WorldWideScience

Sample records for solutions form hydrates

  1. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  2. Exploring the solid-form landscape of pharmaceutical hydrates

    DEFF Research Database (Denmark)

    Raijada, Dharaben Kaushikkumar; Bond, Andrew; Larsen, Flemming Hofmann

    2013-01-01

    To understand the transformation pathways amongst anhydrate/hydrate solid forms of sodium naproxen and to highlight the importance of a polymorphic dihydrate within this context.......To understand the transformation pathways amongst anhydrate/hydrate solid forms of sodium naproxen and to highlight the importance of a polymorphic dihydrate within this context....

  3. Hydration and rotational diffusion of levoglucosan in aqueous solutions

    Science.gov (United States)

    Corezzi, S.; Sassi, P.; Paolantoni, M.; Comez, L.; Morresi, A.; Fioretto, D.

    2014-05-01

    Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.

  4. On the hydration and conformation of cocaine in solution

    Science.gov (United States)

    Gillams, Richard J.; Lorenz, Christian D.; McLain, Sylvia E.

    2017-05-01

    In order to develop theories relating to the mechanism through which cocaine can diffuse across the blood-brain barrier, it is important to understand the interplay between the hydration of the molecule and the adopted conformation. Here key differences in the hydration of cocaine hydrochloride (CHC) and freebase cocaine (CFB) are highlighted on the atomic scale in solution, through the use of molecular dynamics simulations. By adopting different conformations, CHC and CFB experience differing hydration environments. The interplay between these two factors may account for the vast difference in solubility of these two molecules.

  5. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  6. Infrared spectroscopy for monitoring gas hydrates in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, G.T.; Luzinova, Y.; Mizaikoff, B. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry; Raichlin, Y.; Katzir, A. [Tel-Aviv Univ., Tel-Aviv (Israel). Shool of Physics and Astronomy

    2008-07-01

    This paper introduced the first principles for monitoring gas hydrate formation and dissociation in aqueous solution by evaluating state-responsive infrared (IR) absorption features of water with fiberoptic evanescent field spectroscopy. A first order linear functional relationship was also derived according to Lambert Beer's law in order to quantify the percentage gas hydrate within the volume of water probed via the evanescent field. In addition, spectroscopic studies evaluating seafloor sediments collected from a gas hydrate site in the Gulf of Mexico revealed minimal spectral interferences from sediment matrix components. As such, evanescent field sensing strategies were established as a promising perspective for monitoring the dynamics of gas hydrates in oceanic environments. 21 refs., 5 figs.

  7. Volatile inventories in clathrate hydrates formed in the primordial nebula.

    Science.gov (United States)

    Mousis, Olivier; Lunine, Jonathan I; Picaud, Sylvain; Cordier, Daniel

    2010-01-01

    The examination of ambient thermodynamic conditions suggests that clathrate hydrates could exist in the Martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates are probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at a given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically averaged Kihara potential with a nominal set of parameters, most of which are fitted to experimental equilibrium data. Our model allows us to find that Kr, Ar and N2 can be efficiently encaged in clathrate hydrates formed at temperatures higher than approximately 48.5 K in the primitive nebula, instead of forming pure condensates below 30 K. However, we find at the same time that the determination of the relative abundances of guest species incorporated in these clathrate hydrates strongly depends on the choice of the parameters of the Kihara potential and also on the adopted size of cages. Indeed, by testing different potential parameters, we have noted that even minor dispersions between the different existing sets can lead to non-negligible variations in the determination of the volatiles trapped in clathrate hydrates formed in the primordial nebula. However, these variations are not found to be strong enough to reverse the relative abundances

  8. Hydration patterns and salting effects in sodium chloride solution.

    Science.gov (United States)

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water. © 2011 American Institute of Physics

  9. Exposure to buffer solution alters tendon hydration and mechanics.

    Science.gov (United States)

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Suspension hydration of C3S [tricalcium silicate] at constant pH. II. Effect of previously formed hydrates and of additives

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    A retardation shown by the hydration of C3S at pH=11.5 can be prevented if before the addition of C3S there are present hydrate particles in the aqueous medium. These hydrate particles probably have the composition CSHn. This indicates a hydrate CSHn, precipitated from solution, as the retarding

  11. Hydration interactions and stability of soluble microbial products in aqueous solutions.

    Science.gov (United States)

    Wang, Ling-Ling; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing

    2013-10-01

    Soluble microbial products (SMP) are organic compounds excreted by microorganisms in their metabolism and decay and the main constituents in effluent from biological wastewater treatment systems. They also have an important contribution to the dissolved organic matters in natural aqueous systems. So far the interactions between SMP colloids have not been well explored. In this work, the interactions between SMP colloids in water and salt solutions were studied by using a combination of static and dynamic light scattering, Fourier transform infrared spectra, Zeta potential and acid-base titration techniques. The second osmotic virial coefficient had a larger value in a 750-mM salt solution than that in a 50-mM solution, indicating that repulsion between SMP colloids increased with an increase in salt concentration, which is contrary with the classic Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Such a repulsion was attributed to water structuring and enhanced by the accumulation of hydrophilic counter ions around SMP colloids and the formed hydration force. The repulsion and hydration effect led to the dispersing and deeper draining structure, accompanied by a decreased hydrodynamic radius and increased diffusion coefficient. This hydration force was related to so-called ion specific effect, and electrolyte sodium chloride had a more substantial effect on hydration force than KCl, CsCl, NaBr and NaI. Our results provide an experimental approach to explore the SMP structures, inter-colloid interactions and confirm the non-DLVO forces. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Hydrated Electron Transfer to Nucleobases in Aqueous Solutions Revealed by Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang

    2015-08-03

    We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Changes in the solid state of anhydrous and hydrated forms of sodium naproxen under different grinding and environmental conditions: Evidence of the formation of new hydrated forms.

    Science.gov (United States)

    Censi, Roberta; Rascioni, Riccardo; Di Martino, Piera

    2015-05-01

    The aim of the present work was to investigate the solid state change of the anhydrous and hydrate solid forms of sodium naproxen under different grinding and environmental conditions. Grinding was carried out manually in a mortar under the following conditions: at room temperature under air atmosphere (Method A), in the presence of liquid nitrogen under air atmosphere (Method B), at room temperature under nitrogen atmosphere (Method C), and in the presence of liquid nitrogen under nitrogen atmosphere (Method D). Among the hydrates, the following forms were used: a dihydrate form (DSN) obtained by exposing the anhydrous form at 55% RH; a dihydrate form (CSN) obtained by crystallizing sodium naproxen from water; the tetrahydrate form (TSN) obtained by exposing the anhydrous form at 75% RH. The metastable monohydrate form (MSN), previously described in the literature, was not used because of its high physical instability. The chemical stability during grinding was firstly assessed and proven by HPLC. Modification of the particle size and shape, and changes in the solid state under different grinding methods were evaluated by scanning electron microscopy, and X-ray powder diffractometry and thermogravimetry, respectively. The study demonstrated the strong influence of starting form, grinding and environmental conditions on particle size, shape and solid state of recovered sodium naproxen forms. In particular, it was demonstrated that in the absence of liquid nitrogen (Methods A and C), either at air or at nitrogen atmosphere, the monohydrate form (MSN) was obtained from any hydrates, meaning that these grinding conditions favored the dehydration of superior hydrates. The grinding process carried out in the presence of liquid nitrogen (Method B) led to further hydration of the starting materials: new hydrate forms were identified as one pentahydrate form and one hexahydrate form. The hydration was caused by the condensation of the atmospheric water on sodium naproxen

  14. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  15. Ion exchange of some transition metal cations on hydrated titanium dioxide in aqueous ammonia solutions

    International Nuclear Information System (INIS)

    Bilewicz, A.; Narbutt, J.; Dybczynski, R.

    1992-01-01

    The adsorption of transition metal cations on hydrated titanium dioxide in complexing ammonia and amine solutions has been studied as a function of ammonia (amine) concentration. The relationships between the distribution coefficients and ammonia concentration as well as the effects of various amines on sorption of transition metals indicate that a coordinate bond is formed between the metal ions and the hydroxy groups of the sorbent. The distribution coefficients of silver(I) and cobalt(II), which form strong ammonia complexes in aqueous solutions, decrease with increasing concentration of ammonia already at concentrations exceeding 10 -3 *mol*dm -3 . Cations of zinc, manganese and mercury which form much weaker ammonia complexes do not exhibit any effect of ammonia concentration in the whole range investigated. In the case of sorption of macroamounts of ammonia or amine complexes of silver, the molecular sieve effect plays an important role. The differences in the affinity of hydrated titanium dioxide for ammonia solvates of various transition metal ions can serve as a tool for effective separation of these ions in ammonia solutions. (author) 10 refs.; 4 figs.; 1 tab

  16. The effect of stereochemistry on carbohydrate hydration in aqueous solutions

    NARCIS (Netherlands)

    Galema, Saskia Alexandra

    1992-01-01

    Although-carbohydrates are widely used, not much is known about the stereochemical aspects of hydration of carbohydrates. For D-aldohexoses, for example, there are eight different stereoisomers. Just how the hydroxy topology of a carbohydrate molecule influences the hydration behaviour in water is

  17. Influence of pozzolana on C4AF hydratio n and the effects of chloride and sulfate io ns on the hydrates formed

    Directory of Open Access Journals (Sweden)

    RIMVYDAS KAMINSKAS

    2011-09-01

    Full Text Available This study investigated the influence of natural pozzolana additive on the hydration of C4AF (aluminoferrite and the effects of chloride and sulfate ions on the hydrates formed. In the samples, 25% (by weight of the C4AF was replaced with pozzolana. The mixture was then hardened for 28 days in water, soaked in a saturated NaCl solution for 3 months, and then soaked in a 5% Na2SO4 solution for 3 months at 20°C. It is estimated that under normal conditions, pozzolana additive accelerates the formation of CO32-–AFm (monocarboaluminate and gibbsite, however, impede the formation of cubic aluminum hydrates. Also, part of the amorphous SiO2 penetrates into the structure of hydrates of C4AF and initiates the formation of hydrated alumino-silicate (gismondine. Monocarboaluminate affected by NaCl becomes unstable and takes part in reactions producing Ca2Al(OH6Cl·2H2O (hydrocalumite-M. After samples were transferred from a saturated NaCl solution to a 5% Na2SO4 solution, hydrocalumite-M was the source of aluminates for the formation of ettringite. In samples with pozzolana additive, the hydrated alumino-silicate and gibbsite compounds that were formed remained stable in an environment containing chloride and sulfate ions and retarded the corrosion reaction of C4AF hydrates.

  18. Effects of chlorides on the hydration of 12CaO{center_dot}7Al2O3 solid solution

    Energy Technology Data Exchange (ETDEWEB)

    Sango, H.; Miyakawa, T.; Yasue, T.; Arai, Y. [Nihon Univ., Tokyo (Japan). Faculty of Science and Engineering

    1995-01-01

    The purpose of this paper was to compare the hydration rate of C12A7ss and to study the effects of chlorides on the hydration products and the hydration rate of C12A7ss. In this paper, `C12A7ss` is a general term for C11A7{center_dot}Ca(OH)2, 11CaO{center_dot}7Al2O3{center_dot}CaF2 and 11CaO{center_dot}7Al2O3{center_dot}CaCl2. The hydration process and the hydration rate of 12CaO{center_dot}7Al2O3 solution (C12A7ss) with and without various chlorides (CaCl2, MgCl2, NaCl, NH4Cl and AlCl3) has been determined at 25{degree}C. Various C12A7ss were prepared in burning method. When C12A7ss with various chlorides are hydrated, 3CaO{center_dot} Al2O3{center_dot}CaCl2{center_dot}10H2O(Friedel`s salt) is formed as the primary hydrate. The hydration rate of C12A7ss is decreased by the coexistence of CaCl2, MgCl2, NaCl or NH4Cl except AlCl3. As a result, the setting time of C12A7ss is extended and the unhydrate exists for a long time comparatively. 14 refs., 7 figs., 1 tab.

  19. Differential thermal, Thermogravimetric and X-ray diffraction investigation of hydration phases in cementitious waste form

    International Nuclear Information System (INIS)

    Khalil, M.Y.; Nagy, M.E.; El-Sourougy, M.R.; Zaki, A.A.

    1996-01-01

    Hydration phases of cement determine the final properties of the product. Adding other components to the cement paste may alter the final phases formed and affect properties of the hardened products. In this work ordinary portland cement and/or blast furnace slag cement were hardened with low-or intermediate-level radioactive liquid wastes and different additives. Hydration phases were investigated using differential thermal, thermogravimetric, and X-ray diffraction techniques. Low-and intermediate-level liquid wastes were found not to affect the hydration phases of cement. The addition of inorganic exchangers and latex were found to affect the hydration properties of the cement waste system. This resulted in a reduction of compressive strength. On the contrary, addition of epoxy also affected the hydration causing increase in compressive strength. 10 figs., 2 tabs

  20. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  1. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  2. Research of calcium oxide hydration in calcium nitrate solutions

    Directory of Open Access Journals (Sweden)

    M.A. Oliynyk

    2016-09-01

    Full Text Available Mineral fertilizers are one of the important factors of agriculture intensification and increasing of food products quantity. The volume of fertilizers production and its domestic consumption in Ukraine indicate that nitrogen fertilizer using only comes nearer to the required number of science-based. One of the most widespread artificial fertilizers is the calcium nitrate. Aim: The aim is to study and theoretically substantiate the processes occurring in the preparation of suspensions of calcium hydroxide Са(ОН2 in solution of calcium nitrate Ca(NО32. Materials and Methods: The technical calcium oxide (quicklime DSTU BV.2.7-90-99, solutions of calcium nitrate of 15, 20, 25, 30, 35 and 40% Ca(NО32 concentrations were used in the work. The content of lime in the preparation of a suspension in the solution changed (in terms of calcium oxide CaO from 150 g/dm3 to the maximum possible. Each of these solutions saturated at 40°С in lime to maximum concentration. Suitable for use in these experiments and in the technology of calcium nitrate obtaining are considered the solutions (suspensions that within 12 hours did not lose their mobility (transportability. Results: The experimental results show that increasing of the concentration of calcium nitrate in solution within the range 15...40%, the amount of lime that you can put into the solution without loss of transportability decreases. Further increasing of lime quantity in solutions concentrations causes to its solidifying, loss of mobility (transportability. Calculations showed that in the presence of calcium nitrate the solubility of Са(ОН2 is reduced nearly by order that can lead to the formation of calcium oxide CaO the solid phase Са(ОН2 on the surface, which also can form hydrogen bonds with the components of the solution. As the probability of formation of hydrogen bonds in solutions is high, there is a possibility of formation of clusters.

  3. DuraLith geopolymer waste form for Hanford secondary waste: Correlating setting behavior to hydration heat evolution

    International Nuclear Information System (INIS)

    Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L.

    2014-01-01

    Highlights: • Quantitative correlations firstly established for cementitious waste forms. • Quantitative correlations firstly established for geopolymeric materials. • Ternary DuraLith geopolymer waste forms for Hanford radioactive wastes. • Extended setting times which improve workability for geopolymer waste forms. • Reduced hydration heat release from DuraLith geopolymer waste forms. - Abstract: The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results

  4. Hydrate phase equilibria of CO2+N2+aqueous solution of THF, TBAB or TBAF system

    DEFF Research Database (Denmark)

    Sfaxi, Imen Ben Attouche; Durand, Isabelle; Lugo, Rafael

    2014-01-01

    We report hydrate dissociation conditions of CO2 (15 and 30mol%)+N2 (85 and 70mol%) in the presence of aqueous solutions of THF, TBAB or TBAF. The concentrations of TBAB and TBAF in the aqueous solutions are 5wt% and 9wt% while THF concentration in aqueous solution is 3mol%. Two different experim...

  5. Adsorption of zirconium from nitric acid solutions on hydrated tin dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tret' yakov, S Ya; Sharygin, L M; Egorov, Yu V

    1977-01-01

    Adsorption of zirconium from nitric acid solutions has been studied with the use of the labeled atom method on hydrated tin dioxide depending on the sorbate concentration, pH and prehistory of the solution. It has been found that adsorption behavior of zirconium essentially depends on its state in the solution.

  6. Magnetic behavior of cobalt bromide hydrates including a deuterated form

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu; Hampton, A.S.; Van Dongen, M.J.; Komatsu, C.H.; DeSanto, C.L.; Davis, C.M.

    2017-04-15

    The magnetic properties of little examined CoBr{sub 2}• 2H{sub 2}O and new CoBr{sub 2}• H{sub 2}O and CoBr{sub 2}• D{sub 2}O are studied. Curie-Weiss fits, χ{sub M}=C/(T-θ), yield θ of −9.9, 9.4 and 10.0 K, respectively, over a 30–80 K linear range for each. Higher temperature data are fit assuming two moderately separated low lying Kramers doublets, with exchange accounted for in a mean-field approximation. Susceptibility maxima appear at 9.5, 15.4 and 15.5 K, with χ{sub max} of 0.163, 0.375 and 0.435 emu/mol, respectively. Antiferromagnetic ordering is estimated to occur at 9.0, 13.7 and 13.8 K, in the same order. The ratio T{sub c}/T{sub max} is 0.95, 0.89 and 0.89, respectively, suggesting little low dimensional magnetic character in singly hydrated systems. Data at lower temperatures for the dihydrate are fit with an antiferromagnetic 3D-Ising model. For singly hydrated systems the large size of χ{sub max} prevents this; weakened interchain antiferromagnetic interactions yield enhanced susceptibility maxima. Magnetization data exhibit field induced transitions near 13.5 kG for the dihydrate, and near 6.5 kG for singly hydrated systems with enhanced hysteresis. These transitions are interpreted as metamagnetic in nature. - Highlights: • CoBr{sub 2}• 2H{sub 2}O has a larger susceptibility maximum at lower temperature than CoCl{sub 2}• 2H{sub 2}O. • Enhanced antiferromagnetic susceptibility maxima occur in CoBr{sub 2}·H{sub 2}O and CoBr{sub 2}• D{sub 2}O. • Metamagnetic transitions occur at much lower fields in monohydrates than dehydrate. • Interchain antiferromagnetic exchange is weaker in monohydrates than dehydrate. • CoBr{sub 2}• H{sub 2}O exhibit spin glass behavior similar to that seen previously in CoCl{sub 2}·H{sub 2}O.

  7. An Improved Clearing and Mounting Solution to Replace Chloral Hydrate in Microscopic Applications

    Directory of Open Access Journals (Sweden)

    Thomas S. Villani

    2013-05-01

    Full Text Available Premise of the study: This study presents Visikol™, a new proprietary formulation that can be used as an efficient replacement for chloral hydrate as a clearing agent for microscopic examination. In the United States, chloral hydrate is regulated and therefore difficult to acquire. Methods and Results: Fresh and dry samples of the following plants: ginger (Zingiber officinale, maté (Ilex paraguariensis, lime basil (Ocimum americanum, oregano (Origanum vulgare, and mouse-ear cress (Arabidopsis thaliana, were cleared using Visikol or chloral hydrate solution and compared using a light microscope. Conclusions: This new method can be used successfully to clear specimens, allowing identification of diagnostic characteristics for the identification of plant materials. Visikol is as effective as chloral hydrate in providing clarity and resolution of all tissues examined. Tissues become transparent, allowing observation of deeper layers of cells and making it effective in research, botanical and quality control, and for educational applications.

  8. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  9. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate

    Science.gov (United States)

    Winters, W.J.; Pecher, I.A.; Waite, W.F.; Mason, D.H.

    2004-01-01

    This paper presents results of shear strength and acoustic velocity (p-wave) measurements performed on: (1) samples containing natural gas hydrate from the Mallik 2L-38 well, Mackenzie Delta, Northwest Territories; (2) reconstituted Ottawa sand samples containing methane gas hydrate formed in the laboratory; and (3) ice-bearing sands. These measurements show that hydrate increases shear strength and p-wave velocity in natural and reconstituted samples. The proportion of this increase depends on (1) the amount and distribution of hydrate present, (2) differences, in sediment properties, and (3) differences in test conditions. Stress-strain curves from the Mallik samples suggest that natural gas hydrate does not cement sediment grains. However, stress-strain curves from the Ottawa sand (containing laboratory-formed gas hydrate) do imply cementation is present. Acoustically, rock physics modeling shows that gas hydrate does not cement grains of natural Mackenzie Delta sediment. Natural gas hydrates are best modeled as part of the sediment frame. This finding is in contrast with direct observations and results of Ottawa sand containing laboratory-formed hydrate, which was found to cement grains (Waite et al. 2004). It therefore appears that the microscopic distribution of gas hydrates in sediment, and hence the effect of gas hydrate on sediment physical properties, differs between natural deposits and laboratory-formed samples. This difference may possibly be caused by the location of water molecules that are available to form hydrate. Models that use laboratory-derived properties to predict behavior of natural gas hydrate must account for these differences.

  10. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .3. DENSITY AND ULTRASOUND MEASUREMENTS

    NARCIS (Netherlands)

    GALEMA, SA; HOILAND, H

    1991-01-01

    Density and ultrasound measurements have been performed in aqueous solutions of pentoses, hexoses, methylpyranosides, and disaccharides as a function of molality of carbohydrate (0-0.3 mol kg-1). Partial molar volumes, partial molar isentropic compressibilities, and hydration numbers have been

  11. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .2. KINETIC MEDIUM EFFECTS

    NARCIS (Netherlands)

    GALEMA, SA; BLANDAMER, MJ; ENGBERTS, JBFN

    1992-01-01

    Rate constants for the hydrolysis of 1-benzoyl-3-phenyl-1,2,4-triazole in aqueous solutions of carbohydrates have been measured as a function of molality and nature of added mono- and disaccharides. The kinetic medium effects induced by the carbohydrates originate from hydration sphere overlap

  12. Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions

    International Nuclear Information System (INIS)

    Osfouri, Shahriar; Azin, Reza; Gholami, Reza; Izadpanah, Amir Abbas

    2015-01-01

    Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions

  13. Pharmaceutical solvates, hydrates and amorphous forms: A special emphasis on cocrystals.

    Science.gov (United States)

    Healy, Anne Marie; Worku, Zelalem Ayenew; Kumar, Dinesh; Madi, Atif M

    2017-08-01

    Active pharmaceutical ingredients (APIs) may exist in various solid forms, which can lead to differences in the intermolecular interactions, affecting the internal energy and enthalpy, and the degree of disorder, affecting the entropy. Differences in solid forms often lead to differences in thermodynamic parameters and physicochemical properties for example solubility, dissolution rate, stability and mechanical properties of APIs and excipients. Hence, solid forms of APIs play a vital role in drug discovery and development in the context of optimization of bioavailability, filing intellectual property rights and developing suitable manufacturing methods. In this review, the fundamental characteristics and trends observed for pharmaceutical hydrates, solvates and amorphous forms are presented, with special emphasis, due to their relative abundance, on pharmaceutical hydrates with single and two-component (i.e. cocrystal) host molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Precipitation of gold and silver from cyanide solutions by hydrated electrons generated by ionizing radiation

    International Nuclear Information System (INIS)

    Chernyak, A.S.; Zhigunov, V.A.; Shepot'ko, M.L.; Smirnov, G.I.; Dolin, P.I.; Bobrova, A.S.; Khikin, G.I.

    1981-01-01

    Redox reactions are widely used in chemistry and chemical engineering for the precipitation of noble metals, since this general class of reactions offers the possibility of selective recovery of these metals from solutions that are complex in composition. The classical method for precipitation of gold and silver from cyanide process solutions is reduction by metallic zinc. This process has certain advantages, and it is easy to carry out under plant conditions with high indices of efficiency. However, the precipitation of gold and silver is accompanied by contamination of the solutions with zinc ions, which makes it difficult to recycle the cyanide solutions; also, additional treatment of the precipitates is required before they are directed to the refining process. Hence, greater quantities of reagents are required, the process conversion becomes more complicated, and the cost of producing the metals is higher. All of these factors make it attractive to seek new methods for processing cyanide solutions that do not have these shortcomings. An interesting approach to the solution of this problem is the use of so-called ''reagentless'' precipitation methods, among which we may class the reduction of gold and silver to the metallic state in cyanide solutions by hydrated electrons generated by ionizing radiation. The significant advances that have been made in research on the hydrated electron, along with data indicating that it is feasible, at least in principle, to use the hydrated electron for industrial purposes, have been the stiumlus for setting up the studies that are reported here

  15. Weakly hydrated surfaces and the binding interactions of small biological solutes.

    Science.gov (United States)

    Brady, John W; Tavagnacco, Letizia; Ehrlich, Laurent; Chen, Mo; Schnupf, Udo; Himmel, Michael E; Saboungi, Marie-Louise; Cesàro, Attilio

    2012-04-01

    Extended planar hydrophobic surfaces, such as are found in the side chains of the amino acids histidine, phenylalanine, tyrosine, and tryptophan, exhibit an affinity for the weakly hydrated faces of glucopyranose. In addition, molecular species such as these, including indole, caffeine, and imidazole, exhibit a weak tendency to pair together by hydrophobic stacking in aqueous solution. These interactions can be partially understood in terms of recent models for the hydration of extended hydrophobic faces and should provide insight into the architecture of sugar-binding sites in proteins.

  16. Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate

    International Nuclear Information System (INIS)

    Puertas, F.; Fernandez-Jimenez, A.; Blanco-Varela, M.T.

    2004-01-01

    In this work, the relationship between the composition of pore solution in alkali-activated slag cement (AAS) pastes activated with different alkaline activator, and the composition and structure of the main reaction products, has been studied. Pore solution was extracted from hardened AAS pastes. The analysis of the liquids was performed through different techniques: Na, Mg and Al by atomic absorption (AA), Ca ions by ionic chromatography (IC) and Si by colorimetry; pH was also determined. The solid phases were analysed by XRD, FTIR, solid-state 29 Si and 27 Al NMR and BSE/EDX. The most significant changes in the ionic composition of the pore solution of the AAS pastes activated with waterglass take place between 3 and 24 h of reaction. These changes are due to the decrease of the Na content and mainly to the Si content. Results of 29 Si MAS NMR and FTIR confirm that the activation process takes place with more intensity after 3 h (although at this age, Q 2 units already exist). The pore solution of the AAS pastes activated with NaOH shows a different evolution to this of pastes activated with waterglass. The decrease of Na and Si contents progresses with time. The nature of the alkaline activator influences the structure and composition of the calcium silicate hydrate formed as a consequence of the alkaline activation of the slag. The characteristic of calcium silicate hydrate in AAS pastes activated with waterglass is characterised by a low structural order with a low Ca/Si ratio. Besides, in this paste, Q 3 units are detected. The calcium silicate hydrate formed in the pastes activated with NaOH has a higher structural order (higher crystallinity) and contains more Al in its structure and a higher Ca/Si ratio than those obtained with waterglass

  17. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  18. Image charges revisited: a closed form solution

    International Nuclear Information System (INIS)

    Choy, T. C.

    2000-01-01

    We demonstrate that the corrections to the classical Kelvin image theory due to finite electron screening length )λ, recently discussed by Roulet and Saint Jean, Am. J. Phys. 68(4) 319, is amenable to an exact closed form solution in terms of an integral involving Bessel functions. An error arising from an incorrect choice of boundary conditions is rectified as well, enabling also a complete solution for all potentials - both inside and outside the metal surface

  19. Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ngoc N.; Nguyen, Anh V.; Nguyen, Khoi T.; Rintoul, Llew; Dang, Liem X.

    2016-12-01

    Gas hydrates formed under moderated conditions open up novel approaches to tackling issues related to energy supply, gas separation, and CO2 sequestration. Several additives like tetra-n-butylammonium bromide (TBAB) have been empirically developed and used to promote gas hydrate formation. Here we report unexpected experimental results which show that TBAB inhibits CO2 gas hydrate formation when used at minuscule concentration. We also used spectroscopic techniques and molecular dynamics simulation to gain further insights and explain the experimental results. They have revealed the critical role of water alignment at the gas-water interface induced by surface adsorption of tetra-n-butylammonium cation (TBA+) which gives rise to the unexpected inhibition of dilute TBAB solution. The water perturbation by TBA+ in the bulk is attributed to the promotion effect of high TBAB concentration on gas hydrate formation. We explain our finding using the concept of activation energy of gas hydrate formation. Our results provide a step toward to mastering the control of gas hydrate formation.

  20. Vertical detachment energy of hydrated electron based on a modified form of solvent reorganization energy.

    Science.gov (United States)

    Wang, Xing-Jian; Zhu, Quan; Li, Yun-Kui; Cheng, Xue-Min; Li, Xiang-Yuan; Fu, Ke-Xiang; He, Fu-Cheng

    2010-02-18

    In this work, the constrained equilibrium principle is introduced and applied to the derivations of the nonequilibrium solvation free energy and solvent reorganization energy in the process of removing the hydrated electron. Within the framework of the continuum model, a modified expression of the vertical detachment energy (VDE) of a hydrated electron in water is formulated. Making use of the approximation of spherical cavity and point charge, the variation tendency of VDE accompanying the size increase of the water cluster has been inspected. Discussions comparing the present form of the VDE and the traditional one and the influence of the cavity radius in either the fixed pattern or the varying pattern on the VDE have been made.

  1. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Oscar, E-mail: oamendoz@unal.edu.co [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia); Giraldo, Carolina [Cementos Argos S.A., Medellín (Colombia); Camargo, Sergio S. [Engenharia Metalúrgica e de Materiais, Universidade Federal do Rio de Janeiro/COPPE, Rio de Janeiro (Brazil); Tobón, Jorge I. [Grupo del Cemento y Materiales de Construcción (CEMATCO). Universidad Nacional de Colombia, Facultad de Minas, Medellín (Colombia)

    2015-08-15

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure.

  2. Structural and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from alite hydration in the presence of sodium and potassium hydroxide

    International Nuclear Information System (INIS)

    Mendoza, Oscar; Giraldo, Carolina; Camargo, Sergio S.; Tobón, Jorge I.

    2015-01-01

    This research evaluates the effect of sodium and potassium hydroxide on the structure and nano-mechanical properties of Calcium Silicate Hydrate (C-S-H) formed from the hydration of pure alite. Monoclinic (MIII) alite was synthesized and hydrated, using water-to-alite ratios of 0.5 and 0.6 and additions of 10% NaOH and KOH by weight of alite. Based on results of X-ray diffraction, isothermal calorimetry, thermogravimetric analysis, Nuclear Magnetic Resonance and nanoindentation, two different effects of the alkaline hydroxides on the hydration reaction of alite, both at early and later ages, can be identified: (i) a differentiated hydration process, attributed to an enhancement in calcium hydroxide (CH) precipitation and a stimulation of the C-S-H nuclei; and (ii) an increase in the elastic modulus of the C-S-H aggregations, attributed to an electrostatic attraction between positive charges from the alkaline cations and negative charges from the C-S-H structure

  3. The influence of ion hydration on nucleation and growth of LiF crystals in aqueous solution.

    Science.gov (United States)

    Lanaro, G; Patey, G N

    2018-01-14

    Molecular dynamics (MD) simulations are employed to investigate crystal nucleation and growth in oversaturated aqueous LiF solutions. Results obtained for a range of temperatures provide evidence that the rate of crystal growth is determined by a substantial energy barrier (∼49 kJ mol -1 ) related to the loss of water from the ion hydration shells. Employing direct MD simulations, we do not observe spontaneous nucleation of LiF crystals at 300 K, but nucleation is easily observable in NVT simulations at 500 K. This contrasts with the NaCl case, where crystal nucleation is directly observed in similar simulations at 300 K. Based on these observations, together with a detailed analysis of ion clustering in metastable LiF solutions, we argue that the ion dehydration barrier also plays a key role in crystal nucleation. The hydration of the relatively small Li + and F - ions strongly influences the probability of forming large, crystal-like ion clusters, which are a necessary precursor to nucleation. This important factor is not accounted for in classical nucleation theory.

  4. The phase equilibria of multicomponent gas hydrate in methanol/ethylene glycol solution based formation water

    International Nuclear Information System (INIS)

    Xu, Shurui; Fan, Shuanshi; Yao, Haiyuan; Wang, Yanhong; Lang, Xuemei; Lv, Pingping; Fang, Songtian

    2017-01-01

    Highlights: • The equilibrium data in THI solution based formation water is first investigated. • The 0.55 mass fraction concentration of EG 0.55 mass fraction fills the vacancy of this area. • The testing pressure range from 4.22 MPa to 34.72 MPa was rare in published data. - Abstract: In this paper, the three-phase coexistence points are generated for multicomponent gas hydrate in methanol (MeOH) solution for (0.05, 0.10, 0.15, and 0.35) mass fraction and ethylene glycol (EG) solution for (0.05, 0.10, 0.15, 0.35, 0.40 and 0.55) mass fraction. The phase equilibrium curves of different system were obtained by an isochoric pressure-search method on high pressure apparatus. The phase equilibrium regions of multicomponent gas hydrate were measured using the same composition of natural gas distributed in the South China Sea. And the different concentration solutions were prepared based formation water. The experimental data were measured in a wide range temperature from 267.74 to 298.53 K and a wide range pressure from 4.22 MPa to 34.72 MPa. The results showed that the hydrate phase equilibrium curves shifted to the inhibition region in accordance with the increased inhibitor concentration. In addition, the equilibrium temperature would decrease about 2.7 K when the concentration of MeOH increased 0.05 mass fraction. Besides, the suppression temperature was 1.25 K with the 0.05 mass fraction increase of EG concentration in the range of 0.05 mass fraction to 0.15 mass fraction. While in high EG concentration region, the suppression temperature was 3.3 K with the same increase of EG concentration (0.05 mass fraction).

  5. Characterizing the hydration state of L-threonine in solution using terahertz time-domain attenuated total reflection spectroscopy

    Science.gov (United States)

    Huang, Huachuan; Liu, Qiao; Zhu, Liguo; Li, Zeren

    2018-01-01

    The hydration of biomolecules is closely related to the dynamic process of their functional expression, therefore, characterizing hydration phenomena is a subject of keen interest. However, direct measurements on the global hydration state of biomolecules couldn't have been acquired using traditional techniques such as thermodynamics, ultrasound, microwave spectroscopy or viscosity, etc. In order to realize global hydration characterization of amino acid such as L-threonine, terahertz time-domain attenuated total reflectance spectroscopy (THz-TDS-ATR) was adopted in this paper. By measuring the complex permittivity of L-threonine solutions with various concentrations in the THz region, the hydration state and its concentration dependence were obtained, indicating that the number of hydrous water decreased with the increase of concentration. The hydration number was evaluated to be 17.8 when the molar concentration of L-threonine was 0.34 mol/L, and dropped to 13.2 when the molar concentration increased to 0.84 mol/L, when global hydration was taken into account. According to the proposed direct measurements, it is believed that the THz-TDS-ATR technique is a powerful tool for studying the picosecond molecular dynamics of amino acid solutions.

  6. Phase equilibrium condition measurements in nitrogen and air clathrate hydrate forming systems at temperatures below freezing point of water

    International Nuclear Information System (INIS)

    Yasuda, Keita; Oto, Yuya; Shen, Renkai; Uchida, Tsutomu; Ohmura, Ryo

    2013-01-01

    Highlights: • Phase equilibrium conditions in the nitrogen and modelled air hydrate forming systems are measured. • Measurements are conducted at temperatures below the freezing point of water. • Results have relevance to the air hydrate formation in the ice sheets. • Measured data are quantitatively compared with the previously reported values. • Range of the equilibrium measurements was from (242 to 268) K. -- Abstract: Contained in this paper are the three phase equilibrium conditions of the (ice + clathrate hydrate + guest-rich) vapour in the (nitrogen + water) and the modelled (air + water) systems at temperatures below the freezing point of water. The precise determination of the equilibrium conditions in those systems are of importance for the analysis of the past climate change using the cored samples from the ice sheets at Antarctica and Greenland because the air hydrates keep the ancient climate signals. The mole ratio of the modelled air composed of nitrogen and oxygen is 0.790:0.210. The equilibrium conditions were measured by the batch, isochoric procedure. The temperature range of the measurements in the nitrogen hydrate forming system is (244.05 < T < 266.55) K and the corresponding equilibrium pressure range is (7.151 < p < 12.613) MPa. The temperature range of the measurements in the modelled air hydrate forming system is (242.55 < T < 267.85) K, and the corresponding equilibrium pressure range is (6.294 < p < 12.144) MPa. The data obtained quantitatively compared with the previously reported data

  7. Structural studies of aqueous solutions at high temperatures. Critical opalescence and hydration

    International Nuclear Information System (INIS)

    Sullivan, D.M.

    2000-09-01

    Neutron scattering techniques were used to study aspects of the static, or equilibrium, structure at microscopic scales in a number of aqueous solutions at non ambient conditions (Temperature, T > 300 K, and pressure, P > 1 bar). Critical opalescence was observed in both pure D 2 O and a NaCI-D 2 O mixture by means of small-angle neutron scattering (SANS), as described in Part I. The dependence of the correlation length, ξ, and the long wavelength limit, S(0), was measured at a number of state points on the critical isochore. The results are interpreted in terms of theories of critical phenomena; in particular the expected power law behaviour of ξ and S(0) with respect to reduced temperature, t, on the critical isochore. In the case of D 2 O, we observe the expected 3d-Ising behaviour with exponents (ν = 0.623 ± 0.030, γ = 1.14 ± 0.05) and amplitudes in agreement with theoretical and semi-empirical predictions. We performed measurements on aqueous sodium chloride, equivalent to those on pure 020, with the intention of classifying the critical behaviour. Although strong power-law divergence of the quantities ξ and S(0) was not observed, we find that the value of S(0) for a given ξ is strongly reduced in the ionic solution with respect to the pure solvent. Such behaviour is inconsistent with a thermodynamic model of aqueous sodium chloride, based on experimental thermodynamic data and the expected asymptotic 3d-Ising behaviour. Short-range structural correlations between solute and solvent atoms in aqueous solutions were studied by the technique of neutron diffraction and isotopic substitution (NDIS), as described in Part II. The anion hydration structure in 1.5 molal aqueous NaCl, was investigated at (T = 580 K, P = 800 bar) and (T = 380 K, P = 200 bar). Isotopic substitution was performed on the chloride ion, enabling the difference between scattering functions to be interpreted in terms of CI-H and CI-O correlation functions. The results show the chloride

  8. Structural studies of aqueous solutions at high temperatures. Critical opalescence and hydration

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.M

    2000-09-01

    Neutron scattering techniques were used to study aspects of the static, or equilibrium, structure at microscopic scales in a number of aqueous solutions at non ambient conditions (Temperature, T > 300 K, and pressure, P > 1 bar). Critical opalescence was observed in both pure D{sub 2}O and a NaCI-D{sub 2}O mixture by means of small-angle neutron scattering (SANS), as described in Part I. The dependence of the correlation length, {xi}, and the long wavelength limit, S(0), was measured at a number of state points on the critical isochore. The results are interpreted in terms of theories of critical phenomena; in particular the expected power law behaviour of {xi} and S(0) with respect to reduced temperature, t, on the critical isochore. In the case of D{sub 2}O, we observe the expected 3d-Ising behaviour with exponents ({nu} = 0.623 {+-} 0.030, {gamma} = 1.14 {+-} 0.05) and amplitudes in agreement with theoretical and semi-empirical predictions. We performed measurements on aqueous sodium chloride, equivalent to those on pure 020, with the intention of classifying the critical behaviour. Although strong power-law divergence of the quantities {xi} and S(0) was not observed, we find that the value of S(0) for a given {xi} is strongly reduced in the ionic solution with respect to the pure solvent. Such behaviour is inconsistent with a thermodynamic model of aqueous sodium chloride, based on experimental thermodynamic data and the expected asymptotic 3d-Ising behaviour. Short-range structural correlations between solute and solvent atoms in aqueous solutions were studied by the technique of neutron diffraction and isotopic substitution (NDIS), as described in Part II. The anion hydration structure in 1.5 molal aqueous NaCl, was investigated at (T = 580 K, P = 800 bar) and (T = 380 K, P = 200 bar). Isotopic substitution was performed on the chloride ion, enabling the difference between scattering functions to be interpreted in terms of CI-H and CI-O correlation functions

  9. Effect of aluminate ions on the heat of hydration of cementitious waste forms

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1993-11-01

    During the hydration and setting of high-salt content liquid waste grouts, considerable heat is generated by exothermic reactions within the grout. These reactions include hydration reactions of cementitious solids and reactions between waste constituents and the solids. Adiabatic temperature rises exceeding 80 degrees C have been estimated for grouts prepared with a dry blend of 47 wt % fly ash, 47 wt % blast furnace slag, and 6 wt % type I/II Portland cement (1) Performance criteria for grout disposal specify that the temperature of the grout waste form must not exceed 90 degrees C (2) To counter the increase in temperature, inert solids were added to the ''47/47/6'' dry blend to reduce the amount of heat-generating solids, thereby decreasing the temperature rise. Based on preliminary results from adiabatic calorimetry, a dry blend consisting of 40 wt % limestone flour, 28 wt % class F fly ash, 28 wt % ground blast furnace slag, and 4 wt % type I/II Portland cement was selected for further testing

  10. New Insights into Solid Form Stability and Hydrate Formation: o-Phenanthroline HCl and Neocuproine HCl

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2017-12-01

    Full Text Available The moisture- and temperature dependent stabilities and interrelation pathways of the practically relevant solid forms of o-phenanthroline HCl (1 and neocuproine HCl (2 were investigated using thermal analytical techniques (HSM, DSC and TGA and gravimetric moisture sorption/desorption studies. The experimental stability data were correlated with the structural changes observed upon dehydration and the pairwise interaction and lattice energies calculated. For 1 the monohydrate was identified as the only stable form under conditions of RH typically found during production and storage, but at RH values >80% deliquescence occurs. The second compound, 2, forms an anhydrate and two different hydrates, mono- (2-Hy1 and trihydrate (2-Hy3. The 2-Hy1 structure was solved from SCXRD data and the anhydrate structure derived from a combination of PXRD and CSP. Depending on the environmental conditions (moisture either 2-Hy1 or 2-Hy3 is the most sable solid form of 2 at RT. The monohydrates 1-Hy1 and 2-Hy1 show a high enthalpic stabilization (≥20 kJ mol−1 relative to the anhydrates. The anhydrates are unstable at ambient conditions and readily transform to the monohydrates even in the presence of traces of moisture. This study demonstrates how the right combination of experiment and theory can unravel the properties and interconversion pathways of solid forms.

  11. Effect of temperature on hydration kinetics and polymerization of tricalcium silicate in stirred suspensions of CaO-saturated solutions

    International Nuclear Information System (INIS)

    Grant, Steven A.; Boitnott, Ginger E.; Korhonen, Charles J.; Sletten, Ronald S.

    2006-01-01

    Tricalcium silicate was hydrated at 274, 278, 283, 298, and 313 K in stirred suspensions of saturated CaO solutions under a nitrogen-gas atmosphere until the end of deceleratory period. The suspension conductivities and energy flows were measured continuously. The individual reaction rates for tricalcium silicate dissolution, calcium silicate hydrate precipitation, and calcium hydroxide precipitation were calculated from these measurements. The results suggest that the proportion of tricalcium silicate dissolved was determined by the rate of tricalcium silicate dissolution and the time to very rapid calcium hydroxide precipitation. The time to very rapid calcium hydroxide precipitation was more sensitive to changes in temperature than was the rate of tricalcium silicate dissolution, so that the proportion of tricalcium silicate hydration dissolved by the deceleratory period increased with decreasing temperature. The average chain length of the calcium silicate hydrate ascertained by magic-angle spinning nuclear magnetic resonance spectroscopy increased with increasing temperature

  12. Methane accumulation and forming high saturations of methane hydrate in sandy sediments

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, T.; Waseda, A. [JAPEX Research Center, Chiba (Japan); Fujii, T. [Japan Oil, Gas and Metals National Corp., Chiba (Japan). Upstream Technology Unit

    2008-07-01

    Methane supplies for marine gas hydrates are commonly attributed to the microbial conversion of organic materials. This study hypothesized that methane supplies were related to pore water flow behaviours and microscopic migration in intergranular pore systems. Sedimentology and geochemistry analyses were performed on sandy core samples taken from the Nankai trough and the Mallik gas hydrate test site in the Mackenzie Delta. The aim of the study was to determine the influence of geologic and sedimentolic controls on the formation and preservation of natural gas hydrates. Grain size distribution curves indicated that gas hydrate saturations of up to 80 per cent in pore volume occurred throughout the hydrate-dominant sand layers in the Nankai trough and Mallik areas. Water permeability measurements showed that the highly gas hydrate-saturated sands have a permeability of a few millidarcies. Pore-space gas hydrates occurred primarily in fine and medium-grained sands. Core temperature depression, core observations, and laboratory analyses of the hydrates confirmed the pore-spaces as intergranular pore fillings. Results of the study suggested that concentrations of gas hydrates may require a pore space large enough to occur within a host sediments, and that the distribution of porous and coarser-grained sandy sediments is an important factor in controlling the occurrence of gas hydrates. 11 refs., 4 figs.

