeromagnetic survey, it is difficult to solve the aircraft magnetic field model by flying for some unman controlled or disposable aircrafts. So a model solving method on the ground is proposed. The method simulates the geomagnetic environment where the aircraft is flying and creates the background magnetic field samples which is the same as the magnetic field arose by aircraft’s maneuvering. Then the aircraft magnetic field model can be solved by collecting the magnetic field samples. The method to simulate the magnetic environment and the method to control the errors are presented as well. Finally, an experiment is done for verification. The result shows that the model solving precision and stability by the method is well. The calculated model parameters by the method in one district can be used in worldwide districts as well. - Highlights: • A method to solve the aircraft magnetic field model on the ground is proposed. • The method solves the model by simulating dynamic geomagnetic environment as in the real flying. • The way to control the error of the method was analyzed. • An experiment is done for verification
Solving dominance and potential optimality in imprecise multi-attribute additive problems
International Nuclear Information System (INIS)
Mateos, Alfonso; Jimenez, Antonio; Rios-Insua, Sixto
2003-01-01
We consider the multicriteria decision-making problem where there is partial information on decision maker preferences, represented by means of an imprecise multiattribute additive utility function, and where the consequences of the alternatives or strategies are also possibly imprecise. Under these circumstances we consider how useful problem-solving concepts, namely nondominated, potentially optimal, adjacent potentially optimal alternatives, can be analytically computed. Thus, the problem can be solved much more efficiently using the classical methodology of linear programming
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies
Csapó, Benő; Molnár, Gyöngyvér
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS) is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university (n = 1468). They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL). A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics (r = 0.492) and science (r = 0.401), and moderate correlations with EFL (r = 0.227), history (r = 0.192), and Hungarian (r = 0.125). Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge acquisition
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies
Directory of Open Access Journals (Sweden)
Benő Csapó
2017-11-01
Full Text Available There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university (n = 1468. They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL. A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics (r = 0.492 and science (r = 0.401, and moderate correlations with EFL (r = 0.227, history (r = 0.192, and Hungarian (r = 0.125. Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies.
Csapó, Benő; Molnár, Gyöngyvér
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic problem-solving (DPS) is a good candidate for such a role, as tasks that assess it involve knowledge acquisition and knowledge utilization as well. The purpose of this study is to validate an online DPS test and to explore its potential for assessing students' DPS skills at the beginning of their higher education studies. Participants in the study were first-year students at a major Hungarian university ( n = 1468). They took five tests that measured knowledge from their previous studies: Hungarian language and literature, mathematics, history, science and English as a Foreign Language (EFL). A further, sixth test based on the MicroDYN approach, assessed students' DPS skills. A brief questionnaire explored learning strategies and collected data on students' background. The testing took place at the beginning of the first semester in three 2-h sessions. Problem-solving showed relatively strong correlations with mathematics ( r = 0.492) and science ( r = 0.401), and moderate correlations with EFL ( r = 0.227), history ( r = 0.192), and Hungarian ( r = 0.125). Weak but still significant correlations were found with certain learning strategies, positive correlations with elaboration strategies, and a negative correlation with memorization strategies. Significant differences were observed between male and female students; men performed significantly better in DPS than women. Results indicated the dominant role of the first phase of solving dynamic problems, as knowledge acquisition
Potential of the test particle in the magnetic field. I
International Nuclear Information System (INIS)
Sestak, B.
1980-01-01
The problem of the test particle potential in an external homogeneous magnetic field is solved in an unmagnetized plasma. It is shown that for the case when the parallel velocity component of the test particle is greater than the thermal velocity of the background particles, the potential is of a Coulomb character while for the case where the parallel velocity component is less than the thermal velocity the potential is of a Debye character. The Larmor radius of the test particle appears as an additional parameter in these potentials. (author)
Effective field theory approaches for tensor potentials
Energy Technology Data Exchange (ETDEWEB)
Jansen, Maximilian
2016-11-14
Effective field theories are a widely used tool to study physical systems at low energies. We apply them to systematically analyze two and three particles interacting via tensor potentials. Two examples are addressed: pion interactions for anti D{sup 0}D{sup *0} scattering to dynamically generate the X(3872) and dipole interactions for two and three bosons at low energies. For the former, the one-pion exchange and for the latter, the long-range dipole force induce a tensor-like structure of the potential. We apply perturbative as well as non-perturbative methods to determine low-energy observables. The X(3872) is of major interest in modern high-energy physics. Its exotic characteristics require approaches outside the range of the quark model for baryons and mesons. Effective field theories represent such methods and provide access to its peculiar nature. We interpret the X(3872) as a hadronic molecule consisting of neutral D and D{sup *} mesons. It is possible to apply an effective field theory with perturbative pions. Within this framework, we address chiral as well as finite volume extrapolations for low-energy observables, such as the binding energy and the scattering length. We show that the two-point correlation function for the D{sup *0} meson has to be resummed to cure infrared divergences. Moreover, next-to-leading order coupling constants, which were introduced by power counting arguments, appear to be essential to renormalize the scattering amplitude. The binding energy as well as the scattering length display a moderate dependence on the light quark masses. The X(3872) is most likely deeper bound for large light quark masses. In a finite volume on the other hand, the binding energy significantly increases. The dependence on the light quark masses and the volume size can be simultaneously obtained. For bosonic dipoles we apply a non-perturbative, numerical approach. We solve the Lippmann-Schwinger equation for the two-dipole system and the Faddeev
Energy Technology Data Exchange (ETDEWEB)
Borchardt, Julia
2017-02-07
By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.
Solution to reinforcement learning problems with artificial potential field
Institute of Scientific and Technical Information of China (English)
XIE Li-juan; XIE Guang-rong; CHEN Huan-wen; LI Xiao-li
2008-01-01
A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.
Imaginary Time Step Method to Solve the Dirac Equation with Nonlocal Potential
International Nuclear Information System (INIS)
Zhang Ying; Liang Haozhao; Meng Jie
2009-01-01
The imaginary time step (ITS) method is applied to solve the Dirac equation with nonlocal potentials in coordinate space. Taking the nucleus 12 C as an example, even with nonlocal potentials, the direct ITS evolution for the Dirac equation still meets the disaster of the Dirac sea. However, following the recipe in our former investigation, the disaster can be avoided by the ITS evolution for the corresponding Schroedinger-like equation without localization, which gives the convergent results exactly the same with those obtained iteratively by the shooting method with localized effective potentials.
Nugraheni, L.; Budayasa, I. K.; Suwarsono, S. T.
2018-01-01
The study was designed to discover examine the profile of metacognition of vocational high school student of the Machine Technology program that had high ability and field independent cognitive style in mathematical problem solving. The design of this study was exploratory research with a qualitative approach. This research was conducted at the Machine Technology program of the vocational senior high school. The result revealed that the high-ability student with field independent cognitive style conducted metacognition practices well. That involved the three types of metacognition activities, consisting of planning, monitoring, and evaluating at metacognition level 2 or aware use, 3 or strategic use, 4 or reflective use in mathematical problem solving. The applicability of the metacognition practices conducted by the subject was never at metacognition level 1 or tacit use. This indicated that the participant were already aware, capable of choosing strategies, and able to reflect on their own thinking before, after, or during the process at the time of solving mathematical problems.That was very necessary for the vocational high school student of Machine Technology program.
Self-constrained inversion of potential fields
Paoletti, V.; Ialongo, S.; Florio, G.; Fedi, M.; Cella, F.
2013-11-01
We present a potential-field-constrained inversion procedure based on a priori information derived exclusively from the analysis of the gravity and magnetic data (self-constrained inversion). The procedure is designed to be applied to underdetermined problems and involves scenarios where the source distribution can be assumed to be of simple character. To set up effective constraints, we first estimate through the analysis of the gravity or magnetic field some or all of the following source parameters: the source depth-to-the-top, the structural index, the horizontal position of the source body edges and their dip. The second step is incorporating the information related to these constraints in the objective function as depth and spatial weighting functions. We show, through 2-D and 3-D synthetic and real data examples, that potential field-based constraints, for example, structural index, source boundaries and others, are usually enough to obtain substantial improvement in the density and magnetization models.
FINITE VOLUME METHOD FOR SOLVING THREE-DIMENSIONAL ELECTRIC FIELD DISTRIBUTION
Directory of Open Access Journals (Sweden)
Paţiuc V.I.
2011-04-01
Full Text Available The paper examines a new approach to finite volume method which is used to calculate the electric field spatially homogeneous three-dimensional environment. It is formulated the problem Dirihle with building of the computational grid on base of space partition, which is known as Delone triangulation with the use of Voronoi cells. It is proposed numerical algorithm for calculating the potential and electric field strength in the space formed by a cylinder placed in the air. It is developed algorithm and software which were for the case, when the potential on the inner surface of the cylinder has been assigned and on the outer surface and the bottom of cylinder it was assigned zero potential. There are presented results of calculations of distribution in the potential space and electric field strength.
An optimized absorbing potential for ultrafast, strong-field problems
Yu, Youliang; Esry, B. D.
2018-05-01
Theoretical treatments of strong-field physics have long relied on the numerical solution of the time-dependent Schrödinger equation. The most effective such treatments utilize a discrete spatial representation—a grid. Since most strong-field observables relate to the continuum portion of the wave function, the boundaries of the grid—which act as hard walls and thus cause reflection—can substantially impact the observables. Special care thus needs to be taken. While there exist a number of attempts to solve this problem—e.g., complex absorbing potentials and masking functions, exterior complex scaling, and coordinate scaling—none of them are completely satisfactory. The first of these is arguably the most popular, but it consumes a substantial fraction of the computing resources in any given calculation. Worse, this fraction grows with the dimensionality of the problem. In addition, no systematic way to design such a potential has been used in the strong-field community. In this work, we address these issues and find a much better solution. By comparing with previous widely used absorbing potentials, we find a factor of 3–4 reduction in the absorption range, given the same level of absorption over a specified energy interval.
An adaptive time-stepping strategy for solving the phase field crystal model
International Nuclear Information System (INIS)
Zhang, Zhengru; Ma, Yuan; Qiao, Zhonghua
2013-01-01
In this work, we will propose an adaptive time step method for simulating the dynamics of the phase field crystal (PFC) model. The numerical simulation of the PFC model needs long time to reach steady state, and then large time-stepping method is necessary. Unconditionally energy stable schemes are used to solve the PFC model. The time steps are adaptively determined based on the time derivative of the corresponding energy. It is found that the use of the proposed time step adaptivity cannot only resolve the steady state solution, but also the dynamical development of the solution efficiently and accurately. The numerical experiments demonstrate that the CPU time is significantly saved for long time simulations
Field and electric potential of conductors with fractal geometry
Energy Technology Data Exchange (ETDEWEB)
Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de [Instituto de Fisica, Universidade Federal da Bahia, Campus Universitario da Federacao, 40210-340, Salvador (Brazil)
2007-11-28
In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-{alpha}, where {alpha} is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases.
Field and electric potential of conductors with fractal geometry
International Nuclear Information System (INIS)
Assis, Thiago A de; Mota, Fernando de B; Miranda, Jose G V; Andrade, Roberto F S; Castilho, Caio M C de
2007-01-01
In this study, the behavior of the electric field and its potential are investigated in a region bounded by a rough fractal surface and a distant plane. Both boundaries, maintained at distinct potential values, are assumed to be conductors and, as such, the electric potential is obtained by numerically solving Laplace's equation subject to the appropriate Dirichlet's condition. The rough boundaries, generated by the ballistic deposition and fractal Brownian motion methods, are characterized by the values of the surface roughness W and the local fractal dimension df = 3-α, where α is the usual roughness exponent. The equipotential surfaces, obtained from Laplace's equation, are characterized by these same parameters. Results presented show how df depends on the potential value, on the method used to generate the boundary and on W. The behavior of the electric field with respect to the equipotential surface is also considered. Its average intensity was found to increase as a function of the average distance from the equipotential to the fractal boundary; however, its intensity reaches a maximum before decreasing towards an asymptotic constant value, an effect that increases as the value of W increases
Scalar field cosmologies with inverted potentials
Energy Technology Data Exchange (ETDEWEB)
Boisseau, B.; Giacomini, H. [Université de Tours, Laboratoire de Mathématiques et Physique Théorique, CNRS/UMR 7350, 37200 Tours (France); Polarski, D., E-mail: bruno.boisseau@lmpt.univ-tours.fr, E-mail: hector.giacomini@lmpt.univ-tours.fr, E-mail: david.polarski@umontpellier.fr [Université Montpellier and CNRS, Laboratoire Charles Coulomb, UMR 5221, F-34095 Montpellier (France)
2015-10-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF.
Scalar field cosmologies with inverted potentials
International Nuclear Information System (INIS)
Boisseau, B.; Giacomini, H.; Polarski, D.
2015-01-01
Regular bouncing solutions in the framework of a scalar-tensor gravity model were found in a recent work. We reconsider the problem in the Einstein frame (EF) in the present work. Singularities arising at the limit of physical viability of the model in the Jordan frame (JF) are either of the Big Bang or of the Big Crunch type in the EF. As a result we obtain integrable scalar field cosmological models in general relativity (GR) with inverted double-well potentials unbounded from below which possess solutions regular in the future, tending to a de Sitter space, and starting with a Big Bang. The existence of the two fixed points for the field dynamics at late times found earlier in the JF becomes transparent in the EF
An assessment of the potential of PFEM-2 for solving long real-time industrial applications
Gimenez, Juan M.; Ramajo, Damián E.; Márquez Damián, Santiago; Nigro, Norberto M.; Idelsohn, Sergio R.
2017-07-01
The latest generation of the particle finite element method (PFEM-2) is a numerical method based on the Lagrangian formulation of the equations, which presents advantages in terms of robustness and efficiency over classical Eulerian methodologies when certain kind of flows are simulated, especially those where convection plays an important role. These situations are often encountered in real engineering problems, where very complex geometries and operating conditions require very large and long computations. The advantages that the parallelism introduced in the computational fluid dynamics making affordable computations with very fine spatial discretizations are well known. However, it is not possible to have the time parallelized, despite the effort that is being dedicated to use space-time formulations. In this sense, PFEM-2 adds a valuable feature in that its strong stability with little loss of accuracy provides an interesting way of satisfying the real-life computation needs. After having already demonstrated in previous publications its ability to achieve academic-based solutions with a good compromise between accuracy and efficiency, in this work, the method is revisited and employed to solve several nonacademic problems of technological interest, which fall into that category. Simulations concerning oil-water separation, waste-water treatment, metallurgical foundries, and safety assessment are presented. These cases are selected due to their particular requirements of long simulation times and or intensive interface treatment. Thus, large time-steps may be employed with PFEM-2 without compromising the accuracy and robustness of the simulation, as occurs with Eulerian alternatives, showing the potentiality of the methodology for solving not only academic tests but also real engineering problems.
Decoupling Action Potential Bias from Cortical Local Field Potentials
Directory of Open Access Journals (Sweden)
Stephen V. David
2010-01-01
Full Text Available Neurophysiologists have recently become interested in studying neuronal population activity through local field potential (LFP recordings during experiments that also record the activity of single neurons. This experimental approach differs from early LFP studies because it uses high impendence electrodes that can also isolate single neuron activity. A possible complication for such studies is that the synaptic potentials and action potentials of the small subset of isolated neurons may contribute disproportionately to the LFP signal, biasing activity in the larger nearby neuronal population to appear synchronous and cotuned with these neurons. To address this problem, we used linear filtering techniques to remove features correlated with spike events from LFP recordings. This filtering procedure can be applied for well-isolated single units or multiunit activity. We illustrate the effects of this correction in simulation and on spike data recorded from primary auditory cortex. We find that local spiking activity can explain a significant portion of LFP power at most recording sites and demonstrate that removing the spike-correlated component can affect measurements of auditory tuning of the LFP.
Implementation of a boundary element method to solve for the near field effects of an array of WECs
Oskamp, J. A.; Ozkan-Haller, H. T.
2010-12-01
When Wave Energy Converters (WECs) are installed, they affect the shoreline wave climate by removing some of the wave energy which would have reached the shore. Before large WEC projects are launched, it is important to understand the potential coastal impacts of these installations. The high cost associated with ocean scale testing invites the use of hydrodynamic models to play a major role in estimating these effects. In this study, a wave structure interaction program (WAMIT) is used to model an array of WECs. The program predicts the wave field throughout the array using a boundary element method to solve the potential flow fluid problem, taking into account the incident waves, the power dissipated, and the way each WEC moves and interacts with the others. This model is appropriate for a small domain near the WEC array in order to resolve the details in the interactions, but not extending to the coastline (where the far-field effects must be assessed). To propagate these effects to the coastline, the waves leaving this small domain will be used as boundary conditions for a larger model domain which will assess the shoreline effects caused by the array. The immediate work is concerned with setting up the WAMIT model for a small array of point absorbers. A 1:33 scale lab test is planned and will provide data to validate the WAMIT model on this small domain before it is nested with the larger domain to estimate shoreline effects.
Indra, M.
2018-03-01
Cinema Metropole XXI is one of the heritage buildings located in the heart of Menteng area, with “art deco” architecture. The appereance of this building is very beautiful and very impressed from other buildings, become strong Icon around the Menteng neighborhood. In 2010 the building was bought by Cinema 21, where the physical condition is very messy and looks slum. The emergence of modern shopping and entertainment centers are also complete with cinema facilities are more comfortable and complete, While the atmosphere of this old cinema is considered uncomfortable for visitors, so slowly abandoned by customers. The status of the cultural heritage inherent in this building becomes an obstacle by owners to renew this building, until the cinema closes in some time. The loss of the long-standing potential of cultural heritage buildings due to the transformation of urban development is an important issue in this paper, this case study is the author’s experience in regenerating the future potential at this heritage building. This writing is done by Descriptive Analysis method from various reference approaches and theory of cultural heritage values involved in the restoration of Metropole XXI cinema. The conclusions of this paper find a real solution to problem solving for the sustainability of this building.
International Nuclear Information System (INIS)
Li Bihong; Shuang Na; Liu Qingcheng
2006-01-01
The principle of finite difference method is introduced, and the radon field distribution over sandstone-type uranium deposit is narrated. The radon field distribution theory equation is established. To solve radon field distribution equation using finite difference algorithm is to provide the value computational method for forward calculation about radon field over sandstone-type uranium mine. Study on 2-D finite difference method on the center of either high anomaly radon fields in view of the character of radon field over sandstone-type uranium provide an algorithm for further research. (authors)
Energy Technology Data Exchange (ETDEWEB)
Silvestre-Brac, Bernard [LPSC Universite Joseph Fourier, Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, Avenue des Martyrs 53, F-38026 Grenoble-Cedex (France); Semay, Claude; Buisseret, Fabien [Groupe de Physique Nucleaire Theorique, Universite de Mons-Hainaut, Academie universitaire Wallonie-Bruxelles, Place du Parc 20, B-7000 Mons (Belgium)], E-mail: silvestre@lpsc.in2p3.fr, E-mail: claude.semay@umh.ac.be, E-mail: fabien.buisseret@umh.ac.be
2009-06-19
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -{alpha}r{sup {lambda}}exp(-{beta}r) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential.
International Nuclear Information System (INIS)
Silvestre-Brac, Bernard; Semay, Claude; Buisseret, Fabien
2009-01-01
The auxiliary field method is a new and efficient way to compute approximate analytical eigenenergies of the Schroedinger equation. This method has already been successfully applied to the case of central potentials of power-law and logarithmic forms. In the present work, we show that the Schroedinger equation with exponential potentials of the form -αr λ exp(-βr) can also be analytically solved by using the auxiliary field method. Closed formulae giving the critical heights and the energy levels of these potentials are presented. Special attention is drawn to the Yukawa potential and the pure exponential potential
Green's functions potential fields on surfaces
Melnikov, Yuri A
2017-01-01
This book is comprehensive in its classical mathematical physics presentation, providing the reader with detailed instructions for obtaining Green's functions from scratch. Green's functions is an instrument easily accessible to practitioners who are engaged in design and exploitation of machines and structures in modern engineering practice. To date, there are no books available on the market that are devoted to the Green's function formalism for equations covered in this volume. The reader, with an undergraduate background in applied mathematics, can become an active user of the Green's function approach. For the first time, Green's functions are discussed for a specific class of problems dealing with potential fields induced in thin-wall structures and therefore, the reader will have first-hand access to a novel issue. This Work is accessible to researchers in applied mathematics, mechanics, and relevant disciplines such as engineering, as well as to upper level undergraduates and graduate students.
MOTION MODELLINGUSINGCONCEPTS OF FUZZY ARTIFICIAL POTENTIAL FIELDS
Directory of Open Access Journals (Sweden)
O. Motlagh
2010-12-01
Full Text Available Artificial potential fields (APF are well established for reactive navigation of mobile robots. This paper describes a fast and robust fuzzy-APF on an ActivMedia AmigoBot. Obstacle-related information is fuzzified by using sensory fusion, which results in a shorter runtime. In addition, the membership functions of obstacle direction and range have been merged into one function, obtaining a smaller block of rules. The system is tested in virtual environments with non-concave obstacles. Then, the paper describes a new approach to motion modelling where the motion of intelligent travellers is modelled by consecutive path segments. In previous work, the authors described a reliable motion modelling technique using causal inference of fuzzy cognitive maps (FCM which has been efficiently modified for the purpose of this contribution. Results and analysis are given to demonstrate the efficiency and accuracy of the proposed motion modelling algorithm.
Directory of Open Access Journals (Sweden)
Skitsko Volodymyr I.
2017-03-01
Full Text Available The article investigates various aspects of the functioning of artificial immune systems and their using to solve different tasks. The analysis of the studied literature showed that nowadays there exist combinations of artificial immune systems, in particular with genetic algorithms, the particle swarm optimization method, artificial neural networks, etc., to solve different tasks. However, the solving of economic tasks is paid little attention. The article presents the basic terminology of artificial immune systems; the steps of the clonal selection algorithm are described, as well as a brief description of the negative selection algorithm, the immune network algorithm and the dendritic algorithm is given; conceptual aspects of the use of an artificial immune system for solving multi-purpose optimization problems are formulated, and an example of solving a problem in the field of logistics is described. Artificial immune systems as a means of solving various weakly structured, multi-criteria and multi-purpose economic tasks, in particular in the sphere of logistics, are a promising tool that requires further research. Therefore, it is advisable in the future to focus on the use of various existing immune algorithms for solving various economic problems.
International Nuclear Information System (INIS)
Zhang, M.; Takeda, M.; Nakajima, H.
2006-01-01
Laboratory diffusion testing as well as batch experiments are well established and widely adopted techniques for characterizing the diffusive and adsorptive properties of geological, geotechnical, and synthetic materials in both scientific and applied fields, including geological disposal of radioactive waste. Although several types of diffusion test, such as the through- diffusion test, in-diffusion test, out-diffusion test, and column test, are currently available, different methods may have different advantages and disadvantages. In addition, traditional methods may have limitations, such as the need for relatively long test times, cumbersome test procedures, and the possibility of errors due to differences between analytical assumptions and actual test conditions. Furthermore, traditional batch experiments using mineral powders are known to overestimate the sorption coefficient. In part 1 of this report, we present a brief overview of laboratory diffusion and batch experiments. The advantages, disadvantages, limitations, and/or potential problems associated with individual tests were compared and summarized. This comprehensive report will provide practical references for reviewing the results obtained from relevant experiments, especially from the viewpoint of regulation. To solve and/or eliminate the potential problems associated with conventional methods, and to obtain the diffusion coefficient and rock capacity factor from a laboratory test both rapidly and accurately, part 2 of this study discusses possible strategies involving the development of rigorous solutions to some relevant test methods, and sensitivity analyses for the related tests that may be helpful to judge the accuracy of the two parameters to be determined from individual tests. (authors)
Local Field Potentials: Myths and Misunderstandings
Directory of Open Access Journals (Sweden)
Oscar Herreras
2016-12-01
Full Text Available The intracerebral local field potential (LFP is a measure of brain activity that reflects the highly dynamic flow of information across neural networks. This is a composite signal that receives contributions from multiple neural sources, yet interpreting its nature and significance may be hindered by several confounding factors and technical limitations. By and large, the main factor defining the amplitude of LFPs is the geometry of the current sources, over and above the degree of synchronization or the properties of the media. As such, similar levels of activity may result in potentials that differ in several orders of magnitude in different populations. The geometry of these sources has been experimentally inaccessible until intracerebral high density recordings enabled the co-activating sources to be revealed. Without this information, it has proven difficult to interpret a century’s worth of recordings that used temporal cues alone, such as event or spike related potentials and frequency bands. As such, a collection of biophysically ill-founded concepts have been considered legitimate, which can now be corrected in the light of recent advances. The relationship of LFPs to their sources is often counterintuitive. For instance, most LFP activity is not local but remote, it may be larger further from rather than close to the source, the polarity does not define its excitatory or inhibitory nature, and the amplitude may increase when source’s activity is reduced. As technological developments foster the use of LFPs, the time is now ripe to raise awareness of the need to take into account spatial aspects of these signals and of the errors derived from neglecting to do so.
Stochastic quantum inflation for a canonical scalar field with linear self-interaction potential
Energy Technology Data Exchange (ETDEWEB)
Panotopoulos, Grigoris [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Lisboa (Portugal)
2017-10-15
We apply Starobinsky's formalism of stochastic inflation to the case of a massless minimally coupled scalar field with linear self-interaction potential. We solve the corresponding Fokker-Planck equation exactly, and we obtain analytical expressions for the stochastic expectation values. (orig.)
Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants
Energy Technology Data Exchange (ETDEWEB)
Khasawneh, Khalid; PARK, Youn Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2014-10-15
In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of
Application of Solar Chimney Concept to Solve Potential Safety Issues of Nuclear Power Plants
International Nuclear Information System (INIS)
Khasawneh, Khalid; PARK, Youn Won
2014-01-01
In this paper two main events and their causes have been investigated and a potential alternative supporting system will be provided. The first event to be addressed is the Station Blackout (SBO) caused by the inherent unreliability of the Emergency Diesel Generators (EDGs) and Alternative AC (AAC) power sources. Different parameters affect The EDG unreliability; for instance, mechanical, operational, maintenance and surveillance. Those parameters will be analyzed and linked to plant safety and Core Damage Frequency (CDF). Also the AACs, the SBO diesel generators, will be studied and their operational requirements similarity with the EDGs will be discussed. The second event to be addressed is the Loss of Ultimate Heat Sink (LUHS) caused by the degradation of heat exchange effectiveness, that is, the poor heat transfer to the Ultimate Heat Sink (UHS). Different causes to such case were observed; intake lines blockages due to ice and foreign biological matters formation and oil spill near the heat sink causing the oil leakage to the heat exchangers tubes. The later cause, oil spill, has been given a special attention here due its potential effects for different nuclear power plants (NPPs) around the world; for example, Finland and the United Arab Emirates (UAE). For the Finnish case, the Finnish nuclear regulator (STUK) took already countermeasures for such scenario by introducing alternative heat sink, cooling towers, for the primary used heat sink, sea water, for one of its nuclear power plants. The abundance of the solar irradiation in the UAE region provides a perfect condition for the implementation of solar power applications. Utilizing this unique characteristic of that region may provide promising alternative and diverse options for solving potential safety related issues of their NPPs. The Solar Chimney Power Plant (SCPP) could be employed to serve as a supporting system to provide emergency power, in the case of SBO, and emergency cooling, in the case of
Hardiani, N.; Budayasa, I. K.; Juniati, D.
2018-01-01
The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.
Fortescue field, Gippsland basin: Flank potential realized
Energy Technology Data Exchange (ETDEWEB)
Hendrich, J.H.; Schwebel, D.A.; Palmer, I.D. (Esso Asustralia Ltd., Sydney, New South Wales (Australia))
1990-09-01
Fortescue field was the last major oil field to be discovered in the offshore Gippsland basin, southeastern Australia. The discovery well, 1 West Halibut, was drilled in 1978 on the basis of a 1-km seismic grid as a follow up to the dry 1 Fortescue wildcat. Data from this well were interpreted to indicate that there was a high probability of a stratigraphic trap occurring on the western flank of the giant Halibut-Cobia structure. The 2, 3, and 4 Fortescue wells were drilled by early 1979 to determine the limits of the field, delineate the stratigraphy, and define the hydrocarbon contacts. Cobia A had the dual purpose of developing the Cobia field and the southern extent of the Fortescue reservoirs that were inaccessible to the Fortescue A plat-form. At the conclusion of development drilling in early 1986, eight Cobia A wells and 20 Fortescue A wells were capable of producing from Fortescue reservoirs. The Fortescue reservoirs are Eocene sandstones that were deposited in coastal plain, upper shoreface, and lower shoreface environments. Integration of well log correlations, stratigraphic interpretations, reservoir pressure data, and seismic data indicates that these Fortescue reservoirs are stratigraphically younger than, and are hydraulically separated from, the underlying Halibut-Cobia fields. Pressure data acquired during development drilling and while monitoring subsequent production performance have conclusively demonstrated that there are at least three separate hydraulic systems active within the Fortescue field. Fortescue field dimensions are approximately 11 km x 4 km with a maximum relief of 100 m above the original oil-water contact. Reserves are estimated at 280,000 STB, based on original oil in place estimates of 415,000 STB and recovery factors in the 65-70% range. Production rate peaked in 1984 at 100 K BOPD from the combined development facilities and was sustained until late 1986. More than two-thirds of the reserves have been produced to date.
Directory of Open Access Journals (Sweden)
L. N. Elisov
2015-01-01
Full Text Available The paper presents the authors view and some remarks on the problem of solving optimization problems in the field of aviation security related to insurmountable difficulties of formalization and mathematical interpretation of the domain formulation of such problems. It is shown that the vast majority of these problems is related to the solution of conflicts. The theory of conflicts gives analytical solution only in the simplest cases. For the rest the use of a heuristic approach is suggested.
Directory of Open Access Journals (Sweden)
Chandralekha Singh
2008-03-01
Full Text Available In this paper, we explore the use of isomorphic problem pairs (IPPs to assess introductory physics students’ ability to solve and successfully transfer problem-solving knowledge from one context to another in mechanics. We call the paired problems “isomorphic” because they require the same physics principle to solve them. We analyze written responses and individual discussions for a range of isomorphic problems. We examine potential factors that may help or hinder transfer of problem-solving skills from one problem in a pair to the other. For some paired isomorphic problems, one context often turned out to be easier for students in that it was more often correctly solved than the other. When quantitative and conceptual questions were paired and given back to back, students who answered both questions in the IPP often performed better on the conceptual questions than those who answered the corresponding conceptual questions only. Although students often took advantage of the quantitative counterpart to answer a conceptual question of an IPP correctly, when only given the conceptual question, students seldom tried to convert it into a quantitative question, solve it, and then reason about the solution conceptually. Even in individual interviews when students who were given only conceptual questions had difficulty and the interviewer explicitly encouraged them to convert the conceptual question into the corresponding quantitative problem by choosing appropriate variables, a majority of students were reluctant and preferred to guess the answer to the conceptual question based upon their gut feeling. Misconceptions associated with friction in some problems were so robust that pairing them with isomorphic problems not involving friction did not help students discern their underlying similarities. Alternatively, from the knowledge-in-pieces perspective, the activation of the knowledge resource related to friction was so strongly and automatically
Effective potentials in gauge field theories
International Nuclear Information System (INIS)
Caldas, P.S.S.; Fleming, H.; Garcia, R.L.
An elementary and very efficient method for computing the effective potential of any theory containing scalar bosons is described. Examples include massless scalar electrodynamics and Yang-Mills theories [pt
Parallel computation of electrostatic potentials and fields in technical geometries on SUPRENUM
International Nuclear Information System (INIS)
Alef, M.
1990-02-01
The programs EPOTZR und EFLDZR have been developed in order to compute electrostatic potentials and the corresponding fields in technical geometries (example: Diode geometry for optimum focussing of ion beams in pulsed high-current ion diodes). The Poisson equation is discretized in a two-dimensional boundary-fitted grid in the (r,z)-plane and solved using multigrid methods. The z- and r-components of the field are determined by numerical differentiation of the potential. This report contains the user's guide of the SUPRENUM versions EPOTZR-P and EFLDZR-P. (orig./HP) [de
Computation of 3-D magnetostatic fields using a reduced scalar potential
International Nuclear Information System (INIS)
Biro, O.; Preis, K.; Vrisk, G.; Richter, K.R.
1993-01-01
The paper presents some improvements to the finite element computation of static magnetic fields in three dimensions using a reduced magnetic scalar potential. New methods are described for obtaining an edge element representation of the rotational part of the magnetic field from a given source current distribution. In the case when the current distribution is not known in advance, a boundary value problem is set up in terms of a current vector potential. An edge element representation of the solution can be directly used in the subsequent magnetostatic calculation. The magnetic field in a D.C. arc furnace is calculated by first determining the current distribution in terms of a current vector potential. A three dimensional problem involving a permanent magnet as well as a coil is solved and the magnetic field in some points is compared with measurement results
International Nuclear Information System (INIS)
Rothleder, B.M.; Poetschat, G.R.; Faught, W.S.; Eich, V.J.
1988-01-01
The fuel shuffling problem is posed by the need to reposition partially burned assemblies to achieve minimum X-Y pin power peaks reload cycles of pressurized water reactors. This problem is a classic artificial intelligence (AI) problem and is highly suitable for AI expert system solution assistance, in contrast to the conventional solution, which ultimately depends solely on trial and error. Such a fuel shuffling assistant would significantly reduce engineering and computer execution time for conventional loading patterns and, much more importantly, even more significantly for low-leakage loading patterns. A successful hardware/software demonstrator has been introduced, paving the way for development of a broadly expert system program. Such a program, upon incorporating the recently developed technique perverse depletion, would provide a directed path for solving the low-leakage problem
A novel string field theory solving string theory by liberating left and right movers
International Nuclear Information System (INIS)
Nielsen, Holger B.; Ninomiya, Masao
2014-01-01
We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model
Field differential equations for a potential flow from a Hamilton type variational principle
International Nuclear Information System (INIS)
Fierros Palacios, A.
1992-01-01
The same theoretical frame that was used to solve the problem of the field equations for a viscous fluid is utilized in this work. The purpose is to obtain the differential field equations for a potential flow from the Lagrangian formalism as in classical field theory. An action functional is introduced as a space-time integral over a region of three-dimensional Euclidean space, of a Lagrangian density as a function of certain field variables. A Hamilton type extremum action principle is postulated with adequate boundary conditions, and a set of differential field equations is derived. A particular Lagrangian density of the T-V type leads to the wave equation for the velocity potential. (Author)
Directory of Open Access Journals (Sweden)
Zhao-Qing Wang
2014-01-01
Full Text Available Embedding the irregular doubly connected domain into an annular regular region, the unknown functions can be approximated by the barycentric Lagrange interpolation in the regular region. A highly accurate regular domain collocation method is proposed for solving potential problems on the irregular doubly connected domain in polar coordinate system. The formulations of regular domain collocation method are constructed by using barycentric Lagrange interpolation collocation method on the regular domain in polar coordinate system. The boundary conditions are discretized by barycentric Lagrange interpolation within the regular domain. An additional method is used to impose the boundary conditions. The least square method can be used to solve the overconstrained equations. The function values of points in the irregular doubly connected domain can be calculated by barycentric Lagrange interpolation within the regular domain. Some numerical examples demonstrate the effectiveness and accuracy of the presented method.
Garber, P A; Gomes, D F; Bicca-Marques, J C
2012-04-01
Some populations of capuchins are reported to use tools to solve foraging problems in the wild. In most cases, this involves the act of pounding and digging. The use of probing tools by wild capuchins is considerably less common. Here we report on the results of an experimental field study conducted in southern Brazil designed to examine the ability of wild black-horned capuchins (Sapajus nigritus) to use a wooden dowel as a lever or a probe to obtain an embedded food reward. A group of eight capuchins was presented with two experimental platforms, each housing a clear Plexiglas box containing two bananas on a shelf and four inserted dowels. Depending on the conditions of the experiment, the capuchins were required either to pull (Condition I) or push (Conditions II and III) the dowels, in order to dislodge the food reward from the shelf so that it could be manually retrieved. In Condition I, four individuals spontaneously solved the foraging problem by pulling the dowels in 25% (72/291) of visits. In Conditions II and III, however, no capuchin successfully pushed the dowels forward to obtain the food reward. During these latter two experimental conditions, the capuchins continued to pull the dowels (41/151 or 27% of visits), even though this behavior did not result in foraging success. The results of these field experiments are consistent with an identical study conducted on wild Cebus capucinus in Costa Rica, and suggest that when using an external object as a probe to solve a foraging problem, individual capuchins were able to rapidly learn an association between the tool and the food reward, but failed to understand exactly how the tool functioned in accomplishing the task. The results also suggest that once a capuchin learned to solve this tool-mediated foraging problem, the individual persisted in using the same solution even in the face of repeated failure (slow rate of learning extinction). © 2011 Wiley Periodicals, Inc.
Potential brain imaging using near field radiomety
International Nuclear Information System (INIS)
Oikonomou, A; Karanasiou, I S; Uzunoglu, N K
2009-01-01
During the past decades there has been a tremendous increase throughout the scientific community for developing methods of understanding human brain functionality, as diagnosis and treatment of diseases and malfunctions could be effectively developed through understanding of how the brain works. In parallel, research effort is driven on minimizing drawbacks of existing imaging techniques including potential risks from radiation and invasive attributes of the imaging methodologies. Towards that direction, we are proposing a near filed radiometry imaging system for intracranial applications. The methodology is based on the fact that human tissues emit chaotic thermal type radiation at temperatures above the absolute zero. Using a phase shifted antenna array system, resolution, detection depth and sensitivity are increased. Several different setups are theoretically investigated and compared, so as to make the proposed system useful for clinical applications. Combining previous research as well as new findings, the possibility of using the proposed system as a complementary method for brain imaging is discussed in the present paper.
Energy Technology Data Exchange (ETDEWEB)
Kondrat' ev, K.YA.
1993-08-01
Considerations on priorities are presented in connection with the broad development of bilateral and multilateral international cooperation to solve global environmental problems. Emphasis is placed on the problem of global climate change, on optimizing the global climate observation system, and on substantiating the (1) inadequacy of the 'greenhouse' stereotype of global climate warming which has long predominated in Russian cooperation programs, and (2) the need to realize real climatic prorities (the role of biosphere dynamics, the interaction of atmosphere and ocean, cloud cover and radiation, the colloidal nature of the atmosphere, etc.). The thermal balance of the earth and the dynamics of the biosphere are considered as the key problems of global ecodynamics. Particular attention is given to socio-economic aspects of ecology. 62 refs.
Potential of Field Education as Signature Pedagogy: The Field Director Role
Lyter, Sharon C.
2012-01-01
In light of the assertion that field education is the signature pedagogy of social work education, this Internet-based study explores field director demographics and questions the fulfillment of this potential, examining BSW and MSW field education through the lens of the field director position. Field directors (159) and deans/directors (150)…
Dynamic Artificial Potential Fields for Autonomous Camera Control
DEFF Research Database (Denmark)
Burelli, Paolo; Jhala, Arnav Harish
2009-01-01
the implementation and evaluation of Artificial Potential Fields for automatic camera placement. We first describe the re- casting of the frame composition problem as a solution to a two particles suspended in an Artificial Potential Field. We demonstrate the application of this technique to control both camera...
Potential for Assessing Dynamic Problem-Solving at the Beginning of Higher Education Studies
Benő Csapó; Gyöngyvér Molnár
2017-01-01
There is a growing demand for assessment instruments which can be used in higher education, which cover a broader area of competencies than the traditional tests for disciplinary knowledge and domain-specific skills, and which measure students' most important general cognitive capabilities. Around the age of the transition from secondary to tertiary education, such assessments may serve several functions, including selecting the best-prepared candidates for certain fields of study. Dynamic pr...
On solving the Schrödinger equation for a complex deictic potential ...
Indian Academy of Sciences (India)
Making use of an ansatz for the eigenfunction, we investigate closed-form solutions of the Schrödinger equation for an even power complex deictic potential and its variant in one dimension. For this purpose, extended complex phase-space approach is utilized and nature of the eigenvalue and the corresponding ...
On solving the Schrödinger equation for a complex deictic potential ...
Indian Academy of Sciences (India)
The imaginary part of the energy eigenvalue exists only if the potential parameters are complex, whereas it reduces to zero for real coupling parameters and the result coincides with those derived from the invariance of Hamiltonian under PT operations. Thus, a non-Hermitian. Hamiltonian possesses real eigenvalue, if it is ...
Marching on in anything: solving electromagnetic field equations with a varying physical parameter
Tijhuis, A.G.; Zwamborn, A.P.M.; Smith, P.D.; Cloude, S.R.
2002-01-01
In this paper, we consider the determination of electromagnetic fields for a (large) number of values of a physical parameter. We restrict ourselves to the case where the linear system originates from one or more integral equations. We apply an iterative procedure based on the minimization of an
Multitracing Experiment With Solved and Particulate Tracers In An Unsaturated Field Soil
Burkhardt, M.; Kasteel, R.; Vereecken, H.
Solute movement and colloid migration follow preferential flow paths in structured soils at the field scale. The use of microsphreres is a possible option to mimic colloid transport through the vadose zone into the groundwater. We present results of multi- tracing experiments conducted in an Orthic Luvisol using bromide (Br-), the reactive dye tracer Brilliant Blue (BB) and microspheres. The fluorescent microspheres (1 and 10 µm in diameter) were functionalized with a negative surface charge. Eight field plots (about 2 m2) were irrigated with 10 mm and 40 mm during 6 h. Four field plots were sampled directly after the irrgation, the others were exposed for 90 days to natural wheather conditions. Photographs of horizontal cross-sections and disturbed soil sam- ples were taken every 5 to 10 cm down to a depth of 160 cm. Image analysis was used to derive concentration distributions of BB using a calibration relationship between concentration and color spectra. The microspheres were quantified after desorption of the soil samples by fluorescent microscopy and image analysis. We used moment analysis to characterize transport phenomena. We found that transport through the soil matrix was affected by sorption, but all of the applied compounds were transported through preferential flow paths (earthworm burrows) down to a depth of 160 cm irre- spective of their chemical properties. Furthermore, this study shows that microspheres can be used to mimic colloid facilitated transport under unsaturated conditions in a field soil.
Photospheric Driving of Non-Potential Coronal Magnetic Field Simulations
2016-09-19
synthesize observable emission . In future, the computational speed of the MF model makes it a potential avenue for near- real time and/or ensemble...AFRL-AFOSR-UK-TR-2016-0030 PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD SIMULATIONS Anthony Yeates UNIVERSITY OF DURHAM Final Report...Final 3. DATES COVERED (From - To) 15 Sep 2014 to 14 Sep 2017 4. TITLE AND SUBTITLE PHOTOSPHERIC DRIVING OF NON-POTENTIAL CORONAL MAGNETIC FIELD
Jia, Weile; Lin, Lin
2017-10-01
Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.
Quantum particle in a potential well field and in an electric field
International Nuclear Information System (INIS)
Gyunter, U.; Olejnik, V.P.
1990-01-01
Solutions of the Dirac equation in the field of δ-like potential well with arbitrary symmetry and in uniform electric field were obtained and analyzed. It is shown that wave function and energy of electron in bound state in the absence of electric field depend sufficiently on the type of potential well symmetry. 1 ref
Directory of Open Access Journals (Sweden)
Assaf Rotem
Full Text Available Transcranial Magnetic Stimulation (TMS is a promising technology for both neurology and psychiatry. Positive treatment outcome has been reported, for instance in double blind, multi-center studies on depression. Nonetheless, the application of TMS towards studying and treating brain disorders is still limited by inter-subject variability and lack of model systems accessible to TMS. The latter are required to obtain a deeper understanding of the biophysical foundations of TMS so that the stimulus protocol can be optimized for maximal brain response, while inter-subject variability hinders precise and reliable delivery of stimuli across subjects. Recent studies showed that both of these limitations are in part due to the angular sensitivity of TMS. Thus, a technique that would eradicate the need for precise angular orientation of the coil would improve both the inter-subject reliability of TMS and its effectiveness in model systems. We show here how rotation of the stimulating field relieves the angular sensitivity of TMS and provides improvements in both issues. Field rotation is attained by superposing the fields of two coils positioned orthogonal to each other and operated with a relative phase shift in time. Rotating field TMS (rfTMS efficiently stimulates both cultured hippocampal networks and rat motor cortex, two neuronal systems that are notoriously difficult to excite magnetically. This opens the possibility of pharmacological and invasive TMS experiments in these model systems. Application of rfTMS to human subjects overcomes the orientation dependence of standard TMS. Thus, rfTMS yields optimal targeting of brain regions where correct orientation cannot be determined (e.g., via motor feedback and will enable stimulation in brain regions where a preferred axonal orientation does not exist.
Korb, Werner; Geißler, Norman; Strauß, Gero
2015-03-01
Engineering a medical technology is a complex process, therefore it is important to include experts from different scientific fields. This is particularly true for the development of surgical technology, where the relevant scientific fields are surgery (medicine) and engineering (electrical engineering, mechanical engineering, computer science, etc.). Furthermore, the scientific field of human factors is important to ensure that a surgical technology is indeed functional, process-oriented, effective, efficient as well as user- and patient-oriented. Working in such trans- and inter-disciplinary teams can be challenging due to different working cultures. The intention of this paper is to propose an innovative cooperative working culture for the interdisciplinary field of computer-assisted surgery (CAS) based on more than ten years of research on the one hand and the interdisciplinary literature on working cultures and various organizational theories on the other hand. In this paper, a retrospective analysis of more than ten years of research work in inter- and trans-disciplinary teams in the field of CAS will be performed. This analysis is based on the documented observations of the authors, the study reports, protocols, lab reports and published publications. To additionally evaluate the scientific experience in an interdisciplinary research team, a literature analysis regarding scientific literature on trans- and inter-disciplinarity was performed. Own research and literature analyses were compared. Both the literature and the scientific experience in an interdisciplinary research team show that consensus finding is not always easy. It is, however, important to start trans- and interdisciplinary projects with a shared mental model and common goals, which include communication and leadership issues within the project teams, i.e. clear and unambiguous information about the individual responsibilities and objectives to attain. This is made necessary due to differing
Mata, Sara; Gómez-Pérez, M Mar; Molinero, Clara; Calero, M Dolores
2017-10-30
Situations generated by high family risk have a negative effect on personal development, especially during preadolescence. Growing up in the presence of risk factors can lead to negative consequences on mental health or on school performance. The objective of this study focuses on individual factors related to this phenomenon during preadolescence. Specifically, we seek to establish whether level of family risk (high vs. low risk) is related to interpersonal problem-solving skills, executive function and learning potential in a sample of preadolescents controlling age, sex, total IQ, verbal comprehension ability and the classroom influences. The participants were 40 children, 23 boys and 17 girls between the ages of 7 and 12, twenty of which had a record on file with the Social and Childhood Protection Services of Information deleted to maintain the integrity of the review process, and therefore, a high family risk situation. The other 20 participants had a low family risk situation. Results show that the preadolescents from high family risk performed worse on interpersonal solving-problem skills and executive function (p family risk. These results highlight the negative effects of high family risk situation in preadolescents and give value of taking into account protective factors such as learning potential when assessing preadolescents from high family risk.