  13. Raman and infrared spectroscopic studies of the structure of water (H2O, HOD, D2O) in stoichiometric crystalline hydrates and in electrolyte solutions

    International Nuclear Information System (INIS)

    Buanam-Om, C.

    1981-01-01

    The chapter of reviews presents in particular the Badger-Bauer-rule, distance and angle dependence of O-H...Y hydrogen bond and the structure of aqueous electrolyte solutions. A chapter of vibrational spectroscopic investigations of crystalline hydrates - metal perchlorate hydrates follows. Two further chapters just so investigate metal halide hydrates and some sulfate hydrates and related systems. The following chapter describes near infrared spectroscopic investigations of HOD(D 2 O) and its electrolyte solutions. The concluding chapter contains thermodynamic consequences and some properties of electrolyte solutions from vibrational spectroscopic investigations. (SPI) [de

  14. The impact of kosmotropes and chaotropes on bulk and hydration shell water dynamics in a model peptide solution

    International Nuclear Information System (INIS)

    Russo, Daniela

    2008-01-01

    Kosmotropic (order-making) and chaotropic (order-breaking) co-solvents influence stability and biochemical equilibrium in aqueous solutions of proteins, acting indirectly through the structure and dynamics of the hydration water that surrounds the protein molecules. We have investigated the influence of kosmotropic and chaotropic co-solvents on the hydrogen bonding network dynamics of both bulk water and hydration water. To this end the evolution of bulk water and hydration water dynamics of a prototypical hydrophobic amino acid with polar backbone, N-acetyl-leucine-methylamide (NALMA), has been studied by quasielastic neutron scattering as a function of solvent composition. The results show that bulk water and hydration water dynamics, apart from a dynamical suppression that depends on the NALMA solute, exhibit the same dependence on addition of co-solvent for all of the co-solvents studied (urea, glycerol, MgSO 4 , and dimethyl sulfoxide). The hydrophobic solute and the high concentration water-structuring additive have the same effect on the water hydrogen bonding network. Water remains the preferential hydration of the hydrophobic side chain and backbone. We also find that the reorganization of the bulk water hydrogen bond network, upon addition of kosmotrope and chaotrope additives, is not dynamically perturbed, and that the hydrogen bond lifetime is maintained at 1 ps as in pure bulk water. On the other hand the addition of NALMA to the water/co-solvent binary system causes reorganization of the hydrogen bonds, resulting in an increased hydrogen bond lifetime. Furthermore, the solute's side chain dynamics is not affected by high concentrations of co-solvent. We shall discuss the hydration dynamics results in the context of protein folding and protein-solvent interactions

  15. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    Science.gov (United States)

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. A consistent and verifiable macroscopic model for the dissolution of liquid CO2 in water under hydrate forming conditions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Demurov, A.; Trout, B.L.; Herzog, H.

    2003-01-01

    Direct injection of liquid CO 2 into the ocean has been proposed as one method to reduce the emission levels of CO 2 into the atmosphere. When liquid CO 2 is injected (normally as droplets) at ocean depths >500 m, a solid interfacial region between the CO 2 and the water is observed to form. This region consists of hydrate clathrates and hinders the rate of dissolution of CO 2 . It is, therefore, expected to have a significant impact on the injection of liquid CO 2 into the ocean. Up until now, no consistent and predictive model for the shrinking of droplets of CO 2 under hydrate forming conditions has been proposed. This is because all models proposed to date have had too many unknowns. By computing rates of the physical and chemical processes in hydrates via molecular dynamics simulations, we have been able to determine independently some of these unknowns. We then propose the most reasonable model and use it to make independent predictions of the rates of mass transfer and thickness of the hydrate region. These predictions are compared to measurements, and implications to the rates of shrinkage of CO 2 droplets under varying flow conditions are discussed. (author)

  17. The Internal Recycle Reactor Enhances Porous Calcium Silicate Hydrates to Recover Phosphorus from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Wei Guan

    2017-01-01

    Full Text Available In this experiment, the porous calcium silicate hydrates (P-CSHs were prepared via a hydrothermal method and then modified by polyethylene glycol (PEG. The modified P-CSHs combined with an internal recycle reactor could successfully recover the phosphorus from electroplating wastewater. The modified P-CSHs were characterized by X-ray diffraction (XRD, N2 adsorption-desorption isotherms, and Fourier transform infrared spectroscopy (FT-IR. After compared with different samples, the modified P-CSHs-PEG2000 sample had larger specific surface area of 87.48 m2/g and higher pore volume of 0.33 cm3/g, indicating a high capacity for phosphorus recovery. In the process of phosphorus recovery, the pH value of solution was increased to 9.5, which would enhance the recovery efficiency of phosphorus. The dissolution rate of Ca2+ from P-CSH-PEG2000 was fast, which was favorable for phosphorus precipitation and phosphorus recovery. The effects of initial concentration of phosphorus, P-CSHs-PEG2000 dosage, and stirring speed on phosphorus recovery were analyzed, so the optimal operation conditions for phosphorus recovery were obtained. The deposition was analyzed by XRD, N2 adsorption-desorption, and SEM techniques; it was indicated that the pore volume and surface area of the P-CSHs-PEG2000 were significantly reduced, and the deposition on the surface of P-CSHs-PEG2000 was hydroxyapatite.

  18. Damage induced by hydroxyl radicals generated in the hydration layer of γ-irradiated frozen aqueous solution of DNA

    International Nuclear Information System (INIS)

    Ohshima, Hideki; Matsuda, Akira; Kuwabara, Mikinori; Iida, Yoshiharu.

    1996-01-01

    Aqueous DNA solutions with or without the spin trap α-phenyl-N-tert-butylnitrone (PBN) were exposed to γ-rays at 77 K. After thawing the solutions, three experiments were carried out to confirm the generation of OH radicals in the hydration layer of DNA and to examine whether they act as an inducer of DNA strand breaks and base alterations. Observation with the EZR-spin tapping method showed ESR signals from PBN-OH adducts in the solution containing PBN and DNA, but there were few signals in the solution containing PBN alone, suggesting that reactive OH radicals were produced in the hydration layer of γ-irradiated DNA and were effectively scavenged by PBN, and that unreactive OH radicals were produced in the free water layer of γ-irradiated DNA. Agarose gel electrophoresis of DNA proved that PBN had no effect on the formation of strand breaks, whereas examination with the high-performance liquid chromatography-eloctrochemical detection (HPLC-ECD) method showed that PBN suppressed the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG). From these results it was concluded that OH radicals generated in the hydration layer of γ-irradiated DNA did not induce DNA strand breaks but induced base alterations. (author)

  19. Fractionation of oxygen and hydrogen isotopes at the hydrate gas forming in the sea sediments

    International Nuclear Information System (INIS)

    Pashkina, V.I.; Esikov, A.D.

    1990-01-01

    The paper gives data on isotope composition of interstitial and near-bottom waters sampled in a region of gas-hydrate formation in the Sea of Okhotsk. The studies show that heavy isotopes of oxygen and hydrogen is used in gas-hydrate formation, with the result that isotope composition of its constitution water constitutes δ 18 O=+1.99per mille, δD=+23per mille relatively to SMOW. Formation of autogenic carbonates leads to isotope exchange with interstitial water wich, in turn, changes its primary isotope composition in the direction of increasing of O-18 content. The near-bottom waters are isotope-light relatively to the SMOW standard and to the mean isotope composition of interstitial water in the studied region of gas-hydrate spreading. (orig.) [de

  20. Novel binder-free forming of Al2O3 ceramics by microwave-assisted hydration reaction

    International Nuclear Information System (INIS)

    Shirai, Takashi; Yasuoka, Masaki; Watari, Koji

    2008-01-01

    A novel binder-free forming of ceramics via microwave irradiation is developed. The irradiation of microwave to an alumina green body enhances the hydration reaction strongly between water and particle surfaces, creating surface aluminum trihydroxides structure adjacent to particles that bind them together tightly. This process makes it possible to manufacture mechanically strong green bodies with excellent shape retention ability without the use of organic binders

  1. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate-silica fume mixtures

    International Nuclear Information System (INIS)

    Pena, P.; Rivas Mercury, J.M.; Aza, A.H. de; Turrillas, X.; Sobrados, I.; Sanz, J.

    2008-01-01

    Partially deuterated Ca 3 Al 2 (SiO 4 ) y (OH) 12-4y -Al(OH) 3 mixtures, prepared by hydration of Ca 3 Al 2 O 6 (C 3 A), Ca 12 Al 14 O 33 (C 12 A 7 ) and CaAl 2 O 4 (CA) phases in the presence of silica fume, have been characterized by 29 Si and 27 Al magic-angle spinning-nuclear magnetic resonance (MAS-NMR) spectroscopies. NMR spectroscopy was used to characterize anhydrous and fully hydrated samples. In hydrated compounds, Ca 3 Al 2 (OH) 12 and Al(OH) 3 phases were detected. From the quantitative analysis of 27 Al NMR signals, the Al(OH) 3 /Ca 3 Al 2 (OH) 12 ratio was deduced. The incorporation of Si into the katoite structure, Ca 3 Al 2 (SiO 4 ) 3-x (OH) 4x , was followed by 27 Al and 29 Si NMR spectroscopies. Si/OH ratios were determined from the quantitative analysis of 27 Al MAS-NMR components associated with Al(OH) 6 and Al(OSi)(OH) 5 environments. The 29 Si NMR spectroscopy was also used to quantify the unreacted silica and amorphous calcium aluminosilicate hydrates formed, C-S-H and C-A-S-H for short. From 29 Si NMR spectra, the amount of Si incorporated into different phases was estimated. Si and Al concentrations, deduced by NMR, transmission electron microscopy, energy dispersive spectrometry, and Rietveld analysis of both X-ray and neutron data, indicate that only a part of available Si is incorporated in katoite structures. - Graphical abstract: Transmission electron micrograph of CaAl 2 O 4 -microsilica mixture hydrated at 90 deg. C for 31 days showing a cubic Ca 3 Al 2.0±0.2 (SiO 4 ) 0.9±0.2 (OH) 1.8 crystal surrounded by unreacted amorphous silica spheres

  2. Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes

    DEFF Research Database (Denmark)

    Zuo, You-Xiang; Stenby, Erling Halfdan

    1997-01-01

    In this paper, the extended Patel-Teja equation of state was modified to describe non-ideality of the liquid phase containing water and electrolytes accurately. The modified Patel-Teja equation of state (MPT EOS) was utilized to develop a predictive method for gas hydrate equilibria. The new method...... employs the Barkan and Sheinin hydrate model for the description of the hydrate phase, the original Patel-Teja equation of state for the vapor phase fugacities, and the MPT EOS (instead of the activity coefficient model) for the activity of water in the aqueous phase. The new method has succesfully...

  3. Optimal Mortgage Refinancing: A Closed Form Solution.

    Science.gov (United States)

    Agarwal, Sumit; Driscoll, John C; Laibson, David I

    2013-06-01

    We derive the first closed-form optimal refinancing rule: Refinance when the current mortgage interest rate falls below the original rate by at least [Formula: see text] In this formula W (.) is the Lambert W -function, [Formula: see text] ρ is the real discount rate, λ is the expected real rate of exogenous mortgage repayment, σ is the standard deviation of the mortgage rate, κ/M is the ratio of the tax-adjusted refinancing cost and the remaining mortgage value, and τ is the marginal tax rate. This expression is derived by solving a tractable class of refinancing problems. Our quantitative results closely match those reported by researchers using numerical methods.

  4. Optimal Mortgage Refinancing: A Closed Form Solution

    Science.gov (United States)

    Agarwal, Sumit; Driscoll, John C.; Laibson, David I.

    2013-01-01

    We derive the first closed-form optimal refinancing rule: Refinance when the current mortgage interest rate falls below the original rate by at least 1ψ[ϕ+W(−exp(−ϕ))]. In this formula W(.) is the Lambert W-function, ψ=2(ρ+λ)σ,ϕ=1+ψ(ρ+λ)κ∕M(1−τ), ρ is the real discount rate, λ is the expected real rate of exogenous mortgage repayment, σ is the standard deviation of the mortgage rate, κ/M is the ratio of the tax-adjusted refinancing cost and the remaining mortgage value, and τ is the marginal tax rate. This expression is derived by solving a tractable class of refinancing problems. Our quantitative results closely match those reported by researchers using numerical methods. PMID:25843977

  5. Steric congestion at, and proximity to, a ferrous center leads to hydration of α-nitrile substituents forming coordinated carboxamides.

    Science.gov (United States)

    Thallaj, Nasser K; Orain, Pierre-Yves; Thibon, Aurore; Sandroni, Martina; Welter, Richard; Mandon, Dominique

    2014-08-04

    The question of the conversion of nitrile groups into amides (nitrile hydration) by action of water in mild and eco-compatible conditions and in the presence of iron is addressed in this article. We come back to the only known example of hydration of a nitrile function into carboxamide by a ferrous [Fe(II)] center in particularly mild conditions and very efficiently and demonstrate that these unusual conditions result from the occurrence of steric stress at the reaction site and formation of a more stable end product. Two bis(cyano-substituted) (tris 2-pyridyl methyl amine) ligands have been prepared, and the structures of the corresponding FeCl2 complexes are reported, both in the solid state and in solution. These two ligands only differ by the position of the nitrile group on the tripod in the α and β position, respectively, with respect to the pyridine nitrogen. In any case, intramolecular coordination is impossible. Upon action of water, the nitrile groups are hydrated however only if they are located in the α position. The fact that the β-substituted β-(NC)2TPAFeCl2 complex is not water sensitive suggests that the reaction proceeds in an intramolecular way at the vicinity of the metal center. In the bis α-substituted α-(NC)2TPAFeCl2 complex, both functions are converted in a very clean fashion, pointing out that this complex exhibits ligand flexibility and is not deactivated after the first hydration. At a preparative scale, this reaction allows the one-pot conversion of the bis(cyano-substituted) tripod into a bis(amido-substituted) one in particularly mild conditions with a very good yield. Additionally, the XRD structure of a ferric compound in which the two carboxamido ligands are bound to the metal in a seven-coordinate environment is reported.

  6. Hydrate phase equilibrium and structure for (methane + ethane + tetrahydrofuran + water) system

    International Nuclear Information System (INIS)

    Sun Changyu; Chen Guangjin; Zhang Lingwei

    2010-01-01

    The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.

  7. Ingestion of an Oral Hyaluronan Solution Improves Skin Hydration, Wrinkle Reduction, Elasticity, and Skin Roughness: Results of a Clinical Study.

    Science.gov (United States)

    Göllner, Imke; Voss, Werner; von Hehn, Ulrike; Kammerer, Susanne

    2017-10-01

    Intake of oral supplements with the aim of a cutaneous antiaging effect are increasingly common. Hyaluronic acid (HA) is a promising candidate, as it is the key factor for preserving tissue hydration. In our practice study, we evaluated the effect of an oral HA preparation diluted in a cascade-fermented organic whole food concentrate supplemented with biotin, vitamin C, copper, and zinc (Regulatpro Hyaluron) on skin moisture content, elasticity, skin roughness, and wrinkle depths. Twenty female subjects with healthy skin in the age group of 45 to 60 years took the product once daily for 40 days. Different skin parameters were objectively assessed before the first intake, after 20 and after 40 days. Intake of the HA solution led to a significant increase in skin elasticity, skin hydration, and to a significant decrease in skin roughness and wrinkle depths. The supplement was well tolerated; no side effects were noted throughout the study.

  8. Reactant-solute encounters in aqueous solutions studied by kinetic methods: hydration cosphere overlap and camouflage effects : hydration cosphere overlap and camouflage effects

    NARCIS (Netherlands)

    Engberts, Jan B.F.N.; Blandamer, Michael J.

    1998-01-01

    Rates of chemical reactions in aqueous solutions are often sensitive to low concentrations of added solutes such as ureas, alcohols, α-amino acids and carbohydrates. In this work, several simple chemical reactions were used to probe this sensitivity, which arises from interactions between added

  9. New Form of Hypertonic Solution for Nebulization Therapy

    Directory of Open Access Journals (Sweden)

    Olga I. Simonova

    2016-01-01

    Full Text Available Mucolytic, expectorative and antitussive drugs are traditionally used in acute or chronic respiratory episodes affected by acute respiratory infections. Today, preference is given to drugs in a form of solutions for nebulization therapy. The article presents data on the new dosage form of 7% inhalation hypertonic solution in combination with hyaluronic acid used in mucostasis therapy for chronic respiratory diseases. The information on the properties and the favorable effect of hyaluronic acid is provided. We discuss the evidence base of inhalation of the hypertonic solution in combination with hyaluronic acid in cystic fibrosis.

  10. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  11. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    OpenAIRE

    Ikhsan Eka Prasetia; Trihastuti Agustinah

    2015-01-01

    In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desire...

  12. Closed form solutions of two time fractional nonlinear wave equations

    Directory of Open Access Journals (Sweden)

    M. Ali Akbar

    2018-06-01

    Full Text Available In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G′/G-expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics. Keywords: Traveling wave solution, Soliton, Generalized (G′/G-expansion method, Time fractional Duffing equation, Time fractional Riccati equation

  13. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  14. Collagen tissue treated with chitosan solution in H2O/CO2 mixtures: Influence of clathrates hydrates on the structure and mechanical properties.

    Science.gov (United States)

    Chaschin, Ivan S; Bakuleva, Natalia P; Grigoriev, Timofei E; Krasheninnikov, Sergey V; Nikitin, Lev N

    2017-03-01

    A mixture of water/carbon dioxide is a "green" perspective solvent from the viewpoint of biomedical applications. Clathrate hydrates are formed this solvent under certain conditions and a very interesting question is the impact of clathrates hydrates on the structure and properties of bovine pericardium, which is used in biomedicine, in particular as a main part of biological heart valve prostheses. The aim of the present work is to investigate the influence of clathrates on the structure and mechanical properties of the collagen tissue treated with chitosan in H 2 O/CO 2 mixtures under pressure 3.0-3.5MPa and temperatures 2-4°C. It was first found that the clathrate hydrates in this media due to the strong fluctuations "bomb" collagen tissue of bovine pericardium, which is manifested in the appearance of numerous small gaps (pores) with mean size of 225±25nm and large pores with size of 1-3μ on the surface and within collagen matrices. High porosity leads to averaging characteristics of the organization structure in tissues with different orientation of the collagen fibers. As a result, the mechanical properties of the collagen tissue with a different orientation of the collagen fibrils become similar, which is quite different from their original properties. The structural changes caused by the influence of the environment clathrate hydrates led to a significant decrease of the tensile strength (30-47% in total, p<0.05) and initial elastic moduli (74-83%, p<0.05). However, the final elastic moduli and the maximum tensile virtually unchanged compared to the control. Nevertheless, it was found that the direct deposition of chitosan from the H 2 O/CO 2 mixtures with clathrate improve the mechanical-strength properties of the porous matrices. We believe that these improved mechanical properties are achieved due to particularly deep and uniform impregnation of the collagen matrix with chitosan from its pressurized solutions in H 2 O/CO 2 mixtures. Copyright © 2016

  15. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    Directory of Open Access Journals (Sweden)

    Palash Sanphui

    2014-03-01

    Full Text Available Acemetacin (ACM is a non-steroidal anti-inflammatory drug (NSAID, which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM, isonicotinamide (INA, and picolinamide (PAM], caprolactam (CPR, p-aminobenzoic acid (PABA, and piperazine (PPZ. The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid...pyridine heterosynthon and N—H...O catemer hydrogen bonds involving the amide group. The acid...amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl...carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable

  16. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt.

    Science.gov (United States)

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-03-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior

  17. Minimal solution of linear formed fuzzy matrix equations

    Directory of Open Access Journals (Sweden)

    Maryam Mosleh

    2012-10-01

    Full Text Available In this paper according to the structured element method, the $mimes n$ inconsistent fuzzy matrix equation $Ailde{X}=ilde{B},$ which are linear formed by fuzzy structured element, is investigated. The necessary and sufficient condition for the existence of a fuzzy solution is also discussed. some examples are presented to illustrate the proposed method.

  18. Inverse Kinematics With Closed Form Solution For Denso Robot Manipulator

    Directory of Open Access Journals (Sweden)

    Ikhsan Eka Prasetia

    2015-03-01

    Full Text Available In this paper, the forward kinematics and inverse kinematics used on the Denso robot manipulator which has a 6-DOF. The forward kinematics will result in the desired position by end-effector, while inverse kinematics produce angel on each joint. Inverse kinematics problem are very difficult, therefor to obtain the solution of inverse kinematics using closed form solution with geometry approach. The simulation result obtained from forward kinematics and inverse kinematics is determining desired position by Denso robot manipulator. Forward kinematics produce the desired position by the end-effector. Inverse kinematics produce joint angle, where the inverse kinematics produce eight conditions obtained from closed form solution with geometry approach to reach the desired position by the end-effector.

  19. Closed form solutions of two time fractional nonlinear wave equations

    Science.gov (United States)

    Akbar, M. Ali; Ali, Norhashidah Hj. Mohd.; Roy, Ripan

    2018-06-01

    In this article, we investigate the exact traveling wave solutions of two nonlinear time fractional wave equations. The fractional derivatives are described in the sense of conformable fractional derivatives. In addition, the traveling wave solutions are accomplished in the form of hyperbolic, trigonometric, and rational functions involving free parameters. To investigate such types of solutions, we implement the new generalized (G‧ / G) -expansion method. The extracted solutions are reliable, useful and suitable to comprehend the optimal control problems, chaotic vibrations, global and local bifurcations and resonances, furthermore, fission and fusion phenomena occur in solitons, the relativistic energy-momentum relation, scalar electrodynamics, quantum relativistic one-particle theory, electromagnetic interactions etc. The results reveal that the method is very fruitful and convenient for exploring nonlinear differential equations of fractional order treated in theoretical physics.

  20. A new molybdenum trioxide hydrate MoO3.1/3H2O and a new monoclinic form of MoO3

    International Nuclear Information System (INIS)

    Harb, F.; Gerand, B.; Nowogrocki, G.; Figlarz, M.

    1986-01-01

    A new hydrate of molybdenum trioxide MoO 3 .1/3H 2 O has been obtained by hydrothermal treatment at 110 0 C of either aqueous suspensions of MoO 3 .2H 2 O or aqueous molybdic acid solutions. The hydrate crystallizes in the orthorhombic system, lattice parameters are given; a structural model is proposed by comparison with the isostructural WO 3 .1/3H 2 O phase. The dehydration of MoO 3 .1/3H 2 O leads to a new anhydrous molybdenum trioxide, monoclinic, the structure of which is of ReO 3 type [fr

  1. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  2. Giant seafloor craters formed by hydrate-controlled large-scale methane expulsion from the Arctic seafloor after ice sheet retreat

    Science.gov (United States)

    Andreassen, K.; Hubbard, A.; Patton, H.; Vadakkepuliyambatta, S.; Winsborrow, M.; Plaza-Faverola, A. A.; Serov, P.

    2017-12-01

    Large-scale methane releases from thawing Arctic gas hydrates is a major concern, yet the processes and fluxes involved remain elusive. We present geophysical data indicating two contrasting processes of natural methane emissions from the seafloor of the northern Barents Sea, Polar North Atlantic. Abundant gas flares, acoustically imaged in the water column reveal slow, gradual release of methane bubbles, a process that is commonly documented from nearby areas, elsewhere in the Arctic and along continental margins worldwide. Conversely, giant craters across the study area indicate a very different process. We propose that these are blow-out craters, formed through large-scale, abrupt methane expulsion induced when gas hydrates destabilized after the Barents Sea Ice Sheet retreated from the area. The data reveal over 100 giant seafloor craters within an area of 440 km2. These are up to 1000 m in diameter, 30 m deep and with a semi-circular to elliptical shape. We also identified numerous large seafloor mounds, which we infer to have formed by the expansion of gas hydrate accumulations within the shallow subsurface, so-called gas hydrate pingos. These are up to 1100 m wide and 20 m high. Smaller craters and mounds < 200 m wide and with varying relief are abundant across the study site. The empirical observations and analyses are combined with numerical modelling of ice sheet, isostatic and gas hydrate evolution and indicate that during glaciation, natural gas migrating from underlying hydrocarbon reservoirs was stored as subglacial gas hydrates. On ice sheet retreat, methane from these hydrate reservoirs and underlying free gas built up and abruptly released, forming the giant mounds and craters observed in the study area today. Petroleum basins are abundant beneath formerly and presently glaciated regions. We infer that episodes of subglacial sequestration of gas hydrates and underlying free gas and subsequent abrupt expulsions were common and widespread throughout

  3. Closed Form Solution of Synchronous Machine Short Circuit Transients

    Directory of Open Access Journals (Sweden)

    Gibson H.M. Sianipar

    2010-05-01

    Full Text Available This paper presents the closed form solution of the synchronous machine transients undergoing short circuit. That analytic formulation has been derived based on linearity and balanced conditions of the fault. Even though restrictive, the proposed method will serve somehow or other as a new resource for EMTP productivity. Indisputably superior, the closed-form formulation has some features inimitable by discretization such as continuity, accuracy and absolute numerical stability. Moreover, it enables us to calculate states at one specific instant independent of previous states or a snapshot, which any discretization methods cannot do.

  4. A Closed Form Solution for an Unorthodox Trigonometric Integral

    Science.gov (United States)

    Wu, Yan

    2009-01-01

    A closed form solution for the trigonometric integral [integral]sec[superscript 2k+1]xdx, k=0,1,2,..., is presented in this article. The result will fill the gap in another trigonometric integral [integral]sec[superscript 2m+1] x tan[superscript 2n]xdx, which is neglected by most of the calculus textbooks due to its foreseeable unorthodox solution…

  5. Exact Closed-form Solutions for Lamb's Problem

    Science.gov (United States)

    Feng, X.

    2017-12-01

    In this work, we report on an exact closedform solution for the displacement at the surfaceof an elastic halfspace elicited by a buried point source that acts at some point underneath thatsurface. This is commonly referred to as the 3D Lamb's problem, for which previous solutionswere restricted to sources and receivers placed at the free surface. By means of the reciprocitytheorem, our solution should also be valid as a means to obtain the displacements at interior pointswhen the source is placed at the free surface. We manage to obtain explicit results by expressingthe solution in terms of elementary algebraic expression as well as elliptic integrals. We anchorour developments on Poissons ratio 0.25 starting from Johnson's numerical, integral transformsolutions. Furthermore, the spatial derivatives of our solutions can be easily acquired in termsof our methods. In the end, our closed-form results agree perfectly with the numerical results ofJohnson, which strongly conrms the correctness of our explicit formulas. It is hoped that in duetime, these formulas may constitute a valuable canonical solution that will serve as a yardstickagainst which other numerical solutions can be compared and measured.In addition, we abstract some terms from our solutions as the generator of the Rayleigh waves.Some basic properties of the Rayleigh waves in the time domain will be indicated in terms of thegenerator. The fareld radiation patterns of P-wave and S-wave elicited by the double-couple forcein the uniform half-space medium could also be acquired from our results.

  6. Temperature effects on geotechnical and hydraulic properties of bentonite hydrated with inorganic salt solutions

    DEFF Research Database (Denmark)

    Rashid, H. M. A.; Kawamoto, K.; Saito, T.

    2015-01-01

    © 2015, International Journal of GEOMATE. This study investigated the combined effect of temperature and single-species salt solutions on geotechnical properties (swell index and liquid limit) and hydraulic conductivity of bentonite applying different cation types, concentrations, and temperatures...

  7. Delay chemical master equation: direct and closed-form solutions.

    Science.gov (United States)

    Leier, Andre; Marquez-Lago, Tatiana T

    2015-07-08

    The stochastic simulation algorithm (SSA) describes the time evolution of a discrete nonlinear Markov process. This stochastic process has a probability density function that is the solution of a differential equation, commonly known as the chemical master equation (CME) or forward-Kolmogorov equation. In the same way that the CME gives rise to the SSA, and trajectories of the latter are exact with respect to the former, trajectories obtained from a delay SSA are exact representations of the underlying delay CME (DCME). However, in contrast to the CME, no closed-form solutions have so far been derived for any kind of DCME. In this paper, we describe for the first time direct and closed solutions of the DCME for simple reaction schemes, such as a single-delayed unimolecular reaction as well as chemical reactions for transcription and translation with delayed mRNA maturation. We also discuss the conditions that have to be met such that such solutions can be derived.

  8. Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag.

    Science.gov (United States)

    Stewart, Douglas I; Bray, Andrew W; Udoma, Gideon; Hobson, Andrew J; Mayes, William M; Rogerson, Mike; Burke, Ian T

    2018-04-01

    Alkalinity generation and toxic trace metal (such as vanadium) leaching from basic oxygen furnace (BOF) steel slag particles must be properly understood and managed by pre-conditioning if beneficial reuse of slag is to be maximised. Water leaching under aerated conditions was investigated using fresh BOF slag at three different particle sizes (0.5-1.0, 2-5 and 10 × 10 × 20 mm blocks) and a 6-month pre-weathered block. There were several distinct leaching stages observed over time associated with different phases controlling the solution chemistry: (1) free-lime (CaO) dissolution (days 0-2); (2) dicalcium silicate (Ca 2 SiO 4 ) dissolution (days 2-14) and (3) Ca-Si-H and CaCO 3 formation and subsequent dissolution (days 14-73). Experiments with the smallest size fraction resulted in the highest Ca, Si and V concentrations, highlighting the role of surface area in controlling initial leaching. After ~2 weeks, the solution Ca/Si ratio (0.7-0.9) evolved to equal those found within a Ca-Si-H phase that replaced dicalcium silicate and free-lime phases in a 30- to 150-μm altered surface region. V release was a two-stage process; initially, V was released by dicalcium silicate dissolution, but V also isomorphically substituted for Si into the neo-formed Ca-Si-H in the alteration zone. Therefore, on longer timescales, the release of V to solution was primarily controlled by considerably slower Ca-Si-H dissolution rates, which decreased the rate of V release by an order of magnitude. Overall, the results indicate that the BOF slag leaching mechanism evolves from a situation initially dominated by rapid hydration and dissolution of primary dicalcium silicate/free-lime phases, to a slow diffusion limited process controlled by the solubility of secondary Ca-Si-H and CaCO 3 phases that replace and cover more reactive primary slag phases at particle surfaces.

  9. Reactivity of two hydrate forms of europium(3) ethylenediaminetetraacetate in the processes of central ion substitution

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.

    1985-01-01

    Kinetics of central ion substitution in the system EuA - -Cu 2+ , where A 4- -ethylenediaminetetraacetate (pH 6.0, t=25-55 deg C), has been studied spectrophotometrically. It is shown, that the form EuA(H 2 O) 3 - is more reactive as compared with EuA(H 2 O) 2 - . It is found, that equilibrium constant of the process EuA(H 2 O) 3 - reversible EuA(H 2 O) 2 - (1) equals 1 at t=36.2 deg C. The values ΔH and ΔS of the process (1), constituting 13.0+-3.2 kJ/mol and 41.8+-5.5 J/molxdeg respectively, are calculated

  10. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  11. Molecular dynamics study of the hydration of Lennard-Jones solutes

    International Nuclear Information System (INIS)

    Geiger, A.; Rahman, A.; Stillinger, F.H.

    1979-01-01

    In order to clarify the nature of hydrophobic interactions in water, we have used the molecular dynamics simulation method to study a system comprising two Lennard-Jones solute particles and 214 water molecules. Although the solutes were placed initially in contact, forces in the system drive them slightly apart to permit formation of vertex-sharing solvent ''cages.'' Definite orientational preferences have been observed for water molecules in the first solvation layer around the Lennard-Jones solutes; these preferences are loosely reminiscent of structure in clathrates. Nevertheless, substantial local disorder is obviously present. The dynamical data show that translational and rotational motions of solvation--sheath water molecules are perceptibly slower (by at least 20%) than those in pure bulk water

  12. Phase equilibria of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions

    International Nuclear Information System (INIS)

    Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Highlights: → Dissociation conditions of H 2 S or CO 2 hydrate + inhibitor aqueous solution are reported. → Methanol, methanol + NaCl and EG + NaCl aqueous solutions are considered as inhibitors. → Comparisons are made between our experimental data and the corresponding literature data. - Abstract: This work aims at reporting the dissociation pressures of hydrogen sulfide and carbon dioxide simple hydrates in the presence of methanol, (methanol + NaCl) and (ethylene glycol + NaCl) aqueous solutions at different temperatures and various concentrations of inhibitor in aqueous solution. The equilibrium results were generated using an isochoric pressure-search method. These values are compared with some selected experimental data from the literature on the dissociation conditions of hydrogen sulfide and carbon dioxide simple hydrates in the presence of pure water to show the inhibition effects of the above mentioned aqueous solutions. Comparisons are finally made between our experimental values and the corresponding literature data. Some disagreements among the literature data and our data are found.

  13. Hydration of the chloride ion in concentrated aqueous solutions using neutron scattering and molecular dynamics

    Czech Academy of Sciences Publication Activity Database

    Pluhařová, Eva; Fischer, H. E.; Mason, Philip E.; Jungwirth, Pavel

    2014-01-01

    Roč. 112, 9/10 (2014), s. 1230-1240 ISSN 0026-8976 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LH12001 Grant - others:GA MŠk(CZ) LM2010005 Institutional support: RVO:61388963 Keywords : lithium * solution * molecular dynamics * chloride * neutron scattering Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.720, year: 2014

  14. Maximum Recoverable Gas from Hydrate Bearing Sediments by Depressurization

    KAUST Repository

    Terzariol, Marco

    2017-11-13

    The estimation of gas production rates from hydrate bearing sediments requires complex numerical simulations. This manuscript presents a set of simple and robust analytical solutions to estimate the maximum depressurization-driven recoverable gas. These limiting-equilibrium solutions are established when the dissociation front reaches steady state conditions and ceases to expand further. Analytical solutions show the relevance of (1) relative permeabilities between the hydrate free sediment, the hydrate bearing sediment, and the aquitard layers, and (2) the extent of depressurization in terms of the fluid pressures at the well, at the phase boundary, and in the far field. Close form solutions for the size of the produced zone allow for expeditious financial analyses; results highlight the need for innovative production strategies in order to make hydrate accumulations an economically-viable energy resource. Horizontal directional drilling and multi-wellpoint seafloor dewatering installations may lead to advantageous production strategies in shallow seafloor reservoirs.

  15. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    Science.gov (United States)

    Paradies, Henrich H.; Reichelt, Hendrik

    2016-06-01

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

  16. Influence of the anions on the N-cationic benzethonium salts in the solid state and solution: Chloride, bromide, hydroxide and citrate hydrates

    International Nuclear Information System (INIS)

    Paradies, Henrich H.; Reichelt, Hendrik

    2016-01-01

    The crystal structures of the hydrated cationic surfactant benzethonium (Bzth) chloride, bromide, hydroxide, and citrate have been determined by X-ray diffraction analysis and compared with their structures in solution well above their critical micelle concentration. The differences in the nature of the various anions of the four Bzth-X materials lead to unique anion environments and 3-D molecular arrangements. The water molecule in the monoclinic Bzth-Cl or Bzth-Br forms is hydrogen bonded to the halides and particularly to the hydrogens of the methoxy groups of the Bzth moiety notwithstanding the weak Brønsted acidity of the methoxy hydrogens. The citrate strongly interacts with the hydrogens of the methoxy group forming an embedded anionic spherical cluster of a radius of 2.6 Å. The Bzth-OH crystallizes in a hexagonal lattice with two water molecules and reveals free water molecules forming hydrogen bonded channels through the Bzth-OH crystal along the c-axis. The distances between the cationic nitrogen and the halides are 4.04 Å and 4.20 Å, significantly longer than expected for typical van der Waals distances of 3.30 Å. The structures show weakly interacting, alternating apolar and polar layers, which run parallel to the crystallographic a-b planes or a-c planes. The Bzth-X salts were also examined in aqueous solution containing 20% (v/v) ethanol and 1.0 % (v/v) glycerol well above their critical micelle concentration by small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS). The [1,1,1] planes for the Bzth Cl or Br, the [0,0,2] and [1,1,0] planes for the Bzth-citrate, the [2,-1,0] planes and the [0,0,1] planes for the Bzth-OH found in the crystalline phase were also present in the solution phase, accordingly, the preservation of these phases are a strong indication of periodicity in the solution phase.

  17. Decoupled Closed-Form Solution for Humanoid Lower Limb Kinematics

    Directory of Open Access Journals (Sweden)

    Alejandro Said

    2015-01-01

    Full Text Available This paper presents an explicit, omnidirectional, analytical, and decoupled closed-form solution for the lower limb kinematics of the humanoid robot NAO. The paper starts by decoupling the position and orientation analysis from the overall Denavit-Hartenberg (DH transformation matrices. Here, the joint activation sequence for the DH matrices is based on the geometry of a triangle. Furthermore, the implementation of a forward and a reversed kinematic analysis for the support and swing phase equations is developed to avoid matrix inversion. The allocation of constant transformations allows the position and orientation end-coordinate systems to be aligned with each other. Also, the redefinition of the DH transformations and the use of constraints allow decoupling the shared DOF between the legs and the torso. Finally, a geometric approach to avoid the singularities during the walking process is indicated. Numerical data is presented along with an experimental implementation to prove the validity of the analytical results.

  18. Closed form analytic solutions describing glow discharge plasma

    International Nuclear Information System (INIS)

    Pai, S.T.; Guo, X.M.; Zhou, T.D.

    1996-01-01

    On the basis of an analytic model developed previously [S. T. Pai, J. Appl. Phys. 71, 5820 (1992)], an improved version of the model for the description of dc glow discharge plasma was successfully developed. A set of closed form solutions was obtained from the governing equations. The two-dimensional, analytic solutions are functional and completely satisfy the governing equations, the actual boundary conditions, and Maxwell equations. They can be readily used to carry out numerical calculations without the necessity of employing any assumed boundary conditions. Results obtained from the model reveal that as the discharge gap spacing or pressure increases the maximum value in the electron density distribution moves toward the cathode. At a sufficiently large value of gap spacing, the positive column phenomenon begins to appear in the discharge region. The model has the capability of treating the positive column and negative glow as a continuous system without the necessity of studying them separately. The model also predicts a sharp rise of the positive ion density near the cathode and field reversal in the anode region. Variation of the electrode radius produces little effect on the axial spatial distribution of physical quantities studied. copyright 1996 American Institute of Physics

  19. Glycine phases formed from frozen aqueous solutions: Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Surovtsev, N. V. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Adichtchev, S. V.; Malinovsky, V. K. [Institute of Automation and Electrometry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ogienko, A. G.; Manakov, A. Yu. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Drebushchak, V. A. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Ancharov, A. I.; Boldyreva, E. V. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Institute of Solid Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Yunoshev, A. S. [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Lavrentiev Institute of Hydrodynamics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation)

    2012-08-14

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice I{sub h} was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into {beta}-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice I{sub h} and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine 'X-phase') at 209-216 K, which at 218-226 K transformed into {beta}-polymorph of glycine. The 'X-phase' was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a= 6.648 A, b= 25.867 A, c= 5.610 A, {beta}= 113.12 Masculine-Ordinal-Indicator ); the formation of 'X-phase' from the glycine glassy phase and its transformation into {beta}-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  20. Glycine phases formed from frozen aqueous solutions: Revisited

    Science.gov (United States)

    Surovtsev, N. V.; Adichtchev, S. V.; Malinovsky, V. K.; Ogienko, A. G.; Drebushchak, V. A.; Manakov, A. Yu.; Ancharov, A. I.; Yunoshev, A. S.; Boldyreva, E. V.

    2012-08-01

    Glycine phases formed when aqueous solutions were frozen and subsequently heated under different conditions were studied by Raman scattering, x-ray diffraction, and differential scanning calorimetry (DSC) techniques. Crystallization of ice Ih was observed in all the cases. On cooling at the rates of 0.5 K/min and 5 K/min, glassy glycine was formed as an intermediate phase which lived about 1 min or less only, and then transformed into β-polymorph of glycine. Quench cooling of glycine solutions (15% w/w) in liquid nitrogen resulted in the formation of a mixture of crystalline water ice Ih and a glassy glycine, which could be preserved at cryogenic temperatures (80 K) for an indefinitely long time. This mixture remained also quite stable for some time after heating above the cryogenic temperature. Subsequent heating under various conditions resulted in the transformation of the glycine glass into an unknown crystalline phase (glycine "X-phase") at 209-216 K, which at 218-226 K transformed into β-polymorph of glycine. The "X-phase" was characterized by Raman spectroscopy; it could be obtained in noticeable amounts using a special preparation technique and tentatively characterized by x-ray powder diffraction (P2, a = 6.648 Å, b = 25.867 Å, c = 5.610 Å, β = 113.12°); the formation of "X-phase" from the glycine glassy phase and its transformation into β-polymorph were followed by DSC. Raman scattering technique with its power for unambiguous identification of the crystalline and glassy polymorphs without limitation on the crystallite size helped us to follow the phase transformations during quenching, heating, and annealing. The experimental findings are considered in relation to the problem of control of glycine polymorphism on crystallization.

  1. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  2. Quantum chemical studies on molecular structural conformations and hydrated forms of salicylamide and O-hydroxybenzoyl cyanide

    Science.gov (United States)

    Anandan, K.; Kolandaivel, P.; Kumaresan, R.

    Ab initio and density functional theory (DFT) methods have been employed to study the molecular structural conformations and hydrated forms of both salicylamide (SAM) and O-hydroxybenzoyl cyanide (OHBC). Molecular geometries and energetics have been obtained in the gaseous phase by employing the Møller-Plesset type 2 MP2/6-311G(2d,2p) and B3LYP/6-311G(2d,2p) levels of theory. The presence of an electron-releasing group (SAM) leads to an increase in the energy of the molecular system, while the presence of an electron-withdrawing group (OHBC) drastically decreases the energy. Chemical reactivity parameters (η and μ) have been calculated using the energy values of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) obtained at the Hartree-Fock (HF)/6-311G(2d,2p) level of theory for all the conformers and the principle of maximum hardness (MHP) has been tested. The condensed Fukui functions have been calculated using the atomic charges obtained through the natural bond orbital (NBO) analysis scheme for all the optimized structures at the B3LYP/6-311G(2d,2p) level of theory, and the most reactive sites of the molecules have been identified. Nuclear magnetic resonance (NMR) studies have been carried out at the B3LYP/6-311G(2d,2p) level of theory for all the conformers in the gaseous phase on the basis of the method of Cheeseman and coworkers. The calculated chemical shift values have been used to discuss the delocalization activity of the electron clouds. The dimeric structures of the most stable conformers of both SAM and OHBC in the gaseous phase have been optimized at the B3LYP/6-311G(2d,2p) level of theory, and the interaction energies have been calculated. The most stable conformers of both compounds bear an intramolecular hydrogen bond, which gives rise to the formation of a pseudo-aromatic ring. These conformers have been allowed to interact with the water molecule. Special emphasis has been given to analysis of the

  3. Fluorescence emission behavior of Eu(III) sorbed on calcium silicate hydrates as a secondary mineral formed without drying process

    International Nuclear Information System (INIS)

    Niibori, Yuichi; Narita, Masayuki; Chida, Taiji; Mimura, Hitoshi; Kirishima, Akira

    2014-01-01

    Calcium silicate hydrate (CSH) is a main component of cement-based material required for constructing the geological repository. As in many countries, since the repository in Japan is constructed below water table, we must consider the interaction of radionuclide with cement materials altered around the repository after the backfill. Using fluorescence emission spectra, so far, the authors have investigated the interaction of Eu(III) (as a chemical analog of Am(III)) with CSH gels as a secondary mineral formed without drying process, considering a condition saturated with groundwater. However, in such fluorescence emission behaviors, a deexcitation process of OH vibrators of light water and a quenching effect caused by Eu-Eu energy transfer between Eu atoms incorporated in the CSH gel must be considered. This study examined the fluorescence emission behavior of Eu(III) sorbed on CSH gels, by using La(III) (non-fluorescent ions) as a diluent of Eu(III). Furthermore, CSH samples were synthesized with CaO, SiO 2 , and heavy water (D 2 O) as a solvent in order to avoid the obvious deexcitation process of OH vibrators of light water. In the results, the peak around 618 nm was split into two peaks of 613 nm and 622 nm in the cases of Ca/Si=1.0 and 1.6. Then, the peak of 613 nm decreased with increment of Eu(III)/La(III) ratio. This means that the relative intensity of 613 nm is useful to quantify the amount of Eu(III) incorporated in CSH gel. Besides, the decay behavior of the fluorescence emission did not depend on the Eu/La concentration ratio. That is, such a quenching effect is neglectable. Additionally, the fluorescence emission spectra of Eu(III) showed that the state of Eu(III) depended on Ca/Si ratio of CSH. This suggested that there was several sites in CSH to incorporate Eu(III). When CSH is altered, whole cementitious material in repository must be altered forming cracks and leaching some calcium compositions. Therefore, the adsorptive capacity of CSH might

  4. Experimental study and thermodynamic modelling of methane clathrate hydrate dissociation conditions in silica gel porous media in the presence of methanol aqueous solution

    International Nuclear Information System (INIS)

    Hashemi, Hamed; Javanmardi, Jafar; Zarifi, Mojdeh; Eslamimanesh, Ali; Mohammadi, Amir H.

    2012-01-01

    Highlights: ► Phase equilibria of hydrates of methane in confined silica gel pores are reported. ► Dissociation data in the presences of methanol aqueous solution are also measured. ► A thermodynamic model is developed for prediction of the obtained data. ► Acceptable agreement is found between the obtained data and the predicted results. - Abstract: In this work, the phase equilibria of clathrate hydrates of methane in the presence of pure water and 0.035 mass fraction of methanol aqueous solution in confined silica gel pores with (10 and 15) nm mean diameters are measured and reported. A thermodynamic model is also developed for prediction of the obtained experimental hydrate dissociation data. The Valderrama–Patel–Teja (VPT-EoS) equation of state (EoS) accompanied with the non-density dependent (NDD) mixing rules coupled with a previously developed activity model are applied to evaluate the fugacity of the species present and the activity coefficient of water in methanol aqueous solution. Acceptable agreement between the reported data and the predicted results using the proposed model and an existing method reported in the literature demonstrates the reliability of the presented model.

  5. Study on gas hydrate as a new energy resource in the twenty first century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byung Jae; Kim, Won Sik; Oh, Jae Ho [Korea Institute of Geology Mining and Materials, Taejon (Korea)] [and others

    1998-12-01

    Methane hydrate, a special type of clathrate hydrates, is a metastable solid compound mainly consisted of methane and water and generally called as gas hydrate. It is stable in the specific low- temperature/high-pressure conditions. Very large amount of methane that is the main component of natural gas, is accumulated in the form of methane hydrate subaquatic areas. Methane hydrate are the major reservoir of methane on the earth. On the other hand, the development and transmission through pipeline of oil and natural gas in the permafrost and deep subaquatic regions are significantly complicated by formation and dissociation of methane hydrate. The dissociation of natural methane hydrates caused by increasing temperature and decreasing pressure could cause the atmospheric pollution and geohazard. The formation, stable existence and dissociation of natural methane hydrates depend on the temperature, pressure, and composition of gas and characteristics of the interstitial waters. For the study on geophysical and geological conditions for the methane hydrate accumulation and to find BSR in the East Sea, Korea, the geophysical surveys using air-gun system, multibeam echo sounder, SBP were implemented in last September. The water temperature data vs. depth were obtained to determine the methane hydrate stability zone in the study area. The experimental equilibrium condition of methane hydrate was also measured in 3 wt.% sodium chloride solution. The relationship between Methane hydrate formation time and overpressure was analyzed through the laboratory work. (author). 49 refs., 6 tabs., 26 figs.

  6. Unphosphorylated rhabdoviridae phosphoproteins form elongated dimers in solution.

    Science.gov (United States)

    Gerard, Francine C A; Ribeiro, Euripedes de Almeida; Albertini, Aurélie A V; Gutsche, Irina; Zaccai, Guiseppe; Ruigrok, Rob W H; Jamin, Marc

    2007-09-11

    The phosphoprotein (P) is an essential component of the replication machinery of rabies virus (RV) and vesicular stomatitis virus (VSV), and the oligomerization of P, potentially controlled by phosphorylation, is required for its function. Up to now the stoichiometry of phosphoprotein oligomers has been controversial. Size exclusion chromatography combined with detection by multiangle laser light scattering shows that the recombinant unphosphorylated phosphoproteins from VSV and from RV exist as dimers in solution. Hydrodynamic analysis indicates that the dimers are highly asymmetric, with a Stokes radius of 4.8-5.3 nm and a frictional ratio larger than 1.7. Small-angle neutron scattering experiments confirm the dimeric state and the asymmetry of the structure and yield a radius of gyration of about 5.3 nm and a cross-sectional radius of gyration of about 1.6-1.8 nm. Similar hydrodynamic properties and molecular dimensions were obtained with a variant of VSV phosphoprotein in which Ser60 and Thr62 are substituted by Asp residues and which has been reported previously to mimic phosphorylation by inducing oligomerization and activating transcription. Here, we show that this mutant also forms a dimer with hydrodynamic properties and molecular dimensions similar to those of the wild type protein. However, incubation at 30 degrees C for several hours induced self-assembly of both wild type and mutant proteins, leading to the formation of irregular filamentous structures.

  7. Solving the AKNS Hierarchy by Its Bilinear Form: Generalized Double Wronskian Solutions

    International Nuclear Information System (INIS)

    Yin Fumei; Sun Yepeng; Cai Fuqing; Chen Dengyuan

    2008-01-01

    Through the Wronskian technique, a simple and direct proof is presented that the AKNS hierarchy in the bilinear form has generalized double Wronskian solutions. Moreover, by using a unified way, soliton solutions, rational solutions, Matveev solutions and complexitons in double Wronskian form for it are constructed.

  8. NATURAL GAS HYDRATES STORAGE PROJECT PHASE II. CONCEPTUAL DESIGN AND ECONOMIC STUDY

    Energy Technology Data Exchange (ETDEWEB)

    R.E. Rogers

    1999-09-27

    DOE Contract DE-AC26-97FT33203 studied feasibility of utilizing the natural-gas storage property of gas hydrates, so abundantly demonstrated in nature, as an economical industrial process to allow expanded use of the clean-burning fuel in power plants. The laboratory work achieved breakthroughs: (1) Gas hydrates were found to form orders of magnitude faster in an unstirred system with surfactant-water micellar solutions. (2) Hydrate particles were found to self-pack by adsorption on cold metal surfaces from the micellar solutions. (3) Interstitial micellar-water of the packed particles were found to continue forming hydrates. (4) Aluminum surfaces were found to most actively collect the hydrate particles. These laboratory developments were the bases of a conceptual design for a large-scale process where simplification enhances economy. In the design, hydrates form, store, and decompose in the same tank in which gas is pressurized to 550 psi above unstirred micellar solution, chilled by a brine circulating through a bank of aluminum tubing in the tank employing gas-fired refrigeration. Hydrates form on aluminum plates suspended in the chilled micellar solution. A low-grade heat source, such as 110 F water of a power plant, circulates through the tubing bank to release stored gas. The design allows a formation/storage/decomposition cycle in a 24-hour period of 2,254,000 scf of natural gas; the capability of multiple cycles is an advantage of the process. The development costs and the user costs of storing natural gas in a scaled hydrate process were estimated to be competitive with conventional storage means if multiple cycles of hydrate storage were used. If more than 54 cycles/year were used, hydrate development costs per Mscf would be better than development costs of depleted reservoir storage; above 125 cycles/year, hydrate user costs would be lower than user costs of depleted reservoir storage.

  9. CO2 solubility in aqueous solutions containing Na+, Ca2+, Cl−, SO42− and HCO3-: The effects of electrostricted water and ion hydration thermodynamics

    International Nuclear Information System (INIS)

    Gilbert, Kimberly; Bennett, Philip C.; Wolfe, Will; Zhang, Tongwei; Romanak, Katherine D.

    2016-01-01

    Dissolution of CO 2 into deep subsurface brines for carbon sequestration is regarded as one of the few viable means of reducing the amount of CO 2 entering the atmosphere. Ions in solution partially control the amount of CO 2 that dissolves, but the mechanisms of the ion's influence are not clearly understood and thus CO 2 solubility is difficult to predict. In this study, CO 2 solubility was experimentally determined in water, NaCl, CaCl 2 , Na 2 SO 4, and NaHCO 3 solutions and a mixed brine similar to the Bravo Dome natural CO 2 reservoir; ionic strengths ranged up to 3.4 molal, temperatures to 140 °C, and CO 2 pressures to 35.5 MPa. Increasing ionic strength decreased CO 2 solubility for all solutions when the salt type remained unchanged, but ionic strength was a poor predictor of CO 2 solubility in solutions with different salts. A new equation was developed to use ion hydration number to calculate the concentration of electrostricted water molecules in solution. Dissolved CO 2 was strongly correlated (R 2  = 0.96) to electrostricted water concentration. Strong correlations were also identified between CO 2 solubility and hydration enthalpy and hydration entropy. These linear correlation equations predicted CO 2 solubility within 1% of the Bravo Dome brine and within 10% of two mixed brines from literature (a 10 wt % NaCl + KCl + CaCl 2 brine and a natural Na + , Ca 2+ , Cl − type brine with minor amounts of Mg 2+ , K + , Sr 2+ and Br − ). - Highlights: • Measured CO 2 solubility in Na + , Cl − , HCO 3 - , Ca 2+ and SO 4 2− solutions at high PCO 2 . • A new equation calculates electrostricted water (mol/kgw) from hydration number. • CO 2 solubility strongly correlates (R 2  = 0.96) to electrostricted water. • Ion electrostriction of water limits its availability for CO 2 caging and solvation. • Correlations predict CO 2 solubility of several mixed brines to within 1–9%.

  10. Physicochemical Properties of α-Form Hydrated Crystalline Phase of 3-(10-Carboxydecyl)-1,1,1,3,5,5,5-heptamethyl Trisiloxane/Higher alcohol/Polyoxyethylene (5 mol) Glyceryl monostearate/Water System.

    Science.gov (United States)

    Uyama, Makoto; Araki, Hidefumi; Fukuhara, Tadao; Watanabe, Kei

    2018-06-07

    The α-form hydrated crystalline phase (often called as an α-gel) is one of the hydrated crystalline phases which can be exhibited by surfactants and lipids. In this study, a novel system of an α-form hydrated crystal was developed, composed of 3-(10-carboxydecyl)-1,1,1,3,5,5,5-heptamethyl trisiloxane (CDTS), polyoxyethylene (5 mol) glyceryl monostearate (GMS-5), higher alcohol. This is the first report to indicate that a silicone surfactant can form an α-form hydrated crystal. The physicochemical properties of this system were characterized by small and wide angle X-ray scattering (SWAXS), differential scanning calorimetry (DSC), and diffusion-ordered NMR spectroscopy (DOSY) experiments. SWAXS and DSC measurements revealed that a plurality of crystalline phases coexist in the CDTS/higher alcohol/water ternary system. By adding GMS-5 to the ternary system, however, a wide region of a single α-form hydrated crystalline phase was obtained. The self-diffusion coefficients (D sel ) from the NMR measurements suggested that all of the CDTS, GMS-5, and higher alcohol molecules were incorporated into the same α-form hydrated crystals.

  11. Remagnetization and Cementation of Unconsolidated Sediments in the Mallik 5L-38 Well (Canadian Arctic) by Solute Exclusion During Gas Hydrate Formation

    Science.gov (United States)

    Hamilton, T. S.; Enkin, R. J.; Esteban, L.

    2007-05-01

    mineralogy. Silt samples are significantly stronger than sand samples in saturation magnetization and magnetic susceptibility. The silt samples have single-domain to pseudo-single domain coercivity ratios whereas the gas hydrate bearing sands have a more multi-domain nature. Sands with current gas hydrate concentrations > 80% have less magnetic material and single domain characteristics. The source of the greigite, carbonates, and other diagenetic minerals was apparently concentrated solutes excluded from formation waters by the freezing and formation of the water dominated gas hydrate. The hydrates served as a cementing agent for the unconsolidated sediments, allowing them to fracture. Some layers have been so inflated by the introduction carbonate and sulfide cements that they resemble hydrothermal tufa and skarns with floating sand grains. In the silts, the magnetic properties reflect the mixture of primary detrital magnetite and diagenetic greigite in various grain sizes and concentrations. At Mallik, the magnetic properties are sensitive to the diagenetic mineralogy and redox state associated with the transport of methane and pore fluids and the creation of gas hydrates. Hypersaline brines, produced by solute exclusion from pore waters, fractured and inflated less permeable sediments and forced rapid disequilibrium growth of greigite without dissolving primary detrital magnetite grains.

  12. Effects of cyclopentane on CO2 hydrate formation and dissociation as a co-guest molecule for desalination

    International Nuclear Information System (INIS)

    Zheng, Jia-nan; Yang, Ming-jun; Liu, Yu; Wang, Da-yong; Song, Yong-chen

    2017-01-01

    Highlights: • CP decreases CO 2 hydrate phase equilibrium pressure by forming CO 2 -CP hydrates. • The increase of CP can’t decrease hydrates phase equilibrium pressure unlimitedly. • Higher CP concentration lowers CO 2 hydrate gas uptake. • The optimal CP molar ratio is 0.01 based on hydrate phase equilibrium and gas uptake. - Abstract: Cyclopentane (CP) is considered to be a potential co-guest molecule in carbon dioxide (CO 2 ) hydrate-based desalination. The experimental thermodynamic data of CO 2 -CP hydrates were measured for a salt solution, where CP was chosen as a hydrate promoter. Seven experimental cases (62 cycles) were studied with different molar ratios of CP/water (0, 0.0025, 0.005, 0.0075, 0.01, 0.02, and 0.03). Hydrate phase equilibrium data were generated using an isochoric method, and the hydrate saturations were calculated based on gas uptake. The results indicated that the increase in CP concentration significantly decreased the CO 2 hydrate equilibrium pressure to a certain limit; the hydrate saturation also decreased during this process. Also, it was determined that CP encouraged the formation of s-II double CO 2 -CP hydrates, which are different from s-I simple CO 2 hydrate. The CO 2 -CP guest provides a strengthened stability and moderate hydrate phase equilibrium conditions for hydrate-based desalination. The recommended optimal molar ratio of CP is 0.01 when the increase in equilibrium was more than 10 K, and the decrease in hydrate saturation was less than 2%.

  13. Observation on the availability and tolerance of 0.1% bromfenac sodium hydrate ophthalmic solution in the partial substitution of glucocorticoid after LASEK

    Directory of Open Access Journals (Sweden)

    Zhi-Hui Deng

    2015-12-01

    Full Text Available AIM:To observe the availability and tolerance of 0.1% bromfenac sodium hydrate ophthalmic solution in the partial substitution of glucocorticoid after laser subepithelial keratomileusis(LASEK. METHODS:Totally 180 patients(180 eyesreceived LASEK were selected and divided into study group and control group according to different medications. The study group adopted 0.1% bromfenac sodium hydrate ophthalmic solution combined with glucocorticoid; the control group adopted glucocorticoid. The changes of visual acuity and intraocular pressure(IOPof two groups were recorded before and after surgery and the occurrence of diffuse larnellar kerafitis(DLKafter surgery were observed. RESULTS:After 1mo of surgery, visual acuity of study group was 1.25±0.22 while that of control group was 0.97±0.23(PP>0.05. After 1 and 3mo of surgery, IOP of study group was 12.29±2.71 and 12.67±2.33mmHg while that of control group was 14.26±2.65 and 14.56±2.61mmHg, the difference was statistically significant(PP>0.05. In terms of tolerance, the control group had 4 cases(4 eyestaking the IOP-lowering medication. The study group had no uncomfortable cases. The DLK level of the study group at 0, 1, 2 was 93.33%, 6.67%, 0%, respectively and those in control group was 75.56%, 17.78% and 6.67%, respectively, and the differences were significant(PCONCLUSION:0.1% bromfenac sodium hydrate ophthalmic solution can efficiently stabilize the patient's IOP after LASEK. The patient has a better visual acuity, visual function and fewer complications. The tolerance is also favorable. It is worthy of promotion.

  14. Effect of preparation technique of hydrated zirconium(4) dioxide on sorption of microimpurities of nonferrous metals, iron(3) and thorium(4) from lanthanum(3) nitrate solutions

    International Nuclear Information System (INIS)

    Bekrenev, A.V.; Pyartman, A.K.; Belousov, E.A.

    1989-01-01

    A study was made on the effect of peculiarities of hydrated zirconium(4) dioxide (HZD) synthesis on reproducibility of its sorption properties. It is shown that change of zirconium(4) concentration in basic solution within the limits of 0-1.0 mol/dm 3 its HCl acidity from 0 up to 1.0 mol/dm 3 concentration of NaOH solution used for HZD precipitation within the limits of 1.0-10.0 mol/dm 3 the final pH value of HZD gel from 10 up to 14 affects slightly the impurity element sorption from lanthanum nitrate solution. Freezing of HZD leads to increase of capacity and decrease of selectivity of sorbent samples with respect to impurity ions (Ni 2+ , Co 2+ , Bi 3+ , Fe 3+ , Th 4+ ); increase of the time of gel ripening leads to decrease of capacity and growth of selectivity

  15. Process for using a saturated salt hydrate solution as a heat storing material in a latent heat storage device. Anvendelse av en mettet salthydratloesning som varme-lagringsmateriale i et latent varmemagasin

    Energy Technology Data Exchange (ETDEWEB)

    Wasel-Nielen, J.; Merkenich, K.; Gehrig, O.; Sommer, K.

    1984-06-12

    Disclosed is a process for preparing a salt composition having a phase transition heat greater than the heat capacity of water at a corresponding temperature, for charging a latent heat storage device. The process comprises the steps of providing an acid component of the salt hydrate; providing a base component of the salt hydrate, wherein at least one of the acid or base components comprises a liquid; and mixing the acid component and the base component together to cause a neutralization reaction. The acid and base components are mixed in a ratio and in respective concentrations to produce a salt hydrate solution saturated at the desired phase transition point. The claims concern the use of saturated salt hydrate solution with a certain phase transition heat produced in a particular way.

  16. Influence of saline solution on hydration behavior of β-dicalcium silicate in comparison with biphasic calcium phosphate/hydroxyapatite bio-ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Radwan, M.M., E-mail: mmahmoudradwan@yahoo.com [Ceramics Dept, National Research Centre, Cairo (Egypt); Abd El-Hamid, H.K. [Ceramics Dept, National Research Centre, Cairo (Egypt); Mohamed, A.F. [The Holding Company for Production of Vaccines, Sera and Drugs (EGYVAC) (Egypt)

    2015-12-01

    The influence of using saline solution as mixing and curing liquid on some characteristics of β-dicalcium silicate (β-C{sub 2}S) and biphasic compound tri-calcium phosphate/hydroxyapatite (TCP/HAp) bio-ceramics was investigated. β-C{sub 2}S (27–30 nm) was prepared by solid state reaction at 1450 °C, while biphasic compound TCP/HAp (7–15 nm) was synthesized from an aqueous solution of Ca(NO{sub 3}){sub 2}·4H{sub 2}O and (NH{sub 4}){sub 2}HPO{sub 4}·12H{sub 2}O by chemical precipitation method. Setting times, compressive strength, pH values, X-ray diffraction analysis, infrared spectroscopy, scanning electron microscopy (SEM) were investigated. The evaluation of cytotoxicity of both calcium silicate and biphasic compounds to human gingival fibroblasts was carried out. The use of saline solution as mixing and immersing liquid shortened the setting time for the two bio-cements. TCP/HAp did not show any mechanical strength but β-C{sub 2}S showed good strength values. Both synthesized compounds showed a moderate cytotoxicity and both materials were effective in a no significant way. - Highlights: • The dissolution and hydration of β-C{sub 2}S and TCP/HAp in distilled water and saline solution were studied. • TCP/HAp did not show mechanical strength, while β-C{sub 2}S showed good mechanical strength. • The use of saline solution did enhances the dissolution & hydration rate. • An increase in pH values was detected when using saline solution. • Both materials showed a moderate cytotoxicity in no significant way.

  17. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  18. 76 FR 81806 - Ophthalmic and Topical Dosage Form New Animal Drugs; Ivermectin Topical Solution

    Science.gov (United States)

    2011-12-29

    .... FDA-2011-N-0003] Ophthalmic and Topical Dosage Form New Animal Drugs; Ivermectin Topical Solution... solution of ivermectin. DATES: This rule is effective December 29, 2011. FOR FURTHER INFORMATION CONTACT... ANADA 200-318 for [[Page 81807

  19. Microporous uranyl chromates successively formed by evaporation from acidic solution

    Energy Technology Data Exchange (ETDEWEB)

    Siidra, Oleg I.; Nazarchuk, Evgeny V.; Bocharov, Sergey N.; Kayukov, Roman A. [St. Petersburg State Univ. (Russian Federation). Dept. of Crystallography; Depmeier, Wulf [Kiel Univ. (Germany). Inst. fuer Geowissenschaften

    2018-04-01

    The first microporous framework structures containing uranium and chromium have been synthesized and characterized. Rb{sub 2}[(UO{sub 2}){sub 2}(CrO{sub 4}){sub 3}(H{sub 2}O){sub 2}](H{sub 2}O){sub 3} (1) was crystallized from uranyl chromate solution by evaporation. Further evaporation led to increased viscosity of the solution and overgrowing of Rb{sub 2}[(UO{sub 2}){sub 2}(CrO{sub 4}){sub 3}(H{sub 2}O)](H{sub 2}O) (2) on the crystals of 1. With respect to 1, the framework of 2 is partially dehydrated. Both frameworks differ compositionally by only one water molecule, but this seemingly small difference affects significantly the pore size and overall structural topology of the frameworks, which present very different flexibility of the U-O-Cr links. These are rigid in the pillared framework of 1, in contrast to 2 where the U-O-Cr angles range from 126.3 to 168.2 , reflecting the substantial flexibility of Cr-O-U connections which make them comparable to the corresponding Mo-O-U links in uranyl molybdates.

  20. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2013-01-01

    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....... dioxide (CO2), with 5.0mole percent THF in the initial aqueous phase, are presented in the temperature range from 283.3K to 285.2K. At 283.3K, the three-phase equilibrium pressure is determined to be 0.61MPa (absolute pressure).Four-phase hydrate (H)-aqueous liquid (Lw)-organic liquid (La)-vapour (V...

  1. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  2. Thermodynamic studies on semi-clathrate hydrates of TBAB + gases containing carbon dioxide

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali

    2012-01-01

    CO 2 capture has become an important area of research mainly due to its drastic greenhouse effects. Gas hydrate formation as a separation technique shows tremendous potential, both from a physical feasibility as well as an envisaged lower energy utilization criterion. Briefly, gas (clathrate) hydrates are non-stoichiometric, ice-like crystalline compounds formed through a combination of water and suitably sized guest molecule(s) under low-temperatures and elevated pressures. As the pressure required for gas hydrate formation is generally high, therefore, aqueous solution of tetra-n-butyl ammonium bromide (TBAB) is added to the system as a gas hydrate promoter. TBAB generally reduces the required hydrate formation pressure and/or increases the formation temperature as well as modifies the selectivity of hydrate cages to capture CO 2 molecules. TBAB also takes part in the hydrogen-bonded cages. Such hydrates are called 'semi-clathrate' hydrates. Evidently, reliable and accurate phase equilibrium data, acceptable thermodynamic models, and other thermodynamic studies should be provided to design efficient separation processes using the aforementioned technology. For this purpose, phase equilibria of clathrate/semi-clathrate hydrates of various gas mixtures containing CO 2 (CO 2 + CH 4 /N 2 /H 2 ) in the presence of pure water and aqueous solutions of TBAB have been measured in this thesis. In the theoretical section of the thesis, a thermodynamic model on the basis of the van der Waals and Platteeuw (vdW-P) solid solution theory along with the modified equations for determination of the Langmuir constants of the hydrate formers has been successfully developed to represent/predict equilibrium conditions of semi-clathrate hydrates of CO 2 , CH 4 , and N 2 . Later, several thermodynamic consistency tests on the basis of Gibbs-Duhem equation as well as a statistical approach have been applied on the phase equilibrium data of the systems of mixed/simple clathrate hydrates

  3. Application of a Multi-Scale form of Terzaghi’s Effective Stress Principle for Unsaturated Expansive Clays to Simulate Hydro-Mechanical Behavior During Hydration

    Directory of Open Access Journals (Sweden)

    Mainka Julia

    2016-01-01

    Full Text Available Our recently developed multi-scale form of Terzaghi’s effective stress principle for unsaturated swelling clays that was rigorously derived by periodic homogenization starting from micro- and nano-mechanical analyses is applied to numerically simulate one-dimensional swelling pressure tests of compacted bentonites during hydration. The total macroscopic stress captures the coupling between disjoining forces at the nanoscopic scale of clay platelets and capillary effects at the microscopic scale of clay aggregates over the entire water content range. The numerical results allow to draw conclusions on the water transfer mechanism between inter- and intra-aggregate pores during hydration and consequently on the evolution of the external swelling pressure resulting from the competition between capillary and disjoining forces. In addition, such application highlights the abilities and the limits of the electrical double-layer theory to compute the disjoining pressure in the nano-pores. For large platelet distances, in the range of osmotic swelling, the nature of the disjoining pressure is electro-chemical and can be computed from Poisson-Boltzmann theory. Conversely, at small distances, in the crystalline swelling, a solvation component has to be added to account for the molecular nature of the solvent. As a first improvement of the nano-scale description the solvent is treated as a hard sphere fluid using Density Functional Theory.

  4. Molar volumes of LiI in H{sub 2}O and D{sub 2}O solutions; Structural hydration interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jakli, Gy. [KFKI Atomic Energy Research Institute, P.O. Box 49, H-1525 Budapest (Hungary)], E-mail: jakli@aeki.kfki.hu

    2009-01-15

    According to a recent study of the H{sub 2}O and D{sub 2}O molar volume isotope effect (MVIE) of the alkali metal chloride solutions, neither the standard nor the excess MVIE of the LiCl corresponds to the usual hydrophilic hydration characteristics of the inorganic ions above room temperatures. This phenomenon can not be rationalized by electrostriction, with the collapse of the 'loose' tetrahedral ('ice-like') water structure due to the electrostatic (ion + dipole) interaction. It seemed possible that this unique hydration behaviour of the Li{sup +} would be stronger and could reveal further structural information with a less hydrophilic anion than the chloride. Therefore we have determined the MVIE of the LiI as a function of temperature and concentration. The densities of normal and heavy water solutions of LiI have been measured with six-figure precision at T = (288.15, 298.15, and 308.15) K from (0.03 to 4) molal, m, using a vibrating-tube densitometer. The solvent isotope effect on the apparent molar volume, as well as on the solute and solvent partial molar volumes, was evaluated. As expected, with the rationalization of the MVIE of LiI instead of the geometric structural differences of the isotopic solvents, the energetic contributions have to be considered at all the temperatures investigated. At infinite dilution, a high degree of compensation between the reversed influences of the Li{sup +} and I{sup -} on the activities of the isotopic solvents determines the MVIE. By increasing concentration, the highly asymmetric energetic interactions of the Li{sup +} and the I{sup -} with the solvent apparently result in a 'mutual salting-out' effect. At a concentration {approx}0.7m, a uniquely abrupt structural rearrangement results in a 'solvent-separated ion-pair' solution structure.

  5. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  6. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  7. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  8. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  9. Structure of the Hydrated Platinum(II) Ion And the Cis-Diammine-Platinum(II) Complex in Acidic Aqueous Solution: An EXAFS Study

    Energy Technology Data Exchange (ETDEWEB)

    Jalilehvand, F.; Laffin, L.J.

    2009-05-18

    Careful analysis of Pt L{sub 3}-edge extended X-ray absorption fine structure (EXAFS) spectra shows that the hydrated platinum(II) ion in acidic (HClO{sub 4}) aqueous solution binds four water molecules with the Pt-O bond distance 2.01(2) {angstrom} and one (or two) in the axial position at 2.39(2) {angstrom}. The weak axial water coordination is in accordance with the unexpectedly small activation volume previously reported for water exchange in an interchange mechanism with associative character. The hydrated cis-diammineplatinum(II) complex has a similar coordination environment with two ammine and two aqua ligands strongly bound with Pt-O/N bond distances of 2.01(2) {angstrom} and, in addition, one (or two) axial water molecule at 2.37(2) {angstrom}. This result provides a new basis for theoretical computational studies aiming to connect the function of the anticancer drug cis-platin to its ligand exchange reactions, where usually four-coordinated square planar platinum(II) species are considered as the reactant and product. {sup 195}Pt NMR spectroscopy has been used to characterize the Pt(II) complexes.

  10. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  11. 75 FR 26647 - Ophthalmic and Topical Dosage Form New Animal Drugs; Ivermectin Topical Solution

    Science.gov (United States)

    2010-05-12

    .... FDA-2010-N-0002] Ophthalmic and Topical Dosage Form New Animal Drugs; Ivermectin Topical Solution... are treated with a topical solution of ivermectin. DATES: This rule is effective May 12, 2010. FOR... ANADA 200-340 for PRIVERMECTIN (ivermectin), a topical solution used on cattle to control infestations...

  12. Hysteresis of methane hydrate formation/decomposition at subsea geological conditions

    International Nuclear Information System (INIS)

    Klapproth, Alice; Piltz, Ross; Peterson, Vanessa K.; Kennedy, Shane J.; Kozielski, Karen A.; Hartley, Patrick G.

    2009-01-01

    Full text: Gas hydrates are a major risk when transporting oil and gas in offshore subsea pipelines. Under typical conditions in these pipelines (at high pressure and low temperature) the formation of gas hydrates is favourable. The hydrates form large solid plugs that can block pipelines and can even cause them to burst. This represents a major problem for the gas mining industry, which currently goes to extreme measures to reduce the risk of hydrate formation because there is no reliable experimental data on hydrate processes. The mechanisms of gas hydrate formation, growth and inhibition are poorly understood. A clear understanding of the fundamental processes will allow development of cost effective technologies to avoid production losses in gas pipelines. We are studying the nucleation of the methane hydrates by measuring the hysteresis of hydrate formation/decomposition by neutron diffraction. When a gas hydrate is decomposed (melted) the resulting water has a 'supposed memory effect' raising the probability of rapid hydrate reformation. This rapid reformation does not occur for pure water where nucleation can be delayed by several hours (induction time) due to metastability [1]. The memory effect can only be destroyed by extreme heating of the effected area. Possible causes of this effect include residual water structure, persistent hydrate crystal lites remaining in solution and remaining dissolved gas. We will compare the kinetics of formation and the stability region of hydrate formation of 'memory' water for comparison with pure water. This information has important implications for the oil and gas industry because it should provide a better understanding of the role of multiple dissociation and reformation of gas hydrates in plug formation.

  13. Magnetohydrodynamic viscous flow over a nonlinearly moving surface: Closed-form solutions

    Science.gov (United States)

    Fang, Tiegang

    2014-05-01

    In this paper, the magnetohydrodynamic (MHD) flow over a nonlinearly (power-law velocity) moving surface is investigated analytically and solutions are presented for a few special conditions. The solutions are obtained in closed forms with hyperbolic functions. The effects of the magnetic, the wall moving, and the mass transpiration parameters are discussed. These solutions are important to show the flow physics as well as to be used as bench mark problems for numerical validation and development of new solution schemes.

  14. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  15. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  16. Hydration and Ion Pairing in Aqueous Mg2+ and Zn2+ Solutions: Force-Field Description Aided by Neutron Scattering Experiments and Ab Initio Molecular Dynamics Simulations.

    Science.gov (United States)

    Duboué-Dijon, Elise; Mason, Philip E; Fischer, Henry E; Jungwirth, Pavel

    2018-04-05

    Magnesium and zinc dications possess the same charge and have an almost identical size, yet they behave very differently in aqueous solutions and play distinct biological roles. It is thus crucial to identify the origins of such different behaviors and to assess to what extent they can be captured by force-field molecular dynamics simulations. In this work, we combine neutron scattering experiments in a specific mixture of H 2 O and D 2 O (the so-called null water) with ab initio molecular dynamics simulations to probe the difference in the hydration structure and ion-pairing properties of chloride solutions of the two cations. The obtained data are used as a benchmark to develop a scaled-charge force field for Mg 2+ that includes electronic polarization in a mean field way. We show that using this electronic continuum correction we can describe aqueous magnesium chloride solutions well. However, in aqueous zinc chloride specific interaction terms between the ions need to be introduced to capture ion pairing quantitatively.

  17. Differences between Solution and Membrane Forms of Chitosan on the In Vitro Activity of Fibroblasts

    Directory of Open Access Journals (Sweden)

    Bahar Uslu

    2015-03-01

    Full Text Available Background: Chitosan, a linear polysaccharide, has been recently used in biomedical applications. In vitro studies have demonstrated its effect on cellular growth and its stimulatory action on cellular layer formation. Aims: The present study aims to compare the proliferative effects of chitosan in two forms, membranous and solution forms, on Swiss 3T3 mouse embryonic fibroblasts. Study Design: In vitro study. Methods: Three experimental groups were formed: cells were cultured in a normal medium without chitosan (Control Group; cells were cultured either in a medium containing 2.0% chitosan in membranous form (Membrane Group or chitosan solution at a concentration of 2.0% (Solution Group.Two different methods were used in the experiments: cells cultured on the medium containing chitosan in solution or membranous forms (method 1; and chitosan solution or membranous forms were added into the medium containing previously cultured cells (method 2. Results: Scanning electron microscopic investigations of the experimental groups revealed cells with well-defined cellular projections, intact cellular membranes and tight intercellular junctions. They were especially prominent in the membrane group of method 1 and in the membrane and solution groups of method 2. Mouse monoclonal anti-collagen 1 primary antibody was used to indicate collagen synthesis. Prominent collagen synthesis was detected in the membrane groups on the 10th day of culture for both methods. Bromodeoxyuridine (BrdU and MTT assays were performed in order to assess cellular proliferation and viability, respectively. BrdU labelling tests indicated a higher proliferation index in the membrane group of method 1 on the 5th and 10th days. For the second method, the membranous form on the 10th day and solution form on the 5th day were the most effective groups in terms of cellular proliferation. MTT results reflected a high cellular viability in method 1 on the 5th day of treatment with the

  18. In Situ Monitoring and Modeling of the Solution-Mediated Polymorphic Transformation of Rifampicin: From Form II to Form I.

    Science.gov (United States)

    Guo, Nannan; Hou, Baohong; Wang, Na; Xiao, Yan; Huang, Jingjing; Guo, Yanmei; Zong, Shuyi; Hao, Hongxun

    2018-01-01

    In this article, the solution-mediated polymorphic transformation of rifampicin was investigated and simulated in 3 solvents at 30°C. The solid-state form I and form II of rifampicin was characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). To explore the relative stability, solubility data of form I and form II of rifampicin in butan-1-ol were determined using a dynamical method. In addition, Raman spectroscopy and focused beam reflectance measurement were used to in situ monitor the transformation of rifampicin from form II to form I. The liquid state concentration of rifampicin was measured by UV spectroscopic method. To investigate the effect of solvent on transformation, the transformation experiments were carried out in 3 solvents. Furthermore, a mathematical model was built to describe the kinetics of dissolution, nucleation, and growth processes during transformation by using experimental data. By combination of experimental and simulation results, it was found that the transformation process of rifampicin is controlled by dissolution of form II in heptane, whereas the transformation in hexane and octane was firstly controlled by dissolution of solid-state form and then controlled by growth of form I. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Solution phase thermodynamics of strong electrolytes based on ionic concentrations, hydration numbers and volumes of dissolved entities

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Raji

    2013-01-01

    Roč. 24, č. 6 (2013), s. 1895-1901 ISSN 1040-0400 Institutional support: RVO:68081707 Keywords : Solution thermodynamics * Aqueous electrolytes * Partial electrolytic dissociation Subject RIV: BO - Biophysics Impact factor: 1.900, year: 2013

  20. Closed form solution to a second order boundary value problem and its application in fluid mechanics

    International Nuclear Information System (INIS)

    Eldabe, N.T.; Elghazy, E.M.; Ebaid, A.

    2007-01-01

    The Adomian decomposition method is used by many researchers to investigate several scientific models. In this Letter, the modified Adomian decomposition method is applied to construct a closed form solution for a second order boundary value problem with singularity

  1. Growth behavior of anodic porous alumina formed in malic acid solution

    Science.gov (United States)

    Kikuchi, Tatsuya; Yamamoto, Tsuyoshi; Suzuki, Ryosuke O.

    2013-11-01

    The growth behavior of anodic porous alumina formed on aluminum by anodizing in malic acid solutions was investigated. High-purity aluminum plates were electropolished in CH3COOH/HClO4 solutions and then anodized in 0.5 M malic acid solutions at 293 K and constant cell voltages of 200-350 V. The anodic porous alumina grew on the aluminum substrate at voltages of 200-250 V, and a black, burned oxide film was formed at higher voltages. The nanopores of the anodic oxide were only formed at grain boundaries of the aluminum substrate during the initial stage of anodizing, and then the growth region extended to the entire aluminum surface as the anodizing time increased. The anodic porous alumina with several defects was formed by anodizing in malic acid solution at 250 V, and oxide cells were approximately 300-800 nm in diameter.

  2. Low resolution solution structure of the Apo form of Escherichia coli haemoglobin protease Hbp.

    NARCIS (Netherlands)

    scott, D.J.; Grossman, J.G.; Tame, J.R.H.; Byron, O.; Wilson, K.S.; Otto, B.R.

    2002-01-01

    We have studied the solution properties of the apo form of the haemoglobin protease or "haemoglobinase", Hbp, a principal component of an important iron acquisition system in pathogenic Escherichia coli. Experimental determination of secondary structure content from circular dichroism (CD)

  3. XPS study of the passive layers formed on lead in aqueous nitrate solutions

    International Nuclear Information System (INIS)

    Uchida, Miho; Okuwaki, Akitsugu

    1997-01-01

    The analysis of the lead surface immersed in aqueous nitrate solutions by X-ray photoelectron spectroscopy (XPS) shows the formation of passive oxide layer containing nitrogen compound. The oxide layer formed on the lead surface in aqueous ammonium nitrate solution was hydrolyzed and cracked. (author)

  4. A Closed-Form Solution to Tensor Voting: Theory and Applications

    OpenAIRE

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gerard

    2016-01-01

    We prove a closed-form solution to tensor voting (CFTV): given a point set in any dimensions, our closed-form solution provides an exact, continuous and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence...

  5. Catalysis of gas hydrates by biosurfactants in seawater-saturated sand/clay

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, R. E.; Kothapalli, C.; Lee, M.S. [Mississippi State University, Swalm School of Chemical Engineering, MS (United States); Woolsey, J. R. [University of Mississippi, Centre of Marine Resources and Environmental Technology, MS (United States)

    2003-10-01

    Large gas hydrate mounds have been photographed in the seabed of the Gulf of Mexico and elsewhere. According to industry experts, the carbon trapped within gas hydrates is two or three times greater than all known crude oil, natural gas and coal reserves in the world. Gas hydrates, which are ice-like solids formed from the hydrogen bonding of water as water temperature is lowered under pressure to entrap a suitable molecular-size gas in cavities of the developing crystal structure, are found below the ocean floor to depths exhibiting temperature and pressure combinations within the appropriate limits. The experiments described in this study attempt to ascertain whether biosurfactant byproducts of microbial activity in seabeds could catalyze gas hydrate formation. Samples of five possible biosurfactants classifications were used in the experiments. Results showed that biosurfactants enhanced hydrate formation rate between 96 per cent and 288 percent, and reduced hydrate induction time 20 per cent to 71 per cent relative to the control. The critical micellar concentration of rhamnolipid/seawater solution was found to be 13 ppm at hydrate-forming conditions. On the basis of these results it was concluded that minimal microbial activity in sea floor sands could achieve the threshold concentration of biosurfactant that would greatly promote hydrate formation. 28 refs., 2 tabs., 4 figs.

  6. Hydrogeochemical and isotopic signatures of gas hydrate-forming fluids offshore NE Sakhalin (the sea of Okhotsk): Results from the CHAOS-2003 cruises

    International Nuclear Information System (INIS)

    Mazurenko, Leonid; Matveeva, Tatiana; Soloviev, Valery; Prasolov, Eduard; Logvina, Elizaveta; Shoji, Hitoshi; Hachikubo, Akihiro; Minami, Hirotsugi; Sakagami, Hirotoshi

    2005-01-01

    During the CHAOS-2003 cruises of R/V Akademik Lavrentyev three new gas hydrate accumulations named the Chaos, the Hieroglyph and the Kitami were discovered offshore NE Sakhalin (the Sea of Okhotsk) in association with fluid venting. The main goal of this paper is to clarify the origin and the composition of gas and water involving the accumulation of vent-related gas hydrates and to reveal their mechanism of formation. Discharging of deeper sourced water is not observed based on data of the major ion distribution. Observed isotope anomalies of hydrogen (up to 2.52%) and oxygen (up to 0.36%) are higher than fractionation coefficient under gas hydrate formation (1.8% and 0.3%, respectively). These features could be explained by two processes: a) an influence of residual water during gas hydrates formation or b) involving to the process of gas hydrate formation of deep-sourced water. The latter process is most probably influence on the isotopic composition of the pore water. Studied pore water samples consist from three end members: Gas hydrate water, seawater (or in situ pore water of the basin) and deep-sourced water. Results of isotopic studies of water testify that discharged fluid is characterized by light (delta)D (up to approx. 0.11% ) and (delta) 18 O (up to approx. 0.12%). Two mechanisms of gas hydrate accumulation are distinguished: Precipitation from infiltrating gas-saturated water and segregation of pore water by diffusing gas. (Author)

  7. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  8. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    Directory of Open Access Journals (Sweden)

    Xibing Li

    2014-02-01

    Full Text Available This paper presents an efficient closed-form solution (ECS for acoustic emission(AE source location in three-dimensional structures using time difference of arrival (TDOA measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  9. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    International Nuclear Information System (INIS)

    Zabadal, J.; Vilhena, M.T.; Segatto, C.F.; Pazos, R.P.Ruben Panta.

    2002-01-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations

  10. Determination of a closed-form solution for the multidimensional transport equation using a fractional derivative

    Energy Technology Data Exchange (ETDEWEB)

    Zabadal, J. E-mail: jorge.zabadal@ufrgs.br; Vilhena, M.T. E-mail: vilhena@mat.ufrgs.br; Segatto, C.F. E-mail: cynthia@mat.ufrgs.br; Pazos, R.P.Ruben Panta. E-mail: rpp@mat.pucrgs.br

    2002-07-01

    In this work we construct a closed-form solution for the multidimensional transport equation rewritten in integral form which is expressed in terms of a fractional derivative of the angular flux. We determine the unknown order of the fractional derivative comparing the kernel of the integral equation with the one of the Riemann-Liouville definition of fractional derivative. We report numerical simulations.

  11. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2011-12-01

    phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.

  12. Advances in understanding hydration of Portland cement

    International Nuclear Information System (INIS)

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-01-01

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C 3 A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed

  13. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  14. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution

    NARCIS (Netherlands)

    Sabil, K.M.; Duarte, A.R.C.; Zevenbergen, J.F.; Ahmad, M.M.; Yusup, S.; Omar, A.A.; Peters, C.J.

    2010-01-01

    A laboratory-scale reactor system is built and operated to measure the kinetic of formation for single and mixed carbon dioxide-tetrahydrofuran hydrates. The T-cycle method, which is used to collect the kinetic data, is briefly discussed. For single carbon dioxide hydrate, the induction time

  15. Dual reorientation relaxation routes of water molecules in oxyanion’s hydration shell: A molecular geometry perspective

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin, E-mail: gaoyq@pku.edu.cn [Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering and Biodynamic Optical Imaging Center, Peking University, Beijing 100871 (China)

    2015-12-14

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion’s hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a “structure breaker” in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics.

  16. Dual reorientation relaxation routes of water molecules in oxyanion’s hydration shell: A molecular geometry perspective

    International Nuclear Information System (INIS)

    Xie, Wen Jun; Yang, Yi Isaac; Gao, Yi Qin

    2015-01-01

    In this study, we examine how complex ions such as oxyanions influence the dynamic properties of water and whether differences exist between simple halide anions and oxyanions. Nitrate anion is taken as an example to investigate the hydration properties of oxyanions. Reorientation relaxation of its hydration water can occur through two different routes: water can either break its hydrogen bond with the nitrate to form one with another water or switch between two oxygen atoms of the same nitrate. The latter molecular mechanism increases the residence time of oxyanion’s hydration water and thus nitrate anion slows down the translational motion of neighbouring water. But it is also a “structure breaker” in that it accelerates the reorientation relaxation of hydration water. Such a result illustrates that differences do exist between the hydration of oxyanions and simple halide anions as a result of different molecular geometries. Furthermore, the rotation of the nitrate solute is coupled with the hydrogen bond rearrangement of its hydration water. The nitrate anion can either tilt along the axis perpendicularly to the plane or rotate in the plane. We find that the two reorientation relaxation routes of the hydration water lead to different relaxation dynamics in each of the two above movements of the nitrate solute. The current study suggests that molecular geometry could play an important role in solute hydration and dynamics

  17. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  18. Effects of mannose, fructose, and fucose on the structure, stability, and hydration of lysozyme in aqueous solution

    DEFF Research Database (Denmark)

    Rahim, Abdoul; Peters, Günther H.J.; Jalkanen, Karl J.