Exact time-dependent exchange-correlation potentials for strong-field electron dynamics
International Nuclear Information System (INIS)
Lein, Manfred; Kuemmel, Stephan
2005-01-01
By solving the time-dependent Schroedinger equation and inverting the time-dependent Kohn-Sham scheme we obtain the exact time-dependent exchange-correlation potential of density-functional theory for the strong-field dynamics of a correlated system. We demonstrate that essential features of the exact exchange-correlation potential can be related to derivative discontinuities in stationary density-functional theory. Incorporating the discontinuity in a time-dependent density-functional calculation greatly improves the description of the ionization process
Off disk-center potential field calculations using vector magnetograms
Venkatakrishnan, P.; Gary, G. Allen
1989-01-01
A potential field calculation for off disk-center vector magnetograms that uses all the three components of the measured field is investigated. There is neither any need for interpolation of grid points between the image plane and the heliographic plane nor for an extension or a truncation to a heliographic rectangle. Hence, the method provides the maximum information content from the photospheric field as well as the most consistent potential field independent of the viewing angle. The introduction of polarimetric noise produces a less tolerant extrapolation procedure than using the line-of-sight extrapolation, but the resultant standard deviation is still small enough for the practical utility of this method.
Solving Schwinger-Dyson equations by truncation in zero-dimensional scalar quantum field theory
International Nuclear Information System (INIS)
Okopinska, A.
1991-01-01
Three sets of Schwinger-Dyson equations, for all Green's functions, for connected Green's functions, and for proper vertices, are considered in scalar quantum field theory. A truncation scheme applied to the three sets gives three different approximation series for Green's functions. For the theory in zero-dimensional space-time the results for respective two-point Green's functions are compared with the exact value calculated numerically. The best convergence of the truncation scheme is obtained for the case of proper vertices
Action potential propagation: ion current or intramembrane electric field?
Martí, Albert; Pérez, Juan J; Madrenas, Jordi
2018-01-01
The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.
A regularization method for extrapolation of solar potential magnetic fields
Gary, G. A.; Musielak, Z. E.
1992-01-01
The mathematical basis of a Tikhonov regularization method for extrapolating the chromospheric-coronal magnetic field using photospheric vector magnetograms is discussed. The basic techniques show that the Cauchy initial value problem can be formulated for potential magnetic fields. The potential field analysis considers a set of linear, elliptic partial differential equations. It is found that, by introducing an appropriate smoothing of the initial data of the Cauchy potential problem, an approximate Fourier integral solution is found, and an upper bound to the error in the solution is derived. This specific regularization technique, which is a function of magnetograph measurement sensitivities, provides a method to extrapolate the potential magnetic field above an active region into the chromosphere and low corona.
Kraus, Robert H S; van Hooft, Pim; Waldenström, Jonas; Latorre-Margalef, Neus; Ydenberg, Ronald C; Prins, Herbert H T
2011-08-02
Avian Influenza Viruses (AIVs) infect many mammals, including humans(1). These AIVs are diverse in their natural hosts, harboring almost all possible viral subtypes(2). Human pandemics of flu originally stem from AIVs(3). Many fatal human cases during the H5N1 outbreaks in recent years were reported. Lately, a new AIV related strain swept through the human population, causing the 'swine flu epidemic'(4). Although human trading and transportation activity seems to be responsible for the spread of highly pathogenic strains(5), dispersal can also partly be attributed to wild birds(6, 7). However, the actual reservoir of all AIV strains is wild birds. In reaction to this and in face of severe commercial losses in the poultry industry, large surveillance programs have been implemented globally to collect information on the ecology of AIVs, and to install early warning systems to detect certain highly pathogenic strains(8-12). Traditional virological methods require viruses to be intact and cultivated before analysis. This necessitates strict cold chains with deep freezers and heavy biosafety procedures to be in place during transport. Long-term surveillance is therefore usually restricted to a few field stations close to well equipped laboratories. Remote areas cannot be sampled unless logistically cumbersome procedures are implemented. These problems have been recognised(13, 14) and the use of alternative storage and transport strategies investigated (alcohols or guanidine)(15-17). Recently, Kraus et al.(18) introduced a method to collect, store and transport AIV samples, based on a special filter paper. FTA cards(19) preserve RNA on a dry storage basis(20) and render pathogens inactive upon contact(21). This study showed that FTA cards can be used to detect AIV RNA in reverse-transcription PCR and that the resulting cDNA could be sequenced and virus genes and determined. In the study of Kraus et al.(18) a laboratory isolate of AIV was used, and samples were handled
Generating functionals for quantum field theories with random potentials
International Nuclear Information System (INIS)
Jain, Mudit; Vanchurin, Vitaly
2016-01-01
We consider generating functionals for computing correlators in quantum field theories with random potentials. Examples of such theories include cosmological systems in context of the string theory landscape (e.g. cosmic inflation) or condensed matter systems with quenched disorder (e.g. spin glass). We use the so-called replica trick to define two different generating functionals for calculating correlators of the quantum fields averaged over a given distribution of random potentials. The first generating functional is appropriate for calculating averaged (in-out) amplitudes and involves a single replica of fields, but the replica limit is taken to an (unphysical) negative one number of fields outside of the path integral. When the number of replicas is doubled the generating functional can also be used for calculating averaged probabilities (squared amplitudes) using the in-in construction. The second generating functional involves an infinite number of replicas, but can be used for calculating both in-out and in-in correlators and the replica limits are taken to only a zero number of fields. We discuss the formalism in details for a single real scalar field, but the generalization to more fields or to different types of fields is straightforward. We work out three examples: one where the mass of scalar field is treated as a random variable and two where the functional form of interactions is random, one described by a Gaussian random field and the other by a Euclidean action in the field configuration space.
Solving the quasi-static field model of the pulse-line accelerator; relationship to a circuit model
International Nuclear Information System (INIS)
Friedman, Alex
2005-01-01
The Pulse-Line Ion Accelerator (PLIA) is a promising approach to high-gradient acceleration of an ion beam at high line charge density. A recent note by R. J. Briggs suggests that a 'sheath helix' model of such a system can be solved numerically in the quasi-static limit. Such a model captures the correct macroscopic behavior from first principles without the need to time-advance the full Maxwell equations on a grid. This note describes numerical methods that may be used to effect such a solution, and their connection to the circuit model that was described in an earlier note by the author. Fine detail of the fields in the vicinity of the helix wires is not obtained by this approach, but for purposes of beam dynamics simulation such detail is not generally needed
Effective potential for bilocal composite fields and its ambiguity
International Nuclear Information System (INIS)
Muta, T.
1988-01-01
It is discussed that an ambiguity exists in the definition of the effective potential for bilocal composite fields which is an indispensable tool to discuss dynamical symmetry breaking. The ambiguity gives warning to arguments on the stability of ground states based on the curvature of the effective potential
Analytical formulation for φ4 field potential dynamics
International Nuclear Information System (INIS)
Javidan, Kurosh; Ghahraman, Arash
2011-01-01
An analytical model for adding a space dependent potential to the φ 4 field equation of motion is presented, by constructing a collective coordinate system for the solitary solutions of this model. The interaction of φ 4 solitons with a delta function potential barrier and also delta function potential well is investigated. Most of the characters of interaction are derived analytically while they are calculated by other models numerically. We will find that the behaviour of a solitary solution is like a point particle which is moved under the influence of a complicated effective potential. The effective potential is a function of the field initial conditions and also of parameters of the added potential. (author)
Welland, M. J.; Tenuta, E.; Prudil, A. A.
2017-06-01
This article describes a phase-field model for an isothermal multicomponent, multiphase system which avoids implicit interfacial energy contributions by starting from a grand potential formulation. A method is developed for incorporating arbitrary forms of the equilibrium thermodynamic potentials in all phases to determine an explicit relationship between chemical potentials and species concentrations. The model incorporates variable densities between adjacent phases, defect migration, and dependence of internal pressure on object dimensions ranging from the macro- to nanoscale. A demonstrative simulation of an overpressurized nanoscopic intragranular bubble in nuclear fuel migrating to a grain boundary under kinetically limited vacancy diffusion is shown.
Inversion of potential field data using the finite element method on parallel computers
Gross, L.; Altinay, C.; Shaw, S.
2015-11-01
In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.
International Nuclear Information System (INIS)
Phukan, Ananya; Goswami, K. S.; Bhuyan, P. J.
2014-01-01
The electric potential near a wall for a multi-species plasma with volume produced negative ions in presence of axially varying magnetic field is studied following an analytical-numerical approach. A constant negative ion source is assumed throughout the plasma volume, along with finite temperature positive ions and Boltzmann electrons. The particles are assumed to be guided by an open magnetic field that has its maximum at the centre, and field strength decreasing towards the walls. The one dimensional (1D) Poisson equation is derived using an analytical approach, and then solved numerically to study the potential profiles. Effect of (a) negative ion production rate, (b) magnetic field profile, and (c) negative ion temperature on the potential profile has been investigated. A potential peak appears near the wall when the negative ion temperature and density are sufficiently high. Also, the presence of negative ions further decreases the potential in the plasma region for a finite Debye Length (λ D )
Electric Potential and Electric Field Imaging with Applications
Generazio, Ed
2016-01-01
The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
Filament shape versus coronal potential magnetic field structure
Filippov, B.
2016-01-01
Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.
Coppicing potential of Eucalyptus nitens : results from a field survey ...
African Journals Online (AJOL)
In order to determine factors which could have a positive influence on the coppicing potential of Eucalyptus nitens , a field survey was carried out at Draycott, near Estcourt in the KwaZulu-Natal Midlands. Five measures of the ability to coppice (stump survival, height of coppice, number of dominant shoots, coppicing ...
Effective potential in Lorentz-breaking field theory models
Energy Technology Data Exchange (ETDEWEB)
Baeta Scarpelli, A.P. [Centro Federal de Educacao Tecnologica, Nova Gameleira Belo Horizonte, MG (Brazil); Setor Tecnico-Cientifico, Departamento de Policia Federal, Belo Horizonte, MG (Brazil); Brito, L.C.T. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Felipe, J.C.C. [Universidade Federal de Lavras, Departamento de Fisica, Lavras, MG (Brazil); Universidade Federal dos Vales do Jequitinhonha e Mucuri, Instituto de Engenharia, Ciencia e Tecnologia, Veredas, Janauba, MG (Brazil); Nascimento, J.R.; Petrov, A.Yu. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, Paraiba (Brazil)
2017-12-15
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Effective potential in Lorentz-breaking field theory models
International Nuclear Information System (INIS)
Baeta Scarpelli, A.P.; Brito, L.C.T.; Felipe, J.C.C.; Nascimento, J.R.; Petrov, A.Yu.
2017-01-01
We calculate explicitly the one-loop effective potential in different Lorentz-breaking field theory models. First, we consider a Yukawa-like theory and some examples of Lorentz-violating extensions of scalar QED. We observe, for the extended QED models, that the resulting effective potential converges to the known result in the limit in which Lorentz symmetry is restored. Besides, the one-loop corrections to the effective potential in all the cases we study depend on the background tensors responsible for the Lorentz-symmetry violation. This has consequences for physical quantities like, for example, in the induced mass due to the Coleman-Weinberg mechanism. (orig.)
Comparison of potential field solutions for Carrington Rotation 2144
Hayashi, Keiji; Yang, Shangbin; Deng, Yuagyong
2016-02-01
We examined differences among the coronal magnetic field structures derived with the potential field source surface (PFSS) model for Carrington Rotation 2144, from 21 November to 19 December 2013. We used the synoptic maps of solar photospheric magnetic field from four observatories, the Huairou Solar Observing Station (HSOS), Global Oscillation Network Group (GONG), Helioseismic Magnetic Imager (HMI), and Wilcox Solar Observatory (WSO). We tested two smoothing methods, Gaussian and boxcar averaging, and correction of unbalanced net magnetic flux. The solutions of three-dimensional coronal magnetic field are significantly different each other. An open-field region derived with HSOS data agrees best with the corresponding coronal hole observed by Solar Dynamics Observatories/Atmospheric Imaging Assembly, while HMI data yielded best agreements with the near-Earth OMNI database. The GONG data overall gave agreements as good as the HMI. The PFSS calculations using WSO data were least sensitive to the choices we examined in this work. Differences in PFSS solutions using different choices and parameters in smoothing imply that the photospheric magnetic field distributions with size of several degrees at midlatitude and low-latitude regions can be decisive, at least, in the examined period. To better determine the global solar corona, therefore, further evaluation of influences from compact bipolar magnetic field is needed.
Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of
Plattner, Alain; Simons, Frederik J.
2017-10-01
When modelling satellite data to recover a global planetary magnetic or gravitational potential field, the method of choice remains their analysis in terms of spherical harmonics. When only regional data are available, or when data quality varies strongly with geographic location, the inversion problem becomes severely ill-posed. In those cases, adopting explicitly local methods is to be preferred over adapting global ones (e.g. by regularization). Here, we develop the theory behind a procedure to invert for planetary potential fields from vector observations collected within a spatially bounded region at varying satellite altitude. Our method relies on the construction of spatiospectrally localized bases of functions that mitigate the noise amplification caused by downward continuation (from the satellite altitude to the source) while balancing the conflicting demands for spatial concentration and spectral limitation. The `altitude-cognizant' gradient vector Slepian functions (AC-GVSF) enjoy a noise tolerance under downward continuation that is much improved relative to the `classical' gradient vector Slepian functions (CL-GVSF), which do not factor satellite altitude into their construction. Furthermore, venturing beyond the realm of their first application, published in a preceding paper, in the present article we extend the theory to being able to handle both internal and external potential-field estimation. Solving simultaneously for internal and external fields under the limitation of regional data availability reduces internal-field artefacts introduced by downward-continuing unmodelled external fields, as we show with numerical examples. We explain our solution strategies on the basis of analytic expressions for the behaviour of the estimation bias and variance of models for which signal and noise are uncorrelated, (essentially) space- and band-limited, and spectrally (almost) white. The AC-GVSF are optimal linear combinations of vector spherical harmonics
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
Non-potential Field Formation in the X-shaped Quadrupole Magnetic Field Configuration
Energy Technology Data Exchange (ETDEWEB)
Kawabata, Y.; Shimizu, T. [Department of Earth and Planetary Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Inoue, S., E-mail: kawabata.yusuke@ac.jaxa.jp [Max-Planck-Institute for Solar System Research, Justus-von-Liebig-Weg 3 D-37077 Göttingen (Germany)
2017-06-20
Some types of solar flares are observed in X-shaped quadrupolar field configuration. To understand the magnetic energy storage in such a region, we studied non-potential field formation in an X-shaped quadrupolar field region formed in the active region NOAA 11967, which produced three X-shaped M-class flares on 2014 February 2. Nonlinear force-free field modeling was applied to a time series of vector magnetic field maps from the Solar Optical Telescope on board Hinode and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory . Our analysis of the temporal three-dimensional magnetic field evolution shows that the sufficient free energy had already been stored more than 10 hr before the occurrence of the first M-class flare and that the storage was observed in a localized region. In this localized region, quasi-separatrix layers (QSLs) started to develop gradually from 9 hr before the first M-class flare. One of the flare ribbons that appeared in the first M-class flare was co-spatial with the location of the QSLs, suggesting that the formation of the QSLs is important in the process of energy release. These QSLs do not appear in the potential field calculation, indicating that they were created by the non-potential field. The formation of the QSLs was associated with the transverse photospheric motion of the pre-emerged flux and the emergence of a new flux. This observation indicates that the occurrence of the flares requires the formation of QSLs in the non-potential field in which free magnetic energy is stored in advance.
Predicting local field potentials with recurrent neural networks.
Kim, Louis; Harer, Jacob; Rangamani, Akshay; Moran, James; Parks, Philip D; Widge, Alik; Eskandar, Emad; Dougherty, Darin; Chin, Sang Peter
2016-08-01
We present a Recurrent Neural Network using LSTM (Long Short Term Memory) that is capable of modeling and predicting Local Field Potentials. We train and test the network on real data recorded from epilepsy patients. We construct networks that predict multi-channel LFPs for 1, 10, and 100 milliseconds forward in time. Our results show that prediction using LSTM outperforms regression when predicting 10 and 100 millisecond forward in time.
Primordial black holes from polynomial potentials in single field inflation
Hertzberg, Mark P.; Yamada, Masaki
2018-04-01
Within canonical single field inflation models, we provide a method to reverse engineer and reconstruct the inflaton potential from a given power spectrum. This is not only a useful tool to find a potential from observational constraints, but also gives insight into how to generate a large amplitude spike in density perturbations, especially those that may lead to primordial black holes (PBHs). In accord with other works, we find that the usual slow-roll conditions need to be violated in order to generate a significant spike in the spectrum. We find that a way to achieve a very large amplitude spike in single field models is for the classical roll of the inflaton to overshoot a local minimum during inflation. We provide an example of a quintic polynomial potential that implements this idea and leads to the observed spectral index, observed amplitude of fluctuations on large scales, significant PBH formation on small scales, and is compatible with other observational constraints. We quantify how much fine-tuning is required to achieve this in a family of random polynomial potentials, which may be useful to estimate the probability of PBH formation in the string landscape.
Stability Analysis and Variational Integrator for Real-Time Formation Based on Potential Field
Directory of Open Access Journals (Sweden)
Shengqing Yang
2014-01-01
Full Text Available This paper investigates a framework of real-time formation of autonomous vehicles by using potential field and variational integrator. Real-time formation requires vehicles to have coordinated motion and efficient computation. Interactions described by potential field can meet the former requirement which results in a nonlinear system. Stability analysis of such nonlinear system is difficult. Our methodology of stability analysis is discussed in error dynamic system. Transformation of coordinates from inertial frame to body frame can help the stability analysis focus on the structure instead of particular coordinates. Then, the Jacobian of reduced system can be calculated. It can be proved that the formation is stable at the equilibrium point of error dynamic system with the effect of damping force. For consideration of calculation, variational integrator is introduced. It is equivalent to solving algebraic equations. Forced Euler-Lagrange equation in discrete expression is used to construct a forced variational integrator for vehicles in potential field and obstacle environment. By applying forced variational integrator on computation of vehicles' motion, real-time formation of vehicles in obstacle environment can be implemented. Algorithm based on forced variational integrator is designed for a leader-follower formation.
Fuzzy Pheromone Potential Fields for Virtual Pedestrian Simulation
Directory of Open Access Journals (Sweden)
Meriem Mandar
2016-01-01
Full Text Available The study of collective movement of pedestrians is crucial in various situations, such as evacuation of buildings, stadiums, or external events like concerts or public events. In such situations and under panic conditions, several incidents and disasters may arise, resulting in loss of human lives. Hence, the study and modeling of the pedestrians behavior are imperative in both normal and panic situations. In a previous work, we developed a microscopic model for pedestrian movement based on the algorithm of Ant Colonies and the principles of cellular automata. We took advantage of a fuzzy model to better reflect the uncertainty and vagueness of the perception of space to pedestrians, especially to represent the desirability or blurred visibility of virtual pedestrians. This paper uses the mechanism of artificial potential fields. Said fields provide virtual pedestrians with better visibility of their surroundings and its various components (goals and obstacles. The predictions provided by the first-order traffic flow theory are confirmed by the results of the simulation. The advantage of this model lies in the combination of benefits provided by the model of ants and artificial potential fields in a fuzzy modeling, to better understand the perceptions of pedestrians.
Messaoudi, Belkacem; Granjon, Lionel; Mouly, Anne-Marie; Sevelinges, Yannick; Gervais, Remi
2004-01-01
The widely used Pavlovian fear-conditioning paradigms used for studying the neurobiology of learning and memory have mainly used auditory cues as conditioned stimuli (CS). The present work assessed the neural network involved in olfactory fear conditioning, using olfactory bulb stimulation-induced field potential signal (EFP) as a marker of…
Exploring uncertainty in the Earth Sciences - the potential field perspective
Saltus, R. W.; Blakely, R. J.
2013-12-01
Interpretation of gravity and magnetic anomalies is mathematically non-unique because multiple theoretical solutions are possible. The mathematical label of 'non-uniqueness' can lead to the erroneous impression that no single interpretation is better in a geologic sense than any other. The purpose of this talk is to present a practical perspective on the theoretical non-uniqueness of potential field interpretation in geology. There are multiple ways to approach and constrain potential field studies to produce significant, robust, and definitive results. For example, a smooth, bell-shaped gravity profile, in theory, could be caused by an infinite set of physical density bodies, ranging from a deep, compact, circular source to a shallow, smoothly varying, inverted bell-shaped source. In practice, however, we can use independent geologic or geophysical information to limit the range of possible source densities and rule out many of the theoretical solutions. We can further reduce the theoretical uncertainty by careful attention to subtle anomaly details. For example, short-wavelength anomalies are a well-known and theoretically established characteristic of shallow geologic sources. The 'non-uniqueness' of potential field studies is closely related to the more general topic of scientific uncertainty in the Earth sciences and beyond. Nearly all results in the Earth sciences are subject to significant uncertainty because problems are generally addressed with incomplete and imprecise data. The increasing need to combine results from multiple disciplines into integrated solutions in order to address complex global issues requires special attention to the appreciation and communication of uncertainty in geologic interpretation.
Mashood, K. K.; Singh, Vijay A.
2013-01-01
Research suggests that problem-solving skills are transferable across domains. This claim, however, needs further empirical substantiation. We suggest correlation studies as a methodology for making preliminary inferences about transfer. The correlation of the physics performance of students with their performance in chemistry and mathematics in…
Bhatia, Anand
2012-01-01
We study the free-free transition in electron-helium ion in the ground state and embedded in a Debye potential in the presence of an external laser field at very low incident electron energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen as monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser field in a nonperturbative manner by choosing Volkov wave function for it. The scattering wave function for the incident electron on the target embedded in a Debye potential is solved numerically by taking into account the effect of electron exchange. We calculate the laser-assisted differential and total cross sections for free-free transition for absorption/emission of a single photon or no photon exchange. The results will be presented at the conference.
Safari, A.; Sharifi, M. A.; Amjadiparvar, B.
2010-05-01
The GRACE mission has substantiated the low-low satellite-to-satellite tracking (LL-SST) concept. The LL-SST configuration can be combined with the previously realized high-low SST concept in the CHAMP mission to provide a much higher accuracy. The line of sight (LOS) acceleration difference between the GRACE satellite pair is the mostly used observable for mapping the global gravity field of the Earth in terms of spherical harmonic coefficients. In this paper, mathematical formulae for LOS acceleration difference observations have been derived and the corresponding linear system of equations has been set up for spherical harmonic up to degree and order 120. The total number of unknowns is 14641. Such a linear equation system can be solved with iterative solvers or direct solvers. However, the runtime of direct methods or that of iterative solvers without a suitable preconditioner increases tremendously. This is the reason why we need a more sophisticated method to solve the linear system of problems with a large number of unknowns. Multiplicative variant of the Schwarz alternating algorithm is a domain decomposition method, which allows it to split the normal matrix of the system into several smaller overlaped submatrices. In each iteration step the multiplicative variant of the Schwarz alternating algorithm solves linear systems with the matrices obtained from the splitting successively. It reduces both runtime and memory requirements drastically. In this paper we propose the Multiplicative Schwarz Alternating Algorithm (MSAA) for solving the large linear system of gravity field recovery. The proposed algorithm has been tested on the International Association of Geodesy (IAG)-simulated data of the GRACE mission. The achieved results indicate the validity and efficiency of the proposed algorithm in solving the linear system of equations from accuracy and runtime points of view. Keywords: Gravity field recovery, Multiplicative Schwarz Alternating Algorithm, Low
Adanali, Rukiye
2018-01-01
In this study, views of students about the applicability of the digital documentary production through fieldwork model and the effect of it on their problem-solving skills were examined. The study was conducted in Turkey, in 2016-2017 spring term with 15 geography teacher candidates who chosen by convenience sampling method. In this study, within…
Classification of hemispheric monthly mean stratospheric potential vorticity fields
Directory of Open Access Journals (Sweden)
R. Huth
Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.
Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology
Evanescent field: A potential light-tool for theranostics application
Polley, Nabarun; Singh, Soumendra; Giri, Anupam; Pal, Samir Kumar
2014-03-01
A noninvasive or minimally invasive optical approach for theranostics, which would reinforce diagnosis, treatment, and preferably guidance simultaneously, is considered to be major challenge in biomedical instrument design. In the present work, we have developed an evanescent field-based fiber optic strategy for the potential theranostics application in hyperbilirubinemia, an increased concentration of bilirubin in the blood and is a potential cause of permanent brain damage or even death in newborn babies. Potential problem of bilirubin deposition on the hydroxylated fiber surface at physiological pH (7.4), that masks the sensing efficacy and extraction of information of the pigment level, has also been addressed. Removal of bilirubin in a blood-phantom (hemoglobin and human serum albumin) solution from an enhanced level of 77 μM/l (human jaundice >50 μM/l) to ˜30 μM/l (normal level ˜25 μM/l in human) using our strategy has been successfully demonstrated. In a model experiment using chromatography paper as a mimic of biological membrane, we have shown efficient degradation of the bilirubin under continuous monitoring for guidance of immediate/future course of action.
International Nuclear Information System (INIS)
Mallick, Ritam
2011-01-01
The Rankine-Hugoniot condition has been solved to study phase transition in an astrophysical scenario mainly in the case of phase transition from a neutron star (NS) to a quark star (QS). The equations of state and temperature play a huge role in determining the nature of the front propagation, which brings about the phase transition in a NS. The shock jump conditions can be solved analytically, but the situation changes drastically by the inclusion of the magnetic field. High magnetic fields, which are always associated with a NS play a huge role in determining the structure and evolution of a NS. So, a magnetic field has been introduced in the shock jump condition in the de Hoffmann-Teller frame. The modified conservation condition for the perpendicular and oblique shocks is obtained in this frame. Numerical solution of the perpendicular shock has been obtained, which shows considerable deviation from the nonmagnetic case. The results show that the magnetic field helps in shock generation. It also indirectly hints at the instability of the matter and thereby the NS for very high magnetic field, implying that NSs can only support a magnetic field of some finite strength.
The local field potential reflects surplus spike synchrony
DEFF Research Database (Denmark)
Denker, Michael; Roux, Sébastien; Lindén, Henrik
2011-01-01
While oscillations of the local field potential (LFP) are commonly attributed to the synchronization of neuronal firing rate on the same time scale, their relationship to coincident spiking in the millisecond range is unknown. Here, we present experimental evidence to reconcile the notions...... of synchrony at the level of spiking and at the mesoscopic scale. We demonstrate that only in time intervals of significant spike synchrony that cannot be explained on the basis of firing rates, coincident spikes are better phase locked to the LFP than predicted by the locking of the individual spikes....... This effect is enhanced in periods of large LFP amplitudes. A quantitative model explains the LFP dynamics by the orchestrated spiking activity in neuronal groups that contribute the observed surplus synchrony. From the correlation analysis, we infer that neurons participate in different constellations...
Inflation from the Higgs field false vacuum with hybrid potential
DEFF Research Database (Denmark)
Masina, I.; Notari, A.
2012-01-01
We have recently suggested [1, 2] that Inflation could have started in a local minimum of the Higgs potential at field values of about 10(15) - 10(17) GeV, which exists for a narrow band of values of the top quark and Higgs masses and thus gives rise to a prediction on the Higgs mass...... we present an alternative possibility with an additional subdominant scalar very weakly coupled to the Higgs, realizing an (inverted) hybrid Inflation scenario. Interestingly, we show that such model has an additional constraint m(H) ..., this selects a narrower range 10(-4) less than or similar to r Higgs mass of about m(H)
PREDICTIVE POTENTIAL FIELD-BASED COLLISION AVOIDANCE FOR MULTICOPTERS
Directory of Open Access Journals (Sweden)
M. Nieuwenhuisen
2013-08-01
Full Text Available Reliable obstacle avoidance is a key to navigating with UAVs in the close vicinity of static and dynamic obstacles. Wheel-based mobile robots are often equipped with 2D or 3D laser range finders that cover the 2D workspace sufficiently accurate and at a high rate. Micro UAV platforms operate in a 3D environment, but the restricted payload prohibits the use of fast state-of-the-art 3D sensors. Thus, perception of small obstacles is often only possible in the vicinity of the UAV and a fast collision avoidance system is necessary. We propose a reactive collision avoidance system based on artificial potential fields, that takes the special dynamics of UAVs into account by predicting the influence of obstacles on the estimated trajectory in the near future using a learned motion model. Experimental evaluation shows that the prediction leads to smoother trajectories and allows to navigate collision-free through passageways.
From neurons to circuits: linear estimation of local field potentials
Rasch, Malte; Logthetis, Nikos K.; Kreiman, Gabriel
2010-01-01
Extracellular physiological recordings are typically separated into two frequency bands: local field potentials (LFPs, a circuit property) and spiking multi-unit activity (MUA). There has been increased interest in LFPs due to their correlation with fMRI measurements and the possibility of studying local processing and neuronal synchrony. To further understand the biophysical origin of LFPs, we asked whether it is possible to estimate their time course based on the spiking activity from the same or nearby electrodes. We used Signal Estimation Theory to show that a linear filter operation on the activity of one/few neurons can explain a significant fraction of the LFP time course in the macaque primary visual cortex. The linear filter used to estimate the LFPs had a stereotypical shape characterized by a sharp downstroke at negative time lags and a slower positive upstroke for positve time lags. The filter was similar across neocortical regions and behavioral conditions including spontaneous activity and visual stimulation. The estimations had a spatial resolution of ~1 mm and a temporal resolution of ~200 ms. By considering a causal filter, we observed a temporal asymmetry such that the positive time lags in the filter contributed more to the LFP estimation than negative time lags. Additionally, we showed that spikes occurring within ~10 ms of spikes from nearby neurons yielded better estimation accuracies than nonsynchronous spikes. In sum, our results suggest that at least some circuit-level local properties of the field potentials can be predicted from the activity of one or a few neurons. PMID:19889990
Potential of carbon nanotube field effect transistors for analogue circuits
Hayat, Khizar
2013-05-11
This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET\\'s potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.
Potential of carbon nanotube field effect transistors for analogue circuits
Hayat, Khizar; Cheema, Hammad; Shamim, Atif
2013-01-01
This Letter presents a detailed comparison of carbon nanotube field effect transistors (CNFETs) and metal oxide semiconductor field effect transistors (MOSFETs) with special focus on carbon nanotube FET's potential for implementing analogue circuits in the mm-wave and sub-terahertz range. The latest CNFET lithographic dimensions place it at-par with complementary metal oxide semiconductor in terms of current handling capability, whereas the forecasted improvement in the lithography enables the CNFETs to handle more than twice the current of MOSFETs. The comparison of RF parameters shows superior performance of CNFETs with a g m , f T and f max of 2.7, 2.6 and 4.5 times higher, respectively. MOSFET- and CNFET-based inverter, three-stage ring oscillator and LC oscillator have been designed and compared as well. The CNFET-based inverters are found to be ten times faster, the ring oscillator demonstrates three times higher oscillation frequency and CNFET-based LC oscillator also shows improved performance than its MOSFET counterpart.
Space-frequency analysis and reduction of potential field ambiguity
Directory of Open Access Journals (Sweden)
A. Rapolla
1997-06-01
Full Text Available Ambiguity of depth estimation of magnetic sources via spectral analysis can be reduced representing its field via a set of space-frequency atoms. This is obtained throughout a continuous wavelet transform using a Morlet analyzing wavelet. In the phase-plane representation even a weak contribution related to deep-seated sources is clearly distinguished with respect a more intense effect of a shallow source, also in the presence of a strong noise. Furthermore, a new concept of local power spectrum allows the depth to both the sources to be correctly interpreted. Neither result can be provided by standard Fourier analysis. Another method is proposed to reduce ambiguity by inversion of potential field data lying along the vertical axis. This method allows a depth resolution to gravity or the magnetic methods and below some conditions helps to reduce their inherent ambiguity. Unlike the case of monopoles, inversion of a vertical profile of gravity data above a cubic source gives correct results for the cube side and density.
Potential vorticity field in the Bay of Bengal during southwest monsoon
Digital Repository Service at National Institute of Oceanography (India)
Murty, V.S.N.; Rao, D.P.
theta), potential vorticity distribution is complex due to wind and freshwater forcings. The beta -effect dominates the potential vorticity field on 26.9 sigma theta isopycnal. The field of potential vorticity closely follows that of circulation...
International Nuclear Information System (INIS)
Dong Shihai; Gonzalez-Cisneros, A.
2008-01-01
A new exact quantization rule simplifies the calculation of the energy levels for the exactly solvable quantum system. In this work we calculate the energy levels of the Schroedinger equation with the hyperbolic potential by this quantization rule. The corresponding eigenfunction is also derived for completeness. The second Poeschl-Teller like potential case is also carried out
The Indian Ocean nodule field: Geology and resource potential
Digital Repository Service at National Institute of Oceanography (India)
Mukhopadhyay, R.; Ghosh, A; Iyer, S.D.
This book briefly accounts for the physiography, geology, biology, physics and chemistry of the nodule field, and discusses in detail the aspects of structure, tectonic and volcanism in the field. The role of the ocean floor sediment that hosts...
Kapranov, Sergey V.; Kouzaev, Guennadi A.
2018-01-01
Variations of effective diffusion coefficient of polar molecules exposed to microwave electric fields in a surface potential are studied by solving coupled stochastic differential equations of motion with a deterministic component of the surface force. Being an essential tool for the simulation interpretation, a theoretical approach to effective diffusion in surface potential is first developed. The effective diffusion coefficient is represented as the product of the normal diffusion coefficient and potential-dependent correction function, whose temperature dependence is close to the Arrhenius form. The analytically found zero-diffusion condition defines the state of thermal equilibrium at the surface. The diffusion of a water-like dipole molecule in the potential of graphite surface is simulated in the field-free conditions and in the presence of the alternating electric fields of various magnitude intensities and frequencies. Temperature dependence of the correction function exhibits field-induced variations of the effective Lennard-Jones energy parameter. It demonstrates maximum departure from the zero-field value at certain frequencies and intensities, which is associated with variations in the rotational dynamics. A concept of the amplitude-frequency resonance put forward to interpret the simulation results is explained using a heuristic reasoning and is corroborated by semi-quantitative considerations in terms of the Dissado-Hill cluster theory of dielectric relaxation.
Czech Academy of Sciences Publication Activity Database
Doležel, Ivo; Kropík, P.; Ulrych, B.
2013-01-01
Roč. 219, č. 13 (2013), s. 7159-7169 ISSN 0096-3003 R&D Projects: GA ČR GA102/09/1305 Grant - others:GA MŠk(CZ) MEB051041 Institutional support: RVO:61388998 Keywords : induction heating * electric field * temperature field Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.600, year: 2013 http://www.sciencedirect.com/science/article/pii/S0096300311010824
Energy Technology Data Exchange (ETDEWEB)
Miyawaki, Shun; Nozawa, Satoshi [Department of Science, Ibaraki University, Mito, Ibaraki 310-8512 (Japan); Iwai, Kazumasa; Shibasaki, Kiyoto [Nobeyama Solar Radio Observatory, National Astronomical Observatory of Japan, Minamimaki, Nagano 384-1305 (Japan); Shiota, Daikou, E-mail: shunmi089@gmail.com [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601 (Japan)
2016-02-10
We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only the radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.
Potential field signatures along the Zagros collision zone in Iran
Abedi, Maysam; Fournier, Dominique; Devriese, Sarah G. R.; Oldenburg, Douglas W.
2018-01-01
The Zagros orogenic belt, known as an active fold-thrust belt, was formed in southwestern Iran due to the convergence of the Arabian and Eurasian plates. In this study, potential field data are inverted in 3D to image the variations of magnetic susceptibility and density contrast along the collision zone, resulting in better tectonic understanding of the studied region. Geophysical data measured by airborne magnetic and ground-based gravity systems are used to construct an integrated model that facilitates the interpretations of various tectonic zones across a 450-km line. This line intersects the main structural units from the SW portion of the Zagros belt. The constructed model reveals a contrast that indicates the transition between the two continental plates coinciding with the western boundaries of the Sanandaj-Sirjan Zone (SSZ) at the Main Zagros Thrust (MZT) fault. The subduction of the Arabian continental crust below the Iranian one is evident because of its lower susceptibility property and alternating sequence of high and low density regions. Higher susceptibility, magnetic remanence and density are the mainstays of the Urumieh-Dokhtar Magmatic Assemblage (UDMA) zone at the NE of the studied route, whereas lower values of these properties correspond to (1) the thin massive Tertiary-Neogene and Quaternary sediments of the central domain (CD) zone, and (2) the thick sedimentary and salt intrusion cover over the Zagros Fold-and-Thrust belt (ZFTB). Higher density of regions in the Arabian crust below the ZFTB implies that fault activities have caused significant vertical displacement of the basement. Finally, a simplified geological model is presented based upon the inversions of the geophysical data, in which the main geological units are divided along the studied route.
Seismic and potential field studies over the East Midlands
Kirk, Wayne John
A seismic refraction profile was undertaken to investigate the source of an aeromagnetic anomaly located above the Widmerpool Gulf, East Midlands. Ten shots were fired into 51 stations at c. 1.5km spacing in a 70km profile during 41 days recording. The refraction data were processed using standard techniques to improve the data quality. A new filtering technique, known as Correlated Adaptive Noise Cancellation was tested on synthetic data and successfully applied to controlled source and quarry blast data. Study of strong motion data reveals that the previous method of site calibration is invalid. A new calibration technique, known as the Scaled Amplitude method is presented to provide safer charge size estimation. Raytrace modelling of the refraction data and two dimensional gravity interpretation confirms the presence of the Widmerpool Gulf but no support is found for the postulated intrusion. Two dimensional magnetic interpretation revealed that the aeromagnetic anomaly could be modelled with a Carboniferous igneous source. A Lower Palaeozoic refractor with a velocity of 6.0 km/s is identified at a maximum depth of c. 2.85km beneath the Widmerpool Gulf. Carboniferous and post-Carboniferous sediments within the gulf have velocities between 2.6-5.5 km/s with a strong vertical gradient. At the gulf margins, a refractor with a constant velocity of 5.2 km/s is identified as Dinantian limestone. A low velocity layer of proposed unaltered Lower Palaeozoics is identified beneath the limestone at the eastern edge of the Derbyshire Dome. The existence and areal extent of this layer are also determined from seismic reflection data. Image analysis of potential field data, presents a model identifying 3 structural provinces, the Midlands Microcraton, the Welsh and English Caledonides and a central region of complex linears. This model is used to explain the distribution of basement rocks determined from seismic and gravity profiles.
Low and High-Frequency Field Potentials of Cortical Networks ...
Neural networks grown on microelectrode arrays (MEAs) have become an important, high content in vitro assay for assessing neuronal function. MEA experiments typically examine high- frequency (HF) (>200 Hz) spikes, and bursts which can be used to discriminate between different pharmacological agents/chemicals. However, normal brain activity is additionally composed of integrated low-frequency (0.5-100 Hz) field potentials (LFPs) which are filtered out of MEA recordings. The objective of this study was to characterize the relationship between HF and LFP neural network signals, and to assess the relative sensitivity of LFPs to selected neurotoxicants. Rat primary cortical cultures were grown on glass, single-well MEA chips. Spontaneous activity was sampled at 25 kHz and recorded (5 min) (Multi-Channel Systems) from mature networks (14 days in vitro). HF (spike, mean firing rate, MFR) and LF (power spectrum, amplitude) components were extracted from each network and served as its baseline (BL). Next, each chip was treated with either 1) a positive control, bicuculline (BIC, 25μM) or domoic acid (DA, 0.3μM), 2) or a negative control, acetaminophen (ACE, 100μM) or glyphosate (GLY, 100μM), 3) a solvent control (H2O or DMSO:EtOH), or 4) a neurotoxicant, (carbaryl, CAR 5, 30μM ; lindane, LIN 1, 10μM; permethrin, PERM 25, 50μM; triadimefon, TRI 5, 65μM). Post treatment, 5 mins of spontaneous activity was recorded and analyzed. As expected posit
Wang, P.; Caldwell, M.
2012-12-01
Coastal Florida offers a unique setting for the facilitation of learning about a variety of modern sedimentary environments. Despite the conflicting concept of "virtual" and "actual" field trip, and the uncertainties associated with the implementation and effectiveness, virtual trips provide likely the only way to reach a large diversified student population and eliminate travel time and expenses. In addition, with rapidly improving web and visualization technology, field trips can be simulated virtually. It is therefore essential to systematically develop and assess the educational effectiveness of virtual field trips. This project is developing, implementing, and assessing a series of virtual field trips for teaching undergraduate sedimentary geology at a large four-year research university and introductory geology at a large two-year community college. The virtual field trip is based on a four-day actual field trip for a senior level sedimentary geology class. Two versions of the virtual field trip, one for advanced class and one for introductory class, are being produced. The educational outcome of the virtual field trip will be compared to that from actual field trip. This presentation summarizes Year 1 achievements of the three-year project. The filming, editing, and initial production of the virtual field trip have been completed. Formative assessments were conducted by the Coalition for Science Literacy at the University of South Florida. Once tested and refined, the virtual field trips will be disseminated through broadly used web portals and workshops at regional and national meetings.
Dual-well potential field function for articulated manipulator trajectory planning
Directory of Open Access Journals (Sweden)
Ahmed Badawy
2016-06-01
Full Text Available A new attractive potential field function is proposed in this paper for manipulator trajectory planning. Existing attractive potential field constructs a global minimum through which maneuvering objects move down the gradient of the potential field toward this global minimum. The proposed method constructs a potential field with two minima. The purpose of these two minima is to create a dual attraction between links rather than affecting each link by the preceding one through kinematic constraints.
Ovsyannikov, A. D.; Kozynchenko, S. A.; Kozynchenko, V. A.
2017-12-01
When developing a particle accelerator for generating the high-precision beams, the injection system design is of importance, because it largely determines the output characteristics of the beam. At the present paper we consider the injection systems consisting of electrodes with given potentials. The design of such systems requires carrying out simulation of beam dynamics in the electrostatic fields. For external field simulation we use the new approach, proposed by A.D. Ovsyannikov, which is based on analytical approximations, or finite difference method, taking into account the real geometry of the injection system. The software designed for solving the problems of beam dynamics simulation and optimization in the injection system for non-relativistic beams has been developed. Both beam dynamics and electric field simulations in the injection system which use analytical approach and finite difference method have been made and the results presented in this paper.
Roshid, Harun-Or-; Akbar, M Ali; Alam, Md Nur; Hoque, Md Fazlul; Rahman, Nizhum
2014-01-01
In this article, a new extended (G'/G) -expansion method has been proposed for constructing more general exact traveling wave solutions of nonlinear evolution equations with the aid of symbolic computation. In order to illustrate the validity and effectiveness of the method, we pick the (3 + 1)-dimensional potential-YTSF equation. As a result, abundant new and more general exact solutions have been achieved of this equation. It has been shown that the proposed method provides a powerful mathematical tool for solving nonlinear wave equations in applied mathematics, engineering and mathematical physics.
Pseudo-invariant Eigen-Operator Method for Solving Field-Intensity-Dependent Jaynes-Cummings Model
International Nuclear Information System (INIS)
Yu Taxi; Fan Hongyi
2010-01-01
By using the pseudo invariant eigen-operator method we analyze the field-intensity-dependent Jaynes-Gumming (JC) model. The pseudo-invariant eigen-operator is found in terms of the supersymmetric generators. The energy-level gap of this JC Hamiltonian is derived. This approach seems concise. (general)
Second vertical derivative of potential fields using an adaptation of ...
African Journals Online (AJOL)
The second vertical derivative of magnetic fields is commonly used for resolution of anomalies in gravity and magnetic fields. It is also commonly used as an aid to geologic mapping i.e. for the delineation of geological discontinuities in the subsurface. Frequency domain methods for calculating second vertical derivatives ...
Sayed, Sadeed Bin
2015-05-05
A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.
Sayed, Sadeed Bin; Ulku, Huseyin; Bagci, Hakan
2015-01-01
A time domain electric field volume integral equation (TD-EFVIE) solver is proposed for characterizing transient electromagnetic wave interactions on high-contrast dielectric scatterers. The TD-EFVIE is discretized using the Schaubert- Wilton-Glisson (SWG) and approximate prolate spherical wave (APSW) functions in space and time, respectively. The resulting system of equations can not be solved by a straightforward application of the marching on-in-time (MOT) scheme since the two-sided APSW interpolation functions require the knowledge of unknown “future” field samples during time marching. Causality of the MOT scheme is restored using an extrapolation technique that predicts the future samples from known “past” ones. Unlike the extrapolation techniques developed for MOT schemes that are used in solving time domain surface integral equations, this scheme trains the extrapolation coefficients using samples of exponentials with exponents on the complex frequency plane. This increases the stability of the MOT-TD-EFVIE solver significantly, since the temporal behavior of decaying and oscillating electromagnetic modes induced inside the scatterers is very accurately taken into account by this new extrapolation scheme. Numerical results demonstrate that the proposed MOT solver maintains its stability even when applied to analyzing wave interactions on high-contrast scatterers.
International Nuclear Information System (INIS)
Aspinall, J.
1982-01-01
A computational method was developed which alleviates the need for lengthy parametric scans as part of a design process. The method makes use of a least squares algorithm to find the optimal value of a parameter vector. Optimal is defined in terms of a utility function prescribed by the user. The placement of the vertical field coils of a torsatron is such a non linear problem
International Nuclear Information System (INIS)
Galilo, Bogdan V.; Nedelko, Sergei N.
2011-01-01
The one-loop quark contribution to the QCD effective potential for the homogeneous Abelian gluon field in the presence of an external strong electromagnetic field is evaluated. The structure of extrema of the potential as a function of the angles between chromoelectric, chromomagnetic, and electromagnetic fields is analyzed. In this setup, the electromagnetic field is considered as an external one while the gluon field represents domain structured nonperturbative gluon configurations related to the QCD vacuum in the confinement phase. Two particularly interesting gluon configurations, (anti-)self-dual and crossed orthogonal chromomagnetic and chromoelectric fields, are discussed specifically. Within this simplified framework it is shown that the strong electromagnetic fields can play a catalyzing role for a deconfinement transition. At the qualitative level, the present consideration can be seen as a highly simplified study of an impact of the electromagnetic fields generated in relativistic heavy ion collisions on the strongly interacting hadronic matter.