    2013-01-01

    The bio-protective properties of monosaccharaides, namely mannose, fructose and fucose, on the stability and dynamical properties of the NMR determined hen egg-white lysozyme structure have been investigated by means of molecular dynamics simulations at room temperature in aqueous solution and in...... of the solvent and sugar distributions around lysozyme was used to investigate the interfacial solvent and sugar structure near the protein surface.......The bio-protective properties of monosaccharaides, namely mannose, fructose and fucose, on the stability and dynamical properties of the NMR determined hen egg-white lysozyme structure have been investigated by means of molecular dynamics simulations at room temperature in aqueous solution and in 7...... and 13 wt % concentrations of the three sugars. Results are discussed in the framework of the bio-protective phenomena. The three sugars show similar bio-protective behaviours at room temperature (300 K) in the concentration range studied as shown by the small RMSDs of the resulting MD structures from...

  19. Development of iron phosphate ceramic waste form to immobilize radioactive waste solution

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jongkwon [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Um, Wooyong, E-mail: wooyong.um@pnnl.gov [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of); Pacific Northwest National Laboratory, Richland, WA 99354 (United States); Choung, Sungwook [Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-Dong, Pohang (Korea, Republic of)

    2014-09-15

    The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl–KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl–KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl–KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl–KCl eutectic salt and off-gas scrubber solutions with significant cost savings.

  20. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  1. The role of hydrophobic interactions for the formation of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Wang, J.; Eriksson, J.C. [Virginia Polytech Inst. and State Univ., Blacksburg, VA (United States). Center for Advanced Separation Technologies; Sum, A.K. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering

    2008-07-01

    The process of hydrate formation remains largely unexplained due to a lack of evidence for the water molecules around the hydrophobic solute such as methane, and the nucleation process leading to the clustering that induces hydrate growth. However, the water structure is known to play a major role in the mechanism for hydrate nucleation. This paper presented evidence that hydrophobic solutes promote the structuring of water. Water molecules at room temperature tend to form ice structures around the hydrocarbon chains of surfactant molecules dissolved in water. An atomic force microscope (AFM) was used in this study to measure the surface forces between thiolated gold surfaces. The purpose was to better understand the structure of the thin films of water between hydrophobic surfaces. The water molecules tended to reorganize themselves to form ordered structures, which may be related to the nucleation of hydrates. The entropy reduction associated with the ice structure can be considered as the net driving force for self-assembly. Recent studies have revealed that long-range attractive forces exist between hydrophobic surfaces, which are likely to result from structuring of the water molecules in the vicinity of the hydrophobic surfaces. Similarly, the hydrophobic nature of most gas hydrate formers may induce ordering of water molecules in the vicinity of dissolved solutes. It was concluded that the results of this study may be used to develop a new mechanism for the formation of gas hydrates, including methane. 20 refs., 2 figs.

  2. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  3. Unsteady free convection flow of a micropolar fluid with Newtonian heating: Closed form solution

    Directory of Open Access Journals (Sweden)

    Hussanan Abid

    2017-01-01

    Full Text Available This article investigates the unsteady free convection flow of a micropolar fluid over a vertical plate oscillating in its own plane with Newtonian heating condition. The problem is modelled in terms of partial differential equations with some physical conditions. Closed form solutions in terms of exponential and complementary error functions of Gauss are obtained by using the Laplace transform technique. They satisfy the governing equations and impose boundary and initial conditions. The present solution in the absence of microrotation reduces to well-known solutions of Newtonian fluid. Graphs are plotted to study the effects of various physical parameters on velocity and microrotation. Numerical results for skin friction and wall couple stress is computed in tables. Apart from the engineering point of view, the present article has strong advantage over the published literature as the exact solutions obtained here can be used as a benchmark for comparison with numerical/ approximate solutions and experimental data.

  4. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  5. On the conditions of preparation of hydrated rare earth orthovanadates

    Energy Technology Data Exchange (ETDEWEB)

    Nakhodnova, A P; Belousova, E E; Shuba, Yu I; Zaslavskij, L V

    1988-10-01

    The properties of Ln(NO/sub 3/)/sub 3/-Na/sub 3/VO/sub 4/-H/sub 2/O solution series, where Ln is Er, Ho, Eu are investigated by the methods of residual concentrations, conductometry and potentiometry. It is found that at equivalent ratios of the initial components LnVO/sub 4/xmH/sub 2/O hydrated orthovanadates are formed. Deviations towards excess of rare earths or vanadium result in contamination of the compounds by products of side reactions. According to the data on X-ray phase analysis, hydrated erbium, holmium, europium orthovanadates have the zirconium crystal structure typical for anhydrous compounds. It is shown that hydrate water, being a component of orthovanadates, can be referred to adsorbed and interlayer water.

  6. On the conditions of preparation of hydrated rare earth orthovanadates

    International Nuclear Information System (INIS)

    Nakhodnova, A.P.; Belousova, E.E.; Shuba, Yu.I.; Zaslavskij, L.V.

    1988-01-01

    The properties of Ln(NO 3 ) 3 -Na 3 VO 4 -H 2 O solution series, where Ln is Er, Ho, Eu are investigated by the methods of residual concentrations, conductometry and potentiometry. It is found that at equivalent ratios of the initial components LnVO 4 xmH 2 O hydrated orthovanadates are formed. Deviations towards excess of rare earths or vanadium result in contamination of the compounds by products of side reactions. According to the data on X-ray phase analysis, hydrated erbium, holmium, europium orthovanadates have the zirconium crystal structure typical for anhydrous compounds. It is shown that hydrate water, being a component of orthovanadates, can be referred to adsorbed and interlayer water

  7. Analytical electron microscopy study of surface layers formed on the French SON68 nuclear waste glass during vapor hydration at 200 C

    International Nuclear Information System (INIS)

    Gong, W.L.; Wang, L.M.; Ewing, R.C.; Bates, J.K.; Ebert, W.L.

    1998-01-01

    Extensive solid-state characterization (AEM/SEM/HRTEM) was completed on six SON68 (inactive R7T7) waste glasses which were altered in the presence of saturated water vapor (200 C) for 22, 91, 241, 908, 1000, 1013, and 1021 days. The samples were examined by AEM in cross-section (lattice-fringe imaging, micro-diffraction, and quantitative thin-film EDS analysis). The glass monoliths were invariably covered by a thin altered rind, and the surface layer thickness increased with increasing time of reaction, ranging from 0.5 to 30 μm in thickness. Six distinctive zones, based on phase chemistry and microstructure, were distinguished within the well-developed surface layers. Numerous crystalline phases such as analcime, gyrolite, tobermorite, apatite, and weeksite were identified on the surfaces of the reacted glasses as precipitates. The majority of the surface layer volume was composed of two basic structures that are morphologically and chemically distinct: The A-domain consisted of well-crystallized fibrous smectite aggregates; and the B-domain consisted of poorly-crystallized regions containing smectite, possibly montmorillonite, crystallites and a ZrO 2 -rich amorphous silica matrix. The retention of the rare-earth elements, Mo, and Zr mostly occurred within the B-domain; while transition metal elements, such as Zn, Cr, Ni, Mn, and Fe, were retained in the A-domain. The element partitioning among A-domains and B-domains and recrystallization of the earlier-formed B-domains into the A-domain smectites were the basic processes which have controlled the chemical and structural evolution of the surface layer. The mechanism of surface layer formation during vapor hydration are discussed based on these cross-sectional AEM results. (orig.)

  8. Polymorphism in Br2 clathrate hydrates.

    Science.gov (United States)

    Goldschleger, I U; Kerenskaya, G; Janda, K C; Apkarian, V A

    2008-02-07

    The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.

  9. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  10. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  11. Comments on "A closed-form solution to Tensor voting: theory and applications"

    OpenAIRE

    Maggiori, Emmanuel; Lotito, Pablo Andres; Manterola, Hugo Luis; del Fresno, Mariana

    2017-01-01

    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the propo...

  12. On the electrolytic generation of hydrated electron

    International Nuclear Information System (INIS)

    Ghosh Mazumdar, A.S.; Guha, S.N.

    1975-01-01

    Investigations on the electrolytic generation of hydrated electron in oxygenated as well as oxygen-free solutions at different pH were undertaken. Since sup(-e)aq is known to react rapidly with O 2 yielding the transient O 2 - ion, the latter was looked for through its interaction with phosphite ions resulting in their oxidation near the cathode. It appears from the results that in electrolytic processes, the primary electron (esup(-)sub(cathode)) probably reacts directly with reactive solutes like oxygen, bypassing the hydration step. Data obtained in oxygen-free solutions, however, support the possible formation of hydrated electron at least in alkaline solutions. (author)

  13. The preparation method of solid boron solution in silicon carbide in the form of micro powder

    International Nuclear Information System (INIS)

    Pampuch, R.; Stobierski, L.; Lis, J.; Bialoskorski, J.; Ermer, E.

    1993-01-01

    The preparation method of solid boron solution in silicon carbide in the form of micro power has been worked out. The method consists in introducing mixture of boron, carbon and silicon and heating in the atmosphere of inert gas to the 1573 K

  14. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    Science.gov (United States)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  15. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  16. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  17. Solitary Wave Solutions of the Boussinesq Equation and Its Improved Form

    Directory of Open Access Journals (Sweden)

    Reza Abazari

    2013-01-01

    Full Text Available This paper presents the general case study of previous works on generalized Boussinesq equations, (Abazari, 2011 and (Kılıcman and Abazari, 2012, that focuses on the application of G′/G-expansion method with the aid of Maple to construct more general exact solutions for the coupled Boussinesq equations. In this work, the mentioned method is applied to construct more general exact solutions of Boussinesq equation and improved Boussinesq equation, which the French scientist Joseph Valentin Boussinesq (1842–1929 described in the 1870s model equations for the propagation of long waves on the surface of water with small amplitude. Our work is motivated by the fact that the G′/G-expansion method provides not only more general forms of solutions but also periodic, solitary waves and rational solutions. The method appears to be easier and faster by means of a symbolic computation.

  18. Effects of molecular interactions and the existence of different molecular forms of sodium fluoresceinate in solutions

    International Nuclear Information System (INIS)

    Golubeva, N.G.

    1989-01-01

    The results of measurement of fluorescence and absorption spectra of sodium fluoresceinate (FLNa) in different solutions and blood plasma are presented. The influence of solvent nature, its polarity, medium concentration and acidity on frequency, intensity and shape of fluorescence and absorption lines was analyzed. A general medium effect on fluorescence line spectral absorption was calculated from Lippert's equation. The influence of specific interactions has been analyzed on the example of acid-base interactions and hydrogen bonds in two- and multicomponent solutions. Computer processing of the spectra obtained allows to separate some forms of existing fluorophor molecules and to get data on the dynamics of their changes in different solutions. A special attention was given to the analysis of absorption and fluorescence bands of FLNa at its interaction with different proteins and lipids in solutions. From the analysis of data obtained a number of conclusions was drawn on the state of fluophor at its interactions with biological media. (author)

  19. Le problème des hydrates dans le contexte de la production et du transport polyphasiques des pétroles bruts et des gaz naturels. Deuxième partie : les solutions possibles aux difficultés d'exploitation générées par les hydrates Hydrates Problem Within the Framework of Multiphase Production and Transport of Crude Oils and Natural Gases. Part Two: Possible Solutions to Exploitation Difficulties Generated by Hydrates

    Directory of Open Access Journals (Sweden)

    Behar E.

    2006-11-01

    Full Text Available L'exploitation en mer des gisements de combustibles fossiles fluides a amplifié le besoin d'accroître nos connaissances sur les hydrates qui sont susceptibles de boucher les installations de production, de traitement et de transport. La première partie rappelait la structure moléculaire des hydrates I, Il et H et décrivait ensuite succinctement l'analyse physico-chimique de leur formation, tant sur les plans thermodynamique que cinétique. Dans cette deuxième partie, les remèdes possibles aux problèmes rencontrés par les compagnies opératrices sont indiqués, essentiellement les inhibiteurs thermodynamiques classiques tels que les alcools ou les sels qui diminuent la température de formation des hydrates, et les additifs dispersants qui évitent la croissance et/ou l'agglomération des cristaux. Pour terminer, une boucle pilote de circulation originale est présentée, ses caractéristiques qui permettent la validation des additifs dispersants dans des conditions hydrodynamiques et physico-chimiques représentatives étant soulignées. Offshore exploitation of fossil fluid fuels has emphasized the need of improving our knowledge on hydrates which can plug production, treatment and transport facilities. The first part recalled the molecular structure of I, II and H hydrates, then the physical-chemistry of their formation was briefly reviewed from both the thermodynamic and the kinetic points of view. In this second part, the possible remedies to the problems met by operating companies are described, mainly classical thermodynamic inhibitors such as alcohols or salts which decrease the hydrates formation temperature, and dispersant additives which avoid crystals growth and/or agglomeration. At last an original circulation loop at pilot scale is presented, its characteristics which allow the testing of dispersant additives under representative hydrodynamic and physico-chemical conditions being outlined.

  20. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  1. Tooling solutions for sheet metal forming and punching of lean duplex stainless steel

    DEFF Research Database (Denmark)

    Wadman, Boel; Madsen, Erik; Bay, Niels

    2012-01-01

    .4509 and lean duplex EN1.4162 in a production designed for austenitic stainless steels, such as EN1.4301 and 1.4401. The result is a guideline that summarizes how stainless material properties may affect tool degradation, and suggests tool solutions for reduced production disturbances and tool maintenance cost.......For producers of advanced stainless components the choice of stainless material influences not only the product properties, but also the tooling solution for sheet metal stamping. This work describes how forming and punching tools will be affected when introducing the stainless alloys ferritic EN1...

  2. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  3. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  4. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  5. On Conservation Forms and Invariant Solutions for Classical Mechanics Problems of Liénard Type

    Directory of Open Access Journals (Sweden)

    Gülden Gün Polat

    2014-01-01

    Full Text Available In this study we apply partial Noether and λ-symmetry approaches to a second-order nonlinear autonomous equation of the form y′′+fyy′+g(y=0, called Liénard equation corresponding to some important problems in classical mechanics field with respect to f(y and g(y functions. As a first approach we utilize partial Lagrangians and partial Noether operators to obtain conserved forms of Liénard equation. Then, as a second approach, based on the λ-symmetry method, we analyze λ-symmetries for the case that λ-function is in the form of λ(x,y,y′=λ1(x,yy′+λ2(x,y. Finally, a classification problem for the conservation forms and invariant solutions are considered.

  6. Closed-Form Solutions for Gradient Elastic Beams with Geometric Discontinuities by Laplace Transform

    Directory of Open Access Journals (Sweden)

    Mustafa Özgür Yayli

    2013-01-01

    Full Text Available The static bending solution of a gradient elastic beam with external discontinuities is presented by Laplace transform. Its utility lies in the ability to switch differential equations to algebraic forms that are more easily solved. A Laplace transformation is applied to the governing equation which is then solved for the static deflection of the microbeam. The exact static response of the gradient elastic beam with external discontinuities is obtained by applying known initial conditions when the others are derived from boundary conditions. The results are given in a series of figures and compared with their classical counterparts. The main contribution of this paper is to provide a closed-form solution for the static deflection of microbeams under geometric discontinuities.

  7. Constructing soliton solutions and super-bilinear form of lattice supersymmetric KdV equation

    International Nuclear Information System (INIS)

    Carstea, A S

    2015-01-01

    The Hirota bilinear form and multisoliton solution for semidiscrete and fully discrete (difference–difference) versions of the supersymmetric Korteweg–de Vries (KdV) equation found by Xue et al (2013 J. Phys. A: Math. Theor 46 502001) are presented. The solitonic interaction term displays a fermionic dressing factor as in the continuous supersymmetric case. Using bilinear equations it is also shown that a new integrable semidiscrete (and fully discrete) version of supersymmetric KdV can be constructed with a simpler bilinear form but a more complicated interaction dressing. Its continuum limit is also computed. (paper)

  8. Antimicrobial Activity of Chitosan Film Forming Solution Enriched with Essential Oils; an in Vitro Assay.

    Science.gov (United States)

    Raphaël, Kana Jean; Meimandipour, Amir

    2017-01-01

    Background: The resistance of the bacteria and fungi to the innumerous antimicrobial agents is a major challenge in the treatment of the infections demands to the necessity for searching and finding new sources of substances with antimicrobial properties. The incorporation of the essential oils (EOs) in chitosan film forming solution may enhance antimicrobial properties. However, its use as the feeding additive in the poultry nutrition needs to clarify the product's activity against both pathogen and the useful microbes in the gastrointestinal tract. Objectives: In the present study, we carried out an in vitro investigation and evaluated the antimicrobial activity of chitosan film forming solution incorporated with essential oils (CFs+EOs) against microbial strains including Staphylococcus aureus, Escherichia coli, Enterococcus faecium, Lactobacillus rahmnosus, Aspergillus niger and Alternaria alternate . Material and Methods: In three replicates, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of different treatments including: 1- essential oils (EOs), 2- chitosan film solution (CFs), and 3-chitosan film solution enriched with EOs (CFs+EOs) were determined against above mentioned microbes. Results: The results indicated that the chitosan solution enriched with essential oils (CFs+EOs) is capable of inhibiting the bacterial and fungal growth even at the lowest concentrations. The MIC and MBC for all the antimicrobial agents against Escherichia coli and Staphylococcus aureus were very low compared to the concentrations needed to inhibit the growth of useful bacteria, Lactobacillus rahmnosu and Enterococcus faecium . The antifungal activity of chitosan was enhanced as the concentration of EOs increased in the film solution. Conclusion: Chitosan-EOs complexes are the promising candidate for novel contact antimicrobial agents that can be used in animal feeds.

  9. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  10. Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".

    Science.gov (United States)

    Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana

    2014-12-01

    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.

  11. Formulation and Development of Metered Dose Inhalations of Salbutamol in Solution Form

    Science.gov (United States)

    Khale, Anubha; Bajaj, Amrita

    2011-01-01

    In the present study attempts were made to prepare metered dose inhalation of salbutamol in solution form and compared it with the marketed metered dose inhalation in suspension form. Solution form of the drug was found better than marketed suspension formulation with respect to homogeneity and content uniformity. Propellant blend P-11 and P-12 in the proportion 30:70 was selected as it gave optimum vapour pressure. Surfactant oleic acid in concentration 10 mg per can was selected as it gave best results with clarity, spray pattern, vapour pressure, content per spray and rate of evaporation. Ethyl alcohol 2 ml per can was used as a cosolvent to give a clear solution, optimum vapour pressure, maximum content per spray and fair rate of evaporation. The selected formulation was subjected to the physico-chemical evaluation tests as per the standard pharmacopoeial procedures and the characteristics of the formulations were further compared with a conventional marketed formulation. In vitro study reveled the net respirable fraction was better than marketed preparation. PMID:22923867

  12. Enhancement of the surface methane hydrate-bearing layer based on the specific microorganisms form deep seabed sediment in Japan Sea.

    Science.gov (United States)

    Hata, T.; Yoneda, J.; Yamamoto, K.

    2017-12-01

    A methane hydrate-bearing layer located near the Japan Sea has been investigated as a new potential energy resource. In this study examined the feasibility of the seabed surface sediment strength located in the Japan Sea improvement technologies for enhancing microbial induced carbonate precipitation (MICP) process. First, the authors cultivated the specific urease production bacterium culture medium from this surface methane hydrate-bearing layer in the seabed (-600m depth) of Japan Sea. After that, two types of the laboratory test (consolidated-drained triaxial tests) were conducted using this specific culture medium from the seabed in the Japan Sea near the Toyama Prefecture and high urease activities bacterium named Bacillus pasteurii. The main outcomes of this research are as follows. 1) Specific culture medium focused on the urease production bacterium can enhancement of the urease activities from the methane hydrate-bearing layer near the Japan Sea side, 2) This specific culture medium can be enhancement of the surface layer strength, 3) The microbial induced carbonate precipitation process can increase the particle size compared to that of the original particles coating the calcite layer surface, 4) The mechanism for increasing the soil strength is based on the addition of cohesion like a cement stabilized soil.

  13. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    angle x-ray scattering (WAXD) that characterize how additives affect both the hydrated microstructure development and the original grain size. In particular, SPs alter the morphology of the hydrated phases, which no longer grow with the classic fibrillar structure on the grain surface, but nucleate in solution as globular structures. All this information converges in a quantitative, and at molecular level, description of the mechanisms involved in the setting process of one of the materials most widely used by human beings

  14. Closed-form kinetic parameter estimation solution to the truncated data problem

    International Nuclear Information System (INIS)

    Zeng, Gengsheng L; Kadrmas, Dan J; Gullberg, Grant T

    2010-01-01

    In a dedicated cardiac single photon emission computed tomography (SPECT) system, the detectors are focused on the heart and the background is truncated in the projections. Reconstruction using truncated data results in biased images, leading to inaccurate kinetic parameter estimates. This paper has developed a closed-form kinetic parameter estimation solution to the dynamic emission imaging problem. This solution is insensitive to the bias in the reconstructed images that is caused by the projection data truncation. This paper introduces two new ideas: (1) it includes background bias as an additional parameter to estimate, and (2) it presents a closed-form solution for compartment models. The method is based on the following two assumptions: (i) the amount of the bias is directly proportional to the truncated activities in the projection data, and (ii) the background concentration is directly proportional to the concentration in the myocardium. In other words, the method assumes that the image slice contains only the heart and the background, without other organs, that the heart is not truncated, and that the background radioactivity is directly proportional to the radioactivity in the blood pool. As long as the background activity can be modeled, the proposed method is applicable regardless of the number of compartments in the model. For simplicity, the proposed method is presented and verified using a single compartment model with computer simulations using both noiseless and noisy projections.

  15. Identification of precipitates formed on zero-valent iron in anaerobic aqueous solutions

    International Nuclear Information System (INIS)

    Schuhmacher, T.; Odziemkowski, M.S.; Reardon, E.J.; Gillham, R.W.

    1997-01-01

    The formation of precipitates has been identified as a possible limitation in the use of granular iron for in situ remediation of groundwater. This study was undertaken to identify the precipitates that form on the iron surfaces under conditions of differing water chemistry. Two laboratory column tests were performed using 100 mesh, 99% pure electrolytic iron. A 120 mg/L calcium carbonate (CaCO 3 ) solution passed through one column and a 40 mg/L potassium bromide (KBr) solution through the other. The CaCO, treated iron formed a whitish gray coating on the first centimeter of the column but the KBr treated iron did not display any visible precipitates. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy were used to identify the precipitates. Calcium carbonate and ferrous carbonate (FeCO 3 ) phases were only present on the surface of the iron removed from the influent end of the column treated with a CaCO 3 solution. Iron surfaces analyzed from both the influent and the effluent end of the KBr treated iron and the effluent end of the CaCO 3 treated iron indicated the presence of magnetite (Fe 3 O 4 ) precipitates

  16. Abundant closed form solutions of the conformable time fractional Sawada-Kotera-Ito equation using (G‧ / G) -expansion method

    Science.gov (United States)

    Al-Shawba, Altaf Abdulkarem; Gepreel, K. A.; Abdullah, F. A.; Azmi, A.

    2018-06-01

    In current study, we use the (G‧ / G) -expansion method to construct the closed form solutions of the seventh order time fractional Sawada-Kotera-Ito (TFSKI) equation based on conformable fractional derivative. As a result, trigonometric, hyperbolic and rational functions solutions with arbitrary constants are obtained. When the arbitrary constants are taken some special values, the periodic and soliton solutions are obtained from the travelling wave solutions. The obtained solutions are new and not found elsewhere. The effect of the fractional order on some of these solutions are represented graphically to illustrate the behavior of the exact solutions when the parameter take some special choose.

  17. High density liquid structure enhancement in glass forming aqueous solution of LiCl

    Science.gov (United States)

    Camisasca, G.; De Marzio, M.; Rovere, M.; Gallo, P.

    2018-06-01

    We investigate using molecular dynamics simulations the dynamical and structural properties of LiCl:6H2O aqueous solution upon supercooling. This ionic solution is a glass forming liquid of relevant interest in connection with the study of the anomalies of supercooled water. The LiCl:6H2O solution is easily supercooled and the liquid state can be maintained over a large decreasing temperature range. We performed simulations from ambient to 200 K in order to investigate how the presence of the salt modifies the behavior of supercooled water. The study of the relaxation time of the self-density correlation function shows that the system follows the prediction of the mode coupling theory and behaves like a fragile liquid in all the range explored. The analysis of the changes in the water structure induced by the salt shows that while the salt preserves the water hydrogen bonds in the system, it strongly affects the tetrahedral hydrogen bond network. Following the interpretation of the anomalies of water in terms of a two-state model, the modifications of the oxygen radial distribution function and the angular distribution function of the hydrogen bonds in water indicate that LiCl has the role of enhancing the high density liquid component of water with respect to the low density component. This is in agreement with recent experiments on aqueous ionic solutions.

  18. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  19. A closed form solution for the response of a long elastic beam to dynamic loading

    International Nuclear Information System (INIS)

    Mittal, R.K.

    1989-01-01

    Closed form solutions have been obtained using Fourier transform method for the deflection, curvature and particle velocity of a long elastic beam when it is subjected to a concentrated transverse force which is varying with time. These solutions have been illustrated with the help of two force histories, i.e. a half-sine pulse and a rectangular pulse. Dimensionless parameters representing deflection, curvature and particle velocity have been plotted as functions of dimensionless distance and dimensionless time. Furthermore, the particular case of constant velocity impact which has been studied by other authors using different techniques has also been considered in the present paper and the results compare within numerical errors involved in the evaluation of integrals. (orig.) [de

  20. Electrostatics promotes molecular crowding and selects the aggregation pathway in fibril-forming protein solutions

    International Nuclear Information System (INIS)

    Raccosta, S.; Martorana, V.; Manno, M.; Blanco, M.; Roberts, C.J.

    2016-01-01

    The role of intermolecular interaction in fibril-forming protein solutions and its relation with molecular conformation are crucial aspects for the control and inhibition of amyloid structures. Here, we study the fibril formation and the protein-protein interactions for two proteins at acidic ph, lysozyme and α-chymotrypsinogen. By using light scattering experiments and the Kirkwood-Buff integral approach, we show how concentration fluctuations are damped even at moderate protein concentrations by the dominant long-ranged electrostatic repulsion, which determines an effective crowded environment. In denaturing conditions, electrostatic repulsion keeps the monomeric solution in a thermodynamically metastable state, which is escaped through kinetically populated conformational sub-states. This explains how electrostatics acts as a gatekeeper in selecting a specific aggregation pathway.

  1. Hydrogen Storage Capacity of Tetrahydrofuran and Tetra-N-Butylammonium Bromide Hydrates Under Favorable Thermodynamic Conditions

    Directory of Open Access Journals (Sweden)

    Joshua T. Weissman

    2017-08-01

    Full Text Available An experimental study was conducted to evaluate the feasibility of employing binary hydrates as a medium for H2 storage. Two reagents, tetrahydrofuran (THF and tetra-n-butylammonium bromide (TBAB, which had been reported previously to have potential to form binary hydrates with H2 under favorable conditions (i.e., low pressures and high temperatures, were investigated using differential scanning calorimetry and Raman spectroscopy. A scale-up facility was employed to quantify the hydrogen storage capacity of THF binary hydrate. Gas chromatography (GC and pressure drop analyses indicated that the weight percentages of H2 in hydrate were less than 0.1%. The major conclusions of this investigation were: (1 H2 can be stored in binary hydrates at relatively modest pressures and temperatures which are probably feasible for transportation applications; and (2 the storage capacity of H2 in binary hydrate formed from aqueous solutions of THF over a concentration range extending from 2.78 to 8.34 mol % and at temperatures above 263 K and pressures below 11 MPa was <0.1 wt %.

  2. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  3. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  4. New Families of Rational Form Solitary Wave Solutions to (2+1)-Dimensional Broer-Kaup-Kupershmidt System

    International Nuclear Information System (INIS)

    Wang Qi; Li Biao; Zhang Hongqing; Chen Yong

    2005-01-01

    Taking the (2+1)-dimensional Broer-Kaup-Kupershmidt system as a simple example, some families of rational form solitary wave solutions, triangular periodic wave solutions, and rational wave solutions are constructed by using the Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.

  5. Comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, J N; Chao, W C [Virginia Polytechnic Inst. and State Univ., Blacksburg (USA). Dept. of Engineering Science and Mechanics

    1981-04-01

    In this study the effects of reduced integration, mesh size, and element type (i.e. linear or quadratic) on the accuracy of a penalty-finite element based on the theory governing thick, laminated, anisotropic composite plates are investigated. In order to assess the accuracy of the present finite element, exact closed-form solutions are developed for cross-ply and antisymmetric angle-ply rectangular plates simply supported and subjected to sinusoidally distributed mechanical and/or thermal loadings, and free vibration.

  6. The Analysis of Closed-form Solution for Energy Detector Dynamic Threshold Adaptation in Cognitive Radio

    Directory of Open Access Journals (Sweden)

    R. Bozovic

    2017-12-01

    Full Text Available Spectrum sensing is the most important process in cognitive radio in order to ensure interference avoidance to primary users. For optimal performance of cognitive radio, it is substantial to monitor and promptly react to dynamic changes in its operating environment. In this paper, energy detector based spectrum sensing is considered. Under the assumption that detected signal can be modelled according to an autoregressive model, noise variance is estimated from that noisy signal, as well as primary user signal power. A closed-form solution for optimal decision threshold in dynamic electromagnetic environment is proposed and analyzed.

  7. The Conduct of Adjustment Term as Form Alternative to Jurisdictionalization the Solution of Conflict Environmental

    Directory of Open Access Journals (Sweden)

    Tatiana Fernandes Dias Da Silva

    2016-10-01

    Full Text Available This paper aims to demonstrate that the Conduct Adjustment Term (TAC can be an effective way to forward alternative jurisdictionalization environmental conflicts. Therefore we studied the Brazilian legislation, the national and foreign doctrine, case law and journals. The goal is to prove that given the slow pace of judicial assistance, especially in cases of environmental demands, the TAC, as extrajudicial form of dispute resolution, could be an effective solution for the preservation and protection of the environment if it were more used by legitimate environmental agencies and effectively monitored compliance by the local government.

  8. Closed-form Solution to Directly Design FACE Waveforms for Beampatterns Using Planar Array

    KAUST Repository

    Bouchoucha, Taha; Ahmed, Sajid; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative algorithms. The main challenges encountered in the existing approaches are the computational complexity and the design of waveforms to use in practice. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.

  9. Closed-form Solution to Directly Design FACE Waveforms for Beampatterns Using Planar Array

    KAUST Repository

    Bouchoucha, Taha

    2015-04-19

    In multiple-input multiple-output radar systems, it is usually desirable to steer transmitted power in the region-of-interest. To do this, conventional methods optimize the waveform covariance matrix, R, for the desired beampattern, which is then used to generate actual transmitted waveforms. Both steps require constrained optimization, therefore, use iterative algorithms. The main challenges encountered in the existing approaches are the computational complexity and the design of waveforms to use in practice. In this paper, we provide a closed-form solution to design covariance matrix for the given beampattern using the planar array, which is then used to derive a novel closed-form algorithm to directly design the finite-alphabet constant-envelope (FACE) waveforms. The proposed algorithm exploits the two-dimensional fast-Fourier-transform. The performance of our proposed algorithm is compared with existing methods that are based on semi-definite quadratic programming with the advantage of a considerably reduced complexity.

  10. In situ Low-temperature Pair Distribution Function (PDF) Analysis of CH4 and CO2 Hydrates

    Science.gov (United States)

    Cladek, B.; Everett, M.; McDonnell, M.; Tucker, M.; Keffer, D.; Rawn, C.

    2017-12-01

    Gas hydrates occur in ocean floor and sub-surface permafrost deposits and are stable at moderate to high pressures and low temperatures. They are a clathrate structure composed of hydrogen bonded water cages that accommodate a wide variety of guest molecules. CO2 and CH4 hydrates both crystallize as the cubic sI hydrate and can form a solid solution. Natural gas hydrates are interesting as a potential methane source and for CO2 sequestration. Long-range diffraction studies on gas hydrates give valuable structural information but do not provide a detailed understanding of the disordered gas molecule interactions with the host lattice. In-situ low temperature total scattering experiments combined with pair distribution function (PDF) analysis are used to investigate the gas molecule motions and guest-cage interactions. CO2 and methane hydrates exhibit different decomposition behavior, and CO2 hydrate has a smaller lattice parameter despite it being a relatively larger molecule. Total scattering studies characterizing both the short- and long-range order simultaneously help to elucidate the structural source of these phenomena. Low temperature neutron total scattering data were collected using the Nanoscale Ordered MAterials Diffractometer (NOMAD) beamline at the Spallation Neutron Source (SNS) on CO2 and CH4 hydrates synthesized with D2O. Guest molecule motion within cages and interactions between gases and cages are investigated through the hydrate stability and decomposition regions. Data were collected from 2-80 K at a pressure of 55 mbar on CO2 and CH4 hydrates, and from 80-270 K at 25 bar on CH4 hydrate. The hydrate systems were modeled with classical molecular dynamic (MD) simulations to provide an analysis of the total energy into guest-guest, guest-host and host-host contributions. Combined Reitveld and Reverse Monte Carlo (RMC) structure refinement were used to fit models of the data. This combined modeling and simulation characterizes the effects of CO2 and

  11. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl2 hydrates and MgCl2 hydrates for seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra-Nedea, S.V.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    Salt hydrates store solar energy in chemical form via a reversible dehydration–hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The

  12. A closed-form solution to tensor voting: theory and applications.

    Science.gov (United States)

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard

    2012-08-01

    We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.

  13. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  14. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  15. Analytic Closed-Form Solution of a Mixed Layer Model for Stratocumulus Clouds

    Science.gov (United States)

    Akyurek, Bengu Ozge

    Stratocumulus clouds play an important role in climate cooling and are hard to predict using global climate and weather forecast models. Thus, previous studies in the literature use observations and numerical simulation tools, such as large-eddy simulation (LES), to solve the governing equations for the evolution of stratocumulus clouds. In contrast to the previous works, this work provides an analytic closed-form solution to the cloud thickness evolution of stratocumulus clouds in a mixed-layer model framework. With a focus on application over coastal lands, the diurnal cycle of cloud thickness and whether or not clouds dissipate are of particular interest. An analytic solution enables the sensitivity analysis of implicitly interdependent variables and extrema analysis of cloud variables that are hard to achieve using numerical solutions. In this work, the sensitivity of inversion height, cloud-base height, and cloud thickness with respect to initial and boundary conditions, such as Bowen ratio, subsidence, surface temperature, and initial inversion height, are studied. A critical initial cloud thickness value that can be dissipated pre- and post-sunrise is provided. Furthermore, an extrema analysis is provided to obtain the minima and maxima of the inversion height and cloud thickness within 24 h. The proposed solution is validated against LES results under the same initial and boundary conditions. Then, the proposed analytic framework is extended to incorporate multiple vertical columns that are coupled by advection through wind flow. This enables a bridge between the micro-scale and the mesoscale relations. The effect of advection on cloud evolution is studied and a sensitivity analysis is provided.

  16. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  17. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  18. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  19. A new technique in constructing closed-form solutions for nonlinear PDEs appearing in fluid mechanics and gas dynamics

    Directory of Open Access Journals (Sweden)

    Panayotounakos D. E.

    1996-01-01

    Full Text Available We develop a new unique technique in constructing closed-form solutions for several nonlinear partial differential systems appearing in fluid mechanics and gas dynamics. The obtained solutions include fewer arbitrary functions than needed for general solutions, fact that permits us to specify them according to the initial state, or the geometry, of each specific problem under consideration. In order to apply the before mentioned technique we construct closed-form solutions concerning the gas-dynamic equations with constant pressure, the dynamic equations of an ideal gas in isentropic flow, and the two-dimensional incompressible boundary layer flow.

  20. THCM Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments (Marine and Permafrost Settings)

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Marcelo J. [Texas A & M Univ., College Station, TX (United States); Santamarina, J. Carlos [King Abdullah Univ. of Science and Technology (Saudi Arabia)

    2017-02-14

    Gas hydrates are solid compounds made of water molecules clustered around low molecular weight gas molecules such as methane, hydrogen, and carbon dioxide. Methane hydrates form under pressure (P) and temperature (T) conditions that are common in sub-permafrost layers and in deep marine sediments. Stability conditions constrain the occurrence of gas hydrates to submarine sediments and permafrost regions. The amount of technically recoverable methane trapped in gas hydrate may exceed 104tcf. Gas hydrates are a potential energy resource, can contribute to climate change, and can cause large-scale seafloor instabilities. In addition, hydrate formation can be used for CO2 sequestration (also through CO2-CH4 replacement), and efficient geological storage seals. The experimental study of hydrate bearing sediments has been hindered by the very low solubility of methane in water (lab testing), and inherent sampling difficulties associated with depressurization and thermal changes during core extraction. This situation has prompted more decisive developments in numerical modeling in order to advance the current understanding of hydrate bearing sediments, and to investigate/optimize production strategies and implications. The goals of this research has been to addresses the complex thermo-hydro-chemo-mechanical THCM coupled phenomena in hydrate-bearing sediments, using a truly coupled numerical model that incorporates sound and proven constitutive relations, satisfies fundamental conservation principles. Analytical solutions aimed at verifying the proposed code have been proposed as well. These tools will allow to better analyze available data and to further enhance the current understanding of hydrate bearing sediments in view of future field experiments and the development of production technology.

  1. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  2. Memristor Multiport Readout: A Closed-Form Solution for Sneak Paths

    KAUST Repository

    Zidan, Mohammed A.; Eltawil, Ahmed M.; Fahmy, Hossam A.H.; Kurdahi, Fadi; Salama, Khaled N.

    2014-01-01

    In this paper, we introduce for the first time, a closed-form solution for the memristor-based memory sneak paths without using any gating elements. The introduced technique fully eliminates the effect of sneak paths by reading the stored data using multiple access points and evaluating a simple addition/subtraction on the different readings. The new method requires fewer reading steps compared to previously reported techniques, and has a very small impact on the memory density. To verify the underlying theory, the proposed system is simulated using Synopsys HSPICE showing the ability to achieve a 100% sneak-path error-free memory. In addition, the effect of quantization bits on the system performance is studied.

  3. XPS characterization of the anodic oxide film formed on uranium metal in sodium hydroxide solution

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Guo Huanjun; Wang Qingfu; Zhao Zhengping; Zhong Yongqiang

    2002-01-01

    X-ray photoelectron spectroscopy (XPS) is used to examine the anodic oxide film formed on uranium metal in 0.8 mol/L NaOH solution. The U4f 7/2 fitting spectra suggests that the anodic oxide film is composed of uranium trioxide and a small amount of UO 2+x . Under UHV condition, the U4f peak shifts to the lower binding energy, while a gradual increase in the intensity of U5f peak and the broad of U4f peak are also observed. All of these changes are due to reduction of uranium trioxide in the anodic oxide film. XPS quantitative analysis confirms the occurrence of reduction reaction

  4. Memristor Multiport Readout: A Closed-Form Solution for Sneak Paths

    KAUST Repository

    Zidan, Mohammed A.

    2014-06-18

    In this paper, we introduce for the first time, a closed-form solution for the memristor-based memory sneak paths without using any gating elements. The introduced technique fully eliminates the effect of sneak paths by reading the stored data using multiple access points and evaluating a simple addition/subtraction on the different readings. The new method requires fewer reading steps compared to previously reported techniques, and has a very small impact on the memory density. To verify the underlying theory, the proposed system is simulated using Synopsys HSPICE showing the ability to achieve a 100% sneak-path error-free memory. In addition, the effect of quantization bits on the system performance is studied.

  5. One-parameter families of supersymmetric isospectral potentials from Riccati solutions in function composition form

    Energy Technology Data Exchange (ETDEWEB)

    Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, S.L.P. (Mexico); Mancas, Stefan C., E-mail: mancass@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)

    2014-04-15

    In the context of supersymmetric quantum mechanics, we define a potential through a particular Riccati solution of the composition form (F∘f)(x)=F(f(x)) and obtain a generalized Mielnik construction of one-parameter isospectral potentials when we use the general Riccati solution. Some examples for special cases of F and f are given to illustrate the method. An interesting result is obtained in the case of a parametric double well potential generated by this method, for which it is shown that the parameter of the potential controls the heights of the localization probability in the two wells, and for certain values of the parameter the height of the localization probability can be higher in the smaller well. -- Highlights: •Function-composition generalization of parametric isospectral potentials is presented. •Mielnik one-parameter family of harmonic potentials is obtained as a particular case. •Graphical discussion of regular and singular regions in the parameter space is given.

  6. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  7. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  8. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  9. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  10. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  11. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  12. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  13. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  14. Solitary wave solutions to the modified form of Camassa-Holm equation by means of the homotopy analysis method

    International Nuclear Information System (INIS)

    Abbasbandy, S.

    2009-01-01

    Solitary wave solutions to the modified form of Camassa-Holm (CH) equation are sought. In this work, the homotopy analysis method (HAM), one of the most effective method, is applied to obtain the soliton wave solutions with and without continuity of first derivatives at crest

  15. Crystallization and Characterization of a New Magnesium Sulfate Hydrate MgSO4.11H2O

    NARCIS (Netherlands)

    Genceli, F.E.; Lutz, M.; Spek, A.L.; Witkamp, G.J.

    2007-01-01

    The MgSO4 crystal hydrate formed below approximately 0 °C was proven to be the undecahydrate, MgSO4 • 11H2O (meridianiite) instead of the reported dodecahydrate MgSO4 • 12H2O. The crystals were grown from solution by eutectic freeze and by cooling crystallization. The crystal structure analysis and

  16. Evaluation of Enzymatically Modified Soy Protein Isolate Film Forming Solution and Film at Different Manufacturing Conditions.

    Science.gov (United States)

    Mohammad Zadeh, Elham; O'Keefe, Sean F; Kim, Young-Teck; Cho, Jin-Hun

    2018-04-01

    The effects of transglutaminase on soy protein isolate (SPI) film forming solution and films were investigated by rheological behavior and physicochemical properties based on different manufacturing conditions (enzyme treatments, enzyme incubation times, and protein denaturation temperatures). Enzymatic crosslinking reaction and changes in molecular weight distribution were confirmed by viscosity measurement and SDS-PAGE, respectively, compared to 2 controls: the nonenzyme treated and the deactivated enzyme treated. Films treated with both the enzyme and the deactivated enzyme showed significant increase in tensile strength (TS), percent elongation (%E), and initial contact angle of films compared to the nonenzyme control film due to the bulk stabilizers in the commercial enzyme. Water absorption property, protein solubility, Fourier transform infrared (FTIR) and X-ray diffraction (XRD) spectroscopy revealed that enzyme treated SPI film matrix in the molecular structure level, resulted in the changes in physicochemical properties. Based on our observation, the enzymatic treatment at appropriate conditions is a practical and feasible way to control the physical properties of protein based biopolymeric film for many different scientific and industrial areas. Enzymes can make bridges selectively among different amino acids in the structure of protein matrix. Therefore, protein network is changed after enzyme treatment. The behavior of biopolymeric materials is dependent on the network structure to be suitable in different applications such as bioplastics applied in food and pharmaceutical products. In the current research, transglutaminase, as an enzyme, applied in soy protein matrix in different types of forms, activated and deactivated, and different preparation conditions to investigate its effects on different properties of the new bioplastic film. © 2018 Institute of Food Technologists®.

  17. Hydration of a low-alkali CEM III/B–SiO2 cement (LAC)

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-01-01

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si ∼ 1.2, Al/Si ∼ 0.12), calcite, hydrotalcite, ettringite and possibly strätlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS − ) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  18. Closed-form solution for piezoelectric layer with two collinear cracks parallel to the boundaries

    Directory of Open Access Journals (Sweden)

    B. M. Singh

    2006-01-01

    Full Text Available We consider the problem of determining the stress distribution in an infinitely long piezoelectric layer of finite width, with two collinear cracks of equal length and parallel to the layer boundaries. Within the framework of reigning piezoelectric theory under mode III, the cracked piezoelectric layer subjected to combined electromechanical loading is analyzed. The faces of the layers are subjected to electromechanical loading. The collinear cracks are located at the middle plane of the layer parallel to its face. By the use of Fourier transforms we reduce the problem to solving a set of triple integral equations with cosine kernel and a weight function. The triple integral equations are solved exactly. Closed form analytical expressions for stress intensity factors, electric displacement intensity factors, and shape of crack and energy release rate are derived. As the limiting case, the solution of the problem with one crack in the layer is derived. Some numerical results for the physical quantities are obtained and displayed graphically.

  19. Bloch Modes and Evanescent Modes of Photonic Crystals: Weak Form Solutions Based on Accurate Interface Triangulation

    Directory of Open Access Journals (Sweden)

    Matthias Saba

    2015-01-01

    Full Text Available We propose a new approach to calculate the complex photonic band structure, both purely dispersive and evanescent Bloch modes of a finite range, of arbitrary three-dimensional photonic crystals. Our method, based on a well-established plane wave expansion and the weak form solution of Maxwell’s equations, computes the Fourier components of periodic structures composed of distinct homogeneous material domains from a triangulated mesh representation of the inter-material interfaces; this allows substantially more accurate representations of the geometry of complex photonic crystals than the conventional representation by a cubic voxel grid. Our method works for general two-phase composite materials, consisting of bi-anisotropic materials with tensor-valued dielectric and magnetic permittivities ε and μ and coupling matrices ς. We demonstrate for the Bragg mirror and a simple cubic crystal closely related to the Kelvin foam that relatively small numbers of Fourier components are sufficient to yield good convergence of the eigenvalues, making this method viable, despite its computational complexity. As an application, we use the single gyroid crystal to demonstrate that the consideration of both conventional and evanescent Bloch modes is necessary to predict the key features of the reflectance spectrum by analysis of the band structure, in particular for light incident along the cubic [111] direction.

  20. A semi-analytical solution for elastic analysis of rotating thick cylindrical shells with variable thickness using disk form multilayers.

    Science.gov (United States)

    Zamani Nejad, Mohammad; Jabbari, Mehdi; Ghannad, Mehdi

    2014-01-01

    Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM) is also presented and good agreement was found.

  1. A Semi-Analytical Solution for Elastic Analysis of Rotating Thick Cylindrical Shells with Variable Thickness Using Disk Form Multilayers

    Directory of Open Access Journals (Sweden)

    Mohammad Zamani Nejad

    2014-01-01

    Full Text Available Using disk form multilayers, a semi-analytical solution has been derived for determination of displacements and stresses in a rotating cylindrical shell with variable thickness under uniform pressure. The thick cylinder is divided into disk form layers form with their thickness corresponding to the thickness of the cylinder. Due to the existence of shear stress in the thick cylindrical shell with variable thickness, the equations governing disk layers are obtained based on first-order shear deformation theory (FSDT. These equations are in the form of a set of general differential equations. Given that the cylinder is divided into n disks, n sets of differential equations are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. A numerical solution using finite element method (FEM is also presented and good agreement was found.

  2. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  3. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  4. Nonlinear fluid dynamics of nanoscale hydration water layer

    Science.gov (United States)

    Jhe, Wonho; Kim, Bongsu; Kim, Qhwan; An, Sangmin

    In nature, the hydration water layer (HWL) ubiquitously exists in ambient conditions or aqueous solutions, where water molecules are tightly bound to ions or hydrophilic surfaces. It plays an important role in various mechanisms such as biological processes, abiotic materials, colloidal interaction, and friction. The HWL, for example, can be easily formed between biomaterials since most biomaterials are covered by hydrophilic molecules such as lipid bilayers, and this HWL is expected to be significant to biological and physiological functions. Here (1) we present the general stress tensor of the hydration water layer. The hydration stress tensor provided the platform form for holistic understanding of the dynamic behaviors of the confined HWL including tapping and shear dynamics which are until now individually studied. And, (2) through fast shear velocity ( 1mm/s) experiments, the elastic turbulence caused by elastic property of the HWL is indirectly observed. Our results may contribute to a deeper study of systems where the HWL plays an important role such as biomolecules, colloidal particles, and the MEMS. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(MSIP) (2016R1A3B1908660).

  5. Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering/Geological Implications

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Sheng [Georgia Tech Research Corporation, Atlanta, GA (United States); Santamarina, J. Carlos [King Abdulaziz Univ., Jeddah (Saudi Arabia)

    2017-12-30

    Fine-grained sediments host more than 90 percent of global gas hydrate accumulation. However, hydrate formation in clay-dominated sediments is less understood and characterized than other types of hydrate occurrence. There is an inadequate understanding of hydrate formation mechanisms, segregation structures, hydrate lens topology, system connectivity, and physical macro-scale properties of clay-dominated hydrate-bearing sediments. This situation hinders further analyses of the global carbon budget as well as engineering challenges/solutions related to hydrate instability and production. This project studies hydrate-bearing clay-dominated sediments with emphasis on the enhanced fundamental understanding of hydrate formation and resulting morphology, the development laboratory techniques to emulate natural hydrate formations, the assessment of analytical tools to predict physical properties, the evaluation of engineering and geological implications, and the advanced understanding of gas production potential from finegrained sediments.

  6. Equilibrium leach tests with cobalt in the system cemented waste form/container material/aqueous solution

    International Nuclear Information System (INIS)

    Vejmelka, P.; Koester, R.; Lee, M. J.; Han, K. W.

    1991-01-01

    The equilibrium concentrations of Co in the system of cemented waste form/aqueous solutions were determined including the effect of the container material and its corrosion products under the respective conditions. The chemical conditions in the near field of the waste form were characterized by measurement of the pH and E h value. As disposal relevant solutions, saturated sodium chloride, Q-brine (main constituent MgCl 2 ) and a granitic type groundwater were used. For comparison, also experiments using deionized water were performed. In all systems investigated the cemented waste form itself has a strong influence on the chemical conditions in the near field. The pH and E h values are affected in all cases by the addition of the cemented waste form. There is no or only a slight difference between the E h values if iron powder or iron hydroxide is added to the cemented waste form/solution systems, but the E h is markedly decreased when iron powder is added to the solution free of cement. The Co concentration is decreased in all solutions by the addition of the cemented waste form, the largest effect is observed in Q-brine and this can be attributed either to the sorption of the Co-ions on the corrosion products of the cement or to the coprecipitation of Co-hydroxide and Mg-hydroxide. In the other solutions the Co concentration is decreased by precipitation of Co-hydroxide due to the high pH value of 12.5, and the concentrations are comparable for the different solutions

  7. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    Energy Technology Data Exchange (ETDEWEB)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S

    2004-07-01

    It has previously been demonstrated that immobilization of Cs{sup +} and/or Sr{sup 2+} sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO{sub 3}){sub 3} solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO{sub 3}){sub 3} losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO{sub 3}){sub 3}. In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  8. Cesium release from ceramic waste form materials in simulated canister corrosion product containing solutions

    International Nuclear Information System (INIS)

    Vittorio, Luca; Drabarek, Elizabeth; Chronis, Harriet; Griffith, Christopher S.

    2004-01-01

    It has previously been demonstrated that immobilization of Cs + and/or Sr 2+ sorbed on hexagonal tungsten oxide bronze (HTB) adsorbent materials can be achieved by heating the materials in air at temperatures in the range 500 - 1300 deg C. Highly crystalline powdered HTB materials formed by heating at 800 deg C show leach characteristics comparable to Cs-containing hot-pressed hollandites in the pH range from 0 to 12. As a very harsh leaching test, and also to model in a basic manner, leaching in the presence of canister corrosion products in oxidising environments, leaching of the bronzoid phases has been undertaken in Fe(NO 3 ) 3 solutions of increasing concentration. This is done in comparison with Cs -hollandite materials in order to compare the leaching characteristics of these two materials under such conditions. Both the Cs-loaded bronze and hollandite materials leach severely in Fe(NO 3 ) 3 losing virtually all of the immobilized Cs in a period of four days at 150 deg C. Total release of Cs and conversion of hollandite to titanium and iron titanium oxides begins to be observed at relatively low concentrations and is virtually complete after four days reaction in 0.5 mol/L Fe(NO 3 ) 3 . In the case of the bronze, all of the Cs is also extracted but the HTB structure is preserved. The reaction presumably involves an ion-exchange mechanism and iron oxide with a spinel structure is also observed at high Fe concentrations. (authors)

  9. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    International Nuclear Information System (INIS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions

  11. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag, E-mail: mehra@iitb.ac.in [Indian Institute of Technology Bombay, Department of Chemical Engineering (India)

    2015-01-15

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  12. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  13. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  14. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  15. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    Science.gov (United States)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  16. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  17. Basics of development of gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, Yuri F.; Holditch, Stephen A.; Makogon, Taras Y.

    2005-07-01

    Natural gas hydrate deposits could possibly be an important energy resource during this century. However, many problems associated with producing these deposits must first be solved. The industry must develop new technologies to produce the gas, to forecast possible tectonic cataclysms in regions of gas hydrate accumulations, and to prevent damage to the environment. These global issues must be addressed by every company or country who wants to produce gas hydrate deposits. Cooperative research between industry and universities can lead to technology breakthroughs in coming years. This paper reviews the Messoyakha field and the Blake Ridge and Nankai areas to explain a methodology for estimating how much gas might be producible from gas hydrate deposits (GHDs) under various conditions. The Messoyakha field is located on land, while the Blake Ridge and Nankai areas are offshore. Messoyakha is the first and the only GHD where gas production from hydrates has reached commercial flow rates. The Blake Ridge GHD has been studied for 20 years and 11 wells have been drilled to collect gas-hydrate samples. The potential resources of gas (gas in place) from Blake Ridge is estimated at 37.7Oe10{sup 12} m{sup 3} (1.330 Tcf) in hydrate form and 19.3Oe10{sup 12}m{sup 3} (681 Bcf) [5] in free gas. To estimate how much of the potential resource can be produced we need a thorough understanding of both the geologic and the thermodynamic characteristics of the formations. (Author)

  18. Influence of freezing and thawing on the hydration characteristics, quality, and consumer acceptance of whole muscle beef injected with solutions of salt and phosphate.

    Science.gov (United States)

    Pietrasik, Z; Janz, J A M

    2009-03-01

    Effects of salt/phosphate injection level (112% or 125% pump), salt level (0.5% or 1.5% salt), and freezing/thawing on hydration characteristics, quality, and consumer acceptance of beef semitendinosus were investigated. All enhancement treatments decreased shear force by 25-35%, but negatively affected colour. Increased salt concentration yielded lower purge and cooking losses, and higher water holding capacity. The higher injection level reduced water binding properties, however, the loss in functionality with higher water addition was overcome with increased salt content. Freezing and subsequent thawing was generally detrimental to colour and water binding properties and tended to increase shear force. Freezing and subsequent thawing did not affect fluid release in steaks held for 1 day before analysis, but resulted in decreased water retention in samples held for 7 days. Holding vacuum packaged steaks for 7 days generally increased package purge and negatively affected colour parameters, although water binding characteristics were improved. Consumer panel results demonstrated a negative effect on juiciness and tenderness where meat subject to low salt/high injection was frozen then thawed - the low salt level was insufficient to maintain any positive effect of injection treatment. In general, salt/phosphate injection improved product acceptability and increased willingness to purchase.

  19. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  20. Obtaining of barium sulfate from solution formed after desulfation of the active mass of scrap lead-acid batteries

    Directory of Open Access Journals (Sweden)

    O. A. Kalko

    2014-03-01

    Full Text Available Analyses of literature data about processes for solution utilization formed after desulfation of the active mass of scrap lead-acid batteries is performed. Optimal conditions for obtaining of barium sulfate sediment from ammonium sulfate solute and chemically pure Ba(OH2×8H2O и BaCl2×2H2O were found experimentally. In laboratory the commercial barium sulfate from sulfate solutions, that are waste of recycling process of battery scrap, with application of chloride and barium hydroxide was production. The possibility of using this product were discussed.

  1. The reactivity of the electron formed in the radiolysis of aerated alkaline aqueous solutions containing tetracycline hydrochloride, at 77 Ksup(+)

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Vasconcellos, M.B.A.

    1986-01-01

    The radiolysis of tetracycline hydrochloride dissolved in aerated alkaline aqueous solutions containing 0.1, 0.5 and 1M NaOH at 77 K, followed by ESR is reported. The rate constants for the reactions between the electron and physical or chemical traps which are present in these solutions are calculated. The reactivity of electrons that are formed in the radiolysis of water decreases in the following proportions: physical traps: chemical traps: molecules of water (4.8x10sup(14) : 6.5x10sup(8) : 1.0). The electrons react preferentially with the solute instead of the solvent. (author)

  2. Improving the Ability of Mathematic Representation Capabilities and Students Skills in Importing Square Forms to Square Using Variation Solutions

    Science.gov (United States)

    Nirawati, R.

    2018-04-01

    This research was conducted to see whether the variation of the solution is acceptable and easy to understand by students with different level of ability so that it can be seen the difference of students ability in facilitating the quadratic form in the upper, middle and lower groups. This research used experimental method with factorial design. Based on the result of final test analysis, there were differences of students ability in upper group, medium group, and lower group in putting squared form based on the use certain variation of solution.

  3. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  4. Influence of polymeric excipient properties on crystal hydrate formation kinetics of caffeine in aqueous slurries.

    Science.gov (United States)

    Gift, Alan D; Southard, Leslie A; Riesberg, Amanda L

    2012-05-01

    The influence of polymeric excipients on the hydrate transformation of caffeine (CAF) was studied. Anhydrous CAF was added to aqueous solutions containing different additives and the transformation to the hydrate form was monitored using in-line Raman spectroscopy. Various properties of two known inhibitors of CAF hydrate formation, polyacrylic acid (PAA) and polyvinyl alcohol (PVA), were investigated. For inhibition by PAA, a pH dependence was observed: at low pH, the inhibition was greatest, whereas no inhibitory effects were observed at pH above 6.5. For PVA, grades with high percent hydrolysis were the most effective at inhibiting the transformation. In addition, PVA with higher molecular weight showed slightly more inhibition than the shorter chain PVA polymers. A variety of other hydroxyl containing compounds were examined but none inhibited the CAF anhydrate-to-hydrate transformation. The observed inhibitory effects of PAA and PVA are attributed to the large number of closely spaced hydrogen bond donating groups of the polymer molecule, which can interact with the CAF hydrate crystal. Copyright © 2012 Wiley Periodicals, Inc.

  5. Modeling of Filament Deposition Rapid Prototyping Process with a Closed form Solution

    Science.gov (United States)

    Devlin, Steven Leon

    Fused Deposition Modeling (FDM(TM)) or fused filament fabrication (FFF) systems are extrusion-based technologies used to produce functional or near functional parts from a wide variety of plastic materials. First patented by S. Scott Crump and commercialized by Stratasys, Ltd in the early 1990s, this technology, like many additive manufacturing systems, offers significant opportunities for the design and production of complex part structures that are difficult if not impossible to produce using traditional manufacturing methods. Standing on the shoulders of a twenty-five year old invention, a rapidly growing open-source development community has exponentially driven interest in FFF technology. However, part quality often limits use in final product commercial markets. Development of accurate and repeatable methods for determining material strength in FFF produced parts is essential for wide adoption into mainstream manufacturing. This study builds on the empirical, squeeze flow and intermolecular diffusion model research conducted by David Grewell and Avraham Benatar, applying a combined model to predict auto adhesion or healing to FFF part samples. In this research, an experimental study and numerical modeling were performed in order to drive and validate a closed form heat transfer solution for extrusion processes to develop temperature field models. An extrusion-based 3D printing system, with the capacity to vary deposition speeds and temperatures, was used to fabricate the samples. Standardized specimens of Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) filament were used to fabricate the samples with different speeds and temperatures. Micro-scanning of cut and lapped specimens, using an optical microscope, was performed to find the effect of the speed and the temperature on the geometry of the cross-sections. It was found that by increasing the speed of the extrusion printing, the area of the cross-section and the maximum thickness decrease

  6. Study of the confined solutions properties: case of gel formed during nuclear glass alteration

    International Nuclear Information System (INIS)

    Matar-Briman, I.

    2012-01-01

    In this study, we have investigated the thermodynamic properties, the structure and the dynamics of confined solutions in model gels and in a gel coming from glass alteration. The first step was to determine the structure and the dynamics of pure confined water in porous materials by using nuclear magnetic resonance and neutron scattering. Meso-porous silica was elaborated and grafted by sol-gel route to decrease the pore sizes from 2.7 to 2 nm and to modify pore surfaces to have Si-OH, Zr-OH and Al-OH. The second step involved determining the dynamics of water in leachate confined in the model gels and in the gel of altered glass by using neutron scattering. In the model gels and at a 10 -12 -10 -9 second timescale, two kinds of waters were highlighted: first, an interfacial water linked to the pore surfaces and second, a free water in the pore core. Their ratio depends on the pore size and pore surface composition. Whatever the pore surface, when the pore size decreases the free water ratio in the pore center also decreases. For pores smaller than 2.3 nm and pore surfaces with Zr-OH or Al-OH surfaces, water is strongly linked to the surface and few water molecules are mobile. This is due to the ability of alumina and zirconia to immobilize water molecules through chemical coordination bonds stronger than the physical bonds established between silica and water. The result also highlight that pore surface composition could be the predominant parameter affecting the fixed proton content. Moreover, the mobility of water confined in a leachate is not modified. The study of the water dynamics in a gel formed during alteration of glass constituted of SiO 2 , Al 2 O 3 and CaO, and having a porosity between 2 and 7 nm showed the same behavior as water confined in pores presenting an Al-OH surface. (author) [fr

  7. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  8. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  9. Atomistic simulations of cation hydration in sodium and calcium montmorillonite nanopores

    Science.gov (United States)

    Yang, Guomin; Neretnieks, Ivars; Holmboe, Michael

    2017-08-01

    During the last four decades, numerous studies have been directed to the swelling smectite-rich clays in the context of high-level radioactive waste applications and waste-liners for contaminated sites. The swelling properties of clay mineral particles arise due to hydration of the interlayer cations and the diffuse double layers formed near the negatively charged montmorillonite (MMT) surfaces. To accurately study the cation hydration in the interlayer nanopores of MMT, solvent-solute and solvent-clay surface interactions (i.e., the solvation effects and the shape effects) on the atomic level should be taken into account, in contrast to many recent electric double layer based methodologies using continuum models. Therefore, in this research we employed fully atomistic simulations using classical molecular dynamics (MD) simulations, the software package GROMACS along with the CLAYFF forcefield and the SPC/E water model. We present the ion distributions and the deformation of the hydrated coordination structures, i.e., the hydration shells of Na+ and Ca2+ in the interlayer, respectively, for MMT in the first-layer, the second-layer, the third-layer, the fourth-layer, and the fifth-layer (1W, 2W, 3W, 4W, and 5W) hydrate states. Our MD simulations show that Na+ in Na-MMT nanopores have an affinity to the ditrigonal cavities of the clay layers and form transient inner-sphere complexes at about 3.8 Å from clay midplane at water contents less than the 5W hydration state. However, these phenomena are not observed in Ca-MMT regardless of swelling states. For Na-MMT, each Na+ is coordinated to four water molecules and one oxygen atom of the clay basal-plane in the first hydration shell at the 1W hydration state, and with five to six water molecules in the first hydration shell within a radius of 3.1 Å at all higher water contents. In Ca-MMT, however each Ca2+ is coordinated to approximately seven water molecules in the first hydration shell at the 1W hydration state and

  10. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  11. Solution exchange corrosion testing with the glass-zeolite ceramic waste form in demineralized water at 900C

    International Nuclear Information System (INIS)

    Simpson, L. J.

    1998-01-01

    A ceramic waste form of glass-bonded zeolite is being developed for the long-term disposition of fission products and transuranic elements in wastes from the U.S. Department of Energy's spent nuclear fuel conditioning activities. Solution exchange corrosion tests were performed on the ceramic waste form and its potential base constituents of glass, zeolite 5A, and sodalite as part of an effort to qualify the ceramic waste form for acceptance into the Civilian Radioactive Waste Management System. Solution exchange tests were performed at 90 C by replacing 80 to 90% of the leachate with fresh demineralized water after set time intervals. The results from these tests provide information about corrosion mechanisms and the ability of the ceramic waste form and its constituent materials to retain waste components. The results from solution exchange tests indicate that radionuclides will be preferentially retained in the zeolites without the glass matrix and in the ceramic waste form, with respect to cations like Li, K, and Na. Release results have been compared for simulated waste from candidate ceramic waste forms with zeolite 5A and its constituent materials to determine the corrosion behavior of each component

  12. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  13. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  14. A closed-form solution for steady-state coupled phloem/xylem flow using the Lambert-W function.

    Science.gov (United States)

    Hall, A J; Minchin, P E H

    2013-12-01

    A closed-form solution for steady-state coupled phloem/xylem flow is presented. This incorporates the basic Münch flow model of phloem transport, the cohesion model of xylem flow, and local variation in the xylem water potential and lateral water flow along the transport pathway. Use of the Lambert-W function allows this solution to be obtained under much more general and realistic conditions than has previously been possible. Variation in phloem resistance (i.e. viscosity) with solute concentration, and deviations from the Van't Hoff expression for osmotic potential are included. It is shown that the model predictions match those of the equilibrium solution of a numerical time-dependent model based upon the same mechanistic assumptions. The effect of xylem flow upon phloem flow can readily be calculated, which has not been possible in any previous analytical model. It is also shown how this new analytical solution can handle multiple sources and sinks within a complex architecture, and can describe competition between sinks. The model provides new insights into Münch flow by explicitly including interactions with xylem flow and water potential in the closed-form solution, and is expected to be useful as a component part of larger numerical models of entire plants. © 2013 John Wiley & Sons Ltd.

  15. Forms and lability of phosphorus in algae and aquatic macrophytes characterized by solution 31P NMR coupled with enzymatic hydrolysis

    Science.gov (United States)

    Increased information on forms and lability of phosphorus (P) in aquatic macrophytes and algae is crucial for better understanding of P biogeochemical cycling in eutrophic lakes. In this work, solution 31P nuclear magnetic resonance (NMR) spectroscopy coupled with enzymatic hydrolysis (EH) was used ...

  16. On new classes of solutions of nonlinear partial differential equations in the form of convergent special series

    Science.gov (United States)

    Filimonov, M. Yu.

    2017-12-01

    The method of special series with recursively calculated coefficients is used to solve nonlinear partial differential equations. The recurrence of finding the coefficients of the series is achieved due to a special choice of functions, in powers of which the solution is expanded in a series. We obtain a sequence of linear partial differential equations to find the coefficients of the series constructed. In many cases, one can deal with a sequence of linear ordinary differential equations. We construct classes of solutions in the form of convergent series for a certain class of nonlinear evolution equations. A new class of solutions of generalized Boussinesque equation with an arbitrary function in the form of a convergent series is constructed.

  17. Novel protonated and hydrated n=1 Ruddlesden-Popper phases, HxNa1-xLaTiO4.yH2O, formed by ion-exchange/intercalation reaction

    International Nuclear Information System (INIS)

    Nishimoto, Shunsuke; Matsuda, Motohide; Miyake, Michihiro

    2005-01-01

    New derivatives of layered perovskite compounds with H 3 O + ions, H + ions and water molecules in the interlayer, H x Na 1-x LaTiO 4 .yH 2 O, were successfully synthesized by an ion-exchange/intercalation reaction with dilute HCl solution, using an n=1 member of Ruddlesden-Popper phase, NaLaTiO 4 . Powder X-ray diffraction revealed that the layered structure changed from space group P4/nmm with a=3.776(1) and c=13.028(5)A to I4/mmm with a=3.7533(3) and c=28.103(4)A after the ion-exchange/intercalation reaction at pH 5. The change of space group indicates that the perovskite layers are transformed from staggered to an eclipsed configuration through the ion-exchange/intercalation reaction. Thermogravimetric analysis and high-temperature powder X-ray diffraction suggested the existence of the secondary hydrated phase by dehydrating H x Na 1-x LaTiO 4 .yH 2 O at 100 o C

  18. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  19. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  20. Hydration dynamics near a model protein surface

    International Nuclear Information System (INIS)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-01-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces

  1. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  2. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  3. INFLUENCE OF QUARTZ CERAMICS SINGLE-STAGE PROCESSING BY GEL-FORMING WATER SOLUTIONS ON ITS STRENGTH

    Directory of Open Access Journals (Sweden)

    S. K. Evstropiev

    2014-09-01

    Full Text Available The main research results of the influence of quartz ceramics processing by silicon- and aluminum-containing gel- forming water solutions on its durability and porosity are given. Aqueous-alcoholic solutions based on tetraethoxysilane (TEOS, Si(C2H5O4 with additives of aluminum nitrate are proposed for impregnation of porous quartz ceramics samples. Ceramic samples are being impregnated with solutions at the room temperature for 12 minutes. After impregnation they are being exposed to drying at the room temperature for 24 hours and heat treatment in the electric muffle furnace. The made experiments show that impregnation of quartz ceramics porous samples by gel-forming solutions leads to durability growth of not burned samples by 6-7 times even without additional heat treatment. High-temperature heat treatment of previously impregnated ceramic samples leads to decomposition of aluminum nitrate and removal of fossils, and also to hardening of the formed additional bonds between material particles. It considerably improves strength characteristics of quartz ceramics as well. Thus, the possibility of considerable hardening of porous quartz ceramics and stability growth of its strength properties by preliminary impregnation of silicon- and aluminum-bearing gel-forming solutions even without additional heat treatment is experimentally shown. It is revealed that impregnation of porous quartz ceramic samples by these solutions leads only to insignificant reduction of porosity of samples. Subsequent heat treatment of the impregnated porous ceramic samples at the temperatures, equal to 900-1200oC, results in additional significant increase in their mechanical durability.

  4. Numerical Solution of Uncertain Beam Equations Using Double Parametric Form of Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Smita Tapaswini

    2013-01-01

    Full Text Available Present paper proposes a new technique to solve uncertain beam equation using double parametric form of fuzzy numbers. Uncertainties appearing in the initial conditions are taken in terms of triangular fuzzy number. Using the single parametric form, the fuzzy beam equation is converted first to an interval-based fuzzy differential equation. Next, this differential equation is transformed to crisp form by applying double parametric form of fuzzy number. Finally, the same is solved by homotopy perturbation method (HPM to obtain the uncertain responses subject to unit step and impulse loads. Obtained results are depicted in terms of plots to show the efficiency and powerfulness of the methodology.

  5. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  6. Insights into the dynamics of in situ gas hydrate formation and dissociation at the Bush Hill gas hydrate field, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Evan A.; Kastner, Miriam; Robertson, Gretchen; Jannasch, Hans; Weinstein, Yishai

    2005-07-01

    Four newly designed flux meters called the MOSQUITO (Multiple Orifice Sampler and Quantitative Injection Tracer Observer), capable of measuring fluid flow rates and sampling pore fluid chemistry simultaneously, and two temperature loggers were deployed for 430 days adjacent to the Bush Hill hydrate mound in the northern Gulf of Mexico (GC 185). The main objective of the deployment was to understand how chemistry, temperature, and subsurface hydrology dynamically influence the growth and dissociation of the gas hydrate mound. The flux meters were deployed in a mussel field, in bacterial mats, in a tubeworm field, and at a background site approximately 100 m southwest of the hydrate mound. Results from the longterm chemical monitoring suggest that this system is not in dynamic equilibrium. Gas hydrate actively formed within the mussel field adjacent to the most active gas vent, in the tubeworm field, and at the background site. The hydrology is variable with upward flow rates ranging from 1-90 cm/yr and downward flow rates from 3-130 cm/yr. Two distinct hydrologic pulsing events were sampled across the three mound sites, which advect a fluid from depth that further stabilizes the gas hydrate deposit. The hydrogeochemistry at Bush Hill seems to be influenced by multiple mechanisms such as active formation of gas hydrate, fluid influx and outflux due to active venting of CH4 at transient methane seeps at and near the mound, local salt tectonics, and density driven convection. The fluxes of fluid, solutes, and methane may have a significant impact on the seafloor biochemical environment and the water column chemistry at Bush Hill. (Author)

  7. Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems

    Science.gov (United States)

    Wang, Chaoyue; Li, Hailong; Wan, Li; Wang, Xusheng; Jiang, Xiaowei

    2014-07-01

    Pumping wells are common in coastal aquifers affected by tides. Here we present analytical solutions of groundwater table or head variations during a constant rate pumping from a single, fully-penetrating well in coastal aquifer systems comprising an unconfined aquifer, a confined aquifer and semi-permeable layer between them. The unconfined aquifer terminates at the coastline (or river bank) and the other two layers extend under tidal water (sea or tidal river) for a certain distance L. Analytical solutions are derived for 11 reasonable combinations of different situations of the L-value (zero, finite, and infinite), of the middle layer's permeability (semi-permeable and impermeable), of the boundary condition at the aquifer's submarine terminal (Dirichlet describing direct connection with seawater and no-flow describing the existence of an impermeable capping), and of the tidal water body (sea and tidal river). Solutions are discussed with application examples in fitting field observations and parameter estimations.

  8. Multi-species Ionic Diffusion in Concrete with Account to Interaction Between Ions in the Pore Solution and the Cement Hydrates

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2007-01-01

    results concerning the multi-species action during chloride penetration. In the model the chemical interaction between ions in solids and in pore solution is assumed governed by simple ion exchange processes only. The drawback using this approach is that the chemical part is lacking important physical...... relevance in terms of standard solubility thermodynamics. On the other hand the presented model is capable of accurately simulate the well documented peak behavior of the chloride profiles and the measured high content of calcium ions in pore solution under conditions when also chlorides is present...

  9. Copper removal from aqueous solution using Aspergillus niger mycelia in free and polyurethane-bound form

    Energy Technology Data Exchange (ETDEWEB)

    Tsekova, K.; Ilieva, S. [Inst. of Microbiology, Bulgarian Academy of Sciences, Sofia (Bulgaria)

    2001-07-01

    This study assesses the ability of mycelia of Aspergillus niger B-77 (both free and immobilized on polyurethane foam) to remove copper from single-ion solution. All experiments were conducted using 0.5 mM solutions of CuSO{sub 4}.5H{sub 2} O. Mycelia immobilized on polyurethane foam cells showed a three-fold increase in uptake, compared with that of free cells. The efficiency of copper removal (mg Cu{sup 2+} removed/mg Cu{sup 2+} added) in a column system reached more than 99% before the break-through point was attained. (orig.)

  10. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  11. FormScanner: Open-Source Solution for Grading Multiple-Choice Exams

    Science.gov (United States)

    Young, Chadwick; Lo, Glenn; Young, Kaisa; Borsetta, Alberto

    2016-01-01

    The multiple-choice exam remains a staple for many introductory physics courses. In the past, people have graded these by hand or even flaming needles. Today, one usually grades the exams with a form scanner that utilizes optical mark recognition (OMR). Several companies provide these scanners and particular forms, such as the eponymous…

  12. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    methane hydrate in sea bed near continental margin and underneath of permafrost ... clathrate structure,6,7 IR spectroscopy analysis of vibra- tional form of guest .... Hydrogen (H71) of the hydroxyl group of methanol is found to have formed ...

  13. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  14. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  15. THz characterization of hydrated and anhydrous materials

    Science.gov (United States)

    Sokolnikov, Andre

    2011-06-01

    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  16. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  17. Experimental evidence for excess entropy discontinuities in glass-forming solutions.

    Science.gov (United States)

    Lienhard, Daniel M; Zobrist, Bernhard; Zuend, Andreas; Krieger, Ulrich K; Peter, Thomas

    2012-02-21

    Glass transition temperatures T(g) are investigated in aqueous binary and multi-component solutions consisting of citric acid, calcium nitrate (Ca(NO(3))(2)), malonic acid, raffinose, and ammonium bisulfate (NH(4)HSO(4)) using a differential scanning calorimeter. Based on measured glass transition temperatures of binary aqueous mixtures and fitted binary coefficients, the T(g) of multi-component systems can be predicted using mixing rules. However, the experimentally observed T(g) in multi-component solutions show considerable deviations from two theoretical approaches considered. The deviations from these predictions are explained in terms of the molar excess mixing entropy difference between the supercooled liquid and glassy state at T(g). The multi-component mixtures involve contributions to these excess mixing entropies that the mixing rules do not take into account. © 2012 American Institute of Physics

  18. Removal of Lead Hydroxides Complexes from Solutions Formed in Silver/Gold: Cyanidation Process

    Science.gov (United States)

    Parga, José R.; Martinez, Raul Flores; Moreno, Hector; Gomes, Andrew Jewel; Cocke, David L.

    2014-04-01

    The presence of lead hydroxides in "pregnant cyanide solution" decreases the quality of the Dore obtained in the recovery processes of gold and silver, so it is convenient to remove them. The adsorbent capacity of the low cost cow bone powder was investigated for the removal of lead ions from a solution of lead hydroxide complexes at different initial metal ion concentrations (10 to 50 mg/L), and reaction time. Experiments were carried out in batches. The maximum sorption capacity of lead determined by the Langmuir model was found to be 126.58 mg/g, and the separation factor R L was between 0 and 1, indicating a significant affinity of bone for lead. Experimental data follow pseudo-second order kinetics suggesting chemisorption. It is concluded that cow bone powder can be successfully used for the removal of lead ions, and improves the quality of the silver-gold cyanides precipitate.

  19. Temperature-induced phase separation and hydration in aqueous polymer solutions studied by NMR and IR spectroscopy: comparison of poly(N-vinylcaprolactam) and acrylamide-based polymers

    Czech Academy of Sciences Publication Activity Database

    Spěváček, Jiří; Dybal, Jiří

    2014-01-01

    Roč. 336, č. 1 (2014), s. 39-46 ISSN 1022-1360. [International IUPAC Conference on Polymer-Solvent Complexes and Intercalates /9./ - POLYSOLVAT-9. Kiev, 11.09.2012-14.09.2012] R&D Projects: GA ČR GA202/09/1281 Institutional support: RVO:61389013 Keywords : aqueous polymer solutions * FT-IR * NMR Subject RIV: CD - Macromolecular Chemistry

  20. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  1. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  2. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... experimental runs were performed to examine the influence of operating conditions on methane production by CO2/(CO2 + N2) injection in the temperature range of 274.15–277.15 K and 7.039–10.107 MPa pressure. Our results show that the use of the (CO2 + N2) binary gas mixture is advantageous compared to the use...

  3. Geo-scientific investigations of gas-hydrates in India

    Digital Repository Service at National Institute of Oceanography (India)

    Sain, K.; Gupta, H.; Mazumdar, A.; Bhaumik, A.K.; Bhowmick, P.K.

    The best solution to meet India's overwhelming energy requirement is to tap the nuclear and solar power to the maximum extent possible. Another feasible major energy resource is gas-hydrates (crystalline substances of methane and water) that have...

  4. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  5. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  6. Gas Hydrates of Coal Layers as a Methane Source in the Atmosphere and Mine Working

    Science.gov (United States)

    Dyrdin, Valery; Shepeleva, Sofya; Kim, Tatiana

    2017-11-01

    Living conditions of gas hydrates of a methane in a coal matrix as one of possible forms of finding of molecules of a methane in coal layers are considered. However, gas hydrates are formed not in all mineral coals even under the thermobaric conditions corresponding to their equilibrium state as the minimum humidity and the corresponding pore width are necessary for each brand of coal for formation of gas hydrate. It is shown that it depends on electric electrical dipole moment of a macromolecule of coal. Coals of brands K, D, Zh were considered. The electric field created by the surface of coal does not allow molecules of water to carry out threedimensional driving, and they keep on an internal surface of a time. By means of theoretical model operation a dipole - dipole interaction of molecules of water with the steam surface of coal values of energy of fiber interaction for various functional groups located in coal "fringe" which size for the first and second layers does not allow molecules of water to participate in formation of gas hydrates are received. For coals of brands K, Zh, D, considering distribution of a time on radiuses, the percent of moisture, which cannot share in education solid coal of gas solutions, is calculated.

  7. The Form of the Solutions of the Linear Integro-Differential Equations of Subsonic Aeroelasticity.

    Science.gov (United States)

    1979-09-01

    coefficients w (0) are given in Table 3; it V follows that, for T > 0 and (E - K v2) non-singular, the inverse transform of M- ) has the form, using (B-I) V...degree of freedom system by expanding )M- I in the form of equation (35), obtaining its inverse transform using the v -1results of Appendix A and hence...obtaining the inverse transform of M- l . The two-dimensional case, when the characteristic equation has a zero root, is not as simple. * Assuming all

  8. Photo-electrochemical analysis of passive film formed on X80 pipeline steel in bicarbonate/carbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.G. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Tubular Goods Research Center of CNPC, Xi' an 710065 (China)], E-mail: dangguoli78@yahoo.com.cn; Feng, Y.R.; Bai, Z.Q. [Tubular Goods Research Center of CNPC, Xi' an 710065 (China); Zhu, J.W.; Zheng, M.S. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2008-02-28

    Photo-electrochemical measurement was used to explore the formation potential, formation time, chloride ions concentration, applied potential and pH value of the solution on the electronic property of passive film formed on X80 pipeline steel in 1 M NaHCO{sub 3}/0.5 M Na{sub 2}CO{sub 3} buffer solution. The results showed that the photocurrent is positive, indicating an n-type semiconductor character of the passive film, the photocurrent increased with increasing the formation potential, prolonging the formation time, decreasing chloride ions concentration, rising applied potential and decreasing the pH value of the solution. Capacitance measurement exhibited a positive slope of Mott-Schottky plot, and the slopes of Mott-Schottky plots increased with the increasing formation potential, showing a decrement of the donor density of the passive film.

  9. Direct current-induced electrogenerated chemiluminescence of hydrated and chelated Tb(III) at aluminum cathodes

    International Nuclear Information System (INIS)

    Hakansson, M.; Jiang, Q.; Spehar, A.-M.; Suomi, J.; Kotiranta, M.; Kulmala, S.

    2005-01-01

    Cathodic DC polarization of oxide-covered aluminum produces electrogenerated chemiluminescence from hydrated and chelated Tb(III) ions in aqueous electrolyte solutions. At the moment of cathodic voltage onset, a strong cathodic flash is observed, which is attributed to a tunnel emission of hot electrons into the aqueous electrolyte solution and the successive chemical reactions with the luminophores. However, within a few milliseconds the insulating oxide film is damaged and finally dissolved due to (i) indiffusion of protons or alkali metal ions into the thin oxide film, (ii) subsequent hydrogen evolution at the aluminum/oxide interface and (iii) alkalization of the electrode surface induced by hydrogen evolution reaction. When the alkalization of the electrode surface has proceeded sufficiently, chemiluminescence is generated with increasing intensity. Aluminum metal, short-lived Al(II), Al(I) or atomic hydrogen and its conjugated base form, hydrated electron, can act as highly reducing species in addition to the less energetic heterogeneously transferred electrons from the aluminum electrode. Tb(III) added as a hydrated ion in the solution probably luminesces in the form of Tb(OH) 3 or Tb(OH) 4 - by direct redox reactions of the central ion whereas multidentate aromatic ligand chelated Tb(III) probably luminesces by ligand sensitized chemiluminescence mechanism in which ligand is first excited by one-electron redox reactions, which is followed by intramolecular energy transfer to the central ion which finally emits light

  10. GPS/Galileo Multipath Detection and Mitigation Using Closed-Form Solutions

    Directory of Open Access Journals (Sweden)

    Khaled Rouabah

    2009-01-01

    Full Text Available We propose an efficient method for the detection of Line of Sight (LOS and Multipath (MP signals in global navigation satellite systems (GNSSs which is based on the use of virtual MP mitigation (VMM technique. By using the proposed method, the MP signals' delay and coefficient amplitudes can be efficiently estimated. According to the computer simulation results, it is obvious that our proposed method is a solution for obtaining high performance in the estimation and mitigation of MP signals and thus it results in a high accuracy in GNSS positioning.

  11. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    DEFF Research Database (Denmark)

    Jensen, J.; Cornett, Claus; Olsen, C. E.

    1992-01-01

    of polymeric species by oxidative self-coupling of 5-ASA moieties. These results indicate that the degradation of 5-ASA follows the same mechanism as observed for the autooxidation of 4-aminophenol and 1,4-phenylenediamine. Some of the identified degradation products were found in 5-ASA......The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation...

  12. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution

    International Nuclear Information System (INIS)

    Gervasi, C.A.; Folquer, M.E.; Vallejo, A.E.; Alvarez, P.E.

    2005-01-01

    Impedance and steady-state data were recorded in order to study the kinetics of electron transfer between passive tin electrodes and an electrolytic solution containing the K 3 Fe(CN) 6 -K 4 Fe(CN) 6 redox couple. Film thickness plays a key role in determining the type of electronic conduction of these oxide covered electrodes. Electron exchange with the oxide takes place with participation of the conduction band in the semiconducting film. A mechanism involving direct electron tunneling through the space charge barrier is the most suitable to interpret the experimental evidence

  13. Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Gervasi, C.A. [Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Exactas; Universidad Nacional de La Plata (Argentina). Facultad de Ingenieria; Folquer, M.E. [Universidad Nacional de Tucaman (Argentina). Inst. de Quimica Fisica; Vallejo, A.E. [Universidad Nacional de La Plata (Argentina). Facultad de Ingenieria; Alvarez, P.E. [Universidad Nacional de Tucaman (Argentina). Inst. de Fisica

    2005-01-15

    Impedance and steady-state data were recorded in order to study the kinetics of electron transfer between passive tin electrodes and an electrolytic solution containing the K{sub 3}Fe(CN){sub 6}-K{sub 4}Fe(CN){sub 6} redox couple. Film thickness plays a key role in determining the type of electronic conduction of these oxide covered electrodes. Electron exchange with the oxide takes place with participation of the conduction band in the semiconducting film. A mechanism involving direct electron tunneling through the space charge barrier is the most suitable to interpret the experimental evidence. (Author)

  14. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    International Nuclear Information System (INIS)

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-01-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH 4 CN, CH 3 CN, and C 2 H 4 CN, that had received multikilogray doses of 60 Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  15. Customizable pre-printed consent forms: a solution in light of the Montgomery ruling.

    Science.gov (United States)

    Owen, Deborah; Aresti, Nick; Mulligan, Alex; Kosuge, Dennis

    2018-02-02

    This article presents an audit cycle supported quality improvement project addressing best practice in the consent process for lower limb arthroplasty which takes into account the new standard in surgical consent and the importance of material risks. 50 consecutive total hip and total knee replacement consent forms over a 3-month period were reviewed for legibility and completeness. Following the introduction of a new, pre-printed but customizable consent form the review process was repeated. The introduction of a customizable, pre-printed consent form that can be adjusted to reflect the individualized material risks of each patient increased legibility, reduced inappropriate human error variation and abolished the use of abbreviations and medical jargon. When used as part of an extended consent process, the authors feel that the use of pre-printed but customizable consent forms improves legibility, completeness and consistency and also provides the ability to highlight those complications that are of particular importance for that patient to satisfy the new accepted standard in surgical consent.

  16. Groupwork as a Form of Assessment: Common Problems and Recommended Solutions

    Science.gov (United States)

    Davies, W. Martin

    2009-01-01

    This paper reviews some of the literature on the use of groupwork as a form of assessment in tertiary institutions. It outlines the considerable advantages of groupwork but also its systemic associated problems. In discussing the problems, the paper considers issues such as "free riding" and the "sucker effect", issues associated with ethnic mix…

  17. Networks of gel-forming triblock copolymer solutions: In situ SANS and rheological measurements

    DEFF Research Database (Denmark)

    Mortensen, K.; Almdal, K.; Kleppinger, R.

    1998-01-01

    Triblock copolymers in a solvent, selective for their middle blocks provide the basis for the formation of novel physical networks where cross-links are formed by self-assembled domains of the end-blocks. Triblock copolymers of poly(styrene)-poly(ethylene,butylene)-poly(styrene) (SEBS) dissolved...

  18. The importance of functional form in optimal control solutions of problems in population dynamics

    Science.gov (United States)

    Runge, M.C.; Johnson, F.A.