Directory of Open Access Journals (Sweden)
2006-01-01
Full Text Available In the solution of boundary value problems, usually zero eigenvalue is ignored. This case also happens in calculating the eigenvalues of matrices, so that we would often like to find the nonzero solutions of the linear system A X = λ X when λ ≠ 0 . But λ = 0 implies that det A = 0 for X ≠ 0 and then the rank of matrix A is reduced at least one degree. This comment can similarly be stated for boundary value problems. In other words, if at least one of the eigens of equations related to the main problem is considered zero, then one of the solutions will be specified in advance. By using this note, first we study a class of special functions and then apply it for the potential, heat, and wave equations in spherical coordinate. In this way, some practical examples are also given.
SPECIFICITY OF THE PROJECTIVE FIELD: REVERIES AND TRANSFORMATIVE POTENTIALITIES
Directory of Open Access Journals (Sweden)
Tiziana Sola
2014-01-01
Full Text Available This article suggests a reading of the projectives Methods in Bionian key, with particular reference to the bionian elaboration by Antonino Ferro, who substantially considers the patient’s associative flows as forms of the oneiric. The projective situation also represents a place of induction to reverie, in resonance with the concept of projective field, the peculiarity of which lie in the introduction of the element “third”, i.e. the test material.Keywords: Projective methods - Projective field – induction to reverie – activity of symbolization
LEPS potential for H3 from force field data
International Nuclear Information System (INIS)
Varandas, A.J.C.
1979-01-01
A new potential energy surface for H 3 of the London--Eyring--Polanyi--Sato type has been obtained which reproduces the best available estimates for the geometry, classical barrier height, and quadratic force constants of the D/sub infinityh/ saddle point. Other attributes of the surface, e.g., minimum energy profile for the exchange process, spherically averaged potential V 0 , and leading anisotropic potential V 2 , are also shown to be in good agreement with the best available estimates. The simplicity of its functional form further commends it for future dynamical studies
Derivative expansions of renormaliztion group effective potentials for φ4 field theories
International Nuclear Information System (INIS)
Shepard, J.R.; McNeil, J.A.
1995-01-01
We approximate an exact Renormalization Group (RG) equation for the flow of the effective action of φ 4 field theories by including next-to-leading order (NLO) terms in a derivative expansion. This level of approximation allows us to treat effects of wavefunction renormalization which are beyond the scope of the leading order (LO) formulation. We compare calculations based on a open-quote latticized close quotes version of our RG equation in 3 Euclidean dimensions directly with Monte Carlo (MC) results and find excellent overall agreement as well as substantial improvement over LO calculations. We solve the continuum form of our equation to find the Wilson fixed point and determine the critical exponent η (0.046). We also find the critical exponents ν (0.666) and ω (0.735). These latter two are in much improved agreement with open-quote world's bestclose quotes values com- pared to those obtained at LO (where no prediction for η is possible). We also find that the open-quote universal potential close-quote determined via MC methods by Tsypin can be understood quantitatively using our NLO RG equations. Careful analysis shows that ambiguities which plague open-quote smooth cutoffclose quotes formulations do not arise with our RG equations
The vicious cycle of Slovenian book use and the potential role of public libraries in solving it
Directory of Open Access Journals (Sweden)
Teja Zorko
2007-01-01
Full Text Available The use of books in Slovenia is marked with an insufficient bookstore network and with a well developed network of public libraries with a large number of loans that supplements a market of cheap paperback books, which is known in large language communities abroad. The resolution on National Program for Culture among the set goals for the improvement of use of books in Slovenia states also encouragement to develop bookstore network, equally divided across the entire Slovenian cultural area, with which the formation of bookstore corners in the framework of already existing public cultural institutions is proposed. From 2003, Ministry of Culture is supporting the good bookstores, but the endeavors haven’t reached the set goals yet. This contribution brings theoretical presumptions of principal thinking on the possibility of directing the libraries in the direction of marketing the books and the findings of a survey conducted among the directors of Slovenian general libraries. The findings show the predominant directors’ opinion on principal usefulness of potential sale of books in libraries, especially for the users. Almost a half of the managers of all Slovenian public libraries in principle support the introduction of book sale in their library if proper conditions would have been set. However, they do not expect any financial benefit from this service.
Predicting Individual Trip Destinations With Artificial Potential Fields.
Zonta, A.; Smit, S.K.; Haasdijk, Evert
2017-01-01
This paper presents a method to model the intended destination of a subject in real time, based on a trace of position information and prior knowledge of possible destinations. In contrast to most work in this field, it does so without the need for prior analysis of habitual travel patterns. The
International Nuclear Information System (INIS)
Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa
2015-01-01
We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well
SPECIFICITY OF THE PROJECTIVE FIELD: REVERIES AND TRANSFORMATIVE POTENTIALITIES
Tiziana Sola
2014-01-01
This article suggests a reading of the projectives Methods in Bionian key, with particular reference to the bionian elaboration by Antonino Ferro, who substantially considers the patient’s associative flows as forms of the oneiric. The projective situation also represents a place of induction to reverie, in resonance with the concept of projective field, the peculiarity of which lie in the introduction of the element “third”, i.e. the test material.Keywords: Projective methods - Projective fi...
Metastability of Reversible Random Walks in Potential Fields
Landim, C.; Misturini, R.; Tsunoda, K.
2015-09-01
Let be an open and bounded subset of , and let be a twice continuously differentiable function. Denote by the discretization of , , and denote by the continuous-time, nearest-neighbor, random walk on which jumps from to at rate . We examine in this article the metastable behavior of among the wells of the potential F.
Ferrante, G.; Zarcone, M.; Nuzzo, S.; McDowell, M. R. C.
1982-05-01
Expressions are obtained for the total cross sections for scattering of a charged particle by a potential in the presence of a static uniform magnetic field and a radiation field of arbitrary polarization. For a Coulomb field this is closely related to the time reverse of photoionization of a neutral atom in a magnetic field, including multiphoton effects off-resonance. The model is not applicable when the radiation energy approaches one of the quasi-Landau state separations. The effects of radiation field polarization are examined in detail.
Improved effective-potential formalism for composite fields
International Nuclear Information System (INIS)
Banks, T.; Raby, S.
1976-01-01
We develop an effective-potential formalism for studying dynamical symmetry breaking. The potential that we calculate is single-valued and bounded from below. Our formalism incorporates a stability criterion for deciding whether the broken-symmetry solution to the theory is the physical one. In lowest-order calculations in gauge theories we find that the asymmetric theory will be stable if and only if a composite Goldstone boson can be bound. Our conclusion is that in the weak-coupling approximation there is no dynamical spontaneous breakdown in gauge theories. We then use the renormalization group to argue that, if spontaneous breakdown occurs at all, it must also occur for arbitrarily weak coupling. The renormalization group also provides us with evidence that dynamical symmetry breakdown does not occur in infrared-stable theories
Potential Magnetic Field around a Helical Flux-rope Current Structure in the Solar Corona
Petrie, G. J. D.
2007-01-01
We consider the potential magnetic field associated with a helical electric line current flow, idealizing the near-potential coronal field within which a highly localized twisted current structure is embedded. It is found that this field has a significant axial component off the helical magnetic axis where there is no current flow, such that the flux winds around the axis. The helical line current field, in including the effects of flux rope writhe, is therefore more topologically complex tha...
Flat structure and potential vector fields related with algebraic solutions to Painlevé VI equation
Directory of Open Access Journals (Sweden)
Mitsuo Kato
2018-01-01
Full Text Available A potential vector field is a solution of an extended WDVV equation which is a generalization of a WDVV equation. It is expected that potential vector fields corresponding to algebraic solutions of Painlevé VI equation can be written by using polynomials or algebraic functions explicitly. The purpose of this paper is to construct potential vector fields corresponding to more than thirty non-equivalent algebraic solutions.
Introspection in Problem Solving
Jäkel, Frank; Schreiber, Cornell
2013-01-01
Problem solving research has encountered an impasse. Since the seminal work of Newell und Simon (1972) researchers do not seem to have made much theoretical progress (Batchelder and Alexander, 2012; Ohlsson, 2012). In this paper we argue that one factor that is holding back the field is the widespread rejection of introspection among cognitive…
Solving Linear Differential Equations
Nguyen, K.A.; Put, M. van der
2010-01-01
The theme of this paper is to 'solve' an absolutely irreducible differential module explicitly in terms of modules of lower dimension and finite extensions of the differential field K. Representations of semi-simple Lie algebras and differential Galo is theory are the main tools. The results extend
New method for solving multidimensional scattering problem
International Nuclear Information System (INIS)
Melezhik, V.S.
1991-01-01
A new method is developed for solving the quantum mechanical problem of scattering of a particle with internal structure. The multichannel scattering problem is formulated as a system of nonlinear functional equations for the wave function and reaction matrix. The method is successfully tested for the scattering from a nonspherical potential well and a long-range nonspherical scatterer. The method is also applicable to solving the multidimensional Schroedinger equation with a discrete spectrum. As an example the known problem of a hydrogen atom in a homogeneous magnetic field is analyzed
Superfield approach to calculation of effective potential in supersymmetric field theories
International Nuclear Information System (INIS)
Bukhbinder, I.L.; Kuzenko, S.M.; Yarevskaya, Zh.V.
1993-01-01
Superfield method of computing effective potential in supersymmetric field theories is suggested. The one-loop effective potential of the Wess-Zumino model is found. The prescription for obtaining multi-loop corrections is described
Effects of an electric field on the confined hydrogen atom in a parabolic potential well
International Nuclear Information System (INIS)
Xie Wenfang
2009-01-01
Using the perturbation method, the confined hydrogen atom by a parabolic potential well is investigated. The binding energy of the confined hydrogen atom in a parabolic potential well is calculated as a function of the confined potential radius and as a function of the intensity of an applied electric field. It is shown that the binding energy of the confined hydrogen atom is highly dependent on the confined potential radius and the intensity of an applied electric field.
Potential of Penicillium Species in the Bioremediation Field
Directory of Open Access Journals (Sweden)
Ana Lúcia Leitão
2009-04-01
Full Text Available The effects on the environment of pollution, particularly that caused by various industrial activities, have been responsible for the accelerated fluxes of organic and inorganic matter in the ecosphere. Xenobiotics such as phenol, phenolic compounds, polycyclic aromatic hydrocarbons (PAHs, and heavy metals, even at low concentrations, can be toxic to humans and other forms of life. Many of the remediation technologies currently being used for contaminated soil and water involve not only physical and chemical treatment, but also biological processes, where microbial activity is the responsible for pollutant removal and/or recovery. Fungi are present in aquatic sediments, terrestrial habitats and water surfaces and play a significant part in natural remediation of metal and aromatic compounds. Fungi also have advantages over bacteria since fungal hyphae can penetrate contaminated soil, reaching not only heavy metals but also xenobiotic compounds. Despite of the abundance of such fungi in wastes, penicillia in particular have received little attention in bioremediation and biodegradation studies. Additionally, several studies conducted with different strains of imperfecti fungi, Penicillium spp. have demonstrated their ability to degrade different xenobiotic compounds with low co-substrate requirements, and could be potentially interesting for the development of economically feasible processes for pollutant transformation.
COMPETITIVE STRATEGY IN THE FIELD OF EDUCATIONAL POTENTIAL
Directory of Open Access Journals (Sweden)
Yuri F. Shamrai
2013-01-01
Full Text Available In the course of market reforms in the Russian economy there has been a trend of weakening its educational potential. The problems of access to education and the possibility of payment have exacerbated. Delay in the development of innovative models and raw primitivization economy resulted in decrease of intelligence needs and the demand for qualified professionals. Further, there arose difficulties in connection with the transition to the so-called two-tier education system – «Bachelor – Master.»On the basis of the circumstances mentioned in the article, the improvement of the Russian educational system in the direction of democratization and individualization of the learning process, referring to giving students a choice between different educational systems and modules, and various ways to improve students’ weight (the development of corporate education, the provision of learning opportunities created in the Russian branches of Western universities, the organization of NSO on market principles, the creation of youth discussion clubs, innovative student enterprises, competitions on market principles, the establishment of universities’ student avenues of glory, etc..
Quantum effects in external fields determined by potentials with point-like support
International Nuclear Information System (INIS)
Mamev, S.G.; Trunov, N.N.
1982-01-01
Exact expressions are obtained for the vacuum expectation values of the energy-momentum tensor of a scalar field in external potentials of the delta-function type. The conditions for the onset of the vacuum instability are found and the properties of the resulting condensate are studied. Particle production in the field of a nonstationary delta potential is studied
Thermodynamic potential with condensate fields in an SU(2) model of QCD
International Nuclear Information System (INIS)
Ebert, D.
1996-06-01
We calculate the thermodynamic potential of the quark-gluon plasma in an SU(2) model of QCD, taking into account the gluon condensate configuration with a constant A 4 -potential and a uniform chromomagnetic field H. Within this scheme the interplay of condensate fields, as well as the role of quarks in the possible dynamical stabilization of the system is investigated. (orig.)
Do field-free electromagnetic potentials play a role in biology?
Szasz, A; Vincze, G; Andocs, G; Szasz, O
2009-01-01
All bio-systems are imperfect dielectrics. Their general properties however cannot be described by conventional simple electrodynamics; the system is more complex. A central question in our present paper is centered on a controversial debate of the possible effect of the zero fields (only potentials exist). We show that the identical use of the "field-free," "curl-free," and "force-free" terminologies is incorrect, there have definitely different meanings. It is shown that the effective electro-dynamical parameters that describe and modify living systems are the potentials and not the fields. We discuss how the potentials have a role in biological processes even in field-free cases.
Step-wise potential development across the lipid bilayer under external electric fields
Majhi, Amit Kumar
2018-04-01
Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.
Description of the Magnetic Field and Divergence of Multisolenoid Aharonov-Bohm Potential
Directory of Open Access Journals (Sweden)
Araz R. Aliev
2016-01-01
Full Text Available Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the Aharonov-Bohm differential expression.
Solving Environmental Problems
DEFF Research Database (Denmark)
Ørding Olsen, Anders; Sofka, Wolfgang; Grimpe, Christoph
2017-01-01
for Research and Technological Development (FP7), our results indicate that the problem-solving potential of a search strategy increases with the diversity of existing knowledge of the partners in a consortium and with the experience of the partners involved. Moreover, we identify a substantial negative effect...... dispersed. Hence, firms need to collaborate. We shed new light on collaborative search strategies led by firms in general and for solving environmental problems in particular. Both topics are largely absent in the extant open innovation literature. Using data from the European Seventh Framework Program...
Jongsma, Marijtje L A; Meulenbroek, Ruud G J; Okely, Judith; Baas, C Marjolein; van der Lubbe, Rob H J; Steenbergen, Bert
2013-01-01
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP) study to measure interference effects induced by hand orientation manipulations in a hand laterality judgement task. We hypothesized that this manipulation should only affect kinesthetic MI but not visual MI. The ERPs elicited by rotated hand stimuli contained the classic rotation related negativity (RRN) with respect to palm view stimuli. We observed that laterally rotated stimuli led to a more marked RRN than medially rotated stimuli. This RRN effect was observed when participants had their hands positioned in either a straight (control) or an inward rotated posture, but not when their hands were positioned in an outward rotated posture. Posture effects on the ERP-RRN have not previously been studied. Apparently, a congruent hand posture (hands positioned in an outward rotated fashion) facilitates the judgement of the otherwise more demanding laterally rotated hand stimuli. These ERP findings support a kinesthetic interpretation of MI involved in solving the hand laterality judgement task. The RRN may be used as a non-invasive marker for kinesthetic MI and seems useful in revealing the covert behavior of MI in e.g. rehabilitation programs.
Gerke, Kirill; Vasilyev, Roman; Khirevich, Siarhei; Karsanina, Marina; Collins, Daniel; Korost, Dmitry; Mallants, Dirk
2015-01-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy's equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software's applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
Gerke, Kirill
2015-04-01
In this contribution we introduce a novel free software which solves the Stokes equation to obtain velocity fields for low Reynolds-number flows within externally generated 3D pore geometries. Provided with velocity fields, one can calculate permeability for known pressure gradient boundary conditions via Darcy\\'s equation. Finite-difference schemes of 2nd and 4th order of accuracy are used together with an artificial compressibility method to iteratively converge to a steady-state solution of Stokes\\' equation. This numerical approach is much faster and less computationally demanding than the majority of open-source or commercial softwares employing other algorithms (finite elements/volumes, lattice Boltzmann, etc.) The software consists of two parts: 1) a pre and post-processing graphical interface, and 2) a solver. The latter is efficiently parallelized to use any number of available cores (the speedup on 16 threads was up to 10-12 depending on hardware). Due to parallelization and memory optimization our software can be used to obtain solutions for 300x300x300 voxels geometries on modern desktop PCs. The software was successfully verified by testing it against lattice Boltzmann simulations and analytical solutions. To illustrate the software\\'s applicability for numerous problems in Earth Sciences, a number of case studies have been developed: 1) identifying the representative elementary volume for permeability determination within a sandstone sample, 2) derivation of permeability/hydraulic conductivity values for rock and soil samples and comparing those with experimentally obtained values, 3) revealing the influence of the amount of fine-textured material such as clay on filtration properties of sandy soil. This work was partially supported by RSF grant 14-17-00658 (pore-scale modelling) and RFBR grants 13-04-00409-a and 13-05-01176-a.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant
Sum rules for the ed - NN scattering reactions and microscopic potential field-theoretical approach
International Nuclear Information System (INIS)
Machivariani, A.I.
1996-01-01
The connections between the equal-time commutators of nucleon and photon field-operators and relativistic potential approach of ed - NN scattering equations is established. Namely, it is demonstrated that: 1) equal-time commutator between nucleon field operators generated completeness condition for NN interaction functions, 2) the off-mass shell contributions in γd - NN exchange currents or in microscopic NN potential are determined by equal time commutator between nucleon field operator and photon or nucleon source operators, and 3) equal-time commutators between source operators produce sum rules for same vertex functions and effective potentials [ru
Field-aligned plasma-potential structure formed by local electron cyclotron resonance
International Nuclear Information System (INIS)
Hatakeyama, Rikizo; Kaneko, Toshiro; Sato, Noriyoshi
2001-01-01
The significance of basic experiments on field-aligned plasma-potential structure formed by local electron cyclotron resonance (ECR) is claimed based on the historical development of the investigation on electric double layer and electrostatic potential confinement of open-ended fusion-oriented plasmas. In the presence of a single ECR point in simple mirror-type configurations of magnetic field, a potential dip (thermal barrier) appears around this point, being followed by a subsequent potential hump (plug potential) along a collisionless plasma flow. The observed phenomenon gives a clear-cut physics to the formation of field-aligned plug potential with thermal barrier, which is closely related to the double layer formation triggered by a negative dip. (author)
A short proof that the Coulomb-gauge potentials yield the retarded fields
Energy Technology Data Exchange (ETDEWEB)
Heras, Jose A, E-mail: herasgomez@gmail.co [Universidad Autonoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa, Mexico D. F. 02200 (Mexico)
2011-01-15
A short demonstration that the potentials in the Coulomb gauge yield the retarded electric and magnetic fields is presented. This demonstration is relatively simple and can be presented in an advanced undergraduate course of electromagnetic theory.
A short proof that the Coulomb-gauge potentials yield the retarded fields
International Nuclear Information System (INIS)
Heras, Jose A
2011-01-01
A short demonstration that the potentials in the Coulomb gauge yield the retarded electric and magnetic fields is presented. This demonstration is relatively simple and can be presented in an advanced undergraduate course of electromagnetic theory.
2015-03-01
This report provides information about potential climate change impacts in central New Mexico and their possible implications for the Bureau of Land Management (BLM) Rio Puerco Field Office (RPFO) transportation network. The report considers existing...
Ionization from short-range potential under action of electromagnetic field of complex configuration
Rodionov, V N; Kravtsova, G A
2002-01-01
The transcendental equation for the complex energy is obtained on the basis of the exactly solvable 3D model of the short-acting potential and the Green time function in the intensive electromagnetic field, constituting the combination of the constant magnetic field and the circular-polarization wave field. The electron quasistationary states parameters in the delta-potential with an account of the action of the intensive external field of complex configuration are calculated. The problem on the possibility of stabilizing the bound states decay of the spinor and scalar particles through the intensive magnetic field is clarified. It is established that the obtained results regime the reexamination of the accepted notion on the stabilizing role of the strong magnetic field by the atoms ionization
The potential for satellite and marginal field developments on the Norwegian continental shelf
International Nuclear Information System (INIS)
Raustein, O.; Abrahamsen, L.E.; Einang, G.
1994-01-01
Norway is faced with decreasing field sizes in hostile waters. On the other hand, approximately 620 billion 1993-NOK have been invested in field installations and transport systems. These installations will have significant available processing and transport capacity in the future, and thus represent a valuable infrastructure. This paper describes the resource situation and the installed infrastructure on the Norwegian Continental Shelf. Then the potential of still maintaining a high activity level in field developments is outlined
International Nuclear Information System (INIS)
Gorobets, O. Yu.; Gorobets, Yu. I.; Rospotniuk, V. P.
2015-01-01
An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode
Energy Technology Data Exchange (ETDEWEB)
Gorobets, O. Yu., E-mail: pitbm@ukr.net; Gorobets, Yu. I., E-mail: Gorobets@imag.kiev.ua [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine); Institute of Magnetism NAS of Ukraine and National Academy of Sciences of Ukraine, Vernadsky Avenue, 36-b, Kyiv 03142 (Ukraine); Rospotniuk, V. P. [National Technical University of Ukraine “KPI”, Peremogy Avenue 37, Kyiv 03056 (Ukraine)
2015-08-21
An electric field arises from the influence of a nonuniform static magnetic field on charged colloid particles with magnetic susceptibility different from that of the surrounding liquid. It arises, for example, under the influence of a nonuniform static magnetic field in clusters of electrochemical reaction products created during metal etching, deposition, and corrosion processes without an external electric current passing through an electrolyte near a magnetized electrode surface. The corresponding potential consists of a Nernst potential of inhomogeneous distribution of concentration of colloid particles and a magnetophoretic potential (MPP). This potential has been calculated using a thermodynamic approach based on the equations of thermodynamics of nonequilibrium systems and the Onsager relations for a mass flow of correlated magnetic clusters under a gradient magnetic force in the electrolyte. The conditions under which the MPP contribution to the total electric potential may be significant are discussed with a reference to the example of a corroding spherical ferromagnetic steel electrode.
International Nuclear Information System (INIS)
Kuzio de Naray, Rachel; McGaugh, Stacy S.; Mihos, J. Christopher
2009-01-01
We model the Navarro-Frenk-White (NFW) potential to determine if, and under what conditions, the NFW halo appears consistent with the observed velocity fields of low surface brightness (LSB) galaxies. We present mock DensePak Integral Field Unit (IFU) velocity fields and rotation curves of axisymmetric and nonaxisymmetric potentials that are well matched to the spatial resolution and velocity range of our sample galaxies. We find that the DensePak IFU can accurately reconstruct the velocity field produced by an axisymmetric NFW potential and that a tilted-ring fitting program can successfully recover the corresponding NFW rotation curve. We also find that nonaxisymmetric potentials with fixed axis ratios change only the normalization of the mock velocity fields and rotation curves and not their shape. The shape of the modeled NFW rotation curves does not reproduce the data: these potentials are unable to simultaneously bring the mock data at both small and large radii into agreement with observations. Indeed, to match the slow rise of LSB galaxy rotation curves, a specific viewing angle of the nonaxisymmetric potential is required. For each of the simulated LSB galaxies, the observer's line of sight must be along the minor axis of the potential, an arrangement that is inconsistent with a random distribution of halo orientations on the sky.
Vodovotz, Yoram; Xia, Ashley; Read, Elizabeth L; Bassaganya-Riera, Josep; Hafler, David A; Sontag, Eduardo; Wang, Jin; Tsang, John S; Day, Judy D; Kleinstein, Steven H; Butte, Atul J; Altman, Matthew C; Hammond, Ross; Sealfon, Stuart C
2017-02-01
Emergent responses of the immune system result from the integration of molecular and cellular networks over time and across multiple organs. High-content and high-throughput analysis technologies, concomitantly with data-driven and mechanistic modeling, hold promise for the systematic interrogation of these complex pathways. However, connecting genetic variation and molecular mechanisms to individual phenotypes and health outcomes has proven elusive. Gaps remain in data, and disagreements persist about the value of mechanistic modeling for immunology. Here, we present the perspectives that emerged from the National Institute of Allergy and Infectious Disease (NIAID) workshop 'Complex Systems Science, Modeling and Immunity' and subsequent discussions regarding the potential synergy of high-throughput data acquisition, data-driven modeling, and mechanistic modeling to define new mechanisms of immunological disease and to accelerate the translation of these insights into therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Intense laser field effects on a Woods-Saxon potential quantum well
Restrepo, R. L.; Morales, A. L.; Akimov, V.; Tulupenko, V.; Kasapoglu, E.; Ungan, F.; Duque, C. A.
2015-11-01
This paper presents the results of the theoretical study of the effects of non-resonant intense laser field and electric and magnetic fields on the optical properties in an quantum well (QW) make with Woods-Saxon potential profile. The electric field and intense laser field are applied along the growth direction of the Woods-Saxon quantum well and the magnetic field is oriented perpendicularly. To calculate the energy and the wave functions of the electron in the Woods-Saxon quantum well, the effective mass approximation and the method of envelope wave function are used. The confinement in the Woods-Saxon quantum well is changed drastically by the application of intense laser field or either the effect of electric and magnetic fields. The optical properties are calculated using the compact density matrix.
Particle localization in a double-well potential by pseudo-supersymmetric fields
International Nuclear Information System (INIS)
Bagrov, V. G.; Samsonov, B. F.; Shamshutdinova, V. V.
2011-01-01
We study properties of a particle moving in a double-well potential in the two-level approximation placed in an additional external time-dependent field. Using previously established property (J. Phys. A 41, 244023 (2008)) that any two-level system possesses a pseudo-supersymmetry we introduce the notion of pseudo-supersymmetric field. It is shown that these fields, even if their time dependence is not periodical, may produce the effect of localization of the particle in one of the wells of the double-well potential.
Torkar, K.; Nakamura, R.; Andriopoulou, M.; Giles, B. L.; Jeszenszky, H.; Khotyaintsev, Y. V.; Lindqvist, P.-A.; Torbert, R. B.
2017-12-01
Space missions with sophisticated plasma instrumentation such as Magnetospheric Multiscale, which employs four satellites to explore near-Earth space benefit from a low electric potential of the spacecraft, to improve the plasma measurements and therefore carry instruments to actively control the potential by means of ion beams. Without control, the potential varies in anticorrelation with plasma density and temperature to maintain an equilibrium between the plasma current and the one of photoelectrons produced at the surface and overcoming the potential barrier. A drawback of the controlled, almost constant potential is the difficulty to use it as convenient estimator for plasma density. This paper identifies a correlation between the spacecraft potential and the ambient electric field, both measured by double probes mounted at the end of wire booms, as the main responsible for artifacts in the potential data besides the known effect of the variable photoelectron production due to changing illumination of the surface. It is shown that the effect of density variations is too weak to explain the observed correlation with the electric field and that a correction of the artifacts can be achieved to enable the reconstruction of the uncontrolled potential and plasma density in turn. Two possible mechanisms are discussed: the asymmetry of the current-voltage characteristic determining the probe to plasma potential and the fact that a large equipotential structure embedded in an electric field results in asymmetries of both the emission and spatial distribution of photoelectrons, which results in an increase of the spacecraft potential.
A physics-based potential and electric field model of a nanoscale ...
Indian Academy of Sciences (India)
In this paper, we have developed a physics-based model for surface potential, channel potential, electric field and drain current for AlGaN/GaN high electron mobility transistor with high-K gate dielectric using two-dimensional Poisson equation under full depletion approximation with the inclusion of effect of polarization ...
A physics-based potential and electric field model of a nanoscale ...
Indian Academy of Sciences (India)
... paper, we have developed a physics-based model for surface potential, channel potential, electric field and drain current for AlGaN/GaN high electron mobility transistor with high-K gate dielectric using two-dimensional Poisson equation under full depletion approximation with the inclusion of effect of polarization charges.
Analytic solution of the potential and electric field of a jet type drift chamber
Energy Technology Data Exchange (ETDEWEB)
Weltin, A
1988-02-15
Starting from the known two-dimensional potential of a multiwire proportional chamber, the analytic expressions of the potential and the electric field are derived for a jet type drift chamber with a central wire plane of alternating sense and potential wires. The design goal of any jet chamber, namely the periodicity of the electric drift field, is imposed as a boundary condition at the beginning. In this way, the formulae are short and can be easily evaluated. In particular, expressions are given for the mean potential of the central wire plane, the drift field and the wire surface fields. Moreover, wire cathodes frequently used in jet chambers are described by analytic expressions. For a given drift field the difference of the potential as compared to a continuous metal cathode is presented. These results allowed to construct a two-dimensional computer simulation of the full OPAL jet chamber with no explicit periodicity but all its boundaries. Using field shaping electrodes a geometrically short yet quite satisfactory termination of a sense wire plane is demonstrated. Finally an example is presented, which is calculated in detail.
On the relation between fields and potentials in non abelian Gauge Theories
International Nuclear Information System (INIS)
Bollini, C.G.; Giambiagi, J.J.
1979-01-01
Some examples have been given in the literature of ambiguous gauge fields, i.e. those not having a unique potential (up to a gauge transformation). An example given by Deser and Wilczek is examined and found the condition (for any gauge group) that the group element generating the potentials must satisfy in order for the potentials not to be related by any gauge transformation. In three dimensions (for Su 2 ) there are other families of ambiguous fields characterized by arbitrary unit vector fields n vector (n vector) (n 2 vector =1). The example given by Wu and Yang belongs to a particular family with n vector = n vector. r vector / r vector. The sources of these fields and some interesting relations between them are also found [pt
International Nuclear Information System (INIS)
Wu Lieqin; Tan Zhengzhong
2004-01-01
Based on analyzing the prospecting potential for uranium deposits in Xiazhuang uranium ore field this paper discusses the prospecting for rich uranium deposits and prospecting potential in the region. Research achievements indicate: that the Xiazhuang ore-field is an ore-concentrated area where uranium has been highly enriched, and possesses good prospecting potential and perspective, becoming one of the most important prospecting areas for locating rich uranium deposits in northern Guangdong; that the 'intersection type', the alkaline metasomatic fractured rock type and the vein-group type uranium deposits are main targets and the prospecting direction for future uranium prospecting in this region
International Nuclear Information System (INIS)
Zhang Yun-Peng; Duan Hai-Bin; Zhang Xiang-Yin
2011-01-01
A novel distributed control scheme to generate stable flocking motion for a group of agents is proposed. In this control scheme, a molecular potential field model is applied as the potential field function because of its smoothness and unique shape. The approach of distributed receding horizon control is adopted to drive each agent to find its optimal control input to lower its potential at every step. Experimental results show that this proposed control scheme can ensure that all agents eventually converge to a stable flocking formation with a common velocity and the collisions can also be avoided at the same time. (general)
The Analytical Potential Energy Function of NH Radical Molecule in External Electric Field
International Nuclear Information System (INIS)
Wu Dong-Lan; Tan Bin; Wan Hui-Jun; Xie An-Dong; Ding Da-Jun
2015-01-01
The geometric structures of an NH radical in different external electric fields are optimized by using the density functional B3P86/cc-PV5Z method, and the bond lengths, dipole moments, vibration frequencies and IR spectrum are obtained. The potential energy curves are gained by the CCSD (T) method with the same basis set. These results indicate that the physical property parameters and potential energy curves may change with the external electric field, especially in the reverse direction electric field. The potential energy function of zero field is fitted by the Morse potential, and the fitting parameters are in good accordance with the experimental data. The potential energy functions of different external electric fields are fitted adopting the constructed potential model. The fitted critical dissociation electric parameters are shown to be consistent with the numerical calculation, and the relative errors are only 0.27% and 6.61%, hence the constructed model is reliable and accurate. The present results provide an important reference for further study of the molecular spectrum, dynamics and molecular cooling with Stark effect. (paper)
Chan, A. A.; Ilie, R.; Elkington, S. R.; Albert, J.; Huie, W.
2017-12-01
It has been traditional to separate radiation belt radial-diffusion coefficients into two contributions: an "electrostatic" diffusion coefficient, which is assumed to be due to a potential (non-inductive) electric field, and an "electromagnetic" diffusion coefficient , which is assumed to be due to the combined effect of an inductive electric field and the corresponding time-dependent magnetic field. One difficulty in implementing this separation when using magnetospheric fields obtained from measurements, or from MHD simulations, is that only the total electric field is given; the separation of the electric field into potential and inductive parts is not readily available. In this work we separate the electric field using a numerical method based on the Helmholtz decomposition of the total motional electric field calculated by the BATS-R-US MHD code. The inner boundary for the electric potential is based on the Ridley Ionospheric Model solution and we assume floating boundary conditions in the solar wind. Using different idealized solar wind drivers, including a solar wind density that is oscillating at a single frequency or with a broad spectrum of frequencies, we calculate potential and inductive electric fields, electric and magnetic power spectral densities, and corresponding radial diffusion coefficients. Simulations driven by idealized solar wind conditions show a clear separation of the potential and inductive contributions to the power spectral densities and diffusion coefficients. Simulations with more realistic solar wind drivers are underway to better assess the use of electrostatic and electromagnetic diffusion coefficients in understanding ULF wave-particle interactions in Earth's radiation belts.
International Nuclear Information System (INIS)
Warner, R.C.; Joshi, G.C.
1979-01-01
A simple rule is presented for calculating the contributions to the interaction potentials between constituent particles for a family of multiquark states, due to the presence of a semi-classical gauge field configuration which exists in a single SU(2) subgroup of colour SU(3). In multiquark states beyond the baryon many-body potential terms are found. The static (Wilson loop) limit is sufficient to elucidate the dependence of the potential on the colour structure of the multiquark state
Heavy quark potential in a static and strong homogeneous magnetic field
Energy Technology Data Exchange (ETDEWEB)
Hasan, Mujeeb; Chatterjee, Bhaswar; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)
2017-11-15
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB >> T{sup 2} and eB >> m{sup 2}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (anti Q) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind Q anti Q together. For example, the J/ψ is dissociated at eB ∝ 10 m{sub π}{sup 2} and Υ is dissociated at eB ∝ 100 m{sub π}{sup 2} whereas its excited states, ψ{sup '} and Υ{sup '} are dissociated at smaller magnetic field eB = m{sub π}{sup 2}, 13 m{sub π}{sup 2}, respectively. (orig.)
[Effect of pulse magnetic field on distribution of neuronal action potential].
Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling
2014-08-25
The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.
Potential Risk Assessment of Mountain Torrent Disasters on Sloping Fields in China
GAO, X.
2017-12-01
China's sloping fields have the problems of low production and serious soil erosion, and mountain torrent disasters will bring more serious soil and water loss to traditional extensive exploitation of sloping field resources. In this paper, China's sloping fields were classified into three grades, such as slightly steep, steep and very steep grade. According to the geological hazards prevention and control regulation, the historical data of China's mountain torrent disasters were spatially interpolated and divided into five classes, such as extremely low, low, middle, high and extremely high level. And the risk level map of mountain torrents was finished in ArcGIS. By using overlaying analysis on sloping fields and risk level map, the potential risk regionalization map of sloping fields in various slope grades was obtained finally. The results shows that the very steep and steep sloping fields are mainly distributed in the first or second stage terraces in China. With the increase of hazard risk level, the area of sloping fields decreases rapidly and the sloping fields in extremely low and low risk levels of mountain torrents reach 98.9%. With the increase of slope grade, the area of sloping fields in various risk levels also declines sharply. The sloping fields take up approximately 60 65% and 26 30% in slightly steep and steep grade areas separately at different risk level. The risk regionalization map can provide effective information for returning farmland to forests or grassland and reducing water and soil erosion of sloping fields in the future.
Energy Technology Data Exchange (ETDEWEB)
Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Henney, Carl J.; Arge, C. Nick, E-mail: marion.weinzierl@durham.ac.uk [Air Force Research Lab/Space Vehicles Directorate, 3550 Aberdeen Avenue SE, Kirtland AFB, NM (United States)
2016-05-20
In this paper, we develop a new technique for driving global non-potential simulations of the Sun’s coronal magnetic field solely from sequences of radial magnetic maps of the solar photosphere. A primary challenge to driving such global simulations is that the required horizontal electric field cannot be uniquely determined from such maps. We show that an “inductive” electric field solution similar to that used by previous authors successfully reproduces specific features of the coronal field evolution in both single and multiple bipole simulations. For these cases, the true solution is known because the electric field was generated from a surface flux-transport model. The match for these cases is further improved by including the non-inductive electric field contribution from surface differential rotation. Then, using this reconstruction method for the electric field, we show that a coronal non-potential simulation can be successfully driven from a sequence of ADAPT maps of the photospheric radial field, without including additional physical observations which are not routinely available.
Research in the fields of medicine in Slovenia – research potential, funding, and publications
Directory of Open Access Journals (Sweden)
Stojan Pečlin
2012-09-01
Conclusions: The size of the human research potential in the fields of medicine in Slovenia is modest. The majority of researchers are also engaged in medical practice and education. Consequently, funds from public sources for research per researcher are low. Research fields of medicine primarly require an increase in human research resources, which can then provide a basis for a rise in funding and the impact of its research results becoming comparable to the EU and world averages.
Current-current correlation function in presence of chemical potential and external magnetic field
International Nuclear Information System (INIS)
Apresyan, E.A.
2017-01-01
The (2+1)-dimensional electron system was observed, where relation between the Green functions and conductivity was used. The current-current correlation function Π_μ_ν(B) for the fermion system was calculated in presence of non-quantizing magnetic field B, chemical potential η and gap m. From this function it is possible to obtain the equation for polarization operator calculated without the magnetic field. The result is also applicable for graphene
Energy Technology Data Exchange (ETDEWEB)
Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-07
A numerical algorithm for computing the field components B_{r} and B_{z} and their r and z derivatives with open boundaries in cylindrical coordinates for radially thin solenoids with uniform current density is described in this note. An algorithm for computing the vector potential A_{θ} is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. The (apparently) new feature of the algorithms described in this note applies to cases where the field point is outside of the bore of the solenoid and the field-point radius approaches the solenoid radius. Since the elliptic integrals of the third kind normally used in computing B_{z} and A_{θ} become infinite in this region of parameter space, fields for points with the axial coordinate z outside of the ends of the solenoid and near the solenoid radius are treated by use of elliptic integrals of the third kind of modified argument, derived by use of an addition theorem. Also, the algorithms also avoid the numerical difficulties the textbook solutions have for points near the axis arising from explicit factors of 1/r or 1/r^{2} in the some of the expressions.
An analytical expression of electric potential and field of organic thin film transistors
International Nuclear Information System (INIS)
Pankalla, S; Glesner, M
2012-01-01
The two-dimensional electric potential and field of an organic thin-film transistor (OTFT) is derived by conformal mapping using the Schwarz-Christoffel-transformation of the Poisson equation. In this paper we compare this analytical closed-form solution to field simulation results from Silvaco TCAD. Inter alia the potential close to the surface is calculated and we found excellent accordance to the numerical simulations and thus proofed its usability for charge transport calculations. Thus, it is used for calculation of the drain-source-current in the channel.
Quark number density and susceptibility calculation with one correction in mean field potential
International Nuclear Information System (INIS)
Singh, S. Somorendro
2016-01-01
We calculate quark number density and susceptibility of a model which has one loop correction in mean field potential. The calculation shows continuous increasing in the number density and susceptibility up to the temperature T = 0.4 GeV. Then the value of number density and susceptibility approach to the lattice result for higher value of temperature. The result indicates that the calculated values of the model fit well and the result increase the temperature to reach the lattice data with the one loop correction in the mean field potential. (author)
Motion Planning for Omnidirectional Wheeled Mobile Robot by Potential Field Method
Directory of Open Access Journals (Sweden)
Weihao Li
2017-01-01
Full Text Available In this paper, potential field method has been used to navigate a three omnidirectional wheels’ mobile robot and to avoid obstacles. The potential field method is used to overcome the local minima problem and the goals nonreachable with obstacles nearby (GNRON problem. For further consideration, model predictive control (MPC has been used to incorporate motion constraints and make the velocity more realistic and flexible. The proposed method is employed based on the kinematic model and dynamics model of the mobile robot in this paper. To show the performance of proposed control scheme, simulation studies have been carried to perform the motion process of mobile robot in specific workplace.
Mean Field Limits for Interacting Diffusions in a Two-Scale Potential
Gomes, S. N.; Pavliotis, G. A.
2018-06-01
In this paper, we study the combined mean field and homogenization limits for a system of weakly interacting diffusions moving in a two-scale, locally periodic confining potential, of the form considered in Duncan et al. (Brownian motion in an N-scale periodic potential, arXiv:1605.05854, 2016b). We show that, although the mean field and homogenization limits commute for finite times, they do not, in general, commute in the long time limit. In particular, the bifurcation diagrams for the stationary states can be different depending on the order with which we take the two limits. Furthermore, we construct the bifurcation diagram for the stationary McKean-Vlasov equation in a two-scale potential, before passing to the homogenization limit, and we analyze the effect of the multiple local minima in the confining potential on the number and the stability of stationary solutions.
Dass, Amala; Counsil, Joseph A; Gao, Xuerong; Leventis, Nicholas
2005-06-02
Magnetic fields shift the open circuit potential (OCP) of ferromagnetic electrodes (Fe, Co, and Ni) in corroding solutions. The OCP changes we observe (a) follow the series Fe>Co>Ni; (b) increase with the magnetic flux density; (c) reach a maximum with disk electrodes approximately 1 mm in diameter; and (d) depend on the orientation of the electrode. We report that when the surface of the electrode is oriented parallel (theta = 90 degrees) or perpendicular (theta = 0 degrees) to the magnetic field, the open circuit potential moves in opposite directions (positive and negative, respectively) with the largest changes occurring when the electrode surface is parallel to the magnetic field. Nonconvective sleeve electrodes produce the same behavior. The overall experimental evidence suggests that the magnetic field changes the OCP by modifying the surface concentrations of the paramagnetic participants in the corrosion process of the ferromagnetic electrode by species in solution; this in turn is accomplished by imposing a field-gradient driven mode of mass transfer upon paramagnetic species in solution (magnetophoresis). Simulations of the magnetic field around the ferromagnetic electrode at the two extreme orientations considered here show that in one case (theta = 90 degrees) field gradients actually repel, while in the other case (theta = 0 degrees) they attract paramagnetic species in the vicinity of the electrode.
Effect of an improved molecular potential on strong-field tunneling ionization of molecules
International Nuclear Information System (INIS)
Zhao Songfeng; Jin Cheng; Le, Anh-Thu; Lin, C. D.
2010-01-01
We study the effect of one-electron model potentials on the tunneling ionization rates of molecules in strong fields. By including electron correlation using the modified Leeuwen-Baerends (LB α) model, the binding energies of outer shells of molecules are significantly improved. However, we show that the tunneling ionization rates from the LB α do not differ much from the earlier calculations [Phys. Rev. A 81, 033423 (2010)], in which the local correlation potential was neglected.
Point charge potential and weighting field of a pixel or pad in a plane condenser
Energy Technology Data Exchange (ETDEWEB)
Riegler, W.; Aglieri Rinella, G.
2014-12-11
We derive expressions for the potential of a point charge as well as the weighting potential and weighting field of a rectangular pad for a plane condenser, which are well suited for numerical evaluation. We relate the expressions to solutions employing the method of image charges, which allows discussion of convergence properties and estimation of errors, providing also an illuminating example of a problem with an infinite number of image charges.
Collisional effects on interaction potential in complex plasma in presence of magnetic field
Energy Technology Data Exchange (ETDEWEB)
Bezbaruah, Pratikshya, E-mail: pratphd@tezu.ernet.in; Das, Nilakshi [Department of Physics, Tezpur University, Tezpur, Assam 784028 (India)
2016-04-15
Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.
Collisional effects on interaction potential in complex plasma in presence of magnetic field
International Nuclear Information System (INIS)
Bezbaruah, Pratikshya; Das, Nilakshi
2016-01-01
Interaction potential in complex plasma with streaming ions is derived analytically in presence of ion-neutral collision and magnetic field. The linear dielectric response function obtained describes the behavior of charged micron sized dust particles in strong collisional limit. A new type of repulsive potential is found to be operative among the dust grains apart from the normal Debye–Hückel potential. The amplitude and shielding length involved in the potential are substantially affected by the parameters describing ion cyclotron frequency, collision frequency among ions and neutrals, and ion streaming. It is also observed that the usual mechanism of ion focusing surrounding the grain is inhibited due to collision. As a result, the attractive wake potential structure is destroyed in the ion flow direction. The horizontal interaction involves only Debye–Hückel potential.
Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane
Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas
2011-01-01
The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624
Energy Technology Data Exchange (ETDEWEB)
Anaguano, L.
2005-07-01
the dependence of the solutions on the parameters string length, string radius, and potential strength. The approximation method also is employed to study the supercritical case, in which the bound states become resonances in the antiparticle continuum. The associated tunneling process is studied and the resulting decay lifetime is estimated. Finally, the problem of the vacuum charge and the self-screening of the string is tackled. The vacuum charge is evaluated by summing up the charge densities of all supercritical (quasi-)bound states. This vacuum charge forms the source term of the Poisson equation for the electrostatic potential, which in turn determines the wave functions. The full self consistent problem of the coupled Dirac and electromagnetic fields is not solved. However, we show that the vacuum charge is lage enough to lead to a complete screening of the charged string, in accordance with expectations. (orig.)
A METRIC FOR A CHIRAL POTENTIAL FIELD UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL
Directory of Open Access Journals (Sweden)
Héctor Torres-Silva
2008-11-01
Full Text Available In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential (chiral field. The geometrization shows that such a vector has the same geometrical structure as a gravitational Kerr field. We discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetic-type gauge field which might be identified with a chiral geometrized field. This chiral field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields. As an application of this theory we discuss the morphology of the planets around the sun.En este trabajo se presenta un ejemplo de una métrica especifica que geometriza explícitamente un potencial cuadrivector tipo luz (campo quiral. La geometrización muestra que tal vector tiene la misma estructura geométrica que un campo gravitacional Kerr. Se discute una proposición teórica que un cuerpo rotante genera, su gravitación y el calibre de campo tipo magnético que puede ser identificado con un campo quiral geometrizado. Este campo quiral representa un tipo novedoso de campo que no puede ser identificado con alguno de los campos electromagnéticos conocidos. Como aplicación de esta teoría se discute la morfología de los planetas alrededor del sol.
Note on the evolution of the gravitational potential in Rastall scalar field theories
International Nuclear Information System (INIS)
Fabris, J.C.; Hamani Daouda, M.; Piattella, O.F.
2012-01-01
We investigate the evolution of the gravitational potential in Rastall scalar field theories. In a single component model a consistent perturbation theory, formulated in the Newtonian gauge, is possible only for γ=1, which is the General Relativity limit. On the other hand, the addition of another canonical fluid component allows to consider the case γ≠1.