    2002-01-01

    Optimal control theory is finding increased application in both theoretical and applied ecology, and it is a central element of adaptive resource management. One of the steps in an adaptive management process is to develop alternative models of system dynamics, models that are all reasonable in light of available data, but that differ substantially in their implications for optimal control of the resource. We explored how the form of the recruitment and survival functions in a general population model for ducks affected the patterns in the optimal harvest strategy, using a combination of analytical, numerical, and simulation techniques. We compared three relationships between recruitment and population density (linear, exponential, and hyperbolic) and three relationships between survival during the nonharvest season and population density (constant, logistic, and one related to the compensatory harvest mortality hypothesis). We found that the form of the component functions had a dramatic influence on the optimal harvest strategy and the ultimate equilibrium state of the system. For instance, while it is commonly assumed that a compensatory hypothesis leads to higher optimal harvest rates than an additive hypothesis, we found this to depend on the form of the recruitment function, in part because of differences in the optimal steady-state population density. This work has strong direct consequences for those developing alternative models to describe harvested systems, but it is relevant to a larger class of problems applying optimal control at the population level. Often, different functional forms will not be statistically distinguishable in the range of the data. Nevertheless, differences between the functions outside the range of the data can have an important impact on the optimal harvest strategy. Thus, development of alternative models by identifying a single functional form, then choosing different parameter combinations from extremes on the likelihood

  19. A Closed-Form Approximation Solution for an Inventory Model with Supply Disruptions and Non-ZIO Reorder Policy

    Directory of Open Access Journals (Sweden)

    David Heimann

    2007-08-01

    Full Text Available In supply chains, domestic and global, a producer must decide on an optimal quantity of items to order from suppliers and at what inventory level to place this order (the EOQ problem. We discuss how to modify the EOQ in the face of failures and recoveries by the supplier. This is the EOQ with disruption problem (EOQD. The supplier makes transitions between being capable and not being capable of filling an order in a Markov failure and recovery process. The producer adjusts the reorder point and the inventories to provide a margin of safety. Numerical solutions to the EOQD problem have been developed. In addition, a closed-form approximate solution has been developed for the zero inventory option (ZIO, where the inventory level on reordering is set to be zero. This paper develops a closed-form approximate solution for the EOQD problem when the reorder point can be non-zero, obtaining for that situation an optimal reorder quantity and optimal reorder point that represents an improvement on the optimal ZIO solution. The paper also supplies numerical examples demonstrating the cost savings against the ZIO situation, as well as the accuracy of the approximation technique.

  20. Thermodynamic characteristics of systems with solid solutions composed of crystal hydrates of lanthanide and yttrium chlorides, at 250C. III. Systems of Roozeboom's type IV, with restricted solid solutions

    International Nuclear Information System (INIS)

    Sokolova, N.P.

    1983-01-01

    The values of the activity, the activity coefficients, the free energy of mixing and the excess free energy of mixing have been calculated for CeCl 3 -LnCl 3 -H 2 O systems (where Ln identical with Sm, Gd, Dy, Ho, Er, Y) containing solid solutions of types IV and IVa. It is shown that the stability of the solid solutions decreases with increasing difference between the radii of the cations of cerium and the second lanthanide, which enter into the composition of the components of the solid solutions. The factors determining the composition of a liquid solution corresponding to the eutonic point are specified

  1. Hydration study of ordinary portland cement in the presence of zinc ions

    Directory of Open Access Journals (Sweden)

    Monica Adriana Trezza

    2007-12-01

    Full Text Available Hydration products of Portland cement pastes, hydrated in water and in the presence of zinc ions were studied comparatively at different ages. Hydration products were studied by X ray diffractions (XRD and infrared spectroscopy (IR. Although IR is not frequently used in cement chemistry, it evidenced a new phase Ca(Zn(OH32. 2H2O formed during cement hydration in the presence of zinc. The significant retardation of early cement hydration in the presence of zinc is assessed in detail by differential calorimetry as a complement to the study carried out by IR and XRD, providing evidence that permits to evaluate the kinetic of the early hydration.

  2. Process for disposal of aqueous solutions containing radioactive isotopes

    Science.gov (United States)

    Colombo, Peter; Neilson, Jr., Robert M.; Becker, Walter W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99.degree. C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump.

  3. Process for disposal of aqueous solutions containing radioactive isotopes

    International Nuclear Information System (INIS)

    Colombo, P.; Neilson, R.M. Jr.; Becker, W.W.

    1979-01-01

    A process for disposing of radioactive aqueous waste solutions whereby the waste solution is utilized as the water of hydration to hydrate densified powdered portland cement in a leakproof container; said waste solution being dispersed without mechanical inter-mixing in situ in said bulk cement, thereafter the hydrated cement body is impregnated with a mixture of a monomer and polymerization catalyst to form polymer throughout the cement body. The entire process being carried out while maintaining the temperature of the components during the process at a temperature below 99 0 C. The container containing the solid polymer-impregnated body is thereafter stored at a radioactive waste storage dump such as an underground storage dump

  4. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  5. Solubility data for cement hydrate phases (25oC)

    International Nuclear Information System (INIS)

    Atkins, M.; Glasser, F.P.; Kindness, A.; Macphee, D.E.

    1991-05-01

    Solubility measurements were performed on most of the more thermodynamically-stable cement hydrate phases, at 25 o C. The results for each hydrate phase are summarised in the form of datasheets. Solubility properties are discussed, and where possible a K sp value is calculated. The data are compared with the data in the literature. (author)

  6. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    International Nuclear Information System (INIS)

    Lee, Jaesun; Cho, Younho; Achenbach, Jan D.

    2016-01-01

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation

  7. A Study on Scattered Wave Amplitude Closed-Form Solution Calculation of Torsional Wave Mode by Reciprocity Theorem

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaesun; Cho, Younho [Pusan National Univ., Pusan (Korea, Republic of); Achenbach, Jan D. [Northwestern Univ., Everston (United States)

    2016-07-15

    Guided waves can be used for the inspection of long range pipelines. Surface corrosion is often found as a major defect type in pipelines. The reciprocity relation is a well-established theorem by which one can simplify complicated mathematical expressions. The approach has been already applied to plate and half-space structures to obtain the closed-form solutions of scattered amplitude. However, results for the case of cylindrical structures have not been reported yet. In this paper, the scattering of torsional waves, which is widely used in commercial applications, is explored by the reciprocity theorem approach. Obtaining closed-form solutions of the amplitudes of propagating waves is much simplified by using the reciprocal relation. The scattered amplitudes for elliptical and rectangular defect shapes are calculated with respect to defect depth and width, at frequencies between 0 and 500 kHz. The amplitude shows the periodic result as a function of frequency. The derived closed-form solutions can play a significant role in quantitative signal interpretation.

  8. Occurrence forms of uranium in the production solutions in the areas of underground leaching of epigenetic uranium deposits

    International Nuclear Information System (INIS)

    Serebrennikov, V.S.; Dorofeeva, V.A.

    1980-01-01

    Redox, acid-basic features of solutions (Eh changes from + 50 to 650 mV, pH from 7.5 to 1.5) and their chemical composition are studied in the process of hydrogeochemical investigations at the areas of underground leaching (UL) of epigenetic uranium deposits. It is shown that at studied areas of UL under neutral and weakly acidic conditions up to (pH 6.0-5.8), carbonate complexes of uranyl are the prevailing form of uranium existence in the solution, and sulfate complexes prevail under more acidic conditions. A supposition is made that it is expedient to process separate ore blocks with increased carbonate contents, particularly with oxidant additions under near-neutral acid-basic conditions (pH 7.2-6.8) with the use of weakly acid pumping solutions, which act (at the expense of their interaction with carbonates of ore-containing rocks) for enrichment of working solutions with HCO 3 - and CO 3 2- ions, promoting uranium transfer into solution

  9. Detection of the electronic structure of iron-(iii)-oxo oligomers forming in aqueous solutions.

    Science.gov (United States)

    Seidel, Robert; Kraffert, Katrin; Kabelitz, Anke; Pohl, Marvin N; Kraehnert, Ralph; Emmerling, Franziska; Winter, Bernd

    2017-12-13

    The nature of the small iron-oxo oligomers in iron-(iii) aqueous solutions has a determining effect on the chemical processes that govern the formation of nanoparticles in aqueous phase. Here we report on a liquid-jet photoelectron-spectroscopy experiment for the investigation of the electronic structure of the occurring iron-oxo oligomers in FeCl 3 aqueous solutions. The only iron species in the as-prepared 0.75 M solution are Fe 3+ monomers. Addition of NaOH initiates Fe 3+ hydrolysis which is followed by the formation of iron-oxo oligomers. At small enough NaOH concentrations, corresponding to approximately [OH]/[Fe] = 0.2-0.25 ratio, the iron oligomers can be stabilized for several hours without engaging in further aggregation. Here, we apply a combination of non-resonant as well as iron 2p and oxygen 1s resonant photoelectron spectroscopy from a liquid microjet to detect the electronic structure of the occurring species. Specifically, the oxygen 1s partial electron yield X-ray absorption (PEY-XA) spectra are found to exhibit a peak well below the onset of liquid water and OH - (aq) absorption. The iron 2p absorption gives rise to signal centered between the main absorption bands typical for aqueous Fe 3+ . Absorption bands in both PEY-XA spectra are found to correlate with an enhanced photoelectron peak near 20 eV binding energy, which demonstrates the sensitivity of resonant photoelectron (RPE) spectroscopy to mixing between iron and ligand orbitals. These various signals from the iron-oxo oligomers exhibit maximum intensity at [OH]/[Fe] = 0.25 ratio. For the same ratio, we observe changes in the pH as well as in complementary Raman spectra, which can be assigned to the transition from monomeric to oligomeric species. At approximately [OH]/[Fe] = 0.3 we begin to observe particles larger than 1 nm in radius, detected by small-angle X-ray scattering.

  10. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  11. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  12. On a closed form solution of the point kinetics equations with reactivity feedback of temperature

    International Nuclear Information System (INIS)

    Silva, Jeronimo J.A.; Vilhena, Marco T.M.B.; Petersen, Claudio Z.; Bodmann, Bardo E.J.; Alvim, Antonio C.M.

    2011-01-01

    An analytical solution of the point kinetics equations to calculate reactivity as a function of time by the Decomposition method has recently appeared in the literature. In this paper, we go one step forward, by considering the neutron point kinetics equations together with temperature feedback effects. To accomplish that, we extended the point kinetics by a temperature perturbation, obtaining a second order nonlinear ordinary differential equation. This equation is then solved by the Decomposition Method, that is, by expanding the neutron density in a series and the nonlinear terms into Adomian Polynomials. Substituting these expansions into the nonlinear ordinary equation, we construct a recursive set of linear problems that can be solved by the methodology previously mentioned for the point kinetics equation. We also report on numerical simulations and comparisons against literature results. (author)

  13. Semiconducting properties of oxide films formed onto an Nb electrode in NaOH solutions

    Directory of Open Access Journals (Sweden)

    VLADIMIR D. JOVIC

    2008-03-01

    Full Text Available In this paper, the results of the potentiostatic formation of homogeneous and heterogeneous, nano-crystalline passive films of Nb2O5 onto an Nb electrode in NaOH solutions of different concentrations at potentials lower than 3.0 V vs. SCE are presented. The semiconducting properties of such films were investigated by EIS measurements. After fitting the EIS results by appropriate equivalent circuits, the space charge capacitance (Csc and space charge resistance (Rsc of these films were determined. The donor density (Nsc, flat band potential (Efb and thickness of the space charge layer (dsc for such oxide films were determined from the corresponding Mott–Schottky (M–S plots. It is shown that all oxide films were n-type semiconductors in a certain potential range.

  14. Referral letter with an attached structured reply form: Is it a solution for not getting replies

    Directory of Open Access Journals (Sweden)

    R. P. J. C. Ramanayake

    2013-01-01

    Full Text Available Background: Communication between primary care doctors and specialists/hospital doctors is vital for smooth functioning of a health care system. In many instances referral and reply letters are the sole means of communication between general practitioners and hospital doctors/specialists. Despite the obvious benefits to patient care, answers to referral letters are the exception worldwide. In Sri Lanka hand written conventional letters are used to refer patients and replies are scarce. Materials and Methods: This interventional study was designed to assess if attaching a structured reply form with the referral letter would increase the rate of replies/back-referrals. It was conducted at the Family Medicine Clinic of the Faculty of Medicine, University of Kelaniya. A structured referral letter (form was designed based on guide lines and literature and it was used for referral of patients for a period of six months. Similarly a structured reply form was also designed and both the referral letter and the reply letter were printed on A4 papers side by side and these were used for the next six months for referrals. Both letters had headings and space underneath to write details pertaining to the patient. A register was maintained to document the number of referrals and replies received during both phases. Patents were asked to return the reply letters if specialists/hospital doctors obliged to reply. Results: Total of 90 patients were referred using the structured referral form during 1st phase. 80 letters (with reply form attached were issued during the next six months. Patients were referred to eight different specialties. Not a single reply during the 1 st phase and there were six 6 (7.5% replies during the 2 nd phase. Discussion: This was an attempt to improve communication between specialists/hospital doctors and primary care doctors. Even though there was some improvement it was not satisfactory. A multicenter island wide study should be

  15. Complex crystals formed in the aqueous solution of copper(I) iodide and sodium iodide

    International Nuclear Information System (INIS)

    Sugasaka, Kazuhiko; Fujii, Ayako

    1977-01-01

    Crystals of different crystal habits were separated from the copper(I) iodide and sodium iodide solution and the thermal changes of the composition of copper(I) iodide and sodium iodide complexes were studied by chemical analysis, thermal analysis and X-ray diffractometry. Granular and columnar crystals were determined to be copper(I) iodide and sodium iodide dihydrate by X-ray diffraction analysis, respectively. Needle crystal (A) which was separated from the solution at 25 0 C was assumed to be Na 2 CuI 3 .6H 2 O. (A) was stable in its appearance in the air, but the X-ray diffraction pattern of (A) changed. Needle crystal (B) which was recrystallized at 10 0 C from mother liquor after the separation of crystal (A) was assumed to be NaCuI 2 .4H 2 O. (B) was hygroscopic and decomposed to precipitate copper(I) iodide with moisture in the air. (A) and (B) were found to change by heating and or drying, respectively, as follows: Na 2 CuI 3 .6H 2 O → (-2H 2 O, 80 0 C) → 2NaI.2H 2 O + CuI → (-4H 2 O, 160 0 C) → 2NaI + CuI → (+1/2O 2 , 450 0 C) → 2NaI + CuO + 1/2I 2 , NaCuI 2 .4H 2 O → (-4H 2 O, Dried) → NaI + CuI. (auth.)

  16. A dynamic model to explain hydration behaviour along the lanthanide series

    International Nuclear Information System (INIS)

    Duvail, M.; Spezia, R.; Vitorge, P.

    2008-01-01

    An understanding of the hydration structure of heavy atoms, such as transition metals, lanthanides and actinides, in aqueous solution is of fundamental importance in order to address their solvation properties and chemical reactivity. Herein we present a systematic molecular dynamics study of Ln 3+ hydration in bulk water that can be used as reference for experimental and theoretical research in this and related fields. Our study of hydration structure and dynamics along the entire Ln 3+ series provides a dynamic picture of the CN behavioural change from light (CN=9 predominating) to heavy (CN=8 predominating) lanthanides consistent with the exchange mechanism proposed by Helm, Merbach and co-workers. This scenario is summarized in this work. The hydrated light lanthanides are stable TTP structures containing two kinds of water molecules: six molecules forming the trigonal prism and three in the centre triangle. Towards the middle of the series both ionic radii and polarizabilities decrease, such that first-shell water-water repulsion increases and water-cation attraction decreases. This mainly applies for molecules of the centre triangle of the nine-fold structure. Thus, one of these molecules stay in the second hydration sphere of the lanthanide for longer average times, as one progresses along the lanthanide series. The interchange between predominantly CN=9 and CN=8 is found between Tb and Dy. Therefore, we propose a model that determines the properties governing the change in the first-shell coordination number across the series, confirming the basic hypothesis proposed by Helm and Merbach. We show that it is not a sudden change in behaviour, but rather that it results from a statistical predominance of one first hydration shell structure containing nine water molecules over one containing eight. This is observed progressively across the series. (O.M.)

  17. Genetics of common forms of heart failure: challenges and potential solutions.

    Science.gov (United States)

    Rau, Christoph D; Lusis, Aldons J; Wang, Yibin

    2015-05-01

    In contrast to many other human diseases, the use of genome-wide association studies (GWAS) to identify genes for heart failure (HF) has had limited success. We will discuss the underlying challenges as well as potential new approaches to understanding the genetics of common forms of HF. Recent research using intermediate phenotypes, more detailed and quantitative stratification of HF symptoms, founder populations and novel animal models has begun to allow researchers to make headway toward explaining the genetics underlying HF using GWAS techniques. By expanding analyses of HF to improved clinical traits, additional HF classifications and innovative model systems, the intractability of human HF GWAS should be ameliorated significantly.

  18. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  19. Hydrate Phase Assemblages in Blends of Ye'elimite and Gypsum with Alite and Belite

    DEFF Research Database (Denmark)

    Pedersen, Malene Thostrup; Skibsted, Jørgen

    2016-01-01

    Calcium sulpho-aluminate (CSA) cements all contain ye’elimite, either as the main phase or in intermediate amounts, while they differ in their content of accessory phases. Belite is the main phase in most CSA cements, however, alite - CSA cements have been produced. The hydrate phases formed during...... and hydration kinetics. The improved understanding of the hydrate phase assemblages as well as the hydration kinetics for the model systems will form the fundamental basis for further optimizations of blended systems including ye’elimite with the aim of maximizing the reaction degree of the main clinker phases...... hydration of CSA cements depend on the type of CSA cement and the amount of gypsum added. The hydration reactions of the main phases are by themselves well documented, whereas the simultaneous hydration of CSA cement components is not fully understood in terms of hydration products and kinetics. To further...

  20. Electrochemically formed passive layers on titanium - preparation and biocompatibility assessment in Hank's balanced salt solution

    International Nuclear Information System (INIS)

    Zhao, B.; Jerkiewicz, G.

    2006-01-01

    Uniform and crack-free passive layers on Ti are prepared using AC voltage in 7.5 wt.% aq. NH 4 ·BF 4 at 25 o C. The passive layers possess coloration (wide spectrum of colors) that depends on the experimental conditions. The biocompatibility of such prepared passive layers is evaluated using corrosion science and analytical techniques. Their corrosion behavior, Ti-ion release, surface roughness, and wettability in Hank's Balanced Salt Solution (HBSS) at 37 o C are the main focus of this work. Open-circuit potential and polarization measurements demonstrate that the corrosion potential (E corr ) of the passive layers becomes more positive than that of the untreated Ti. The value of E corr increases as we increase the AC voltage (VAC). Their corrosion rate (CR) is lower than that of the untreated Ti, and they reduced the Ti-ion release level from 230 to 15 ppb. An increase in the AC voltage frequency (f) leads to a slightly higher level of the Ti-ion release (∼50 ppb). Surface profilometry, optical microscopy, and scanning electron microscopy (SEM) analyses show that prolonged exposure of the passive layers to HBSS results in changes to their surface topography. The passive layers prepared by the application of AC voltage are rougher and more hydrophilic than the untreated Ti. Our methodology of preparing biocompatible passive layers on Ti might be applied as a new surface treatment procedure for Ti implants. (author)

  1. Optical constants of anodic aluminum oxide films formed in oxalic acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jian [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Wang Chengwei [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: cwwang@nwnu.edu.cn; Li Yan [College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070 (China); Liu Weimin [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2008-09-01

    The anodic aluminum oxide (AAO) films with highly ordered nanopore arrays were prepared in oxalic acid solution under different anodizing voltage and time, its surface and cross section appearances were characterized by using field emission scanning electron microscopy, the transmission spectra with the interference fringes were measured at normal incidence over the wavelength range 200 to 2500 nm. Then the modified Swanepoel method was used for the determination of the optical constants and thickness of the free standing AAO films. The results indicate that the refractive index increases with the increase of anodizing voltage and the decrease of anodizing time, which is mainly due to the content of Al{sub 2}O{sub 3} with octahedron increases in the AAO films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple-DiDomenico model, and the energy dependence of the absorption coefficient can be described using the direct transition model proposed by Tauc. Likewise, the optical energy gap E{sub g} is derived from Tauc's extrapolation, and E{sub g} increases from 4.178 to 4.256 eV with the anodizing voltage, but is weakly dependent on anodizing time. All the results are self-consistent in the paper.

  2. Obsidian hydration rate for the klamath basin of california and Oregon.

    Science.gov (United States)

    Johnson, L

    1969-09-26

    A hydration rate for obsidian of 3.5(4) microns squared per 1000 radio-carbon years has been established at the Nightfire Island archeological site in northern California and provides a means to date other prehistoric Klamath Basin sites. The new rate follows the form of the hydration equation formulated by Friedman and helps to refute claims made for other hydration equations.

  3. Kinetics of CO2 and methane hydrate formation : an experimental analysis in the bulk phase

    NARCIS (Netherlands)

    He, Y.; Rudolph, E.S.J.; Zitha, P.L.J.; Golombok, M.

    2011-01-01

    Gas resources captured in the form of gas hydrates are by an order of magnitude larger than the resources available from conventional resources. In order to keep the CO2CO2 footprint in the world as small as possible, the idea is to produce methane hydrates and sequestrate CO2CO2 into hydrates in

  4. Molecular analysis of petroleum derived compounds that adsorb onto gas hydrate surfaces

    International Nuclear Information System (INIS)

    Borgund, Anna E.; Hoiland, Sylvi; Barth, Tanja; Fotland, Per; Askvik, Kjell M.

    2009-01-01

    Field observations have shown that some streams of water, gas and crude oil do not form gas hydrate plugs during petroleum production even when operating within thermodynamic conditions for hydrate formation. Also, when studied under controlled laboratory conditions, some oils are found to form hydrate dispersed systems whereas others form plugs. Oils with low tendency to form hydrate plugs are believed to contain natural hydrate plug inhibiting components (NICs) that adsorb onto the hydrate surface, making them less water-wet and preventing the particles from agglomerating into large hydrate clusters. The molecular structure of the NICs is currently unknown. In this work, hydrate adsorbing components were extracted from crude oils using freon hydrates as an extraction phase. The fractions were found to be enriched in polar material, and more polar material is associated with hydrates generated in biodegraded crude oils than in non-biodegraded oils. Various fractionation schemes and analytical techniques have been applied in the search for molecular characterisation. The average molecular weights were found to be approximately 500 g/mole. GC-MS chromatograms show a large UCM (Unresolved Complex Mixture). Thus, GC-MS has a limited potential for identification of compounds. A commercial biosurfactant was used as a model compound in the search for similar structures in the extracts. The results from analysis of the hydrate adsorbing components suggest that the type and structure are more important for hydrate morphology than the amount of material adsorbed.

  5. Thermodynamic of hydration of a Wyoming montmorillonite saturated with Ca, Mg, Na and K

    International Nuclear Information System (INIS)

    Vieillard, P.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. In the context of a disposal within clayey formations (Callovo-Oxfordian argillite) or using clayey barriers, the assessment of the long-term behavior of clay materials by geochemical modeling, requires thermodynamic properties of clay minerals. The Thermochimie database has been created by ANDRA in 1996 in order to provide coherent thermodynamic data of many minerals of interests with regards to this context, such as clay minerals. However, the thermodynamic properties of clay minerals, which govern the stability of these minerals in solution are still poorly understood. Indeed, there is little experimental data available in the literature concerning the hydration of smectites. On the other hand, it is not possible to acquire all the experimental thermodynamic hydration properties of clay minerals involved in natural systems or likely to be in the implementation of a deep disposal. In this study, we propose a method to estimate the thermodynamic hydration properties of a clay mineral. By considering the following reaction: Smectite nm H 2 O Smectite (0 H 2 O) + nm H 2 O (l), the hydration of smectite is calculated from an equilibrium condition involving anhydrous and hydrous components in which nm is the maximal number of moles of water in the fully hydrated end-member. By using a solid-solution formalism, the variation of the hydration state of a smectite with temperature or [H 2 O] can be possible. Analysis of experimental data indicates that solid solutions of hydrous and anhydrous smectite components at 25 deg. C and 1 bar are not ideal but can be expressed in terms of regular solution theory by considering the excess molal enthalpy of mixing (Hxs), the excess molal entropy of mixing (Sxs) and excess molal Gibbs free energy of mixing (Gxs) for binary solid solutions of homologous hydrous and anhydrous smectite components expressed in terms of Margules parameters W1 and W2. A compilation of measurements of

  6. A closed form solution for vulnerable options with Heston’s stochastic volatility

    International Nuclear Information System (INIS)

    Lee, Min-Ku; Yang, Sung-Jin; Kim, Jeong-Hoon

    2016-01-01

    Over-the-counter stock markets in the world have been growing rapidly and vulnerability to default risks of option holders traded in the over-the-counter markets became an important issue, in particular, since the global finance crisis and Eurozone crisis. This paper studies the pricing of European-type vulnerable options when the underlying asset follows the Heston dynamics. In this paper, we obtain a closed form analytic formula of the option price as a stochastic volatility extension of the classical Heston formula and find how the stochastic volatility effect on the Black–Scholes price as well as on the decreasing speed of the option price with credit risk depends on moneyness.

  7. Closed-form solution to directly design frequency modulated waveforms for beampatterns

    KAUST Repository

    Ahmed, Sajid

    2018-03-12

    The targets image performance depends on the transmit beampattern and power-spectral-density of the probing signal. To design such probing signals for multiple-input multiple output (MIMO) radar, conventional algorithms are iterative in nature, therefore high computational complexity restricts their use in real time applications. In this paper, to achieve the desired beampattern, a novel closed-form algorithm to design frequency-modulated (FM) waveforms for MIMO radar is proposed. The proposed algorithm has negligible computational complexity and yields unity peak-to-average power ratio constant envelope waveforms. Moreover, in contrast to the narrow band algorithms, it has almost flat main and side lobes. In the proposed algorithm, a relationship between the width of symmetric beampattern and the product of initial frequency and duration of the baseband FM waveforms is developed.

  8. Solution of Urban Problems by Forming an Environment for the Development of Innovative and Small Business

    Directory of Open Access Journals (Sweden)

    Anna Zhernoklieieva

    2017-07-01

    Full Text Available The article reveals the methods of solving the problems of the modern city by stimulating new forms of innovative small business and youth entrepreneurship, using Kharkov as an example. The formation of the start-up culture of Kharkov and the state of development of co-working zones are analyzed. It was determined that the construction of an effective public-private partnership of local authorities and new forms of entrepreneurship should be based on the possibility of creating co-working zones in the areas that are not used by the city, while stimulating the social responsibility of entrepreneurs through the provision of appropriate financing. Based on the results of a comparative analysis of the number and amount of incomes of freelancers in Kharkiv with the overall data for Ukraine, it is established that Kharkov freelancers are leaders both in terms of total and specific income. Based on the analysis of the dynamics of the revenues of the single social contribution paid by the entrepreneurs of Kharkiv, a conclusion is drawn that it is possible to achieve a sustainable growth in the filling of social insurance funds by increasing the number of freelancers. The peculiarities of the Start-up of the culture of Kharkov have been singled out, namely: the orientation towards a new product, the youth character of projects, understanding of the importance of implementing socially significant projects, the innovative nature of the activity, the priority of participants' self-expression over the financial component of projects, and cooperation with local authorities.

  9. Closed-form solution of a two-dimensional fuel temperature model for TRIGA-type reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, J B [Sandia Laboratories (United States)

    1974-07-01

    If azimuthal power density variations are ignored, the steady-state temperature distribution within a TRIGA-type fuel element is given by the solution of the Poisson equation in two dimensions (r and z) . This paper presents a closed-form solution of this equation as a function of the axial and radial power density profiles, the conductivity of the U-ZrH, the inlet temperature, specific heat and flow rate of the coolant, and the overall heat transfer coefficient. The method begins with the development of a system of linear ordinary differential equations describing mass and energy balances in the fuel and coolant. From the solution of this system, an expression for the second derivative of the fuel temperature distribution in the axial (z) direction is found. Substitution of this expression into the Poisson equation for T(r,z) reduces it from a partial differential equation to an ordinary differential equation in r, which is subsequently solved in closed-form. The results of typical calculations using the model are presented. (author)

  10. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan

    2015-05-01

    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  11. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.

    Science.gov (United States)

    Remsing, Richard C; Xi, Erte; Patel, Amish J

    2018-04-05

    The solubility of proteins and other macromolecular solutes plays an important role in numerous biological, chemical, and medicinal processes. An important determinant of protein solubility is the solvation free energy of the protein, which quantifies the overall strength of the interactions between the protein and the aqueous solution that surrounds it. Here we present an all-atom explicit-solvent computational framework for the rapid estimation of protein solvation free energies. Using this framework, we estimate the hydration free energy of hydrophobin II, an amphiphilic fungal protein, in a computationally efficient manner. We further explore how the protein hydration free energy is influenced by enhancing flexibility and by the addition of sodium chloride, and find that it increases in both cases, making protein hydration less favorable.

  12. Deforming black hole and cosmological solutions by quasiperiodic and/or pattern forming structures in modified and Einstein gravity

    Science.gov (United States)

    Bubuianu, Laurenţiu; Vacaru, Sergiu I.

    2018-05-01

    We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.

  13. Closed-form analytical solutions for assessing the consequences of sea-level rise on unconfined sloping island aquifers

    Science.gov (United States)

    Chesnaux, R.

    2016-04-01

    Closed-form analytical solutions for assessing the consequences of sea-level rise on fresh groundwater oceanic island lenses are provided for the cases of both strip and circular islands. Solutions are proposed for directly calculating the change in the thickness of the lens, the changes in volume and the changes in travel time of fresh groundwater within island aquifers. The solutions apply for homogenous aquifers recharged by surface infiltration and discharged by a down-gradient, fixed-head boundary. They also take into account the inland shift of the ocean due to land surface inundation, this shift being determined by the coastal slope of inland aquifers. The solutions are given for two simple island geometries: circular islands and strip islands. Base case examples are presented to illustrate, on one hand, the amplitude of the change of the fresh groundwater lens thickness and the volume depletion of the lens in oceanic island with sea-level rise, and on the other hand, the shortening of time required for groundwater to discharge into the ocean. These consequences can now be quantified and may help decision-makers to anticipate the effects of sea-level rise on fresh groundwater availability in oceanic island aquifers.

  14. High voltage microscopy of the hydration of cement with special respect to the influence of superplasticizers

    International Nuclear Information System (INIS)

    Pusch, R.; Fredrikson, A.

    1990-02-01

    This report describes a study of cement hydration, using high voltage 'humid cell' electron microscopy. Samples with and without superplasticizer were inserted in the humid cell, thus allowing the superplasticizer to affect the hydration process while observing it in the microscope. It is concluded that after an initial period of rather rapid hydration, further hydration is retarded by the superplasticizer. It probably forms a Helmholtz-type cloud of organic molecules around cement grains. (authors)

  15. Study of formation and stability conditions of gas hydrates in drilling fluids; Etude des conditions de formation et de stabilite des hydrates de gaz dans les fluides de forage

    Energy Technology Data Exchange (ETDEWEB)

    Kharrat, M.

    2004-10-15

    Drilling fluids are complex media, in which solid particles are in suspension in a water-in-oil emulsion. The formation of gas hydrates in these fluids during off shore drilling operations has been suspected to be the cause of serious accidents. The purpose of this thesis is the study of the formation conditions as well as the stability of gas hydrates in complex fluids containing water-in-oil emulsions. The technique of high-pressure differential scanning calorimetry was used to characterise the conditions of hydrates formation and dissociation. Special attention has first been given to the validation of thermodynamic measurements in homogeneous solutions, in the pressure range 4 to 12 Mpa; the results were found to be in good agreement with literature data, as well as with modelling results. The method was then applied to water-in-oil emulsion, used as a model for real drilling fluids. It was proven that thermodynamics of hydrate stability are not significantly influenced by the state of dispersion of the water phase. On the other hand, the kinetics of formation and the amount of hydrates formed are highly increased by the dispersion. Applying the technique to real drilling fluids confirmed the results obtained in emulsions. Results interpretation allowed giving a representation of the process of hydrate formation in emulsion. Empirical modelling was developed to compute the stability limits of methane hydrate in the presence of various inhibitors, at pressures ranging from ambient to 70 MPa. Isobaric phase diagrams were constructed, that allow predicting the inhibiting efficiency of sodium chloride and calcium chloride at constant pressure, from 0,25 to 70 MPa. (author)

  16. The Artificial Hamiltonian, First Integrals, and Closed-Form Solutions of Dynamical Systems for Epidemics

    Science.gov (United States)

    Naz, Rehana; Naeem, Imran

    2018-03-01

    The non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form {\\dot q^i} = {partial H}/{partial {p_i}},\\dot p^i = - {partial H}/{partial {q_i}} + {Γ ^i}(t,{q^i},{p_i}) appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term `artificial Hamiltonian' for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.

  17. Scavenging of Tc(V) formed by I.T. in 95mTcO4- solutions

    International Nuclear Information System (INIS)

    Ianoz, E.; Colin, M.; Kosinski, M.

    1988-01-01

    The chemical effects of the I.T. of 95m Tc in 95m TcO 4 - have been studied in chelating ligand solutions. At high pH and at high concentration of 1,4,8,11-tetraazacyclotetradecane and 1,4-dithia-8, 11-diazacyclotetradecane, the retention of 95g Tc is about 20% and the unretained 95g Tc appears preponderantly (ca. 73%) as [TcO 2 L] + complexes. In glucoheptonate solution, the 95g Tc retention remains practically the same (22%) but the unretained 95g Tc is found in high proportion (73%) as [TcObis(glucoheptonate)] - . The added ligands are very good scavengers for 95g Tc(V). A comparison is made between 95g Tc species formed by the I.T. in 95m TcO 4 - and 99m Tc species resulting from the chemical reduction of 99m TcO 4 - . (orig.)

  18. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    Energy Technology Data Exchange (ETDEWEB)

    Marconnet, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: cyril.marconnet@yahoo.fr; Wouters, Y. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Miserque, F. [Laboratoire de Reactivite des Surfaces et des Interfaces, CEA Saclay, Bat. 391, 91191 GIF-SUR-YVETTE (France); Dagbert, C. [Laboratoire de Genie des Procedes et des Materiaux, Ecole Centrale Paris, Grande Voie des Vignes, 92290 CHATENAY-MALABRY (France)], E-mail: catherine.dagbert@ecp.fr; Petit, J.-P. [Laboratoire d' Electrochimie et de Physico-chimie des Materiaux et des Interfaces, INPG, F-38402 Saint-Martin d' Heres Cedex (France); Galerie, A. [Science et Ingenierie des Materiaux et Procedes, Institut National Polytechnique de Grenoble, F-38402 Saint-Martin d' Heres Cedex (France); Feron, D. [Service de Corrosion et du Comportement des Materiaux dans leur Environnement, CEA Saclay, Bat. 458, 91191 GIF-SUR-YVETTE (France)

    2008-12-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr{sub 2}O{sub 3}) and an increase of the donors density in the space charge region.

  19. Chemical composition and electronic structure of the passive layer formed on stainless steels in a glucose-oxidase solution

    International Nuclear Information System (INIS)

    Marconnet, C.; Wouters, Y.; Miserque, F.; Dagbert, C.; Petit, J.-P.; Galerie, A.; Feron, D.

    2008-01-01

    This article deals with the interaction between the passive layer formed on UNS S30403 and S31254 stainless steels and an enzymatic solution containing glucose oxidase (GOx) and its substrate D-glucose. This enzymatic solution is often used to reproduce in laboratory the ennoblement occuring in non-sterile aerated aqueous environments because of the biofilm settlement on the surface of the metallic material. GOx catalyses the oxidation of D-glucose to gluconic acid by reducing oxygen to hydrogen peroxide and produces an organic acid. Thanks to photocurrent measurements, XPS analysis and Mott-Schottky diagrams, it is here shown that such an environment generates modifications in the chemical composition and electronic structure of the passive layer: it induces a relative enrichment of the n-type semi-conducting phase containing chromium (chromine Cr 2 O 3 ) and an increase of the donors density in the space charge region

  20. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  1. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  2. Properties of cyclodextrins. II. Preparation of a stable β-cyclodextrin hydrate and determination of its water content and enthalpy of solution in water from 15 to 30.deg

    NARCIS (Netherlands)

    Wiedenhof, N.; Lammers, J.N.J.J.

    1968-01-01

    The solubility of ß-cyclodextrin (ß-CD) in water has been measured by a refractive-index method at 15–30°. Evidence was obtained that the same, solid ß-CD hydrate phase is present in this temperature range. The formula of the hydrate was shown to be C42H70O35(12.0 ± 0.5)H20. A method for preparation

  3. Thermodynamic and microscopic equilibrium constants of molecular species formed from pyridoxal 5'-phosphate and 2-amino-3-phosphonopropionic acid in aqueous and D2O solution

    International Nuclear Information System (INIS)

    Szpoganicz, B.; Martell, A.E.

    1984-01-01

    Schiff base formation between pyridoxal 5'-phosphate (PLP) and 2-amino-3-phosphonopropionic acid (APP) has been investigated by measurement of the corresponding NMR and electronic absorption spectra. A value of 0.26 was found for the formation constant of the completely deprotonated Schiff base species, and is much smaller than the values reported for pyridoxal-β-chloroalanine and pyridoxal-O-phosphoserine. The protonation constants for the aldehyde and hydrate forms of PLP were determined in D 2 O by measurement of the variation of chemical shifts with pD (pH in D 2 O). The hydration constants of PLP were determined in a pD range 2-12, and species distributions were calculated. The protonation constants of the APP-PLP Schiff base determined by NMR in D 2 O were found to have the log values 12.54, 8.10, 6.70, and 5.95, and the species distributions were calculated for a range of pD values. Evidence is reported for hydrogen bonding involving the phosphate and phosphonate groups of the diprotonated Schiff base. The cis and trans forms of the Schiff bases were distinguished with the aid of the nuclear Overhauser effect. 43 references, 9 figures, 3 tables

  4. In silico studies of the properties of water hydrating a small protein

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sudipta Kumar; Chakraborty, Kausik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in [Molecular Modeling Laboratory, Department of Chemistry, Indian Institute of Technology, Kharagpur - 721302 (India); Jana, Madhurima [Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela - 769008 (India)

    2014-12-14

    Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized “quasi-free” water molecules beyond the first layer of “bound” waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the “bound” and “free” water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein.

  5. In silico studies of the properties of water hydrating a small protein

    International Nuclear Information System (INIS)

    Sinha, Sudipta Kumar; Chakraborty, Kausik; Bandyopadhyay, Sanjoy; Jana, Madhurima

    2014-01-01

    Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three α-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized “quasi-free” water molecules beyond the first layer of “bound” waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the “bound” and “free” water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein

  6. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  7. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  8. Non-Gaussian Closed Form Solutions for Geometric Average Asian Options in the Framework of Non-Extensive Statistical Mechanics

    Directory of Open Access Journals (Sweden)

    Pan Zhao

    2018-01-01

    Full Text Available In this paper we consider pricing problems of the geometric average Asian options under a non-Gaussian model, in which the underlying stock price is driven by a process based on non-extensive statistical mechanics. The model can describe the peak and fat tail characteristics of returns. Thus, the description of underlying asset price and the pricing of options are more accurate. Moreover, using the martingale method, we obtain closed form solutions for geometric average Asian options. Furthermore, the numerical analysis shows that the model can avoid underestimating risks relative to the Black-Scholes model.

  9. Computationally simple, analytic, closed form solution of the Coulomb self-interaction problem in Kohn Sham density functional theory

    International Nuclear Information System (INIS)

    Gonis, Antonios; Daene, Markus W.; Nicholson, Don M.; Stocks, George Malcolm

    2012-01-01

    We have developed and tested in terms of atomic calculations an exact, analytic and computationally simple procedure for determining the functional derivative of the exchange energy with respect to the density in the implementation of the Kohn Sham formulation of density functional theory (KS-DFT), providing an analytic, closed-form solution of the self-interaction problem in KS-DFT. We demonstrate the efficacy of our method through ground-state calculations of the exchange potential and energy for atomic He and Be atoms, and comparisons with experiment and the results obtained within the optimized effective potential (OEP) method.

  10. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    International Nuclear Information System (INIS)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-01-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  11. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    Science.gov (United States)

    Kozai, Naofumi; Ohnuki, Toshihiko; Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro

    2011-10-01

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  12. Behavior of Paramecium sp. in solutions containing Sr and Pb: Do Paramecium sp. alter chemical forms of those metals?

    Energy Technology Data Exchange (ETDEWEB)

    Kozai, Naofumi, E-mail: kozai.naofumi@jaea.go.jp [Advanced Sciences Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Ohnuki, Toshihiko [Advanced Sciences Research Center, Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Koka, Masahi; Satoh, Takahiro; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, JAEA, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2011-10-15

    The behavior of Paramecium sp. (Paramecium bursaria) in aqueous solutions containing Sr and Pb was investigated to determine the role of protozoa in the migration of radionuclides in the environment. Precultured living cells of P. bursaria were exposed to aqueous solutions containing 0.01 or 0.05 mM Sr or Pb at pH 7 for 24 h. For comparison, pre-killed cells were treated with the metal solutions in the same way. Two-dimensional elemental mappings of cells were obtained by micro-PIXE. Aquatic species of Sr and Pb were analyzed by size exclusion chromatography (SEC) coupled online to ultraviolet (UV) spectroscopy and inductivity coupled plasma mass spectroscopy (ICP-MS). The amounts of Sr adsorbed or taken up by the cells surviving for 24 h and adsorbed on pre-killed cells were below the detection limit. Cells of P. bursaria adsorbed or took up a fraction of Pb. The Pb adsorbed or taken up by the cells surviving for 24 h in the Pb solution was barely detectable, while the Pb adsorbed on pre-killed cells was clearly mappable. These findings suggest that living cells of P. bursaria have functions that reduce adsorption or uptake of Pb on the cells. Quantitative and SEC-UV-ICP-MS analyses of the Sr and Pb in aqueous phases showed no clear evidences that living cells of P. bursaria alter the chemical form of Sr or Pb remaining in the aqueous phases after the cell-solution contact.

  13. Characterization of film-forming solutions and films incorporating free and nanoencapsulated tea polyphenol prepared by gelatins with different Bloom values

    Science.gov (United States)

    Gelatin film-forming solutions and their films incorporating tea polyphenol (TP) and chitosan nanoparticles (CSNs) were prepared from gelatins with different Bloom values (100, 150 and 225). Blank gelatin film-forming solutions and films were prepared as controls. Gelatins with higher Bloom values h...

  14. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  15. Effect of bubble size and density on methane conversion to hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  16. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  17. Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media

    Directory of Open Access Journals (Sweden)

    Xiang-Ru Chen

    2015-02-01

    Full Text Available The combustion characteristics of both pure propane hydrates and the mixtures of hydrates and quartz sands were investigated by combustion experiments. The flame propagation, flame appearance, burning time and temperature in different hydrate layers were studied. For pure propane hydrate combustion, the initial flame falls in the “premixed” category. The flame propagates very rapidly, mainly as a result of burnt gas expansion. The flame finally self-extinguishes with some proportion of hydrates remaining unburned. For the hydrate-sand mixture combustion, the flame takes the form of many tiny discontinuous flames appearing and disappearing at different locations. The burn lasts for a much shorter amount of time than pure hydrate combustion. High porosity and high hydrate saturation is beneficial to the combustion. The hydrate combustion is the combustion of propane gas resulting from the dissociation of the hydrates. In both combustion test scenarios, the hydrate-dissociated water plays a key role in the fire extinction, because it is the main resistance that restrains the heat transfer from the flame to the hydrates and that prevents the hydrate-dissociated gas from releasing into the combustion zone.

  18. Estimating pore-space gas hydrate saturations from well log acoustic data

    Science.gov (United States)

    Lee, Myung W.; Waite, William F.

    2008-07-01

    Relating pore-space gas hydrate saturation to sonic velocity data is important for remotely estimating gas hydrate concentration in sediment. In the present study, sonic velocities of gas hydrate-bearing sands are modeled using a three-phase Biot-type theory in which sand, gas hydrate, and pore fluid form three homogeneous, interwoven frameworks. This theory is developed using well log compressional and shear wave velocity data from the Mallik 5L-38 permafrost gas hydrate research well in Canada and applied to well log data from hydrate-bearing sands in the Alaskan permafrost, Gulf of Mexico, and northern Cascadia margin. Velocity-based gas hydrate saturation estimates are in good agreement with Nuclear Magneto Resonance and resistivity log estimates over the complete range of observed gas hydrate saturations.

  19. Experimental Equipment Validation for Methane (CH4) and Carbon Dioxide (CO2) Hydrates

    Science.gov (United States)

    Saad Khan, Muhammad; Yaqub, Sana; Manner, Naathiya; Ani Karthwathi, Nur; Qasim, Ali; Mellon, Nurhayati Binti; Lal, Bhajan

    2018-04-01

    Clathrate hydrates are eminent structures regard as a threat to the gas and oil industry in light of their irritating propensity to subsea pipelines. For natural gas transmission and processing, the formation of gas hydrate is one of the main flow assurance delinquent has led researchers toward conducting fresh and meticulous studies on various aspects of gas hydrates. This paper highlighted the thermodynamic analysis on pure CH4 and CO2 gas hydrates on the custom fabricated equipment (Sapphire cell hydrate reactor) for experimental validation. CO2 gas hydrate formed at lower pressure (41 bar) as compared to CH4 gas hydrate (70 bar) while comparison of thermodynamic properties between CH4 and CO2 also presented in this study. This preliminary study could provide pathways for the quest of potent hydrate inhibitors.

  20. Carbapenems and SHV-1 β-Lactamase Form Different Acyl-Enzyme Populations in Crystals and Solution

    Science.gov (United States)

    Kalp, Matthew; Carey, Paul R.

    2009-01-01

    The reactions between single crystals of the SHV-1 β-lactamase enzyme and the carbapenems, meropenem, imipenem and ertapenem, have been studied by Raman microscopy. Aided by quantum mechanical calculations, major populations of two acyl-enzyme species, a labile Δ2-pyrroline and a more tightly bound Δ1-pyrroline, have been identified for all three compounds. These isomers differ only in the position of the double bond about the carbapenem nucleus. This discovery is consonant with X-ray crystallographic findings that also identified two populations for meropenem bound in SHV-1: one with the acyl C=O group in the oxyanion hole and the second with the acyl group rotated 180 degrees compared to its expected position [Nukaga, M., Bethel, C. R., Thomson, J. M., Hujer, A. M., Distler, A. M., Anderson, V. E., Knox, J. R., and Bonomo, R. A. (2008) Journal of the American Chemical Society]. When crystals of the Δ1 and Δ2 containing acyl-enzymes were exposed to solutions with no carbapenem, rapid deacylation of the Δ2 species was observed by kinetic Raman experiments. However, no change in the Δ1 population was observed over 1 hour, the effective lifetime of the crystal. These observations lead to the hypothesis that the stable Δ1 species is due to the form seen by X-ray with the acyl carbonyl outside the oxyanion hole, while the Δ2 species corresponds to the form with the carbonyl inside the oxyanion hole. Soak-in and soak-out Raman experiments also demonstrated that tautomeric exchange between the Δ1 and Δ2 forms does not occur on the crystalline enzyme. When meropenem or ertapenem were reacted with SHV-1 in solution, the Raman difference spectra demonstrated that only a major population corresponding to the Δ1 acyl-enzyme could be detected. The 1003 cm-1 mode of the phenyl ring positioned on the C3 side chain of ertapenem acts as an effective internal Raman intensity standard and the ratio of its intensity to that of the 1600 cm-1 feature of Δ1 provides an

  1. Towards CO2 sequestration and applications of CO2 hydrates: the effects of tetrahydrofuran on the phase equilibria of CO2 hydrates

    International Nuclear Information System (INIS)

    Khalik, M.S.; Peters, C.J.

    2006-01-01

    The increasing quantity of carbon dioxide (CO 2 ) in the atmosphere has caused widespread global concerns. Capturing CO 2 from its sources and stored it in the form of gas hydrates and application of CO 2 hydrates are among the proposed methods to overcome this problem. In order to make hydrate-based process more attractive, the use of cyclic ethers as promoters is suggested to reduce the required hydrate formation pressure and enhancing the corresponding kinetic rate. In the present work, tetrahydrofuran (THF) is chosen as a hydrate promoter, participating in forming hydrates and produces mixed hydrate together with CO 2 . The pressure and temperature ranges of hydrate stability region are carefully determined through phase equilibrium measurement of the ternary CO 2 , tetrahydrofuran (THF) and water systems. From the experimental results, it is confirmed that the presence of THF in CO 2 + water systems will extend the hydrate formation region to higher temperature at a constant pressure. The extension of the hydrate stability region is depended on the overall concentration of the ternary system. Moreover, four-phase equilibrium of H-Lw-Lv-V is observed in the system, which may be due to a liquid phase split. In the region where the four-phase equilibrium exists, the ternary system loses its concentration dependency of the hydrate equilibrium conditions. (Author)

  2. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  3. Pulse radiolysis studies of iron(I) in aqueous solutions

    International Nuclear Information System (INIS)

    Nenadovic, M.T.; Micic, O.I.; Muk, A.A.

    1980-01-01

    The absorption spectrum and decay kinetics of the products of the reactions of iron(II) ions with hydrated electrons and hydrogen atoms have been studied in aqueous solution using pulse-radiolysis techniques. Iron(I) is formed by reaction with hydrated electrons and its absorption spectrum is reported and discussed. The formation of molecular hydrogen by reaction of Fe + with water is suppressed by other solutes present in the solutions. In acidic solutions containing [SO 4 ] 2- , the intermediates formed in the reaction with H atoms decay by a first-order process and produce molecular hydrogen, but the rate of their decay does not depend only on the oxonium ion concentration but also on intermolecular rearrangement in the [FeSO 4 -H] complex. (author)

  4. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Yanxin; Cheng Yipik [Department of Civil, Environmental and Geomatic Engineering, University College London (UCL), Gower Street, London, WC1E 6BT (United Kingdom); Xu Xiaomin; Soga, Kenichi [Geotechnical and Environmental Research Group, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ (United Kingdom)

    2013-06-18

    Methane hydrate bearing soil has attracted increasing interest as a potential energy resource where methane gas can be extracted from dissociating hydrate-bearing sediments. Seismic testing techniques have been applied extensively and in various ways, to detect the presence of hydrates, due to the fact that hydrates increase the stiffness of hydrate-bearing sediments. With the recognition of the limitations of laboratory and field tests, wave propagation modelling using Discrete Element Method (DEM) was conducted in this study in order to provide some particle-scale insights on the hydrate-bearing sandy sediment models with pore-filling and cementation hydrate distributions. The relationship between shear wave velocity and hydrate saturation was established by both DEM simulations and analytical solutions. Obvious differences were observed in the dependence of wave velocity on hydrate saturation for these two cases. From the shear wave velocity measurement and particle-scale analysis, it was found that the small-strain mechanical properties of hydrate-bearing sandy sediments are governed by both the hydrate distribution patterns and hydrate saturation.

  5. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  6. Physicochemical characterization of in situ drug-polymer nanocomplex formed between zwitterionic drug and ionomeric material in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Salamanca, Constain H., E-mail: chsalamanca@icesi.edu.co [Pharmaceutical physical chemistry laboratory, Department of Pharmacy, Faculty of Natural Sciences, ICESI University, Cali (Colombia); Castillo, Duvan F.; Villada, Juan D. [Pharmaceutical physical chemistry laboratory, Department of Pharmacy, Faculty of Natural Sciences, ICESI University, Cali (Colombia); Rivera, Gustavo R. [SIT Biotech GmbH, BMZ 2 Otto-Hahn-Str. 15, 44227 Dortmund (Germany)

    2017-03-01

    Biocompatible polymeric materials with the potential to form functional structures, in association with different therapeutic molecules, in physiological media, represent a great potential for biological and pharmaceutical applications. Therefore, here the formation of a nano-complex between a synthetic cationic polymer and model drug (ampicillin trihydrate) was studied. The formed complex was characterized by size and zeta potential measurements, using dynamic light scattering and capillary electrophoresis. Moreover, the chemical and thermodynamically stability of these complexes were studied. The ionomeric material, here referred as EuCl, was obtained by equimolar reaction between Eudragit E and HCl. The structural characterization was carried out by potentiometric titration, FTIR spectroscopy, and DSC. The effect of pH, time, polymer concentration and ampicillin/polymer molar ratio over the hydrodynamic diameter and zeta potential were established. The results show that EuCl ionomer in aqueous media presents two different populations of nanoparticles; one of this tends to form flocculated aggregates in high pH and concentrations, by acquiring different conformations in solution by changing from a compact to an extended conformation. Moreover, the formation of an in situ interfacial polymer-drug complex was demonstrated, this could slightly reduce the hydrolytic degradation of the drug while affecting its solubility, mainly under acidic conditions. - Highlights: • The EuCl ionomer in aqueous media presents two different populations of nanoparticle, corresponding to proximally 15 nm and 150 nm. • The EuCl ionomer in aqueous media may form different structure depending on the pH and polymer concentration, which tends to form flocculated aggregates in high pH and concentrations. • The formation of an in situ interfacial polymer-drug complex was demonstrated, which could slightly reduce the hydrolytic degradation of the drug and affecting its solubility in

  7. Experimental setting for assessing mechanical strength of gas hydrate pellet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S.J.; Choi, J.H.; Koh, B.H. [Dongguk Univ., Phil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    Due to the constant increase in global demand for clean energy, natural gas production from stranded medium and small size gas wells has drawn significant interest. Because the ocean transport of natural gas in the form of solid hydrate pellets (NGHP) has been estimated to be economically feasible, several efforts have been made to develop a total NGHP ocean transport chain. The investigation of mechanical strength of solid-form hydrate pellet has been an important task in fully exploiting the benefit of gas hydrate in the perspective of mass transportation and storage. This paper provided the results of a preliminary study regarding the assessment of mechanical properties of the gas hydrate pellet. The preliminary study suggested some of the key issues regarding formation and strength of gas hydrate pellets. Instead of utilizing the gas hydrate pellet, the study focused on a preliminary test setup for developing the ice pellet which was readily applied to the gas hydrate pellet in the future. The paper described the pelletization of ice powder as well as the experimental setup. Several photographs were illustrated, including samples of ice pellets; compression test for ice pellet using air press and load cell; and the initiation of crack in the cross section of an ice pellet. It was found that mechanical strength, especially, compression strength was not significantly affected by different level of press-forming force up to a certain level. 4 refs., 1 tab., 4 figs.

  8. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek

    2010-02-01

    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  9. Prospects of gas hydrate presence in the Chukchi sea

    Directory of Open Access Journals (Sweden)

    Т. В. Матвеева

    2017-08-01

    Full Text Available The purpose of this study is to forecast the scale and distribution character of gas hydrate stability zone in the Chukchi Sea under simulated natural conditions and basing on these results to estimate resource potential of gas hydrates within this area. Three types of stability zone have been identified. A forecast map of gas hydrate environment and potentially gas hydrate-bearing water areas in the Chukchi Sea has been plotted to a scale of 1:5 000 000. Mapping of gas hydrate stability zone allowed to give a justified forecast based on currently available data on geologic, fluid dynamic, cryogenic, geothermal and pressure-temperature conditions of gas hydrate formation in the Chukchi Sea. It is the first forecast of such kind that focuses on formation conditions for hydrates of various types and compositions in the Arctic seas offshore Russia. Potential amount of gas, stored beneath the Chukchi Sea in the form of hydrates, is estimated based on mapping of their stability zone and falls into the interval of 7·1011-11.8·1013 m3.

  10. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    Science.gov (United States)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  11. Synthesis and characterization of alanine boron hydrate for its use in thermal neutron dosimetry

    International Nuclear Information System (INIS)

    Yanez S, J.C.

    1994-01-01

    Alanine boron hydrate was synthesized for its possible use as intercomparison dosimeter for thermal neutron irradiation. The irradiations were performed in the Nuclear Reactor of the Nuclear Center of Mexico. The salt was prepared by reacting alanine and boric acid in a (1:1) stoichiometric ratio in neutral pH 7.5 aqueous solution and also in a basic pH 13 solution. The latter reaction was prepared with the addition of ammonia hydroxide (25%). Solutions were stirred and afterwards were let to evaporate. The obtained product in each reaction is a white solid. Dosimeters were prepared with the obtained reaction products and irradiated under thermal neutron flux of 5 x 10 7 n/cm 2 s. For 30 hours. The analysis of irradiated samples was made in a Variant E-15 Electron Paramagnetic Resonance spectrometer. The observed response of the samples prepared with the reaction product at the basic pH is approximately 50% higher than the neutral pH samples. In order to investigate the optimum signal enhancement samples were prepared in a basic pH medium in the following stoichiometric ratios: (1:0.5); (1:0.75); (1:1.25); (1:1.5) and (1:1.75). It was observed that the samples of the reaction (1:0.75) produced the higher response. The response was 2728% higher than the alanine only dosimeters. The reaction product was chemically characterized by X-ray diffraction, Nuclear Magnetic Resonance, Chromatography, Refractometry and Solubility tests. Results indicate that alanine boron hydrate is formed in basic media and in a stoichiometric ratio (1:0.75). The dosimetric characterization of alanine boron hydrate was performed, results are reported. It is concluded that alanine boron hydrate may be a good intercomparison dosimeter for thermal neutron irradiation. (Author)

  12. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  13. Proposal of experimental device for the continuous accumulation of primary energy in natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Siažik Ján

    2017-01-01

    Full Text Available Hydrates of the natural gas in the lithosphere are a very important potential source of energy that will be probably used in the coming decades. It seems as promising accumulation of the standard gas to form hydrates synthetically, stored, and disengage him when is peak demand. Storage of natural gas or biomethane in hydrates is advantageous not only in terms of storage capacity, but also from the aspect of safety storage hydrates. The gas stored in such form may occurs at relatively high temperatures and low pressures in comparison to other Technologies of gas- storage. In one cubic meter of hydrate can be stored up to 150 m3 of natural gas, depending on the conditions of thermobaric hydrate generation. This article discusses the design of the facility for the continuous generation of hydrates of natural gas measurement methodology and optimal conditions for their generation.

  14. Nanoscale phase transition behavior of shape memory alloys — closed form solution of 1D effective modelling

    Science.gov (United States)

    Li, M. P.; Sun, Q. P.

    2018-01-01

    We investigate the roles of grain size (lg) and grain boundary thickness (lb) on the stress-induced phase transition (PT) behaviors of nanocrystalline shape memory alloys (SMAs) by using a Core-shell type "crystallite-amorphous composite" model. A non-dimensionalized length scale lbarg(=lg /lb) is identified as the governing parameter which is indicative of the energy competition between the crystallite and the grain boundary. Closed form analytical solutions of a reduced effective 1D model with embedded microstructure length scales of lg and lb are presented in this paper. It is shown that, with lbarg reduction, the energy of the elastic non-transformable grain boundary will gradually become dominant in the phase transition process, and eventually bring fundamental changes of the deformation behaviors: breakdown of two-phase coexistence and vanishing of superelastic hysteresis. The predictions are supported by experimental data of nanocrystalline NiTi SMAs.

  15. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery.

    Science.gov (United States)

    Battu, Sunil Kumar; Repka, Michael A; Maddineni, Sindhuri; Chittiboyina, Amar G; Avery, Mitchell A; Majumdar, Soumyajit

    2010-09-01

    The objective of the present research was to evaluate the physicochemical characteristics of berberine chloride and to assess the complexation of drug with 2-hydroxypropyl-β-cyclodextrin (HPβCD), a first step towards solution dosage form development. The parameters such as log P value were determined experimentally and compared with predicted values. The pH-dependent aqueous solubility and stability were investigated following standard protocols at 25°C and 37°C. Drug solubility enhancement was attempted utilizing both surfactants and cyclodextrins (CDs), and the drug/CD complexation was studied employing various techniques such as differential scanning calorimetry, Fourier transform infrared, nuclear magnetic resonance, and scanning electron microscopy. The experimental log P value suggested that the compound is fairly hydrophilic. Berberine chloride was found to be very stable up to 6 months at all pH and temperature conditions tested. Aqueous solubility of the drug was temperature dependent and exhibited highest solubility of 4.05 ± 0.09 mM in phosphate buffer (pH 7.0) at 25°C, demonstrating the effect of buffer salts on drug solubility. Decreased drug solubility was observed with increasing concentrations of ionic surfactants such as sodium lauryl sulfate and cetyl trimethyl ammonium bromide. Phase solubility studies demonstrated the formation of berberine chloride-HPβCD inclusion complex with 1:1 stoichiometry, and the aqueous solubility of the drug improved almost 4.5-fold in the presence of 20% HPβCD. The complexation efficiency values indicated that the drug has at least threefold greater affinity for hydroxypropyl-β-CD compared to randomly methylated-β-CD. The characterization techniques confirmed inclusion complex formation between berberine chloride and HPβCD and demonstrated the feasibility of developing an oral solution dosage form of the drug.

  16. Results at Mallik highlight progress in gas hydrate energy resource research and development

    Science.gov (United States)

    Collett, T.S.

    2005-01-01

    The recent studies that project the role of gas hydrates in the future energy resource management are reviewed. Researchers have long speculated that gas hydrates could eventually be a commercial resource for the future. A Joint Industry Project led by ChevronTexaco and the US Department of Energy is designed to characterize gas hydrates in the Gulf of Mexico. Countries including Japan, canada, and India have established large gas hydrate research and development projects, while China, Korea and Mexico are investigating the viability of forming government-sponsored gas hydrate research projects.

  17. Portland cement hydration in the presence of admixtures: black gram pulse and superplasticizer

    Directory of Open Access Journals (Sweden)

    Viveka Nand Dwivedi

    2008-12-01

    Full Text Available Effect of admixtures such as black gram pulse (BGP and sulfonated naphthalene based superplasticizer (SP on the hydration of Portland cement has been studied. The hydration characteristics of OPC in the presence of BGP and SP were studied with the help of non evaporable water content determinations, calorimetric method, Mössbauer spectroscopic and atomic force microscopic techniques. Results have shown that both BGP and SP get adsorbed at the surface of cement and its hydration products. The hydration of Portland cement is retarded in the presence of both the admixtures and nanosize hydration products are formed.

  18. Surface Assisted Formation of methane Hydrates on Ice and Na Montmorillonite Clay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Margaret Ellen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Teich-McGoldrick, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cygan, Randall Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Meserole, Stephen P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rodriguez, Mark A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    Methane hydrates are extremely important naturally-occurring crystalline materials that impact climate change, energy resources, geological hazards, and other major environmental issues. Whereas significant experimental effort has been completed to understanding the bulk thermodynamics of methane hydrate assemblies, little is understood on heterogeneous nucleation and growth of methane hydrates in clay-rich environments. Controlled synthesis experiments were completed at 265-285 K and 6.89 MPa to examine the impact of montmorillonite surfaces in clay-ice mixtures to nucleate and form methane hydrate. The results suggest that the hydrophilic and methane adsorbing properties of Namontmorillonite reduce the nucleation period of methane hydrate formation in pure ice systems.

  19. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  20. Experimental hydrate formation and gas production scenarios based on CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, J.C.; Howard, J.J. [ConocoPhillips, Bartlesville, OK (United States). Reservoir Laboratories; Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States); Ersland, G.; Husebo, J.; Graue, A. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology

    2008-07-01

    Gas hydrate production strategies have focused on depressurization or thermal stimulation of the reservoir, which in turn leads to hydrate dissociation. In order to evaluate potential production scenarios, the recovery efficiency of the natural gas from hydrate must be known along with the corresponding amounts of produced water. This study focused on the exchange of carbon dioxide (CO{sub 2}) with the natural gas hydrate and the subsequent release of free methane (CH{sub 4}). Laboratory experiments that investigated the rates and mechanisms of hydrate formation in coarse-grained porous media have shown the significance of initial water saturation and salinity on forming methane hydrates. Many of the experiments were performed in a sample holder fitted with an MRI instrument for monitoring hydrate formation. Hydrate-saturated samples were subjected to different procedures to release methane. The rates and efficiency of the exchange process were reproducible over a series of initial conditions. The exchange process was rapid and efficient in that no free water was observed in the core with MRI measurements. Injection of CO{sub 2} into the whole-core hydrate-saturated pore system resulted in methane production at the outlet end. Permeability measurements on these hydrate saturated cores during hydrate formation decreased to low values, but enough for gas transport. The lower permeability values remained constant during the methane-carbon dioxide exchange process in the hydrate structure. 12 refs., 9 figs.

  1. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  2. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  3. Calibration and validation of a numerical model against experimental data of methane hydrate formation and dissociation in a sandy porous medium

    Science.gov (United States)

    Yin, Z.; Moridis, G. J.; Chong, Z. R.; Linga, P.

    2017-12-01

    Methane hydrates (MH) are known to trap enormous amounts of CH4 in oceanic and permafrost-associated deposits, and are being considered as a potential future energy source. Several powerful numerical simulators were developed to describe the behavior of natural hydrate-bearing sediments (HBS). The complexity and strong nonlinearities in HBS do not allow analytical solutions for code validation. The only reliable method to develop confidence in these models is through comparisons to laboratory and/or field experiments. The objective of this study is to reproduce numerically the results from earlier experiments of MH formation and depressurization (and the corresponding fluid production) in 1.0L reactor involving unconsolidated sand, thus validating and calibrating the TOUGH+Hydrate v1.5 simulator. We faithfully describe the reactor geometry and the experimental process that involves both hydrate formation and dissociation. We demonstrate that the laboratory experiments can only be captured by a kinetic hydration model. There is an excellent agreement between observations and predictions (a) of the cumulative gas depletion (during formation) and production (during dissociation) and (b) of pressure over time. The temperature agreement is less satisfactory, and the deviations are attributed to the fixed locations of the limited number of sensors that cannot fully capture the hydrate heterogeneity. We also predict the spatial distributions over time of the various phase (gas, aqueous and hydrate) saturations. Thus, hydrates form preferentially along the outer boundary of the sand core, and the hydrate front moves inward leaving a significant portion of the sand at the center hydrate-free. During depressurization, dissociation advances again inward from the reactor boundary to the center of the reactor. As expected, methane gas accumulates initially at the locations of most intense dissociation, and then gradually migrates to the upper section of the reactor because of

  4. Adsorption Mechanism of Inhibitor and Guest Molecules on the Surface of Gas Hydrates.

    Science.gov (United States)

    Yagasaki, Takuma; Matsumoto, Masakazu; Tanaka, Hideki

    2015-09-23

    The adsorption of guest and kinetic inhibitor molecules on the surface of methane hydrate is investigated by using molecular dynamics simulations. We calculate the free energy profile for transferring a solute molecule from bulk water to the hydrate surface for various molecules. Spherical solutes with a diameter of ∼0.5 nm are significantly stabilized at the hydrate surface, whereas smaller and larger solutes exhibit lower adsorption affinity than the solutes of intermediate size. The range of the attractive force is subnanoscale, implying that this force has no effect on the macroscopic mass transfer of guest molecules in crystal growth processes of gas hydrates. We also examine the adsorption mechanism of a kinetic hydrate inhibitor. It is found that a monomer of the kinetic hydrate inhibitor is strongly adsorbed on the hydrate surface. However, the hydrogen bonding between the amide group of the inhibitor and water molecules on the hydrate surface, which was believed to be the driving force for the adsorption, makes no contribution to the adsorption affinity. The preferential adsorption of both the kinetic inhibitor and the spherical molecules to the surface is mainly due to the entropic stabilization arising from the presence of cavities at the hydrate surface. The dependence of surface affinity on the size of adsorbed molecules is also explained by this mechanism.

  5. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  6. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  7. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  8. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Hydrate-based methane separation from coal mine methane gas mixture by bubbling using the scale-up equipment

    International Nuclear Information System (INIS)

    Cai, Jing; Xu, Chun-Gang; Xia, Zhi-Ming; Chen, Zhao-Yang; Li, Xiao-Sen

    2017-01-01

    Highlights: •Hydrate-based methane separation was achieved in the large scale using SHW-II. •Bubbling method was beneficial to reduce energy consumption. •The optimal conditions were determined. •The morphology and flow characteristic of hydrate formation were filmed. -- Abstract: In this work, the hydrate-based methane (CH 4 ) separation from coal mine methane (CMM) gas mixture was carried out by bubbling with a scale-up equipment (SHW-II). The influences of gas/liquid volume ratios (0.25 and 0.60), gas bubble sizes (diameter: 20, 50 and 100 μm) and gas flow rates (7.50, 16.13 and 21.50 mL/min/L) on gas consumption and CH 4 recovery were systematically investigated at 277.15 K and 1.50 MPa. The hydrate formation morphology was filmed by a camera and the hydrate structure was determined by powder X-ray diffraction (PXRD). Gas bubbles generated when gas mixture flowed into bulk solution through a bubble plate from the bottom of SHW-II. Initially, the gas hydrates formed at the bubble boundary and grew up as the shell around the bubble with the continuously rising of the gas bubble, and finally accumulated in the interface between the gaseous phase and solution. The experimental results showed that the THF/CH 4 /N 2 hydrate in SHW-II presented structure II (sII). The gas/liquid volume ratio, gas bubble size and gas flow rate had influences on gas consumption and CH 4 recovery. The increase of gas/liquid volume ratio resulted in the decrease of gas consumption and CH 4 recovery, while the increase of gas flow rate caused the decrease of gas consumption. Both the maximum gas consumption and CH 4 recovery were achieved at the gas bubble with diameter of 50 μm. The optimal operating condition for large-scale CH 4 separation via clatharate hydrate was comprehensively defined as the gas/liquid volume ratio of 0.25, the gas bubble diameter of 50 μm and the gas flow rate of 16.13 mL/min/L at 277.15 K and 1.50 MPa.

  10. Methane hydrate synthesis from ice: Influence of pressurization and ethanol on optimizing formation rates and hydrate yield

    Science.gov (United States)

    Chen, Po-Chun.; Huang, Wuu-Liang; Stern, Laura A.

    2010-01-01

    Polycrystalline methane gas hydrate (MGH) was synthesized using an ice-seeding method to investigate the influence of pressurization and ethanol on the hydrate formation rate and gas yield of the resulting samples. When the reactor is pressurized with CH4 gas without external heating, methane hydrate can be formed from ice grains with yields up to 25% under otherwise static conditions. The rapid temperature rise caused by pressurization partially melts the granular ice, which reacts with methane to form hydrate rinds around the ice grains. The heat generated by the exothermic reaction of methane hydrate formation buffers the sample temperature near the melting point of ice for enough time to allow for continuous hydrate growth at high rates. Surprisingly, faster rates and higher yields of methane hydrate were found in runs with lower initial temperatures, slower rates of pressurization, higher porosity of the granular ice samples, or mixtures with sediments. The addition of ethanol also dramatically enhanced the formation of polycrystalline MGH. This study demonstrates that polycrystalline MGH with varied physical properties suitable for different laboratory tests can be manufactured by controlling synthesis procedures or parameters. Subsequent dissociation experiments using a gas collection apparatus and flowmeter confirmed high methane saturation (CH 4·2O, with n = 5.82 ± 0.03) in the MGH. Dissociation rates of the various samples synthesized at diverse conditions may be fitted to different rate laws, including zero and first order.

  11. Reflection on Solutions in the Form of Refutation Texts versus Problem Solving: The Case of 8th Graders Studying Simple Electric Circuits

    Science.gov (United States)

    Safadi, Rafi; Safadi, Ekhlass; Meidav, Meir

    2017-01-01

    This study compared students' learning in troubleshooting and problem solving activities. The troubleshooting activities provided students with solutions to conceptual problems in the form of refutation texts; namely, solutions that portray common misconceptions, refute them, and then present the accepted scientific ideas. They required students…

  12. An international effort to compare gas hydrate reservoir simulators

    Energy Technology Data Exchange (ETDEWEB)

    Wilder, J.W. [Akron Univ., Akron, OH (United States). Dept. of Theoretical and Applied Math; Moridis, G.J. [California Univ., Berkely, CA (United States). Earth Sciences Div., Lawrence Berkely National Lab.; Wilson, S.J. [Ryder Scott Co., Denver, CO (United States); Kurihara, M. [Japan Oil Engineering Co. Ltd., Tokyo (Japan); White, M.D. [Pacific Northwest National Laboratory Hydrology Group, Richland, WA (United States); Masuda, Y. [Tokyo Univ., Tokyo (Japan). Dept. of Geosystem Engineering; Anderson, B.J. [National Energy Technology Lab., Morgantown, WV (United States)]|[West Virginia Univ., Morgantown, WV (United States). Dept. of Chemical Engineering; Collett, T.S. [United States Geological Survey, Denver, CO (United States); Hunter, R.B. [ASRC Energy Services, Anchorage, AK (United States); Narita, H. [National Inst. of Advanced Industrial Science and Technology, MEthane hydrate Research Lab., Sapporo (Japan); Pooladi-Darvish, M. [Fekete Associates Inc., Calgary, AB (Canada); Rose, K.; Boswell, R. [National Energy Technology Lab., Morgantown, WV (United States)

    2008-07-01

    In this study, 5 different gas hydrate production scenarios were modeled by the CMG STARS, HydateResSim, MH-21 HYDRES, STOMP-HYD and the TOUGH+HYDRATE reservoir simulators for comparative purposes. The 5 problems ranged in complexity from 1 to 3 dimensional with radial symmetry, and in horizontal dimensions of 20 meters to 1 kilometer. The scenarios included (1) a base case with non-isothermal multi-fluid transition to equilibrium, (2) a base case with gas hydrate (closed-domain hydrate dissociation), (3) dissociation in a 1-D open domain, (4) gas hydrate dissociation in a one-dimensional radial domain, similarity solutions, (5) gas hydrate dissociation in a two-dimensional radial domain. The purpose of the study was to compare the world's leading gas hydrate reservoir simulators in an effort to improve the simulation capability of experimental and naturally occurring gas hydrate accumulations. The problem description and simulation results were presented for each scenario. The results of the first scenario indicated very close agreement among the simulators, suggesting that all address the basics of mass and heat transfer, as well as overall process of gas hydrate dissociation. The third scenario produced the initial divergence among the simulators. Other differences were noted in both scenario 4 and 5, resulting in significant corrections to algorithms within several of the simulators. The authors noted that it is unlikely that these improvements would have been identified without this comparative study due to a lack of real world data for validation purposes. It was concluded that the solution for gas hydrate production involves a combination of highly coupled fluid, heat and mass transport equations combined with the potential for formation or disappearance of multiple solid phases in the system. The physical and chemical properties of the rocks containing the gas hydrate depend on the amount of gas hydrate present in the system. Each modeling and

  13. An effective medium inversion algorithm for gas hydrate quantification and its application to laboratory and borehole measurements of gas hydrate-bearing sediments

    Science.gov (United States)

    Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.

    2006-01-01

    The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.

  14. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  15. Precipitation of hydrated Mg carbonate with the aid of carbonic anhydrase for CO2 sequestration

    Science.gov (United States)

    Power, I. M.; Harrison, A. L.; Dipple, G. M.

    2011-12-01

    Strategies for sequestering CO2 directly from the atmosphere are likely required to achieve the desired reduction in CO2 concentration and avoid the most damaging effects of climate change [1]. Numerous studies have demonstrated the accelerated precipitation of calcium carbonate minerals with the aid of carbonic anhydrase (CA) as a means of sequestering CO2 in solid carbonate form; however, no study has examined precipitation of magnesium carbonate minerals using CA. Precipitation of magnesite (MgCO3) is kinetically inhibited [2]; therefore, Mg2+ must be precipitated as hydrated carbonate minerals. In laboratory experiments, the uptake of atmospheric CO2 into brine solutions (0.1 M Mg) was rate-limiting for the precipitation of dypingite [Mg5(CO3)4(OH)2-5H2O] with initial precipitation requiring 15 days [3]. It was also found that dypingite precipitation outpaced the uptake of CO2 gas into solution. CO2 uptake is limited by the hydration of CO2 to form carbonate ions [4]. Carbonic anhydrase (CA) enzymes are among the fastest known in nature and are able to catalyze the hydration of CO2, i.e., converting CO2(aq) to CO32- and HCO3- [5]. CA plays an important role in the carbon concentrating mechanism of photoautotrophic, chemoautotrophic, and heterotrophic prokaryotes and is involved in pH homeostasis, facilitated diffusion of CO2, ion transport, and the interconversion of CO2 and HCO3- [6]. Introducing CA into buffered Mg-rich solutions should allow for more rapid precipitation of hydrated magnesium carbonate minerals. Batch experiments were conducted using 125 mL flasks containing 100 mL of Millipore deionized water with 0.2 M of MgCl2-6H2O. To buffer pH, 1.0 g of pulverized brucite [Mg(OH)2] or 1.0 g of NaOH was added to the systems, which were amended with Bovine carbonic anhydrase (BCA) (Sigma-Aldrich). Solutions were stirred continuously and kept at room temperature (~22°C) with laboratory air introduced by bubbling. Temperature and pH were measured routinely

  16. Characterization of phosphorus forms in lake macrophytes and algae by solution (31)P nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; Meng, Wei; Giesy, John P; He, Zhongqi; Song, Lirong; Fan, Mingle

    2016-04-01

    Debris from aquatic macrophytes and algae are important recycling sources of phosphorus (P), which can result in continuing blooms of algae by recycling bioavailable P in the eutrophic lakes. However, knowledge of forms of P in aquatic macrophytes and algae and their contribution to internal loads of P in lakes is limited. Without such knowledge, it is difficult to develop appropriate strategies to remediate and or restore aquatic ecosystems that have become eutrophic. Therefore, in this work, P was extracted from six types of aquatic macrophytes and algae collected from Tai Lake of China and characterized by use of solution (31)P-nuclear magnetic resonance (NMR) spectroscopy. When extracted by 0.5 M NaOH-25 mM EDTA, extraction recovery of total P(TP) and organic P(Po) exceeded 90 %. Concentrations of Po in algae and aquatic macrophytes were 5552 mg kg(-1) and 1005 mg kg(-1) and accounted for 56.0 and 47.2 % of TP, respectively. When Po, including condensed P, was characterized by solution (31)P-NMR Po in algae included orthophosphate monoesters (79.8 %), pyrophosphate (18.2 %), and orthophosphate diester (2.0 %), and Po in aquatic macrophytes included orthophosphate monoesters (90.3 %), pyrophosphate (4.2 %), and orthophosphate diester (5.5 %). Additionally, orthophosphate monoesters in algal debris mainly included β-glycerophosphate (44.1 %), α-glycerophosphate (13.5 %), and glucose 6-phosphate (13.5 %). Orthophosphate monoesters in aquatic macrophytes mainly included β-glycerophosphate (27.9 %), α-glycerophosphate (24.6 %), and adenosine 5' monophosphate (8.2 %). Results derived from this study will be useful in better understanding nutrient cycling, relevant eutrophication processes, and pollution control for freshwater lakes.

  17. Structural analysis of salt cavities formed by solution mining: I. Method of analysis and preliminary results for spherical cavities

    International Nuclear Information System (INIS)

    Fossum, A.F.

    1976-01-01

    The primary objective of this effort is an analysis of the structural stability of cavities formed by solution mining in salt domes. In particular, the effects of depth (i.e. initial state of in situ stress), shape, volume (i.e. physical dimensions of the cavity), and sequence of salt excavation/fluid evacuation on the timewise structural stability of a cavity are of interest. It is anticipated that an assessment can be made of the interrelation between depth, cavern size, and cavern shape or of the practical limits therewith. In general, the cavity shape is assumed to be axisymmetric and the salt is assumed to exhibit nonlinear creep behavior. The primary emphasis is placed on the methodology of the finite element analysis, and the results of preliminary calculations for a spherically shaped cavity. It is common practice for engineers to apply elasticity theory to the behavior of rock in order to obtain near field stresses and displacements around an underground excavation in an effort to assess structural stability. Rock masses, particularly at depth, may be subjected to a rather complex state of initial stress, and may be nonhomogeneous and anisotropic. If one also includes complex geometrical excavation shape, the use of analytical techniques as an analysis tool is practically impossible. Thus, it is almost a necessity that approximate solution techniques be employed. In this regard, the finite element method is ideal as it can handle complex geometries and nonlinear material behavior with relative ease. An unusual feature of the present study is the incorporation into the finite element code of a procedure for handling the gradual creation or excavation of an underground cavity. During the excavation sequence, the salt is permitted to exhibit nonlinear stress-strain-time dependence. The bulk of this report will be devoted to a description of the analysis procedures, together with a preliminary calculation for a spherically shaped cavity

  18. The effects of ice on methane hydrate nucleation: a microcanonical molecular dynamics study.

    Science.gov (United States)

    Zhang, Zhengcai; Guo, Guang-Jun

    2017-07-26

    Although ice powders are widely used in gas hydrate formation experiments, the effects of ice on hydrate nucleation and what happens in the quasi-liquid layer of ice are still not well understood. Here, we used high-precision constant energy molecular dynamics simulations to study methane hydrate nucleation from vapor-liquid mixtures exposed to the basal, prismatic, and secondary prismatic planes of hexagonal ice (ice Ih). Although no significant difference is observed in hydrate nucleation processes for these different crystal planes, it is found, more interestingly, that methane hydrate can nucleate either on the ice surface heterogeneously or in the bulk solution phase homogeneously. Several factors are mentioned to be able to promote the heterogeneous nucleation of hydrates, including the adsorption of methane molecules at the solid-liquid interface, hydrogen bonding between hydrate cages and the ice structure, the stronger ability of ice to transfer heat than that of the aqueous solution, and the higher occurrence probability of hydrate cages in the vicinity of the ice surface than in the bulk solution. Meanwhile, however, the other factors including the hydrophilicity of ice and the ice lattice mismatch with clathrate hydrates can inhibit heterogeneous nucleation on the ice surface and virtually promote homogeneous nucleation in the bulk solution. Certainly, the efficiency of ice as a promoter and as an inhibitor for heterogeneous nucleation is different. We estimate that the former is larger than the latter under the working conditions. Additionally, utilizing the benefit of ice to absorb heat, the NVE simulation of hydrate formation with ice can mimic the phenomenon of ice shrinking during the heterogeneous nucleation of hydrates and lower the overly large temperature increase during homogeneous nucleation. These results are helpful in understanding the nucleation mechanism of methane hydrate in the presence of ice.

  19. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  20. Adsorption of Cr (III from aqueous solution by two forms of a superabsorbant polymer : parametric study and effect of activation mode

    Directory of Open Access Journals (Sweden)

    Ouass A.

    2018-01-01

    Full Text Available The adsorption of chromium ions Cr3+ using two forms of a superabsorbant polymer PANa from aqueous solution was investigated. On one hand the equilibrium pH with the distilled water and the pH of point of zero charge have been studied in order to characterize the acid-base behavior of both of PANa forms. On the other hand, the effect of contact time between PANa and the metallic solution and stirring speed of aqueous solution on the adsorption rate were established to highlight the importance of PANa as an efficient adsorbent of chromium ions Cr3+.

  1. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  2. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...

  3. Effects of EDTA on the electronic properties of passive film formed on Fe-20Cr in pH 8.5 buffer solution

    International Nuclear Information System (INIS)

    Cho, Eun Ae; Kwon, Hyuk Sang; Beranrd, Frederic

    2003-01-01

    The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ∼ 3.0 eV, irrespective of film formation potential from 0 to 700 mV SCE and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted γ-Fe 2 O 3

  4. Experimental determination of methane hydrate formation in the presence of ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.B.; Wang, L.Y.; Liu, A.X.; Guo, X.Q.; Chen, G.J.; Ma, Q.L.; Li, G.W. [China Univ. of Petroleum, Beijng (China). State Key Laboratory of Heavy Oil Processing

    2008-07-01

    Gas hydrates are non-stoichiometric inclusion compounds that are created by a lattice of water molecules. The host molecule has a strong hydrogen bond and encages low molecular weight gases or volatile liquids. The guest molecules favor hydrate formation. Historically, gas hydrates have been thought to be problematic during natural gas transportation because the formed solid hydrate can block pipelines and cause tubing and casing collapse. However, the discovery of huge deposits of gas hydrates in deep-sea sediments and in permafrost has renewed interest in gas hydrates as a new energy resource. This paper discussed a study that is a part of an ongoing experimental and computational program dealing with the thermodynamics of gas hydrate formation in ammonia-water systems. The purpose of the study was to develop a new method to separate and recycle the vent gas of ammonia synthesis by forming or dissociating hydrate. The hydrate-forming conditions of methane in ammonia and water system were studied and reported in this paper with reference to the experimental apparatus and procedure. The materials and preparation of samples were also explained. The experimental results showed that the ammonia had an inhibitive effect on the hydrate formation. 26 refs., 2 tabs., 3 figs.

  5. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu

    2006-01-01

    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  6. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  7. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  8. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  9. A closed-form solution for moving source localization using LBI changing rate of phase difference only

    Directory of Open Access Journals (Sweden)

    Zhang Min

    2014-04-01

    Full Text Available Due to the deficiencies in the conventional multiple-receiver localization systems based on direction of arrival (DOA such as system complexity of interferometer or array and amplitude/phase unbalance between multiple receiving channels and constraint on antenna configuration, a new radiated source localization method using the changing rate of phase difference (CRPD measured by a long baseline interferometer (LBI only is studied. To solve the strictly nonlinear problem, a two-stage closed-form solution is proposed. In the first stage, the DOA and its changing rate are estimated from the CRPD of each observer by the pseudolinear least square (PLS method, and then in the second stage, the source position and velocity are found by another PLS minimization. The bias of the algorithm caused by the correlation between the measurement matrix and the noise in the second stage is analyzed. To reduce this bias, an instrumental variable (IV method is derived. A weighted IV estimator is given in order to reduce the estimation variance. The proposed method does not need any initial guess and the computation is small. The Cramer–Rao lower bound (CRLB and mean square error (MSE are also analyzed. Simulation results show that the proposed method can be close to the CRLB with moderate Gaussian measurement noise.

  10. Forms and Lability of Phosphorus in Algae and Aquatic Macrophytes Characterized by Solution 31P NMR Coupled with Enzymatic Hydrolysis

    Science.gov (United States)

    Feng, Weiying; Zhu, Yuanrong; Wu, Fengchang; He, Zhongqi; Zhang, Chen; Giesy, John P.

    2016-11-01

    Solution Phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy coupled with enzymatic hydrolysis (EH) with commercially available phosphatases was used to characterize phosphorus (P) compounds in extracts of the dominant aquatic macrophytes and algae in a eutrophic lake. Total extractable organic P (Po) concentrations ranged from 504 to 1643 mg kg-1 and 2318 to 8395 mg kg-1 for aquatic macrophytes and algae, respectively. Using 31P NMR spectroscopy, 11 Po species were detected in the mono- and diester region. Additionally, orthophosphate, pyrophosphate and phosphonates were also detected. Using EH, phytate-like P was identified as the prevalent class of enzyme-labile Po, followed by labile monoester- and diester-P. Comparison of the NMR and EH data indicated that the distribution pattern of major P forms in the samples determined by the two methods was similar (r = 0.712, p < 0.05). Additional 31P NMR spectroscopic analysis of extracts following EH showed significant decreases in the monoester and pyrophosphate regions, with a corresponding increase in the orthophosphate signal, as compared to unhydrolyzed extracts. Based on these quantity and hydrolysis data, we proposed that recycling of Po in vegetative biomass residues is an important mechanism for long-term self-regulation of available P for algal blooming in eutrophic lakes.

  11. Structural properties of films and rheology of film-forming solutions of chitosan gallate for food packaging.

    Science.gov (United States)

    Wu, Chunhua; Tian, Jinhu; Li, Shan; Wu, Tiantian; Hu, Yaqin; Chen, Shiguo; Sugawara, Tatsuya; Ye, Xingqian

    2016-08-01

    The chitosan gallates (CG) were obtained by free-radical-initiated grafting of gallic acid (GA) onto chitosan (CS) in this work. The chemical structures of the CG were corroborated by UV-vis, GPC and (1)H NMR analysis. The grafting reaction was accompanied with a degradation of the CS molecule. The shear-thinning flow behavior of CG film-forming solutions (CG FFS) decreased with the grafting amount of GA into CS chain, while the CG FFS grafted at a lower GA value behaved like a networks containing entangled or cross-linked polymer chains with a more elastic behavior. The increasing of GA grafting onto the CS chain led to a reduction of tensile strength, elongation at break and water resistance in the corresponding films, but increases in the antioxidant and antimicrobial activities were observed. The microstructure of the film was investigated using scanning electron and atomic force microscope, and the results were closely related to the observed film properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Gas composition and isotopic geochemistry of cuttings, core, and gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well

    Science.gov (United States)

    Lorenson, T.D.

    1999-01-01

    Molecular and isotopic composition of gases from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well demonstrate that the in situ gases can be divided into three zones composed of mixtures of microbial and thermogenic gases. Sediments penetrated by the well are thermally immature; thus the sediments are probably not a source of thermogenic gas. Thermogenic gas likely migrated from depths below 5000 m. Higher concentrations of gas within and beneath the gas hydrate zone suggest that gas hydrate is a partial barrier to gas migration. Gas hydrate accumulations occur wholly within zone 3, below the base of permafrost. The gas in gas hydrate resembles, in part, the thermogenic gas in surrounding sediments and gas desorbed from lignite. Gas hydrate composition implies that the primary gas hydrate form is Structure I. However, Structure II stabilizing gases are more concentrated and isotopically partitioned in gas hydrate relative to the sediment hosting the gas hydrate, implying that Structure II gas hydrate may be present in small quantities.