Solar system tests of scalar field models with an exponential potential
International Nuclear Information System (INIS)
Paramos, J.; Bertolami, O.
2008-01-01
We consider a scenario where the dynamics of a scalar field is ruled by an exponential potential, such as those arising from some quintessence-type models, and aim at obtaining phenomenological manifestations of this entity within our Solar System. To do so, we assume a perturbative regime, derive the perturbed Schwarzschild metric, and extract the relevant post-Newtonian parameters.
Effective potential in N=1, d=4 supergravity coupled to the Volkov-Akulov field
International Nuclear Information System (INIS)
Jasinschi, R.S.; Smith, A.W.
1984-01-01
The only-loop effective potential for N=1, d=4 supergravity theory coupled to the Volkov-Akulov field is calculated. Then it is shown that after an ajustment of some parameters the local supersymmetry is dynamically broken and as a consequence the gravitino acquires mass. (Author) [pt
Leniz, Ane; Zuza, Kristina; Guiasola, Jenaro
2017-01-01
This study examines the causal reasoning that university students use to explain how dc circuits work. We analyze how students use the concepts of electric field and potential difference in their explanatory models of dc circuits, and what kinds of reasoning they use at the macroscopic and microscopic levels in their explanations. This knowledge…
Inversion of potential-field data for layers with uneven thickness
Caratori Tontini, F.; Cocchi, L.; Carmisciano, C.; Stefanelli, P.
2008-01-01
AB: Inversion of large-scale potential-field anomalies, aimed at determining density or magnetization, is usually made in the Fourier domain. The commonly adopted geometry is based on a layer of constant thickness, characterized by a bottom surface at a fixed distance from the top surface.....
Czech Academy of Sciences Publication Activity Database
Nezbeda, Ivo; Moučka, F.; Smith, W.R.
2016-01-01
Roč. 114, č. 11 (2016), s. 1665-1690 ISSN 0026-8976 R&D Projects: GA ČR GA15-19542S Grant - others:NSERC(CA) OGP1041 Institutional support: RVO:67985858 Keywords : force fields * chemical potentials * aqueous electrolytes Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.870, year: 2016
Relating double field theory to the scalar potential of N=2 gauged supergravity
Energy Technology Data Exchange (ETDEWEB)
Blumenhagen, Ralph [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Font, Anamaria [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, 80805 (Germany); Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany); Plauschinn, Erik [Arnold Sommerfeld Center for Theoretical Physics, LMU,Theresienstr. 37, München, 80333 (Germany)
2015-12-18
The double field theory action in the flux formulation is dimensionally reduced on a Calabi-Yau three-fold equipped with non-vanishing type IIB geometric and non-geometric fluxes. First, we rewrite the metric-dependent reduced DFT action in terms of quantities that can be evaluated without explicitly knowing the metric on the Calabi-Yau manifold. Second, using properties of special geometry we obtain the scalar potential of N=2 gauged supergravity. After an orientifold projection, this potential is consistent with the scalar potential arising from the flux-induced superpotential, plus an additional D-term contribution.
Disordered electrical potential observed on the surface of SiO2 by electric field microscopy
International Nuclear Information System (INIS)
GarcIa, N; Yan Zang; Ballestar, A; Barzola-Quiquia, J; Bern, F; Esquinazi, P
2010-01-01
The electrical potential on the surface of ∼300 nm thick SiO 2 grown on single-crystalline Si substrates has been characterized at ambient conditions using electric field microscopy. Our results show an inhomogeneous potential distribution with fluctuations up to ∼0.4 V within regions of 1 μm. The potential fluctuations observed at the surface of these usual dielectric holders of graphene sheets should induce strong variations in the graphene charge densities and provide a simple explanation for some of the anomalous behaviors of the transport properties of graphene.
International Nuclear Information System (INIS)
Wu, Jinghe; Guo, Kangxian; Liu, Guanghui
2014-01-01
Polaron effects on nonlinear optical rectification in asymmetrical Gaussian potential quantum wells are studied by the effective mass approximation and the perturbation theory. The numerical results show that nonlinear optical rectification coefficients are strongly dependent on the barrier hight V 0 of the Gaussian potential quantum wells, the range L of the confinement potential and the electric field F. Besides, the numerical results show that no matter how V 0 , L and F change, taking into consideration polaron effects, the optical rectification coefficients χ 0 (2) get greatly enhanced.
Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields
Energy Technology Data Exchange (ETDEWEB)
Genenko, Yuri A., E-mail: genenko@mm.tu-darmstadt.de; Hirsch, Ofer [Technische Universität Darmstadt, Darmstadt (Germany); Erhart, Paul [Chalmers University of Technology, Gothenburg (Sweden)
2014-03-14
Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO{sub 3} is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.
Effects on functional groups and zeta potential of SAP1pulsed electric field technology.
Liang, Rong; Li, Xuenan; Lin, Songyi; Wang, Jia
2017-01-01
SAP 1 pulsed electric field (PEF) technology. The effects of electric field intensity and pulse frequency on SAP 1 electric field intensity 15 kV cm -1 , pulse frequency 1600 Hz and flow velocity 2.93 mL min -1 ). Furthermore, the PEF-treated SAP 1 < MW < 3kDa under optimal conditions lacked the characteristic absorbance of N-H, C = C and the amide band and the zeta potential was reduced to -18.0 mV. Overall, the results of the present study suggest that the improvement of antioxidant activity of SAP 1 < MW < 3kDa is a result of the contribution of the functional groups and the change in zeta potential when treated with PEF. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
THE POSSIBLE IMPACT OF L5 MAGNETOGRAMS ON NON-POTENTIAL SOLAR CORONAL MAGNETIC FIELD SIMULATIONS
Energy Technology Data Exchange (ETDEWEB)
Weinzierl, Marion; Yeates, Anthony R. [Department of Mathematical Sciences, Durham University South Road, Durham DH1 3LE (United Kingdom); Mackay, Duncan H. [School of Mathematics and Statistics, University of St. Andrews North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Pevtsov, Alexei A., E-mail: marion.weinzierl@durham.ac.uk [National Solar Observatory 3010 Coronal Loop, sunspot NM 88349 (United States)
2016-09-10
The proposed Carrington-L5 mission would bring instruments to the L5 Lagrange point to provide us with crucial data for space weather prediction. To assess the importance of including a magnetograph, we consider the possible differences in non-potential solar coronal magnetic field simulations when magnetograph observations are available from the L5 point, compared with an L1-based field of view (FOV). A timeseries of synoptic radial magnetic field maps is constructed to capture the emergence of two active regions from the L5 FOV. These regions are initially absent in the L1 magnetic field maps, but are included once they rotate into the L1 FOV. Non-potential simulations for these two sets of input data are compared in detail. Within the bipolar active regions themselves, differences in the magnetic field structure can exist between the two simulations once the active regions are included in both. These differences tend to reduce within 5 days of the active region being included in L1. The delayed emergence in L1 can, however, lead to significant persistent differences in long-range connectivity between the active regions and the surrounding fields, and also in the global magnetic energy. In particular, the open magnetic flux and the location of open magnetic footpoints, are sensitive to capturing the real-time of emergence. These results suggest that a magnetograph at L5 could significantly improve predictions of the non-potential corona, the interplanetary magnetic field, and of solar wind source regions on the Sun.
Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term
Koh, Seoktae; Lee, Bum-Hoon; Tumurtushaa, Gansukh
2017-06-01
We consider inflationary models with a Gauss-Bonnet term to reconstruct the scalar-field potentials and the Gauss-Bonnet coupling functions. Both expressions are derived from the observationally favored configurations of ns and r . Our result implies that, for the reconstructed potentials and coupling functions, the blue tilt of inflationary tensor fluctuations can be realized. To achieve a blue tilt for the inflationary tensor fluctuations, a scalar field must climb up its potential before rolling down. We further investigate the properties of propagation of the perturbation modes in Friedmann-Robertson-Walker spacetime. For the reconstructed configurations that give rise to the blue tilt for the inflationary tensor fluctuations, we show that the ghosts and instabilities are absent with the superluminal propagation speeds for the scalar perturbation modes, whereas the propagation speeds of the tensor perturbations are subluminal.
On the unlikeliness of multi-field inflation: bounded random potentials and our vacuum
International Nuclear Information System (INIS)
Battefeld, Diana; Battefeld, Thorsten; Schulz, Sebastian
2012-01-01
Based on random matrix theory, we compute the likelihood of saddles and minima in a class of random potentials that are softly bounded from above and below, as required for the validity of low energy effective theories. Imposing this bound leads to a random mass matrix with non-zero mean of its entries. If the dimensionality of field-space is large, inflation is rare, taking place near a saddle point (if at all), since saddles are more likely than minima or maxima for common values of the potential. Due to the boundedness of the potential, the latter become more ubiquitous for rare low/large values respectively. Based on the observation of a positive cosmological constant, we conclude that the dimensionality of field-space after (and most likely during) inflation has to be low if no anthropic arguments are invoked, since the alternative, encountering a metastable deSitter vacuum by chance, is extremely unlikely
Self-Potential Monitoring of Landslides on Field and Laboratory Scale
Heinze, T.; Limbrock, J. K.; Weigand, M.; Wagner, F. M.; Kemna, A.
2017-12-01
Among several other geophysical methods used to observe water movement in the ground, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context of landslides is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than pressure diffusion. We present self-potential measurements from over a year of continuous monitoring at an old landslide site. Using a three-dimensional electric-resistivity underground model, the self-potential signal is analyzed with respect to precipitation and the resulting flow in the ground. Additional data from electrical measurements and conventional sensors are included to assess saturation. The field observations are supplemented by laboratory experiments in which we study the behavior of the self-potential during failure of a piled land slope. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. Our results
Problem Solving Methods in Engineering Design
DEFF Research Database (Denmark)
Hartvig, Susanne C
1999-01-01
This short paper discusses typical engineering tasks and problem solving methods, based on a field study of engineering tasks at a Danish engineering firm. The field study has identified ten classes of design tasks and in this paper these classes are related to problem solving methods. The descri...
International Nuclear Information System (INIS)
Watanabe, Tomohiko; Oya, Hiroshi; Watanabe, Kunihiko; Sato, Tetsuya.
1992-10-01
Extensive three-dimensional computer simulations of the magnetosphere-ionosphere (M-I) coupling are performed to study self-excitation of auroral arcs with special emphasis on 1) nonlinear evolution of the feedback instability in the M-I coupling system, 2) controlling mechanisms of the auroral arc structure, 3) formation of a field-aligned electric potential structure in association with the development of the feedback instability, and 4) effects of the parallel potential generation on auroral arc development. It is reconfirmed that the feedback instability produces a longitudinally elongated, latitudinally striated structure where the upward field-aligned current and the ionospheric density are locally enhanced. The following important new features are revealed. 1) The global distribution of the striation structure is primarily governed by the magnetospheric convection pattern and the ionospheric density distribution. 2) There appears a significant dawn-dusk asymmetry in the auroral arc formation, even though the apparent geometrical relationship is symmetric. 3) The recombination effect plays a significant role in the global, as well as local, development of the auroral arc structure. The nonlinearity of recombination, in conjunction with the closure of an arc-associated local field-aligned current system, acts to destroy an old arc and creates a new arc in a different but adjacent position. 4) A V-shaped field aligned potential structure is created in association with an auroral arc. Rapid increase in the electron density and the local upward field-aligned current of an arc arises as a result of enhanced ionization by precipitating electrons accelerated by the parallel potential. 5) A drastic oscillatory behavior of appearance and disappearance of auroral arcs is obtained when the ionization effect is strong. The period is primarily given by the Alfven bounce time. (J.P.N.)
Generazio, Ed
2017-01-01
The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.
International Nuclear Information System (INIS)
Gelinas, R.C.
1984-01-01
A system for transmission of information using a curl-free magnetic vector potential radiation field. The system includes current-carrying apparatus for generating a magnetic vector potential field with a curl-free component coupled to apparatus for modulating the current applied to the field generating apparatus. Receiving apparatus includes a detector with observable properties that vary with the application of an applied curl-free magnetic vector potential field. Analyzing apparatus for determining the information content of modulation imposed on the curl-free vector potential field can be established in materials that are not capable of transmitting more common electromagnetic radiation
On-orbit assembly of a team of flexible spacecraft using potential field based method
Chen, Ti; Wen, Hao; Hu, Haiyan; Jin, Dongping
2017-04-01
In this paper, a novel control strategy is developed based on artificial potential field for the on-orbit autonomous assembly of four flexible spacecraft without inter-member collision. Each flexible spacecraft is simplified as a hub-beam model with truncated beam modes in the floating frame of reference and the communication graph among the four spacecraft is assumed to be a ring topology. The four spacecraft are driven to a pre-assembly configuration first and then to the assembly configuration. In order to design the artificial potential field for the first step, each spacecraft is outlined by an ellipse and a virtual leader of circle is introduced. The potential field mainly depends on the attitude error between the flexible spacecraft and its neighbor, the radial Euclidian distance between the ellipse and the circle and the classical Euclidian distance between the centers of the ellipse and the circle. It can be demonstrated that there are no local minima for the potential function and the global minimum is zero. If the function is equal to zero, the solution is not a certain state, but a set. All the states in the set are corresponding to the desired configurations. The Lyapunov analysis guarantees that the four spacecraft asymptotically converge to the target configuration. Moreover, the other potential field is also included to avoid the inter-member collision. In the control design of the second step, only small modification is made for the controller in the first step. Finally, the successful application of the proposed control law to the assembly mission is verified by two case studies.
Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction
Solov'ev, A. A.
2013-09-01
We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.
MHODE: a local-homogeneity theory for improved source-parameter estimation of potential fields
Fedi, Maurizio; Florio, Giovanni; Paoletti, Valeria
2015-08-01
We describe a multihomogeneity theory for source-parameter estimation of potential fields. Similar to what happens for random source models, where the monofractal scaling-law has been generalized into a multifractal law, we propose to generalize the homogeneity law into a multihomogeneity law. This allows a theoretically correct approach to study real-world potential fields, which are inhomogeneous and so do not show scale invariance, except in the asymptotic regions (very near to or very far from their sources). Since the scaling properties of inhomogeneous fields change with the scale of observation, we show that they may be better studied at a set of scales than at a single scale and that a multihomogeneous model is needed to explain its complex scaling behaviour. In order to perform this task, we first introduce fractional-degree homogeneous fields, to show that: (i) homogeneous potential fields may have fractional or integer degree; (ii) the source-distributions for a fractional-degree are not confined in a bounded region, similarly to some integer-degree models, such as the infinite line mass and (iii) differently from the integer-degree case, the fractional-degree source distributions are no longer uniform density functions. Using this enlarged set of homogeneous fields, real-world anomaly fields are studied at different scales, by a simple search, at any local window W, for the best homogeneous field of either integer or fractional-degree, this yielding a multiscale set of local homogeneity-degrees and depth estimations which we call multihomogeneous model. It is so defined a new technique of source parameter estimation (Multi-HOmogeneity Depth Estimation, MHODE), permitting retrieval of the source parameters of complex sources. We test the method with inhomogeneous fields of finite sources, such as faults or cylinders, and show its effectiveness also in a real-case example. These applications show the usefulness of the new concepts, multihomogeneity and
Gravitational and electromagnetic potentials of the stationary Einstein-Maxwell field equations
International Nuclear Information System (INIS)
Jones, T.C.
1979-01-01
Associated with the stationary Einstein-Maxwell field equations is an infinite hierarchy of potentials. The basic characteristics of these potentials are examined in general and then in greater detail for the particular case of the Reissner-Nordstrom metric. Thier essential utility in the process of solution generation is elucidated, and the necessary equations for solution generation are developed. Appropriate generating functions, which contain the complete infinite hierarchy of potentials, are developed and analyzed. Particular attention is paid to the inherent gauge freedom of these generating functions. Two methods of solution generation, which yield asymptotically flat solutions in vacuum, are generalized to include electromagnetism. One method, using potentials consistent with the Harrison transformation and the Reissner-Nordstrom metric, is discussed in detail, and its resultant difficulties are explored
Vacuum stability of a general scalar potential of a few fields
Energy Technology Data Exchange (ETDEWEB)
Kannike, Kristjan [NICPB, Tallinn (Estonia)
2016-06-15
We calculate analytical vacuum stability or bounded from below conditions for general scalar potentials of a few fields. After a brief review of copositivity, we show how to find positivity conditions for more complicated potentials. We discuss the vacuum stability conditions of the general potential of two real scalars, without and with the Higgs boson included in the potential. As further examples, we give explicit vacuum stability conditions for the two Higgs doublet model with no explicit CP breaking, and for the Z{sub 3} scalar dark matter with an inert doublet and a complex singlet. We give a short overview of positivity conditions for tensors of quartic couplings via tensor eigenvalues. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-08-24
A numerical algorithm for computing the field components B_{r} and B_{z} and their r and z derivatives with open boundaries in cylindrical coordinates for circular current loops is described. An algorithm for computing the vector potential is also described. For the convenience of the reader, derivations of the final expressions from their defining integrals are given in detail, since their derivations (especially for the field derivatives) are not all easily found in textbooks. Numerical calculations are based on evaluation of complete elliptic integrals using the Bulirsch algorithm cel. Since cel can evaluate complete elliptic integrals of a fairly general type, in some cases the elliptic integrals can be evaluated without first reducing them to forms containing standard Legendre forms. The algorithms avoid the numerical difficulties that many of the textbook solutions have for points near the axis because of explicit factors of 1=r or 1=r^{2} in the some of the expressions.
International Nuclear Information System (INIS)
Scott, Jill R.; Tremblay, Paul L.
2007-01-01
The heart of an ion mobility spectrometer is the drift region where ion separation occurs. While the electrostatic potentials within a drift tube design can be modeled, no method for independently validating the electrostatic field has previously been reported. Two basic drift tube designs were modeled using SIMION 7.0 to reveal the expected electrostatic fields: (1) A traditional alternating set of electrodes and insulators and (2) a truly linear drift tube. One version of the alternating electrode/insulator drift tube and two versions of linear drift tubes were then fabricated. The stacked alternating electrodes/insulators were connected through a resistor network to generate the electrostatic gradient in the drift tube. The two linear drift tube designs consisted of two types of resistive drift tubes with one tube consisting of a resistive coating within an insulating tube and the other tube composed of resistive ferrites. The electrostatic fields within each type of drift tube were then evaluated by a noncontact method using a Kelvin-Zisman type electrostatic voltmeter and probe (results for alternative measurement methods provided in supplementary material). The experimental results were then compared with the electrostatic fields predicted by SIMION. Both the modeling and experimental measurements reveal that the electrostatic fields within a stacked ion mobility spectrometer drift tube are only pseudo-linear, while the electrostatic fields within a resistive drift tube approach perfect linearity
On radiation of electrons moving in braking electric fields with distributed potential
International Nuclear Information System (INIS)
Fedulov, V.I.; Suvorov, V.I.; Umirov, U.R.
2002-01-01
The characteristics of radiation of electron moving in flat structures with braking electric field created by an accelerating electrode and another electrode with distributed potential are investigated. The analytical expressions for definition of conditions for complete loss of energy by electron in structure with distributed potential and for arising the electron vibrations are received. Also expressions connecting the electron energy with the point of entry and its fluctuation frequency are received. The mathematical model of irradiation process is offered depending on energy and point of entry of the electron. The connection between a radiation wave length and position of point of entry of electrons in the braking electric field are found. A possibility of emerging the optical radiation in solid environments at passage of charge particles through substance is shown. (author)
Potential limitations for potato yields in raised soil field systems near Lake Titicaca
Directory of Open Access Journals (Sweden)
Lozada Diego Sánchez de
2006-01-01
Full Text Available During the last two decades, various non-governmental organizations have strongly encouraged Bolivian farmers in the Altiplano region near Lake Titicaca to resume the ancestral agricultural practice of constructing raised fields. In addition to improved drainage and possibilities this practice affords for sub-irrigation, advocated benefits of this system traditionally include frost mitigation and high crop yields. Until recently, reliable data to assess the extent of these benefits were unfortunately lacking. In this context, field experiments on raised fields were designed and carried out at two locations in the Bolivian Altiplano to obtain reliable potato yield and temperature data. Observed yields ranged from 2.73 to 10.80 t ha-1 at the first site, where salinity caused significant yield variability (R² = 0.79. At the second site, yields per raised platform varied between 8.25 and 33.45 t ha-1. However, comparable yields were obtained in flat control plots in spite of a mid-season frost, and the minimum temperatures differed only by 1ºC in the conventional plots relative to the raised fields. These results suggest that, under the experimental conditions, the potential benefits of raised fields in terms of frost mitigation or increased yields might only be observable in exceptionally bad years, when extreme frosts wipe out entire potato crops on conventional fields. Nevertheless, it is argued that in spite of these marginally supportive observations, raised-field agriculture may still be a viable option for farmers to consider if the water-filled channels between the raised fields are managed for fish and fertilizer production.
Shallow geothermal field in Lanzarote (Canary Island). Potential evaluation and heat extraction test
Energy Technology Data Exchange (ETDEWEB)
Diez-Gil, J.L.; Valentin, A. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain); Torres, F. [Universidad de Barcelona (Spain); Albert, J.F.
1994-12-31
Boreholes were used to perform various experiments. A thermometry was carried out, as well as chemical analysis and an hydrodynamic modelling. This paper presents the scientific aims and conclusions of the whole project called ``Shallow H.D.R. geothermal field`` in Lanzarote (Canary Islands). Potential evaluation and heat extraction test are presented. (Project JOUG-0004 ES -JR - JOULE Program of the EEC). (TEC). 2 tabs.
Natálio, Luís F.; Pardo, Juan C. F.; Machado, Glauco B. O.; Fortuna, Monique D.; Gallo, Deborah G.; Costa, Tânia M.
2017-01-01
Bioturbators play a key role in estuarine environments by modifying the availability of soil elements, which in turn may affect other organisms. Despite the importance of bioturbators, few studies have combined both field and laboratory experiments to explore the effects of bioturbators on estuarine soils. Herein, we assessed the bioturbation potential of fiddler crabs Leptuca leptodactyla and Leptuca uruguayensis in laboratory and field experiments, respectively. We evaluated whether the presence of fiddler crabs resulted in vertical transport of sediment, thereby altering organic matter (OM) distribution. Under laboratory conditions, the burrowing activity by L. leptodactyla increased the OM content in sediment surface. In the long-term field experiment with areas of inclusion and exclusion of L. uruguayensis, we did not observe influence of this fiddler crab in the vertical distribution of OM. Based on our results, we suggest that small fiddler crabs, such as the species used in these experiments, are potentially capable of alter their environment by transporting sediment and OM but such effects may be masked by environmental drivers and spatial heterogeneity under natural conditions. This phenomenon may be related to the small size of these species, which affects how much sediment is transported, along with the way OM interacts with biogeochemical and physical processes. Therefore, the net effect of these burrowing organisms is likely to be the result of a complex interaction with other environmental factors. In this sense, we highlight the importance of performing simultaneous field and laboratory experiments in order to better understanding the role of burrowing animals as bioturbators.
A Multiagent Potential Field-Based Bot for Real-Time Strategy Games
Directory of Open Access Journals (Sweden)
Johan Hagelbäck
2009-01-01
Full Text Available Bots for real-time strategy (RTS games may be very challenging to implement. A bot controls a number of units that will have to navigate in a partially unknown environment, while at the same time avoid each other, search for enemies, and coordinate attacks to fight them down. Potential fields are a technique originating from the area of robotics where it is used in controlling the navigation of robots in dynamic environments. Although attempts have been made to transfer the technology to the gaming sector, assumed problems with efficiency and high costs for implementation have made the industry reluctant to adopt it. We present a multiagent potential field-based bot architecture that is evaluated in two different real-time strategy game settings and compare them, both in terms of performance, and in terms of softer attributes such as configurability with other state-of-the-art solutions. We show that the solution is a highly configurable bot that can match the performance standards of traditional RTS bots. Furthermore, we show that our approach deals with Fog of War (imperfect information about the opponent units surprisingly well. We also show that a multiagent potential field-based bot is highly competitive in a resource gathering scenario.
Fedi, M.; Florio, G.; Cascone, L.
2012-01-01
We use a multiscale approach as a semi-automated interpreting tool of potential fields. The depth to the source and the structural index are estimated in two steps: first the depth to the source, as the intersection of the field ridges (lines built joining the extrema of the field at various altitudes) and secondly, the structural index by the scale function. We introduce a new criterion, called 'ridge consistency' in this strategy. The criterion is based on the principle that the structural index estimations on all the ridges converging towards the same source should be consistent. If these estimates are significantly different, field differentiation is used to lessen the interference effects from nearby sources or regional fields, to obtain a consistent set of estimates. In our multiscale framework, vertical differentiation is naturally joint to the low-pass filtering properties of the upward continuation, so is a stable process. Before applying our criterion, we studied carefully the errors on upward continuation caused by the finite size of the survey area. To this end, we analysed the complex magnetic synthetic case, known as Bishop model, and evaluated the best extrapolation algorithm and the optimal width of the area extension, needed to obtain accurate upward continuation. Afterwards, we applied the method to the depth estimation of the whole Bishop basement bathymetry. The result is a good reconstruction of the complex basement and of the shape properties of the source at the estimated points.
New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem
International Nuclear Information System (INIS)
Nicolau, Andressa dos Santos; Schirru, Roberto
2015-01-01
Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)
New approaches of the potential field for QPSO algorithm applied to nuclear reactor reload problem
Energy Technology Data Exchange (ETDEWEB)
Nicolau, Andressa dos Santos; Schirru, Roberto, E-mail: andressa@lmp.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2015-07-01
Recently quantum-inspired version of the Particle Swarm Optimization (PSO) algorithm, Quantum Particle Swarm Optimization (QPSO) was proposed. The QPSO algorithm permits all particles to have a quantum behavior, where some sort of 'quantum motion' is imposed in the search process. When the QPSO is tested against a set of benchmarking functions, it showed superior performances as compared to classical PSO. The QPSO outperforms the classical one most of the time in convergence speed and achieves better levels for the fitness functions. The great advantage of QPSO algorithm is that it uses only one parameter control. The critical step or QPSO algorithm is the choice of suitable attractive potential field that can guarantee bound states for the particles moving in the quantum environment. In this article, one version of QPSO algorithm was tested with two types of potential well: delta-potential well harmonic oscillator. The main goal of this study is to show with of the potential field is the most suitable for use in QPSO in a solution of the Nuclear Reactor Reload Optimization Problem, especially in the cycle 7 of a Brazilian Nuclear Power Plant. All result were compared with the performance of its classical counterpart of the literature and shows that QPSO algorithm are well situated among the best alternatives for dealing with hard optimization problems, such as NRROP. (author)
Thaokar, Chandrajit; Rossi, Michael R; Rabin, Yoed
2016-02-01
The current study aims at developing computational tools in order to gain information about the thermal history in areas invisible to ultrasound imaging during cryosurgery. This invisibility results from the high absorption rate of the ultrasound energy by the frozen region, which leads to an apparent opacity in the cryotreated area and a shadow behind it. A proof-of-concept for freezing-front estimation is demonstrated in the current study, using the new potential-field analogy method (PFAM). This method is further integrated with a recently developed temperature-field reconstruction method (TFRM) to estimate the temperature distribution within the frozen region. This study uses prostate cryosurgery as a developmental model and trans-rectal ultrasound imaging as a choice of practice. Results of this study indicate that the proposed PFAM is a viable and computationally inexpensive solution to estimate the extent of freezing in the acoustic shadow region. Comparison of PFAM estimations and experimental data shows an average mismatch of less than 2 mm in freezing-front location, which is comparable to the uncertainty in ultrasound imaging. Comparison of the integrated PFAM + TFRM scheme with a full-scale finite-elements analysis (FEA) indicates an average mismatch of 0.9 mm for the freezing front location and 0.1 mm for the lethal temperature isotherm of -45 °C. Comparison of the integrated PFAM + TFRM scheme with experimental temperature measurements show a difference in the range of 2 °C and 6 °C for selected points of measurement. Results of this study demonstrate the integrated PFAM + TFRM scheme as a viable and computationally inexpensive means to gain information about the thermal history in the frozen region during ultrasound-monitored cryosurgery. Copyright © 2015 Elsevier Inc. All rights reserved.
Review on solving the forward problem in EEG source analysis
Directory of Open Access Journals (Sweden)
Vergult Anneleen
2007-11-01
Full Text Available Abstract Background The aim of electroencephalogram (EEG source localization is to find the brain areas responsible for EEG waves of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes. Methods While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses on different aspects of solving the forward problem and it is intended for newcomers in this research field. Results It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white matter. In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images, which requires numerical methods. The following methods are compared with each other: the boundary element method (BEM, the finite element method (FEM and the finite difference method (FDM. In the last two methods anisotropic conducting compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization. It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative
Interactive problem solving using LOGO
Boecker, Heinz-Dieter; Fischer, Gerhard
2014-01-01
This book is unique in that its stress is not on the mastery of a programming language, but on the importance and value of interactive problem solving. The authors focus on several specific interest worlds: mathematics, computer science, artificial intelligence, linguistics, and games; however, their approach can serve as a model that may be applied easily to other fields as well. Those who are interested in symbolic computing will find that Interactive Problem Solving Using LOGO provides a gentle introduction from which one may move on to other, more advanced computational frameworks or more
International Nuclear Information System (INIS)
Charles Doret, S; Amini, Jason M; Wright, Kenneth; Volin, Curtis; Killian, Tyler; Ozakin, Arkadas; Denison, Douglas; Hayden, Harley; Pai, C-S; Slusher, Richart E; Harter, Alexa W
2012-01-01
Recent advances in quantum information processing with trapped ions have demonstrated the need for new ion trap architectures capable of holding and manipulating chains of many (>10) ions. Here we present the design and detailed characterization of a new linear trap, microfabricated with scalable complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited to this challenge. Forty-four individually controlled dc electrodes provide the many degrees of freedom required to construct anharmonic potential wells, shuttle ions, merge and split ion chains, precisely tune secular mode frequencies, and adjust the orientation of trap axes. Microfabricated capacitors on dc electrodes suppress radio-frequency pickup and excess micromotion, while a top-level ground layer simplifies modeling of electric fields and protects trap structures underneath. A localized aperture in the substrate provides access to the trapping region from an oven below, permitting deterministic loading of particular isotopic/elemental sequences via species-selective photoionization. The shapes of the aperture and radio-frequency electrodes are optimized to minimize perturbation of the trapping pseudopotential. Laboratory experiments verify simulated potentials and characterize trapping lifetimes, stray electric fields, and ion heating rates, while measurement and cancellation of spatially-varying stray electric fields permits the formation of nearly-equally spaced ion chains. (paper)
International Nuclear Information System (INIS)
Eliseev, Yu.N.; Stepanov, K.N.
1983-01-01
In the drift motion approximation solution of the problem is obtained on the motion of a nonrelativistic charged particle in the crossed axial magnetic and radial electric fields, and the electric field of a rotating potential wave under cherenkov and modified cyclotron resonances. The static radial electric field potential is supposed to be close to the parabolic one. The drift motion equations and their integrals are preseOted. The experimentally obtained effect of plasma ionic component division in the crossed fields under the excitation of ion cyclotron oscillations is explained with the help of the theory developed in the paper
Potential fields & satellite missions: what they tell us about the Earth's core?
Mandea, M.; Panet, I.; Lesur, V.; de Viron, O.; Diament, M.; Le Mouël, J.
2012-12-01
Since the advent of satellite potential field missions, the search to find information they can carry about the Earth's core has been motivated both by an interest in understanding the structure of dynamics of the Earth's interior and by the possibility of applying new space data analysis. While it is agreed upon that the magnetic field measurements from space bring interesting information on the rapid variations of the core magnetic field and flows associated with, the question turns to whether the core process can have a signature in the space gravity data. Here, we tackle this question, in the light of the recent data from the GRACE mission, that reach an unprecedented precision. Our study is based on eight years of high-resolution, high-accuracy gravity and magnetic satellite data, provided by the GRACE and CHAMP satellite missions. From the GRACE CNES/GRGS geoid solutions, we have emphasized the long-term variability by using a specific post-processing technique. From the CHAMP magnetic data we have computed models for the core magnetic field and its temporal variations, and the flow at the top of the core. A correlation analysis between the gravity and magnetic gridded series indicates that the inter-annual changes in the core magnetic field - under a region from the Atlantic to Indian Oceans - coincide with similar changes in the gravity field. These results should be considered as a constituent when planning new Earth's observation space missions and future innovations relevant to both gravity (after GRACE Follow-On) and magnetic (after Swarm) missions.
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
Field evidence for the potential of Rhodobacter capsulatus as Biofertilizer for flooded rice.
Gamal-Eldin, Hosny; Elbanna, Khaled
2011-02-01
In a previous study, we evaluated the effects of inoculating rice plants with the phototrophic purple nonsulfur bacterium Rhodobacter capsulatus (Rc) on growth and yield of rice in pots and lysimeter experiments and the results obtained have been highly encouraging. In this study, we carried out two field experiments: one in the experimental farm of the Faculty of Agriculture, Fayoum University, and the second in a farmer's field in Kafr El-sheikh, to assess the effects of Rc on growth and yield of rice in comparison and in combination with chemical nitrogen fertilizer (CNF) and farmyard manure. The results indicated that both biological and grain yields in all the Rc inoculated treatments were significantly higher than those in the uninoculated corresponding treatments in both fields. With regard to grain yield, the major factor for determining the effectiveness of any agricultural treatment, inoculation with Rc in combination with 50% of the recommended CNF rate gave a grain yield that was statistically equivalent to that obtained with 100% of the recommended CNF rate. These results provide a clear evidence for the potential of Rc as biofertilizer for flooded rice under field conditions.
An assessment of potential applications with pulsed electric field in wines
Directory of Open Access Journals (Sweden)
Drosou Foteini
2017-01-01
Full Text Available Pulsed electric fields (PEF is a non-thermal processing technology that uses instantaneous, pulses of high voltage for a short period in the range of milliseconds to microseconds; the application of high intensity electric field on toasted wood chips leads to a quick diffusion of extractable molecules. Currently most PEF studies, in the field of oenology, have been focusing on the application of PEF as a pretreatment of grape musts by examining the microbial inactivation and the enhancement of polyphenol extraction. In this study a post-treatment of wine is introduced as method to enhance the wood flavor in the wine with a green noninvasive technology. Major phenolic aldehydes that have been identified as the characteristic compounds of oak volatile compounds were selected as markers and were analyzed instrumentally to compare the influence of PEF processing to non-treated samples. PEF treated samples brought about higher concentrations of the examined oak compounds in the samples treated with PEF, which may explain the advantages of its application. The modulation of the intensity of the electric field and the period of pulses influenced the concentrations of the volatile phenols that were leached out. Differences found between the assayed treatments indicate that PEF application could be a potential practice for a rapid extraction of volatile compounds from oak.
3D stochastic inversion and joint inversion of potential fields for multi scale parameters
Shamsipour, Pejman
In this thesis we present the development of new techniques for the interpretation of potential field (gravity and magnetic data), which are the most widespread economic geophysical methods used for oil and mineral exploration. These new techniques help to address the long-standing issue with the interpretation of potential fields, namely the intrinsic non-uniqueness inversion of these types of data. The thesis takes the form of three papers (four including Appendix), which have been published, or soon to be published, in respected international journals. The purpose of the thesis is to introduce new methods based on 3D stochastical approaches for: 1) Inversion of potential field data (magnetic), 2) Multiscale Inversion using surface and borehole data and 3) Joint inversion of geophysical potential field data. We first present a stochastic inversion method based on a geostatistical approach to recover 3D susceptibility models from magnetic data. The aim of applying geostatistics is to provide quantitative descriptions of natural variables distributed in space or in time and space. We evaluate the uncertainty on the parameter model by using geostatistical unconditional simulations. The realizations are post-conditioned by cokriging to observation data. In order to avoid the natural tendency of the estimated structure to lay near the surface, depth weighting is included in the cokriging system. Then, we introduce algorithm for multiscale inversion, the presented algorithm has the capability of inverting data on multiple supports. The method involves four main steps: i. upscaling of borehole parameters (It could be density or susceptibility) to block parameters, ii. selection of block to use as constraints based on a threshold on kriging variance, iii. inversion of observation data with selected block densities as constraints, and iv. downscaling of inverted parameters to small prisms. Two modes of application are presented: estimation and simulation. Finally, a novel
Determining and uniformly estimating the gauge potential corresponding to a given gauge field on M4
International Nuclear Information System (INIS)
Mostow, M.; Shnider, S.; Ben-Gurion Univ. of the Negev, Beersheba
1986-01-01
In an earlier paper on the field copy problem, we proved that there exists a generic set of connections (gauge potentials) on a principle bundle with a semi-simple structure group over a four-dimensional base manifold for which the connection is uniquely determined by its curvature (gauge field). We conjectured that there exists a smaller, but still generic, set of connections for which the curvature map sending a connection to its curvature admits a continuous inverse with respect to the appropriate function space topologies. The conjecture says, in other words, that restricting to certain generic curvature 2-forms, one can determine and uniformly estimate the connection and its derivatives from the curvature and uniform estimates of its derivatives. In this Letter we give an affirmative answer to the conjecture and show, moreover, that the set of such connections contains an open dense set in the Whitney C ∞ topology. (orig.)
Zhang, Chong; Lü, Qingtian; Yan, Jiayong; Qi, Guang
2018-04-01
Downward continuation can enhance small-scale sources and improve resolution. Nevertheless, the common methods have disadvantages in obtaining optimal results because of divergence and instability. We derive the mean-value theorem for potential fields, which could be the theoretical basis of some data processing and interpretation. Based on numerical solutions of the mean-value theorem, we present the convergent and stable downward continuation methods by using the first-order vertical derivatives and their upward continuation. By applying one of our methods to both the synthetic and real cases, we show that our method is stable, convergent and accurate. Meanwhile, compared with the fast Fourier transform Taylor series method and the integrated second vertical derivative Taylor series method, our process has very little boundary effect and is still stable in noise. We find that the characters of the fading anomalies emerge properly in our downward continuation with respect to the original fields at the lower heights.
International Nuclear Information System (INIS)
Lemaire, J.; Scherer, M.
1983-01-01
The field-aligned current density (Jsub(tot)) is a non-linear function of the applied potential difference (phi) between the ionosphere and the magnetosphere. This nonlinear function has been calculated for plasma boundary conditions typical in a dayside cusp magnetic flux tube. The J-characteristic of such a flux tube changes when the temperatures of the warm magnetospheric electrons and of the cold ionospheric electrons are modified; it changes also when the relative density of the warm plasma is modified; the presence of trapped secondary electrons changes also the J-characteristic. The partial currents contributed by the warm and cold electrons, and by warm and cold ions are illustrated. The dynamic characteristic of an electric circuit depends on the static characteristic of each component of the sytem: i.e. the resistive ionosphere, the return current region, and the region of particle precipitation whose field-aligned current/voltage characteristics have been studied in this article
Influence of the helical resonant fields on the plasma potential in the TBR-1 Tokamak
International Nuclear Information System (INIS)
Ribeiro, C.; Silva, R.P. da; Caldas, I.L.; Fagundes, A.N.; Sanada, E.K.
1990-01-01
This work describes an experimental work that are in progress in TBR-1 tokamak about the influence of resonant helical fields on the plasma potential. TBR-1 is a small tokamak in operation in the Physics Institute of University of Sao Paulo and used for basic research, diagnostic development and personal formation. Its main parameters are: R(Major Radius) = 0.30 m; a v (Vessel Radius) = 0.11 m; a(Plasma Radius) = 0.08 m; R/a(Aspect Ratio) = 3.75; B φ (Toroidal Field) = 5 kG; n e0 (Central Electron Density) ≅ 7 x 10 18 m -3 ; T e0 (central electron temperature) ≅ 200 eV. (Author)
Evaluation of the potential for reduction in well spacing of the Bakken sand pool, Court Field
Energy Technology Data Exchange (ETDEWEB)
Majcher, M.B.; Estrada, C.A. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Nexen Inc., Calgary, AB (Canada); Archer, J.C. [Nexen Inc., Calgary, AB (Canada)
2005-11-01
For the past 15 years, the Court field has produced hydrocarbons from the Mississippian/Devonian middle Bakken sandstone reservoir. The formation is located in west central Saskatchewan and was deposited in a marine shelf environment and later reworked into tidally influenced sand ridges. Vertical wells and a waterflood recovery scheme have been used to produce heavy crude with an API gravity of 17. A better understanding of the reservoir behaviour is required in order to advance field development and maintain successful waterflood management. Three-dimensional seismic and well logs were used to map the structural complexity of the sand ridge. This study examined the feasibility of using production and seismic data to update and substantiate a simulation model which was used to evaluate downspace potential. Stratigraphic disparities were taken into account as discontinuous interbedded siltstones may be flow barriers that create anisotropy in the permeability zone. Grid orientation was altered to align axially with the permeability trends of the main sand ridge. This study also reviewed an earlier field simulation and generated an updated model. The potential to reduce well spacing was then identified and waterflood optimization of the middle Bakken reservoir was evaluated. It was concluded that the edges of the sand ridge and areas isolated from existing injectors have the greatest potential for infill drilling and additional water injection because of the high sinkhole density. It was noted that drilling edge regions with high oil saturations have a risk of low permeability zones, resulting in low production rates and the possibility of an ineffective waterflood scheme. Therefore, a successful waterflood in the edge zones would require injector-producer pairs in the equivalent sand facies. 4 refs., 36 figs.
Wang, R.; Demerdash, N. A.
1991-01-01
A method of combined use of magnetic vector potential based finite-element (FE) formulations and magnetic scalar potential (MSP) based formulations for computation of three-dimensional magnetostatic fields is introduced. In this method, the curl-component of the magnetic field intensity is computed by a reduced magnetic vector potential. This field intensity forms the basic of a forcing function for a global magnetic scalar potential solution over the entire volume of the region. This method allows one to include iron portions sandwiched in between conductors within partitioned current-carrying subregions. The method is most suited for large-scale global-type 3-D magnetostatic field computations in electrical devices, and in particular rotating electric machinery.
Taillan, Julien; Dufau, Stéphane; Lemaire, Patrick
2015-01-01
We used event-related potentials (ERPs) to determine the time course of mechanisms underlying strategy selection. Participants had to select the better strategy on multiplication problems (i.e., 51 × 27) to find approximate products. They could choose between rounding up and rounding down both operands to their nearest decades. Two types of…
Jongsma, M.A.; Meulenbroek, R.G.J.; Okely, J.; Baas, M.; Baas, M.; van der Lubbe, Robert Henricus Johannes; Steenbergen, B.
2013-01-01
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP)
Jongsma, M.L.A.; Meulenbroek, R.G.J.; Okely, J.; Baas, C.M.; Lubbe, R.H.J. van der; Steenbergen, B.
2013-01-01
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP)
Jongsma, M.L.A.; Meulenbroek, R.G.; Okely, J.; Baas, C.M.; Lubbe, R.H. van der; Steenbergen, B.
2013-01-01
Motor imagery (MI) refers to the process of imagining the execution of a specific motor action without actually producing an overt movement. Two forms of MI have been distinguished: visual MI and kinesthetic MI. To distinguish between these forms of MI we employed an event related potential (ERP)
A New Self-Constrained Inversion Method of Potential Fields Based on Probability Tomography
Sun, S.; Chen, C.; WANG, H.; Wang, Q.
2014-12-01
The self-constrained inversion method of potential fields uses a priori information self-extracted from potential field data. Differing from external a priori information, the self-extracted information are generally parameters derived exclusively from the analysis of the gravity and magnetic data (Paoletti et al., 2013). Here we develop a new self-constrained inversion method based on probability tomography. Probability tomography doesn't need any priori information, as well as large inversion matrix operations. Moreover, its result can describe the sources, especially the distribution of which is complex and irregular, entirely and clearly. Therefore, we attempt to use the a priori information extracted from the probability tomography results to constrain the inversion for physical properties. The magnetic anomaly data was taken as an example in this work. The probability tomography result of magnetic total field anomaly(ΔΤ) shows a smoother distribution than the anomalous source and cannot display the source edges exactly. However, the gradients of ΔΤ are with higher resolution than ΔΤ in their own direction, and this characteristic is also presented in their probability tomography results. So we use some rules to combine the probability tomography results of ∂ΔΤ⁄∂x, ∂ΔΤ⁄∂y and ∂ΔΤ⁄∂z into a new result which is used for extracting a priori information, and then incorporate the information into the model objective function as spatial weighting functions to invert the final magnetic susceptibility. Some magnetic synthetic examples incorporated with and without a priori information extracted from the probability tomography results were made to do comparison, results of which show that the former are more concentrated and with higher resolution of the source body edges. This method is finally applied in an iron mine in China with field measured ΔΤ data and performs well. ReferencesPaoletti, V., Ialongo, S., Florio, G., Fedi, M
Cooling of ions trapped in potential wells produced by electromagnetic radiation fields
International Nuclear Information System (INIS)
Sobehart, J.R.
1990-01-01
The probability distributions for the ground state and the excited state of a two-level ion trapped in an harmonic potential well are studied. The ion is excited by electromagnetic radiation and relaxes back due to either spontaneous or stimulated emission. The photon statistics is considered Poissonian and the momentum transfer between the electromagnetic field and the ion is assumed discrete. The present results are closely related to the quantum treatment in the heavy particle limit as well as to those derived from previous semiclassical models. (Author) [es
Primary Generators of Visually Evoked Field Potentials Recorded in the Macaque Auditory Cortex
Smiley, John F.; Schroeder, Charles E.
2017-01-01
Prior studies have reported “local” field potential (LFP) responses to faces in the macaque auditory cortex and have suggested that such face-LFPs may be substrates of audiovisual integration. However, although field potentials (FPs) may reflect the synaptic currents of neurons near the recording electrode, due to the use of a distant reference electrode, they often reflect those of synaptic activity occurring in distant sites as well. Thus, FP recordings within a given brain region (e.g., auditory cortex) may be “contaminated” by activity generated elsewhere in the brain. To determine whether face responses are indeed generated within macaque auditory cortex, we recorded FPs and concomitant multiunit activity with linear array multielectrodes across auditory cortex in three macaques (one female), and applied current source density (CSD) analysis to the laminar FP profile. CSD analysis revealed no appreciable local generator contribution to the visual FP in auditory cortex, although we did note an increase in the amplitude of visual FP with cortical depth, suggesting that their generators are located below auditory cortex. In the underlying inferotemporal cortex, we found polarity inversions of the main visual FP components accompanied by robust CSD responses and large-amplitude multiunit activity. These results indicate that face-evoked FP responses in auditory cortex are not generated locally but are volume-conducted from other face-responsive regions. In broader terms, our results underscore the caution that, unless far-field contamination is removed, LFPs in general may reflect such “far-field” activity, in addition to, or in absence of, local synaptic responses. SIGNIFICANCE STATEMENT Field potentials (FPs) can index neuronal population activity that is not evident in action potentials. However, due to volume conduction, FPs may reflect activity in distant neurons superimposed upon that of neurons close to the recording electrode. This is
Stroemgren and BV photometry of potential halo blue horizontal branch field stars
Energy Technology Data Exchange (ETDEWEB)
Flynn, C; Sommer-Larsen, J
1988-11-01
Stroemgren four-colour and broadband BV photoelectric photometry has been obtained for a sample of potential halo blue horizontal branch stars in two high galactic latitude fields. The large majority of the stars observed are classified as blue horizontal branch stars on the basis of two different surface gravity indicators. Measurements of Ca K-line equivalent widths from medium-dispersion spectra of the stars confirm that most are Population II objects. No metal-rich A-stars were found beyond a few kpc from the galactic disc in the study of faint blue stars.
Intrinsic dendritic filtering gives low-pass power spectra of local field potentials
DEFF Research Database (Denmark)
Lindén, Henrik; Pettersen, Klas H; Einevoll, Gaute T
2010-01-01
of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power...... spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low......The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling...
Domènech, Laia
2015-01-01
Interventions aimed at increasing water availability for livelihood and domestic activities have great potential to improve various determinants of undernutrition, such as the quantity and diversity of foods consumed within the household, income generation, and women’s empowerment. However, current evidence on the topic is diluted across many different publications. This paper aims to connect the dots and review the literature available on the linkages between irrigation and food security, im...
Regularization and the potential of effective field theory in nucleon-nucleon scattering
International Nuclear Information System (INIS)
Phillips, D.R.
1998-04-01
This paper examines the role that regularization plays in the definition of the potential used in effective field theory (EFT) treatments of the nucleon-nucleon interaction. The author considers N N scattering in S-wave channels at momenta well below the pion mass. In these channels (quasi-)bound states are present at energies well below the scale m π 2 /M expected from naturalness arguments. He asks whether, in the presence of such a shallow bound state, there is a regularization scheme which leads to an EFT potential that is both useful and systematic. In general, if a low-lying bound state is present then cutoff regularization leads to an EFT potential which is useful but not systematic, and dimensional regularization with minimal subtraction leads to one which is systematic but not useful. The recently-proposed technique of dimensional regularization with power-law divergence subtraction allows the definition of an EFT potential which is both useful and systematic
Relationship of field-theory based single-boson-exchange potentials to static ones
International Nuclear Information System (INIS)
Amghar, A.; Desplanques, B.
2000-01-01
It is shown that field-theory based single-boson-exchange potentials cannot be identified to those of the Yukawa or Coulomb type that are currently inserted in the Schroedinger equation. The potential which is obtained rather correspond to this current single-boson-exchange potential corrected for the probability that the system under consideration is in a two-body component, therefore missing contributions due to the interaction of these two bodies while bosons are exchanged. The role of these contributions, which involve at least two-boson exchanges, is examined. The conditions that allow one to recover the usual single-boson-exchange potential are given. It is shown that the present results have some relation: (i) to the failure of the Bethe-Salpeter equation in reproducing the Dirac or Klein-Gordon equations in the limit where one of the constituents has a large mass, (ii) to the absence of corrections of relative order α log 1/α to a full calculation of the binding energy in the case of neutral massless bosons or (iii) to large corrections of wave-functions calculated perturbatively in some light-front approaches. Refs. 48 (author)
Stability of the minimum of a SO(N)-invariant Higgs potential with reducible Higgs fields
International Nuclear Information System (INIS)
Thornburg, R.J.
1986-01-01
The present work takes up the problem of finding the absolute minimum of a SO(N)-invariant Higgs potential for the reducible representation of Higgs fields consisting of the antisymmetric (A) and symmetric (S) traceless second-rank tensors. The stability of the minimum under changes on the potential's parameters is also investigated. Potentials containing S alone, both A and S coupled by a positive semi-definite term are minimized. Eigenstates of the Higgs mass matrix are calculated and related to the behavior of the SO(N)-action. Previous results relying on the absence of pseudo-Goldstone models and a new application of the geometry of the action show that the minimum is stable under small changes of the parameters. It is thus stable in an open region of the full eleven-dimensional parameter space of the most general potential of its kind. The isotropy group of the minimum is found to be either SO(N-p) x SO(p-2) x SO(2) or U({N-p}/2) x U(p/2), and the relative magnitudes of the vacuum expectation values of A and S are not constrained. For SO(10), U(3) x U(2) contains the standard model. One-loop Renormalization Group β-functions are calculated for all parameters of the model
Energy Technology Data Exchange (ETDEWEB)
Cavalcanti, E.; Castro, E.; Malbouisson, A.P.C. [Centro Brasileiro de Pesquisas Fisicas/MCTI, Rio de Janeiro, RJ (Brazil); Linhares, C.A. [Universidade do Estado do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro, RJ (Brazil)
2017-10-15
A scalar model is built, as a quantum field theory defined on a toroidal topology, to describe a phase transition in films subjected to periodic boundary conditions and influenced by an external and constant magnetic field. Criticality is studied and the relations between the critical temperature, the film thickness, the magnetic field strength and the chemical potential are investigated. Since the model describes a second-order phase transition a comparison with the Ginzburg-Landau theory is made. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Klimley, A. P. [Univ. of California, Davis, CA (United States); Wyman, M. T. [Univ. of California, Davis, CA (United States); Kavet, Rob [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States)
2016-09-28
submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating
Directory of Open Access Journals (Sweden)
Rocco Furferi
2016-10-01
Full Text Available An interesting current research field related to autonomous robots is mobile manipulation performed by cooperating robots (in terrestrial, aerial and underwater environments. Focusing on the underwater scenario, cooperative manipulation of Intervention-Autonomous Underwater Vehicles (I-AUVs is a complex and difficult application compared with the terrestrial or aerial ones because of many technical issues, such as underwater localization and limited communication. A decentralized approach for cooperative mobile manipulation of I-AUVs based on Artificial Neural Networks (ANNs is proposed in this article. This strategy exploits the potential field method; a multi-layer control structure is developed to manage the coordination of the swarm, the guidance and navigation of I-AUVs and the manipulation task. In the article, this new strategy has been implemented in the simulation environment, simulating the transportation of an object. This object is moved along a desired trajectory in an unknown environment and it is transported by four underwater mobile robots, each one provided with a seven-degrees-of-freedom robotic arm. The simulation results are optimized thanks to the ANNs used for the potentials tuning.
pynoddy 1.0: an experimental platform for automated 3-D kinematic and potential field modelling
Florian Wellmann, J.; Thiele, Sam T.; Lindsay, Mark D.; Jessell, Mark W.
2016-03-01
We present a novel methodology for performing experiments with subsurface structural models using a set of flexible and extensible Python modules. We utilize the ability of kinematic modelling techniques to describe major deformational, tectonic, and magmatic events at low computational cost to develop experiments testing the interactions between multiple kinematic events, effect of uncertainty regarding event timing, and kinematic properties. These tests are simple to implement and perform, as they are automated within the Python scripting language, allowing the encapsulation of entire kinematic experiments within high-level class definitions and fully reproducible results. In addition, we provide a link to geophysical potential-field simulations to evaluate the effect of parameter uncertainties on maps of gravity and magnetics. We provide relevant fundamental information on kinematic modelling and our implementation, and showcase the application of our novel methods to investigate the interaction of multiple tectonic events on a pre-defined stratigraphy, the effect of changing kinematic parameters on simulated geophysical potential fields, and the distribution of uncertain areas in a full 3-D kinematic model, based on estimated uncertainties in kinematic input parameters. Additional possibilities for linking kinematic modelling to subsequent process simulations are discussed, as well as additional aspects of future research. Our modules are freely available on github, including documentation and tutorial examples, and we encourage the contribution to this project.
International Nuclear Information System (INIS)
Schwarzer, N
2014-01-01
In order to understand the principle differences between rheological or simple stress tests like the uniaxial tensile test to contact mechanical tests and the differences between quasistatic contact experiments and oscillatory ones, this study resorts to effective first principles. This study will show how relatively simple models simulating bond interactions in solids using effective potentials like Lennard-Jones and Morse can be used to investigate the effect of time dependent stress-induced softening or stiffening of these solids. The usefulness of the current study is in the possibility of deriving relatively simple dependences of the bulk-modulus B on time, shear and pressure P with time t. In cases where it is possible to describe, or at least partially describe a material by Lennard-Jones potential approaches, the above- mentioned dependences are even completely free of microscopic material parameters. Instead of bond energies and length, only specific integral parameters like Young’s modulus and Poisson’s ratio are required. However, in the case of time dependent (viscose) material behavior the parameters are not constants anymore. They themselves depend on time and the actual stress field, especially the shear field. A body completely consisting of so called standard linear solid interacting particles will then phenomenologically show a completely different and usually much more complicated mechanical behavior. The influence of the time dependent pressure-shear-induced Young’s modulus change is discussed with respect to mechanical contact experiments and their analysis in the case of viscose materials. (papers)
Ore prospecting in the Iberian Pyrite Belt using seismic and potential-field data
International Nuclear Information System (INIS)
Carvalho, João; Pinto, Carlos; Sousa, Pedro; Matos, João Xavier
2011-01-01
Ore prospecting using gravimetric and magnetic data has become one of the traditional approaches used in past decades, often complemented with electric and electromagnetic methods. However, due to the problem of non-uniqueness inherent to potential-field modelling, constraints provided by structural methods such as seismic reflection are often used. During the exploration of polymetallic massive sulfide minerals in the Iberian Pyrite Belt, Figueira de Cavaleiros sector, located in the Sado Tertiary Basin, several gravimetric and magnetic anomalies were considered to be interesting targets. In order to reduce any ambiguity in the gravimetric modelling and to confirm the geological model of the area, two seismic reflection profiles were acquired. The interpretation of these profiles was assisted by three mechanical boreholes, two of which were located in the research area to make a seismostratigraphic interpretation. Unfortunately, the gravimetric modelling suggests that the anomaly has a lithological and structural origin and is not related to massive sulfides. Nevertheless, a good agreement between the seismic and potential-field data was achieved and new insights into the geological model for the region were obtained from this work, with accurate data about the Tertiary cover and Palaeozoic basement
Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.
Jessberger, Jakob; Zhong, Weiwei; Brankačk, Jurij; Draguhn, Andreas
2016-01-01
It is well established that local field potentials (LFP) in the rodent olfactory bulb (OB) follow respiration. This respiration-related rhythm (RR) in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG) and nasal temperature (thermocouple; TC). During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.
Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice
Directory of Open Access Journals (Sweden)
Jakob Jessberger
2016-01-01
Full Text Available It is well established that local field potentials (LFP in the rodent olfactory bulb (OB follow respiration. This respiration-related rhythm (RR in OB depends on nasal air flow, indicating that it is conveyed by sensory inputs from the nasal epithelium. Recently RR was found outside the olfactory system, suggesting that it plays a role in organizing distributed network activity. It is therefore important to measure RR and to delineate it from endogenous electrical rhythms like theta which cover similar frequency bands in small rodents. In order to validate such measurements in freely behaving mice, we compared rhythmic LFP in the OB with two respiration-related biophysical parameters: whole-body plethysmography (PG and nasal temperature (thermocouple; TC. During waking, all three signals reflected respiration with similar reliability. Peak power of RR in OB decreased with increasing respiration rate whereas power of PG increased. During NREM sleep, respiration-related TC signals disappeared and large amplitude slow waves frequently concealed RR in OB. In this situation, PG provided a reliable signal while breathing-related rhythms in TC and OB returned only during microarousals. In summary, local field potentials in the olfactory bulb do reliably reflect respiratory rhythm during wakefulness and REM sleep but not during NREM sleep.
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
The Process of Solving Complex Problems
Fischer, Andreas; Greiff, Samuel; Funke, Joachim
2012-01-01
This article is about Complex Problem Solving (CPS), its history in a variety of research domains (e.g., human problem solving, expertise, decision making, and intelligence), a formal definition and a process theory of CPS applicable to the interdisciplinary field. CPS is portrayed as (a) knowledge acquisition and (b) knowledge application…
Hearing loss and potential hazards of metallic middle-ear implants in NMR-magnetic fields
International Nuclear Information System (INIS)
Huettenbrink, K.B.
1987-01-01
Concurrent with the expanding clinical applications of nuclear magnetic resonance (NMR) imaging, patients with metallic middle-ear implants will certainly be exposed to this strong magnetic field in the future. To determine potential hazards, associated with movements of steel- or Platinium stapes-prostheses, several tests were performed in a 0.5 tesla NMR unit and the induced forces were calculated. Although the commonly used paramagnetic steel-wire or platinium-alloys will not dislodge in vivo, ferromagnetic prostheses may present a hazardous risk. Prior to exposure to the magnetic field, information about the implanted material should therefore be obtained. A side-effect of the induced current flow is the attenuation of the sound-vibrations of the stapes prosthesis. This, 5-10 dB impairment of transmission develops only at a certain position of the patient's head, when the prosthesis vibrates perpendicularly to the magnetic field's Z-axis. Patients with a metallic prosthesis should be informed about this purely physical, harmless phenomenon prior to entering the NMR-cylinder. (orig.) [de
International Nuclear Information System (INIS)
Valentine, G.A.; Groves, K.R.; Gable, C.W.; Perry, F.V.; Crowe, B.M.
1993-01-01
Assessing the risk of future magmatic activity at a potential Yucca Mountain radioactive waste repository requires, in addition to event probabilities, some knowledge of the consequences of such activity. Magmatic consequences are divided into an eruptive component, which pertains to the possibility of radioactive waste being erupted onto the surface of Yucca Mountain, and a subsurface component, which occurs whether there is an accompanying eruption or not. The subsurface component pertains to a suite of processes such as hydrothermal activity, changes in country rock properties, and long term alteration of the hydrologic flow field which change the waste isolation system. This paper is the second in a series describing progress on studies of the effects of magmatic activity. We describe initial results of field analog studies at small volume basaltic centers where detailed measurements are being conducted of the amount of wall rock debris that can be erupted as a function of depth in the volcanic plumbing system. Constraints from field evidence of wall rock entrainment mechanisms are also discussed. Evidence is described for a mechanism of producing subhorizontal sills versus subvertical dikes, an issue that is important for assessing subsurface effects. Finally, new modeling techniques, which are being developed in order to capture the three dimensional complexities of real geologic situations in subsurface effects, are described
Li, Xishuang; Liu, Baohua; Liu, Lejun; Zheng, Jiewen; Zhou, Songwang; Zhou, Qingjie
2017-12-01
The Liwan (Lw) gas field located in the northern slope of the South China Sea (SCS) is extremely complex for its sea-floor topograghy, which is a huge challenge for the safety of subsea facilities. It is economically impractical to obtain parameters for risk assessment of slope stability through a large amount of sampling over the whole field. The linkage between soil shear strength and seabed peak amplitude derived from 2D/3D seismic data is helpful for understanding the regional slope-instability risk. In this paper, the relationships among seabed peak, acoustic impedance and shear strength of shallow soil in the study area were discussed based on statistical analysis results. We obtained a similar relationship to that obtained in other deep-water areas. There is a positive correlation between seabed peak amplitude and acoustic impedance and an exponential relationship between acoustic impedance and shear strength of sediment. The acoustic impedance is the key factor linking the seismic amplitude and shear strength. Infinite slope stability analysis results indicate the areas have a high potential of shallow landslide on slopes exceeding 15° when the thickness of loose sediments exceeds 8 m in the Lw gas field. Our prediction shows that they are mainly located in the heads and walls of submarine canyons.
Cross-field flow and electric potential in a plasma slab
Directory of Open Access Journals (Sweden)
J. De Keyser
2013-08-01
Full Text Available We consider cross-field plasma flow inside a field-aligned plasma slab embedded in a uniform background in a 1-dimensional geometry. This situation may arise, for instance, when long-lasting reconnection pulses inject plasma into the inner magnetosphere. The present paper presents a detailed analysis of the structure of the interfaces that separate the slab from the background plasma on either side; a fully kinetic model is used to do so. Since the velocity shear across both interfaces has opposite signs, and given the typical gyroradius differences between injected and background ions and electrons, the structure of both interfaces can be very different. The behaviour of the slab and its interfaces depends critically on the flow of the plasma transverse to the magnetic field; in particular, it is shown that there are bounds to the flow speed that can be supported by the magnetised plasma. Further complicating the picture is the effect of the potential difference between the slab and its environment.
Energy Technology Data Exchange (ETDEWEB)
Liu Guanghui [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Guo Kangxian, E-mail: axguo@sohu.com [Department of Physics, College of Physics and Electronic Engineering, Guangzhou University, Guangzhou 510006 (China); Wang Chao [Institute of Public Administration, Guangzhou University, Guangzhou 510006 (China)
2012-06-15
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
International Nuclear Information System (INIS)
Liu Guanghui; Guo Kangxian; Wang Chao
2012-01-01
The linear and nonlinear optical absorption in a disk-shaped quantum dot (DSQD) with parabolic potential plus an inverse squared potential in the presence of a static magnetic field are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy levels and the wave functions of an electron in the DSQD are obtained by using the effective mass approximation. Numerical calculations are presented for typical GaAs/AlAs DSQD. It is found that the optical absorption coefficients are strongly affected not only by a static magnetic field, but also by the strength of external field, the confinement frequency and the incident optical intensity.
New method for solving three-dimensional Schroedinger equation
International Nuclear Information System (INIS)
Melezhik, V.S.
1992-01-01
A new method is developed for solving the multidimensional Schroedinger equation without the variable separation. To solve the Schroedinger equation in a multidimensional coordinate space X, a difference grid Ω i (i=1,2,...,N) for some of variables, Ω, from X={R,Ω} is introduced and the initial partial-differential equation is reduced to a system of N differential-difference equations in terms of one of the variables R. The arising multi-channel scattering (or eigenvalue) problem is solved by the algorithm based on a continuous analog of the Newton method. The approach has been successfully tested for several two-dimensional problems (scattering on a nonspherical potential well and 'dipole' scatterer, a hydrogen atom in a homogenous magnetic field) and for a three-dimensional problem of the helium-atom bound states. (author)
Wu, Wei; Wang, Jin
2013-09-28
We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is
Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.
2018-04-01
We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.
Scheingross, J. S.; Dellinger, M.; Eglinton, T. I.; Fuchs, M. C.; Golombek, N.; Hilton, R. G.; Hovius, N.; Lupker, M.; Repasch, M. N.; Sachse, D.; Turowski, J. M.; Vieth-Hillebrand, A.; Wittmann, H.
2017-12-01
Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, hydropshere, biosphere and geosphere can be a major control on atmospheric carbon dioxide concentrations. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion, transport, and burial of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering. Despite field data showing increasing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport, where OC is in continual motion within an aerated river, or during periods of temporary storage in river floodplains which may be anoxic. The unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to mechanistically link geochemical and geomorphic processes which are required to develop models capable of predicting OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this knowledge gap, we investigated OC oxidation in controlled laboratory experiments and a simplified field setting. We performed experiments in annular flumes that simulate fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km. Preliminary experiments exploring both rock-derived and biospheric OC sources show minimal OC oxidation during active river transport, consistent with the idea that the majority of OC loss occurs during transient floodplain storage. These results are also consistent with new field data collected in the Rio Bermejo, Argentina, a lowland river traversing 800 km with no tributary inputs, where aged floodplain deposits have 3 to 10 times lower OC concentrations compared to modern river sediments. Together our field data and experiments support the hypothesis that oxidation of OC occurs primarily during
Determination of a silane intermolecular force field potential model from an ab initio calculation
International Nuclear Information System (INIS)
Li, Arvin Huang-Te; Chao, Sheng D.; Chang, Chien-Cheng
2010-01-01
Intermolecular interaction potentials of the silane dimer in 12 orientations have been calculated by using the Hartree-Fock (HF) self-consistent theory and the second-order Moeller-Plesset (MP2) perturbation theory. We employed basis sets from Pople's medium-size basis sets [up to 6-311++G(3df, 3pd)] and Dunning's correlation consistent basis sets (up to the triply augmented correlation-consistent polarized valence quadruple-zeta basis set). We found that the minimum energy orientations were the G and H conformers. We have suggested that the Si-H attractions, the central silicon atom size, and electronegativity play essential roles in weakly binding of a silane dimer. The calculated MP2 potential data were employed to parametrize a five-site force field for molecular simulations. The Si-Si, Si-H, and H-H interaction parameters in a pairwise-additive, site-site potential model for silane molecules were regressed from the ab initio energies.
Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.
Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard
2015-01-01
Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.
How to solve applied mathematics problems
Moiseiwitsch, B L
2011-01-01
This workbook bridges the gap between lectures and practical applications, offering students of mathematics, engineering, and physics the chance to practice solving problems from a wide variety of fields. 2011 edition.
Horowitz, F. G.; Gaede, O.
2014-12-01
Wavelet multiscale edge analysis of potential fields (a.k.a. "worms") has been known since Moreau et al. (1997) and was independently derived by Hornby et al. (1999). The technique is useful for producing a scale-explicit overview of the structures beneath a gravity or magnetic survey, including establishing the location and estimating the attitude of surface features, as well as incorporating information about the geometric class (point, line, surface, volume, fractal) of the underlying sources — in a fashion much like traditional structural indices from Euler solutions albeit with better areal coverage. Hornby et al. (2002) show that worms form the locally highest concentration of horizontal edges of a given strike — which in conjunction with the results from Mallat and Zhong (1992) induces a (non-unique!) inversion where the worms are physically interpretable as lateral boundaries in a source distribution that produces a close approximation of the observed potential field. The technique has enjoyed widespread adoption and success in the Australian mineral exploration community — including "ground truth" via successfully drilling structures indicated by the worms. Unfortunately, to our knowledge, all implementations of the code to calculate the worms/multiscale edges (including Horowitz' original research code) are either part of commercial software packages, or have copyright restrictions that impede the use of the technique by the wider community. The technique is completely described mathematically in Hornby et al. (1999) along with some later publications. This enables us to re-implement from scratch the code required to calculate and visualize the worms. We are freely releasing the results under an (open source) BSD two-clause software license. A git repository is available at . We will give an overview of the technique, show code snippets using the codebase, and present visualization results for example datasets (including the Surat basin of Australia
Energy Technology Data Exchange (ETDEWEB)
Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)
2016-11-15
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
International Nuclear Information System (INIS)
Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok
2016-01-01
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
Potential fields on the ventricular surface of the exposed dog heart during normal excitation.
Arisi, G; Macchi, E; Baruffi, S; Spaggiari, S; Taccardi, B
1983-06-01
We studied the normal spread of excitation on the anterior and posterior ventricular surface of open-chest dogs by recording unipolar electrograms from an array of 1124 electrodes spaced 2 mm apart. The array had the shape of the ventricular surface of the heart. The electrograms were processed by a computer and displayed as epicardial equipotential maps at 1-msec intervals. Isochrone maps also were drawn. Several new features of epicardial potential fields were identified: (1) a high number of breakthrough points; (2) the topography, apparent widths, velocities of the wavefronts and the related potential drop; (3) the topography of positive potential peaks in relation to the wavefronts. Fifteen to 24 breakthrough points were located on the anterior, and 10 to 13 on the posterior ventricular surface. Some were in previously described locations and many others in new locations. Specifically, 3 to 5 breakthrough points appeared close to the atrioventricular groove on the anterior right ventricle and 2 to 4 on the posterior heart aspect; these basal breakthrough points appeared when a large portion of ventricular surface was still unexcited. Due to the presence of numerous breakthrough points on the anterior and posterior aspect of the heart which had not previously been described, the spread of excitation on the ventricular surface was "mosaic-like," with activation wavefronts spreading in all directions, rather than radially from the two breakthrough points, as traditionally described. The positive potential peaks which lay ahead of the expanding wavefronts moved along preferential directions which were probably related to the myocardial fiber direction.
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks
DEFF Research Database (Denmark)
Hagen, Espen; Dahmen, David; Stavrinou, Maria L
2016-01-01
on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network......With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical...... and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely...
A Computationally Efficient Tool for Assessing the Depth Resolution in Potential-Field Inversion
DEFF Research Database (Denmark)
Paoletti, V.; Hansen, Per Christian; Hansen, Mads Friis
In potential-field inversion problems, it can be dicult to obtain reliable information about the source distribution with respect to depth. Moreover, spatial resolution of the reconstructions decreases with depth, and in fact the more ill-posed the problem - and the more noisy the data - the less...... reliable the depth information. Based on earlier work using the singular value decomposition, we introduce a tool ApproxDRP which uses approximations of the singular vectors obtained by the iterative Lanczos bidiagonalization algorithm, making it well suited for large-scale problems. This tool allows...... successfully show the limitations of depth resolution resulting from noise in the data. This allows a reliable analysis of the retrievable depth information and effectively guides the user in choosing the optimal number of iterations, for a given problem....
Liu, Hesheng; Agam, Yigal; Madsen, Joseph R.; Kreiman, Gabriel
2010-01-01
Summary The difficulty of visual recognition stems from the need to achieve high selectivity while maintaining robustness to object transformations within hundreds of milliseconds. Theories of visual recognition differ in whether the neuronal circuits invoke recurrent feedback connections or not. The timing of neurophysiological responses in visual cortex plays a key role in distinguishing between bottom-up and top-down theories. Here we quantified at millisecond resolution the amount of visual information conveyed by intracranial field potentials from 912 electrodes in 11 human subjects. We could decode object category information from human visual cortex in single trials as early as 100 ms post-stimulus. Decoding performance was robust to depth rotation and scale changes. The results suggest that physiological activity in the temporal lobe can account for key properties of visual recognition. The fast decoding in single trials is compatible with feed-forward theories and provides strong constraints for computational models of human vision. PMID:19409272
Directory of Open Access Journals (Sweden)
Yu-chuan Yang
2016-01-01
Full Text Available The slope stability problem is an important issue for the safety of human beings and structures. The stability analysis of the three-dimensional (3D slope is essential to prevent landslides, but the most important and difficult problem is how to determine the 3D critical slip surface with the minimum factor of safety in earth slopes. Basing on the slope stress field with the finite element method, a stability analysis method is proposed to determine the critical slip surface and the corresponding safety factor of 3D soil slopes. Spherical and ellipsoidal slip surfaces are considered through the analysis. The moment equilibrium is used to compute the safety factor combined with the Mohr-Coulomb criteria and the limit equilibrium principle. Some assumptions are introduced to reduce the search range of center points and the radius of spheres or ellipsoids. The proposed method is validated by a classical 3D benchmark soil slope. Simulated results indicate that the safety factor of the benchmark slope is 2.14 using the spherical slip surface and 2.19 using the ellipsoidal slip surface, which is close to the results of previous methods. The simulated results indicate that the proposed method can be used for the stability analysis of a 3D soil slope.
Point-particle effective field theory I: classical renormalization and the inverse-square potential
Energy Technology Data Exchange (ETDEWEB)
Burgess, C.P.; Hayman, Peter [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada); Williams, M. [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Zalavári, László [Physics & Astronomy, McMaster University,Hamilton, ON, L8S 4M1 (Canada); Perimeter Institute for Theoretical Physics,Waterloo, Ontario N2L 2Y5 (Canada)
2017-04-19
Singular potentials (the inverse-square potential, for example) arise in many situations and their quantum treatment leads to well-known ambiguities in choosing boundary conditions for the wave-function at the position of the potential’s singularity. These ambiguities are usually resolved by developing a self-adjoint extension of the original problem; a non-unique procedure that leaves undetermined which extension should apply in specific physical systems. We take the guesswork out of this picture by using techniques of effective field theory to derive the required boundary conditions at the origin in terms of the effective point-particle action describing the physics of the source. In this picture ambiguities in boundary conditions boil down to the allowed choices for the source action, but casting them in terms of an action provides a physical criterion for their determination. The resulting extension is self-adjoint if the source action is real (and involves no new degrees of freedom), and not otherwise (as can also happen for reasonable systems). We show how this effective-field picture provides a simple framework for understanding well-known renormalization effects that arise in these systems, including how renormalization-group techniques can resum non-perturbative interactions that often arise, particularly for non-relativistic applications. In particular we argue why the low-energy effective theory tends to produce a universal RG flow of this type and describe how this can lead to the phenomenon of reaction catalysis, in which physical quantities (like scattering cross sections) can sometimes be surprisingly large compared to the underlying scales of the source in question. We comment in passing on the possible relevance of these observations to the phenomenon of the catalysis of baryon-number violation by scattering from magnetic monopoles.
Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao
2017-03-01
Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.
Directory of Open Access Journals (Sweden)
Nayeli Huidobro
2017-08-01
Full Text Available Stochastic resonance (SR is an inherent and counter-intuitive mechanism of signal-to-noise ratio (SNR facilitation in biological systems associated with the application of an intermediate level of noise. As a first step to investigate in detail this phenomenon in the somatosensory system, here we examined whether the direct application of noisy light on pyramidal neurons from the mouse-barrel cortex expressing a light-gated channel channelrhodopsin-2 (ChR2 can produce facilitation in somatosensory evoked field potentials. Using anesthetized Thy1-ChR2-YFP transgenic mice, and a new neural technology, that we called Brownian optogenetic-noise-photostimulation (BONP, we provide evidence for how BONP directly applied on the barrel cortex modulates the SNR in the amplitude of whisker-evoked field potentials (whisker-EFP. In all transgenic mice, we found that the SNR in the amplitude of whisker-EFP (at 30% of the maximal whisker-EFP exhibited an inverted U-like shape as a function of the BONP level. As a control, we also applied the same experimental paradigm, but in wild-type mice, as expected, we did not find any facilitation effects. Our results show that the application of an intermediate intensity of BONP on the barrel cortex of ChR2 transgenic mice amplifies the SNR of somatosensory whisker-EFPs. This result may be relevant to explain the improvements found in sensory detection in humans produced by the application of transcranial-random-noise-stimulation (tRNS on the scalp.
A vector field method on the distorted Fourier side and decay for wave equations with potentials
Donninger, Roland
2016-01-01
The authors study the Cauchy problem for the one-dimensional wave equation \\partial_t^2 u(t,x)-\\partial_x^2 u(t,x)+V(x)u(t,x)=0. The potential V is assumed to be smooth with asymptotic behavior V(x)\\sim -\\tfrac14 |x|^{-2}\\mbox{ as } |x|\\to \\infty. They derive dispersive estimates, energy estimates, and estimates involving the scaling vector field t\\partial_t+x\\partial_x, where the latter are obtained by employing a vector field method on the âeoedistortedâe Fourier side. In addition, they prove local energy decay estimates. Their results have immediate applications in the context of geometric evolution problems. The theory developed in this paper is fundamental for the proof of the co-dimension 1 stability of the catenoid under the vanishing mean curvature flow in Minkowski space; see Donninger, Krieger, Szeftel, and Wong, âeoeCodimension one stability of the catenoid under the vanishing mean curvature flow in Minkowski spaceâe, preprint arXiv:1310.5606 (2013).
Energy Technology Data Exchange (ETDEWEB)
Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish
2014-08-01
The need for and concepts behind demand response are evolving. As the electric system changes with more intermittent renewable electric supply systems, there is a need to allow buildings to provide more flexible demand. This paper presents results from field studies and pilots, as well as engineering estimates of the potential capabilities of fast load responsiveness in commercial buildings. We present a sector wide analysis of flexible loads in commercial buildings, which was conducted to improve resource planning and determine which loads to evaluate in future demonstrations. These systems provide important capabilities for future transactional systems. The field analysis is based on results from California, plus projects in the northwest and east coast. End-uses considered include heating, ventilation, air conditioning and lighting. The timescales of control include day-ahead, as well as day-of, 10-minute ahead and even faster response. This technology can provide DR signals on different times scales to interact with responsive building loads. We describe the latency of the control systems in the building and the round trip communications with the wholesale grid operators.
International Nuclear Information System (INIS)
Takahashi, K; Kaneko, T; Hatakeyama, R; Fukuyama, A
2009-01-01
Characteristics of electromagnetic waves of azimuthal mode number m = ±1 are investigated experimentally, analytically and numerically when the waves triggering the field-aligned and transverse plasma-potential structure modification near an electron cyclotron resonance (ECR) point are injected into an inhomogeneously magnetized plasma with high-speed ion flow. The waves of m = +1 and -1 modes generate an electric double layer near the ECR point at the radially central and peripheral areas of the plasma column, respectively, and the transverse electric fields are consequently formed. At these areas the waves have a right-handed polarization and are absorbed through the ECR mechanism, where the experimental and analytical results do show the polarization reversal along the radial axis. The numerical results by plasma analysis by finite element method (FEM)/wave analysis by FEM (PAF/WF) code show that the wave-absorption area is localized at the radially central and peripheral areas for m = +1 and -1 mode waves, respectively, being consistent with the experimental and analytical ones.
Probing the interatomic potential of solids with strong-field nonlinear phononics
von Hoegen, A.; Mankowsky, R.; Fechner, M.; Först, M.; Cavalleri, A.
2018-03-01
Nonlinear optical techniques at visible frequencies have long been applied to condensed matter spectroscopy. However, because many important excitations of solids are found at low energies, much can be gained from the extension of nonlinear optics to mid-infrared and terahertz frequencies. For example, the nonlinear excitation of lattice vibrations has enabled the dynamic control of material functions. So far it has only been possible to exploit second-order phonon nonlinearities at terahertz field strengths near one million volts per centimetre. Here we achieve an order-of-magnitude increase in field strength and explore higher-order phonon nonlinearities. We excite up to five harmonics of the A1 (transverse optical) phonon mode in the ferroelectric material lithium niobate. By using ultrashort mid-infrared laser pulses to drive the atoms far from their equilibrium positions, and measuring the large-amplitude atomic trajectories, we can sample the interatomic potential of lithium niobate, providing a benchmark for ab initio calculations for the material. Tomography of the energy surface by high-order nonlinear phononics could benefit many aspects of materials research, including the study of classical and quantum phase transitions.
International Nuclear Information System (INIS)
Gennaro, Gisella; Katz, Luc; Souchay, Henri; Alberelli, Claudio; Maggio, Cosimo di
2005-01-01
A phantom study was performed in full-field digital mammography to investigate the opportunity and the magnitude of a possible dose reduction that would leave the image quality above the accepted thresholds associated with some classical phantoms. This preliminary work is intended to lay the groundwork for a future clinical study on the impact of dose reduction on clinical results. Three different mammography phantoms (ACR RMI 156, CIRS 11A and CDMAM 3.4) were imaged by a full-field digital mammography unit (GE Senographe 2000D) at different dose levels. Images were rated by three observers with softcopy reading and scoring methods specific to each phantom. Different types of data analysis were applied to the ACR (American College of Radiology) and the other two phantoms, respectively. With reference to the minimum acceptance score in screen/film accreditation programmes, the ACR phantom showed that about 45% dose reduction could be applied, while keeping the phantom scores above that threshold. A relative comparison was done for CIRS and CDMAM, for which no threshold is defined. CIRS scoring remained close to the reference level down to 40% dose reduction, the inter- and intra-observer variability being the main source of uncertainty. Contrast-detail curves provided by CDMAM overlapped down to 50% dose reduction, at least for object contrast values ranging between 30% and 3%. This multi-phantom study shows the potential of further reducing the dose in full-field digital mammography beyond the current values. A common dose reduction factor around 50% seems acceptable for all phantoms. However, caution is required before extrapolating the results for clinical use, given the limitations of these widely used phantoms, mainly related to their limited dynamic range and uniform background
Wang, Ren H.
1991-01-01
A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.
Gao, Zhiyuan; Zhou, Jun; Gu, Yudong; Fei, Peng; Hao, Yue; Bao, Gang; Wang, Zhong Lin
2009-01-01
We have investigated the effects of piezoelectric potential in a ZnO nanowire on the transport characteristics of the nanowire based field effect transistor through numerical calculations and experimental observations. Under different straining
Solving the critical state using flux line properties
International Nuclear Information System (INIS)
Campbell, A M
2014-01-01
A method of solving the critical state in superconductors using the vector potential and commercial software (FlexPDE) is described. It avoids both time dependence and power law resistivity. It uses a material parameter which describes how far flux lines move before most become unpinned. This allows small oscillations and minor hysteresis loops to be modelled. The theory is applied to the problem of demagnetisation in bulks due to crossed fields. It may explain why experimental results do not agree with theory. The theory can be extended to coils, and two and three dimensions. This requires the introduction of a scalar potential V o . This is not the usual scalar potential, which is due to electrostatic charges as the field is run up, but the integral of this value at the final field after charges have dissipated. (paper)
Power-law modulation of the scalar power spectrum from a heavy field with a monomial potential
Huang, Qing-Guo; Pi, Shi
2018-04-01
The effects of heavy fields modulate the scalar power spectrum during inflation. We analytically calculate the modulations of the scalar power spectrum from a heavy field with a separable monomial potential, i.e. V(phi)~ phin. In general the modulation is characterized by a power-law oscillation which is reduced to the logarithmic oscillation in the case of n=2.
International Nuclear Information System (INIS)
Cornish, S.; Gummersall, D.; Carr, M.; Khachan, J.
2014-01-01
A capacitive probe has been used to measure the plasma potential in a polywell device in order to observe the dependence of potential well formation on magnetic field strength, electron injection current, and polywell voltage bias. The effectiveness of the capacitive probe in a high energy electron plasma was determined by measuring the plasma potential of a planar diode with an axial magnetic field. The capacitive probe was translated along the axis of one of the field coils of the polywell, and the spatial profile of the potential well was measured. The confinement time of electrons in the polywell was estimated with a simple analytical model which used the experimentally observed potential well depths, as well as a simulation of the electron trajectories using particle orbit theory
International Nuclear Information System (INIS)
Saeidi, Mohammadreza; Vaezzadeh, Majid; Badakhshan, Farzaneh
2011-01-01
Influence of DC electric field on carbon nanotube (CNT) growth in chemical vapor deposition is studied. Investigation of electric field effect in van der Waals interaction shows that increase in DC electric field raises the magnitude of attractive term of the Lennard-Jones potential. By using a theoretical model based on phonon vibrations of CNT on catalyst, it is shown that there is an optimum field for growth. Also it is observed that CNT under optimum electric field is longer than CNT in the absence of field. Finally, the relation between optimum DC electric field and type of catalyst is investigated and for some intervals of electric field, the best catalyst is introduced, which is very useful for experimental researches. -- Research highlights: → Influence of DC electric field on CNT growth in CVD. → Effect of electric field on van der Waals interaction between CNT and its catalyst. → Applying DC electric field increases attractive term of Lennard-Jonespotential. → There is an optimum DC field for CNT growth. → For catalyst with stronger van der Waals interaction, optimum field is smaller.
Directory of Open Access Journals (Sweden)
Gonzalo Martín-Vázquez
Full Text Available Fluctuations in successive waves of oscillatory local field potentials (LFPs reflect the ongoing processing of neuron populations. However, their amplitude, polarity and synaptic origin are uncertain due to the blending of electric fields produced by multiple converging inputs, and the lack of a baseline in standard AC-coupled recordings. Consequently, the estimation of underlying currents by laminar analysis yields spurious sequences of inward and outward currents. We devised a combined analytical/experimental approach that is suitable to study laminated structures. The approach was essayed on an experimental oscillatory LFP as the Schaffer-CA1 gamma input in anesthetized rats, and it was verified by parallel processing of model LFPs obtained through a realistic CA1 aggregate of compartmental units. This approach requires laminar LFP recordings and the isolation of the oscillatory input from other converging pathways, which was achieved through an independent component analysis. It also allows the spatial and temporal components of pathway-specific LFPs to be separated. While reconstructed Schaffer-specific LFPs still show spurious inward/outward current sequences, these were clearly stratified into distinct subcellular domains. These spatial bands guided the localized delivery of neurotransmitter blockers in experiments. As expected, only Glutamate but not GABA blockers abolished Schaffer LFPs when applied to the active but not passive subcellular domains of pyramidal cells. The known chemical nature of the oscillatory LFP allowed an empirical offset of the temporal component of Schaffer LFPs, such that following reconstruction they yield only sinks or sources at the appropriate sites. In terms of number and polarity, some waves increased and others decreased proportional to the concomitant inputs in native multisynaptic LFPs. Interestingly, the processing also retrieved the initiation time for each wave, which can be used to discriminate
DEFF Research Database (Denmark)
Verbrugghe, Tim; Troch, Peter; Kortenhaus, Andreas
2016-01-01
Wave energy converters (WECs) need to be deployed in large numbers in an array layout in order to have a significant power production. Each WEC has an impact on the incoming wave field, diffracting, reflecting and radiating waves. Simulating the wave transformations within and around a WEC farm...... of a wave-structure interaction solver and a wave propagation model, both based on the potential flow theory. This paper discusses the coupling method and illustrates the functionality with a proof-of-concept. Additionally, a projection of the evolution of the numerical tool is given. It can be concluded...... is complex; it is difficult to simulate both near field and far field effects with a single numerical model, with relatively fast computing times. Within this research a numerical tool is developed to model near-field and far-field wave transformations caused by WECs. The tool is based on the coupling...
Insights on the Understanding of the Circum-Caribbean Region from Potential Field Data
Garcia-Reyes, A.; Dyment, J.; Thebault, E.
2017-12-01
During decades, the nature, geometry and evolution of the Caribbean geological provinces and their boundaries have been topic of discussion and controversy. Great strike-slip faulting in the northern boundaries of the plate, and folding and thrusting structures related with Cretaceous magmatism have been used as indicators of the emplacement of the Caribbean plate between the Northamerican and Southamerican plates at least from the Late Cretaceous, which is the most accepted hypothesis. The exotic origin of the Caribbean plate has also been supported by presence of radiolarites, fauna, ages from rocks sampled from drilling and oceanic paleo-currents analyses. The high thickness of the sediments in most of the basins, the absence of drilling wells reaching the acoustic basement and the absence of identifiable patterns of magnetic anomalies constitute the limitations for the interpretation from potential field data. Potential field data allows tracking contrasts in the physical properties between two geological bodies if they are laterally exhibited. Hence its use is suitable to characterise the seafloor fabric but also to better delineate the boundaries between the geological provinces. In this research we are providing an interpretation from vertical gradients of gravity and reprocessed magnetic anomalies over the Caribbean region with the purpose of making a contribution to the understanding of this area. We are also using magnetic anomalies to determine the paleolatitude over those areas where seafloor spreading related anomalies are observed. Our results led us to propose a conceptual model of the origin of the Caribbean plate. Our model relates the Venezuelan basin with the Cretaceous `not-so-quite' magnetic isochrons; it proposes that the Colombian, Venezuelan and Grenada basins have oceanic crustal affinity and it reinterprets the Beata and Aves ridges as reactivated fracture zones - respectively - in which a magmatic event occurred during or after its
Exact Algorithms for Solving Stochastic Games
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt; Koucky, Michal; Lauritzen, Niels
2012-01-01
Shapley's discounted stochastic games, Everett's recursive games and Gillette's undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games....
Methods of solving nonstandard problems
Grigorieva, Ellina
2015-01-01
This book, written by an accomplished female mathematician, is the second to explore nonstandard mathematical problems – those that are not directly solved by standard mathematical methods but instead rely on insight and the synthesis of a variety of mathematical ideas. It promotes mental activity as well as greater mathematical skills, and is an ideal resource for successful preparation for the mathematics Olympiad. Numerous strategies and techniques are presented that can be used to solve intriguing and challenging problems of the type often found in competitions. The author uses a friendly, non-intimidating approach to emphasize connections between different fields of mathematics and often proposes several different ways to attack the same problem. Topics covered include functions and their properties, polynomials, trigonometric and transcendental equations and inequalities, optimization, differential equations, nonlinear systems, and word problems. Over 360 problems are included with hints, ...
Directory of Open Access Journals (Sweden)
Rikkert Hindriks
Full Text Available Planar intra-cortical electrode (Utah arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD underlying such recordings, however, requires "inverting" Poisson's equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs. Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to "invert" a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG and magnetoencephalographic (MEG inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models
Cuntz, Hermann; Lansner, Anders; Panzeri, Stefano; Einevoll, Gaute T.
2015-01-01
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo. PMID:26657024
Computing the Local Field Potential (LFP from Integrate-and-Fire Network Models.
Directory of Open Access Journals (Sweden)
Alberto Mazzoni
2015-12-01
Full Text Available Leaky integrate-and-fire (LIF network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP. Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best "LFP proxy", we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents with "ground-truth" LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.
Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials.
Lee, Mei-Yi; Lin, Yi-Ruu; Tu, Yi-Shu; Tseng, Yufeng Jane; Chan, Ming-Huan; Chen, Hwei-Hsien
2017-02-28
Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG.
Verhagen, R.; Zwartjes - de Klerk, D.G.M; Heida, Tjitske; Contarino, M.F.; de Bie, R.M.A.; van den Munckhof, P; Schuurman, P.R.; Martens, H.C.F.; Veltink, Petrus H.; Bour, L.J.
2013-01-01
To evaluate the nature of oscillatory activity in the subthalamic nucleus (STN) by means of intraoperative local field potential (LFP) recordings, its relationship with microelectrode recordings (MER) and its potential use to locate the STN and its sensorimotor sub-area in patients with Parkinson’s
Phillips, J. D.; Saltus, R. W.; Potter, C. J.; Stanley, R. G.; Till, A. B.
2008-05-01
In frontier areas of Alaska, potential-field studies play an important role in characterizing the geologic structure of sedimentary basins having potential for undiscovered oil and gas resources. Two such areas are the Yukon Flats basin in the east-central interior of Alaska, and the coastal plain of the Arctic National Wildlife Refuge (ANWR) in northeastern Alaska. The Yukon Flats basin is a potential source of hydrocarbon resources for local consumption and possible export. Knowledge of the subsurface configuration of the basin is restricted to a few seismic reflection profiles covering a limited area and one well. The seismic profiles were reprocessed and reinterpreted in preparation for an assessment of the oil and gas resources of the basin. The assessment effort required knowledge of the basin configuration away from the seismic profiles, as well as an understanding of the nature of the underlying basement. To extend the interpretation of the basin thickness across the entire area of the basin, an iterative Jachens-Moring gravity inversion was performed on gridded quasi-isostatic residual gravity anomaly data. The inversion was constrained to agree with the interpreted basement surface along the seismic profiles. In addition to the main sedimentary depocenter interpreted from the seismic data as having over 8 km of fill, the gravity inversion indicated a depocenter with over 7 km of fill in the Crooked Creek sub-basin. Results for the Crooked Creek sub-basin are consistent with magnetic and magnetotelluric modeling, but they await confirmation by drilling or seismic profiling. Whether hydrocarbon source rocks are present in the pre-Cenozoic basement beneath Yukon Flats is difficult to determine because extensive surficial deposits obscure the bedrock geology, and no deep boreholes penetrate basement. The color and texture patterns in a red-green-blue composite image consisting of reduced-to-the-pole aeromagnetic data (red), magnetic potential (blue), and
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
Teaching Creative Problem Solving.
Christensen, Kip W.; Martin, Loren
1992-01-01
Interpersonal and cognitive skills, adaptability, and critical thinking can be developed through problem solving and cooperative learning in technology education. These skills have been identified as significant needs of the workplace as well as for functioning in society. (SK)
International Nuclear Information System (INIS)
Sadooghi, N.; Anaraki, K. Sohrabi
2008-01-01
Using the general structure of the vacuum polarization tensor Π μν (k 0 ,k) in the infrared (IR) limit, k 0 →0, the ring contribution to the QED effective potential at finite temperature and the nonzero magnetic field is determined beyond the static limit, (k 0 →0, k→0). The resulting ring potential is then studied in weak and strong magnetic field limits. In the weak magnetic field limit, at high temperature and for α→0, the improved ring potential consists of a term proportional to T 4 α 5/2 , in addition to the expected T 4 α 3/2 term arising from the static limit. Here, α is the fine structure constant. In the limit of the strong magnetic field, where QED dynamics is dominated by the lowest Landau level, the ring potential includes a novel term consisting of dilogarithmic function (eB)Li 2 (-(2α/π)(eB/m 2 )). Using the ring improved (one-loop) effective potential including the one-loop effective potential and ring potential in the IR limit, the dynamical chiral symmetry breaking of QED is studied at finite temperature and in the presence of the strong magnetic field. The gap equation, the dynamical mass and the critical temperature of QED in the regime of the lowest Landau level dominance are determined in the improved IR as well as in the static limit. For a given value of the magnetic field, the improved ring potential is shown to be more efficient in decreasing the critical temperature arising from the one-loop effective potential.
Solving the generalized Langevin equation with the algebraically correlated noise
International Nuclear Information System (INIS)
Srokowski, T.; Ploszajczak, M.
1997-01-01
The Langevin equation with the memory kernel is solved. The stochastic force possesses algebraic correlations, proportional to 1/t. The velocity autocorrelation function and related quantities characterizing transport properties are calculated at the assumption that the system is in the thermal equilibrium. Stochastic trajectories are simulated numerically, using the kangaroo process as a noise generator. Results of this simulation resemble Levy walks with divergent moments of the velocity distribution. The motion of a Brownian particle is considered both without any external potential and in the harmonic oscillator field, in particular the escape from a potential well. The results are compared with memory-free calculations for the Brownian particle. (author)
Darian, D.; Marholm, S.; Paulsson, J. J. P.; Miyake, Y.; Usui, H.; Mortensen, M.; Miloch, W. J.
2017-09-01
The charging of a sounding rocket in subsonic and supersonic plasma flows with external magnetic field is studied with numerical particle-in-cell (PIC) simulations. A weakly magnetized plasma regime is considered that corresponds to the ionospheric F2 layer, with electrons being strongly magnetized, while the magnetization of ions is weak. It is demonstrated that the magnetic field orientation influences the floating potential of the rocket and that with increasing angle between the rocket axis and the magnetic field direction the rocket potential becomes less negative. External magnetic field gives rise to asymmetric wake downstream of the rocket. The simulated wake in the potential and density may extend as far as 30 electron Debye lengths; thus, it is important to account for these plasma perturbations when analyzing in situ measurements. A qualitative agreement between simulation results and the actual measurements with a sounding rocket is also shown.
Directory of Open Access Journals (Sweden)
Rosemarie Velik
2012-11-01
Full Text Available The general objective of Artificial Intelligence (AI is to make machines – particularly computers – do things that require intelligence when done by humans. In the last 60 years, AI has significantly progressed and today forms an important part of industry and technology. However, despite the many successes, fundamental questions concerning the creation of human-level intelligence in machines still remain open and will probably not be answerable when continuing on the current, mainly mathematic-algorithmically-guided path of AI. With the novel discipline of
Brain-Like Artificial Intelligence, one potential way out of this dilemma has been suggested. Brain-Like AI aims at analyzing and deciphering the working mechanisms of the brain and translating this knowledge into implementable AI architectures with the objective to develop in this way more efficient, flexible, and capable technical systems This article aims at giving a review about this young and still heterogeneous and dynamic research field.
International Nuclear Information System (INIS)
Michmizos, K P; Nikita, K S; Sakas, D
2011-01-01
Studies on neurophysiological correlates of the functional magnetic resonance imaging (fMRI) signals reveal a strong relationship between the local field potential (LFP) acquired invasively and metabolic signal changes in fMRI experiments. Most of these studies failed to reveal an analogous relationship between metabolic signals and the spiking activity. That would allow for the prediction of the neural activity exclusively from the fMRI signals. However, the relationship between fMRI signals and spiking activity can be inferred indirectly provided that the LFPs can be used to predict the spiking activity of the area. Until now, only the LFP–spike relationship in cortical areas has been examined. Herein, we show that the spiking activity can be predicted by the LFPs acquired in a deep nucleus, namely the subthalamic nucleus (STN), using a nonlinear cascade model. The model can reproduce the spike patterns inside the motor area of the STN that represent information about the motor plans. Our findings expand the possibility of further recruiting non-invasive neuroimaging techniques to understand the activity of the STN and predict or even control movement
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
International Nuclear Information System (INIS)
Hrycyna, Orest; Szydłowski, Marek
2015-01-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory
Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin
Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.
2017-07-01
The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.
International Nuclear Information System (INIS)
Yang Shanghai
2011-01-01
Located in the middle part of Jiuyishan complex pluton, Nanling metallogenic belt, Dawan uranium ore field in Hunan Province is an important uranium-producing and rare metal, nonferrous metal cluster area due to the favourable mineralization environment. The Cambrian is the main uranium source bed and their contact zone to the pluton is the favorable part for mineralization. The uranium deposits which have been explored are all located in the exocontact zone of Jinjiling pluton in the middle part of Jiuyishan complex pluton which is composed of the independent eastern and western magma evolution centers. In the west center, Jinjiling pluton is closely related to uranium mineralization where the trinity geologic setting was formed with magma evolution, hydrothermal fluid action and mineralization. The deep slitted and large faults provide the pathway and thermodynamic source for circulating migration of mineralizing fluid. The uranium mineralization mainly occurred in crustal stress conversion period of Late Cretaceous and related to the tensive NW extending fault and deep originated fluid. The gravity, aero magnetic, airborne gamma-ray spectrometry anomalies and radioactivity hydrochemical anomaly are important criteria for uranium prospecting. Based on the analysis of regional uranium mineralization environment, the prospecting potential is forecasted. (authors)
A Stochastic Inversion Method for Potential Field Data: Ant Colony Optimization
Liu, Shuang; Hu, Xiangyun; Liu, Tianyou
2014-07-01
Simulating natural ants' foraging behavior, the ant colony optimization (ACO) algorithm performs excellently in combinational optimization problems, for example the traveling salesman problem and the quadratic assignment problem. However, the ACO is seldom used to inverted for gravitational and magnetic data. On the basis of the continuous and multi-dimensional objective function for potential field data optimization inversion, we present the node partition strategy ACO (NP-ACO) algorithm for inversion of model variables of fixed shape and recovery of physical property distributions of complicated shape models. We divide the continuous variables into discrete nodes and ants directionally tour the nodes by use of transition probabilities. We update the pheromone trails by use of Gaussian mapping between the objective function value and the quantity of pheromone. It can analyze the search results in real time and promote the rate of convergence and precision of inversion. Traditional mapping, including the ant-cycle system, weaken the differences between ant individuals and lead to premature convergence. We tested our method by use of synthetic data and real data from scenarios involving gravity and magnetic anomalies. The inverted model variables and recovered physical property distributions were in good agreement with the true values. The ACO algorithm for binary representation imaging and full imaging can recover sharper physical property distributions than traditional linear inversion methods. The ACO has good optimization capability and some excellent characteristics, for example robustness, parallel implementation, and portability, compared with other stochastic metaheuristics.
Directory of Open Access Journals (Sweden)
Mohammad S. Islam
2017-01-01
Full Text Available Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs for robust movement decoding of Parkinson’s disease (PD and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value at about 0.729±0.16 for decoding movement from the resting state and about 0.671±0.14 for decoding left and right visually cued movements.
Combining Hector SLAM and Artificial Potential Field for Autonomous Navigation Inside a Greenhouse
Directory of Open Access Journals (Sweden)
El Houssein Chouaib Harik
2018-05-01
Full Text Available The key factor for autonomous navigation is efficient perception of the surroundings, while being able to move safely from an initial to a final point. We deal in this paper with a wheeled mobile robot working in a GPS-denied environment typical for a greenhouse. The Hector Simultaneous Localization and Mapping (SLAM approach is used in order to estimate the robots’ pose using a LIght Detection And Ranging (LIDAR sensor. Waypoint following and obstacle avoidance are ensured by means of a new artificial potential field (APF controller presented in this paper. The combination of the Hector SLAM and the APF controller allows the mobile robot to perform periodic tasks that require autonomous navigation between predefined waypoints. It also provides the mobile robot with a robustness to changing conditions that may occur inside the greenhouse, caused by the dynamic of plant development through the season. In this study, we show that the robot is safe to operate autonomously with a human presence, and that in contrast to classical odometry methods, no calibration is needed for repositioning the robot over repetitive runs. We include here both hardware and software descriptions, as well as simulation and experimental results.
Mean-field potential approach for thermodynamic properties of lanthanide: Europium as a prototype
Kumar, Priyank; Bhatt, N. K.; Vyas, P. R.; Gohel, V. B.
2018-03-01
In the present paper, a simple conjunction scheme [mean-field potential (MFP) + local pseudopotential] is used to study the thermodynamic properties of divalent lanthanide europium (Eu) at extreme environment. Present study has been carried out due to the fact that divalent nature of Eu arises because of stable half-filled 4f-shell at ambient condition, which has great influence on the thermodynamic properties at extreme environment. Due to such electronic structure, it is different from remaining lanthanides having incomplete 4f-shell. The presently computed results of thermodynamic properties of Eu are in good agreement with the experimental results. Looking to such success, it seems that the concept of MFP approach is successful to account contribution due to nuclear motion to the total Helmholtz free energy at finite temperatures and pressure-induced inter-band transfer of electrons for condensed state of matter. The local pseudopotential is used to evaluate cold energy and hence MFP accounts the s-p-d-f hybridization properly. Looking to the reliability and transferability along with its computational and conceptual simplicity, we would like to extend the present scheme for the study of thermodynamic properties of remaining lanthanides and actinides at extreme environment.
Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.
Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel
2015-10-01
Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.
Hybrid Scheme for Modeling Local Field Potentials from Point-Neuron Networks.
Hagen, Espen; Dahmen, David; Stavrinou, Maria L; Lindén, Henrik; Tetzlaff, Tom; van Albada, Sacha J; Grün, Sonja; Diesmann, Markus; Einevoll, Gaute T
2016-12-01
With rapidly advancing multi-electrode recording technology, the local field potential (LFP) has again become a popular measure of neuronal activity in both research and clinical applications. Proper understanding of the LFP requires detailed mathematical modeling incorporating the anatomical and electrophysiological features of neurons near the recording electrode, as well as synaptic inputs from the entire network. Here we propose a hybrid modeling scheme combining efficient point-neuron network models with biophysical principles underlying LFP generation by real neurons. The LFP predictions rely on populations of network-equivalent multicompartment neuron models with layer-specific synaptic connectivity, can be used with an arbitrary number of point-neuron network populations, and allows for a full separation of simulated network dynamics and LFPs. We apply the scheme to a full-scale cortical network model for a ∼1 mm 2 patch of primary visual cortex, predict laminar LFPs for different network states, assess the relative LFP contribution from different laminar populations, and investigate effects of input correlations and neuron density on the LFP. The generic nature of the hybrid scheme and its public implementation in hybridLFPy form the basis for LFP predictions from other and larger point-neuron network models, as well as extensions of the current application with additional biological detail. © The Author 2016. Published by Oxford University Press.
Decoding Pigeon Behavior Outcomes Using Functional Connections among Local Field Potentials.
Chen, Yan; Liu, Xinyu; Li, Shan; Wan, Hong
2018-01-01
Recent studies indicate that the local field potential (LFP) carries information about an animal's behavior, but issues regarding whether there are any relationships between the LFP functional networks and behavior tasks as well as whether it is possible to employ LFP network features to decode the behavioral outcome in a single trial remain unresolved. In this study, we developed a network-based method to decode the behavioral outcomes in pigeons by using the functional connectivity strength values among LFPs recorded from the nidopallium caudolaterale (NCL). In our method, the functional connectivity strengths were first computed based on the synchronization likelihood. Second, the strength values were unwrapped into row vectors and their dimensions were then reduced by principal component analysis. Finally, the behavioral outcomes in single trials were decoded using leave-one-out combined with the k -nearest neighbor method. The results showed that the LFP functional network based on the gamma-band was related to the goal-directed behavior of pigeons. Moreover, the accuracy of the network features (74 ± 8%) was significantly higher than that of the power features (61 ± 12%). The proposed method provides a powerful tool for decoding animal behavior outcomes using a neural functional network.
Cosmological dynamics with non-minimally coupled scalar field and a constant potential function
Energy Technology Data Exchange (ETDEWEB)
Hrycyna, Orest [Theoretical Physics Division, National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Szydłowski, Marek, E-mail: orest.hrycyna@ncbj.gov.pl, E-mail: marek.szydlowski@uj.edu.pl [Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków (Poland)
2015-11-01
Dynamical systems methods are used to investigate global behaviour of the spatially flat Friedmann-Robertson-Walker cosmological model in gravitational theory with a non-minimally coupled scalar field and a constant potential function. We show that the system can be reduced to an autonomous three-dimensional dynamical system and additionally is equipped with an invariant manifold corresponding to an accelerated expansion of the universe. Using this invariant manifold we find an exact solution of the reduced dynamics. We investigate all solutions for all admissible initial conditions using theory of dynamical systems to obtain a classification of all evolutional paths. The right-hand sides of the dynamical system depend crucially on the value of the non-minimal coupling constant therefore we study bifurcation values of this parameter under which the structure of the phase space changes qualitatively. We found a special bifurcation value of the non-minimal coupling constant which is distinguished by dynamics of the model and may suggest some additional symmetry in matter sector of the theory.
Khorasani, Abed; Heydari Beni, Nargess; Shalchyan, Vahid; Daliri, Mohammad Reza
2016-10-21
Local field potential (LFP) signals recorded by intracortical microelectrodes implanted in primary motor cortex can be used as a high informative input for decoding of motor functions. Recent studies show that different kinematic parameters such as position and velocity can be inferred from multiple LFP signals as precisely as spiking activities, however, continuous decoding of the force magnitude from the LFP signals in freely moving animals has remained an open problem. Here, we trained three rats to press a force sensor for getting a drop of water as a reward. A 16-channel micro-wire array was implanted in the primary motor cortex of each trained rat, and obtained LFP signals were used for decoding of the continuous values recorded by the force sensor. Average coefficient of correlation and the coefficient of determination between decoded and actual force signals were r = 0.66 and R 2 = 0.42, respectively. We found that LFP signal on gamma frequency bands (30-120 Hz) had the most contribution in the trained decoding model. This study suggests the feasibility of using low number of LFP channels for the continuous force decoding in freely moving animals resembling BMI systems in real life applications.
Scheingross, Joel S.; Dellinger, Mathieu; Golombek, Nina; Hilton, Robert G.; Hovius, Niels; Sachse, Dirk; Turowski, Jens M.; Vieth-Hillebrand, Andrea; Wittmann, Hella
2017-04-01
Over geologic timescales, the exchange of organic carbon (OC) between the atmosphere, biosphere and geosphere is thought to be a major control on atmospheric carbon dioxide (CO2) concentrations, and hence global climate. The carbon fluxes from the oxidation of rock-derived OC (a CO2 source) and erosion and transport of biospheric OC (a potential CO2 sink) during fluvial transit are approximately the same order of magnitude or larger than those from silicate weathering (France-Lanord and Derry, 1997; Bouchez et al., 2010). Despite field data showing oxidation of OC moving downstream in lowland rivers, it is unclear if losses occur primarily during active fluvial transport within the river, where OC is in continual motion within an aerated environment, or during longer periods when OC is temporarily stored in river floodplains which may be anoxic. This represents a major knowledge gap, as the unknown location of OC oxidation (i.e., river vs. floodplain) limits our ability to develop process-based models that can be employed to predict OC losses, constrain carbon budgets, and unravel links between climate, tectonics, and erosion. To fill this gap, we investigated the potential for OC oxidation in both controlled laboratory experiments and a simplified field setting. We consider both rock-derived and biospheric OC. Our experiments simulated fluvial transport without floodplain storage, allowing mixtures of OC-rich and siliciclastic sediment to be transported for distances of 1000 km in annular flumes while making time-series measurements of OC concentration in both the solid (POC) and dissolved (DOC) loads, as well as measurements of rhenium concentration, which serves as a proxy for the oxidation of rock-derived OC. These transport experiments were compared to static, control experiments where water and sediment in the same proportion were placed in still water. Initial results for transport of OC-rich soil show similar behavior between the transport and static
International Nuclear Information System (INIS)
Anderson, D.V.; Breazeal, J.; Finan, C.H.; Johnston, B.M.
1976-01-01
ABCXYZ is a computer code for obtaining the Cartesian components of the vector potential and the magnetic field on an observed grid from an arrangement of current-carrying wires. Arbitrary combinations of straight line segments, arcs, and loops are allowed in the specification of the currents. Arbitrary positions and orientations of the current-carrying elements are also allowed. Specification of the wire diameter permits the computation of well-defined fields, even in the interiors of the conductors. An optical feature generates magnetic field lines. Extensive graphical and printed output is available to the user including contour, grid-line, and field-line plots. 12 figures, 1 table
Gauthier, Philippe-Aubert; Berry, Alain; Woszczyk, Wieslaw
2005-09-01
Sound field reproduction finds applications in listening to prerecorded music or in synthesizing virtual acoustics. The objective is to recreate a sound field in a listening environment. Wave field synthesis (WFS) is a known open-loop technology which assumes that the reproduction environment is anechoic. Classical WFS, therefore, does not perform well in a real reproduction space such as room. Previous work has suggested that it is physically possible to reproduce a progressive wave field in-room situation using active control approaches. In this paper, a formulation of adaptive wave field synthesis (AWFS) introduces practical possibilities for an adaptive sound field reproduction combining WFS and active control (with WFS departure penalization) with a limited number of error sensors. AWFS includes WFS and closed-loop ``Ambisonics'' as limiting cases. This leads to the modification of the multichannel filtered-reference least-mean-square (FXLMS) and the filtered-error LMS (FELMS) adaptive algorithms for AWFS. Decentralization of AWFS for sound field reproduction is introduced on the basis of sources' and sensors' radiation modes. Such decoupling may lead to decentralized control of source strength distributions and may reduce computational burden of the FXLMS and the FELMS algorithms used for AWFS. [Work funded by NSERC, NATEQ, Université de Sherbrooke and VRQ.] Ultrasound/Bioresponse to
International Nuclear Information System (INIS)
Wygant, J.R.; Torbert, R.B.; Mozer, F.S.
1983-01-01
Measurements of the cross polar cap electric potential, by the double probe electric field experiment aboard S3-3, from 55 orbits in the dawn-dusk plane are compared with the reconnection electric fields predicted by a variety of models, both theoretical and experimental. The purpose of these comparisons is to understand the extent to which nonreconnection contributes to the polar cap potential must be included, to determine the time response of the polar cap potential to time varying reconnection rates, and to determine the efficiency and saturation levels of the reconnection process. It is found that (1) After several hours of northward interplanetary magnetic field, the cross polar cap potential declines to progressively lower values than those after 1 hour of northward interplanetary magnetic field. This suggests that it requires several hours for the ionospheric polar cap potential to respond to the ''turning off'' of ''turning down'' of the reconnection process. (2) The decay of the polar cap potential is used to demonstrate that contirubtions to the polar cap potential not associated with the reconnection process can be limited to less than 20 kV. It is shown that contributions to the polar cap potential that scale with the dynamic pressure of the solar wind are limited to less than 1 kV. (3) The cross polar cap electric potential is best predicted by a weighted sum of contributions from interplanetary magnetic field parameter over the 4 hours previous to the measurement. The weighting functions have the form of an exponential decay 2--3 hours with the strongest weight on interplanetary parameters over the 1 hour previous to the measurement
Local field potential correlates of auditory working memory in primate dorsal temporal pole.
Bigelow, James; Ng, Chi-Wing; Poremba, Amy
2016-06-01
Dorsal temporal pole (dTP) is a cortical region at the rostral end of the superior temporal gyrus that forms part of the ventral auditory object processing pathway. Anatomical connections with frontal and medial temporal areas, as well as a recent single-unit recording study, suggest this area may be an important part of the network underlying auditory working memory (WM). To further elucidate the role of dTP in auditory WM, local field potentials (LFPs) were recorded from the left dTP region of two rhesus macaques during an auditory delayed matching-to-sample (DMS) task. Sample and test sounds were separated by a 5-s retention interval, and a behavioral response was required only if the sounds were identical (match trials). Sensitivity of auditory evoked responses in dTP to behavioral significance and context was further tested by passively presenting the sounds used as auditory WM memoranda both before and after the DMS task. Average evoked potentials (AEPs) for all cue types and phases of the experiment comprised two small-amplitude early onset components (N20, P40), followed by two broad, large-amplitude components occupying the remainder of the stimulus period (N120, P300), after which a final set of components were observed following stimulus offset (N80OFF, P170OFF). During the DMS task, the peak amplitude and/or latency of several of these components depended on whether the sound was presented as the sample or test, and whether the test matched the sample. Significant differences were also observed among the DMS task and passive exposure conditions. Comparing memory-related effects in the LFP signal with those obtained in the spiking data raises the possibility some memory-related activity in dTP may be locally produced and actively generated. The results highlight the involvement of dTP in auditory stimulus identification and recognition and its sensitivity to the behavioral significance of sounds in different contexts. This article is part of a Special
Directory of Open Access Journals (Sweden)
Sebastian J Lehmann
Full Text Available The execution of reach-to-grasp movements in order to interact with our environment is an important subset of the human movement repertoire. To coordinate such goal-directed movements, information about the relative spatial position of target and effector (in this case the hand has to be continuously integrated and processed. Recently, we reported the existence of spatial representations in spiking-activity of the cortical fronto-parietal grasp network (Lehmann & Scherberger 2013, and in particular in the anterior intraparietal cortex (AIP. To further investigate the nature of these spatial representations, we explored in two rhesus monkeys (Macaca mulatta how different frequency bands of the local field potential (LFP in AIP are modulated by grip type, target position, and gaze position, during the planning and execution of reach-to-grasp movements. We systematically varied grasp type, spatial target, and gaze position and found that both spatial and grasp information were encoded in a variety of frequency bands (1-13Hz, 13-30Hz, 30-60Hz, and 60-100Hz, respectively. Whereas the representation of grasp type strongly increased towards and during movement execution, spatial information was represented throughout the task. Both spatial and grasp type representations could be readily decoded from all frequency bands. The fact that grasp type and spatial (reach information was found not only in spiking activity, but also in various LFP frequency bands of AIP, might significantly contribute to the development of LFP-based neural interfaces for the control of upper limb prostheses.
Theoretical analysis of the local field potential in deep brain stimulation applications.
Directory of Open Access Journals (Sweden)
Scott F Lempka
Full Text Available Deep brain stimulation (DBS is a common therapy for treating movement disorders, such as Parkinson's disease (PD, and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics. The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.
Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration
Mouser, Vivian H. M.; Levato, Riccardo; Bonassar, Lawrence J.; D’Lima, Darryl D.; Grande, Daniel A.; Klein, Travis J.; Saris, Daniel B. F.; Zenobi-Wong, Marcy; Gawlitta, Debby; Malda, Jos
2016-01-01
Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D printing is already used in the orthopedic clinic, the shift toward 3D bioprinting has not yet occurred. We believe that this shift will provide an important step forward in the field of cartilage regeneration. Three-dimensional bioprinting techniques allow incorporation of cells and biological cues during the manufacturing process, to generate biologically active implants. The outer shape of the construct can be personalized based on clinical images of the patient’s defect. Additionally, by printing with multiple bio-inks, osteochondral or zonally organized constructs can be generated. Relevant mechanical properties can be obtained by hybrid printing with thermoplastic polymers and hydrogels, as well as by the incorporation of electrospun meshes in hydrogels. Finally, bioprinting techniques contribute to the automation of the implant production process, reducing the infection risk. To prompt the shift from nonliving implants toward living 3D bioprinted cartilage constructs in the clinic, some challenges need to be addressed. The bio-inks and required cartilage construct architecture need to be further optimized. The bio-ink and printing process need to meet the sterility requirements for implantation. Finally, standards are essential to ensure a reproducible quality of the 3D printed constructs. Once these challenges are addressed, 3D bioprinted living articular cartilage implants may find their way into daily clinical practice. PMID:28934880
Phase Locking of Multiple Single Neurons to the Local Field Potential in Cat V1.
Martin, Kevan A C; Schröder, Sylvia
2016-02-24
The local field potential (LFP) is thought to reflect a temporal reference for neuronal spiking, which may facilitate information coding and orchestrate the communication between neural populations. To explore this proposed role, we recorded the LFP and simultaneously the spike activity of one to three nearby neurons in V1 of anesthetized cats during the presentation of drifting sinusoidal gratings, binary dense noise stimuli, and natural movies. In all stimulus conditions and during spontaneous activity, the average LFP power at frequencies >20 Hz was higher when neurons were spiking versus not spiking. The spikes were weakly but significantly phase locked to all frequencies of the LFP. The average spike phase of the LFP was stable across high and low levels of LFP power, but the strength of phase locking at low frequencies (≤10 Hz) increased with increasing LFP power. In a next step, we studied how strong stimulus responses of single neurons are reflected in the LFP and the LFP-spike relationship. We found that LFP power was slightly increased and phase locking was slightly stronger during strong compared with weak stimulus-locked responses. In summary, the coupling strength between high frequencies of the LFP and spikes was not strongly modulated by LFP power, which is thought to reflect spiking synchrony, nor was it strongly influenced by how strongly the neuron was driven by the stimulus. Furthermore, a comparison between neighboring neurons showed no clustering of preferred LFP phase. We argue that hypotheses on the relevance of phase locking in their current form are inconsistent with our findings. Copyright © 2016 the authors 0270-6474/16/362494-09$15.00/0.
Dynamic Neural State Identification in Deep Brain Local Field Potentials of Neuropathic Pain.
Luo, Huichun; Huang, Yongzhi; Du, Xueying; Zhang, Yunpeng; Green, Alexander L; Aziz, Tipu Z; Wang, Shouyan
2018-01-01
In neuropathic pain, the neurophysiological and neuropathological function of the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover, oscillations related to pain perception and modulation change dynamically over time. Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus. In this study, an approach to classifying the synchronization level was developed to dynamically identify the neural states. An oscillation extraction model based on windowed wavelet packet transform was designed to characterize the activity level of oscillations. The wavelet packet coefficients sparsely represented the activity level of theta and alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was designed to calculate an adaptive threshold to determine the activity level of oscillations. Finally, the neural state was represented by the activity levels of both theta and alpha oscillations. The relationship between neural states and pain relief was further evaluated. The performance of the state identification approach achieved sensitivity and specificity beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically identified from LFPs of neuropathic pain patients. The occurrence of neural states based on theta and alpha oscillations were correlated to the degree of pain relief by deep brain stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of theta oscillations independent of alpha and the state with low-level alpha and high-level theta oscillations were significantly correlated with pain relief by deep brain stimulation. This study provides a reliable approach to identifying the dynamic neural states in LFPs with a low signal-to-noise ratio by using sparse representation based on wavelet packet transform. Furthermore, it may advance closed-loop deep
Sirajuddin, Muhammad; Ali, Saqib
2016-01-01
Medicinal inorganic chemistry plays an important role in exploring the properties of metal ions for the designing of new drugs. The field has been stimulated by the success of cis-platin, the world best selling anticancer drug and platinum complexes with reduced toxicity, oral activity and activity against resistant tumors are currently on clinical trial. The use of cis-platin is, however, severely limited by its toxic side-effects. This has stimulated chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. The discovery of new non-covalent interactions with the classical target, DNA, was the first developing step in the treatment of cancer. The use of organometallic compounds as a medicine is very common now a days because it offers potential advantages over the more common organic-based drugs. In this article we have highlighted the anticancer activity of the organotin(IV) carboxylates published in the last few years (from 2008 to 2016). In most cases they present lower IC50 values than those of cisplatin, which indicates their high activity against the cancer cell lines. The summarized data reveal that every year new organotin(IV) carboxylate complexes are synthesized with the aim of new anticancer agent with much better results than the than the corresponding activity of cis-platin or other clinically approved drugs. In addition to the advantages of high activity, compared to the platinum compound, tin complexes are much cheaper. Thus by using organotin carboxylate for clinical medicine, cost reduction, dosage reduction and effect enhancement will be reached. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Gulfs of Suez and Aqaba: New insights from recent satellite-marine potential field data
Almalki, Khalid A.; Mahmud, Syed A.
2018-01-01
Previous models and interpretations of crustal geometry and the nature of the crust under the Gulfs of Suez and Aqaba have generally been based on a local or small scale and have been limited due to a lack of data. The few studies that present larger scale crustal and uppermost mantle structure were dependent on one type of data with no consideration of other geological and/or geophysical features. Satellite-marine potential field data provide for the first time a full coverage dataset of the Gulfs of Suez and Aqaba as well as the Sinai area at the same scale which allows for a better understanding of crustal domains and geometry and the interplay between tectonic events. To that end, our forward models of magnetic and gravity data constrained by seismic data and available geological information in this area suggest that the crustal domains in the Gulf of Aqaba are more complicated than those in the Gulf of Suez. Our result supports continental rifting under most of the Gulf of Suez and a combination of transitional and continental crusts under the Gulf of Aqaba. Yet, there is no evidence of oceanic segment development in these gulfs. Regardless of oceanic or transitional crust, the models support a link between the Arabia and Sinai plates at the central Gulf of Aqaba. The data also support that Red Sea tectonism has no connection to or influence on both gulfs. The result suggests a continuation of lithological elements from land into the eastern part of the Gulf of Suez. Our synthesis and interpretations may play an important role in the reassessment of the tectonic history and extension of this important rift system.
Directory of Open Access Journals (Sweden)
Clinton B McCracken
Full Text Available High-frequency electrical stimulation of specific brain structures, known as deep brain stimulation (DBS, is an effective treatment for movement disorders, but mechanisms of action remain unclear. We examined the time-dependent effects of DBS applied to the entopeduncular nucleus (EP, the rat homolog of the internal globus pallidus, a target used for treatment of both dystonia and Parkinson's disease (PD. We performed simultaneous multi-site local field potential (LFP recordings in urethane-anesthetized rats to assess the effects of high-frequency (HF, 130 Hz; clinically effective, low-frequency (LF, 15 Hz; ineffective and sham DBS delivered to EP. LFP activity was recorded from dorsal striatum (STR, ventroanterior thalamus (VA, primary motor cortex (M1, and the stimulation site in EP. Spontaneous and acute stimulation-induced LFP oscillation power and functional connectivity were assessed at baseline, and after 30, 60, and 90 minutes of stimulation. HF EP DBS produced widespread alterations in spontaneous and stimulus-induced LFP oscillations, with some effects similar across regions and others occurring in a region- and frequency band-specific manner. Many of these changes evolved over time. HF EP DBS produced an initial transient reduction in power in the low beta band in M1 and STR; however, phase synchronization between these regions in the low beta band was markedly suppressed at all time points. DBS also enhanced low gamma synchronization throughout the circuit. With sustained stimulation, there were significant reductions in low beta synchronization between M1-VA and STR-VA, and increases in power within regions in the faster frequency bands. HF DBS also suppressed the ability of acute EP stimulation to induce beta oscillations in all regions along the circuit. This dynamic pattern of synchronizing and desynchronizing effects of EP DBS suggests a complex modulation of activity along cortico-BG-thalamic circuits underlying the therapeutic
Extensive management of field margins enhances their potential for off-site soil erosion mitigation.
Ali, Hamada E; Reineking, Björn
2016-03-15
Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion off-site by trapping eroded material. Here we analyse how local management affects the trapping capacity of field margins in a monsoon region of South Korea, contrasting intensively and extensively managed field margins on both steep and shallow slopes. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("intensive managed flat", "intensive managed steep", "extensive managed flat" and "extensive managed steep") with Astroturf mats. The mats (n = 15/site) were placed before, within and after the field margin. Sediment was collected after each rain event until the end of the monsoon season. The effect of management and slope on sediment trapping was analysed using linear mixed effects models, using as response variable either the sediment collected within the field margin or the difference in sediment collected after and before the field margin. There was no difference in the amount of sediment reaching the different field margin types. In contrast, extensively managed field margins showed a large reduction in collected sediment before and after the field margins. This effect was pronounced in steep field margins, and increased with the size of rainfall events. We conclude that a field margin management promoting a dense vegetation cover is a key to mitigating negative off-site effects of soil erosion in monsoon regions, particularly in field margins with steep slopes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Piotr Skomro
2012-12-01
Full Text Available Electric potentials occurring in the oral cavity deserve attention as they may cause various diseases and subjective feelings, which are very difficult to treat. The aim of this study was to evaluate the electric potentials within the oral cavity in patients with metal fillings and metal prosthetic restorations, after using a pulsed electromagnetic field. The study was carried out on 84 patients. The Viofor JPS Classic device was used in the treatment. It generates a pulsed electromagnetic field with low induction of the extremely low frequency (ELF range. Average values of electric potentials in the preliminary test were about the same in both groups; they were 148.8 mV and 145.5 mV. After another appliance of ELF fields there was found a steady decline in the average value of electric potentials in the study group. This decrease was statistically highly significant, while mean values of electric potentials in the control group were characterized by a slightly upward tendency. The obtained statistically significant reduction of electric potentials in the oral cavity of patients having metal fillings and metal prosthetic restorations, after application of the Viofor JPS Classic device, implies a huge impact of ELF pulsed electromagnetic field on inhibition of electrochemical processes, as well as on inhibition of dental alloy corrosion.
Solving Differential Equations in R: Package deSolve
Directory of Open Access Journals (Sweden)
Karline Soetaert
2010-02-01
Full Text Available In this paper we present the R package deSolve to solve initial value problems (IVP written as ordinary differential equations (ODE, differential algebraic equations (DAE of index 0 or 1 and partial differential equations (PDE, the latter solved using the method of lines approach. The differential equations can be represented in R code or as compiled code. In the latter case, R is used as a tool to trigger the integration and post-process the results, which facilitates model development and application, whilst the compiled code significantly increases simulation speed. The methods implemented are efficient, robust, and well documented public-domain Fortran routines. They include four integrators from the ODEPACK package (LSODE, LSODES, LSODA, LSODAR, DVODE and DASPK2.0. In addition, a suite of Runge-Kutta integrators and special-purpose solvers to efficiently integrate 1-, 2- and 3-dimensional partial differential equations are available. The routines solve both stiff and non-stiff systems, and include many options, e.g., to deal in an efficient way with the sparsity of the Jacobian matrix, or finding the root of equations. In this article, our objectives are threefold: (1 to demonstrate the potential of using R for dynamic modeling, (2 to highlight typical uses of the different methods implemented and (3 to compare the performance of models specified in R code and in compiled code for a number of test cases. These comparisons demonstrate that, if the use of loops is avoided, R code can efficiently integrate problems comprising several thousands of state variables. Nevertheless, the same problem may be solved from 2 to more than 50 times faster by using compiled code compared to an implementation using only R code. Still, amongst the benefits of R are a more flexible and interactive implementation, better readability of the code, and access to R’s high-level procedures. deSolve is the successor of package odesolve which will be deprecated in
Exploring Primary Student’s Problem-Solving Ability by Doing Tasks Like PISA's Question
Directory of Open Access Journals (Sweden)
Rita Novita
2012-07-01
Full Text Available Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development students’ problem-solving ability. The tasks that have been developed by PISA meet both of these criteria. As stated by the NCTM, that problem-solving skill and ability should be developed to students when they were in primary school (K5-8, therefore, it is important to do an effort to guide students in developing problem-solving ability from primary school such as accustom students to do some mathematical solving-problem tasks. Thus, in this research we tried to investigate how to develop mathematical problem-solving tasks like PISA’s question that have potential effect toward students’ mathematical problem-solving abilities?. We used a formative evaluation type of development research as an mean to achieve this research goal. This type of research is conducted in two steps, namely preliminary stage and formative evaluation stage covering self evaluation, prototyping (expert reviews, one-to-one, and small group, and field test. This research involve four primary schools in Palembang, there are SD Muhammadiyah 6 Palembang, MIN 1 & MIN 2 Palembang, and SDN 179 Palembang. The result of this research showed that the mathematical problem-solving tasks that have been developed have potential effect in exploring mathematical problem-solving ability of the primary school students. It is shown from their work in solving problem where all of the indicators of problem solving competency have emerged quite well category. In addition, based on interview
DEFF Research Database (Denmark)
Chemi, Tatiana
2016-01-01
This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents a p......, what can educators at higher education learn from the ways creative groups solve problems? How can artists contribute to inspiring higher education?......This chapter aims to deconstruct some persistent myths about creativity: the myth of individualism and of the genius. By looking at literature that approaches creativity as a participatory and distributed phenomenon and by bringing empirical evidence from artists’ studios, the author presents...... a perspective that is relevant to higher education. The focus here is on how artists solve problems in distributed paths, and on the elements of creative collaboration. Creative problem-solving will be looked at as an ongoing dialogue that artists engage with themselves, with others, with recipients...
International Nuclear Information System (INIS)
Bogdanov, I.V.; Demkov, Y.N.
1982-01-01
New inversion formulas are obtained for the classical scattering of a charged particle by a spherical or axisymmetric electric or magnetic field at a fixed impact parameter or angular momentum. For different cases, focusing fields are obtained similar to those previously considered for scattering by an electric field at a given energy, viz., of the backscattering (cat's eye), Maxwell fish eye, or Luneberg lens type. A magnetoelectric analogy is formulated, namely the existence of equivalent axisymmetric electric and magnetic fields that scatter charged particles in identical fashion
Marshall, R. A.; Waters, C. L.; Sciffer, M. D.
2010-05-01
Long, steel pipelines used to transport essential resources such as gas and oil are potentially vulnerable to space weather. In order to inhibit corrosion, the pipelines are usually coated in an insulating material and maintained at a negative electric potential with respect to Earth using cathodic protection units. During periods of enhanced geomagnetic activity, potential differences between the pipeline and surrounding soil (referred to as pipe-to-soil potentials (PSPs)) may exhibit large voltage swings which place the pipeline outside the recommended "safe range" and at an increased risk of corrosion. The PSP variations result from the "geoelectric" field at the Earth's surface and associated geomagnetic field variations. Previous research investigating the relationship between the surface geoelectric field and geomagnetic source fields has focused on the high-latitude regions where line currents in the ionosphere E region are often the assumed source of the geomagnetic field variations. For the Australian region Sq currents also contribute to the geomagnetic field variations and provide the major contribution during geomagnetic quiet times. This paper presents the results of a spectral analysis of PSP measurements from four pipeline networks from the Australian region with geomagnetic field variations from nearby magnetometers. The pipeline networks extend from Queensland in the north of Australia to Tasmania in the south and provide PSP variations during both active and quiet geomagnetic conditions. The spectral analyses show both consistent phase and amplitude relationships across all pipelines, even for large separations between magnetometer and PSP sites and for small-amplitude signals. Comparison between the observational relationships and model predictions suggests a method for deriving a geoelectric field proxy suitable for indicating PSP-related space weather conditions.
Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-Andre
2017-01-01
Abstract Parallel electric fields and their associated electric potential structures play a crucial role inionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN(MAVEN) Mars Scout, we present the discovery and measurement of a substantial (Phi) Mars 7.7 +/-0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (Phi) Mars of 10.9 +/- 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.
Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-André; Fedorov, Andrey; Liemohn, Mike; Andersson, Laila; Jakosky, Bruce
2017-02-01
Parallel electric fields and their associated electric potential structures play a crucial role in ionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN (MAVEN) Mars Scout, we present the discovery and measurement of a substantial (ΦMars=7.7 ± 0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (ΦMars) of 10.9 ± 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.
The Federal Research Action Plan on Recycled Tire Crumb Used on Playing Fields and Playgrounds (FRAP), released in February 2016, is a multi-agency research plan in response to concerns over the use of tire crumb rubber as infill on synthetic turf fields. The FRAP outlines specif...
Energy Technology Data Exchange (ETDEWEB)
Tenforde, T.S.
1992-05-01
Interest in the mechanisms of interaction and the biological effects of static magnetic fields has increased significantly during the past two decades as a result of the growing number of applications of these fields in research, industry and medicine. A major stimulus for research on the bioeffects of static magnetic fields has been the effort to develop new technologies for energy production and storage that utilize intense magnetic fields (e.g., thermonuclear fusion reactors and superconducting magnet energy storage devices). Interest in the possible biological interactions and health effects of static magnetic fields has also been increased as a result of recent developments in magnetic levitation as a mode of public transportation. In addition, the rapid emergence of magnetic resonance imaging as a new clinical diagnostic procedure has, in recent years, provided a strong rationale for defining the possible biological effects of magnetic fields with high flux densities. In this review, the principal interaction mechanisms of static magnetic fields will be described, and a summary will be given of the present state of knowledge of the biological, environmental, and human health effects of these fields.
Potentials of two bio-pesticides in the control of some field insect ...
African Journals Online (AJOL)
A field experiment was carried out to determine the predominate order of insects associated with Bambara groundnut and to compare the efficacy of aqueous leaf extracts of Jatropha (Jatropha curcas) and lemon grass (Cymbopogon citratus), used as bio-pesticides in controlling some field insect pests of Bambara ...
Extracting the potential-well of a near-field optical trap using the Helmholtz-Hodge decomposition
Zaman, Mohammad Asif; Padhy, Punnag; Hansen, Paul C.; Hesselink, Lambertus
2018-02-01
The non-conservative nature of the force field generated by a near-field optical trap is analyzed. A plasmonic C-shaped engraving on a gold film is considered as the trap. The force field is calculated using the Maxwell stress tensor method. The Helmholtz-Hodge decomposition is used to extract the conservative and the non-conservative component of the force. Due to the non-negligible non-conservative component, it is found that the conventional approach of extracting the potential by direct integration of the force is not accurate. Despite the non-conservative nature of the force field, it is found that the statistical properties of a trapped nanoparticle can be estimated from the conservative component of the force field alone. Experimental and numerical results are presented to support the claims.
International Nuclear Information System (INIS)
Bertschinger, E.; Dekel, A.; Faber, S.M.; Dressler, A.; Burstein, D.
1990-01-01
A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively. 65 refs
Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David
1990-12-01
A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.
Kumar, M.; Parmar, K. S.; Kumar, D. B.; Mhawish, A.; Broday, D. M.; Mall, R. K.; Banerjee, T.
2018-05-01
Long-term aerosol climatology is derived using Terra MODIS (Collection 6) enhanced Deep Blue (DB) AOD retrieval algorithm to investigate decadal trend (2006-2015) in columnar aerosol loading, future scenarios and potential source fields over the Indo-Gangetic Plain (IGP), South Asia. Satellite based aerosol climatology was analyzed in two contexts: for the entire IGP considering area weighted mean AOD and for nine individual stations located at upper (Karachi, Multan, Lahore), central (Delhi, Kanpur, Varanasi, Patna) and lower IGP (Kolkata, Dhaka). A comparatively high aerosol loading (AOD: 0.50 ± 0.25) was evident over IGP with a statistically insignificant increasing trend of 0.002 year-1. Analysis highlights the existing spatial and temporal gradients in aerosol loading with stations over central IGP like Varanasi (decadal mean AOD±SD; 0.67 ± 0.28) and Patna (0.65 ± 0.30) exhibit the highest AOD, followed by stations over lower IGP (Kolkata: 0.58 ± 0.21; Dhaka: 0.60 ± 0.24), with a statistically significant increasing trend (0.0174-0.0206 year-1). In contrast, stations over upper IGP reveal a comparatively low aerosol loading, having an insignificant increasing trend. Variation in AOD across IGP is found to be mainly influenced by seasonality and topography. A distinct "aerosol pool" region over eastern part of Ganges plain is identified, where meteorology, topography, and aerosol sources favor the persistence of airborne particulates. A strong seasonality in aerosol loading and types is also witnessed, with high AOD and dominance of fine particulates over central to lower IGP, especially during post-monsoon and winter. The time series analyses by autoregressive integrated moving average (ARIMA) indicate contrasting patterns in randomness of AOD over individual stations with better performance especially over central IGP. Concentration weighted trajectory analyses identify the crucial contributions of western dry regions and partial contributions from
Gernigon, L.; Broenner, M.; Dumais, M. A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D.
2017-12-01
The tectonic evolution of the former `grey zone' between Russia and Norway has so far remained poorly constrained due to a lack of geophysical data. In 2014, we carried out a new aeromagnetic survey (BASAR-14) in the southern part of the new Norwegian offshore territory. Caledonian and Timanian structures, highlighted by the new potential field data, dominate the basement patterns and have exerted a strong influence on the structure and development of the overlying basins and basement highs. Clearly associated with NW-SE-oriented Timanian trends, the Tiddlybanken Basin represents an atypical sag basin that developed at the southern edge of the Fedynsky High. Regional extension and rapid sedimentation initiated the salt tectonics in the Barents Sea in the Early Triassic. Some of the pillows became diapiric during the Early Triassic and rejuvenated during subsequent Jurassic-Tertiary episodes of regional extension and/or compression. At present, quite a few large diapiric salt domes along the Nordkapp and Tiddlybanken basins are relatively shallow, locally reaching the seabed and thus show a clear bathymetric and magnetic signature. Quantitative modelling along 2D seismic transects was also carried out to constrain the structural and basement composition of the study area. The predominant NE-SW Mesozoic trend of the Nordkapp Basin represents a major crustal hinge zone between the Finnmark Platform, poorly affected by major crustal deformation, and the Bjarmeland Platform where Late Palaeozoic rifting controlled the widespread accumulation of salt deposits in Late Carboniferous-Early Permian time. The entire structure and segmentation of the Nordkapp Basin have been influenced by the inherited basement configuration highlighted by the new aeromagnetic data. Both the Nordkapp and the Tiddlybanken basins appear to lie at the edge of a peculiar thick and rigid crustal feature that coincides with a highly magnetic region. The abrupt termination of the eastern Nordkapp
Greene, Kim; Heyck-Williams, Jeff; Timpson Gray, Elicia
2017-01-01
Problem solving spans all grade levels and content areas, as evidenced by this compilation of projects from schools across the United States. In one project, high school girls built a solar-powered tent to serve their city's homeless population. In another project, 4th graders explored historic Jamestown to learn about the voices lost to history.…
Utomo, P.H.; Makarim, R.H.
2017-01-01
A Binary puzzle is a Sudoku-like puzzle with values in each cell taken from the set {0,1} {0,1}. Let n≥4 be an even integer, a solved binary puzzle is an n×n binary array that satisfies the following conditions: (1) no three consecutive ones and no three consecutive zeros in each row and each
Ayrinhac, Simon
2014-01-01
We present in this work a demonstration of the maze-solving problem with electricity. Electric current flowing in a maze as a printed circuit produces Joule heating and the right way is instantaneously revealed with infrared thermal imaging. The basic properties of electric current can be discussed in this context, with this challenging question:…
Transport equation solving methods
International Nuclear Information System (INIS)
Granjean, P.M.
1984-06-01
This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr
Dobbs, David E.
2013-01-01
A direct method is given for solving first-order linear recurrences with constant coefficients. The limiting value of that solution is studied as "n to infinity." This classroom note could serve as enrichment material for the typical introductory course on discrete mathematics that follows a calculus course.
International Nuclear Information System (INIS)
Ikhdair, Sameer M.; Hamzavi, Majid
2013-01-01
Approximate analytical solutions of the Dirac equation for Tietz—Hua (TH) potential including Coulomb-like tensor (CLT) potential with arbitrary spin—orbit quantum number κ are obtained within the Pekeris approximation scheme to deal with the spin—orbit coupling terms κ(κ ± 1)r −2 . Under the exact spin and pseudospin symmetric limitation, bound state energy eigenvalues and associated unnormalized two-component wave functions of the Dirac particle in the field of both attractive and repulsive TH potential with tensor potential are found using the parametric Nikiforov—Uvarov (NU) method. The cases of the Morse oscillator with tensor potential, the generalized Morse oscillator with tensor potential, and the non-relativistic limits have been investigated. (general)
Information Potential Fields Navigation in Wireless Ad-Hoc Sensor Networks
Directory of Open Access Journals (Sweden)
Yong Qi
2011-05-01
Full Text Available As wireless sensor networks (WSNs are increasingly being deployed in some important applications, it becomes imperative that we consider application requirements in in-network processes. We intend to use a WSN to aid information querying and navigation within a dynamic and real-time environment. We propose a novel method that relies on the heat diffusion equation to finish the navigation process conveniently and easily. From the perspective of theoretical analysis, our proposed work holds the lower constraint condition. We use multiple scales to reach the goal of accurate navigation. We present a multi-scale gradient descent method to satisfy users’ requirements in WSNs. Formula derivations and simulations show that the method is accurately and efficiently able to solve typical sensor network configuration information navigation problems. Simultaneously, the structure of heat diffusion equation allows more flexibility and adaptability in searching algorithm designs.
The potential impact of the preparation rich in growth factors (PRGF) in different medical fields.
Anitua, Eduardo; Sánchez, Mikel; Orive, Gorka; Andía, Isabel
2007-11-01
Platelet-rich preparations constitute a relatively new biotechnology for the stimulation and acceleration of tissue healing and bone regeneration. The versatility and biocompatibility of this approach has stimulated its therapeutic use in numerous medical and scientific fields including dentistry, oral implantology, orthopaedics, ulcer treatment, tissue engineering among others. Here we discuss the important progress that has been accomplished in the field of platelet-rich preparations in the last few years. Some of the most interesting therapeutic applications of this technology are discussed as are some of the limitations, future challenges and directions in the field.
Toward Solving the Problem of Problem Solving: An Analysis Framework
Roesler, Rebecca A.
2016-01-01
Teaching is replete with problem solving. Problem solving as a skill, however, is seldom addressed directly within music teacher education curricula, and research in music education has not examined problem solving systematically. A framework detailing problem-solving component skills would provide a needed foundation. I observed problem solving…
A Model for Solving the Maxwell Quasi Stationary Equations in a 3-Phase Electric Reduction Furnace
Directory of Open Access Journals (Sweden)
S. Ekrann
1982-10-01
Full Text Available A computer code has been developed for the approximate computation of electric and magnetic fields within an electric reduction furnace. The paper describes the numerical methods used to solve Maxwell's quasi-stationary equations, which are the governing equations for this problem. The equations are discretized by a staggered grid finite difference technique. The resulting algebraic equations are solved by iterating between computations of electric and magnetic quantities. This 'outer' iteration converges only when the skin depth is larger or of about the same magnitude as the linear dimensions of the computational domain. In solving for electric quantities with magnetic quantities being regarded as known, and vice versa, the central computational task is the solution of a Poisson equation for a scalar potential. These equations are solved by line successive overrelaxation combined with a rebalancing technique.
LENUS (Irish Health Repository)
O’Connell, Emer
2016-07-01
Patient safety requires optimal management of medications. Electronic systems are encouraged to reduce medication errors. Near field communications (NFC) is an emerging technology that may be used to develop novel medication management systems.
Irianto, H.; Mujiyo; Riptanti, E. W.; Qonita, A.
2018-03-01
Bojonegoro regency occupies the largest flood-prone rice fields of about 14,198 hectares, in East Java province. Floods commonly occur due to Bengawan Solo river over-burst, particularly in rainy season. The fields are potential for cultivating rice, but floods lasting for months causing these areas to be unproductive. The objective of this article is to examine the potential land use of flood prone rice fields in Bojonegoro regency using floating rice system as an effort to maintain productivity in rainy season. The method of this study is referential study about the rice production using floating cultivation system in other regions, which are later compared with the physical condition of the fields in Bojonegoro. The results of analysis show that rice cultivation using floating system can maintain rice production in flood prone areas during rainy season. The potential production of rice is 5-6 tons/ha. However, technical problems for cultivating rice cannot be ignored since farmers are not familiar with cultivating flooded fields. This article also explains alternatives of floating rice cultivation technique, which can be implemented effectively and efficiently. Pioneer work of developing floating rice in Bojonegoro that has been done by the Team of Faculty of Agriculture of UNS, Surakarta, is expected to serve as a medium for accelerating the adoption of cultivation technology innovation to farmers.
Picozzi, S.; Profeta, G.; Continenza, A.; Massidda, S.; Freeman, A. J.
2002-04-01
First-principles full-potential linearized augmented plane wave calculations are performed to clarify the role of the interface geometry on piezoelectric fields and potential lineups in [0001] wurtzite and [111]-zincblende GaN/Al junctions. The electric field (polarity and magnitude) is found to be strongly affected by atomic relaxations in the interface region. A procedure is used to evaluate the Schottky-barrier height in the presence of electric fields, showing that their effect is relatively small (a few tenths of an eV). These calculations assess the rectifying behavior of the GaN/Al contact, in agreement with experimental values for the barrier. We disentangle chemical and structural effects on the relevant properties (such as the potential discontinuity and the electric field) by studying unrelaxed ideal nitride/metal systems. Using simple electronegativity arguments, we outline the leading mechanisms that define the values of the electric field and Schottky barrier in these ideal systems. Finally, the transitivity rule is proved to be well satisfied.
Restoration potential of sedge meadows in hand-cultivated soybean fields in northeastern China
Wang, Guodong; Middleton, Beth; Jiang, Ming
2013-01-01
Sedge meadows can be difficult to restore from farmed fields if key structural dominants are missing from propagule banks. In hand-cultivated soybean fields in northeastern China, we asked if tussock-forming Carex and other wetland species were present as seed or asexual propagules. In the Sanjiang Plain, China, we compared the seed banks, vegetative propagules (below-ground) and standing vegetation of natural and restored sedge meadows, and hand-cultivated soybean fields in drained and flooded conditions. We found that important wetland species survived cultivation as seeds for some time (e.g. Calamogrostis angustifolia and Potamogeton crispus) and as field weeds (e.g. C. angustifolia and Phragmites australis). Key structural species were missing in these fields, for example, Carex meyeriana. We also observed that sedge meadows restored without planting or seeding lacked tussock-forming sedges. The structure of the seed bank was related to experimental water regime, and field environments of tussock height, thatch depth, and presence of burning as based on Nonmetric Multidimensional Scaling analysis. To re-establish the structure imposed by tussock sedges, specific technologies might be developed to encourage the development of tussocks in restored sedge meadows.
International Nuclear Information System (INIS)
Wundt, B.J.; Jentschura, U.D.
2012-01-01
We investigate the coupling of the electromagnetic sources (charge and current densities) to the scalar and vector potentials in classical electrodynamics, using Green function techniques. As is well known, the scalar potential shows an action-at-a-distance behavior in Coulomb gauge. The conundrum generated by the instantaneous interaction has intrigued physicists for a long time. Starting from the differential equations that couple the sources to the potentials, we here show in a concise derivation, using the retarded Green function, how the instantaneous interaction cancels in the calculation of the electric field. The time derivative of a specific additional term in the vector potential, present only in Coulomb gauge, yields a supplementary contribution to the electric field which cancels the gradient of the instantaneous Coulomb gauge scalar potential, as required by gauge invariance. This completely eliminates the contribution of the instantaneous interaction from the electric field. It turns out that a careful formulation of the retarded Green function, inspired by field theory, is required in order to correctly treat boundary terms in partial integrations. Finally, compact integral representations are derived for the Liénard–Wiechert potentials (scalar and vector) in Coulomb gauge which manifestly contain two compensating action-at-a-distance terms. - Highlights: ► We investigate action-at-a-distance effects in electrodynamics in detail. ► We calculate the instantaneous interactions for scalar and vector potentials. ► The cancellation mechanism involves the retarded Green function. ► The mechanism is confirmed on the example of moving point charges. ► The Green function has to be treated with care for nontrivial boundary terms.
Matteucci, G.
2007-01-01
In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…
International Nuclear Information System (INIS)
Yuan Yi; Lu Cheng-Biao; Li Xiao-Li
2015-01-01
Local field potential (LFP) signals of the rat hippocampus were recorded under noninvasive focused ultrasound stimulation (FUS) with different ultrasonic powers. The LFP mean absolute power was calculated with the Welch algorithm at the delta, theta, alpha, beta, and gamma frequency bands. The experimental results demonstrate that the LFP mean absolute power at different frequency bands increases as the ultrasound power increases. (paper)
Phillips, Jeffrey
2014-01-01
A physical property inversion approach based on the use of 3D (or 2D) Fourier transforms to calculate the potential-field within a 3D (or 2D) volume from a known physical property distribution within the volume is described. Topographic surfaces and observations at arbitrary locations are easily accommodated. The limitations of the approach and applications to real data are considered.
International Nuclear Information System (INIS)
Smith, A. W.; Cappelli, M. A.
2009-01-01
Space- and time-correlated measurements of floating and plasma potential are made in the near field, external flow cathode region of a coaxial Hall plasma discharge using an emissive probe synchronized to quasicoherent fluctuations in discharge current. The luminous axial feature frequently observed in the near field of operating plasma accelerators is found to be concomitant with a spike in the plasma potential (and electron temperature). The structure of the plasma potential allows for multiple avenues for back-streaming ions to accelerate toward the discharge front pole and may pull some classes of ions toward the central axis. The fluctuations in plasma properties exhibit a complex structure at frequencies on the order of the so-called 'breathing mode' ionization instability often seen in these types of discharges. Most notably, the plasma potential appears to fluctuate in a helical fashion, resembling tilted drift waves rotating about the central axis. A simple analysis of these waves draws attention to the possible role that they may play in driving anomalous cross-field electron transport in the near field region.
International Nuclear Information System (INIS)
Matteucci, G
2007-01-01
In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic field, suffer a classical lag effect produced by electric forces. Since these experiments are reported mainly in specialized journals, it could be rather difficult and time consuming for a student to attain a comprehensive overview of the subject. Therefore, particular attention has been addressed to reviewing the theory, to describing a couple of experiments and to the interpretation of the results. We believe that students can be suitably introduced to exploring the 'paradoxical' aspects of the interaction of electrons with electric potentials and fields
Energy Technology Data Exchange (ETDEWEB)
Matteucci, G [Department of Physics, University of Bologna and CNISM, V/le B. Pichat, 6/2, I 40127 Bologna (Italy)
2007-07-15
In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic field, suffer a classical lag effect produced by electric forces. Since these experiments are reported mainly in specialized journals, it could be rather difficult and time consuming for a student to attain a comprehensive overview of the subject. Therefore, particular attention has been addressed to reviewing the theory, to describing a couple of experiments and to the interpretation of the results. We believe that students can be suitably introduced to exploring the 'paradoxical' aspects of the interaction of electrons with electric potentials and fields.
Sun, W.; Li, X.
2017-12-01
Upland croplands are the main source of N2O emission. Mitigation of N2O emissions from upland croplands will greatly contribute to an overall reduction of greenhouse gases from agriculture. We performed a meta-analysis to investigate the mitigation options and potential of N2O emissions from wheat and maize fields in China. Results showed that application of inhibitors in wheat and maize fields reduced36‒46% of the N2O emissions with an increase in crop yield. Cutting the application rates of nitrogen fertilizers by no more than 30% could reduce N2O emissions by 10‒18%without crop yield loss. Applications of slow (controlled-) release fertilizer fertilizers and incorporations of crop residues can significantly mitigate N2O emission from wheat fields, but this mitigation is not statistically significant in maize fields. The gross N2O emission could be reduced by 9.3‒13.9Gg N2O-N per wheat season and 10.5‒23.2 Gg N2O-N per maize season when different mitigation options are put into practices. The mitigation potential (MP) in wheat cultivation is particularly notable for Henan, Shandong, Hebei and Anhui Province, contributing 53% to the total MP in wheat fields. Heilongjiang, Jilin, Shandong, Hebei and Henan Province showed high MP in maize cultivation, accounting for approximately 50% of the total MP in maize fields.
Amano, Ken-Ichi; Yoshidome, Takashi; Iwaki, Mitsuhiro; Suzuki, Makoto; Kinoshita, Masahiro
2010-07-28
We report a new progress in elucidating the mechanism of the unidirectional movement of a linear-motor protein (e.g., myosin) along a filament (e.g., F-actin). The basic concept emphasized here is that a potential field is entropically formed for the protein on the filament immersed in solvent due to the effect of the translational displacement of solvent molecules. The entropic potential field is strongly dependent on geometric features of the protein and the filament, their overall shapes as well as details of the polyatomic structures. The features and the corresponding field are judiciously adjusted by the binding of adenosine triphosphate (ATP) to the protein, hydrolysis of ATP into adenosine diphosphate (ADP)+Pi, and release of Pi and ADP. As the first step, we propose the following physical picture: The potential field formed along the filament for the protein without the binding of ATP or ADP+Pi to it is largely different from that for the protein with the binding, and the directed movement is realized by repeated switches from one of the fields to the other. To illustrate the picture, we analyze the spatial distribution of the entropic potential between a large solute and a large body using the three-dimensional integral equation theory. The solute is modeled as a large hard sphere. Two model filaments are considered as the body: model 1 is a set of one-dimensionally connected large hard spheres and model 2 is a double helical structure formed by two sets of connected large hard spheres. The solute and the filament are immersed in small hard spheres forming the solvent. The major findings are as follows. The solute is strongly confined within a narrow space in contact with the filament. Within the space there are locations with sharply deep local potential minima along the filament, and the distance between two adjacent locations is equal to the diameter of the large spheres constituting the filament. The potential minima form a ringlike domain in model 1
Determination of the maximum-depth to potential field sources by a maximum structural index method
Fedi, M.; Florio, G.
2013-01-01
A simple and fast determination of the limiting depth to the sources may represent a significant help to the data interpretation. To this end we explore the possibility of determining those source parameters shared by all the classes of models fitting the data. One approach is to determine the maximum depth-to-source compatible with the measured data, by using for example the well-known Bott-Smith rules. These rules involve only the knowledge of the field and its horizontal gradient maxima, and are independent from the density contrast. Thanks to the direct relationship between structural index and depth to sources we work out a simple and fast strategy to obtain the maximum depth by using the semi-automated methods, such as Euler deconvolution or depth-from-extreme-points method (DEXP). The proposed method consists in estimating the maximum depth as the one obtained for the highest allowable value of the structural index (Nmax). Nmax may be easily determined, since it depends only on the dimensionality of the problem (2D/3D) and on the nature of the analyzed field (e.g., gravity field or magnetic field). We tested our approach on synthetic models against the results obtained by the classical Bott-Smith formulas and the results are in fact very similar, confirming the validity of this method. However, while Bott-Smith formulas are restricted to the gravity field only, our method is applicable also to the magnetic field and to any derivative of the gravity and magnetic field. Our method yields a useful criterion to assess the source model based on the (∂f/∂x)max/fmax ratio. The usefulness of the method in real cases is demonstrated for a salt wall in the Mississippi basin, where the estimation of the maximum depth agrees with the seismic information.
Recording visual evoked potentials and auditory evoked P300 at 9.4T static magnetic field.
Arrubla, Jorge; Neuner, Irene; Hahn, David; Boers, Frank; Shah, N Jon
2013-01-01
Simultaneous recording of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has shown a number of advantages that make this multimodal technique superior to fMRI alone. The feasibility of recording EEG at ultra-high static magnetic field up to 9.4 T was recently demonstrated and promises to be implemented soon in fMRI studies at ultra high magnetic fields. Recording visual evoked potentials are expected to be amongst the most simple for simultaneous EEG/fMRI at ultra-high magnetic field due to the easy assessment of the visual cortex. Auditory evoked P300 measurements are of interest since it is believed that they represent the earliest stage of cognitive processing. In this study, we investigate the feasibility of recording visual evoked potentials and auditory evoked P300 in a 9.4 T static magnetic field. For this purpose, EEG data were recorded from 26 healthy volunteers inside a 9.4 T MR scanner using a 32-channel MR compatible EEG system. Visual stimulation and auditory oddball paradigm were presented in order to elicit evoked related potentials (ERP). Recordings made outside the scanner were performed using the same stimuli and EEG system for comparison purposes. We were able to retrieve visual P100 and auditory P300 evoked potentials at 9.4 T static magnetic field after correction of the ballistocardiogram artefact using independent component analysis. The latencies of the ERPs recorded at 9.4 T were not different from those recorded at 0 T. The amplitudes of ERPs were higher at 9.4 T when compared to recordings at 0 T. Nevertheless, it seems that the increased amplitudes of the ERPs are due to the effect of the ultra-high field on the EEG recording system rather than alteration in the intrinsic processes that generate the electrophysiological responses.
Energy Technology Data Exchange (ETDEWEB)
Antunez, E.E. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Estevez, J.O. [Instituto de Física, B. Universidad Autónoma de Puebla, A.P. J-48, Puebla 72570 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos, CP 62580 (Mexico); Basurto-Pensado, M.A. [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico); Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, CP 62210 (Mexico)
2014-11-15
Metal electrode-free electrochemical etching of low doped n-type silicon substrates, under the combined effect of magnetic and lateral electric field, is used to fabricate photoluminescent n-type porous silicon structures in dark conditions. A lateral gradient in terms of structural characteristics (i.e. thickness and pore dimensions) along the electric field direction is formed. Enhancement of electric and magnetic field resulted in the increase of pore density and a change in the shape of the macropore structure, from circular to square morphology. Broad photoluminescence (PL) emission from 500 to 800 nm, with a PL peak wavelength ranging from 571 to 642 nm, is attributed to the wide range of microporous features present on the porous silicon layer.
Creativity and Problem Solving
DEFF Research Database (Denmark)
Vidal, Rene Victor Valqui
2004-01-01
This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving...... approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools....
Creativity and problem Solving
Directory of Open Access Journals (Sweden)
René Victor Valqui Vidal
2004-12-01
Full Text Available This paper presents some modern and interdisciplinary concepts about creativity and creative processes of special relevance for Operational Research workers. Central publications in the area Creativity-Operational Research are shortly reviewed. Some creative tools and the Creative Problem Solving approach are also discussed. Finally, some applications of these concepts and tools are outlined. Some central references are presented for further study of themes related to creativity or creative tools.
Post-Gaussian Effective Potential of Double sine-Gordon Field
International Nuclear Information System (INIS)
Cai Weiran; Lou Senyue
2005-01-01
In the framework of the functional integral formalism, we calculate the effective potential of the double sine-Gordon (DsG) model up to the second order with an optimized expansion and the Coleman's normal-ordering prescription. Within the range of convergence, we make a comparison among the classical and the effective potential of the first and second order. The numerical analysis shows that the DsG post-Gaussian EP possesses some fine global properties and makes a substantial and a concordant quantum correction to the features of the classical potential.
The Western Arabian intracontinental volcanic fields as a potential UNESCO World Heritage site
Németh, Károly; Moufti, Mohammed R.
2017-04-01
UNESCO promotes conservation of the geological and geomoprhological heritage through promotion of protection of these sites and development of educational programs under the umbrella of geoparks among the most globally significant ones labelled as UNESCO Global Geoparks. UNESCO also maintains a call to list those natural sites that provide universal outstanding values to demonstrate geological features or their relevance to our understanding the evolution of Earth. Volcanoes currently got a surge in nomination to be UNESCO World Heritage sites. Volcanic fields in the contrary fell in a grey area of nominations as they represents the most common manifestation of volcanism on Earth hence they are difficult to view as having outstanding universal values. A nearly 2500-km long 300-km wide region of dispersed volcanoes located in the Western Arabian Penninsula mostly in the Kingdom of Saudi Arabia form a near-continuous location that carries universal outstanding value as one of the most representative manifestation of dispersed intracontinental volcanism on Earth to be nominated as an UNESCO World Heritage site. The volcanic fields formed in the last 20 Ma along the Red Sea as group of simple basaltic to more mature and long-lived basalt to trachyte-to-rhyolite volcanic fields each carries high geoheritage values. While these volcanic fields are dominated by scoria and spatter cones and transitional lava fields, there are phreatomagmatic volcanoes among them such as maars and tuff rings. Phreatomagmatism is more evident in association with small volcanic edifices that were fed by primitive magmas, while phreatomagmatic influences during the course of a larger volume eruption are also known in association with the silicic eruptive centres in the harrats of Rahat, Kishb and Khaybar. Three of the volcanic fields are clearly bimodal and host small-volume relatively short-lived lava domes and associated block-and-ash fans providing a unique volcanic landscape commonly not
Expanding the Playing Field: Immune-Based Therapy Shows Potential for Lung, Other Cancers
Results from two early-phase clinical trials presented at the 2012 American Society of Clinical Oncology annual meeting provide further evidence that priming the immune system to attack tumors has potential as a treatment for certain cancers.
Using Multicore Programming on the GPU to Improve Creation of Potential Fields
Elmir, Hassan
2013-01-01
In the last decade video games have made great improvements in terms of arti cial intelligence and visuals. Researchers have also made advancements in the arti cial intelligence eld and some of the latest research papers have been exploring potential elds. This report will cover the background of potential eld and examine some improvements that can be made to increase the performance of the algorithm. The basic idea is to increase performance by making a GPGPU(General purpose graphic processi...
Artificial Potential Field Approach to Path Tracking for a Non-Holonomic Mobile Robot
DEFF Research Database (Denmark)
Sørensen, M.J.
2003-01-01
This paper introduces a novel path tracking controller for an over-actuated robotic vehicle moving in an agricultural field. The vehicle itself is a four wheel steered, four wheel driven vehicle subject to the two non-holonomic constraints of free rolling and non-slipping wheels. A dynamic model...
Next-to-leading order effective field theory Lambda N -> NN potential in coordinate space
Czech Academy of Sciences Publication Activity Database
Peréz-Obiol Castaneda, Axel; Entem, D. R.; Julia-Diaz, B.; Parreno, A.
2016-01-01
Roč. 954, OCT (2016), s. 213-241 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : non-mesonic weak decay * effective field theory * hypernuclei Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016
Reducing Potential Disaster Impacts in Irrigated Rice Fields in West Java
Sianturi, R.S.
2018-01-01
The increasing global population inevitably demands for stable food production. As an important food crop, rice plays a major role in maintaining food security. However, irrigated rice fields are increasingly suffered from natural hazard occurrences worldwide, disrupting livelihoods of millions of
Effect of pulsed electric field treatment on hot-boned muscles of different potential tenderness.
Suwandy, Via; Carne, Alan; van de Ven, Remy; Bekhit, Alaa El-Din A; Hopkins, David L
2015-07-01
In this study, the effect of pulsed electric field (PEF) treatment and ageing on the quality of beef M. longissimus lumborum (LL) and M. semimembranosus (SM) muscles was evaluated, including the tenderness, water loss and post-mortem proteolysis. Muscles were obtained from 12 steers (6 steers for each muscle), removed from the carcasses 4 hour postmortem and were treated with pulsed electric field within 2h. Six different pulsed electric field intensities (voltages of 5 and 10 kV × frequencies of 20, 50 and 90 Hz) plus a control were applied to each muscle to determine the optimum treatment conditions. Beef LL was found to get tougher with increasing treatment frequency whereas beef SM muscle was found to have up to 21.6% reduction in the shear force with pulsed electric field treatment. Post-mortem proteolysis showed an increase in both troponin and desmin degradation in beef LL treated with low intensity PEF treatment (20 Hz) compared to non-treated control samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sharma, A.; Mathijssen, S.G.J.; Bobbert, P.A.; Leeuw, de D.M.
2011-01-01
During prolonged application of a gate bias, organic field-effect transistors show a gradual shift of the threshold voltage towards the applied gate bias voltage. The shift follows a stretched-exponential time dependence governed by a relaxation time. Here, we show that a thermodynamic analysis
The Potential Contribution of Feminist Scholarship to the Field of Communication.
Dervin, Brenda
1987-01-01
Describes feminist scholarship as a pluralistic, activist form of scholarship, which sees gender as the primary category of social organization. Claims that until recently, feminist scholarship has contributed little to the field of communication research, and that it is needed in order to give a voice to women's concerns. (MM)
Pukrittayakamee, A.; Malshe, M.; Hagan, M.; Raff, L. M.; Narulkar, R.; Bukkapatnum, S.; Komanduri, R.
2009-04-01
An improved neural network (NN) approach is presented for the simultaneous development of accurate potential-energy hypersurfaces and corresponding force fields that can be utilized to conduct ab initio molecular dynamics and Monte Carlo studies on gas-phase chemical reactions. The method is termed as combined function derivative approximation (CFDA). The novelty of the CFDA method lies in the fact that although the NN has only a single output neuron that represents potential energy, the network is trained in such a way that the derivatives of the NN output match the gradient of the potential-energy hypersurface. Accurate force fields can therefore be computed simply by differentiating the network. Both the computed energies and the gradients are then accurately interpolated using the NN. This approach is superior to having the gradients appear in the output layer of the NN because it greatly simplifies the required architecture of the network. The CFDA permits weighting of function fitting relative to gradient fitting. In every test that we have run on six different systems, CFDA training (without a validation set) has produced smaller out-of-sample testing error than early stopping (with a validation set) or Bayesian regularization (without a validation set). This indicates that CFDA training does a better job of preventing overfitting than the standard methods currently in use. The training data can be obtained using an empirical potential surface or any ab initio method. The accuracy and interpolation power of the method have been tested for the reaction dynamics of H+HBr using an analytical potential. The results show that the present NN training technique produces more accurate fits to both the potential-energy surface as well as the corresponding force fields than the previous methods. The fitting and interpolation accuracy is so high (rms error=1.2 cm-1) that trajectories computed on the NN potential exhibit point-by-point agreement with corresponding
DEFF Research Database (Denmark)
Paoletti, Valeria; Hansen, Per Christian; Hansen, Mads Friis
2014-01-01
In potential-field inversion, careful management of singular value decomposition components is crucial for obtaining information about the source distribution with respect to depth. In principle, the depth-resolution plot provides a convenient visual tool for this analysis, but its computational...... on memory and computing time. We used the ApproxDRP to study retrievable depth resolution in inversion of the gravity field of the Neapolitan Volcanic Area. Our main contribution is the combined use of the Lanczos bidiagonalization algorithm, established in the scientific computing community, and the depth...
Directory of Open Access Journals (Sweden)
Brad J. Arnold
2014-07-01
Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.
Directory of Open Access Journals (Sweden)
G. Musso
2015-12-01
Full Text Available The vertebrate heart develops from two distinct lineages of cardiomyocytes that arise from the first and second heart fields (FHF and SHF, respectively. The FHF forms the primitive heart tube, while adding cells from the SHF allows elongation at both poles of the tube. Initially seen as an exclusive characteristic of higher vertebrates, recent work has demonstrated the presence of a distinct FHF and SHF in lower vertebrates, including zebrafish. We found that key transcription factors that regulate septation and chamber formation in higher vertebrates, including Tbx5 and Pitx2, influence relative FHF and SHF contributions to the zebrafish heart tube. To identify molecular modulators of heart field migration, we used microarray-based expression profiling following inhibition of tbx5a and pitx2ab in embryonic zebrafish (Mosimann & Panakova, et al, 2015; GSE70750. Here, we describe in more detail the procedure used to process, prioritize, and analyze the expression data for functional enrichment.
Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field
Directory of Open Access Journals (Sweden)
Lívia Brenelli de Paiva
2013-09-01
Full Text Available Ferulic acid is a phenolic acid widely distributed in the plant kingdom. It presents a wide range of potential therapeutic effects useful in the treatments of cancer, diabetes, lung and cardiovascular diseases, as well as hepatic, neuro and photoprotective effects and antimicrobial and anti-inflammatory activities. Overall, the pharmaceutical potential of ferulic acid can be attributed to its ability to scavenge free radicals. However, recent studies have revealed that ferulic acid presents pharmacological properties beyond those related to its antioxidant activity, such as the ability to competitively inhibit HMG-CoA reductase and activate glucokinase, contributing to reduce hypercholesterolemia and hyperglycemia, respectively. The present review addresses ferulic acid dietary sources, the pharmacokinetic profile, antioxidant action mechanisms and therapeutic effects in the treatment and prevention of various diseases, in order to provide a basis for understanding its mechanisms of action as well as its pharmaceutical potential.
Amendt, Peter; Wilks, S. C.; Bellei, C.; Li, C. K.; Petrasso, R. D.
2011-05-01
The generation of strong, self-generated electric fields (GV/m) in direct-drive, inertial-confinement-fusion (ICF) capsules has been reported [Rygg et al., Science 319, 1223 (2008); Li et al., Phys. Rev. Lett. 100, 225001 (2008)]. A candidate explanation for the origin of these fields based on charge separation across a plasma shock front was recently proposed [Amendt et al., Plasma Phys. Controlled Fusion 51 124048 (2009)]. The question arises whether such electric fields in imploding capsules can have observable consequences on target performance. Two well-known anomalies come to mind: (1) an observed ≈2× greater-than-expected deficit of neutrons in an equimolar D3He fuel mixture compared with hydrodynamically equivalent D [Rygg et al., Phys. Plasmas 13, 052702 (2006)] and DT [Herrmann et al., Phys. Plasmas 16, 056312 (2009)] fuels, and (2) a similar shortfall of neutrons when trace amounts of argon are mixed with D in indirect-drive implosions [Lindl et al., Phys. Plasmas 11, 339 (2004)]. A new mechanism based on barodiffusion (or pressure gradient-driven diffusion) in a plasma is proposed that incorporates the presence of shock-generated electric fields to explain the reported anomalies. For implosions performed at the Omega laser facility [Boehly et al., Opt. Commun. 133, 495 (1997)], the (low Mach number) return shock has an appreciable scale length over which the lighter D ions can diffuse away from fuel center. The depletion of D fuel is estimated and found to lead to a corresponding reduction in neutrons, consistent with the anomalies observed in experiments for both argon-doped D fuels and D3He equimolar mixtures. The reverse diffusional flux of the heavier ions toward fuel center also increases the pressure from a concomitant increase in electron number density, resulting in lower stagnation pressures and larger imploded cores in agreement with gated, self-emission, x-ray imaging data.
Miller, Mark S.; Lay, Wesley K.
2016-01-01
Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117
The effects of luminance contribution from large fields to chromatic visual evoked potentials.
Skiba, Rafal M; Duncan, Chad S; Crognale, Michael A
2014-02-01
Though useful from a clinical and practical standpoint uniform, large-field chromatic stimuli are likely to contain luminance contributions from retinal inhomogeneities. Such contribution can significantly influence psychophysical thresholds. However, the degree to which small luminance artifacts influence the chromatic VEP has been debated. In particular, claims have been made that band-pass tuning observed in chromatic VEPs result from luminance intrusion. However, there has been no direct evidence presented to support these claims. Recently, large-field isoluminant stimuli have been developed to control for intrusion from retinal inhomogeneities with particular regard to the influence of macular pigment. We report here the application of an improved version of these full-field stimuli to directly test the influence of luminance intrusion on the temporal tuning of the chromatic VEP. Our results show that band-pass tuning persists even when isoluminance is achieved throughout the extent of the stimulus. In addition, small amounts of luminance intrusion affect neither the shape of the temporal tuning function nor the major components of the VEP. These results support the conclusion that the chromatic VEP can depart substantially from threshold psychophysics with regard to temporal tuning and that obtaining a low-pass function is not requisite evidence of selective chromatic activation in the VEP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR
Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.
2012-12-01
The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.
Baniamerian, Jamaledin; Liu, Shuang; Abbas, Mahmoud Ahmed
2018-04-01
The vertical gradient is an essential tool in interpretation algorithms. It is also the primary enhancement technique to improve the resolution of measured gravity and magnetic field data, since it has higher sensitivity to changes in physical properties (density or susceptibility) of the subsurface structures than the measured field. If the field derivatives are not directly measured with the gradiometers, they can be calculated from the collected gravity or magnetic data using numerical methods such as those based on fast Fourier transform technique. The gradients behave similar to high-pass filters and enhance the short-wavelength anomalies which may be associated with either small-shallow sources or high-frequency noise content in data, and their numerical computation is susceptible to suffer from amplification of noise. This behaviour can adversely affect the stability of the derivatives in the presence of even a small level of the noise and consequently limit their application to interpretation methods. Adding a smoothing term to the conventional formulation of calculating the vertical gradient in Fourier domain can improve the stability of numerical differentiation of the field. In this paper, we propose a strategy in which the overall efficiency of the classical algorithm in Fourier domain is improved by incorporating two different smoothing filters. For smoothing term, a simple qualitative procedure based on the upward continuation of the field to a higher altitude is introduced to estimate the related parameters which are called regularization parameter and cut-off wavenumber in the corresponding filters. The efficiency of these new approaches is validated by computing the first- and second-order derivatives of noise-corrupted synthetic data sets and then comparing the results with the true ones. The filtered and unfiltered vertical gradients are incorporated into the extended Euler deconvolution to estimate the depth and structural index of a magnetic
Capocchi, G; Della Torre, G; Grassi, S; Pettorossi, V E; Zampolini, M
1992-01-01
The effect of high frequency stimulation (HFS) of the primary vestibular afferents on field potentials recorded in the ipsilateral Medial Vestibular Nuclei (MVN) was studied. Our results show that potentiation and depression can be induced in different portions of MVN, which are distinguishable by their anatomical organization. HFS induces potentiation of the monosynaptic component in the ventral portion of the MVN, whereas it provokes depression of the polysynaptic component in the dorsal portion of the same nucleus. The induction of both potentiation and depression was blocked under AP5 perfusion, thus demonstrating that NMDA receptor activation mediates both phenomena. Furthermore, the finding that the field potentials were not modified during perfusion with DL-AP5, as previously reported, supports the hypothesis that NMDA receptors are not involved in the normal synaptic transmission from the primary vestibular afferent fibres, but are only activated following hyperstimulation of this afferent system. Our results suggest that the mechanisms of long term modification of synaptic efficacy observed in MVN may underlie the plasticity phenomena occurring in vestibular nuclei.
Czech Academy of Sciences Publication Activity Database
Melcr, Josef; Bonhenry, Daniel; Timr, Štěpán; Jungwirth, Pavel
2016-01-01
Roč. 12, č. 5 (2016), s. 2418-2425 ISSN 1549-9618 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : membrane potential * molecular dynamics * ion imbalance Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.245, year: 2016
Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration
Mouser, Vivian H M; Levato, Riccardo; Bonassar, Lawrence J; D'Lima, Darryl D; Grande, Daniel A; Klein, Travis J; Saris, Daniel B F; Zenobi-Wong, Marcy; Gawlitta, Debby; Malda, Jos
2017-01-01
Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D
Single-active-electron potentials for molecules in intense laser fields
DEFF Research Database (Denmark)
Abu-Samha, Mahmoud; Madsen, Lars Bojer
2010-01-01
Single-active-electron potentials are computed for selected molecules, and molecular wave functions with the correct asymptotic behavior are produced. Asymptotic expansion coefficients are extracted from the wave functions and used to compute alignment-dependent ionization yields from molecular...
DEFF Research Database (Denmark)
Hansen, David
2012-01-01
Many industrial production work systems have increased in complexity, and their new business model scompete on innovation, rather than low cost.At a medical device production facility committed to Lean Production, a research project was carried out to use Appreciative Inquiry to better engage...... employee strengths in continuou simprovements of the work system. The research question was: “How can Lean problem solving and Appreciative Inquiry be combined for optimized work system innovation?” The research project was carried out as a co-creation process with close cooperation between researcher...
DEFF Research Database (Denmark)
Foss, Kirsten; Foss, Nicolai Juul
2006-01-01
as a general approach to problem solving. We apply these Simonian ideas to organisational issues, specifically new organisational forms. Specifically, Simonian ideas allow us to develop a morphology of new organisational forms and to point to some design problems that characterise these forms.......Two of Herbert Simon's best-known papers are 'The Architecture of Complexity' and 'The Structure of Ill-Structured Problems.' We discuss the neglected links between these two papers, highlighting the role of decomposition in the context of problems on which constraints have been imposed...
1982-10-01
Artificial Intelig ~ence (Vol. III, edited by Paul R. Cohen and’ Edward A.. Feigenbaum)’, The chapter was written B’ Paul Cohen, with contributions... Artificial Intelligence (Vol. III, edited by Paul R. Cohen and EdWard A. Feigenbaum). The chapter was written by Paul R. Cohen, with contributions by Stephen...Wheevoats"EntermdI’ Planning and Problem ’Solving by Paul R. Cohen Chaptb-rXV-of Volumec III’of the Handbook of Artificial Intelligence edited by Paul R
Supporting Organizational Problem Solving with a Workstation.
1982-07-01
G. [., and Sussman, G. J. AMORD: Explicit Control or Reasoning. In Proceedings of the Symposium on Artificial Intellignece and Programming Languagues...0505 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory AREA& WORK UNIT NUMBERS 545...extending ideas from the field of Artificial Intelligence (A), we describ office work as a problem solving activity. A knowledge embedding language called
Eppelbaum, Lev; Meirova, Tatiana
2015-04-01
It is well-known that the local seismic site effects may have a significant contribution to the intensity of damage and destruction (e.g., Hough et al., 1990; Regnier et al., 2000; Bonnefoy-Claudet et al., 2006; Haase et al., 2010). The thicknesses of sediments, which play a large role in amplification, usually are derived from seismic velocities. At the same time, thickness of sediments may be determined (or defined) on the basis of 3D combined gravity-magnetic modeling joined with available geological materials, seismic data and borehole section examination. Final result of such investigation is a 3D physical-geological model (PGM) reflecting main geological peculiarities of the area under study. Such a combined study needs in application of a reliable 3D mathematical algorithm of computation together with advanced methodology of 3D modeling. For this analysis the developed GSFC software was selected. The GSFC (Geological Space Field Calculation) program was developed for solving a direct 3-D gravity and magnetic prospecting problem under complex geological conditions (Khesin et al., 1996; Eppelbaum and Khesin, 2004). This program has been designed for computing the field of Δg (Bouguer, free-air or observed value anomalies), ΔZ, ΔX, ΔY , ΔT , as well as second derivatives of the gravitational potential under conditions of rugged relief and inclined magnetization. The geological space can be approximated by (1) three-dimensional, (2) semi-infinite bodies and (3) those infinite along the strike closed, L.H. non-closed, R.H. on-closed and open). Geological bodies are approximated by horizontal polygonal prisms. The program has the following main advantages (besides abovementioned ones): (1) Simultaneous computing of gravity and magnetic fields; (2) Description of the terrain relief by irregularly placed characteristic points; (3) Computation of the effect of the earth-air boundary by the method of selection directly in the process of interpretation; (4
Social Economy a Potential Solution to the New Problems in the Social Field
Directory of Open Access Journals (Sweden)
Angela Achiţei
2012-12-01
Full Text Available The paper presents the context in which social economy appeared as a topic of interest and a priority on the public agenda in different countries around the world and the incipient stages in which it exists in Romania, especially with respect to development and legislation in the field. Despite the fact that social economy in Romania is not a priority for the development, several private initiatives have begun to take shape and to create patterns for compensating the need for financing of the social sector and especially for creating workplaces for deprived categories. We hope that these patterns, constituted and financed especially through the European Social Fund, will constitute the practical and professional experience necessary for creating a correct and “friendly” legislative frame for the sector. Considering the economical, social and political crisis that Romania is going through, we need more than ever that social economy becomes a topic for discussion on the public agenda. There is urgent need for a national strategy in the field, a coherent legislative framework allowing sustained and durable development through fiscal benefits; social economy needs to be financed / subsidized by local authorities, it needs to allow access to public agreements and to be the object of the public – private partnership. There are samples of best practices, but they need to be supported and replicated in order to create as many chances as possible in the process of insertion, especially for creating workplaces for deprived categories of people. The “Alături de Voi” Romania Foundation developed such a pattern in its centers in Iasi, Constanta and Tg. Mureş. The foundation’s activity in the field of social economy can be viewed on the online store www.utildeco.ro
The potential use of diamond coated tungsten tips as a field ionisation source
Energy Technology Data Exchange (ETDEWEB)
Brown, A.; Prawer, S.; Legge, G.J.F.; Kostidis, L.I. [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1996-12-31
Tungsten tips are convenient for use in a high brightness gaseous phase field ionisation source. However, the lifetime of these tips is not adequate for practical use. The authors are investigating whether coating tungsten tips with diamond using Chemical Vapor Deposition (CVD) will improve the practicality of using these tips by an improvement in longevity of the source and/or an improvement in brightness due to the effects of the property of negative electron affinity which has been observed on CVD diamond. 1 ref.
The potential use of diamond coated tungsten tips as a field ionisation source
Energy Technology Data Exchange (ETDEWEB)
Brown, A; Prawer, S; Legge, G J.F.; Kostidis, L I [Melbourne Univ., Parkville, VIC (Australia). School of Physics
1997-12-31
Tungsten tips are convenient for use in a high brightness gaseous phase field ionisation source. However, the lifetime of these tips is not adequate for practical use. The authors are investigating whether coating tungsten tips with diamond using Chemical Vapor Deposition (CVD) will improve the practicality of using these tips by an improvement in longevity of the source and/or an improvement in brightness due to the effects of the property of negative electron affinity which has been observed on CVD diamond. 1 ref.
International Nuclear Information System (INIS)
Hukkoo, R.K.; Bapat, V.N.
1991-01-01
During the 'early phase' of a radiation emergency the data on the nature and quantity of releases to asses the radiological impact may not be readily available thus delaying the initiation of necessary steps to contain the event and mitigate its effect. An iterative method based on the field measurements carried out at two concentric rings around the point of release is proposed to estimate the atmospheric release at the ground level and stack height. The program logic has been evaluated for internal consistency and its utility and limitations are discussed. (author). 8 figs., 4 tabs., 4 refs
Solving Differential Equations in R: Package deSolve
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines appr...
Solving Differential Equations in R: Package deSolve
Soetaert, K.E.R.; Petzoldt, T.; Setzer, R.W.
2010-01-01
In this paper we present the R package deSolve to solve initial value problems (IVP) written as ordinary differential equations (ODE), differential algebraic equations (DAE) of index 0 or 1 and partial differential equations (PDE), the latter solved using the method of lines approach. The
Energy Technology Data Exchange (ETDEWEB)
Labonte, G
1973-01-01
We study the time description of the motion of relativistic particles in both the dependent and time independent potentials. The differential equations of motion considered are the standard linear spin zero and one half equations. They are always meaningful in the sense that, at all times, unique well defined operator valued distributions in the three space variables are determined. We discuss the problem of determining which set of creation and annihilation operators is relevant in a given problem. We examine the implementation of certain simple requirements which seem to be necessary in order for the mathematical formalism to be able to describe a physical system. We show that whenever the equation of motion is homogeneous, the study of all physical requirements reduces to studying Bogoliubov transformations between creation and annihilation operators. We study such transformations where we obtain some new important results concerning their general properties. We examine in detail a quantized field in presence of an external source, electrons and positrons acted upon by a plane electromagnetic wave, Dirac fields acted upon by potentials of the form A(x) delta (t) and A(x) THETA (t-t/sub 0/). We study Dirac fields in presence of potentials which have time dependences which can be represented by sequences of step functions. We then discuss the limiting case where the time dependence is continuous. We prove that the requirements that there exists a unitary evolution operator or that physical particles can be described are exactly equivalent. (auth)
Blaich, Olav A.; Tsikalas, Filippos; Faleide, Jan Inge
2008-10-01
Integration of regional seismic reflection and potential field data along the northeastern Brazilian margin, complemented by crustal-scale gravity modelling, is used to reveal and illustrate onshore-offshore crustal structure correlation, the character of the continent-ocean boundary, and the relationship of crustal structure to regional variation of potential field anomalies. The study reveals distinct along-margin structural and magmatic changes that are spatially related to a number of conjugate Brazil-West Africa transfer systems, governing the margin segmentation and evolution. Several conceptual tectonic models are invoked to explain the structural evolution of the different margin segments in a conjugate margin context. Furthermore, the constructed transects, the observed and modelled Moho relief, and the potential field anomalies indicate that the Recôncavo, Tucano and Jatobá rift system may reflect a polyphase deformation rifting-mode associated with a complex time-dependent thermal structure of the lithosphere. The constructed transects and available seismic reflection profiles, indicate that the northern part of the study area lacks major breakup-related magmatic activity, suggesting a rifted non-volcanic margin affinity. In contrast, the southern part of the study area is characterized by abrupt crustal thinning and evidence for breakup magmatic activity, suggesting that this region evolved, partially, with a rifted volcanic margin affinity and character.
Feature selectivity of the gamma-band of the local field potential in primate primary visual cortex
Directory of Open Access Journals (Sweden)
Philipp Berens
2008-12-01
Full Text Available Extra-cellular voltage fluctuations (local field potentials; LFPs reflecting neural mass action are ubiquitous across species and brain regions. Numerous studies have characterized the properties of LFP signals in the cortex to study sensory and motor computations as well as cognitive processes like attention, perception and memory. In addition, its extracranial counterpart – the electroencelphalogram (EEG – is widely used in clinical applications. However, the link between LFP signals and the underlying activity of local populations of neurons remains largely elusive. Here, we review recent work elucidating the relationship between spiking activity of local neural populations and LFP signals. We focus on oscillations in the gamma-band (30-90Hz of the local field potential in the primary visual cortex (V1 of the macaque that dominate during visual stimulation. Given that in area V1 much is known about the properties of single neurons and the cortical architecture, it provides an excellent opportunity to study the mechanisms underlying the generation of the local field potential.
International Nuclear Information System (INIS)
Cantarel, Vincent; Motooka, Takafumi; Yamagishi, Isao
2017-06-01
After a necessary decay time, the zeolites used for the water decontamination will eventually be conditioned for their long-term storage. Geopolymer is considered as a potential matrix to manage radioactive cesium and strontium containing waste. For such applications, a correct comprehension of the binder structure, its macroscopic properties, its interactions with the waste and the physico-chemical phenomena occurring in the wasteform is needed to be able to judge of the soundness and viability of the material. Although the geopolymer is a young binder, a lot of research has been carried out over the last fifty years and our understanding of this matrix and its potential applications is progressing fast. This review aims at gathering the actual knowledge on geopolymer studies about geopolymer composites, geopolymer as a confinement matrix for nuclear wastes and geopolymer under irradiation. This information will finally provide guidance for the future studies and experiments. (author)
Carcinogenic potential of extremely low frequency magnetic fields: proceedings of a workshop
International Nuclear Information System (INIS)
Delpizzo, V.; Keam, D.W.
1989-02-01
The debate over the suspected link between Extremely Low Frequency (ELF) magnetic fields and cancer is entering its second decade, but the end is not in sight. The epidemiological evidence is now somewhat stronger, mainly due to the Savitz study of residential exposure and childhood cancer, but far from overwhelming. The results of in-vitro studies are fragmentary, sometimes contradictory and, overall, confusing. Well designed animal studies are virtually non-existent. A plausible biological model has not yet been established. Although scant, the present body of knowledge is very complex encompassing several disciplines and this workshop brought together researchers of vastly different backgrounds. The nine papers presented deal with an overview of ELF and cancer; the biochemistry of processes implicated in ELF carcinogenesis; possible mechanisms of cancer promotion; the status of in-vitro ELF cellular interactions; epidemiological studies, both occupational and residential, and the use of wire coding configurations as indicators of magnetic field exposures in such studies. Discussion follows each paper. Refs., figs., tabs
Armit, R. J.; Ailleres, L.; Betts, P. G.; Schaefer, B. F.; Blaikie, T. N.
2014-10-01
A method for subsurface recognition of blind geological bodies is presented using combined surface constraints and 3-D structural modelling that incorporates constraints from detailed mapping, and potential-field inversion modelling. This method is applied to the Mount Painter Province and demonstrates that addition of low density material is required to reconcile the gravity signature of the region. This method may be an effective way to construct 3-D models in regions of excellent structural control, and can be used to assess the validity of surface structures with 3-D architecture. Combined geological and potential-field constrained inversion modelling of the Mount Painter Province was conducted to assess the validity of the geological models of the region. Magnetic susceptibility constrained stochastic property inversions indicates that the northeast to southwest structural trend of the relatively magnetic meta-sedimentary rocks of the Radium Creek Group in the Mount Painter Inlier is reconcilable with the similar, northeast to southwest trending positive magnetic anomalies in the region. Radium Creek Group packages are the major contributor of the total magnetic response of the region. However field mapping and the results of initial density constrained stochastic property inversion modelling do not correlate with a large residual negative gravity anomaly central to the region. Further density constrained inversion modelling indicates that an additional large body of relatively low density material is needed within the model space to account for this negative density anomaly. Through sensitivity analysis of multiple geometrical and varied potential-field property inversions, the best-fitting model records a reduction in gravity rms misfit from 21.9 to 1.69 mGal, representing a reduction from 56 to 4.5 per cent in respect to the total dynamic range of 37.5 mGal of the residual anomaly. This best-fitting model incorporates a volumetrically significant source
Energy Technology Data Exchange (ETDEWEB)
Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook
2010-02-22
In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work
DEFF Research Database (Denmark)
Nørgaard, Trine; Vendelboe, Anders Lindblad; Olsen, Preben
in Silstrup was evaluated based on soil texture, structural parameters, tritium breakthrough curves, and colloid- and phosphorus leaching to investigate the link between the leaching of pesticides such as TFMP and soil structure. Bulk soil was sampled from the A-horizon in a 15 x 15 m grid across the field......, and according to soil texture analyses the clay content was ranging from 14.2 to 18.9%, whereas the organic carbon (OC) content was ranging between 1.7 and 2.2%. Clay content increased to the North and OC content to the South. It was found that there is a risk for pronounced leaching to take place from......During the last decades detection of pesticides and their metabolites in groundwater has increased, forcing several drinking water wells to shut down. The Danish Pesticide Leaching Assessment Programme (PLAP), initiated in 1998, evaluates the leaching risk of pesticides and their metabolites...
Energy Technology Data Exchange (ETDEWEB)
Aizawa, Yuka; Yamamoto, Kazuo; Sato, Takeshi [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Murata, Hidekazu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya, Aichi 468-8502 (Japan); Yoshida, Ryuji; Fisher, Craig A.J. [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan); Kato, Takehisa; Iriyama, Yasutoshi [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Hirayama, Tsukasa, E-mail: t-hirayama@jfcc.or.jp [Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587 (Japan)
2017-07-15
In situ electron holography is used to observe changes of electric-potential distributions in an amorphous lithium phosphorus oxynitride (LiPON) solid-state electrolyte when different voltages are applied. 2D phase images are simulated by integrating the 3D potential distribution along the electron trajectory through a thin Cu/LiPON/Cu region. Good agreement between experimental and simulated phase distributions is obtained when the influence of the external electric field is taken into account using the 3D boundary-charge method. Based on the precise potential changes, the lithium-ion and lithium-vacancy distributions inside the LiPON layer and electric double layers (EDLs) are inferred. The gradients of the phase drops at the interfaces in relation to EDL widths are discussed. - Highlights: • Solid-state electrolyte LiPON has been observed by in situ electron holography. • Observed phase distributions are compared with those simulated numerically. • 3D electric fields around the specimen are taken into account in the simulation. • Electric-potential distributions inside LiPON have been obtained. • The lithium-ion and lithium-vacancy distributions inside the LiPON are inferred.
Marin, M; Laverack, G; Matthews, S; Powell, A A
2018-02-10
The facultative root hemi-parasite Rhinanthus minor is often used in grassland habitat restoration projects to regulate ecosystem structure and function. Its impact on community productivity and diversity as a function of resource supply, sward composition and management has been widely investigated. However, there is a lack of information about the possible influence of seed quality on the efficacy of the hemi-parasite. Ten seed lots from commercial sources were sown in the field and their germination characteristics were investigated in the laboratory. Seeds from four lots were also germinated and sown in pots alongside plants of two host species, Lotus corniculatus and Holcus lanatus. Plant establishment, height and flowering density were evaluated for the hemi-parasite, while plant biomass was measured for both R. minor and its host. Two aspects of seed quality influenced the field emergence of seed lots of R. minor, the radicle emergence (%) and the length of the lag period from the beginning of imbibition to germination (mean germination time), which indicates seed vigour. A longer lag period (lower vigour) was associated with higher levels of seedling mortality and lower plant vigour, in terms of plant height and biomass accumulation and was also reflected in the parasitic impact of the seed lots. Seed quality, specifically germination and vigour, can influence the establishment, survival, subsequent plant productivity and parasitic impact of R. minor in vegetation restoration projects. Seed quality is discussed as a key factor to consider when predicting the impact of the hemi-parasite on community productivity and diversity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Yeh, Chun-Ping; Huang, Jiunn-Yuan
2018-04-01
Low-alloy steels used as structural materials in nuclear power plants are subjected to cyclic stresses during power plant operations. As a result, cracks may develop and propagate through the material. The alternating current potential drop technique is used to measure the lengths of cracks in metallic components. The depth of the penetration of the alternating current is assumed to be small compared to the crack length. This assumption allows the adoption of the unfolding technique to simplify the problem to a surface Laplacian field. The numerical modelling of the electric potential and current density distribution prediction model for a compact tension specimen and the unfolded crack model are presented in this paper. The goal of this work is to conduct numerical simulations to reduce deviations occurring in the crack length measurements. Numerical simulations were conducted on AISI 4340 low-alloy steel with different crack lengths to evaluate the electric potential distribution. From the simulated results, an optimised position for voltage measurements in the crack region was proposed.
International Nuclear Information System (INIS)
Mery, P.
1977-01-01
The operator and matrix Pade approximation are defined. The fact that these approximants can be derived from the Schwinger variational principle is emphasized. In potential theory, using this variational aspect it is shown that the matrix Pade approximation allow to reproduce the exact solution of the Lippman-Schwinger equation with any required accuracy taking only into account the knowledge of the first two coefficients in the Born expansion. The deep analytic structure of this variational matrix Pade approximation (hyper Pade approximation) is discussed
2007-07-01
Petroleum hydrocarbons mg/L 1.03 50.3 0.19 PHC as Gasoline µg/L 10,700 224,000 2160 PHC as Diesel Fuel mg/L 0.25 16 ɘ.095 Water Quality Total Organic...Intrinsic Bioremediation . Ground Water 33(2):180-189. Borden, R. C., M. J. Hunt, M. B. Shafer, M. A. Barlaz, 1997a. Environmental Research Brief...and J. Pollock, 2003. Potential for In Situ Bioremediation of Perchlorate in Contaminated Environments. Presented at: In Situ and On- Site
Dynamic Mobile RobotNavigation Using Potential Field Based Immune Network
Directory of Open Access Journals (Sweden)
Guan-Chun Luh
2007-04-01
Full Text Available This paper proposes a potential filed immune network (PFIN for dynamic navigation of mobile robots in an unknown environment with moving obstacles and fixed/moving targets. The Velocity Obstacle method is utilized to determine imminent obstacle collision of a robot moving in the time-varying environment. The response of the overall immune network is derived by the aid of fuzzy system. Simulation results are presented to verify the effectiveness of the proposed methodology in unknown environments with single and multiple moving obstacles
Mao, D.; Revil, A.; Hort, R. D.; Munakata-Marr, J.; Atekwana, E. A.; Kulessa, B.
2015-11-01
Geophysical methods can be used to remotely characterize contaminated sites and monitor in situ enhanced remediation processes. We have conducted one sandbox experiment and one contaminated field investigation to show the robustness of electrical resistivity tomography and self-potential (SP) tomography for these applications. In the sandbox experiment, we injected permanganate in a trichloroethylene (TCE)-contaminated environment under a constant hydraulic gradient. Inverted resistivity tomograms are able to track the evolution of the permanganate plume in agreement with visual observations made on the side of the tank. Self-potential measurements were also performed at the surface of the sandbox using non-polarizing Ag-AgCl electrodes. These data were inverted to obtain the source density distribution with and without the resistivity information. A compact horizontal dipole source located at the front of the plume was obtained from the inversion of these self-potential data. This current dipole may be related to the redox reaction occurring between TCE and permanganate and the strong concentration gradient at the front of the plume. We demonstrate that time-lapse self-potential signals can be used to track the kinetics of an advecting oxidizer plume with acceptable accuracy and, if needed, in real time, but are unable to completely resolve the shape of the plume. In the field investigation, a 3D resistivity tomography is used to characterize an organic contaminant plume (resistive domain) and an overlying zone of solid waste materials (conductive domain). After removing the influence of the streaming potential, the identified source current density had a magnitude of 0.5 A m-2. The strong source current density may be attributed to charge movement between the neighboring zones that encourage abiotic and microbially enhanced reduction and oxidation reactions. In both cases, the self-potential source current density is located in the area of strong resistivity
Solved problems in electromagnetics
Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco
2017-01-01
This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .
Solved problems in electrochemistry
International Nuclear Information System (INIS)
Piron, D.L.
2004-01-01
This book presents calculated solutions to problems in fundamental and applied electrochemistry. It uses industrial data to illustrate scientific concepts and scientific knowledge to solve practical problems. It is subdivided into three parts. The first uses modern basic concepts, the second studies the scientific basis for electrode and electrolyte thermodynamics (including E-pH diagrams and the minimum energy involved in transformations) and the kinetics of rate processes (including the energy lost in heat and in parasite reactions). The third part treats larger problems in electrolysis and power generation, as well as in corrosion and its prevention. Each chapter includes three sections: the presentation of useful principles; some twenty problems with their solutions; and, a set of unsolved problems
International Nuclear Information System (INIS)
Ratra, B.
1991-01-01
Estimates for the baryon-dominated epoch form of the large-scale adiabatic energy-density irregularities generated during an early scalar-field-dominated inflation epoch, in simple inflation-modified hot-big-bang models, are compared to the widely used approximate general expression, which is proportional to the large-scale, gauge-invariant part of H 2 left-angle φφ * right-angle/(Φ b ) 2 evaluated at the first Hubble radius crossing (here Φ b and φ are the spatially homogeneous and inhomogeneous parts of the scalar field, H is the Hubble parameter, and an overdot represents a derivative with respect to time). In the de Sitter inflation limit, if the inflation-epoch background scalar-field solution is an ''attractor,'' or if there is sufficient inflation before the scale of interest leaves the Hubble radius, the approximate general expression identically reproduces what we have found. It is also less than an order of magnitude away from our expression in a large fraction of the parameter space of the inflation model we study and is within 2 orders of magnitude of our result in almost all of parameter space. We also show that the more accurate general expression (which the above formula is an approximation of) identically reproduces our results in the simple models studied, provided the inflation-epoch background scalar-field solution is an ''attractor'' or if there is sufficient inflation. The approximate general formula is used to restudy energy-density inhomogeneities in the quartic-potential scalar-field de Sitter inflation model; the difference between the standard result in this model and our result in related models is traced to a difference in the form of the part of the potential used to model ''reheating'' and the end of inflation
Bour, L. J.; Ackermans, L.; Foncke, E. M. J.; Cath, D.; van der Linden, C.; Vandewalle, V. Visser; Tijssen, M. A.
Objective: Three patients with intractable Tourette syndrome (TS) underwent thalamic deep brain stimulation (DBS). To investigate the role of thalamic electrical activity in tic generation, local field potentials (LFP), EEG and EMG simultaneously were recorded. Methods: Event related potentials and
Distribution and Biocontrol Potential of phlD(+) Pseudomonads in Corn and Soybean Fields.
McSpadden Gardener, Brian B; Gutierrez, Laura J; Joshi, Raghavendra; Edema, Richard; Lutton, Elizabeth
2005-06-01
ABSTRACT The abundance and diversity of phlD(+) Pseudomonas spp. colonizing the rhizospheres of young, field-grown corn and soybean plants were assayed over a 3-year period. Populations of these bacteria were detected on the large majority of plants sampled in the state of Ohio, but colonization was greater on corn. Although significant variation in the incidence of rhizosphere colonization was observed from site to site and year to year on both crops, the magnitude of the variation was greatest for soybean. The D genotype was detected on plants collected from all 15 counties examined, and it represented the most abundant subpopulation on both crops. Additionally, six other genotypes (A, C, F, I, R, and S) were found to predominate in the rhizosphere of some plants. The most frequently observed of these were the A genotype and a newly discovered S genotype, both of which were found on corn and soybean roots obtained from multiple locations. Multiple isolates of the most abundant genotypes were recovered and characterized. The S genotype was found to be phylogenetically and phenotypically similar to the D genotype. In addition, the novel R genotype was found to be most similar to the A genotype. All of the isolates displayed significant capacities to inhibit the growth of an oomycete pathogen in vitro, but such phenotypes were highly dependent on media used. When tested against multiple oomycete pathogens isolated from soybean, the A genotype was significantly more inhibitory than the D genotype when incubated on 1/10x tryptic soy agar and 1/5x corn meal agar. Seed inoculation with different isolates of the A, D, and S genotypes indicated that significant root colonization, generally in excess of log 5 cells per gram of root, could be attained on both crops. Field trials of the A genotype isolate Wayne1R indicated the capacity of inoculant populations to supplement the activities of native populations so as to increase soybean stands and yields. The relevance of
International Nuclear Information System (INIS)
Vetushka, A.; Karkari, S.K.; Bradley, J.W.
2004-01-01
Emissive and Langmuir probe techniques have been used to obtain two-dimensional (2D) spatial maps of the plasma potential V p , electric field E, and ion trajectories in a pulsed bipolar magnetron discharge. The magnetron was pulsed at a frequency of 100 kHz, with a 50% duty cycle and operated at an argon pressure of 0.74 Pa. The pulse wave form was characterized by three distinct phases: the 'overshoot', 'reverse', and 'on' phases. In the 'on' phase of the pulse, when the cathode voltage is driven to -670 V, the 2D spatial distribution of V p has a similar form to that in dc magnetron, with significant axial and radial electric fields in the bulk plasma, accelerating ions to the sheath edge above the cathode racetrack region. During the 'overshoot' phase (duration 200 ns), V p is raised to values greater than +330 V, more than 100 V above the cathode potential, with E pointing away from the target. In the 'reverse' phase V p has a value of +45 V at all measured positions, 2 V more positive than the target potential. In this phase there is no electric field present in the plasma. In the bulk of the plasma, the results from Langmuir probe and the emissive probe are in good agreement, however, in one particular region of the plasma outside the radius of the cathode, the emissive probe measurements are consistently more positive (up to 45 V in the 'on' time). This discrepancy is discussed in terms of the different frequency response of the probes and their perturbation of the plasma. A simple circuit model of the plasma-probe system has been proposed to explain our results. A brief discussion of the effect of the changing plasma potential distribution on the operation of the magnetron is given
Ayuni Suied, Anis; Tajudin, Saiful Azhar Ahmad; Nizam Zakaria, Muhammad; Madun, Aziman
2018-04-01
Heavy metal in soil possesses high contribution towards soil contamination which causes to unbalance ecosystem. There are many ways and procedures to make the electrokinetic remediation (EKR) method to be efficient, effective, and potential as a low cost soil treatment. Electrode compartment for electrolyte is expected to treat the contaminated soil through electromigration and enhance metal ions movement. The electrokinetic is applicable for many approaches such as electrokinetic remediation (EKR), electrokinetic stabilization (EKS), electrokinetic bioremediation and many more. This paper presents a critical review on comparison of laboratory scale between EKR, EKS and EK bioremediation treatment by removing the heavy metal contaminants. It is expected to propose one framework of contaminated soil mapping. Electrical Resistivity Method (ERM) is one of famous indirect geophysical tools for surface mapping and subsurface profiling. Hence, ERM is used to mapping the migration of heavy metal ions by electrokinetic.
A geophysical potential field study to image the Makran subduction zone in SE of Iran
Abedi, Maysam; Bahroudi, Abbas
2016-10-01
The Makran subduction wedge as one of the largest subduction complexes has been forming due to the Arabian oceanic lithosphere subducting beneath the Lut and the Afghan rigid block microplates. To better visualize the subducting oceanic crust in this region, a geophysical model of magnetic susceptibility from an airborne magnetic survey (line spacing about 7.5 km) over the Makran zone located at southeast of Iran is created to image various structural units in Iran plate. The constructed geophysical model from the 3D inverse modeling of the airborne magnetic data indicates a thin subducting slab to the north of the Makran structural zone. It is demonstrated that the thickness of sedimentary units varies approximately at an interval of 7.5-11 km from north to south of this zone in the Iranian plate, meanwhile the curie depth is also estimated approximately basement, while such intensity reduces over the Makran. The directional derivatives of the magnetic field data have subtle changes in the Makran, but strongly increase in the Jazmurian by enhancing and separating different structural boundaries in this region. In addition, the density variations of the subsurface geological layers were determined by 3D inversion of the ground-based gravity data over the whole study area, where the constructed density model was in good agreement with the magnetic one. According to the outputs of the magnetic susceptibility and the density contrast, the Arabian plate subducts to the north under the Eurasia with a very low dip angle in the Makran structural zone.
International Nuclear Information System (INIS)
McGrath, S.P.; Lombi, E.; Gray, C.W.; Caille, N.; Dunham, S.J.; Zhao, F.J.
2006-01-01
Field trials were undertaken to investigate the effect of the application of metal mobilizing agents, different sowing strategies and length of growing season on the extraction of Cd and Zn from soils by Thlaspi caerulescens and Arabidopsis halleri. None of the mobilizing agents used enhanced metal accumulation by T. caerulescens. Between 1998 and 2000, on average across plots where Cd or Zn exceeded allowable limits, T. caerulescens removed 1.3 and 0.3% of the total soil Cd and Zn. In one season when T. caerulescens was grown for 14 months, 21.7 and 4.4% of the total soil Cd and Zn was removed. This was larger than values found when T. caerulescens was grown for 4 months. A. halleri accumulated similar concentrations of Zn, but lower Cd concentrations than T. caerulescens. The results indicate that metal phytoextraction using T. caerulescens can be used to clean up soils moderately contaminated by Cd. - The hyperaccumulator Thlaspi caerulescens (the Ganges ecotype) is more efficient at phytoextracting Cd than Zn from contaminated soil
International Nuclear Information System (INIS)
Fernandez, J.A.; Case, J.B.; Tyburski, J.
1992-01-01
This paper contains a general description of the field tests proposed for the Yucca Mountain Site Characterization Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns associated with sealing components. Ten discrete tests are proposed to address these concerns. These tests are divided into two categories -- simple and complex tests. The simple tests are: the small-scale in situ tests: the intermediate-scale borehole seal tests; the fracture grouting tests; the surface backfill tests; and the grouted rock mass tests. The complex tests are the seepage control tests; in situ backfill tests; in situ bulkhead tests; large-scale shaft seal tests; and remote borehole seal tests. These tests are proposed to be performed in welded and nonwelded tuff environments. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the exploratory studies facility. Some tests may be performed before license application and some after license application
Energy Technology Data Exchange (ETDEWEB)
McGrath, S.P. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)]. E-mail: steve.mcgrath@bbsrc.ac.uk; Lombi, E. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Gray, C.W. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Caille, N. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Dunham, S.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom); Zhao, F.J. [Agriculture and the Environment Division, Rothamsted Research, Harpenden, Herts AL5 2JQ (United Kingdom)
2006-05-15
Field trials were undertaken to investigate the effect of the application of metal mobilizing agents, different sowing strategies and length of growing season on the extraction of Cd and Zn from soils by Thlaspi caerulescens and Arabidopsis halleri. None of the mobilizing agents used enhanced metal accumulation by T. caerulescens. Between 1998 and 2000, on average across plots where Cd or Zn exceeded allowable limits, T. caerulescens removed 1.3 and 0.3% of the total soil Cd and Zn. In one season when T. caerulescens was grown for 14 months, 21.7 and 4.4% of the total soil Cd and Zn was removed. This was larger than values found when T. caerulescens was grown for 4 months. A. halleri accumulated similar concentrations of Zn, but lower Cd concentrations than T. caerulescens. The results indicate that metal phytoextraction using T. caerulescens can be used to clean up soils moderately contaminated by Cd. - The hyperaccumulator Thlaspi caerulescens (the Ganges ecotype) is more efficient at phytoextracting Cd than Zn from contaminated soil.
O'Connell, Emer; Pegler, Joe; Lehane, Elaine; Livingstone, Vicki; McCarthy, Nora; Sahm, Laura J; Tabirca, Sabin; O'Driscoll, Aoife; Corrigan, Mark
2016-01-01
Patient safety requires optimal management of medications. Electronic systems are encouraged to reduce medication errors. Near field communications (NFC) is an emerging technology that may be used to develop novel medication management systems. An NFC-based system was designed to facilitate prescribing, administration and review of medications commonly used on surgical wards. Final year medical, nursing, and pharmacy students were recruited to test the electronic system in a cross-over observational setting on a simulated ward. Medication errors were compared against errors recorded using a paper-based system. A significant difference in the commission of medication errors was seen when NFC and paper-based medication systems were compared. Paper use resulted in a mean of 4.09 errors per prescribing round while NFC prescribing resulted in a mean of 0.22 errors per simulated prescribing round (P=0.000). Likewise, medication administration errors were reduced from a mean of 2.30 per drug round with a Paper system to a mean of 0.80 errors per round using NFC (PNFC based medication system may be used to effectively reduce medication errors in a simulated ward environment.
Barde-Cabusson, S.; Gottsmann, J.; Martí, J.; Bolós, X.; Camacho, A. G.; Geyer, A.; Planagumà, Ll.; Ronchin, E.; Sánchez, A.
2014-01-01
We report new geophysical observations on the distribution of subsurface structures associated with monogenetic volcanism in the Garrotxa volcanic field (Northern Spain). As part of the Catalan Volcanic Zone, this Quaternary volcanic field is associated with the European rifts system. It contains the most recent and best preserved volcanic edifices of the Catalan Volcanic Zone with 38 monogenetic volcanoes identified in the Garrotxa Natural Park. We conducted new gravimetric and self-potential surveys to enhance our understanding of the relationship between the local geology and the spatial distribution of the monogenetic volcanoes. The main finding of this study is that the central part of the volcanic field is dominated by a broad negative Bouguer anomaly of around -0.5 mGal, within which a series of gravity minima are found with amplitudes of up to -2.3 mGal. Inverse modelling of the Bouguer data suggests that surficial low-density material dominates the volcanic field, most likely associated with effusive and explosive surface deposits. In contrast, an arcuate cluster of gravity minima to the NW of the Croscat volcano, the youngest volcano of this zone, is modelled by vertically extended low-density bodies, which we interpret as a complex ensemble of fault damage zones and the roots of young scoria cones. A ground-water infiltration zone identified by a self-potential anomaly is associated with a steep horizontal Bouguer gravity gradient and interpreted as a fault zone and/or magmatic fissure, which fed the most recent volcanic activity in the Garrotxa. Gravimetric and self-potential data are well correlated and indicate a control on the locations of scoria cones by NNE-SSW and NNW-SSE striking tectonic features, which intersect the main structural boundaries of the study area to the north and south. Our interpretation of the data is that faults facilitated magma ascent to the surface. Our findings have major implications for understanding the relationship
Brand, Brittany D.; Gravley, Darren M.; Clarke, Amanda B.; Lindsay, Jan M.; Bloomberg, Simon H.; Agustin-Flores, Javier; Németh, Károly
2014-04-01
The most dangerous and deadly hazards associated with phreatomagmatic eruptions in the Auckland Volcanic Field (AVF; Auckland, New Zealand) are those related to volcanic base surges - dilute, ground-hugging, particle laden currents with dynamic pressures capable of severe to complete structural damage. We use the well-exposed base surge deposits of the Maungataketake tuff ring (Manukau coast, Auckland), to reconstruct flow dynamics and destructive potential of base surges produced during the eruption. The initial base surge(s) snapped trees up to 0.5 m in diameter near their base as far as 0.7-0.9 km from the vent. Beyond this distance the trees were encapsulated and buried by the surge in growth position. Using the tree diameter and yield strength of the wood we calculate that dynamic pressures (Pdyn) in excess of 12-35 kPa are necessary to cause the observed damage. Next we develop a quantitative model for flow of and sedimentation from a radially-spreading, dilute pyroclastic density currents (PDCs) to determine the damage potential of the base surges produced during the early phases of the eruption and explore the implications of this potential on future eruptions in the region. We find that initial conditions with velocities on the order of 65 m s- 1, bulk density of 38 kg m- 3 and initial, near-vent current thicknesses of 60 m reproduce the field-based Pdyn estimates and runout distances. A sensitivity analysis revealed that lower initial bulk densities result in shorter run-out distances, more rapid deceleration of the current and lower dynamic pressures. Initial velocity does not have a strong influence on run-out distance, although higher initial velocity and slope slightly decrease runout distance due to higher rates of atmospheric entrainment. Using this model we determine that for base surges with runout distances of up to 4 km, complete destruction can be expected within 0.5 km from the vent, moderate destruction can be expected up to 2 km, but much
Nielsen, M. H.; Petersen, C. T.; Hansen, S.
2014-12-01
Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.
In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.
Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P
2016-03-01
Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ongoing compound field potentials from octopus brain are labile and vertebrate-like.
Bullock, T H
1984-05-01
Ongoing electrical activity was recorded from the brain of the virtually intact, semirestrained, unanesthetized octopus by semimicroelectrodes thrust through the cartilage into the optic, vertical or basal lobe. With flexible lead-in wires such electrodes were carried by and moved with the head without causing movement artifacts. Controls suggest that the activity reported comes from the brain; it is reversibly flattened by doses of urethane that do not embarrass respiration. Muscle potentials are only troublesome on occasion. Seen through a wideband filter, neuronal spikes are usually small or below noise level under these conditions; slow waves (1-70 Hz) dominate, with a maximum less than 25 Hz, usually less than 10 Hz and no consistent sharp peaks. The fall in power above ca. 25 Hz is usually slower than in the typical vertebrate EEG but the average power spectrum is much more like those of vertebrate brains than of cerebral ganglia of other invertebrates (insect, crustacean, gastropod). Variance among sample epochs is large, e.g. short spells may have relatively much more low frequency (less than 25 Hz) or more 'hashy' high frequency (greater than 50 Hz) energy; there may be runs of spikes. Fluctuation in the composition of ongoing activity is graphically shown by writing out in parallel the outputs of several narrow band (one octave) filters; this shows irregular low frequency waxing and waning of the amplitude in each band. The envelopes were computed and their peak power is around 1 Hz or lower; the waxing and waning in the several bands is sometimes strongly correlated, especially when the envelope amplitude is large and slow. Optic lobe activity tends usually to be faster, with more small spikey hash than in the vertical lobe. The described electrical activity of the brain is strikingly episodic; it is recorded during seconds or minutes separated by long intervals of nearly electrical silence (10-40 dB lower power; the difference larger at frequencies
Energy Technology Data Exchange (ETDEWEB)
Marędziak, Monika, E-mail: monika.maredziak@gmail.com [Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Wrocław (Poland); Wroclaw Research Centre EIT+, Wrocław (Poland); Śmieszek, Agnieszka, E-mail: smieszek.agnieszka@gmail.com [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland); Tomaszewski, Krzysztof A., E-mail: krtomaszewski@gmail.com [Department of Anatomy, Jagiellonian University Medical College, Krakow (Poland); Lewandowski, Daniel, E-mail: daniel.lewandowski@pwr.wroc.pl [Institute of Materials Science and Applied Mechanics, Wroclaw University of Technology, Wroclaw (Poland); Marycz, Krzysztof, E-mail: krzysztofmarycz@interia.pl [Wroclaw Research Centre EIT+, Wrocław (Poland); Faculty of Biology, University of Environmental and Life Sciences, Wrocław (Poland)
2016-01-15
The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties. - Graphical abstract: Influence of static magnetic field on viability and differentiation properties of human adipose derived mesenchymal stem cells. Abbreviations: SMF – static magnetic field; hASCs – human adipose derived mesenchymal stem cells; PF – proliferation factor; PDT – population doubling time; CFU-E –> colony forming unit efficiency; OPN – osteopontin; OCL – osteocalcin; Col – collagen type I; BMP-2 – bone morphogenetic protein 2; Ca – calcium; P – phosphorus. - Highlights: • Effects of static
International Nuclear Information System (INIS)
Marędziak, Monika; Śmieszek, Agnieszka; Tomaszewski, Krzysztof A.; Lewandowski, Daniel; Marycz, Krzysztof
2016-01-01
The aim of this work was to investigate the effects of static magnetic field (SMF) on the osteogenic properties of human adipose derived mesenchymal stem cells (hASCs). In this study in seven days viability assay we examined the impact of SMF on cells proliferation rate, population doubling time, and ability to form single-cell derived colonies. We have also examined cells' morphology, ultrastructure and osteogenic properties on the protein as well as mRNA level. We established a complex approach, which enabled us to obtain information about SMF and hASCs potential in the context of differentiation into osteogenic and adipogenic lineages. We demonstrated that SMF enhances both viability and osteogenic properties of hASCs through higher proliferation factor and shorter population doubling time. We have also observed asymmetrically positioned nuclei and organelles after SMF exposition. With regards to osteogenic properties we observed increased levels of osteogenic markers i.e. osteopontin, osteocalcin and increased ability to form osteonodules with positive reaction to Alizarin Red dye. We have also shown that SMF besides enhancing osteogenic properties of hASCs, simultaneously decreases their ability to differentiate into adipogenic lineage. Our results clearly show a direct influence of SMF on the osteogenic potential of hASCs. These results provide key insights into the role of SMF on their cellular fate and properties. - Graphical abstract: Influence of static magnetic field on viability and differentiation properties of human adipose derived mesenchymal stem cells. Abbreviations: SMF – static magnetic field; hASCs – human adipose derived mesenchymal stem cells; PF – proliferation factor; PDT – population doubling time; CFU-E –> colony forming unit efficiency; OPN – osteopontin; OCL – osteocalcin; Col – collagen type I; BMP-2 – bone morphogenetic protein 2; Ca – calcium; P – phosphorus. - Highlights: • Effects of static
Directory of Open Access Journals (Sweden)
Marta Grech-Baran
2015-05-01
Full Text Available Numerous researches have been carried out on plants of the Rhodiola species, especially Rhodiola kirilowii (Regel Maxim. and Rhodiola rosea. Various compounds have been reported to be isolated from R. kirilowii and R. rosea, including cyanogenic glycosides, monoterpene alcohols and their glycosides, aryl glycosides, phenylethanoids, phenylpropanoids and their glycosides (salidroside and rosavins respectively, as well as flavonoids, flavonlignans, proanthocyanidins and gallic acid derivatives and the latter have free radical scavenging capacity. The benefits claimed for Rhodiola include adapogenic, neuroprotective, anti-depresive anti-tumour and cardioprotective activities. Currently, the adaptogenic activity of Rhodiola compounds are properties evaluated mainly in human clinical trials. The mechanism of the action of Rhodiola extracts include affecting the levels of cortisol and NO by interactions with glucocorticoid receptors directly or via the c-Jun N-terminal protein kinase (JNK pathway. However, the natural populations of R. rosea in Poland are threatened; therefore, the cultivation of R. rosea and alternative species R. kirilowii might be a possible solution for producing these kinds of plants in Poland in sufficient quantities and quality for pharmaceutical purposes. Lack of proven interaction with other drugs and no confirmed adverse effects during clinical trials encourages further investigation. These herb preparations ought to be studied extensively to establish their position as potential drugs for a variety of diseases.
Directory of Open Access Journals (Sweden)
KANG Ling-yun
2015-06-01
Full Text Available In North China plain, excessive fertilization in vegetable greenhouse always results in nitrate accumulation in soil and possible nitrogen leaching with potential environmental risk. It is necessary to rotate appropriate catch crop to absorb surplus nitrogen in fallow season and reduce rootzone nitrate level. An experiment was carried out to select suitable sorghum variety as catch crop to reduce nitrogen loss in Beijing suburb. Six common varieties were used in the experiment as conventional catch crop, sweet corn as the control. The results indicated that the biomass, root growth and nitrogen accumulation in shoots of sorghum Jinza 12 were highest in the catch crops. It demonstrated that the variety Jinza 12 was an appropriate catch crop for reducing nitrogen accumulation in surface soil layer compared with sweet corn. Meanwhile, variety Jiliang 2 maintained highest proportion of soil NH4+-N content after urea application, which might be related to the biological nitrification inhibitors (BNI released by the root system of sorghum. It implied that sorghum could be used as catch crop to reduce nitrogen loss through plant extraction i.e. nitrogen uptake and stabilization i.e. BNI inhibition, in comparison with sweet corn.
Enteric protozoa of cats and their zoonotic potential-a field study from Austria.
Hinney, Barbara; Ederer, Christina; Stengl, Carina; Wilding, Katrin; Štrkolcová, Gabriela; Harl, Josef; Flechl, Eva; Fuehrer, Hans-Peter; Joachim, Anja
2015-05-01
Domestic cats can be infected with a variety of enteric protozoa. Genotyping of protozoan species, especially Giardia as the most common, can improve assessment of their relevance as zoonotic agents. For an overview on the occurrence of feline enteric protozoa, 298 faecal samples of cats from private households, catteries and animal shelters in Austria were collected. All samples were examined by flotation and using a rapid test for Giardia (FASTest). For the detection of Tritrichomonas blagburni, freshly voided faeces (n = 40) were processed using a commercial culturing system (InPouch TF-Feline). Genotyping was done at the β-giardin gene loci (each sample) and triosephosphate isomerase gene loci (positive samples) for Giardia and at the 18S rRNA gene (positive samples) for Cryptosporidium. Thirty-seven samples (12.4%) were positive for Giardia by flotation and/or using a rapid test. Cryptosporidium was present in 1.7%, Cystoisospora in 4.0%, Sarcocystis in 0.3% and T. blagburni in 2.5% of the samples. Genotyping revealed Giardia cati, the potentially zoonotic Giardia duodenalis and Cryptosporidium felis. Most of the infected cats had no diarrhoea. Cats from shelters were significantly more often infected than owned cats (p = 0.01). When comparing Giardia detection methods, the rapid test had a higher sensitivity than flotation. Polymerase chain reaction (PCR) results were mostly independent from the other two tests.
On Teaching Problem Solving in School Mathematics
Directory of Open Access Journals (Sweden)
Erkki Pehkonen
2013-12-01
Full Text Available The article begins with a brief overview of the situation throughout the world regarding problem solving. The activities of the ProMath group are then described, as the purpose of this international research group is to improve mathematics teaching in school. One mathematics teaching method that seems to be functioning in school is the use of open problems (i.e., problem fields. Next we discuss the objectives of the Finnish curriculum that are connected with problem solving. Some examples and research results are taken from a Finnish–Chilean research project that monitors the development of problem-solving skills in third grade pupils. Finally, some ideas on “teacher change” are put forward. It is not possible to change teachers, but only to provide hints for possible change routes: the teachers themselves should work out the ideas and their implementation.
Methods of solving sequence and series problems
Grigorieva, Ellina
2016-01-01
This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...
Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli
2018-03-01
Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.
International Nuclear Information System (INIS)
Lyskova, A.S.
1986-01-01
This paper studies the two-dimensional Schrodinger operator H in a periodic magnetic field B(x,y) and in an electric field with periodic potential V(x,y). It is assumed that the functions B(x,y) and V(x,y) are periodic with respect to some lattice in R 2 and that the m agnetic flux through a unit cell is an integral number. The operator H is represented as a direct integral over the two-dimensional torus of the reciprocal lattice of elliptic self-adjoint operators H /sub p1/, /sub p2/ which possess a discrete spectrum lambda /sub j/ (p 1 ,p 2 ), j = 0,1,2.... On the basis of an exactly integrable case - the Schrodinger operator in a constant magnetic field - perturbation theory is used to investigate the typical dispersion laws lambda /sub j/ (p 1 ,p 2 ) and establish their topological characteristics (quantum numbers). A theorem is proved: In the general case, the Schrodinger operator has a coutable number of dispersion laws with arbitrary quantum numbers in no way related to one another or to thflux of the external magnetic field
DEFF Research Database (Denmark)
Bryson, James F.J.; Church, Nathan S.; Kasama, Takeshi
2014-01-01
been imaged using off-axis electron holography. The CZ is revealed to be a natural nanocomposite of magnetically hard islands of tetrataenite (ordered FeNi) embedded in a magnetically soft matrix of ordered Fe3Ni. In the remanent state, each tetrataenite island acts as a uniaxial single domain particle......) varies with the length scale of the matrix phase (Lm), with Hs > 1 T for Lm ∼10 nm (approaching the intrinsic switching field for isolated single domain tetrataenite) and 0.2hard tetrataenite...... field could have been present during nanostructure formation. This observation demonstrates the potential for stable chemical transformation remanent magnetisation to be encoded by the nanostructure, with variations in the proportions of the six possible magnetisation states reflecting the intensity...
Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin
2014-09-01
The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1993-01-01
The primary objective of this work was to demonstrate the feasibility of a new potential/viscous flow coupling procedure for reducing computational effort while maintaining solution accuracy. This closed-loop, overlapped velocity-coupling concept has been developed in a new two-dimensional code, ZAP2D (Zonal Aerodynamics Program - 2D), a three-dimensional code for wing analysis, ZAP3D (Zonal Aerodynamics Program - 3D), and a three-dimensional code for isolated helicopter rotors in hover, ZAPR3D (Zonal Aerodynamics Program for Rotors - 3D). Comparisons with large domain ARC3D solutions and with experimental data for a NACA 0012 airfoil have shown that the required domain size can be reduced to a few tenths of a percent chord for the low Mach and low angle of attack cases and to less than 2-5 chords for the high Mach and high angle of attack cases while maintaining solution accuracies to within a few percent. This represents CPU time reductions by a factor of 2-4 compared with ARC2D. The current ZAP3D calculation for a rectangular plan-form wing of aspect ratio 5 with an outer domain radius of about 1.2 chords represents a speed-up in CPU time over the ARC3D large domain calculation by about a factor of 2.5 while maintaining solution accuracies to within a few percent. A ZAPR3D simulation for a two-bladed rotor in hover with a reduced grid domain of about two chord lengths was able to capture the wake effects and compared accurately with the experimental pressure data. Further development is required in order to substantiate the promise of computational improvements due to the ZAPR3D coupling concept.
AlMutairi, Abdullahi Naser Mohammad
2015-01-01
The purpose of this study is to investigate the effect of using brainstorm strategy in developing creative problem solving skills among male students in Saud Al-Kharji School in Kuwait. The sample of the study consisted of (98) male students. The sample was distributed into two classes, the first represents the experimental group totaling (47)…
Angeli, Charoula
2013-01-01
An investigation was carried out to examine the effects of cognitive style on learners' performance and interaction during complex problem solving with a computer modeling tool. One hundred and nineteen undergraduates volunteered to participate in the study. Participants were first administered a test, and based on their test scores they were…
Directory of Open Access Journals (Sweden)
Heverton Leandro Carneiro Dutra
2015-04-01
Full Text Available The symbiotic bacterium Wolbachia is currently being trialled as a biocontrol agent in several countries to reduce dengue transmission. Wolbachia can invade and spread to infect all individuals within wild mosquito populations, but requires a high rate of maternal transmission, strong cytoplasmic incompatibility and low fitness costs in the host in order to do so. Additionally, extensive differences in climate, field-release protocols, urbanization level and human density amongst the sites where this bacterium has been deployed have limited comparison and analysis of Wolbachia's invasive potential.We examined key phenotypic effects of the wMel Wolbachia strain in laboratory Aedes aegypti mosquitoes with a Brazilian genetic background to characterize its invasive potential. We show that the wMel strain causes strong cytoplasmic incompatibility, a high rate of maternal transmission and has no evident detrimental effect on host fecundity or fertility. Next, to understand the effects of different urban landscapes on the likelihood of mosquito survival, we performed mark-release-recapture experiments using Wolbachia-uninfected Brazilian mosquitoes in two areas of Rio de Janeiro where Wolbachia will be deployed in the future. We characterized the mosquito populations in relation to the socio-demographic conditions at these sites, and at three other future release areas. We then constructed mathematical models using both the laboratory and field data, and used these to describe the influence of urban environmental conditions on the likelihood that the Wolbachia infection frequency could reach 100% following mosquito release. We predict successful invasion at all five field sites, however the conditions by which this occurs vary greatly between sites, and are strongly influenced by the size of the local mosquito population.Through analysis of laboratory, field and mathematical data, we show that the wMel strain of Wolbachia possesses the characteristics
Phusantisampan, Theerawut; Meeinkuirt, Weeradej; Saengwilai, Patompong; Pichtel, John; Chaiyarat, Rattanawat
2016-10-01
Soil contamination by cadmium (Cd) poses a serious environmental and public health concern. Phytoremediation, i.e., the use of plants to remove contaminants from soil, has been proposed for treatment of Cd-contaminated ecosystems. In this study, we demonstrated the potential of Vetiveria zizanioides, commonly known as vetiver, to serve as an effective phytoremediation agent. Two ecotypes, i.e., India and Sri Lanka, were grown in greenhouse pots and in the field. Soils were amended with cow manure, pig manure, bat manure, and an organic fertilizer. Among all amendments, pig manure performed best in both greenhouse and field studies in terms of increasing total V. zizanioides biomass production in both ecotypes. In both greenhouse and in the field, tissue of the Sri Lanka ecotype had higher Cd concentrations than did the India ecotype. In the greenhouse, the presence of Cd did not affect total biomass production or root dry weight. The Sri Lanka ecotype had 2.7 times greater adventitious root numbers and 3.6 times greater Cd accumulation in roots than did the India ecotype. In the field study, the Sri Lanka ecotype offers potential as an excluder species, as it accumulated Cd primarily in roots, with translocation factor values 1 for all experiments except for the pig manure amendment. In addition, the highest Cd concentration in the Sri Lanka ecotype root (71.3 mg kg(-1)) was consistent with highest Cd uptake (10.4 mg plant(-1)) in the cow manure treatment. The India ecotype contained lower root Cd concentrations, and Cd accumulation was slightly higher in shoots compared to roots, with translocation factor (TF) values >1. The India ecotype was therefore not considered as an excluder in the Cd-contaminated soil. With the use of excluder species combined with application of organic amendments, soil contamination by Cd may be treated by alternative remediation methods such as phytostabilization.
Regularization method for solving the inverse scattering problem
International Nuclear Information System (INIS)
Denisov, A.M.; Krylov, A.S.
1985-01-01
The inverse scattering problem for the Schroedinger radial equation consisting in determining the potential according to the scattering phase is considered. The problem of potential restoration according to the phase specified with fixed error in a finite range is solved by the regularization method based on minimization of the Tikhonov's smoothing functional. The regularization method is used for solving the problem of neutron-proton potential restoration according to the scattering phases. The determined potentials are given in the table
Directory of Open Access Journals (Sweden)
Manvir S. Kushwaha
2014-12-01
Full Text Available Semiconducting quantum dots – more fancifully dubbed artificial atoms – are quasi-zero dimensional, tiny, man-made systems with charge carriers completely confined in all three dimensions. The scientific quest behind the synthesis of quantum dots is to create and control future electronic and optical nanostructures engineered through tailoring size, shape, and composition. The complete confinement – or the lack of any degree of freedom for the electrons (and/or holes – in quantum dots limits the exploration of spatially localized elementary excitations such as plasmons to direct rather than reciprocal space. Here we embark on a thorough investigation of the magneto-optical absorption in semiconducting spherical quantum dots characterized by a confining harmonic potential and an applied magnetic field in the symmetric gauge. This is done within the framework of Bohm-Pines’ random-phase approximation that enables us to derive and discuss the full Dyson equation that takes proper account of the Coulomb interactions. As an application of our theoretical strategy, we compute various single-particle and many-particle phenomena such as the Fock-Darwin spectrum; Fermi energy; magneto-optical transitions; probability distribution; and the magneto-optical absorption in the quantum dots. It is observed that the role of an applied magnetic field on the absorption spectrum is comparable to that of a confining potential. Increasing (decreasing the strength of the magnetic field or the confining potential is found to be analogous to shrinking (expanding the size of the quantum dots: resulting into a blue (red shift in the absorption spectrum. The Fermi energy diminishes with both increasing magnetic-field and dot-size; and exhibits saw-tooth-like oscillations at large values of field or dot-size. Unlike laterally confined quantum dots, both (upper and lower magneto-optical transitions survive even in the extreme instances. However, the intra