  13. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  14. BSR and methane hydrates: New challenges for geophysics and rock physics

    Energy Technology Data Exchange (ETDEWEB)

    Nur, A. [Stanford Univ., CA (United States). Dept. of Geophysics

    1996-12-31

    It is generally accepted that solid gas hydrates which form within the uppermost few hundred meters of the sea floor are responsible for so-called Bottom Simulating Reflectors (BSRs) at continental margins. Gas to solid volumetric ratio in recovered hydrate samples may be as large as 170. Consequently, huge amounts of compressed methane (more than twice all recoverable and nonrecoverable oil, gas, and coal on earth) may exist under earth`s oceans. These hydrates are a potential energy resource, they influence global warming and effect seafloor mechanical stability. It is possible, in principle, to obtain a quantitative estimate of the amount and state of existing hydrates by relating seismic velocity to the volume of gas hydrate in porous sediments. This can be done by linking the elastic properties of hydrated sediments to their internal structure. The authors approach this problem by examining two micromechanical models of hydrate deposition in the pore space: (1) the hydrate cements grain contacts and thus significantly stiffens the sediment; and (2) the hydrate is located away from grain contacts and only weakly affects the stiffness of the sediment frame. To discriminate between the two models the authors use the Amplitude Versus Offset (AVO) technique of seismic data processing. This approach allows them to estimate the amount of gas hydrates in the pore space, and also to tell whether the permeability of the hydrated sediment is high or low. The latter is important for determining whether free methane can be trapped underneath a BSR.

  15. THE SORPTION OF OFLOXACIN BY HYDRATED ALUMINA AND SILICON

    Directory of Open Access Journals (Sweden)

    A. N. Chebotarev

    2016-11-01

    Full Text Available The sorption of ofloxacin (OFL – the antibiotic from class of fluoroquinolones has been studied on alumina (γ-Al2O3 different acid-base modifications – acidic Al2O3(acidic, neutral Al2O3 (Neutral and the basic Al2O3 (core and amorphous silica – silica gel (SG L 5/40 and aerosil A-300. Determination of ofloxacin in solutions has been carried out by spectrophotometry on spectrophotometer SF-46 at λ = 291 nm and acidity 7. To clarify the nature of the sorption surfaces of OFL hydrated on aluminum and silicon oxides were studied according to the degree of extraction (S% from pH, contact time of the phases (min. sample from the sorbent mass (g; sorption isotherms were built and antibiotic desorption was studied. The OFL significant recovery (~ 60% is observed at the pH range of 4 ÷ 8, and reaches its maximum (80-85% at pH 7. The maximum degree of extraction of the antibiotic on aerosil A-300 and L 5/40 silica realized at pH 6 and it was ~ 80%. Comparative analysis of the forms constructed isotherms (L – type indicates a significant affinity investigated hydrated oxides to sorbate. The value of the static exchange capacity and concentration ratios can proof that. Differences in the quantitative characteristics of sorption of aluminum and silicon oxides are associated with nature and the acid-base properties of adsorption sites. In the study of the OFL concentrates desorption in static mode dilute NaOH and HNO3 solutions it was found that growth desorption degree occured with increasing concentration. Desorption was 2-3 times better in the case of aluminum oxide than silicon oxide when there were the same concentrations of acid and alkali. This is another confirmation of the participation in various sorption interactions forces of physical and chemical nature.

  16. Role of interlayer hydration in lincomycin sorption by smectite clays.

    Science.gov (United States)

    Wang, Cuiping; Ding, Yunjie; Teppen, Brian J; Boyd, Stephen A; Song, Cunyi; Li, Hui

    2009-08-15

    Lincomycin, an antibiotic widely administered as a veterinary medicine, is frequently detected in water. Little is known about the soil-water distribution of lincomycin despite the fact that this is a major determinant of its environmental fate and potential for exposure. Cation exchange was found to be the primary mechanism responsible for lincomycin sorption by soil clay minerals. This was evidenced by pH-dependent sorption, and competition with inorganic cations for sorptive sites. As solution pH increased, lincomycin sorption decreased. The extent of reduction was consistent with the decrease in cationic lincomycin species in solution. The presence of Ca2+ in solution diminished lincomycin sorption. Clay interlayer hydration status strongly influenced lincomycin adsorption. Smectites with the charge deficit from isomorphic substitution in tetrahedral layers (i.e., saponite) manifest a less hydrated interlayer environment resulting in greater sorption than that by octahedrally substituted clays (i.e., montmorillonite). Strongly hydrated exchangeable cations resulted in a more hydrated clay interlayer environment reducing sorption in the order of Ca- smectite. X-ray diffraction revealed that lincomycin was intercalated in smectite clay interlayers. Sorption capacity was limited by clay surface area rather than by cation exchange capacity. Smectite interlayer hydration was shown to be a major, yet previously unrecognized, factor influencing the cation exchange process of lincomycin on aluminosilicate mineral surfaces.

  17. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  18. Petrophysical Characterization and Reservoir Simulator for Methane Gas Production from Gulf of Mexico Hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Kishore Mohanty; Bill Cook; Mustafa Hakimuddin; Ramanan Pitchumani; Damiola Ogunlana; Jon Burger; John Shillinglaw

    2006-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Estimates of the amounts of methane sequestered in gas hydrates worldwide are speculative and range from about 100,000 to 270,000,000 trillion cubic feet (modified from Kvenvolden, 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In this project novel techniques were developed to form and dissociate methane hydrates in porous media, to measure acoustic properties and CT properties during hydrate dissociation in the presence of a porous medium. Hydrate depressurization experiments in cores were simulated with the use of TOUGHFx/HYDRATE simulator. Input/output software was developed to simulate variable pressure boundary condition and improve the ease of use of the simulator. A series of simulations needed to be run to mimic the variable pressure condition at the production well. The experiments can be matched qualitatively by the hydrate simulator. The temperature of the core falls during hydrate dissociation; the temperature drop is higher if the fluid withdrawal rate is higher. The pressure and temperature gradients are small within the core. The sodium iodide concentration affects the dissociation pressure and rate. This procedure and data will be useful in designing future hydrate studies.

  19. Thermodynamics of hydration of MX80-Na. What are the best approaches for evaluating the thermodynamic properties of hydration?

    International Nuclear Information System (INIS)

    Vieillard, P.; Lassin, A.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Gaucher, E.C.; Denoyel, R.; Bloch, E.; Fialips, C.; Giffaut, E.

    2012-01-01

    Document available in extended abstract form only. In the context of a waste disposal within clayey formations (Callovian-Oxfordian argillite) or using clayey barriers, the prediction of the long-term behavior requires the thermodynamic properties of clay minerals. It has been shown by Gailhanou et al. (submitted) that hydration reactions may have some dramatic consequences on the thermodynamic properties of clay minerals. Different theoretical models exist for extracting thermodynamic properties from water adsorption/desorption isotherms. The present work aims at investigating and comparing these methods, because they can provide very different results based on the assumptions of each models. First, three types of models are compared: 1) the Hill (1949) model based on heat of adsorption combined with adsorption isotherm, 2) the Jura and Hill (1951) model, based on the Clausius-Clapeyron relation, and 3) the BET theory. Both have been designed in order to describe surface sorption phenomena. For instance, they suppose that the number of sorption sites is constant during all the vapor sorption process (and at any relative humidity, P/P 0 ). The hydration reaction approach can also be used. Compared to the three previous models, it is not structurally constrained, except for mass balance considerations on the H 2 O component. It had been especially developed by Tardy and Touret, (1985) and modified into a solid solution model, first by Ransom and Helgeson, (1994). It relies simply on the reaction: Clay(dehydrated) + nH 2 O = Clay(hydrated).nH 2 O. The different families of models have been compared to experimental measurements performed on a sodic smectite MX80. The set of experiments includes a series of three adsorption/desorption isotherms obtained at 25, 45 and 60 C and a heat of adsorption combined with a adsorption isotherm obtained at 25 C. The heat of adsorption was derived from the 3 adsorption/desorption isotherms by using the different models. Then

  20. Energy from gas hydrates - assessing the opportunities and challenges for Canada: report of the expert panel on gas hydrates

    International Nuclear Information System (INIS)

    2008-09-01

    Gas hydrates form when water and natural gas combine at low temperatures and high pressures in regions of permafrost and in marine subseafloor sediments. Estimates suggest that the total amount of natural gas bound in hydrate form may exceed all conventional gas resources, or even the amount of all combined hydrocarbon energy. Gas from gas hydrate could provide a potentially vast new source of energy to offset declining supplies of conventional natural gas in North America and to provide greater energy security for countries such as Japan and India that have limited domestic sources. However, complex issues would need to be addressed if gas hydrate were to become a large part of the energy future of Canada. Natural Resources Canada asked the Council of Canadian Academies to assemble a panel of experts to examine the challenges for an acceptable operational extraction of gas hydrates in Canada. This report presented an overview of relevant contextual background, including some basic science; the medium-term outlook for supply and demand in markets for natural gas; broad environmental issues related to gas hydrate in its natural state and as a fuel; and an overview of Canada's contribution to knowledge about gas hydrate in the context of ongoing international research activity. The report also presented current information on the subject and what would be required to delineate and quantify the resource. Techniques for extracting gas from gas hydrate were also outlined. The report also addressed safety issues related to gas hydrate dissociation during drilling operations or release into the atmosphere; the environmental issues associated with potential leakage of methane into the atmosphere and with the large volumes of water produced during gas hydrate dissociation; and jurisdictional and local community issues that would need to be resolved in order to proceed with the commercial exploitation of gas hydrate. It was concluded that there does not appear to be

  1. Thermodynamic model for predicting equilibrium conditions of clathrate hydrates of noble gases + light hydrocarbons: Combination of Van der Waals–Platteeuw model and sPC-SAFT EoS

    International Nuclear Information System (INIS)

    Abolala, Mostafa; Varaminian, Farshad

    2015-01-01

    Highlights: • Applying sPC-SAFT for phase equilibrium calculations. • Determining Kihara potential parameters for hydrate formers. • Successful usage of the model for systems with hydrate azeotropes. - Abstract: In this communication, equilibrium conditions of clathrate hydrates containing mixtures of noble gases (Argon, Krypton and Xenon) and light hydrocarbons (C 1 –C 3 ), which form structure I and II, are modeled. The thermodynamic model is based on the solid solution theory of Van der Waals–Platteeuw combined with the simplified Perturbed-Chain Statistical Association Fluid Theory equation of state (sPC-SAFT EoS). In dispersion term of sPC-SAFT EoS, the temperature dependent binary interaction parameters (k ij ) are adjusted; taking advantage of the well described (vapor + liquid) phase equilibria. Furthermore, the Kihara potential parameters are optimized based on the P–T data of pure hydrate former. Subsequently, these obtained parameters are used to predict the binary gas hydrate dissociation conditions. The equilibrium conditions of the binary gas hydrates predicted by this model agree well with experimental data (overall AAD P ∼ 2.17)

  2. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  3. Dissociation behavior of methane gas hydrate in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Qiang, C.; Yu-gang, Y.; Chang-ling, L. [Ministry of Land and Resources, Quindao (China). Qingdao Inst. of Marine Geology; Qing-guo, M. [Qingdao Univ. College of Chemical Engineering and Environment, Shandong, Qingdao (China)

    2008-07-01

    Gas hydrates are ice-like compounds that form by natural gas and water and are considered to be a new energy resource. In order to make good use of this resource, it is important to know the hydrate dissociation process. This paper discussed an investigation of methane hydrate dissociation through a simulation experiment. The paper discussed the gas hydrates dissociation experiment including the apparatus and experiment equipment, including methane gas supply; reaction cell; temperature controller; pressure maintainer; and gas flow meter. The paper also presented the method and material including iso-volumetric dissociation and normal pressure dissociation. Last, results and discussion of the results were presented. A comparison of five different particle sizes did not reveal any obvious effects that were related to the porous media, mostly likely because the particle size was too large. 15 refs., 2 tabs., 4 figs.

  4. A geometry-based simulation of the hydration of ions and small molecules

    International Nuclear Information System (INIS)

    Plumridge, T.H.

    2001-01-01

    The behaviour of solutes in water is of universal significance, but still not fully understood. This thesis provides details of a new computer simulation technique used to investigate the hydration of ions and small molecules. In contrast to conventional techniques such as molecular dynamics, this is a purely geometric method involving no forcefield or energy terms. Molecules of interest are modelled using crystallographic data to ensure that the structures are accurate. Water molecules are added randomly at any hydrogen bonding site in chains. At each addition the chain is rotated through all available space testing for the possibility of ring formation. The constraints used by the program to decide whether a ring should be conserved, i.e. whether the ring-forming hydrogen bond is viable were derived from a survey of (i) all available ice and clathrate hydrate structures and (ii) the hydrates of small biological molecules from the Cambridge Crystallographic Data Centre. If a ring forms, it is conserved and the process restarted with the addition of another random water. If the chain reaches a certain length and no hydrogen bonding opportunities are detected, the water chain is dissolved, and the process restarted. Using these techniques structure makers such as sulfate will readily allow structured water to form around them leading to large networks, whereas structure breakers such as urea will not allow any water chains to bridge the hydrogen bonding groups. The software has been tested with a set of twenty widely varying solutes and has produced results which generally agree with experimental data for structure makers and breakers, and also agrees well with traditional techniques such as molecular dynamics and Monte Carlo techniques. (author)

  5. Synthesis, formation mechanism and sensing properties of WO3 hydrate nanowire netted-spheres

    International Nuclear Information System (INIS)

    Yan, Aihua; Xie, Changsheng; Zeng, Dawen; Cai, Shuizhou; Hu, Mulin

    2010-01-01

    Tungsten oxide hydrate nanowire netted-spheres were successfully synthesized in the glycol solution using a facile solvothermal approach. The nanowires with uniform diameter of 4-6 nm are actually a kind of tungsten oxide hydrate/surfactant hybrid materials. The influence of surfactant, solvent, time and temperature on tailoring morphology was investigated in detail. The possible formation process of WO 3 hydrate nanowire netted-sphere was proposed. Sensing properties of such WO 3 hydrate sensor show that the desirable sensing characteristics towards 100 ppm ammonia gas at 320 o C were obtained, such as rapid response (18.3 s), high sensitivity, good reproducibility and stability.

  6. Hydration and phase separation of polyethylene glycol in copolymers of tyrosine derived carbonates.

    Science.gov (United States)

    Sanjeeva Murthy, N.; Wang, Wenjie; Kohn, Joachim

    2009-03-01

    Effect of PEG fraction and its block size on the temperature-induced phase transitions and the hydration-induced phase separation were investigated in a copolymer of desaminotyrosyl tyrosine ethyl ester (DTE) and PEG using simultaneous SAXS/WAXS/DSC. The PEG segments crystallized when the block size was at least 2000 Daltons and present at ˜ 40 wt%, and raised the Tg of the polymer by ˜ 15 ^oC. The PEG blocks in dry polymers with up to 50 wt% PEG, even when crystalline, were found to be uniformly distributed with no evidence of phase separation at 10 nm length scales. The non-iodinated PEG-rich sample with 30 mole% PEG2k showed the lower critical solution temperature (LCST) behavior with PEG blocks forming a separate phase above -21 ^oC. In the iodinated version of this polymer, the PEG2k blocks were phase separated in the solid phase. In all samples, whether PEG was crystalline or not, hydration induced PEG to separate into 15 nm hydrated domains. Phase behavior was dependent on whether poly(DTE) or the PEG was the major (matrix) phase. Changes in the mobility of the chains brought about by water-mediated hydrogen-bonding, and modulated by heat, appear to be the common underlying explanation for the range of observed phase behavior.

  7. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  8. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-01-01

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  9. Investigation of Kinetic Hydrate Inhibition Using a High Pressure Micro Differential Scanning Calorimeter

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Malmos, Christine; von Solms, Nicolas

    2013-01-01

    of hydrate growth. Additionally, hydrate formed in the presence of inhibitor decomposed at higher temperatures compared to pure water, indicating that while hydrate formation is initially inhibited; once hydrates form, they are more stable in the presence of inhibitor. Overall, this method proved a viable......Methane hydrate formation and decomposition were investigated in the presence of the kinetic inhibitor (Luvicap EG) and synergist (polyethylene oxide; PEO) using a high pressure micro-differential scanning calorimeter (HP-μDSC) with both temperature ramping and isothermal temperature programs....... These investigations were performed using small samples in four different capillary tubes in the calorimeter cell. When the isothermal method was employed, it was found that Luvicap EG significantly delays the hydrate nucleation time as compared to water. The results obtained from the ramping method demonstrated...

  10. Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Maimaiti, Ayiguli; Wang, Bin; Huang, Jun; Wang, Yujue; Cousins, Ian T; Yu, Gang

    2018-07-01

    Aqueous film-forming foams (AFFFs) used in fire-fighting are one of the main contamination sources of perfluorooctane sulfonate (PFOS) to the subterranean environment, requiring high costs for remediation. In this study, a method that combined aeration and foam collection was presented to remove PFOS from a commercially available AFFF solution. The method utilized the strong surfactant properties of PFOS that cause it to be highly enriched at air-water interfaces. With an aeration flow rate of 75 mL/min, PFOS removal percent reached 96% after 2 h, and the PFOS concentration in the collected foam was up to 6.5 mmol/L, beneficial for PFOS recovery and reuse. Increasing the aeration flow rate, ionic strength and concentration of co-existing surfactant, as well as decreasing the initial PFOS concentration, increased the removal percents of PFOS by increasing the foam volume, but reduced the enrichment of PFOS in the foams. With the assistance of a co-existing hydrocarbon surfactant, PFOS removal percent was above 99.9% after aeration-foam collection for 2 h and the enrichment factor exceeded 8400. Aeration-foam collection was less effective for short-chain perfluoroalkyl substances due to their relatively lower surface activity. Aeration-foam collection was found to be effective for the removal of high concentrations of PFOS from AFFF-contaminated wastewater, and the concentrated PFOS in the collected foam can be reused. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong, E-mail: hdjang@kigam.re.kr; Cho, Kuk, E-mail: kukcho@pusan.ac.kr [Korea Institute of Geoscience and Mineral Resources (Korea, Republic of)

    2013-09-15

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO{sub 2}, TiO{sub 2}, and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying.

  12. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    International Nuclear Information System (INIS)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong; Cho, Kuk

    2013-01-01

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO 2 , TiO 2 , and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying

  13. Positive solution of non-square fully Fuzzy linear system of equation in general form using least square method

    Directory of Open Access Journals (Sweden)

    Reza Ezzati

    2014-08-01

    Full Text Available In this paper, we propose the least square method for computing the positive solution of a non-square fully fuzzy linear system. To this end, we use Kaffman' arithmetic operations on fuzzy numbers \\cite{17}. Here, considered existence of exact solution using pseudoinverse, if they are not satisfy in positive solution condition, we will compute fuzzy vector core and then we will obtain right and left spreads of positive fuzzy vector by introducing constrained least squares problem. Using our proposed method, non-square fully fuzzy linear system of equations always has a solution. Finally, we illustrate the efficiency of proposed method by solving some numerical examples.

  14. Comparison of setting time and temperature hydration in mortar with substituent ceramic

    International Nuclear Information System (INIS)

    Rodrigues, R.A.; Alves, L.S.; Evangelista, A.C.J.; Almeida, V.C.

    2011-01-01

    The workability of mortar is determined mainly by the kinetics of hydration of the hydraulic binder, the process of gelation / hydration of this material in aqueous solutions is significantly influenced by the presence of additives. As a result, this work aims at studying changes in setting time and temperature of hydration of mortars with 10, 15 and 30% of Portland cement replaced by residues of porcelain and ceramic bricks. The influence of these residues in the cement hydration process was studied by testing takes time, temperature, hydration and X-ray diffraction. The results indicate that the mortar setting time not changed significantly since the temperature of hydration has a minor variation on what is preferred because it reduces the microcracks created in mortar during drying.(author)

  15. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration

    International Nuclear Information System (INIS)

    Irudayam, Sheeba Jem; Henchman, Richard H

    2010-01-01

    An equation for the chemical potential of a dilute aqueous solution of noble gases is derived in terms of energies, force and torque magnitudes, and solute and water coordination numbers, quantities which are all measured from an equilibrium molecular dynamics simulation. Also derived are equations for the Gibbs free energy, enthalpy and entropy of hydration for the Henry's law process, the Ostwald process, and a third proposed process going from an arbitrary concentration in the gas phase to the equivalent mole fraction in aqueous solution which has simpler expressions for the enthalpy and entropy changes. Good agreement with experimental hydration free energies is obtained in the TIP4P and SPC/E water models although the solute's force field appears to affect the enthalpies and entropies obtained. In contrast to other methods, the approach gives a complete breakdown of the entropy for every degree of freedom and makes possible a direct structural interpretation of the well-known entropy loss accompanying the hydrophobic hydration of small non-polar molecules under ambient conditions. The noble-gas solutes experience only a small reduction in their vibrational entropy, with larger solutes experiencing a greater loss. The vibrational and librational entropy components of water actually increase but only marginally, negating any idea of water confinement. The term that contributes the most to the hydrophobic entropy loss is found to be water's orientational term which quantifies the number of orientational minima per water molecule and how many ways the whole hydrogen-bond network can form. These findings help resolve contradictory deductions from experiments that water structure around non-polar solutes is similar to bulk water in some ways but different in others. That the entropy loss lies in water's rotational entropy contrasts with other claims that it largely lies in water's translational entropy, but this apparent discrepancy arises because of different

  16. Flue gas injection into gas hydrate reservoirs for methane recovery and carbon dioxide sequestration

    International Nuclear Information System (INIS)

    Yang, Jinhai; Okwananke, Anthony; Tohidi, Bahman; Chuvilin, Evgeny; Maerle, Kirill; Istomin, Vladimir; Bukhanov, Boris; Cheremisin, Alexey

    2017-01-01

    Highlights: • Flue gas was injected for both methane recovery and carbon dioxide sequestration. • Kinetics of methane recovery and carbon dioxide sequestration was investigated. • Methane-rich gas mixtures can be produced inside methane hydrate stability zones. • Up to 70 mol% of carbon dioxide in the flue gas was sequestered as hydrates. - Abstract: Flue gas injection into methane hydrate-bearing sediments was experimentally investigated to explore the potential both for methane recovery from gas hydrate reservoirs and for direct capture and sequestration of carbon dioxide from flue gas as carbon dioxide hydrate. A simulated flue gas from coal-fired power plants composed of 14.6 mol% carbon dioxide and 85.4 mol% nitrogen was injected into a silica sand pack containing different saturations of methane hydrate. The experiments were conducted at typical gas hydrate reservoir conditions from 273.3 to 284.2 K and from 4.2 to 13.8 MPa. Results of the experiments show that injection of the flue gas leads to significant dissociation of the methane hydrate by shifting the methane hydrate stability zone, resulting in around 50 mol% methane in the vapour phase at the experimental conditions. Further depressurisation of the system to pressures well above the methane hydrate dissociation pressure generated methane-rich gas mixtures with up to 80 mol% methane. Meanwhile, carbon dioxide hydrate and carbon dioxide-mixed hydrates were formed while the methane hydrate was dissociating. Up to 70% of the carbon dioxide in the flue gas was converted into hydrates and retained in the silica sand pack.

  17. Painleve Analysis and Determinant Solutions of a (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Wronskian and Grammian Form

    International Nuclear Information System (INIS)

    Meng Xianghua; Tian Bo; Yao Zhenzhi; Feng Qian; Gao Yitian

    2009-01-01

    In this paper, the investigation is focused on a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili (vcKP) equation, which can describe the realistic nonlinear phenomena in the fluid dynamics and plasma in three spatial dimensions. In order to study the integrability property of such an equation, the Painleve analysis is performed on it. And then, based on the truncated Painleve expansion, the bilinear form of the (3+1)-dimensional vcKP equation is obtained under certain coefficients constraint, and its solution in the Wronskian determinant form is constructed and verified by virtue of the Wronskian technique. Besides the Wronskian determinant solution, it is shown that the (3+1)-dimensional vcKP equation also possesses a solution in the form of the Grammian determinant. (general)

  18. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  19. Semianalytical Solution for the Deformation of an Elastic Layer under an Axisymmetrically Distributed Power-Form Load: Application to Fluid-Jet-Induced Indentation of Biological Soft Tissues.

    Science.gov (United States)

    Lu, Minhua; Huang, Shuai; Yang, Xianglong; Yang, Lei; Mao, Rui

    2017-01-01

    Fluid-jet-based indentation is used as a noncontact excitation technique by systems measuring the mechanical properties of soft tissues. However, the application of these devices has been hindered by the lack of theoretical solutions. This study developed a mathematical model for testing the indentation induced by a fluid jet and determined a semianalytical solution. The soft tissue was modeled as an elastic layer bonded to a rigid base. The pressure of the fluid jet impinging on the soft tissue was assumed to have a power-form function. The semianalytical solution was verified in detail using finite-element modeling, with excellent agreement being achieved. The effects of several parameters on the solution behaviors are reported, and a method for applying the solution to determine the mechanical properties of soft tissues is suggested.

  20. Cryogenic-SEM investigation of CO{sub 2} hydrate morphologies

    Energy Technology Data Exchange (ETDEWEB)

    Camps, A.P.; Milodowski, A.; Rochelle, C.; Williams, J.F.; Jackson, P. D. [British Geological Survey, Keyworth, Nottinghamshire (United Kingdom); Camps, A.P; Lovell, M.; Williams, J.F. [Leicester Univ., Leicester (United Kingdom). Dept. of Geology

    2008-07-01

    Gas hydrates occur naturally around the world in the shallow-marine geosphere, and are seen as a drilling hazard in the petroleum industry due to their role in the carbon cycle, and their possible contribution in past and present climate change. Hydrates are ice-like structures composed of cages of water molecules containing one or more guest molecules, such as methane and carbon dioxide (CO{sub 2}). CO{sub 2} hydrates also occur naturally on earth and are being investigated for their potential to store large volumes of CO{sub 2} to reduce atmospheric emissions of greenhouse gases as a climate change mitigation strategy. However, the mineralogy and formation processes of hydrates are relatively poorly understood. Different imaging techniques have been utilized to study gas hydrates, such as nuclear magnetic resonance, magnetic resonance imaging, and x-ray computed tomography. Scanning Electron Microscopy (SEM) at cryogenic temperatures is another technique to study hydrates, and has been used successfully for investigation of methane and CO{sub 2} hydrates. This paper presented a study that investigated CO{sub 2} hydrates formed in laboratories, using a cryogenic-SEM. The paper presented the study methods and observations, including euhedral crystalline carbon dioxide hydrate; acicular carbon dioxide hydrate; granoblastic carbon dioxide hydrate; and gas rich carbon dioxide hydrate. It was concluded that the investigation produced various different hydrate morphologies resulting from different formation conditions. Morphologies ranged from well-defined euhedral crystals to acicular needles, and more complex, intricate forms. 22 refs., 6 figs., 1 appendix.

  1. Non-invasive measurement of corneal hydration.

    Science.gov (United States)

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  2. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  3. Effect of Nitrogen Form and pH of Nutrient Solution on the Shoot Concentration of Phosphorus, Nitrate, and Nitrogen of Spinach in Hydroponic Culture

    OpenAIRE

    N. Najafi; M. Parsazadeh

    2010-01-01

    In order to study the effect of nitrogen form and pH of nutrient solution on the shoot concentration of P, nitrate, organic N + inorganic ammonium, and total N of spinach, a factorial experiment was conducted with two factors including pH of nutrient solution in three levels (4.5, 6.5 and 8.0) and nitrate to ammonium ratio of nutrient solution in five levels (100:0, 75:25, 50:50, 25:75 and 0:100). This factorial experiment was carried out in a completely randomized design with four replicatio...

  4. Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai–Tibetan, China

    International Nuclear Information System (INIS)

    He Jianglin; Wang Jian; Fu Xiugen; Zheng Chenggang; Chen Yanting

    2012-01-01

    Highlights: ► This is a pioneer research on the exploration of gas hydrate in Qiangtang basin. ► The factors influencing the stable of gas hydrate in Tuonamu area were studied. ► Simulation shows that gas hydrate stable zone is about 300 m thick in target area. ► Source condition is the key factor for the formation of gas hydrate in this area. ► The areas around the deeper faults are favorable targets for gas hydrate. - Abstract: Qiangtang basin, which is located in the largest continuous permafrost area in Qinghai–Tibetan Plateau, is expected to be a strategic area of gas hydrate exploitation in China. However, relatively little work has been done on the exploration of gas hydrate in this area. In this work, we evaluated the factors controlling the formation of gas hydrate in the Tuonamu area and provided a preliminary insight into gas hydrate distribution in it on the basis of the core samples, seismic data and laboratory analysis. It can be concluded that the source rock in the deeper formation would be dominant thermogenic source for the formation of gas hydrate in Tuonamu area. The thickness of gas hydrate stable zone in this area is about 300 m. The gas hydrate in the area most probably is in the form of gas-hydrate-water. The source condition is the key factor for the formation of gas hydrate and the gas hydrate layer would be mainly present in the form of interlayer in this area. The areas around the deeper faults are the favorable targets for the exploration of gas hydrate in the Tuonamu area.

  5. The temperature hydration kinetics

    Directory of Open Access Journals (Sweden)

    Mircea Oroian

    2017-07-01

    Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.

  6. Pulse-radiolytic investigation of the reduction of titanium(III) ions in aqueous solutions

    International Nuclear Information System (INIS)

    Micic, O.I.; Nenadovic, M.T.

    1979-01-01

    The absorption spectrum and decay kinetics of intermediates formed by the reaction of titanium(III) ions with H atoms, hydrated electrons, and carboxyl radicals have been studied in aqueous solution using the pulse-radiolysis technique. The product of the reaction with H atoms in acid solution is a Ti 3+ -H hydride intermediate which decomposes by a first-order process with a half-life of ca. 3 s. Titanium(II) is formed by reaction with hydrated electrons and CO 2 H radicals. The absorption spectrum of titanium(II) and the kinetics of its reactions are reported and discussed. The formation of molecular hydrogen by reaction of Ti 2+ with water is suppressed by the other solutes in the solutions. Titanium(III) reacts with CO 2 H, CH 2 CO 2 H, and CH(CO 2 H) 2 radicals to give titanium-radical complexes. (author)

  7. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  8. Towards understanding the role of amines in the SO2 hydration and the contribution of the hydrated product to new particle formation in the Earth's atmosphere.

    Science.gov (United States)

    Lv, Guochun; Nadykto, Alexey B; Sun, Xiaomin; Zhang, Chenxi; Xu, Yisheng

    2018-08-01

    By theoretical calculations, the gas-phase SO 2 hydration reaction assisted by methylamine (MA) and dimethylamine (DMA) was investigated, and the potential contribution of the hydrated product to new particle formation (NPF) also was evaluated. The results show that the energy barrier for aliphatic amines (MA and DMA) assisted SO 2 hydration reaction is lower than the corresponding that of water and ammonia assisted SO 2 hydration. In these hydration reactions, nearly barrierless reaction (only a barrier of 0.1 kcal mol -1 ) can be found in the case of SO 2  + 2H 2 O + DMA. These lead us to conclude that the SO 2 hydration reaction assisted by MA and DMA is energetically facile. The temporal evolution for hydrated products (CH 3 NH 3 + -HSO 3 - -H 2 O or (CH 3 ) 2 NH 2 + -HSO 3 - -H 2 O) in molecular dynamics simulations indicates that these complexes can self-aggregate into bigger clusters and can absorb water and amine molecules, which means that these hydrated products formed by the hydration reaction may serve as a condensation nucleus to initiate the NPF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Solvation numbers and hydration constant for thorium(IV) in ethanol-water medium

    International Nuclear Information System (INIS)

    Sedaira, H.; Idriss, K.A.; Hashem, E.Y.

    1996-01-01

    The solvation number and hydration constant of Th 4+ in ethanol-water medium were determined at 25 degrees C using UV-spectral and electrochemical measurements. A solvate formation equilibrium is demonstrated and characterized. Three molecules of ethanol (S) can bond to the metal cation with strengths comparable to that for H 2 O to form ThS 3 (H 2 O) 3 4+ . Formation of thorium monochelate with lawsone (2-hydroxy-1.4-naphthoquinone) eliminates bonding with alcohol molecules. The dissociation constant of the chelating agent s K a and the formation contant of the monochelated metal ion s K f * that are essentially independent of the solution composition are evaluated. Hydration titrations involving thorium-lawsone monochlate are performed and the data obtained from the changes of pH with solvent composition are analyzed. The solution independent constant, s K f * for thorium-lawsone complex formation in mixed aqueous ethanol is given by log x K f * =vpK a + log s K h - log [LH] - vpH + 3 log v where vpK a is the dissociation constant of the chelating agent LH in the solvent system of v volume fraction of water and s K h is the solution-independent hydration constant of thorium (IV) in the solvent system. Log-values for the constants s K h , s K f * and s K z * are found to be 7.8 ±0.02, 11.38±0.04 and -0.753, respectively

  10. Low-temperature metal-oxide thin-film transistors formed by directly photopatternable and combustible solution synthesis.

    Science.gov (United States)

    Rim, You Seung; Lim, Hyun Soo; Kim, Hyun Jae

    2013-05-01

    We investigated the formation of ultraviolet (UV)-assisted directly patternable solution-processed oxide semiconductor films and successfully fabricated thin-film transistors (TFTs) based on these films. An InGaZnO (IGZO) solution that was modified chemically with benzoylacetone (BzAc), whose chelate rings decomposed via a π-π* transition as result of UV irradiation, was used for the direct patterning. A TFT was fabricated using the directly patterned IGZO film, and it had better electrical characteristics than those of conventional photoresist (PR)-patterned TFTs. In addition, the nitric acid (HNO3) and acetylacetone (AcAc) modified In2O3 (NAc-In2O3) solution exhibited both strong UV absorption and high exothermic reaction. This method not only resulted in the formation of a low-energy path because of the combustion of the chemically modified metal-oxide solution but also allowed for photoreaction-induced direct patterning at low temperatures.

  11. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  12. Energy consumption estimation for greenhouse gas separation processes by clathrate hydrate formation

    International Nuclear Information System (INIS)

    Tajima, Hideo; Yamasaki, Akihiro; Kiyono, Fumio

    2004-01-01

    The process energy consumption was estimated for gas separation processes by the formation of clathrate hydrates. The separation process is based on the equilibrium partition of the components between the gaseous phase and the hydrate phase. The separation and capturing processes of greenhouse gases were examined in this study. The target components were hydrofluorocarbon (HFC-134a) from air, sulfur hexafluoride (SF 6 ) from nitrogen, and CO 2 from flue gas. Since these greenhouse gases would form hydrates under much lower pressure and higher temperature conditions than the accompanying components, the effective capturing of the greenhouse gases could be achieved by using hydrate formation. A model separation process for each gaseous mixture was designed from the basis of thermodynamics, and the process energy consumption was estimated. The obtained results were then compared with those for conventional separation processes such as liquefaction separation processes. For the recovery of SF 6 , the hydrate process is preferable to liquefaction process in terms of energy consumption. On the other hand, the liquefaction process consumes less energy than the hydrate process for the recovery of HFC-134a. The capturing of CO 2 by the hydrate process from a flue gas will consume a considerable amount of energy; mainly due to the extremely high pressure conditions required for hydrate formation. The influences of the operation conditions on the heat of hydrate formation were elucidated by sensitivity analysis. The hydrate processes for separating these greenhouse gases were evaluated in terms of reduction of global warming potential (GWP)

  13. Gas hydrates: entrance to a methane age or climate threat?

    International Nuclear Information System (INIS)

    Krey, Volker; Nakicenovic, Nebojsa; Grubler, Arnulf; O'Neill, Brian; Riahi, Keywan; Canadell, Josep G; Abe, Yuichi; Andruleit, Harald; Archer, David; Hamilton, Neil T M; Johnson, Arthur; Kostov, Veselin; Lamarque, Jean-Francois; Langhorne, Nicholas; Nisbet, Euan G; Riedel, Michael; Wang Weihua; Yakushev, Vladimir

    2009-01-01

    Methane hydrates, ice-like compounds in which methane is held in crystalline cages formed by water molecules, are widespread in areas of permafrost such as the Arctic and in sediments on the continental margins. They are a potentially vast fossil fuel energy source but, at the same time, could be destabilized by changing pressure-temperature conditions due to climate change, potentially leading to strong positive carbon-climate feedbacks. To enhance our understanding of both the vulnerability of and the opportunity provided by methane hydrates, it is necessary (i) to conduct basic research that improves the highly uncertain estimates of hydrate occurrences and their response to changing environmental conditions, and (ii) to integrate the agendas of energy security and climate change which can provide an opportunity for methane hydrates-in particular if combined with carbon capture and storage-to be used as a 'bridge fuel' between carbon-intensive fossil energies and zero-emission energies. Taken one step further, exploitation of dissociating methane hydrates could even mitigate against escape of methane to the atmosphere. Despite these opportunities, so far, methane hydrates have been largely absent from energy and climate discussions, including global hydrocarbon assessments and the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.

  14. Hydration Control of the Mechanical and Dynamical Properties of Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Petridis, Loukas; O’Neill, Hugh M.; Johnsen, Mariah [Ripon College, Ripon, Wisconsin 54971, United States; Fan, Bingxin [Department; Schulz, Roland [Department; Mamontov, Eugene; Maranas, Janna [Department; Langan, Paul [Department; Smith, Jeremy C. [Department

    2014-10-13

    The mechanical and dynamical properties of cellulose, the most abundant biomolecule on earth, are essential for its function in plant cell walls and advanced biomaterials. Cellulose is almost always found in a hydrated state, and it is therefore important to understand how hydration influences its dynamics and mechanics. Here, the nanosecond-time scale dynamics of cellulose is characterized using dynamic neutron scattering experiments and molecular dynamics (MD) simulation. The experiments reveal that hydrated samples exhibit a higher average mean-square displacement above ~240 K. The MD simulation reveals that the fluctuations of the surface hydroxymethyl atoms determine the experimental temperature and hydration dependence. The increase in the conformational disorder of the surface hydroxymethyl groups with temperature follows the cellulose persistence length, suggesting a coupling between structural and mechanical properties of the biopolymer. In the MD simulation, 20% hydrated cellulose is more rigid than the dry form, due to more closely packed cellulose chains and water molecules bridging cellulose monomers with hydrogen bonds. This finding may have implications for understanding the origin of strength and rigidity of secondary plant cell walls. The detailed characterization obtained here describes how hydration-dependent increased fluctuations and hydroxymethyl disorder at the cellulose surface lead to enhancement of the rigidity of this important biomolecule.

  15. Class H cement hydration at 180 deg. C and high pressure in the presence of added silica

    International Nuclear Information System (INIS)

    Jupe, Andrew C.; Wilkinson, Angus P.; Luke, Karen; Funkhouser, Gary P.

    2008-01-01

    Under deep oil-well conditions of elevated temperature and pressure, crystalline calcium silicate hydrates are formed during Portland cement hydration. The use of silica rich mineral additives leads to the formation of crystalline hydrates with better mechanical properties than those formed without the additive. The effects of silica flour, silica fume (amorphous silica), and a natural zeolite mixture on the hydration of Class H cement slurries at 180 deg. C under externally applied pressures of 7 and 52 MPa are examined in real time using in-situ synchrotron X-ray diffraction. For some compositions examined, but not all, pressure was found to have a large effect on the kinetics of crystalline hydrate formation. The use of silica fume delayed both C 3 S hydration and the formation of crystalline silicate hydrates compared to what was seen with other silica sources

  16. Films of Agarose Enable Rapid Formation of Giant Liposomes in Solutions of Physiologic Ionic Strength

    OpenAIRE

    Horger, Kim S.; Estes, Daniel J.; Capone, Ricardo; Mayer, Michael

    2009-01-01

    This paper describes a method to form giant liposomes in solutions of physiologic ionic strength, such as phosphate buffered saline (PBS) or 150 mM KCl. Formation of these cell-sized liposomes proceeded from hybrid films of partially dried agarose and lipids. Hydrating the films of agarose and lipids in aqueous salt solutions resulted in swelling and partial dissolution of the hybrid films and in concomitant rapid formation of giant liposomes in high yield. This method did not require the pre...

  17. Pharmacokinetics and Bioavailability of the GnRH Analogs in the Form of Solution and Zn2+-Suspension After Single Subcutaneous Injection in Female Rats.

    Science.gov (United States)

    Suszka-Świtek, Aleksandra; Ryszka, Florian; Dolińska, Barbara; Dec, Renata; Danch, Alojzy; Filipczyk, Łukasz; Wiaderkiewicz, Ryszard

    2017-04-01

    Although many synthetic gonadoliberin analogs have been developed, only a few of them, including buserelin, were introduced into clinical practice. Dalarelin, which differs from buserelin by just one aminoacid in the position 6 (D-Ala), is not widely used so far. Gonadotropin-releasing hormone (GnRH) analogs are used to treat many different illnesses and are available in different forms like solution for injection, nasal spray, microspheres, etc. Unfortunately, none of the above drug formulations can release the hormones for 24 h. We assumed that classical suspension could solve this problem. Two sets of experiments were performed. In the first one, buserelin and dalarelin were injected into mature female rats in two forms: suspension, in which the analogs are bounded by Zn 2+ ions and solution. The pharmacokinetic parameters and bioavailability of the analogs were calculated, based on their concentration in the plasma measured by high-performance liquid chromatography method (HPLC). In the second experiment, the hormones in two different forms were injected into superovulated immature female rats and then the concentration of Luteinizing hormone (LH), Follicle-stimulating hormone (FSH) and 17β-estradiol in the serum was measured by radioimmunological method. The Extent of Biological Availability (EBA), calculated on the base of AUC 0-∞ , showed that in the form of solution buserelin and dalarelin display, respectively, only 13 and 8 % of biological availability of their suspension counterparts. Comparing both analogs, the EBA of dalarelin was half (53 %) that of buserelin delivered in the form of solution and 83 % when they were delivered in the form of suspension. The injection of buserelin or dalarelin, in the form of solution or suspension, into superovulated female rats increased LH, FSH and estradiol concentration in the serum. However, after injection of the analogs in the form of suspension, the high concentration of LH and FSH in the serum persisted

  18. Application of sphagnum peat, calcium carbonate and hydrated lime for immobilizing radioactive and hazardous contaminants in the subsurface

    International Nuclear Information System (INIS)

    Longmire, P.A.; Thomson, B.M.; Eller, P.G.; Barr, M.E.

    1991-01-01

    Batch experiments, mineralogical studies, and geochemical modeling were conducted to evaluate the effectiveness of sphagnum peat, calcium carbonate, and hydrated lime in removing dissolved concentrations of As, Mo, NO 3 , and U present in uranium-tailings pore water at Gunnison, Colorado. Amounts of As, Mo, and U removal by sphagnum peat, calcium carbonate, and hydrated lime at 5.0,2.5, and 2.5 wt.%, respectively, were typically above 97%. Nitrate removal ranged between 55 and 80%. Significant contaminant removal was achieved by sphagnum peat alone at pH 3.18. Results from base potentiometric titration and IR spectroscopy investigations suggest that U(VI) binds onto carboxylate and phenolate groups. Addition of 2.5 wt.% hydrated lime to the acidic tailings increased Mo concentrations by a factor of 2 under moderately alkaline conditions (pH 12). During neutralization of tailings-pore water, precipitation of ferric oxyhydroxides may provide additional removal of As, Mo, and U(VI) from solution through adsorption and coprecipitation processes. Sphagnum peat and other forms of solid organic matter effectively remove anthropogenic organic compounds from solution through hydrophobic sorption and partitioning processes

  19. Desalination of Produced Water via Gas Hydrate Formation and Post Treatment

    OpenAIRE

    Niu, Jing

    2012-01-01

    This study presents a two-step desalination process, in which produced water is cleaned by forming gas hydrate in it and subsequently dewatering the hydrate to remove the residual produced water trapped in between the hydrate crystals. All experiments were performed with pressure in the range of 450 to 800psi and temperature in the range of -1 to 1°C using CO? as guest molecule for the hydrate crystals. The experiments were conducted using artificial produced waters containing different amoun...

  20. Elastic wave speeds and moduli in polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate

    Science.gov (United States)

    Helgerud, M.B.; Waite, W.F.; Kirby, S.H.; Nur, A.

    2009-01-01

    We used ultrasonic pulse transmission to measure compressional, P, and shear, S, wave speeds in laboratory-formed polycrystalline ice Ih, si methane hydrate, and sll methane-ethane hydrate. From the wave speed's linear dependence on temperature and pressure and from the sample's calculated density, we derived expressions for bulk, shear, and compressional wave moduli and Poisson's ratio from -20 to 15??C and 22.4 to 32.8 MPa for ice Ih, -20 to 15??C and 30.5 to 97.7 MPa for si methane hydrate, and -20 to 10??C and 30.5 to 91.6 MPa for sll methane-ethane hydrate. All three materials had comparable P and S wave speeds and decreasing shear wave speeds with increasing applied pressure. Each material also showed evidence of rapid intergranular bonding, with a corresponding increase in wave speed, in response to pauses in sample deformation. There were also key differences. Resistance to uniaxial compaction, indicated by the pressure required to compact initially porous samples, was significantly lower for ice Ih than for either hydrate. The ice Ih shear modulus decreased with increasing pressure, in contrast to the increase measured in both hydrates ?? 2009.

  1. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlit