CO2 Mass transfer model for carbonic anhydrase-enhanced aqueous MDEA solutions
DEFF Research Database (Denmark)
Gladis, Arne Berthold; Deslauriers, Maria Gundersen; Neerup, Randi
2018-01-01
In this study a CO2 mass transfer model was developed for carbonic anhydrase-enhanced MDEA solutions based on a mechanistic kinetic enzyme model. Four different enzyme models were compared in their ability to predict the liquid side mass transfer coefficient at temperatures in the range of 298...
Heat and mass transfer at adiabatic evaporation of binary zeotropic solutions
Makarov, M. S.; Makarova, S. N.
2016-01-01
Results of numerical simulation of heat and mass transfer in a laminar flow of three-component gas at adiabatic evaporation of binary solutions from a flat plate are presented. The studies were carried out for the perfect solution of ethanol/methanol and zeotrope solutions of water/acetone, benzene/acetone, and ethanol/acetone. The liquid-vapor equilibrium is described by the Raoult law for the ideal solution and Carlson-Colburn model for real solutions. The effect of gas temperature and liquid composition on the heat and diffusion flows, and temperature of vapor-gas mixture at the interface is analyzed. The formula for calculating the temperature of the evaporation surface for the binary liquid mixtures using the similarity of heat and mass transfer was proposed. Data of numerical simulations are in a good agreement with the results of calculations based on the proposed dependence for all examined liquid mixtures in the considered range of temperatures and pressures.
Transport Visualization for Studying Mass Transfer and Solute Transport in Permeable Media
International Nuclear Information System (INIS)
Roy Haggerty
2004-01-01
Understanding and predicting mass transfer coupled with solute transport in permeable media is central to several energy-related programs at the US Department of Energy (e.g., CO 2 sequestration, nuclear waste disposal, hydrocarbon extraction, and groundwater remediation). Mass transfer is the set of processes that control movement of a chemical between mobile (advection-dominated) domains and immobile (diffusion- or sorption-dominated) domains within a permeable medium. Consequences of mass transfer on solute transport are numerous and may include (1) increased sequestration time within geologic formations; (2) reduction in average solute transport velocity by as much as several orders of magnitude; (3) long ''tails'' in concentration histories during removal of a solute from a permeable medium; (4) poor predictions of solute behavior over long time scales; and (5) changes in reaction rates due to mass transfer influences on pore-scale mixing of solutes. Our work produced four principle contributions: (1) the first comprehensive visualization of solute transport and mass transfer in heterogeneous porous media; (2) the beginnings of a theoretical framework that encompasses both macrodispersion and mass transfer within a single set of equations; (3) experimental and analytical tools necessary for understanding mixing and aqueous reaction in heterogeneous, granular porous media; (4) a clear experimental demonstration that reactive transport is often not accurately described by a simple coupling of the convection-dispersion equation with chemical reaction equations. The work shows that solute transport in heterogeneous media can be divided into 3 regimes--macrodispersion, advective mass transfer, and diffusive mass transfer--and that these regimes can be predicted quantitatively in binary media. We successfully predicted mass transfer in each of these regimes and verified the prediction by completing quantitative visualization experiments in each of the regimes, the
Mass transfer processes and field-scale transport of organic solutes
International Nuclear Information System (INIS)
Brusseau, M.L.
1990-01-01
The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
R. Haggerty
2013-01-01
In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...
International Nuclear Information System (INIS)
Liu, X.H.; Yi, X.Q.; Jiang, Y.
2011-01-01
Mass transfer performance of two commonly used liquid desiccants, LiBr aqueous solution and LiCl aqueous solution, is compared in this paper on the basis of the same solution temperature and surface vapor pressure. According to the analysis of the analytical solutions of heat and mass transfer processes, the key performance influencing factors are heat capacity ratio of air to desiccant m * and mass transfer unit NTU m . The heat capacities of the two liquid desiccants are about the same at same volumetric flow rate, and LiBr solution has higher density and smaller specific heat capacity. The variance of mass transfer unit with different operating conditions and liquid desiccants are derived based on the experimental results. In the condition of the same desiccant mass flow rate, the dehumidification performance of LiCl solution is better, and the regeneration performance of LiBr solution is a little better or almost the same as that of LiCl solution. In the condition of the same desiccant volumetric flow rate, the dehumidification performance of LiCl solution is a little better or about the same compared with LiBr solution, and the regeneration performance of LiBr solution is better. The COPs of the liquid desiccant systems using these two desiccants are similar; while LiCl solution costs 18% lower than LiBr solution at current Chinese price.
The influence of mass transfer on solute transport in column experiments with an aggregated soil
Roberts, Paul V.; Goltz, Mark N.; Summers, R. Scott; Crittenden, John C.; Nkedi-Kizza, Peter
1987-06-01
The spreading of concentration fronts in dynamic column experiments conducted with a porous, aggregated soil is analyzed by means of a previously documented transport model (DFPSDM) that accounts for longitudinal dispersion, external mass transfer in the boundary layer surrounding the aggregate particles, and diffusion in the intra-aggregate pores. The data are drawn from a previous report on the transport of tritiated water, chloride, and calcium ion in a column filled with Ione soil having an average aggregate particle diameter of 0.34 cm, at pore water velocities from 3 to 143 cm/h. The parameters for dispersion, external mass transfer, and internal diffusion were predicted for the experimental conditions by means of generalized correlations, independent of the column data. The predicted degree of solute front-spreading agreed well with the experimental observations. Consistent with the aggregate porosity of 45%, the tortuosity factor for internal pore diffusion was approximately equal to 2. Quantitative criteria for the spreading influence of the three mechanisms are evaluated with respect to the column data. Hydrodynamic dispersion is thought to have governed the front shape in the experiments at low velocity, and internal pore diffusion is believed to have dominated at high velocity; the external mass transfer resistance played a minor role under all conditions. A transport model such as DFPSDM is useful for interpreting column data with regard to the mechanisms controlling concentration front dynamics, but care must be exercised to avoid confounding the effects of the relevant processes.
Mass transfer of a neutral solute in porous microchannel under streaming potential.
Mondal, Sourav; De, Sirshendu
2014-03-01
The mass transport of a neutral solute in a porous wall, under the influence of streaming field, has been analyzed in this study. The effect of the induced streaming field on the electroviscous effect of the fluid for different flow geometries has been suitably quantified. The overall electroosmotic velocity profile and expression for streaming field have been obtained analytically using the Debye-Huckel approximation, and subsequently used in the analysis for the mass transport. The analysis shows that as the solution Debye length increases, the strength of the streaming field and, consequently, the electroviscous effect diminishes. The species transport equation has been coupled with Darcy's law for quantification of the permeation rate across the porous wall. The concentration profile inside the mass transfer boundary layer has been solved using the similarity transformation, and the Sherwood number has been calculated from the definition. In this study, the variation of the permeation rate and solute permeate concentration has been with the surface potential, wall retention factor and osmotic pressure coefficient has been demonstrated for both the circular as well as rectangular channel cross-section. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Ma, Shuangchen; Chen, Gongda; Zhu, Sijie; Han, Tingting; Yu, Weijing
2016-01-01
Highlights: • Mass transfer coefficient models of ammonia escape were built. • Influences of temperature, inlet CO 2 and ammonia concentration were studied. • Mass transfer coefficients of ammonia escape and CO 2 absorption were obtained. • Studies can provide the basic data as a reference guideline for process application. - Abstract: The mass transfer of CO 2 capture using ammonia solution in the bubbling reactor was studied; according to double film theory, the mass transfer coefficient models and interface area model were built. Through our experiments, the overall volumetric mass transfer coefficients were obtained, while the interface areas in unit volume were estimated. The volumetric mass transfer coefficients of ammonia escaping during the experiment were 1.39 × 10 −5 –4.34 × 10 −5 mol/(m 3 s Pa), and the volumetric mass transfer coefficients of CO 2 absorption were 2.86 × 10 −5 –17.9 × 10 −5 mol/(m 3 s Pa). The estimated interface area of unit volume in the bubbling reactor ranged from 75.19 to 256.41 m 2 /m 3 , making the bubbling reactor a viable choice to obtain higher mass transfer performance than the packed tower or spraying tower.
Directory of Open Access Journals (Sweden)
B. Godongwana
2010-01-01
Full Text Available This paper presents an analytical model of substrate mass transfer through the lumen of a membrane bioreactor. The model is a solution of the convective-diffusion equation in two dimensions using a regular perturbation technique. The analysis accounts for radial-convective flow as well as axial diffusion of the substrate specie. The model is applicable to the different modes of operation of membrane bioreactor (MBR systems (e.g., dead-end, open-shell, or closed-shell mode, as well as the vertical or horizontal orientation. The first-order limit of the Michaelis-Menten equation for substrate consumption was used to test the developed model against available analytical results. The results obtained from the application of this model, along with a biofilm growth kinetic model, will be useful in the derivation of an efficiency expression for enzyme production in an MBR.
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
Zhou, Quanlin; Oldenburg, Curtis M.; Rutqvist, Jonny; Birkholzer, Jens T.
2017-11-01
There are two types of analytical solutions of temperature/concentration in and heat/mass transfer through boundaries of regularly shaped 1-D, 2-D, and 3-D blocks. These infinite-series solutions with either error functions or exponentials exhibit highly irregular but complementary convergence at different dimensionless times, td. In this paper, approximate solutions were developed by combining the error-function-series solutions for early times and the exponential-series solutions for late times and by using time partitioning at the switchover time, td0. The combined solutions contain either the leading term of both series for normal-accuracy approximations (with less than 0.003 relative error) or the first two terms for high-accuracy approximations (with less than 10-7 relative error) for 1-D isotropic (spheres, cylinders, slabs) and 2-D/3-D rectangular blocks (squares, cubes, rectangles, and rectangular parallelepipeds). This rapid and uniform convergence for rectangular blocks was achieved by employing the same time partitioning with individual dimensionless times for different directions and the product of their combined 1-D slab solutions. The switchover dimensionless time was determined to minimize the maximum approximation errors. Furthermore, the analytical solutions of first-order heat/mass flux for 2-D/3-D rectangular blocks were derived for normal-accuracy approximations. These flux equations contain the early-time solution with a three-term polynomial in √td and the late-time solution with the limited-term exponentials for rectangular blocks. The heat/mass flux equations and the combined temperature/concentration solutions form the ultimate kernel for fast simulations of multirate and multidimensional heat/mass transfer in porous/fractured media with millions of low-permeability blocks of varying shapes and sizes.
Karwa, Rajendra
2017-01-01
This textbook presents the classical treatment of the problems of heat transfer in an exhaustive manner with due emphasis on understanding of the physics of the problems. This emphasis is especially visible in the chapters on convective heat transfer. Emphasis is laid on the solution of steady and unsteady two-dimensional heat conduction problems. Another special feature of the book is a chapter on introduction to design of heat exchangers and their illustrative design problems. A simple and understandable treatment of gaseous radiation has been presented. A special chapter on flat plate solar air heater has been incorporated that covers thermo-hydraulic modeling and simulation. The chapter on mass transfer has been written looking specifically at the needs of the students of mechanical engineering. The book includes a large number and variety of solved problems with supporting line diagrams. The author has avoided duplicating similar problems, while incorporating more application-based examples. All the end-...
Directory of Open Access Journals (Sweden)
G. Revathi
2014-12-01
Full Text Available Non-similar solutions are found numerically to a system of coupled non-linear partial differential equations indicating, unsteady laminar water boundary layer flow over yawed cylinder using implicit finite difference scheme along with Quasi-linearization technique. The fluid properties such as viscosity and Prandtl number are considered as an inverse function of temperature. Unsteadiness is caused by upstream velocity in and directions and non-uniform mass transfer (suction/injection which is applied through slot on the surface of the geometry. The effect of yaw angle, variable fluid properties and non-uniform mass transfer on skin friction and heat transfer coefficients is analyzed. It is found that non-uniform slot suction and downstream movement of the slot cause the point of vanishing skin friction moves downstream, but non-uniform slot injection produces the opposite result of that corresponding to the suction case. When the yaw angle increases, both the skin friction coefficient in the – direction and the heat transfer coefficient decrease but the skin friction coefficient in the – direction increases for all times. The effect of the yaw angle is very little on the point of vanishing skin friction.
Mass transfer and thermodynamic modeling of carbon dioxide absorption into MEA aqueous solution
Directory of Open Access Journals (Sweden)
Ghaemi Ahad
2017-09-01
Full Text Available In this research, thermodynamic and absorption rate of carbon dioxide in monoethanolamine (MEA solution was investigated. A correlation based on both liquid and a gas phase variable for carbon dioxide absorption rate was presented using the π-Buckingham theorem. The correlation was constructed based on dimensionless numbers, including carbon dioxide loading, carbon dioxide partial pressure, film parameter and the ratio of liquid phase film thickness and gas phase film thickness. The film parameter is used to apply the effect of chemical reactions on absorption rate. A thermodynamic model based on the extended-UNIQUAC equations for the activity coefficients coupled with the Virial equation of state for representing the non-ideality of the vapor phase was used to predict the CO2 solubility in the CO2-MEA-H2O system. The average absolute error of the results for the correlation was 6.4%, which indicates the accuracy of the proposed correlation.
Evaluate the accuracy of the numerical solution of hydrogeological problems of mass transfer
Directory of Open Access Journals (Sweden)
Yevhrashkina G.P.
2014-12-01
Full Text Available In the hydrogeological task on quantifying pollution of aquifers the error are starting add up with moment organization of regime observation network as a source of information on the pollution of groundwater in order to evaluate migration options for future prognosis calculations. Optimum element regime observation network should consist of three drill holes on the groundwater flow at equal distances from one another and transversely to the flow of the three drill holes, and at equal distances. If the target of observation drill holes coincides with the stream line on which will then be decided by direct migration task, the error will be minimal. The theoretical basis and results of numerical experiments to assess the accuracy of direct predictive tasks planned migration of groundwater in the area of full water saturation. For the vadose zone, we consider problems of vertical salt transport moisture. All studies were performed by comparing the results of fundamental and approximate solutions in a wide range of characteristics of the processes, which are discussed in relation to ecological and hydrogeological conditions of mining regions on the example of the Western Donbass.
International Nuclear Information System (INIS)
Hoshyargar, Vahid; Fadaei, Farzad; Ashrafizadeh, Seyed Nezameddin
2015-01-01
A comprehensive mathematical model is developed for simulation of ion transport through nanofiltration membranes. The model is based on the Maxwell-Stefan approach and takes into account steric, Donnan, and dielectric effects in the transport of mono and divalent ions. Theoretical ion rejection for multi-electrolyte mixtures was obtained by numerically solving the 'hindered transport' based on the generalized Maxwell-Stefan equation for the flux of ions. A computer simulation has been developed to predict the transport in the range of nanofiltration, a numerical procedure developed linearization and discretization form of the governing equations, and the finite volume method was employed for the numerical solution of equations. The developed numerical method is capable of solving equations for multicomponent systems of n species no matter to what extent the system shows stiffness. The model findings were compared and verified with the experimental data from literature for two systems of Na 2 SO 4 +NaCl and MgCl 2 +NaCl. Comparison showed great agreement for different concentrations. As such, the model is capable of predicting the rejection of different ions at various concentrations. The advantage of such a model is saving costs as a result of minimizing the number of required experiments, while it is closer to a realistic situation since the adsorption of ions has been taken into account. Using this model, the flux of permeates and rejections of multi-component liquid feeds can be calculated as a function of membrane properties. This simulation tool attempts to fill in the gap in methods used for predicting nanofiltration and optimization of the performance of charged nanofilters through generalized Maxwell-Stefan (GMS) approach. The application of the current model may weaken the latter gap, which has arisen due to the complexity of the fundamentals of ion transport processes via this approach, and may further facilitate the industrial development of
Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I
2018-04-16
Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.
Marti, Sina; Heilbronner, Renée; Stünitz, Holger; Plümper, Oliver; Drury, Martyn
2017-04-01
Grain size sensitive creep (GSSC) mechanisms are widely recognized to be the most efficient deformation mechanisms in shear zones. With or without initial fracturing and fluid infiltration, the onset of heterogeneous nucleation leading to strong grain size reduction is a frequently described process for the initiation of GSSC. Phase mixing due to reaction and heterogeneous nucleation during GSSC impedes grain growth, sustaining small grain sizes as a prerequisite for GSSC. Here we present rock deformation experiments on 'wet' plagioclase - pyroxene mixtures at T=800°C, P=1.0 and 1.5GPa and strain rates of 2e-5 - 2e-6 1/s, performed with a Griggs-type solid medium deformation apparatus. Microstructural criteria are used to show that both, grain boundary sliding (GBS) and solution-mass transfer processes are active and are interpreted to be the dominant strain accommodating processes. Displacement is localized within shear bands formed by fine-grained ( 300 - 500nm) plagioclase (Pl) and the syn-kinematic reaction products amphibole (Amph), quartz (Qz) and zoisite (Zo). We compare our experiments with a natural case - a sheared mafic pegmatite (P-T during deformation 0.7 - 0.9 GPa, 610 - 710 °C; Getsinger et al., 2013) from Northern Norway. Except for the difference in grain size of the experimental and natural samples, microstructures are strikingly alike. The experimental and natural P- and especially T-conditions are very similar. Consequently, extrapolation from experiments to nature must be made without a significant 'temperature-time' trade-off, which is normally taken advantage of when relating experimental to natural strain rates. We will discuss under which assumptions extrapolation to nature in our case is likely feasible. Syn-kinematic reactions during GBS and solution-mass transport are commonly interpreted to result in an ordered (anticlustered) phase mixture. However, phase mixing in our case is restricted: Mixing is extensive between Pl + Zo + Qz and
Mass Transfer Operations for the Practicing Engineer
Theodore, Louis
2011-01-01
Part of the Essential Engineering Calculations Series, this book presents step-by-step solutions of the basic principles of mass transfer operations, including sample problems and solutions and their applications, such as distillation, absorption, and stripping. Presenting the subject from a strictly pragmatic point of view, providing both the principles of mass transfer operations and their applications, with clear instructions on how to carry out the basic calculations needed, the book also covers topics useful for readers taking their professional exams.
Numerical simulation of flow and mass transfer for large KDP crystal growth via solution-jet method
Yin, Huawei; Li, Mingwei; Hu, Zhitao; Zhou, Chuan; Li, Zhiwei
2018-06-01
A novel technique of growing large crystals of potassium dihydrogen phosphate (KDP) named solution-jet method is proposed. The aim is to increase supersaturation on the pyramidal face, especially for crystal surface regions close to the rotation axis. The fluid flow and surface supersaturation distribution of crystals grown under different conditions were computed using the finite-volume method. Results indicate that the time-averaged supersaturation of the pyramidal face in the proposed method significantly increases and the supersaturation difference from the crystal center to edge clearly decreases compared with the rotating-crystal method. With increased jet velocity, supersaturation on the pyramidal face steadily increases. Rotation rate considerably affects the magnitude and distribution of the prismatic surface supersaturation. With increased crystal size, the mean value of surface supersaturation averaged over the pyramid gradually decreases; conversely, standard deviation increases, which is detrimental to crystal growth. Moreover, the significant roles played by natural and forced convection in the process of mass transport are discussed. Results show that further increased jet velocity to 0.6 m/s renders negligible the effects of natural convection around the pyramid. The simulation for step propagation indicates that solution-jet method can promote a steady step migration and enhance surface morphology stability, which can improve the crystal quality.
International Nuclear Information System (INIS)
Sattar, M.A.
1990-12-01
A similar solution for the flow past a vertical plate started impulsively in its own plane in a viscous incompressible fluid is presented on taking into account the effects of variable suction and/or injection and mass transfer. To solve the momentum, energy and concentration equations, a time dependent length scale is introduced, which leads to the driving parameters γ(=G r /R σ 2 ) and γ*(=G r */R σ 2 ), where G r and G r * are respectively the Grashof and modified Grashof numbers while R σ is the Reynolds number. The resulting locally similar momentum equation is then solved by the method of superposition. The effects of the parameters and that of suction/injection on the flow and on the wall shear-stress of the plate are shown graphically for different values of Schmidt number and transpiration parameter. (author). 24 refs, 11 figs
Directory of Open Access Journals (Sweden)
Fayadh M. Abed
2018-01-01
Full Text Available An experimental study on a passive solar distiller in the Tikrit city on (latitude line"34 36o north, longitude line "45 43o east, and purpose of that study to raise the efficiency and productivity of the solar distiller. And then design the monoclinic solar distiller and add reflector plate and a solar concentrate. The Practical tests were conducted at a rate of every half-hour from the beginning of February to the beginning of the month of June. The study began by comparing the solar distiller that contain the concentrates and without contain it. Then study the influence of adding coal and chemical solutions, like blue Thymol solution and blue bromophenol solution to see the additions effect on the productivity and efficiency of distiller, and also The study was conducted to see the effect of the water depth on the productivity of distiller with take four water depths within the basin are (2,1.5,1,0.5 cm of water. The tests were conducted in weather conditions close. and the results of the study, That distilled added his concentrates improved its productivity by 46% and efficiency increases 43% with non-use of concentrates, and coal increased efficiency by 36% and productivity improved up to 38%, the addition of blue Thymol solution increases the efficiency by 19% and productivity by 16%, as well as bromophenol solution increase productivity by 23% and improve efficiency by 25%, when comparing the additions found that the best one is coal. Through the study of the depth of the water show that increases productivity and efficiency by reducing the depth of the water in the basin distiller. DOI: http://dx.doi.org/10.25130/tjes.24.2017.13
Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S
2013-01-01
Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
Directory of Open Access Journals (Sweden)
Suhaila Mohd Sauid
2013-01-01
Full Text Available Volumetric mass transfer coefficient (kLa is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h−1. It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
Mass transfer measurements in foams
International Nuclear Information System (INIS)
Leblond, J.G.; Fournel, B.
2004-01-01
Full text of publication follows:This study participates to the elaboration of a method for decontamination of the inside surfaces of steel structures (pipes, tanks,...). The solution which has been chosen is to attack the surface of the structure by a dipping solution. In order to reduce the quantity of product to be recovered and treated at the end of the cleaning process, the active solution will be introduced as a foam. During its free or forced drainage the foam supplies an active liquid film along the structure surfaces. It was important to know if the transfers of the dipping liquid inside the foam and between foam and wall film are sufficient to allow a correct supplying of the active liquid at the wall and a correct dragging of the dipped products. The objective of this work is to develop a numerical model which simulates the various transfers. However such a modeling cannot be performed without a thorough knowledge of the different transfer parameters in the foam and in the film. The following study has been performed on a model foam (foaming water + air) held in a smooth vertical glass pipe and submitted to a forced drainage by the foaming water (water + surfactants). The liquid transfer involves the dispersion of the drainage liquid inside the foam and the transfer between the foam and the liquid film flowing down at the wall. The different transfers has been analyzed by NMR using a PFGSE-NMR sequence, which allows to determine the propagator, i.e., the probability density of the liquid particle displacements during a given time interval Δt, along a selected direction. This study allowed to measure, firstly, the mean liquid and the liquid dispersion in the foam along the vertical and horizontal direction, and secondly, the vertical mean velocity in the parietal liquid film. (authors)
International Nuclear Information System (INIS)
Kowalewska, Zofia; Ruszczynska, Anna; Bulska, Ewa
2005-01-01
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system (ii) mineralization in a closed microwave system (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g -1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g -1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g -1 in crude oil, -1 in gasoline, -1 in atmospheric oil, -1 in heavy vacuum oil and 140-300 ng g -1 in distillation residue
Kowalewska, Zofia; Ruszczyńska, Anna; Bulska, Ewa
2005-03-01
Cu was determined in a wide range of petroleum products from crude oil distillation using flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different procedures of sample preparation were evaluated: (i) mineralization with sulfuric acid in an open system, (ii) mineralization in a closed microwave system, (iii) combustion in hydrogen-oxygen flame in the Wickbold's apparatus, (iv) matrix evaporation followed by acid dissolution, and (v) acidic extraction. All the above procedures led to the transfer of the analyte into an aqueous solution for the analytical measurement step. It was found that application of FAAS was limited to the analysis of the heaviest petroleum products of high Cu content. In ICP-MS, the use of internal reference method (with Rh or In as internal reference element) was required to eliminate the matrix effects in the analysis of extracts and the concentrated solutions of mineralized heavy petroleum products. The detection limits (in original samples) were equal to, respectively, 10, 86, 3.3, 0.9 and 0.4 ng g - 1 in procedures i-v with ETAAS detection and 10, 78, 1.1 and 0.5 ng g - 1 in procedures i-iii and v with ICP-MS detection. The procedures recommended here were validated by recovery experiments, certified reference materials analysis and comparison of results, obtained for a given sample, in different ways. The Cu content in the analyzed samples was: 50-110 ng g - 1 in crude oil, oil, oil and 140-300 ng g - 1 in distillation residue.
Convective mass transfer around a dissolving bubble
Duplat, Jerome; Grandemange, Mathieu; Poulain, Cedric
2017-11-01
Heat or mass transfer around an evaporating drop or condensing vapor bubble is a complex issue due to the interplay between the substrate properties, diffusion- and convection-driven mass transfer, and Marangoni effects, to mention but a few. In order to disentangle these mechanisms, we focus here mainly on the convective mass transfer contribution in an isothermal mass transfer problem. For this, we study the case of a millimetric carbon dioxide bubble which is suspended under a substrate and dissolved into pure liquid water. The high solubility of CO2 in water makes the liquid denser and promotes a buoyant-driven flow at a high (solutal) Rayleigh number (Ra˜104 ). The alteration of p H allows the concentration field in the liquid to be imaged by laser fluorescence enabling us to measure both the global mass flux (bubble volume, contact angle) and local mass flux around the bubble along time. After a short period of mass diffusion, where the boundary layer thickens like the square root of time, convection starts and the CO2 is carried by a plume falling at constant velocity. The boundary layer thickness then reaches a plateau which depends on the bubble cross section. Meanwhile the plume velocity scales like (dV /d t )1 /2 with V being the volume of the bubble. As for the rate of volume loss, we recover a constant mass flux in the diffusion-driven regime followed by a decrease in the volume V like V2 /3 after convection has started. We present a model which agrees well with the bubble dynamics and discuss our results in the context of droplet evaporation, as well as high Rayleigh convection.
Blauwhoff, P.M.M.; van Swaaij, Willibrordus Petrus Maria
1985-01-01
The absorption of H2S and CO2 into an aqueous di-isopropanolamine (DIPA) solution was studied experimentally and theoretically as an example of simultaneous mass transfer with complex reversible reactions. The absorption phenomena were classified into three regimes: (1) negligible mutual interaction
Convective heat and mass transfer in rotating disk systems
Shevchuk, Igor V
2009-01-01
The book describes results of investigations of a series of convective heat and mass transfer problems in rotating-disk systems. Methodology used included integral methods, self-similar and approximate analytical solutions, as well as CFD.
Risk transfer solutions for the insurance industry
Directory of Open Access Journals (Sweden)
Njegomir Vladimir
2009-01-01
Full Text Available The paper focuses on the traditional and alternative mechanisms for insurance risk transfer that are available to global as well as to domestic insurance companies. The findings suggest that traditional insurance risk transfer solutions available to insurance industry nowadays will be predominant in the foreseeable future but the increasing role of alternative solutions is to be expected as the complementary rather than supplementary solution to traditional transfer. Additionally, findings suggest that it is reasonable to expect that future development of risk transfer solutions in Serbia will follow the path that has been passed by global insurance industry.
Mass transfer and transport in salt repositories
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.
1989-02-01
Salt is a unique rock isolation of nuclear waste because it is ''dry'' and nearly impermeable. In this paper we summarize some mass-transfer and transport analyses of salt repositories. First we analyses brine migration. Heating by high-level waste can cause brine in grain boundaries to move due to pressure-gradients. We analyze brine migration treating salt as a thermoelastic solid and found that brine migration is transient and localized. We use previously developed techniques to estimate release rates from waste packages by diffusion. Interbeds exist in salt and may be conduits for radionuclide migration. We analyze steady-state migration due to brine flow in the interbed, as a function of the Peclet number. Then we analyze transient mass transfer, both into the interbed and directly to salt, due only to diffusion. Finally we compare mass transfer rates of a waste cylinder in granite facing a fracture and in salt facing an interbed. In all cases, numerical illustrations of the analytic solution are given. 10 refs., 4 figs., 3 tabs
MASS TRANSFER IN FERMENTATION PROCESSES
Directory of Open Access Journals (Sweden)
A. Shevchenko
2018-04-01
Full Text Available The peculiarities of anaerobic fermentation processes with the accumulation of dissolved ethyl alcohol and carbon dioxide in the culture media are considered in the article.The solubility of CO2 is limited by the state of saturation in accordance with Henry’s law. This, with all else being equal, limits the mass transfer on the interface surface of yeast cells and the liquid phase of the medium. A phenomenological model of the media restoration technologies based on the unsaturation index on СО2 is developed. It is shown that this restoration in the existing technologies of fermentation of sugar-rich media occurs, to a limited extent, in self-organized flow circuits, with variable values of temperatures and hydrostatic pressures, due to the creation of unsaturated local zones.It is shown that increasing the height of the media in isovolumetric apparatuses leads to an increase in the levels of flow circuits organization and to the improvement of the desaturation and saturation modes of the liquid phase and intensification of mass transfer processes. Among the deterministic principles of restoring the saturation possibilities of the media, there are forced variables of pressures with time pauses on their lower and upper levels. In such cases, the possibilities of short-term intensive desaturations in full media volumes, the restoration of their saturation perception of CO2, and the activation of fermentation processes are achieved. This direction is technically feasible for active industrial equipment.The cumulative effect of the action of variable pressures and temperatures corresponds to the superposition principle, but at the final stages of fermentation, the pressure and temperature values are leveled, so the restoration of the unsaturation state slows down to the level of the bacteriostatic effect. The possibility of eliminating the disadvantages of the final stage of fermentation by means of programmable variable pressures is shown
Mass transfer in a geologic environment
International Nuclear Information System (INIS)
Zavoshy, S.J.; Chambre, P.L.; Pigford, T.H.
1984-11-01
A new analytical solution is presented that predicts the rate of dissolution of species from a waste package surrounded by a wet porous medium. By equating the rate of diffusive mass transfer into the porous rock to the rate of liquid-surface chemical reaction, an analytical solution for the time-dependent dissolution rate and the time-dependent concentration of dissolved species at the waste surface is obtained. From these results it is shown that for most of the important species in a package of radioactive waste the surface liquid quickly reaches near-saturation concentrations and the dissolution rate can be predicted by the simpler theory that assumes saturation concentrations in the surface liquid. 26 refs., 3 figs., 1 tab
Mass transfer from smooth alabaster surfaces in turbulent flows
Opdyke, Bradley N.; Gust, Giselher; Ledwell, James R.
1987-11-01
The mass transfer velocity for alabaster plates in smooth-wall turbulent flow is found to vary with the friction velocity according to an analytic solution of the advective diffusion equation. Deployment of alabaster plates on the sea floor can perhaps be used to estimate the viscous stress, and transfer velocities for other species.
Solubility is the most important mass transfer factor
International Nuclear Information System (INIS)
Slobodov, A.A.; Zarembo, V.I.
1992-01-01
The existence of the quantitative correlation between mass transfer and equilibrium solubility of corrosion products of construction materials in water circuits of power plants is shown. Thermodynamic and mathematical methods of modeling and calculating for these processes are developed. The results for iron based materials - aqueous solution systems in a wide range of temperature, pH, oxygen-hydrogen concentrations are presented. The optimization conditions for mass transfer, sedimentation of corrosion products for BWR, PWR reactors, etc. have been obtained
Fluid dynamics and mass transfer in a gas centrifuge
International Nuclear Information System (INIS)
Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.
1982-01-01
The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)
Heat and mass transfer in particulate suspensions
Michaelides, Efstathios E (Stathis)
2013-01-01
Heat and Mass Transfer in Particulate Suspensions is a critical review of the subject of heat and mass transfer related to particulate Suspensions, which include both fluid-particles and fluid-droplet Suspensions. Fundamentals, recent advances and industrial applications are examined. The subject of particulate heat and mass transfer is currently driven by two significant applications: energy transformations –primarily combustion – and heat transfer equipment. The first includes particle and droplet combustion processes in engineering Suspensions as diverse as the Fluidized Bed Reactors (FBR’s) and Internal Combustion Engines (ICE’s). On the heat transfer side, cooling with nanofluids, which include nanoparticles, has attracted a great deal of attention in the last decade both from the fundamental and the applied side and has produced several scientific publications. A monograph that combines the fundamentals of heat transfer with particulates as well as the modern applications of the subject would be...
Interfacial stability with mass and heat transfer
International Nuclear Information System (INIS)
Hsieh, D.Y.
1977-07-01
A simplified formulation is presented to deal with interfacial stability problems with mass and heat transfer. For Rayleigh-Taylor stability problems of a liquid-vapor system, it was found that the effect of mass and heat transfer tends to enhance the stability of the system when the vapor is hotter than the liquid, although the classical stability criterion is still valid. For Kelvin-Holmholtz stability problems, however, the classical stability criterion was found to be modified substantially due to the effect of mass and heat transfer
Mass transfer in counter current flows
Energy Technology Data Exchange (ETDEWEB)
Doichinova, Maria D.; Popova, Petya G.; Boyadjiev, Christo B. [Bulgarian Academy of Science, Institute of Chemical Engineering, Sofia (Bulgaria)
2011-07-01
A theoretical analysis of gas-liquid counter-current flow in laminar boundary layers with flat phase boundary based on similarity variables method has been done. The obtained numerical results for the energy dissipation, mass transfer rate and their ratio are compared with analogous results for concurrent flows. A diffusion type of model is proposed for modeling of the mass transfer with chemical reaction in the column apparatuses in the cases of circulation zones. The presence of rising and descending flows (the change of the velocity direction) leads to using three coordinate systems. An iterative algorithm for the concentration distribution calculation is proposed. The influence of the zones breadths on the mass transfer efficiency in the column is investigated. Key words: efficiency, mass transfer, velocity distribution, column apparatuses, circulation zones.
Ozone mass transfer and kinetics experiments
International Nuclear Information System (INIS)
Bollyky, L.J.; Beary, M.M.
1981-12-01
Experiments were conducted at the Hanford Site to determine the most efficient pH and temperature levels for the destruction of complexants in Hanford high-level defense waste. These complexants enhance migration of radionuclides in the soil and inhibit the growth of crystals in the evaporator-crystallizer. Ozone mass transfer and kinetics tests have been outlined for the determination of critical mass transfer and kinetics parameters of the ozone-complexant reaction
Gas mass transfer for stratified flows
International Nuclear Information System (INIS)
Duffey, R.B.; Hughes, E.D.
1995-01-01
We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature
Mills, A F
1999-01-01
The Second Edition offers complete coverage of heat transfer with broad up-to-date coverage that includes an emphasis on engineering relevance and on problem solving. Integrates software to assist the reader in efficiently calculations. Carefully orders material to make book more reader-friendly and accessible. Offers an extensive introduction to heat exchange design to enhance the engineering and design content of course to satisfy ABET requirements. For professionals in engineering fields.
Heat and mass transfer enhancement in absorbing processes
International Nuclear Information System (INIS)
Hijikata, Kunio; Lee, S.K.
1993-01-01
The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)
Conjugate heat and mass transfer in heat mass exchanger ducts
Zhang, Li-Zhi
2013-01-01
Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts bridges the gap between fundamentals and recent discoveries, making it a valuable tool for anyone looking to expand their knowledge of heat exchangers. The first book on the market to cover conjugate heat and mass transfer in heat exchangers, author Li-Zhi Zhang goes beyond the basics to cover recent advancements in equipment for energy use and environmental control (such as heat and moisture recovery ventilators, hollow fiber membrane modules for humidification/dehumidification, membrane modules for air purification, desi
International Nuclear Information System (INIS)
Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi
2012-01-01
Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.
INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES
Directory of Open Access Journals (Sweden)
A. G. Kulakov
2005-01-01
Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.
Darmana, D.; Henket, R.L.B.; Deen, N.G.; Kuipers, J.A.M.
2007-01-01
This paper describes simulations that were performed with an Euler–Lagrange model that takes into account mass transfer and chemical reaction reported by Darmana et al. (2005. Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model.
Mass Transfer in Mira-Type Binaries
Directory of Open Access Journals (Sweden)
Mohamed S.
2012-06-01
Full Text Available Detached, symbiotic binaries are generally assumed to interact via Bondi-Hoyle-Littleton (BHL wind accretion. However, the accretion rates and outflow geometries that result from this mass-transfer mechanism cannot adequately explain the observations of the nearest and best studied symbiotic binary, Mira, or the formation of some post-AGB binaries, e.g. barium stars. We propose a new mass-transfer mode for Mira-type binaries, which we call ‘wind Roche-lobe overflow’ (WRLOF, and which we demonstrate with 3D hydrodynamic simulations. Importantly, we show that the circumstellar outflows which result from WRLOF tend to be highly aspherical and strongly focused towards the binary orbital plane. Furthermore, the subsequent mass-transfer rates are at least an order of magnitude greater than the analogous BHL values. We discuss the implications of these results for the shaping of bipolar (proto-planetary nebulae and other related systems.
Walker, R. D., Jr.
1973-01-01
Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.
Mass transport in polyelectrolyte solutions
Schipper, F. J. M.; Leyte, J. C.
1999-02-01
The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.
Radiation-induced Mass Transfer through Membranes
Czech Academy of Sciences Publication Activity Database
Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel
2009-01-01
Roč. 36, č. 2 (2009), s. 125-128 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA400720804 Institutional research plan: CEZ:AV0Z40720504 Keywords : mass transfer * adiation * membrane Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.189, year: 2009
Directory of Open Access Journals (Sweden)
E. Bona
2007-09-01
Full Text Available The association of dietary NaCl with arterial hypertension has led to a reduction in the levels of this salt in cheeses. For salting, KCl has been used as a partial substitute for NaCl, which cannot be completely substituted without affecting product acceptability. In this study a sensorially adequate saline solution (NaCl/KCl was simultaneously diffused during salting of Prato cheese in brine with agitation. The simultaneous multicomponent diffusion during the process was modeled with Fick’s second generalized law. The system of partial differential equations formed was solved by the finite element method (FEM. In the experimental data concentration the deviation for NaCl was of 7.3% and for KCl of 5.4%, both of which were considered acceptable. The simulation of salt diffusion will allow control and modulation of salt content in Prato cheese, permitting the prediction of final content from initial conditions.
Mass transfer in a salt repository
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.
1985-05-01
To meet regulatory requirements for radioactive waste in a salt repository it is necessary to predict the rates of corrosion of the waste container, the release rates of radionuclides from the waste package, and the cumulative release of radionuclides into the accessible environment. The mechanisms that may control these rates and an approach to predicting these rates from mass-transfer theory are described. This new mechanistic approach is suggested by three premises: (a) a brine inclusion originally in a salt crystal moves along grain boundaries after thermal-induced migration out of the crystal, (b) brine moves along a grain boundary under the influence of a pressure gradient, and (c) salt surrounding a heat-generating waste package will soon creep and consolidate as a monolithic medium surrounding and in contact with the waste package. After consolidation there may be very little migration of intergranular and intragranular brine to the waste package. The corrosion rate of the waste container may then be limited by the rate at which brine reaches the container and may be calculable from mass-transfer theory, and the rate at which dissolved radionuclides leave the waste package may be limited by molecular diffusion in intragranular brine and may be calculable from mass-transfer theory. If porous nonsalt interbeds intersect the waste-package borehole, the release rate of dissolved radionuclides to interbed brine may also be calculable from mass-transfer theory. The logic of these conclusions is described, as an aid in formulating the calculations that are to be made
Simultaneous heat and mass transfer on oscillatory free convection boundary layer flow
International Nuclear Information System (INIS)
Hossain, M.A.
1985-11-01
The problem of simultaneous heat and mass transfer in two-dimensional free convection from a semi-infinite vertical flat plate is investigated. An integral method is used to find a solution for zero wall velocity and for a mass transfer velocity at the wall with small-amplitude oscillatory wall temperature. Low and high-frequency solutions are developed separately and are discussed graphically with the effects of the parameters Gr (the Grashof number for heat transfer), Gc (the Grashof number for mass transfer) and Sc (the Schmidt number) for Pr=0.71 representing aid at 20 deg. C. (author)
Mass transfer kinetics during osmotic dehydration of pomegranate arils.
Mundada, Manoj; Hathan, Bahadur Singh; Maske, Swati
2011-01-01
The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.
Mixing and Mass Transfer in Industrial Bioreactors
DEFF Research Database (Denmark)
Villadsen, John
2015-01-01
Design of a real reactor for a real process in industrial scale requires much more than the design of the "ideal" reactors. This insight is formulated in empirical relations between key process parameters, such as mass and heat transfer coefficients, and the power input to the process. Mixing...... formulas are not in any way quantitatively correct, but based on dimensional analysis one is able to extrapolate from small-to large-scale operation. It is shown that linear scale-up may not give the smallest power input for a given mixing objective. The introduction presented is the basis...... for the visionary scale-up/scale-down design principles....
Handbook of heat and mass transfer. Volume 2
International Nuclear Information System (INIS)
Cheremisinoff, N.P.
1986-01-01
This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors
Impact of kinetic mass transfer on free convection in a porous medium
Lu, Chunhui; Shi, Liangsheng; Chen, Yiming; Xie, Yueqing; Simmons, Craig T.
2016-05-01
We investigate kinetic mass transfer effects on unstable density-driven flow and transport processes by numerical simulations of a modified Elder problem. The first-order dual-domain mass transfer model coupled with a variable-density-flow model is employed to describe transport behavior in porous media. Results show that in comparison to the no-mass-transfer case, a higher degree of instability and more unstable system is developed in the mass transfer case due to the reduced effective porosity and correspondingly a larger Rayleigh number (assuming permeability is independent on the mobile porosity). Given a constant total porosity, the magnitude of capacity ratio (i.e., immobile porosity/mobile porosity) controls the macroscopic plume profile in the mobile domain, while the magnitude of mass transfer timescale (i.e., the reciprocal of the mass transfer rate coefficient) dominates its evolution rate. The magnitude of capacity ratio plays an important role on the mechanism driving the mass flux into the aquifer system. Specifically, for a small capacity ratio, solute loading is dominated by the density-driven transport, while with increasing capacity ratio local mass transfer dominated solute loading may occur at later times. At significantly large times, however, both mechanisms contribute comparably to solute loading. Sherwood Number could be a nonmonotonic function of mass transfer timescale due to complicated interactions of solute between source zone, mobile zone and immobile zone in the top boundary layer, resulting in accordingly a similar behavior of the total mass. The initial assessment provides important insights into unstable density-driven flow and transport in the presence of kinetic mass transfer.
Solute Transfer in Osmotic Dehydration of Vegetable Foods: A Review.
Muñiz-Becerá, Sahylin; Méndez-Lagunas, Lilia L; Rodríguez-Ramírez, Juan
2017-10-01
While various mechanisms have been proposed for the water transfer during osmotic dehydration (OD), little progress has been made to understand the mechanisms of solute transfer during osmotic dehydration. The transfer of solutes has been often described only by the diffusion mechanism; however, numerous evidences suggest the participation of a variety of mechanisms. This review deals with the main issues of solute transfer in the OD of vegetables. In this context, several studies suggest that during OD of fruits and vegetables, the migration of solutes is not influenced by diffusion. Thus, new theories that may explain the solute transport are analyzed, considering the influence of the plant microstructure and its interaction with the physicochemical properties of osmotic liquid media. In particular, the surface adhesion phenomenon is analyzed and discussed, as a possible mechanism present during the transfer of solutes in OD. © 2017 Institute of Food Technologists®.
Mass transfer model for two-layer TBP oxidation reactions
International Nuclear Information System (INIS)
Laurinat, J.E.
1994-01-01
To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments. Three cases were investigated: (1) transfer of water into the TBP layer with sparging of both the aqueous and TBP layers, (2) transfer of water into the TBP layer with sparging of just the TBP layer, and (3) transfer of butanol into the aqueous layer with sparging of both layers. The TBP layer was comprised of 99% pure TBP (spiked with butanol for the butanol transfer experiments), and the aqueous layer was comprised of either water or an aluminum nitrate solution. The liquid layers were air sparged to simulate the mixing due to the evolution of gases generated by oxidation reactions. A plastic tube and a glass frit sparger were used to provide different size bubbles. Rates of mass transfer were measured using infrared spectrophotometers provided by SRTC/Analytical Development
Mass transfer in nano-fluids: A review
International Nuclear Information System (INIS)
Ashrafmansouri, Seyedeh-Saba; Esfahany, Mohsen Nasr
2014-01-01
Growing attention has been recently paid to nano-fluids because of their potential for augmenting transfer processes - i.e., heat and mass transfer. Conflicting results have been reported in the literature on mass transfer in nano-fluids. The aim of this paper is to summarize the literature on mass transfer in nano-fluids stating the conflicts and possible reasons. Literature on mass transfer in nano-fluids has been reviewed in two sections. The first section concentrates on surveying mass diffusivity in nano-fluids while the second section focuses on convective mass transfer in nano-fluids. In each section, published articles, type of nano-fluids used, size and concentration range of nanoparticles, measurement methods, maximum observed enhancement, and suggested mass transport mechanisms are summarized. (authors)
Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van
1993-01-01
Absorption determined by mass transfer in the liquid is described well with the Graetz-Lévèque equation adapted from heat transfer. The influence of a chemical reaction on the mass transfer was simulated with a numerical model and tested on the absorption of CO2 in a hydroxide solution. Absorption
Lab. experiments of mass transfer in the London clay
International Nuclear Information System (INIS)
Bourke, P.J.; Gilling, D.; Jefferies, N.L.; Lineham, T.R.; Lever, D.A.
1989-01-01
Aqueous phase mass transfer through the rocks surrounding a radioactive waste repository will take place by diffusion and convection. This paper presents a comprehensive set of measurements of the mass transfer characteristics for a single, naturally occurring, clay. These data are compared with the results predicted by mathematical models of mass transport in porous media, in order to build confidence in these models
Mass transfer in porous media with heterogeneous chemical reaction
Directory of Open Access Journals (Sweden)
Souza S.M.A.G.Ulson de
2003-01-01
Full Text Available In this paper, the modeling of the mass transfer process in packed-bed reactors is presented and takes into account dispersion in the main fluid phase, internal diffusion of the reactant in the pores of the catalyst, and surface reaction inside the catalyst. The method of volume averaging is applied to obtain the governing equation for use on a small scale. The local mass equilibrium is assumed for obtaining the one-equation model for use on a large scale. The closure problems are developed subject to the length-scale constraints and the model of a spatially periodic porous medium. The expressions for effective diffusivity, hydrodynamic dispersion, total dispersion and the Darcy's law permeability tensors are presented. Solution of the set of final equations permits the variations of velocity and concentration of the chemical species along the packed-bed reactors to be obtained.
Enhancement of heat and mass transfer by cavitation
International Nuclear Information System (INIS)
Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N
2015-01-01
In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment
Second Law Analysis in Convective Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Mass transfer in water-saturated concretes
International Nuclear Information System (INIS)
Atkinson, A.; Claisse, P.A.; Harris, A.W.; Nickerson, A.K.
1990-01-01
Cements and concretes are often considered as components of barriers for the containment of radioactive waste. The performance of such materials as mainly physical barriers to the transport of dissolved radionuclides depends on the mass transfer characteristics of the material. In particular the diffusion and sorption behavior of the radionuclides and the water permeability are important. These parameters also influence how the chemistry of the concrete is imposed on the repository. In addition, the transport of gas through concrete controls the way in which gases escape from the repository. Diffusion and gas transport have been measured in a variety of cementitious materials, covering both structural concretes and cementitious backfills; all possible repository construction materials. Measurements have been made using aqueous iodide, strontium and caesium ions and tritiated water as diffusants. The results show that the diffusion of tritiated water is more rapid than that of other species, whilst the transport of strontium and caesium is hindered by sorption; particularly in materials containing blast furnace slag. The transport of gas in these materials has been found to be very sensitive to the degree of water saturation and is extremely low in fully saturated structural concretes. Cementitious backfills have, nevertheless, been identified that have appreciable gas transport even when almost water saturated. The consequences of the results for the performance of cementitious barriers are discussed
Numerical Problems and Agent-Based Models for a Mass Transfer Course
Murthi, Manohar; Shea, Lonnie D.; Snurr, Randall Q.
2009-01-01
Problems requiring numerical solutions of differential equations or the use of agent-based modeling are presented for use in a course on mass transfer. These problems were solved using the popular technical computing language MATLABTM. Students were introduced to MATLAB via a problem with an analytical solution. A more complex problem to which no…
Mass Transfer and Porous Media (MTPM)
Energy Technology Data Exchange (ETDEWEB)
Rotenberg, B.; Marry, V.; Malikova, N.; Vuilleumier, R.; Giffaut, E.; Turq, P.; Robinet, J.C.; Diaz, N.; Sardini, P.; Goutelard, F.; Menut, D.; Parneix, J.C.; Sammartino, S.; Pret, D.; Coelho, D.; Jougnot, D.; Revil, A.; Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.F.; Talandier, J.; Berne, P.; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; Van der Lee, J.; Birchall, D.J.; Harrington, J.F.; Noy, D.J.; Sellin, P.; Bildstein, O.; Piault, E.; Trotignon, L.; Montarnal, P.; Deville, E.; Genty, A.; Le Potier, C.; Imbert, C.; Semete, P.; Desgree, P.; Fevrier, B.; Courtois, A.; Touze, G.; Sboui, A.; Roberts, J.E.; Jaffre, J.; Glaus, M.A.; Rosse, R.; Van Loon, L.R.; Matray, J.M.; Parneix, J.C.; Tinseau, E.; Pret, D.; Mayor, J.C.; Ohkubo, T.; Kikuchi, H.; Yamaguchi, M.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Siitari-Kauppi, M.; Leskinen, A.; Rigato, V.; Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.; Dai, Z.; Samper, J.; Wolfsberg, A.; Levitt, D.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Schampera, B.; Dultz, S.; Riebe, B.; Samper, J.; Yang, Q.; Genty, A.; Perraud, D.; Poller, A.; Mayer, G.; Croise, J.; Marschall, P.; Krooss, B.; Matray, J.M.; Tanaka, T.; Vogel, P.; Lavanchy, J.M.; Enssle, C.P.; Cruchaudet, M.; Dewonck, S.; Descostes, M.; Blin, V.; Radwan, J.; Poinssot, C.; Mibus, J.; Sachs, S.; Devol-Brown, I.; Motellier, S.; Tinseau, E.; Thoby, D.; Marsal, F.; DeWindt, L.; Tinseau, E.; Pellegrini, D.; Bauer, A.; Fiehn, B.; Marquardt, Ch.; Romer, J.; Gortzen, A.; Kienzler, B
2007-07-01
This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo
Direct geoelectrical evidence of mass transfer at the laboratory scale
Swanson, Ryan D.; Singha, Kamini; Day-Lewis, Frederick D.; Binley, Andrew; Keating, Kristina; Haggerty, Roy
2012-10-01
Previous field-scale experimental data and numerical modeling suggest that the dual-domain mass transfer (DDMT) of electrolytic tracers has an observable geoelectrical signature. Here we present controlled laboratory experiments confirming the electrical signature of DDMT and demonstrate the use of time-lapse electrical measurements in conjunction with concentration measurements to estimate the parameters controlling DDMT, i.e., the mobile and immobile porosity and rate at which solute exchanges between mobile and immobile domains. We conducted column tracer tests on unconsolidated quartz sand and a material with a high secondary porosity: the zeolite clinoptilolite. During NaCl tracer tests we collected nearly colocated bulk direct-current electrical conductivity (σb) and fluid conductivity (σf) measurements. Our results for the zeolite show (1) extensive tailing and (2) a hysteretic relation between σf and σb, thus providing evidence of mass transfer not observed within the quartz sand. To identify best-fit parameters and evaluate parameter sensitivity, we performed over 2700 simulations of σf, varying the immobile and mobile domain and mass transfer rate. We emphasized the fit to late-time tailing by minimizing the Box-Cox power transformed root-mean square error between the observed and simulated σf. Low-field proton nuclear magnetic resonance (NMR) measurements provide an independent quantification of the volumes of the mobile and immobile domains. The best-fit parameters based on σf match the NMR measurements of the immobile and mobile domain porosities and provide the first direct electrical evidence for DDMT. Our results underscore the potential of using electrical measurements for DDMT parameter inference.
Overall mass-transfer coefficients in non-linear chromatography
DEFF Research Database (Denmark)
Mollerup, Jørgen; Hansen, Ernst
1998-01-01
In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationshi...
Heat or mass transfer from an open cavity
Kuiken, H.K.
1978-01-01
This paper presents a mathematical model for heat or mass transfer from an open cavity. It is assumed that the Péclet number, based on conditions at the cavity, and the Prandtl number are both large. The model assumes heat- or mass-transfer boundary layers at the rim of the cavity vortex flow. Heat
THE ELECTRONIC COURSE OF HEAT AND MASS TRANSFER
Directory of Open Access Journals (Sweden)
Alexander P. Solodov
2013-01-01
Full Text Available The Electronic course of heat and mass transfer in power engineering is presented containing the full Electronic book as the structured hypertext document, the full set of Mathcad-documents with the whole set of educative computer models of heat and mass transfer, the computer labs, and selected educational presentations.
Hydrodynamics and mass transfer in trickle leaching process
International Nuclear Information System (INIS)
Jin Suoqing; Xiang Qinfang; Guo Jianzheng
1995-01-01
The initial research results of the hydrodynamic behavior and mass transfer of the trickle leaching process are summarized. It was shown that the dropping mode, the height of uranium ore heap and the flow rate of the dropping fluid affect the mass transfer of the trickle leaching process. Based on the concept of the keeping form of liquid in ore particle bed and the diffusion in porous medium, a mass transfer pattern, i.e. 'double-membrane transfer process' controlled by porous diffusion, was presented and proved for trickle leaching process
Heat and mass transfer in buildings
International Nuclear Information System (INIS)
Kristoffersen, Astrid Rusaas
2005-01-01
This thesis has presented four journal papers about ventilation and heat transfer in buildings. Ventilation and heat transfer in buildings are elements that decide our indoor air quality, thermal comfort and energy use in buildings. Models and experiments are tools to understand the complex physics of heat and air transfer in buildings. As computers are, getting cheaper and more powerful, there is a need to develop reliable models that can predict heat and air transfer in buildings. The first paper in this thesis addressed the widely used multizone model. This model is mainly used to find the airflows between zones in a building. A multizone model is often coupled to an energy analysis program, and affects therefore the calculated energy use in a building. The first paper in this thesis, titled ''Effect of room air recirculation delay on the decay rate of tracer gas concentration'' discussed the impact of a recirculating ventilation system on the decay of the tracer gas concentration in the room. The delay of the tracer gas through the ventilation system affects the concentration in the room, and must be accounted for when calculating the amount of fresh air that the ventilation system supplies. The second paper titled ''CFD Investigation of Room Ventilation for Improved Operation of a Downdraft Table: Novel Concepts'' investigated the performance of a downdraft table by changing the ventilation configuration in the room by use of Computational Fluid Dynamics (CFD). CFD can provide a microscopic description of the airflow and the behavior of pollutants and temperature distribution in a room. This paper calculated the airflow pattern in the room without influence of thermal effects, and demonstrated the usage of CFD. It was found that the total airflow could be reduced compared to an existing configuration (and hence reduce energy costs), and at the same time increasing the performance of the downdraft table (increasing the indoor air quality). A room with a
Ghoshal, Subhasis; Pasion, Catherine; Alshafie, Mohammed
2004-04-01
Semi-rigid films or skins form at the interface of crude oil and water as a result of the accumulation of asphaltene and resin fractions when the water-immiscible crude oil is contacted with water for a period of time or "aged". The time varying patterns of area-independent mass transfer coefficients of two compounds, benzene and naphthalene, for dissolution from crude oil and gasoline were determined. Aqueous concentrations of the compounds were measured in the eluent from flow-through reactors, where a nondispersed oil phase and constant oil-water interfacial area were maintained. For Brent Blend crude oil and for gasoline amended with asphaltenes and resins, a rapid decrease in both benzene and naphthalene mass transfer coefficients over the first few days of aging was observed. The mass transfer coefficients of the two target solutes were reduced by up to 80% over 35 d although the equilibrium partition coefficients were unchanged. Aging of gasoline, which has negligible amounts of asphaltene and resin, did not result in a change in the solute mass transfer coefficients. The study demonstrates that formation of crude oil-water interfacial films comprised of asphaltenes and resins contribute to time-dependent decreases in rates of release of environmentally relevant solutes from crude oils and may contribute to the persistence of such solutes at crude oil-contaminated sites. It is estimated that the interfacial film has an extremely low film mass transfer coefficient in the range of 10(-6) cm/min.
Mass transfer inside oblate spheroidal solids: modelling and simulation
Directory of Open Access Journals (Sweden)
J. E. F. Carmo
2008-03-01
Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsung
2017-01-01
This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-S...
Mass transfer intensification of nanofluid single drops with effect of temperature
Energy Technology Data Exchange (ETDEWEB)
Saien, Javad; Zardoshti, Mahdi [Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)
2015-11-15
The hydrodynamics and mass transfer of organic nanofluid single drops in liquid-liquid extraction process were investigated within temperature range of 20 to 40 .deg. C. Nanofluid drops of toluene+acetic acid, containing surface modified magnetite nanoparticles (NPs) with concentration within the range of (0.0005-0.005) wt%, were conducted in aqueous continuous phase. The rate of solute mass transfer was generally enhanced with NPs until about 0.002wt%, and small drops benefited more. The enhancement reached 184.1% with 0.002 wt% of NPs at 40 .deg. C; however, adding more NPs led to the mass transfer to either remain constant or face a reduction, depending on the applied temperature. The mass transfer coefficient was nicely reproduced using a developed correlation for enhancement factor of molecular diffusivity as a function of Reynolds and Schmidt numbers.
Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping
2018-04-01
Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.
International Nuclear Information System (INIS)
Bhattacharyya, Krishnendu; Layek, G C; Seth, G S
2014-01-01
A mathematical model is presented to study the Soret and Dufour effects on the convective heat and mass transfer in stagnation-point flow of viscous incompressible fluid towards a shrinking surface. Suitable similarity transformations are used to convert the governing partial differential equations into self-similarity ordinary differential equations that are then numerically solved by shooting method. Dual solutions for temperature and concentration are obtained in the presence of Soret and Dufour effects. Graphical representations of the heat and mass transfer coefficients, the dimensionless thermal and solute profiles for various values of Prandtl number, Lewis number, Soret number and Dufour number are demonstrated. With Soret number the mass transfer coefficient which is related to mass transfer rate increases for both solutions and the heat transfer coefficient (related to heat transfer rate) for both solutions becomes larger with Dufour number. The Prandtl number causes reduction in heat and the mass transfer coefficients and similarly with the Lewis number mass transfer coefficient decreases. Also, double crossing over is found in dual dimensionless temperature profiles for increasing Soret number and in dual dimensionless concentration profiles for the increase in Dufour number. Due to the larger values of Dufour number the thermal boundary layer increases and for Prandtl number increment it decreases; whereas, the solute boundary layer thickness reduces with increasing values of Prandtl number and Lewis number. (paper)
Solution space assessment for mass customization
DEFF Research Database (Denmark)
Brunø, Thomas Ditlev; Nielsen, Kjeld; Jørgensen, Kaj Asbjørn
2012-01-01
literature study and analysis of solution space characteristics a number of metrics are described which can be used for solution space assessment. They are divided into five caterories: Profitability, Utilization, Variety Demand satisfaction, Architecture and Responsiveness. The metrics and be applied as KPI’s...
Mass transfer in horizontal flow channels with thermal gradients
International Nuclear Information System (INIS)
Bendrich, G.; Shemilt, L.W.
1997-01-01
Mass transfer to a wall of a horizontal rectangular channel reactor was investigated by the limiting current technique for Reynolds numbers ranging from 200 to 32000. Overall mass transfer coefficients at various mass transfer surface angles were obtained while the reactor was operated under isothermal and non-isothermal conditions. Dimensionless correlations were developed for isothermal flows from 25 to 55 o C and for non-isothermal flows with applied temperature differences up to 30 o C. In the laminar flow range natural convection dominated, but under turbulent conditions combined natural and forced convection prevailed. Mass transfer was approximately doubled under optimum selection of channel surface rotation, temperature gradient and flow rate. (author)
Principles of heat and mass transfer
Incropera, Frank P; Bergman, Theodore L; Lavine, Adrienne S
2013-01-01
Completely updated, the seventh edition provides engineers with an in-depth look at the key concepts in the field. It incorporates new discussions on emerging areas of heat transfer, discussing technologies that are related to nanotechnology, biomedical engineering and alternative energy. The example problems are also updated to better show how to apply the material. And as engineers follow the rigorous and systematic problem-solving methodology, they'll gain an appreciation for the richness and beauty of the discipline.
Heat and mass transfer in building services design
Moss, Keith
1998-01-01
Building design is increasingly geared towards low energy consumption. Understanding the fundamentals of heat transfer and the behaviour of air and water movements is more important than ever before. Heat and Mass Transfer in Building Services Design provides an essential underpinning knowledge for the technology subjects of space heating, water services, ventilation and air conditioning. This new text: *provides core understanding of heat transfer and fluid flow from a building services perspective *complements a range of courses in building services engineering *
Negotiating transfer pricing using the Nash bargaining solution
Directory of Open Access Journals (Sweden)
Clempner Julio B.
2017-12-01
Full Text Available This paper analyzes and proposes a solution to the transfer pricing problem from the point of view of the Nash bargaining game theory approach. We consider a firm consisting of several divisions with sequential transfers, in which central management provides a transfer price decision that enables maximization of operating profits. Price transferring between divisions is negotiable throughout the bargaining approach. Initially, we consider a disagreement point (status quo between the divisions of the firm, which plays the role of a deterrent. We propose a framework and a method based on the Nash equilibrium approach for computing the disagreement point. Then, we introduce a bargaining solution, which is a single-valued function that selects an outcome from the feasible pay-offs for each bargaining problem that is a result of cooperation of the divisions of the firm involved in the transfer pricing problem. The agreement reached by the divisions in the game is the most preferred alternative within the set of feasible outcomes, which produces a profit-maximizing allocation of the transfer price between divisions. For computing the bargaining solution, we propose an optimization method. An example illustrating the usefulness of the method is presented.
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
(iii) The gas phase is ideal from thermodynamic point of view. (iv) Only mass transfer and no heat transfer takes place through the porous filter. (v) The thermal conductivity and specific heat of the hydride bed are assumed to be constant. This assumption underestimates the bed performance slightly, because in actual case ...
Study of coupled heat and mass transfer during absorption of ...
Indian Academy of Sciences (India)
2.3 Hydrogen mass balance ε. ∂ρg. ∂t. + div(ρgVg) ... staggered grids to catch the heat transfer across the control volume by convection effectively. .... temperature decreases due to fall in the reaction rate and increase in heat transfer from the.
Characterization and Upscaling of Pore Scale Hydrodynamic Mass Transfer
Gouze, P.; Roubinet, D.; Dentz, M.; Planes, V.; Russian, A.
2017-12-01
Imaging reservoir rocks in 3D using X-ray microtomography with spatial resolution ranging from about 1 to 10 mm provides us a unique opportunity not only to characterize pore space geometry but also for simulating hydrodynamical processes. Yet, pores and throats displaying sizes smaller than the resolution cannot be distinguished on the images and must be assigned to a so called microporous phase during the process of image segmentation. Accordingly one simulated mass transfers caused by advection and diffusion in the connected pores (mobile domain) and diffusion in the microporous clusters (immobile domain) using Time Domain Random Walk (TDRW) and developed a set of metrics that can be used to monitor the different mechanisms of transport in the sample, the final objective being of proposing a simple but accurate upscaled 1D model in which the particle travel times in the mobile and immobile domain and the number of mobile-immobile transfer events (called trapping events) are independently distributed random variables characterized by PDFs. For TDRW the solute concentration is represented by the density distribution of non-interacting point-like solute particles which move due to advection and dispersion. The set of metrics derives from different spatial and temporal statistical analyses of the particle motion, and is used for characterizing the particles transport (i) in the mobile domain in relation with the velocity field properties, (ii) in the immobile domain in relation with the structure and the properties of microporous phase and at the mobile-immobile interface. We specifically focused on how to model the trapping frequency and rate into the immobile domain in relation with the structure and the spatial distribution of the mobile-immobile domain interface. This thorough analysis of the particle motion for both simple artificial structures and real rock images allowed us to derive the parametrization of the upscaled 1D model.
Directory of Open Access Journals (Sweden)
Zhixian Huang
Full Text Available Abstract To investigate the mass transfer behavior of a liquid-liquid system with high density difference (∆ρ≈500 kg/m3, single drop experiments were performed by using the ternary chloroform-ethanol-water system. The mass transfer direction was from the dispersed phase to the continuous phase, while the aqueous phase was dispersed in chloroform to generate drops. The influences of drop diameter, initial solute concentration and temperature on the mass transfer were investigated. The effects of the drop diameter and initial solute concentration on interfacial instability of droplets hanging in the continuous phase were also observed. For the purpose of correlation, a mass transfer enhancement factor F was introduced and then correlated as a function of dimensionless variables. The modified correlation from the mass transfer coefficient model was found to fit well with the experimental values.
Transference of mass in fermentation process
International Nuclear Information System (INIS)
Rios E, R.; Buitrago H, G
1998-01-01
Based on bibliographical references, in a theoretical model based on a fermentation process, the relationship between the speed of oxygen transfer and the biochemistry demand is implemented, in order to discover the different conditions of aeration and of agitation speed, under those which the microbial growth is not affected by deficiency in the oxygen supply. This correlation was adapted to the cultivation of B. Thuringiensis, and of this form, maximum biomass concentration to the one, which is possible to supply oxygen efficiently with a group of defined operation conditions, could be estimated
Computational and experimental study of the effect of mass transfer on liquid jet break-up
Schetz, J. A.; Situ, M.
1983-06-01
A computational method has been developed to predict the effect of mass transfer on liquid jet break-up in coaxial, low velocity gas streams. Two conditions, both with and without the effect of mass transfer on the jet break-up, are calculated, and compared with experimental results and the classical linear theory. Methanol and water were used as the injectants. The numerical solution can predict the instantaneous shape of the jet surface and the break-up time, and it is very close to the experimental results. The numerical solutions and the experimental results both indicate that the wave number of the maximum instability is about 6.9, higher than 4.51 which was predicted by Rayleigh's linear theory. The experimental results and numerical solution show that the growth of the amplitude of the trough is faster than the growth of the amplitude of the crest, especially for a rapidly vaporizing jet. The numerical solutions show that for the small rates of evaporation, the effect of the mass transfer on the interface has a stabilizing effect near the wave number for maximum instability. Inversely, it has a destabilizing effect far from the wave number for maximum instability. For rapid evaporation, the effect of the mass transfer always has a destabilizing effect and decreases the break-up time of the jet.
Mass-transfer in extraction and reextraction as a single-stage process
International Nuclear Information System (INIS)
Rodriguez del Cerro, M.; Trilleros, J.A.; Otero de la Gandara, J.L.
1987-01-01
The rate of mass transfer between water and naftenic acid and threebutilphosphate in kerosen are studied in the two possibilities to or from water. The two insoluble phases are brought in to intimate contact with dispersed phase droplets, in a single-stage process. The evolution of the equilibrium distribution of solute is taken in consideration. (author)
Janssen, R.A.J.; Moses, D.; Sariciftci, N.S.; Heeger, A.J.
1994-01-01
Photoexcitation of a nonathiophene in film or solution across the p-p* energy gap produces a metastable triplet state. In the presence of C60, on the other hand, an ultra fast electron transfer from the photoexcited nonathiophene onto C60 is observed in films, whereas in solution C60 is involved in
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick David [US Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John W. [US Geological Survey, Storrs, CT (United States)
2014-11-25
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
A mass transfer in heterogeneous systems by the adsorption method (
Directory of Open Access Journals (Sweden)
N. Bošković-Vragolović
2009-01-01
Full Text Available A mass transfer coefficient between: a liquid and single sphere and a liquid and column wall in packed and fluidized beds of a spherical inert particle have been studied experimentally using the adsorption method. The experiments were conducted in a column 40 mm in diameter for packed and fluidized beds, and in a two-dimensional column 140 mm×10 mm for the flow past single sphere. In all runs, the mass transfer rates were determined in the presence of spherical glass particles, 3 mm in diameter, for packed and fluidized beds. The mass transfer data were obtained by studying transfer for flow past single sphere, 20 mm in diameter. This paper discusses the possibilities of application of the adsorption method for fluid flow visualization. Local and average mass transfer coefficients were determined from the color intensity of the surface of the foils of silica gel. Correlations, Sh = f(Re and jD = f(Re, were derived using the mass transfer coefficient data.
Metric solution of a spinning mass
International Nuclear Information System (INIS)
Sato, H.
1982-01-01
Studies on a particular class of asymptotically flat and stationary metric solutions called the Kerr-Tomimatsu-Sato class are reviewed about its derivation and properties. For a further study, an almost complete list of the papers worked on the Tomimatsu-Sato metrics is given. (Auth.)
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsong
2014-01-01
This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...
Mass balance model parameter transferability on a tropical glacier
Gurgiser, Wolfgang; Mölg, Thomas; Nicholson, Lindsey; Kaser, Georg
2013-04-01
The mass balance and melt water production of glaciers is of particular interest in the Peruvian Andes where glacier melt water has markedly increased water supply during the pronounced dry seasons in recent decades. However, the melt water contribution from glaciers is projected to decrease with appreciable negative impacts on the local society within the coming decades. Understanding mass balance processes on tropical glaciers is a prerequisite for modeling present and future glacier runoff. As a first step towards this aim we applied a process-based surface mass balance model in order to calculate observed ablation at two stakes in the ablation zone of Shallap Glacier (4800 m a.s.l., 9°S) in the Cordillera Blanca, Peru. Under the tropical climate, the snow line migrates very frequently across most of the ablation zone all year round causing large temporal and spatial variations of glacier surface conditions and related ablation. Consequently, pronounced differences between the two chosen stakes and the two years were observed. Hourly records of temperature, humidity, wind speed, short wave incoming radiation, and precipitation are available from an automatic weather station (AWS) on the moraine near the glacier for the hydrological years 2006/07 and 2007/08 while stake readings are available at intervals of between 14 to 64 days. To optimize model parameters, we used 1000 model simulations in which the most sensitive model parameters were varied randomly within their physically meaningful ranges. The modeled surface height change was evaluated against the two stake locations in the lower ablation zone (SH11, 4760m) and in the upper ablation zone (SH22, 4816m), respectively. The optimal parameter set for each point achieved good model skill but if we transfer the best parameter combination from one stake site to the other stake site model errors increases significantly. The same happens if we optimize the model parameters for each year individually and transfer
Studies on mass transfer in electrochemical systems
Energy Technology Data Exchange (ETDEWEB)
Sundstroem, L.G.
1997-10-01
The first part is of an introductory nature. It contains a description of the methods used, a discussion of the physics of electrochemical cells with a liquid electrolyte, and a summary of the different studies made, including both those which have been reported in papers, and those which have not. Contributions with novel aspects include (* a derivation of the electro-neutrality condition from Maxwell`s equations of electrodynamics, and **) an argument in favour of the use of mass-averaged velocity in ion transport expressions. The second part focuses on specific cases. It consists of seven research papers which give a more detailed presentation of the main studies 40 refs, 6 figs
Electromagnetic control of mass transfer at liquid/liquid interfaces
International Nuclear Information System (INIS)
Saadi, B.
2006-04-01
Most metallurgical processes, such as steel refining or nuclear waste processing; the interfaces between two liquid phases are the regions of mass transfer. These transfers require the implementation of a means of stirring to accelerate the kinetics of the pollutants transfer between both phases. This thesis deals with the use of the electromagnetic forces to stir, without any material contact, the bath core and the interface in order to control or even increase the kinetic transfers. To achieve this, two complementary experimental installations were used. The first experiment allows the measurement of the Indium transfer, initially dissolved in mercury towards a covering electrolyte layer and the velocity field in mercury. The performed experiments, determine the topology of the fields flows speeds in the mercury bath, moreover the behaviour of the transfer kinetics versus the intensity of the magnetic field are established. This evolution is correlated with the dynamic behaviour of the mercury surface. The second installation allows the characterization of an element transfer (Pb, Zr or Ce) initially contained in a fluorinated salt towards an antimony matrix containing lithium. It appears that all transfers kinetics are very fast. The proposed experimental set-up is particularly efficient for Cerium transfer (limited by the interface) but does not present any action for Zirconium transfer. (author)
International Nuclear Information System (INIS)
Neretnieks, Ivars; Liu Longcheng; Moreno, Luis
2010-03-01
Models are presented for solute transport between seeping water in fractured rock and a copper canister embedded in a clay buffer. The migration through an undamaged buffer is by molecular diffusion only as the clay has so low hydraulic conductivity that water flow can be neglected. In the fractures and in any damaged zone seeping water carries the solutes to or from the vicinity of the buffer in the deposition hole. During the time the water passes the deposition hole molecular diffusion aids in the mass transfer of solutes between the water/buffer interface and the water at some distance from the interface. The residence time of the water and the contact area between the water and the buffer determine the rate of mass transfer between water and buffer. Simple analytical solutions are presented for the mass transfer in the seeping water. For complex migration geometries simplifying assumptions are made that allow analytical solutions to be obtained. The influence of variable apertures on the mass transfer is discussed and is shown to be moderate. The impact of damage to the rock around the deposition hole by spalling and by the presence of a cemented and fractured buffer is also explored. These phenomena lead to an increase of mass transfer between water and buffer. The overall rate of mass transfer between the bulk of the water and the canister is proportional to the overall concentration difference and inversely proportional to the sum of the mass transfer resistances. For visualization purposes the concept of equivalent flowrate is introduced. This entity can be thought as of the flowrate of water that will be depleted of its solute during the water passage past the deposition hole. The equivalent flowrate is also used to assess the release rate of radionuclides from a damaged canister. Examples are presented to illustrate how various factors influence the rate of mass transfer
International Nuclear Information System (INIS)
Kritsuk, E.L.; Mishina, L.V.; Shegidevich, L.N.
1986-01-01
The hydrodynamically stabilized chemically nonequilibrium turbulent flow in a tube with the inert impermeable surface and constant specific heat flow on the wall is considered. The reversible homogeneous reaction of nitrogen dioxide dissociation 2NO 2 ↔ 2NO+O 2 takes place in the flow. Chemically equilibrium flow with homogeneous profile of temperature and concentration arrives into the channel inlet. After application of simplifying assumptions, the expressions for characteristics of heat and mass transfer have been written down, which are valid in the whole range of the flow parameter variation from frozen up to chemically equilibrium flow. An integral transformation method is suggested for a radial coordinate which allows a wall region to be extended, thereby essentially extending the step of integration. A solution in quadratures has been obtained for the heat and mass transfer problem in an inert fluid flow for the developed process section. The elimination method has been employed to solve the boundary-value second-kind problem for the function governing heat and mass transfer in a chemically nonequilibrium turbulent flow over the developed heat and mass transfer section. The results of calculations are presented
Mass transfer dynamics in double degenerate binary systems
International Nuclear Information System (INIS)
Dan, M; Rosswog, S; Brueggen, M
2009-01-01
We present a numerical study of the mass transfer dynamics prior to the gravitational wave-driven merger of a double white dwarf system. Recently, there has been some discussion about the dynamics of these last stages, different methods seemed to provide qualitatively different results. While earlier SPH simulations indicated a very quick disruption of the binary on roughly the orbital time scale, more recent grid-based calculations find long-lived mass transfer for many orbital periods. Here we demonstrate how sensitive the dynamics of this last stage is to the exact initial conditions. We show that, after a careful preparation of the initial conditions, the reportedly short-lived systems undergo mass transfer for many dozens of orbits. The reported numbers of orbits are resolution-biased and therefore represent only lower limits to what is realized in nature. Nevertheless, the study shows convincingly the convergence of different methods to very similar results.
Effect of rotation on convective mass transfer in rotating channels
International Nuclear Information System (INIS)
Pharoah, J.G.; Djilali, N.
2002-01-01
Laminar flow and mass transfer in rotating channels is investigated in the context of centrifugal membrane separation. The effect of orientation with respect to the rotational axis is examined for rectangular channels of aspect ratio 3 and the Rossby number is varied from 0.3 to 20.9. Both Ro and the channel orientation are found to have a significant effect on the flow. Mass transfer calculations corresponding to reverse osmosis desalination are carried out at various operating pressures and all rotating cases exhibit significant process enhancements at relatively low rotation rates. Finally, while it is common in the membrane literature to correlate mass transfer performance with membrane shear rates this is shown not to be valid in the cases presented herein. (author)
Liquid-gas mass transfer at drop structures
DEFF Research Database (Denmark)
Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes
2017-01-01
-water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...
Molecular engineering problems in heat and mass transfer
International Nuclear Information System (INIS)
Kotake, S.
1991-01-01
As for developing, manufacturing and applying new materials of advanced functions such as high-performance devices and high-temperature materials, fundamental understanding of the phenomena from the standpoint of molecular and atomic levels has been required. In these problems, the processes of heat and mass transfer play an important role, being one of the rate-controlling factors. But the energy levels associated with heat and mass transfer are of the orders much less than those of chemical reaction, and it is not easy to understand the thermal problems on the molecular and atomic basis. This paper views the processes of heat and mass transfer from the dynamical motions of atom and molecule for thermal engineering problems. Especially, problems are considered of heat conduction in fine-ceramics, sintered materials of high heat conductivity or high heat-insulation, phase change of condensation in vapor deposition processes such as CVD and PVD, and radiation in laser processing
Mass transfer resistance in ASFF reactors for waste water treatment.
Ettouney, H M; Al-Haddad, A A; Abu-Irhayem, T M
1996-01-01
Analysis of mass transfer resistances was performed for an aerated submerged fixed-film reactor (ASFF) for the treatment of waste water containing a mixture of sucrose and ammonia. Both external and internal mass transfer resistances were considered in the analysis, and characterized as a function of feed flow-rate and concentration. Results show that, over a certain operating regime, external mass transfer resistance in the system was greater for sucrose removal than ammonia. This is because the reaction rates for carbon removal were much larger than those of nitrogen. As a result, existence of any form of mass transfer resistance caused by inadequate mixing or diffusion limitations, strongly affects the overall removal rates of carbon more than nitrogen. Effects of the internal måss transfer resistance were virtually non-existent for ammonia removal. This behaviour was found over two orders of magnitude range for the effective diffusivity for ammonia, and one order of magnitude for the film specific surface area. However, over the same parameters' range, it is found that sucrose removal was strongly affected upon lowering its effective diffusivity and increasing the film specific surface area.
RESEARCH OF THE MASS TRANSFER AT MEMBRANE CLEANING OF BIOGAZ
Directory of Open Access Journals (Sweden)
Marat SATAYEV
2015-04-01
Full Text Available Everyone has long known the benefits and effectiveness of biogas. Particularly, getting biogas from the agricultural waste is very promising. But, the question is if we can use such a useful and effective biogas at 100%. Today, we use only a half of the benefit, because to get the biogas we spend more energy than we get. In this regard, the work on the study of the biogas development is extremely important. The study of the biogas formation requires numerous experiments. This article analyzes the biogas mass transfer with the membrane purification and identification of the of mass transfer mechanisms through the membrane pores.
Mass transfer apparatus and method for separation of gases
Energy Technology Data Exchange (ETDEWEB)
Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.
2018-01-16
A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu
The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...
Formal Solutions for Polarized Radiative Transfer. III. Stiffness and Instability
Janett, Gioele; Paganini, Alberto
2018-04-01
Efficient numerical approximation of the polarized radiative transfer equation is challenging because this system of ordinary differential equations exhibits stiff behavior, which potentially results in numerical instability. This negatively impacts the accuracy of formal solvers, and small step-sizes are often necessary to retrieve physical solutions. This work presents stability analyses of formal solvers for the radiative transfer equation of polarized light, identifies instability issues, and suggests practical remedies. In particular, the assumptions and the limitations of the stability analysis of Runge–Kutta methods play a crucial role. On this basis, a suitable and pragmatic formal solver is outlined and tested. An insightful comparison to the scalar radiative transfer equation is also presented.
International Nuclear Information System (INIS)
Sonetaka, Noriyoshi; Fan, Huan-Jung; Kobayashi, Seiji; Su, Yang-Chih; Furuya, Eiji
2009-01-01
In general, the adsorption uptake curve (AUC) can be easily determined in either intraparticle diffusion or liquid film mass transfer dominating systems. However, for both intraparticle diffusion and liquid film mass transfer controlling systems, the characterization of AUC is much more complicated, for example, when relatively small adsorbent particles are employed. In addition, there is no analytical solution available for both intraparticle diffusion and liquid film mass transfer controlling systems. Therefore, this paper is trying to characterize AUC for both intraparticle diffusion and liquid film mass transfer controlling adsorption systems using the shallow bed reactor technique. Typical parameters influencing AUC include liquid film mass transfer coefficient (k F ), effective intraparticle diffusivity (D S ), influent concentration (c 0 ) and equilibrium parameters (such as Freundlich isotherm constants k and 1/n). These parameters were investigated in this research and the simulated results indicated that the ratio of k F /D S and Freundlich constant 1/n had impact on AUC. Biot number (Bi) was used to replace the ratio of k F /D S in this study. Bi represents the ratio of the rate of transport across the liquid layer to the rate of intraparticle diffusion. Furthermore, Bi is much more significant than that of 1/n for AUC. Therefore, AUC can be characterized by Bi. In addition, the obtained Bi could be used to determine D S and k F simultaneously. Both parameters (D S and k F ) are important for designing and operating fixed bed reactors.
Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Tim; Binley, Andrew; Lane, John
2014-01-16
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
International Nuclear Information System (INIS)
2015-01-01
The conference covered various aspects of heat and mass transfer like Aero-thermodynamics, Atmospheric flows, Biological heat and mass transfer, Combustion and reactive flows, Cryogenics, Electronic and photonic cooling, Energy engineering, Environmental engineering, Experimental techniques, Heat transfer enhancement, Heat transfer equipment's, Heat transfer in nuclear applications, Mass transfer, Materials processing and manufacturing, Microscale and nanoscale transport, Multiphase transport and phase change, Multi mode heat transfer, Numerical methods, Refrigeration and air conditioning, Space heat transfer, Transport phenomena in porous media, and Turbulent transport. Papers relevant to INIS are indexed separately
Mass transfer parameters of celeriac during vacuum drying
Beigi, Mohsen
2017-04-01
An accurate prediction of moisture transfer parameters is very important for efficient mass transfer analysis, accurate modelling of drying process, and better designing of new dryers and optimization of existing drying process. The present study aimed to investigate the influence of temperature (e.g., 55, 65 and 75 °C) and chamber pressure (e.g., 0.1, 3, 7, 10, 13 and 17 kPa) on effective diffusivity and convective mass transfer coefficient of celeriac slices during vacuum drying. The obtained Biot number indicated that the moisture transfer in the celeriac slices was controlled by both internal and external resistance. The effective diffusivity obtained to be in the ranges of 7.5231 × 10-10-3.8015 × 10-9 m2 s-1. The results showed that the diffusivity increased with increasing temperature and decreasing pressure. The mass transfer coefficient values varied from 4.6789 × 10-7 to 1.0059 × 10-6 m s-1, and any increment in drying temperature and pressure caused an increment in the coefficient.
Behaviour of and mass transfer at gas-evolving electrodes
Janssen, L.J.J.
1989-01-01
A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into
Modelling toluene oxidation : Incorporation of mass transfer phenomena
Hoorn, J.A.A.; van Soolingen, J.; Versteeg, G. F.
The kinetics of the oxidation of toluene have been studied in close interaction with the gas-liquid mass transfer occurring in the reactor. Kinetic parameters for a simple model have been estimated on basis of experimental observations performed under industrial conditions. The conclusions for the
Mass transfer with chemical reaction in multiphase systems
International Nuclear Information System (INIS)
Alper, E.
1983-01-01
These volumes deal with the phenomenon of 'mass transfer with chemical reaction' which is of industrial, biological and physiological importance. In process engineering, it is encountered both in separation processes and in reaction engineering and both aspects are covered here in four sections: introduction; gas-liquid system; liquid-liquid system; and gas-liquid-solid system
Heat and mass transfer in the unsteady hydromagnetic free ...
African Journals Online (AJOL)
Heat and mass transfer in the unsteady hydromagnetic free-convection flow in a rotating binary fluid I. ... By imposing a time dependent perturbation on the constant plate temperature and concentration and assuming a differential approximation for the radiative flux, the coupled non linear problem is solved for the ...
Mass transfer analysis for terephthalic acid biodegradation by ...
African Journals Online (AJOL)
Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the
Mass transfer processes in crystalline aggregates containing a fluid phase
Visser, H.J.M.
1999-01-01
Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the simplest
MASS TRANSFER KINETICS AND EFFECTIVE DIFFUSIVITIES DURING COCOA ROASTING
Directory of Open Access Journals (Sweden)
Y. M. BAGHDADI
2017-01-01
Full Text Available The current studies investigated the effects of temperature and moisture addition on the mass transfer kinetics of cocoa nibs during roasting. Experiments were carried out by roasting 500 gm of cocoa nibs inside an air ventilated oven at three temperature levels (120°C, 140°C and 160°C under medium air flowrate for one hour. Two types of samples were prepared namely the raw and soaked nib samples. The soaked nib samples were prepared by soaking the raw nibs in 200 ml of water at room temperature for 5 and 10 hours. Mathematical modelling was carried out to model the mass transfer process using semi-empirical models. Modelling showed that both Page and two-term models were able to give close fitting between the experimental and predicted values. Effective diffusivity values were estimated in the order of magnitude of 10-5 m2/s for the mass transfer process. Results obtained from these studies fill the current knowledge gap on the mass transfer kinetics of cocoa roasting.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Kinetics and mass transfer phenomena in anaerobic granular sludge
Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G.; Kleerebezem, R.
2001-01-01
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (Vup). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (KS) for each
Heat and mass transfer during baking: product quality aspects
Asselman, A.; Straten, van G.; Hadiyanto, H.; Boom, R.M.; Esveld, D.C.; Boxtel, van A.J.B.
2005-01-01
Abstract Most food product qualities are developed during heating processes. Therefore the internal heating and mass transfer of water are important aspects in food processing. Heating of food products is mostly induced by convection heating. However, the number applications of convective heating in
Heat and Mass Transfer Model in Freeze-Dried Medium
Alfat, Sayahdin; Purqon, Acep
2017-07-01
There are big problems in agriculture sector every year. One of the major problems is abundance of agricultural product during the peak of harvest season that is not matched by an increase in demand of agricultural product by consumers, this causes a wasted agricultural products. Alternative way was food preservation by freeze dried method. This method was already using heat transfer through conduction and convection to reduce water quality in the food. The main objective of this research was to design a model heat and mass transfer in freeze-dried medium. We had two steps in this research, the first step was design of medium as the heat injection site and the second was simulate heat and mass transfer of the product. During simulation process, we use physical property of some agriculture product. The result will show how temperature and moisture distribution every second. The method of research use finite element method (FEM) and will be illustrated in three dimensional.
Modelling of heat and mass transfer processes in neonatology
Energy Technology Data Exchange (ETDEWEB)
Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk
2008-09-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.
Modelling of heat and mass transfer processes in neonatology
International Nuclear Information System (INIS)
Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C
2008-01-01
This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices
Effect of aging on mass transfer naphthalene from creosotes to water
International Nuclear Information System (INIS)
Alshafie, M.; Ghoshal, S.
2002-01-01
Semi-gelatinous interfacial films or 'skins' have been observed to form at the interface of creosote and water when creosote is aged (contacted over an extended time period) in water under quiescent conditions for a few days. The objective of the research is to investigate whether aging of creosote-water interfaces and the formation of interfacial films retard dissolution of a target solute, naphthalene, from samples of creosote. Mass transfer experiments were conducted in gently stirred flow-through reactors where the NAPL was coated on glass beads so as to keep the NAPL and the aqueous phases segregated. The aqueous concentration in the reactor effluent was determined in samples collected at different time points and the equilibrium partitioning coefficients and area-independent mass transfer coefficients were calculated. Over the period of one week, the mass transfer rate coefficients of the naphthalene from creosote to water underwent approximately 30% reduction. Further reduction was observed up to 3 weeks of aging. This significant reduction in mass transfer coefficient has important implications on potential rates of dissolution of the solutes, and thus on rates of clean up of creosote-contaminated sites. (author)
Bibliography on augmentation of convective heat and mass transfer
International Nuclear Information System (INIS)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report
Fem Formulation for Heat and Mass Transfer in Porous Medium
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
Mass and charge transfer within a floating water bridge
Fuchs, Elmar C.; Agostinho, Luewton L. F.; Eisenhut, Mathias; Woisetschläger, Jakob
2010-11-01
When high voltage is applied to pure water filled into two beakers close to each other, a connection forms spontaneously, giving the impression of a floating water bridge 1-8. This phenomenon is of special interest, since it comprises a number of phenomena currently tackled in modern water science. In this work, the charge and mass transfer through the water bridge are investigated with schlieren visualization and laser interferometry. It can be shown that the addition of a pH dye increases the H+ and OH- production with subsequent electrolysis, whereas schlieren and interferometric methods reveal another mechanism where charge and mass transfer appear to be coupled. Whereas this mechanism seems to be responsible for the electrolysis-less charge and mass transfer in the water bridge, it is increasingly superseded by the electrochemical mechanism with rising conductivity. Thus it can be shown that a pH dye does only indirectly visualize the charge transfer in the water bridge since it is dragged along with the water flow like any other dye, and additionally promotes conventional electrochemical conduction mechanisms, thereby enhancing electrolysis and reducing the masscoupled charge transport and thus destabilizing the bridge.
Study of molecular iodine-epoxy paint mass transfer
Energy Technology Data Exchange (ETDEWEB)
Belval-Haltier, E [Inst. de Protection et Surete Nucleaire, IPSN, CEN Cadarache, St. Paul-lez-Durance (France)
1996-12-01
The mass transfer phenomena may have a significant influence on the quantity of I{sub 2} which could be released following a severe accident of a nuclear power plant and specially the mass transfer of iodine onto containment surfaces. So, the objective of the present work was to evaluate which phase limited the adsorption process of iodine onto gaseous epoxy paint under a range of conditions which may be relevant to a severe reactor accident. In this aim, a series of experiments was conducted in which the sorption kinetics of molecular iodine, labelled with {sup 131}I, was measured by monitoring continuously the accumulation of this species on the epoxy surface. For each test condition, the initial deposition velocity was determined and the corresponding gas phase mass transfer, kg, was estimated by using the heat transfer analogy for a laminar flow passing over a flat plate. Then, the surface reaction rate, Kr, was deduced from these two values. Experiments performed indicated that iodine adsorption onto epoxy paint is highly dependent on temperature, relative humidity of the carrier gas and moisture content of the painted coupon. In dry air flow conditions, the adsorption of iodine onto paint was found to increase with temperature and to be limited by the surface reaction rate, Kr. The I{sub 2} adsorption rate was found to increase with the humidity of carrier gas and in some studied conditions, the initial deposition velocity appeared to be controlled by gas phase mass transfer rather than surface interaction. The same phenomenon has been observed with an increase of the initial water content of the painted coupon. (author) 6 figs., 1 tab., 8 refs.
Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels
International Nuclear Information System (INIS)
Besedina, T.V.; Udot, A.V.; Yakushev, A.P.
1987-01-01
An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction
Mass transfer in stellar X-ray sources
International Nuclear Information System (INIS)
Verbunt, F.
1982-01-01
This thesis deals with mass transfer in the binary stars that emit X-rays. Optical observations on two sources are presented: 2A0311-227 and Cen X-4. The transferred matter will often enter a gaseous disk around the compact star, and spiral inwards slowly through this disk. The conditions for the formation of such a disk are investigated and the equations governing its structure are presented. Different models are discussed and it is concluded that different models lead to very similar results for those regions of the disk where gas pressure is more important than radiative pressure, and that these results agree fairly well with observations. No consistent model has been constructed as yet for the region where radiative pressure is dominant. Theoretically one predicts that the optical light emitted by a disk around a neutron star is mainly caused by X-ray photons from the immediate surroundings of the neutron star that hit the outer disk surface, are absorbed, thermalised, and re-emitted in the optical and ultraviolet regions of the spectrum. This expectation is verified by comparison with the collected observational data of low-mass X-ray binaries. Finally the author investigates which mechanism is responsible for the mass transfer in systems where the mass-losing star is less massive than the sun. (Auth.)
Evaporative mass transfer behavior of a complex immiscible liquid.
McColl, Colleen M; Johnson, Gwynn R; Brusseau, Mark L
2008-09-01
A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult's law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium.
Heat and mass transfer in porous cavity: Assisting flow
Energy Technology Data Exchange (ETDEWEB)
Badruddin, Irfan Anjum [Dept. of Mechanical Engineering, University of Malaya, Kuala Lumpur, 50603 (Malaysia); Quadir, G. A. [School of Mechatronic Engineering, University Malaysia Perlis, Pauh Putra, 02600 Arau, Perlis (Malaysia)
2016-06-08
In this paper, investigation of heat and mass transfer in a porous cavity is carried out. The governing partial differential equations are non-dimensionalised and solved using finite element method. The left vertical surface of the cavity is maintained at constant temperature and concentration which are higher than the ambient temperature and concentration applied at right vertical surface. The top and bottom walls of the cavity are adiabatic. Heat transfer is assumed to take place by natural convection and radiation. The investigation is carried out for assisting flow when buoyancy and gravity force act in same direction.
Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger
International Nuclear Information System (INIS)
Webb, R.L.; Perez-Blanco, H.
1986-01-01
This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement
Heat transfer from a tube bank with mass transfer in a duct
International Nuclear Information System (INIS)
Nouri, A.; Lavasani, A. M.
2005-01-01
An experimental investigation on heat transfer coefficient is present from three horizontal tubes in a vertical array in a duct for 500 D <6000. A mass transfer measuring technique based on psychrometry chart is used to determine heat transfer coefficient. The diameter of the tubes is 11 mm each spaced 40 mm apart and in-line pitch ratio varies in the range 0.055< D/W<0.22. The experimental results show that the Nusselt number of each tube increases by increasing D/W. Also the increase of the second the Nusselt number is more than that of the third one
Natural convection boundary layer with suction and mass transfer in a porous medium
International Nuclear Information System (INIS)
Bestman, A.R.
1989-03-01
The free convection boundary layer flow with simultaneous heat and mass transfer in a porous medium is studied when the boundary wall moves in its own plane with suction. The study also incorporates chemical reaction for the very simple model of a binary reaction with Arrhenius activation energy. For large suction asymptotic approximate solutions are obtained for the flow variables for various values of the activation energy. (author). 10 refs, 2 figs
International Nuclear Information System (INIS)
LeNeveu, D.M.
1996-03-01
Analytical solutions for transient and steady state diffusive mass transfer rates from a pinhole in a waste container are developed for constant concentration and inventory-limited source conditions. Mass transport in three media are considered, inside the pinhole (medium 2), outside the container (medium 3) and inside the container (medium 1). Simple equations are developed for radionuclide mass transfer rates from a pinhole. It is shown that the medium with the largest mass transfer resistance need only be considered to provide a conservative estimate of mass transfer rates. (author) 11 refs., 3 figs
Heat and mass transfer involving droplets containing soluble solids
International Nuclear Information System (INIS)
Oscarson, J.L.; Briggs, D.E.
1977-01-01
The mass loss and temperature history of aqueous drops containing dissolved solids were measured under varying conditions of air velocity and temperature. The data taken from these drops were compared with the computer solution to a diffusional model. Very good agreement was obtained
Chaotic scattering in heavy-ion reactions with mass transfer
International Nuclear Information System (INIS)
Rodriguez Padron, Emilio; Guzman Martinez, Fernando
1998-01-01
The role of the mass transfer in heavy ion collisions is analyzed in the framework of a simple semi phenomenological model searching for chaotic scattering effects. The model couples the relative motion of the ions to a collective degree of freedom. The collective degree of freedom is identified by the mass asymmetry of the system. A Saxon-Woods potential is used for nucleus-nucleus interaction whiles a harmonic potential rules the temporal behaviour of the collective degree of freedom. This model shows chaotic scattering which could be an explanation for certain types of cross-section fluctuations observed in this kind of reactions
Measurements of Critical Heat Flux using Mass Transfer System
Energy Technology Data Exchange (ETDEWEB)
Hong, Seung Hyun; Chung Bum Jin [Kyunghee University, Yongin (Korea, Republic of)
2016-05-15
In a severe accident, the reactor vessel is heated by the decay heat from core melts and the outer surface of reactor vessel is cooled by the natural convection of water pool. When the heat flux increases, boiling will start. Further increase of the heat flux may result in the CHF, which is generated by the bubble combinations. The CHF means that the reactor vessel was separated with coolant and wall temperature is raised rapidly. It may damage the reactor vessel. Also the CHF indicates the maximum cooling capability of the system. Therefore, the CHF has been used as a criterion for the regulatory and licensing. Mechanism of hydrogen vapor bubbles generated and combined can be simulated water bubbles mechanism. And also the both heat and mass transfer mechanism of CHF can be identified in the same methods. Therefore, the CHF phenomena can be simulated enough by mass transfer.
Interferometric study of mass transfer enchancement by turbulence promoters
International Nuclear Information System (INIS)
Hanson, K.J.
1979-04-01
The use of small obstacles to thin the downstream mass transfer boundary layer has been investigated with a traveling, dual-beam laser interferometer. Plots of boundary layer thickness as a function of the distance from the leading edge of the electrode were developed to study the effects of obstacle shape, the distance of the obstacle from the electrode surface, and Reynolds number for the purposes of determining the optimum conditions to achieve high mass transfer rates. Parameters which characterize the efficiency of the obstacles, the minimum boundary layer thickness in the wake, and the recovery distance downstream of each obstacle have been introduced to quantitatively describe the results. In addition, the effect of local turbulence near the obstacles on the deposit morphology has been described
Transfer of momentum, mass and charge in heavy ion collisions
International Nuclear Information System (INIS)
Beck, F.; Feldmeier, H.; Dworzecka, M.
1979-01-01
A model for the first two phases of heavy ion collisions based on the transport of single nucleons through the window between the two scattering nuclei is described in some detail. It is pointed out that the model can account simultaneously for a large portion of the energy transfer from relative to intrinsic motion and for the observed variances in mass and charge numbers for reaction times up to the order of 10 -21 s. (P.L.)
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Energy Technology Data Exchange (ETDEWEB)
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
International Nuclear Information System (INIS)
Leishear, R.
2009-01-01
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels
MASS TRANSFER IN PORE STRUCTURES OF SUPPORTED CATALYSTS
Directory of Open Access Journals (Sweden)
F.R.C. Silva
1997-09-01
Full Text Available The effects of gas-solid interaction and mass transfer in fixed-bed systems of supported catalysts were analyzed for g -Al2O3 (support and Cu/g -Al2O3 (catalyst systems. Evaluations of the mass transfer coefficients in the macropores and of the diffusivity in the micropores, as formed by the crystallite agglomerates of the metallic phases, were obtained. Dynamic experiments with gaseous tracers permitted the quantification of the parameters based on models for these two pore structures. With a flow in a range of 18 cm3 s-1 to 39.98 cm3 s-1 at 45oC, 65oC and 100oC, mass transfer coefficients km =4.33x10-4 m s-1 to 7.38x10-4 m s-1 for macropore structures and diffusivities Dm =1.29x10-11 m2 s-1 to 5.35x10-11 m2 s-1 for micropore structures were estimated
Mass transfer models analysis for the structured packings
International Nuclear Information System (INIS)
Suastegui R, A.O.
1997-01-01
The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)
The Kerr-Tomimatsu-Sato family of spinning mass solutions
International Nuclear Information System (INIS)
Yamazaki, M.
1982-01-01
The closed form with an arbitrary positive integer distortion parameter delta of the Kerr-Tomimatsu-Sato family of spinning mass solutions, i.e., stationary axisymmetric, asymptotically flat exact solutions of Einstein's vacuum field equations Rsub(μγ) = 0 is presented. The generalization of the Kerr-Tomimatsu-Sato family of solutions to the case of the arbitrary positive non-integral distortion parameter delta is conjectured. Some analytic properties of the family of solutions are studied. It is shown that all ring singularities are of first order and all ergosurfaces are simple zeros of metric functions f. The charged Kerr-Tomimatsu-Sato family of solutions is also given in the closed form with an arbitrary positive integer distortion parameter delta. It is shown that the Christodoulou-Ruffini mass formula of the Kerr-Newman field or the delta = 1 member of the present family of solutions also holds true in the case of the charged Kerr-Tomimatsu-Sato family of solutions with an arbitary odd integer delta. (Auth.)
Heat Transfer and Mass Diffusion in Nanofluids over a Moving Permeable Convective Surface
Directory of Open Access Journals (Sweden)
Muhammad Qasim
2013-01-01
Full Text Available Heat transfer and mass diffusion in nanofluid over a permeable moving surface are investigated. The surface exhibits convective boundary conditions and constant mass diffusion. Effects of Brownian motion and thermophoresis are considered. The resulting partial differential equations are reduced into coupled nonlinear ordinary differential equations using suitable transformations. Shooting technique is implemented for the numerical solution. Velocity, temperature, and concentration profiles are analyzed for different key parameters entering into the problem. Performed comparative study shows an excellent agreement with the previous analysis.
Kharkov, N. S.
2017-11-01
Results of numerical modeling of the coupled nonstationary heat and mass transfer problem under conditions of a convective flow in facade system of a three-layer concrete panel for two different constructions (with ventilation channels and without) are presented. The positive effect of ventilation channels on the energy and humidity regime over a period of 12 months is shown. Used new method of replacement a solid zone (requiring specification of porosity and material structure, what complicates process of convergence of the solution) on quasi-solid in form of a multicomponent mixture (with restrictions on convection and mass fractions).
Mass Spectrometric Characterization of Oligomers in Pseudomonas aeruginosa Azurin Solutions
Czech Academy of Sciences Publication Activity Database
Sokolová, L.; Williamson, H.; Sýkora, Jan; Hof, Martin; Gray, H. B.; Brutschy, B.; Vlček, Antonín
2011-01-01
Roč. 115, č. 16 (2011), s. 4790-4800 ISSN 1520-6106 R&D Projects: GA MŠk(CZ) ME10124; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : mass spectrometry * oligomers * pseudomonas aeruginosa azurin solutions Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.696, year: 2011
Proton Transfer Time-of-Flight Mass Spectrometer
Energy Technology Data Exchange (ETDEWEB)
Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-03-01
The Proton Transfer Reaction Mass Spectrometer (PTRMS) measures gas-phase compounds in ambient air and headspace samples before using chemical ionization to produce positively charged molecules, which are detected with a time-of-flight (TOF) mass spectrometer. This ionization method uses a gentle proton transfer reaction method between the molecule of interest and protonated water, or hydronium ion (H_{3}O^{+}), to produce limited fragmentation of the parent molecule. The ions produced are primarily positively charged with the mass of the parent ion, plus an additional proton. Ion concentration is determined by adding the number of ions counted at the molecular ion’s mass-to-charge ratio to the number of air molecules in the reaction chamber, which can be identified according to the pressure levels in the reaction chamber. The PTRMS allows many volatile organic compounds in ambient air to be detected at levels from 10–100 parts per trillion by volume (pptv). The response time is 1 to 10 seconds.
Dynamics of Mass Transfer in Wide Symbiotic Systems
de Val-Borro, Miguel; Karovska, M.; Sasselov, D.
2010-01-01
We investigate the formation of accretion disks around the secondary in detached systems consisting of an Asymptotic Giant Branch (AGB) star and a compact accreting companion as a function of mass loss rate and orbital parameters. In particular, we study winds from late-type stars that are gravitationally focused by a companion in a wide binary system using hydrodynamical simulations. For a typical slow and massive wind from an evolved star there is a stream flow between the stars with accretion rates of a few percent of the mass loss from the primary. Mass transfer through a focused wind is an important mechanism for a broad range of interacting binary systems and can explain the formation of Barium stars and other chemically peculiar stars.
Dullaart, R. P. F.; de Vries, R.; Dallinga-Thie, G. M.; van Tol, A.; Sluiter, W. J.
Adipose tissue contributes to plasma levels of lipid transfer proteins and is also the major source of plasma adipokines. We hypothesized that plasma cholesteryl ester transfer protein (CETP) mass, phospholipid transfer protein (PLTP) activity and cholesteryl ester transfer (CET, a measure of CETP
Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems
Sun, Ning
Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface
Heat and mass transfer and hydrodynamics in swirling flows (review)
Leont'ev, A. I.; Kuzma-Kichta, Yu. A.; Popov, I. A.
2017-02-01
Research results of Russian and foreign scientists of heat and mass transfer in whirling flows, swirling effect, superficial vortex generators, thermodynamics and hydrodynamics at micro- and nanoscales, burning at swirl of the flow, and technologies and apparatuses with the use of whirling currents for industry and power generation were presented and discussed at the "Heat and Mass Transfer in Whirling Currents" 5th International Conference. The choice of rational forms of the equipment flow parts when using whirling and swirling flows to increase efficiency of the heat-power equipment and of flow regimes and burning on the basis of deep study of the flow and heat transfer local parameters was set as the main research prospect. In this regard, there is noticeable progress in research methods of whirling and swirling flows. The number of computational treatments of swirling flows' local parameters has been increased. Development and advancement of the up to date computing models and national productivity software are very important for this process. All experimental works are carried out with up to date research methods of the local thermoshydraulic parameters, which enable one to reveal physical mechanisms of processes: PIV and LIV visualization techniques, high-speed and infrared photography, high speed registration of parameters of high-speed processes, etc. There is a problem of improvement of researchers' professional skills in the field of fluid mechanics to set adequately mathematics and physics problems of aerohydrodynamics for whirling and swirling flows and numerical and pilot investigations. It has been pointed out that issues of improvement of the cooling system and thermal protection effectiveness of heat-power and heat-transfer equipment units are still actual. It can be solved successfully using whirling and swirling flows as simple low power consumption exposing on the flow method and heat transfer augmentation.
Heat and mass transfers in the jets; Transferts de chaleur et de masse dans les jets
Energy Technology Data Exchange (ETDEWEB)
NONE
2001-07-01
This day on the heat and mass transfers in the jets, was organized by the SFT (French Society of Thermic) to present the state of the art in the domain. Fifteen presentations allowed the participants to discuss about turbulent flows, simulation of fluid flow and jets impacts. (A.L.B.)
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, A. [B.K.C. College, Department of Physics, Kolkata (India); Chaudhuri, S. [University of Burdwan, Department of Physics, Burdwan (India)
2017-11-15
In the paper, magnetostatic solutions of the Einstein-Maxwell field equations are generated from the gravitational two-soliton solutions of a stationary mass. Using the soliton technique of Belinskii and Zakharov (Sov Phys JETP 48:985, 1978, Sov Phys JETP 50:1, 1979), we construct diagonal two-soliton solutions of Einstein's gravitational field equations for an axially symmetric stationary space-time and investigate some properties of the generated stationary gravitational metric. Magnetostatic solutions corresponding to the generated stationary gravitational solutions are then constructed using the transformation technique of Das and Chaudhuri (Pramana J Phys 40:277, 1993). The mass and the dipole moment of the source are evaluated. In our analysis we make use of a second transformation (Chaudhuri in Pramana J Phys 58:449, 2002), probably for the first time in the literature, to generate magnetostatic solutions from the stationary gravitational two-soliton solutions which give us simple and straightforward expressions for the mass and the magnetic dipole moment. (orig.)
Investigating mass transfer in symbiotic systems with hydrodynamic simulations
de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.
2014-06-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.
Mass transfer effects on vertical oscillating plate with heat flux
Directory of Open Access Journals (Sweden)
Muthucumaraswamy R.
2007-01-01
Full Text Available Theoretical solution of unsteady viscous incompressible flow past an infinite vertical oscillating plate with uniform heat flux and mass diffusion is presented here, taking into account of the homogeneous chemical reaction of first-order. The temperature from the plate to the fluid at an uniform rate and the mass is diffused uniformly. The dimensionless governing equations has been obtained by the Laplace transform method, when the plate is oscillating harmonically in its own plane. The effects of velocity and concentration are studied for different parameters like phase angle chemical reaction parameter, thermal Grashof number, mass Grashof number Schmidt number and time are studied. The solutions are valid only for small values of time t. It is observed that the velocity increases with decreasing phase angle ωt or chemical reaction parameter.
Gas-liquid mass transfer coefficient of methane in bubble column reactor
Energy Technology Data Exchange (ETDEWEB)
Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)
2015-06-15
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.
Mass transfer performance of blended alkanolamines for CO{sub 2} capture in packed absorbers
Energy Technology Data Exchange (ETDEWEB)
Setameteekul, A.; Veawab, A.; Aroonwilas, A.; Tontiwachwuthikul, P. [Regina Univ., SK (Canada)
2003-07-01
Acid gases are removed from industrial gas streams using the alkanolamine absorption process. There has been recent interest in extending the process to remove carbon dioxide from industrial waste gases. The process based on conventional alkanolamines is not economically viable because of the associated high energy costs. It was suggested that blended alkanolamines would significantly reduce energy consumption, thereby resulting in a reduction in process costs. The main disadvantage of using blended alkanolamines is a decrease in absorption performance. This study examines the mass transfer behaviour of carbon dioxide into blended alkanolamine solutions. It also compares their performance with the baseline performance of monoethanolamine (MEA). A series of absorption experiments were conducted in a bench-scale packed absorber. The blended alkanolamines included mixtures of MEA and methyldiethanolamine, as well as mixtures of diethanolamine and methyldiethanolamine. The results indicated the general mass transfer coefficient as a function of operating conditions.
Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils
Izza, H.; Ben Abdessalam, S.; Korichi, M.
2018-03-01
Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.
Directory of Open Access Journals (Sweden)
C.S.K. Raju
2016-03-01
Full Text Available In this study we analyzed the flow, heat and mass transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence of thermal radiation, magneticfield, viscous dissipation, heat source and chemical reaction. We presented dual solutions by comparing the results of the Casson fluid with the Newtonian fluid. The governing partial nonlinear differential equations of the flow, heat and mass transfer are transformed into ordinary differential equations by using similarity transformation and solved numerically by using Matlab bvp4c package. The effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles are discussed and presented graphically. Also, the friction factor, Nusselt and Sherwood numbers are analyzed and presented in tabular form for both Casson and Newtonian fluids separately. Under some special conditions the results of the present study have an excellent agreement with existing studies for both Casson and Newtonian fluid cases.
Gas-liquid mass transfer coefficient of methane in bubble column reactor
International Nuclear Information System (INIS)
Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol
2015-01-01
Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained
A general real-time formulation for multi-rate mass transfer problems
Directory of Open Access Journals (Sweden)
O. Silva
2009-08-01
Full Text Available Many flow and transport phenomena, ranging from delayed storage in pumping tests to tailing in river or aquifer tracer breakthrough curves or slow kinetics in reactive transport, display non-equilibrium (NE behavior. These phenomena are usually modeled by non-local in time formulations, such as multi-porosity, multiple processes non equilibrium, continuous time random walk, memory functions, integro-differential equations, fractional derivatives or multi-rate mass transfer (MRMT, among others. We present a MRMT formulation that can be used to represent all these models of non equilibrium. The formulation can be extended to non-linear phenomena. Here, we develop an algorithm for linear mass transfer, which is accurate, computationally inexpensive and easy to implement in existing groundwater or river flow and transport codes. We illustrate this approach by application to published data involving NE groundwater flow and solute transport in rivers and aquifers.
Mass transfer behavior in lactic acid fermentation using immobilized lactobacillus delbrueckii
Energy Technology Data Exchange (ETDEWEB)
Wang, H.; Seki, M.; Furusaki, S. [The University of Tokyo, Tokyo (Japan). Faculty of Engineering
1995-08-20
We performed simulation studies on mass transfer behavior for immobilized cells in lactic acid fermentation using the mathematical model developed previously. The simulations pointed to an unusual result; that lactate ion diffuses into the bead center from outside during the batch fermentation and the startup period of the continuous fermentation, whereas free lactic acid and protons diffuse in the opposite direction. This phenomenon is caused by the addition of base to keep pH constant in the broth. Also, using an appropriate buffer to control pH in the broth can reduce the inward diffusion of lactate ion and improve the productivity of lactic acid. A singular mass transfer phenomenon is expected to take place in other production processes using immobilized cells (or enzyme), where alkali solution is added to broth to keep pH constant. 9 refs., 6 figs.
Directory of Open Access Journals (Sweden)
Valéria A. V. Queiroz
2010-08-01
Full Text Available O objetivo deste trabalho foi avaliar o efeito da concentração de soluções de sacarose, sucralose e açúcar invertido sobre a cinética da desidratação osmótica de pedaços de goiaba. Frações de 1/12 do fruto foram imersas em soluções de sacarose a 0,5 e 0,4 g mL-1; de sacarose a 0,3 g mL-1 + sucralose a 0,2 g L-1 e em xarope de açúcar invertido, a 50 ºC, por 2 h, sob agitação de 60 min. A solução de açúcar invertido promoveu maior perda de água e redução de massa nas amostras de goiaba submetidas à desidratação osmótica. O melhor desempenho foi obtido para o tratamento em solução de sacarose a 0,4 g mL-1; com perda de água e redução de massa semelhantes aos valores obtidos na imersão em solução de sacarose a 0,5 g mL-1 e ganho de sólidos similar ao observado em solução de sacarose a 0,3 g mL-1.The present work aimed at investigating the effect of sucrose, sucralose and inverted sugar solutions on the kinetics of osmotic dehydration of guava pieces. The fruits were cut in twelfths and immersed in sucrose solutions at 0.5 and 0.4 g mL-1; of sucrose at 0.3 g mL-1 + sucralose at 0.2 g L-1 and in inverted sugar syrup for 2 h at 50 ºC, under agitation of 60 min. The undiluted inverted sugar solution promoted the highest levels of water loss and weight reduction in osmo-dehydrated guava pieces. The best overall performance was achieved by immersing guava pieces in sucrose solutions at 0.4 g mL-1 which led to water loss and mass reduction of similar values attained with sucrose solutions at 0.5 g mL-1; whereas maintaining the same level of solids gain achieved with sucrose solutions at 0.3 g mL-1.
Mass Transfer From Fundamentals to Modern Industrial Applications
Asano, Koichi
2006-01-01
This didactic approach to the principles and modeling of mass transfer as it is needed in modern industrial processes is unique in combining a step-by-step introduction to all important fundamentals with the most recent applications. Based upon the renowned author's successful new modeling method as used for the O-18 process, the exemplary exercises included in the text are fact-proven, taken directly from existing chemical plants. Fascinating reading for chemists, graduate students, chemical and process engineers, as well as thermodynamics physicists.
Solid lubricant mass contact transfer technology usage for vacuum ball bearings longevity increasing
Arzymatov, B.; Deulin, E.
2016-07-01
A contact mass transfer technological method of solid lubricant deposition on components of vacuum ball bearings is presented. Physics-mathematical model of process contact mass transfer is being considered. The experimental results of ball bearings covered with solid lubricant longevity in vacuum are presented. It is shown that solid lubricant of contact mass transfer method deposition is prospective for ball bearing longevity increasing.
Mass Transfer Model for a Breached Waste Package
International Nuclear Information System (INIS)
Hsu, C.; McClure, J.
2004-01-01
The degradation of waste packages, which are used for the disposal of spent nuclear fuel in the repository, can result in configurations that may increase the probability of criticality. A mass transfer model is developed for a breached waste package to account for the entrainment of insoluble particles. In combination with radionuclide decay, soluble advection, and colloidal transport, a complete mass balance of nuclides in the waste package becomes available. The entrainment equations are derived from dimensionless parameters such as drag coefficient and Reynolds number and based on the assumption that insoluble particles are subjected to buoyant force, gravitational force, and drag force only. Particle size distributions are utilized to calculate entrainment concentration along with geochemistry model abstraction to calculate soluble concentration, and colloid model abstraction to calculate colloid concentration and radionuclide sorption. Results are compared with base case geochemistry model, which only considers soluble advection loss
Membrane introduction proton-transfer-reaction mass spectrometry
International Nuclear Information System (INIS)
Alexander, M.; Boscaini, E.; Maerk, T.; Lindinger, W.
2002-01-01
Proton-transfer-reaction mass spectrometry (PTR-MS) is a rapidly expanding field with multiple applications in ion physics, atmospheric chemistry, food chemistry, volatile organic compounds monitoring and biology. Initial studies that combine PTR-MS and membrane introduction mass spectrometry (MIMS) were researched and outlined. First using PTR-MS, certain fundamental physical properties of a poly-dimethylsiloxane (PDMS) membrane including solubilities and diffusion coefficients were measured. Second, it was shown how the chemical selectivity of the (PDMS) can be used to extend the capabilities of the PTR-MS instrument by eliminating certain isobaric interferences and excluding water from volatile organic compounds (VOCs). Experiments with mixtures of several VOCs (toluene, benzene, acetone, propanal, methanol) are presented. (nevyjel)
Mass transfer effects in hygroscopic measurements of aerosol particles
Directory of Open Access Journals (Sweden)
M. N. Chan
2005-01-01
Full Text Available The tandem differential mobility analyzer (TDMA has been widely utilized to measure the hygroscopicity of laboratory-generated and atmospheric submicrometer particles. An important concern in investigating the hygroscopicity of the particles is if the particles have attained equilibrium state in the measurements. We present a literature survey to investigate the mass transfer effects in hygroscopicity measurements. In most TDMA studies, a residence time in the order of seconds is used for humidification (or dehumidification. NaCl and (NH42SO4 particles are usually used to verify the equilibrium measurements during this residence time, which is presumed to be sufficient for other particles. There have been observations that not all types of submicrometer particles, including atmospheric particles, attain their equilibrium sizes within this time scale. We recommend that experimentation with different residence times be conducted and that the residence time should be explicitly stated in future TDMA measurements. Mass transfer effects may also exist in the measurements of other properties related to the water uptake of atmospheric particles such as relative humidity dependent light scattering coefficients and cloud condensation nuclei activity.
Mass transfer of steels for FBR in sodium loop
International Nuclear Information System (INIS)
Susukida, Hiroshi; Yonezawa, Toshio; Ueda, Mitsuo; Imazu, Takayuki; Kiyokawa, Teruyuki.
1976-06-01
In order to grasp quantitatively the corrosion and mass transfer of steels for FBR in sodium loop and to establish their allowable stress value and corrosion rate, a special sodium loop for material testing was designed and fabricated and the steels were given 3010 hours exposing test in the sodium loop. This paper gives the outline of the sodium loop and the results of the test. (1) Carburization and a slight increase in weight were observed in the specimens of type 304 stainless steel exposed in the sodium loop for 3010 hours, while decarburization was observed in the specimens of 2 1/4 Cr-1 Mo steel. It is considered that these phenomena were caused by the downstream factor of the sodium loop. (2) A remarkable decrease of Charpy absorbed energy was observed in the specimens of type 304 stainless steel exposed in the sodium loop. It is considered that this resulted from the weakening of the grain boundary due to heat history and mass transfer. (3) The specimens exposed in the sodium loop must be washed by ultrasonic waves in a water bath after washing in alcohol. (auth.)
Heat and mass transfer in air-fed pressurised suits
International Nuclear Information System (INIS)
Tesch, K.; Collins, M.W.; Karayiannis, T.G.; Atherton, M.A.; Edwards, P.
2009-01-01
Air-fed pressurised suits are used to protect workers against contamination and hazardous environments. The specific application here is the necessity for regular clean-up maintenance within the torus chamber of fusion reactors. The current design of suiting has been developed empirically. It is, therefore, very desirable to formulate a thermo-fluids model, which will be able to define optimum designs and operating parameters. Two factors indicate that the modelling should be as comprehensive as possible. Firstly, the overall thermo-fluids problem is three-dimensional and includes mass as well as heat transfer. The fluid field is complex, bounded on one side by the human body and on the other by what may be distensible, porous and multi-layer clothing. In this paper, we report firstly the modelling necessary for the additional mass and heat transport processes. This involves the use of Fick's and Fourier's laws and conjugate heat transfer. The results of an initial validation study are presented. Temperatures at the outlet of the suits were obtained experimentally and compared with those predicted by the overall CFD model. Realistic three-dimensional geometries were used for the suit and human body. Calculations were for turbulent flow with single- and two-component (species) models
Directory of Open Access Journals (Sweden)
Mamatha S. Upadhay
2017-01-01
Full Text Available Heat and mass flux conditions on magnetohydrodynamic unsteady Eyring-Powell dusty nanofluid over a sheet is addressed. The combined effect of Brownian motion and thermophoresis in nanofluid modeling are retained. The Cattaneo-Christov heat flux model is imposed. A set of similarity variables are utilized to form ordinary differential system from the prevailing partial differential equations. The problem of ordinary differential system (ODS is analyzed numerically through Runge-Kutta based shooting method. Graphical results of pertinent parameters on the velocity, temperature and nanoparticle concentration are studied. Skin friction coefficient, local Nusselt and Sherwood number are also addressed with help of graphs and also validated the present solutions with already existing solutions in the form of table. It is found that the thermal relaxation parameter improves the heat transfer rate and minimizes the mass transfer rate. The heat transfer rate is higher in prescribed heat flux (PHF case when compared with prescribed wall temperature (PWT case.
CSIR Research Space (South Africa)
Moolman, FS
2004-07-29
Full Text Available : With increase in the dispersed phase volume fraction (phi(p)) both the oxygen holding capacity and the viscosity increases. These issues are addressed here using simplified mass transfer models, amenable to analytical solution, for both gas-sparged and membrane...
Lee, Jung Gil
2017-11-03
In order to improve water production of membrane distillation (MD), the development of high performance membrane having better mass transfer and enhancement of convection heat transfer in MD module have been continuously investigated. This paper presents the relationship between the heat and mass transfer resistance across the membrane and the performance improvement. Various ranges of mass transfer coefficient (MTC) from normal (0.3×10−6 to 2.1×10−6kg/m2sPa: currently available membranes) to high (>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer and convection heat transfer on the MD performance parameters including temperature polarization coefficient (TPC), mean permeate flux, and specific energy consumption were investigated in a direct contact MD (DCMD) configuration. Results showed that improving the MTC at the low ranges is more important than that at the high ranges where the heat transfer resistance becomes dominant and hence the convection heat transfer coefficient must be increased. Therefore, an effort on designing MD modules using feed and permeate spacers and controlling the membrane surface roughness to increase the convection heat transfer and TPC in the channel aiming to enhance the flux is required because the currently developed mass transfer has almost reached the critical point.
Investigation of wall mass transfer characteristics downstream of an orifice
International Nuclear Information System (INIS)
El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.
2012-01-01
Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .
Observation of electron-transfer-mediated decay in aqueous solution
Unger, Isaak; Seidel, Robert; Thürmer, Stephan; Pohl, Marvin N.; Aziz, Emad F.; Cederbaum, Lorenz S.; Muchová, Eva; Slavíček, Petr; Winter, Bernd; Kryzhevoi, Nikolai V.
2017-07-01
Photoionization is at the heart of X-ray photoelectron spectroscopy (XPS), which gives access to important information on a sample's local chemical environment. Local and non-local electronic decay after photoionization—in which the refilling of core holes results in electron emission from either the initially ionized species or a neighbour, respectively—have been well studied. However, electron-transfer-mediated decay (ETMD), which involves the refilling of a core hole by an electron from a neighbouring species, has not yet been observed in condensed phase. Here we report the experimental observation of ETMD in an aqueous LiCl solution by detecting characteristic secondary low-energy electrons using liquid-microjet soft XPS. Experimental results are interpreted using molecular dynamics and high-level ab initio calculations. We show that both solvent molecules and counterions participate in the ETMD processes, and different ion associations have distinctive spectral fingerprints. Furthermore, ETMD spectra are sensitive to coordination numbers, ion-solvent distances and solvent arrangement.
Directory of Open Access Journals (Sweden)
W. Sinkala
2012-01-01
Full Text Available We use Lie symmetry analysis to solve a boundary value problem that arises in chemical engineering, namely, mass transfer during the contact of a solid slab with an overhead flowing fluid. This problem was earlier tackled using Adomian decomposition method (Fatoorehchi and Abolghasemi 2011, leading to the Adomian series form of solution. It turns out that the application of Lie group analysis yields an elegant form of the solution. After introducing the governing mathematical model and some preliminaries of Lie symmetry analysis, we compute the Lie point symmetries admitted by the governing equation and use these to construct the desired solution as an invariant solution.
FEHMN 1.0: Finite element heat and mass transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1991-04-01
A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user's guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs
Analysis of metals in solution using electrospray ionization mass spectrometry
International Nuclear Information System (INIS)
Van Berkel, G.J.; McLuckey, S.A.; Glish, G.L.
1991-01-01
Electrospray ionization-mass spectrometry (ES-MS) has gained most of its recent attention because of the ability to produce multiply charged ions from very large biomolecules making them amenable to analysis by most modern mass spectrometers. However, ES-MS is equally well suited for compounds of low or moderate molecular weight that are difficult to volatilize intact by others methods. Moreover, the early work of Fenn and co-workers (1,2) and recent reports by Kebarle and co-workers (3,4) attest to the applicability of ES-MS to the study of the gas-phase chemistry of multiply solvated or coordinated metal ions. The utility of ES-MS for the analysis of metals in solution derives in part from the facility with which the metal ions are solvated by or form complexes with the ES solvent or other reagents added to the solvent. Solvation and complexation can be a hindrance, however, in the analytical application of ES-MS to the analysis of metals in solution, especially solutions of metals in water. The data presented here demonstrate that many of the problems in the ES-MS analysis of metals can be overcome by complexing the metals with crown ethers and/or extracting the metals from water into an organic phase using crown ethers. 5 refs., 4 figs
Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan
2016-01-01
After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.
International Nuclear Information System (INIS)
Li, Xiu-Wei; Zhang, Xiao-Song; Chen, Qing
2015-01-01
Highlights: • Experimental research has been made on the membrane air-conditioning system. • We develop mass transfer models for the membrane regeneration process. • The paper exposes the actual performance of the system. • Increase of membrane pairs improves the performance. - Abstract: Absorption air-conditioning system has great advantages in energy conservation and environmental protection. To improve the performance of the traditional system, the membrane regeneration absorption system was proposed. Its COP could approach 6 by regenerating absorbent solution with the ion exchange membranes. However, the theoretical conclusion has not been supported by the experiment. This paper presents the experimental research of the membrane regeneration process. It has investigated the mass transfer process, energy efficiency and actual performance under different working conditions. Based on that, a mass transfer model has been developed and the influences of some key parameters have been exposed. It found the regeneration performance is mainly influenced by the current intensity. The calculation results with the model agree well the experimental data. The actual efficiency was lower than 50%, caused by energy loss in heat and electrochemical reactions. The actual COP is between 1 and 3, lower current intensity and more membrane pairs could improve it.
International Nuclear Information System (INIS)
Janecky, D.R.
1988-01-01
A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs
Effect of mass transfer in a recirculation batch reactor system for immobilized penicillin amidase.
Park, J M; Choi, C Y; Seong, B L; Han, M H
1982-10-01
The effect of external mass transfer resistance on the overall reaction rate of the immobilized whole cell penicillin amidase of E. coli in a recirculation batch reactor was investigated. The internal diffusional resistance was found negligible as indicated by the value of effectiveness factor, 0.95. The local environmental change in a column due to the pH drop was successfully overcome by employing buffer solution. The reaction rate was measured by pH-stat method and was found to follow the simple Michaelis-Menten law at the initial stage of the reaction. The values of the net reaction rate experimentally determined were used to calculate the substrate concentration at the external surface of the catalyst pellet and then to calculate the mass transfer coefficient, k(L), at various flow rates and substrate concentrations. The correlation proposed by Chilton and Colburn represented adequately the experimental data. The linear change of log j(D) at low log N(Re) with negative slope was ascribed to the fact that the external mass transfer approached the state of pure diffusion in the limit of zero superficial velocity.
Applying rotary jet heads for mixing and mass transfer in a forced recirculation tank reactor system
DEFF Research Database (Denmark)
Nordkvist, Mikkel; Grotkjær, Thomas; Hummer, J.S.
2003-01-01
or an external loop.In this study, we determine mixing times in water and CMC solutions and oxygen mass transfer coefficients in water for a tank reactor system where a small fraction of the total liquid volume is rapidly circulated through an external loop and injected through the nozzles of rotary jet heads....... The system has a very simple design with no internal baffles or heat exchange area, and between batches the rotary jet heads are used for cleaning in place.Mixing time decreases and mass transfer increases with increasing circulation flow rate. For nozzle diameters between 5.5 and 10 mm and with one or two...... rotary jet heads, it is shown that a remarkable saving in power input for a fixed mixing time or mass transfer coefficient can be obtained by using a large nozzle diameter and two rather than one rotary jet heads.At the experimental conditions of the study the system is scaleable by simple formulas...
User's manual for the FEHM application - A finite-element heat- and mass-transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions
Conference on heat mass transfer and properties of liquid metals TF-2002
International Nuclear Information System (INIS)
Efanov, A.D.; Kozlov, F.A.
2003-01-01
Results of the conference TF-2002 devoted to the combined approach to problems of harnessing liquid metals as coolants for NPU are presented. The conference takes place in Obninsk, 29 - 31 October, 2002. Papers of the conference involve items on thermal hydraulics, mass transfer and safety of NPU with liquid metal coolants, structure, physical and chemical properties of liquid metal and liquid metal solutions, decommissioning of units and ecology, application of liquid metals divorced with NPU. Most of the papers of the conference are devoted to the investigation into lead and lead-bismuth coolants [ru
Effects of mass transfer on MHD flow of casson fluid with chemical reaction and suction
Directory of Open Access Journals (Sweden)
S. A. Shehzad
2013-03-01
Full Text Available Effect of mass transfer in the magnetohydrodynamic flow of a Casson fluid over a porous stretching sheet is addressed in the presence of a chemical reaction. A series solution for the resulting nonlinear flow is computed. The skin friction coefficient and local Sherwood number are analyzed through numerical values for various parameters of interest. The velocity and concentration fields are illustrated for several pertinent flow parameters. We observed that the Casson parameter and Hartman number have similar effects on the velocity in a qualitative sense. We further analyzed that the concentration profile decreases rapidly in comparison to the fluid velocity when we increased the values of the suction parameter.
The application of positron emission tomography to the study of mass transfer in fractured rock
International Nuclear Information System (INIS)
Gilling, D.; Jefferies, N.L.; Fowles, P.; Hawkesworth, M.R.; Parker, D.J.
1991-06-01
In order to predict the transport of dissolved radioelements through a fractured rock it is necessary to determine both the geometry of the fracture network and the hydraulic properties of the individual fractures. This paper describes a technique for studying mass transfer in a single fracture. The technique is positron emission tomography (PET) and it offers the potential for visualising quantitatively the migration of dissolved tracers. Preliminary experiments have been undertaken involving the flow of Na-22 and F-18 labelled solutions through artificial fractures. The results demonstrate that PET is well suited to this application. (author)
The application of positron emission tomography to the study of mass transfer in fractured rock
International Nuclear Information System (INIS)
Gilling, D.; Jefferies, N.L.; Fowles, P.; Hawkesworth, M.R.; Parker, D.J.
1991-06-01
Water flow in hard rocks takes place dominantly in fractures. In order to predict the transport of dissolved radioelements through a fractured rock it is necessary to determine both the geometry of the fracture network and the hydraulic properties of the individual fractures. This paper describes a technique for studying mass transfer in a single fracture. The technique is positron emission tomography (PET) and it offers the potential for visualising quantitatively the migration of dissolved tracers. Preliminary experiments have been undertaken involving the flow of Na-22 and F-18 labelled solutions through artificial fractures. The results demonstrate that PET is well suited to this application. (author)
PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS
Directory of Open Access Journals (Sweden)
Doroshenko A.V.
2014-12-01
Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.
Generalized Couette Poiseuille flow with boundary mass transfer
Marques, F.; Sanchez, J.; Weidman, P. D.
1998-11-01
A generalized similarity formulation extending the work of Terrill (1967) for Couette Poiseuille flow in the annulus between concentric cylinders of infinite extent is given. Boundary conditions compatible with the formulation allow a study of the effects of inner and outer cylinder transpiration, rotation, translation, stretching and twisting, in addition to that of an externally imposed constant axial pressure gradient. The problem is governed by [eta], the ratio of inner to outer radii, a Poiseuille number, and nine Reynolds numbers. Single-cylinder and planar problems can be recovered in the limits [eta][rightward arrow]0 and [eta][rightward arrow]1, respectively. Two coupled primary nonlinear equations govern the meridional motion generated by uniform mass flux through the porous walls and the azimuthal motion generated by torsional movement of the cylinders; subsidiary equations linearly slaved to the primary flow govern the effects of cylinder translation, cylinder rotation, and an external pressure gradient. Steady solutions of the primary equations for uniform source/sink flow of strength F through the inner cylinder are reported for 0[less-than-or-eq, slant][eta][less-than-or-eq, slant]1. Asymptotic results corroborating the numerical solutions are found in different limiting cases. For F0 is more complex in that unique solutions are found at low Reynolds numbers, a region of triple solutions exists at moderate Reynolds numbers, and a two-cell solution prevails at large Reynolds numbers. The subsidiary linear equations are solved at [eta]=0.5 to exhibit the effects of cylinder translation, rotation, and an axial pressure gradient on the source/sink flows.
On Two-Scale Modelling of Heat and Mass Transfer
International Nuclear Information System (INIS)
Vala, J.; Stastnik, S.
2008-01-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
On Two-Scale Modelling of Heat and Mass Transfer
Vala, J.; Št'astník, S.
2008-09-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
Prediction of heat and mass transfer in innovative nuclear reactors
International Nuclear Information System (INIS)
Ambrosini, W.; Forgione, N.; Manfredini, A.; Oriolo, F.
2000-01-01
This paper proposes a short review of the different forms adopted to express the analogy between heat and mass transfer for application in correlating data from condensation and evaporation experiments. In particular, the assumptions at the basis of the various forms presented by classical textbooks as well as recent research work are qualitatively discussed, proposing a unified treatment of the different models. On this background, the results of the application of one of the considered forms of the analogy to a problem having relevance for nuclear reactor safety are then discussed. The work performed in this frame is related to condensation on finned tube heat exchangers, proposed as key components in passive containment cooling systems adopted in some innovative reactor concepts. The application of the model to the experimental dana also allowed to obtain interesting information about the effect of different parameters on the cooling capabilities of this compact heat exchangers. (author)
A review of near-field mass transfer in geologic disposal systems
International Nuclear Information System (INIS)
Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.
1990-02-01
In this report we summarize the analyses of the time-dependent mass transfer of radionuclides from a waste solid into surrounding porous or fractured media that have been developed at the University of California, Berkeley. For each analysis we describe the conceptual model, we present the governing equations and the resulting analytic solutions, and we illustrate the results. Designers of geologic disposal systems for solid waste must predict the long-term time-dependent rate of dissolution of toxic contaminants in ground water, to provide the source term for predicting the later transport of these contaminants to the environment. Mass-transfer analysis is being used to predict rates of dissolution and release of radioactive constituents in future repositories for high-level radioactive waste, and it has been applied to predict the life of a copper container for high-level radioactive waste. Mechanistic analysis of mass-transfer is based on well-established theory of diffusive-convective transport. Its application requires experimental measurement of well-defined parameters such as porosity, solubility, diffusion coefficient, and pore velocity. Our first analysis assumed a waste solid in direct contact with porous rock. Subsequently we analyzed the more realistic situations of backfill between the waste and rock, rock with discrete fractures as well as pores, and the effects of waste constituents of high solubility. Those dealing with specifically with mass transfer in the near field are presented here. In order to have a consistent set of notation within this review, some of the notation here is different than in the reports cited. 71 refs., 47 figs., 7 tabs
Mass transfer controlled reactions in packed beds at low Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Fedkiw, P.S.
1978-12-01
The a priori prediction and correlation of mass-transfer rates in transport limited, packed-bed reactors at low Reynolds numbers is examined. The solutions to the governing equations for a flow-through porous electrode reactor indicate that these devices must operate at a low space velocity to suppress a large ohmic potential drop. Packed-bed data for the mass-transfer rate at such low Reynolds numbers were examined and found to be sparse, especially in liquid systems. Prior models to simulate the solid-void structure in a bed are reviewed. Here the bed was envisioned as an array of sinusoidal periodically constricted tubes (PCT). Use of this model has not appeared in the literature. The velocity field in such a tube should be a good approximation to the converging-diverging character of the velocity field in an actual bed. The creeping flow velocity profiles were calculated. These results were used in the convective-diffusion equation to find mass transfer rates at high Peclet number for both deep and shallow beds, for low Peclet numbers in a deep bed. All calculations assumed that the reactant concentration at the tube surface is zero. Mass-transfer data were experimentally taken in a transport controlled, flow-through porous electrode to test the theoretical calculations and to provide data resently unavailable for deeper beds. It was found that the sinusoidal PCT model could not fit the data of this work or that available in the literature. However, all data could be adequately described by a model which incorporates a channelingeffect. The bed was successfully modeled as an array of dual sized straight tubes.
International Nuclear Information System (INIS)
Christensen, Kristi; Rutledge, Veronica; Garn, Troy
2011-01-01
In support of the Nuclear Energy Advanced Modeling Simulation Safeguards and Separations (NEAMS SafeSep) program, the Idaho National Laboratory (INL) worked in collaboration with Los Alamos National Laboratory (LANL) to further a modeling effort designed to predict mass transfer behavior for selected metal species between individual dispersed drops and a continuous phase in a two phase liquid-liquid extraction (LLE) system. The purpose of the model is to understand the fundamental processes of mass transfer that occur at the drop interface. This fundamental understanding can be extended to support modeling of larger LLE equipment such as mixer settlers, pulse columns, and centrifugal contactors. The work performed at the INL involved gathering the necessary experimental data to support the modeling effort. A custom experimental apparatus was designed and built for performing drop contact experiments to measure mass transfer coefficients as a function of contact time. A high speed digital camera was used in conjunction with the apparatus to measure size, shape, and velocity of the drops. In addition to drop data, the physical properties of the experimental fluids were measured to be used as input data for the model. Physical properties measurements included density, viscosity, surface tension and interfacial tension. Additionally, self diffusion coefficients for the selected metal species in each experimental solution were measured, and the distribution coefficient for the metal partitioning between phases was determined. At the completion of this work, the INL has determined the mass transfer coefficient and a velocity profile for drops rising by buoyancy through a continuous medium under a specific set of experimental conditions. Additionally, a complete set of experimentally determined fluid properties has been obtained. All data will be provided to LANL to support the modeling effort.
Modelling of convective heat and mass transfer in rotating flows
Shevchuk, Igor V
2016-01-01
This monograph presents results of the analytical and numerical modeling of convective heat and mass transfer in different rotating flows caused by (i) system rotation, (ii) swirl flows due to swirl generators, and (iii) surface curvature in turns and bends. Volume forces (i.e. centrifugal and Coriolis forces), which influence the flow pattern, emerge in all of these rotating flows. The main part of this work deals with rotating flows caused by system rotation, which includes several rotating-disk configurations and straight pipes rotating about a parallel axis. Swirl flows are studied in some of the configurations mentioned above. Curvilinear flows are investigated in different geometries of two-pass ribbed and smooth channels with 180° bends. The author demonstrates that the complex phenomena of fluid flow and convective heat transfer in rotating flows can be successfully simulated using not only the universal CFD methodology, but in certain cases by means of the integral methods, self-similar and analyt...
Devices with extended area structures for mass transfer processing of fluids
TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.
2009-04-21
A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.
Influence of the boundary conditions on heat and mass transfer in spacer-filled channels
Ciofalo, M.; La Cerva, M. F.; Di Liberto, M.; Tamburini, A.
2017-11-01
The purpose of this study is to discuss some problems which arise in heat or mass transfer in complex channels, with special reference to the spacer-filled channels adopted in membrane processes. Among the issues addressed are the consistent definition of local and mean heat or mass transfer coefficients; the influence of the wall boundary conditions; the influence of one-side versus two-side heat/mass transfer. Most of the results discussed were obtained by finite volume CFD simulations concerning heat transfer in Membrane Distillation or mass transfer in Electrodialysis and Reverse Electrodialysis, but many of the conclusions apply also to different processes involving geometrically complex channels
Kinetics and mass-transfer phenomena in anaerobic granular sludge.
Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R
2001-04-20
The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.
Collective charge and mass transfer in heavy ion reactions
International Nuclear Information System (INIS)
Hahn, J.
1982-01-01
In this thesis the dynamics of the charge and mass asymmetry degree of freedom was studied in the framework of the fragmentation theory by means of a time-dependent Schroedinger equation. New is the introduction of a friction potential which describes the coupling of these collective degrees of freedom to the not explicitely treated other collective respectively internal degrees of freedom. Thereby it was shown that the measured widths of the isobaric charge distributions in the 86 Kr+sup(92,98)Mo reaction can be explained mainly by the quantum mechanical uncertainty in the charge asymmetry degree of freedom. The charge equilibration occurring at the begin of a deep inelastic collision can therefore by considered as a quantum mechanical, collective, damped motion which is connected with the excitation of the isovector giant dipole resonance of the nucleus-nucleus system. The study of the mass transfer in the reactions 132 Xe+ 120 Sn and 86 Kr+ 166 Er shows, how important at the begin of a deep inelastic collision shell structures and their conservation are for a large part of the reaction, even if the elemental distribution show no maxima in the region of magic shell closures. The experimental width are up to 10 MeV/A well described under conservation of the shell structure. (orig./HSI) [de
Global stability and exact solution of an arbitrary-solute nonlinear cellular mass transport system.
Benson, James D
2014-12-01
The prediction of the cellular state as a function of extracellular concentrations and temperatures has been of interest to physiologists for nearly a century. One of the most widely used models in the field is one where mass flux is linearly proportional to the concentration difference across the membrane. These fluxes define a nonlinear differential equation system for the intracellular state, which when coupled with appropriate initial conditions, define the intracellular state as a function of the extracellular concentrations of both permeating and nonpermeating solutes. Here we take advantage of a reparametrization scheme to extend existing stability results to a more general setting and to a develop analytical solutions to this model for an arbitrary number of extracellular solutes. Copyright © 2014 Elsevier Inc. All rights reserved.
Electron transfer reactions of metal complexes in solution
International Nuclear Information System (INIS)
Sutin, N.
1977-01-01
A few representative electron-transfer reactions are selected and their kinetic parameters compared with the predictions of activated complex models. Since Taube has presented an elegant treatment of intramolecular electron-transfer reactions, emphasis is on bimolecular reactions. The latter electron-transfer reactions are more complicated to treat theoretically since the geometries of their activated complexes are not as well known as for the intramolecular case. In addition in biomolecular reactions, the work required to bring the two reactants together needs to be calculated. Since both reactants generally carry charges this presents a non-trivial problem at the ionic strengths usually used to study bimolecular electron transfer
Voltammetry for the charge transfer at two immiscible electrolyte solutions interface
International Nuclear Information System (INIS)
Kihara, S.; Suzuki, M.; Maeda, K.; Ogura, K.; Matsui, M.; Yoshida, Z.
1989-01-01
The voltammetry for the charge transfer (VCT) at the interface of immicible solutions is a very powerful method for understanding the dynamic features of the charge transfer because of its unmatched advantage that the transfer energy and the number of charges transferred can be measured simultaneously and in situ. In the present paper, several novel systems for electron transfer are outlined, and the following topics are discussed based on results obtained by the current scan polarography at the solution dropping electrode developed as a technique for VCT: the relation between the half-wave potential in VCT for ion transfer and the characteristics of the ion transferred; the relation between the half-wave potential in VCT for electron transfer and the electrochemical nature of a redox couple added in water and that added in organic solution; and the ion transfer through a liquid membrane promoted by electron transfer. Observations are presented and discussion is made on the characteristics of ion transfer polarograms, those of electron transfer polarograms, and ion transfer promoted by electron transfer at a liquid/membrane interface. (N.K.)
Katz, Brian G.; Plummer, L. Niel; Busenberg, Eurybiades; Revesz, Kinga M.; Jones, Blair F.; Lee, Terrie M.
1995-06-01
Chemical patterns along evolutionary groundwater flow paths in silicate and carbonate aquifers were interpreted using solute tracers, carbon and sulfur isotopes, and mass balance reaction modeling for a complex hydrologic system involving groundwater inflow to and outflow from a sinkhole lake in northern Florida. Rates of dominant reactions along defined flow paths were estimated from modeled mass transfer and ages obtained from CFC-modeled recharge dates. Groundwater upgradient from Lake Barco remains oxic as it moves downward, reacting with silicate minerals in a system open to carbon dioxide (CO2), producing only small increases in dissolved species. Beneath and downgradient of Lake Barco the oxic groundwater mixes with lake water leakage in a highly reducing, silicate-carbonate mineral environment. A mixing model, developed for anoxic groundwater downgradient from the lake, accounted for the observed chemical and isotopic composition by combining different proportions of lake water leakage and infiltrating meteoric water. The evolution of major ion chemistry and the 13C isotopic composition of dissolved carbon species in groundwater downgradient from the lake can be explained by the aerobic oxidation of organic matter in the lake, anaerobic microbial oxidation of organic carbon, and incongruent dissolution of smectite minerals to kaolinite. The dominant process for the generation of methane was by the CO2 reduction pathway based on the isotopic composition of hydrogen (δ2H(CH4) = -186 to -234‰) and carbon (δ13C(CH4) = -65.7 to -72.3‰). Rates of microbial metabolism of organic matter, estimated from the mass transfer reaction models, ranged from 0.0047 to 0.039 mmol L-1 yr-1 for groundwater downgradient from the lake.
Deviations from mass transfer equilibrium and mathematical modeling of mixer-settler contactors
International Nuclear Information System (INIS)
Beyerlein, A.L.; Geldard, J.F.; Chung, H.F.; Bennett, J.E.
1980-01-01
This paper presents the mathematical basis for the computer model PUBG of mixer-settler contactors which accounts for deviations from mass transfer equilibrium. This is accomplished by formulating the mass balance equations for the mixers such that the mass transfer rate of nuclear materials between the aqueous and organic phases is accounted for. 19 refs
Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.
2018-05-01
During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.
Effect of Orifice Nozzle Design and Input Power on Two-Phase Flow and Mass Transfer Characteristics
Energy Technology Data Exchange (ETDEWEB)
Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)
2016-04-15
It is necessary to investigate the input power as well as the mass transfer characteristics of the aeration process in order to improve the energy efficiency of an aerobic water treatment. The objective of this study is to experimentally investigate the effect of orifice nozzle design and input power on the flow and mass transfer characteristics of a vertical two-phase flow. The mass ratio, input power, volumetric mass transfer coefficient, and mass transfer efficiency were calculated using the measured data. It was found that as the input power increases the volumetric mass transfer coefficient increases, while the mass ratio and mass transfer efficiency decrease. The mass ratio, volumetric mass transfer coefficient, and mass transfer efficiency were higher for the orifice configuration with a smaller orifice nozzle area ratio. An empirical correlation was proposed to estimate the effect of mass ratio, input power, and Froude number on the volumetric mass transfer coefficient.
Origin of Mass. Mass and Mass-Energy Equation from Classical-Mechanics Solution
Zheng-Johansson, J. X.; Johansson, P-I.
2005-01-01
We establish the classical wave equation for a particle formed of a massless oscillatory elementary charge generally also traveling, and the resulting electromagnetic waves, of a generally Doppler-effected angular frequency $\\w$, in the vacuum in three dimensions. We obtain from the solutions the total energy of the particle wave to be $\\eng=\\hbarc\\w$, $2\\pi \\hbarc$ being a function expressed in wave-medium parameters and identifiable as the Planck constant. In respect to the train of the wav...
Tirunehe, Gossaye; Norddahl, B
2016-04-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.
International Nuclear Information System (INIS)
Abdel-Aziz, M.S.M.; El-Shazly, A.H.; Farag, H.A.; Sedahmed, G.H.
2011-01-01
Highlights: → The work explores a new electrochemical reactor by using square rotating cylinders. → The results show that it is superior to the traditional circular rotating cylinder. → A dimensionless design equation for the new reactor was correlated. → The oxalic acid removal by the new reactor was succeeded and found promising. → The energy consumption per kg oxalic acid removed by the unit was calculated. - Abstract: Rates of mass transfer at a rotating square cylinder were measured by an electrochemical technique which involved measuring the limiting current of the cathodic reduction of K 3 Fe(CN) 6 in a large excess of NaOH solution. Variables studied were: cylinder rotation speed, physical properties of the solution and cylinder equivalent diameter. The data for the condition 1577 0.33 Re 0.45 For a given set of conditions the rate of mass transfer at the square rotating cylinder was found to be higher than that at the traditional circular rotating cylinder by an amount ranging from 47% to 200% depending on Re. The use of the square rotating cylinder electrode in removing oxalic acid from wastewater by anodic oxidation on Pb/PbO anode was examined and found to be promising.
76 FR 59395 - Primus Solutions, Inc.; Transfer of Data
2011-09-26
...(h)(3) and 2.308(i)(2). Primus Solutions, Inc., has been awarded multiple contracts to perform work for OPP, and access to this information will enable Primus Solutions, Inc., to fulfill the obligations of the contract. DATES: Primus Solutions, Inc., will be given access to this information on or before...
Using White Dwarf Companions of Blue Stragglers to Constrain Mass Transfer Physics
Gosnell, Natalie M.; Leiner, Emily; Geller, Aaron M.; Knigge, Christian; Mathieu, Robert D.; Sills, Alison; Leigh, Nathan
2018-06-01
Complete membership studies of old open clusters reveal that 25% of the evolved stars follow pathways in stellar evolution that are impacted by binary evolution. Recent studies show that the majority of blue straggler stars, traditionally defined to be stars brighter and bluer than the corresponding main sequence turnoff, are formed through mass transfer from a giant star onto a main sequence companion, resulting in a white dwarf in a binary system with a blue straggler. We will present constraints on the histories and mass transfer efficiencies for two blue straggler-white dwarf binaries in open cluster NGC 188. The constraints are a result of measuring white dwarf cooling temperatures and surface gravities with HST COS far-ultraviolet spectroscopy. This information sets both the timeline for mass transfer and the stellar masses in the pre-mass transfer binary, allowing us to constrain aspects of the mass transfer physics. One system is formed through Case C mass transfer, leaving a CO-core white dwarf, and provides an interesting test case for mass transfer from an asymptotic giant branch star in an eccentric system. The other system formed through Case B mass transfer, leaving a He-core white dwarf, and challenges our current understanding of the expected regimes for stable mass transfer from red giant branch stars.
Numerical investigation of vapor–liquid heat and mass transfer in porous media
International Nuclear Information System (INIS)
Xin, Chengyun; Rao, Zhonghao; You, Xinyu; Song, Zhengchang; Han, Dongtai
2014-01-01
Highlights: • The heat and mass transfer behaviors in porous media was investigated. • A modified separate flow model (MSFM) was developed. • The influence of heat flux direction on heat and fluid flow behaviors is great. • The saturation profile is weakly discontinuous on the phase interface. • A countercurrent flow exists in two-phase region. - Abstract: A modified separate flow model (MSFM) is developed to numerically investigate the heat and mass transfer behaviors in porous media in this paper. In the MSFM, the effects of capillarity, liquid phase change, nonisothermal two-phase region and the local thermal non-equilibrium (LTNE) are considered. The vapor and liquid velocities are both converted into intermediate variables in the simulations and conveniently convergent solutions are obtained because a special upwind scheme for the convection or boiling heat transfer source and variable convergence factors are simultaneously employed. Two typical numerical examples with a one-dimension model of porous media are studied that the high heat fluxes are vertical and parallel to the fluid flow direction, respectively. And the results indicated that the influence of heat flux direction on heat and fluid flow behaviors in porous media is great. The nonisothermal phenomenon in the two-phase region is obvious for the former while the LTNE phenomenon is remarkable in the two-phase region for the latter. The results also showed several similar behaviors that the saturation profile is weakly discontinuous on the phase interface and a countercurrent flow exists in two-phase region
Mass transfer model for two-layer TBP oxidation reactions: Revision 1
International Nuclear Information System (INIS)
Laurinat, J.E.
1994-01-01
To prove that two-layer, TBP-nitric acid mixtures can be safely stored in the Canyon evaporators, it must be demonstrated that a runaway reaction between TBP and nitric acid will not occur. Previous bench-scale experiments showed that, at typical evaporator temperatures, this reaction is endothermic and therefore cannot run away, due to the loss of heat from evaporation of water in the organic layer. However, the reaction would be exothermic and could run away if the small amount of water in the organic layer evaporates before the nitric acid in this layer is consumed by the reaction. Provided that there is enough water in the aqueous layer, this would occur if the organic layer is sufficiently thick so that the rate of loss of water by evaporation exceeds the rate of replenishment due to mixing with the aqueous layer. Bubbles containing reaction products enhance the rate of transfer of water from the aqueous layer to the organic layer. These bubbles are generated by the oxidation of TBP and its reaction products in the organic layer and by the oxidation of butanol in the aqueous layer. Butanol is formed by the hydrolysis of TBP in the organic layer. For aqueous-layer bubbling to occur, butanol must transfer into the aqueous layer. Consequently, the rate of oxidation and bubble generation in the aqueous layer strongly depends on the rate of transfer of butanol from the organic to the aqueous layer. This report presents measurements of mass transfer rates for the mixing of water and butanol in two-layer, TBP-aqueous mixtures, where the top layer is primarily TBP and the bottom layer is comprised of water or aqueous salt solution. Mass transfer coefficients are derived for use in the modeling of two-layer TBP-nitric acid oxidation experiments
Fukuda, Makoto; Yoshimura, Kengo; Namekawa, Koki; Sakai, Kiyotaka
2017-06-01
The objective of the present study is to evaluate the effect of filtration coefficient and internal filtration on dialysis fluid flow and mass transfer coefficient in dialyzers using dimensionless mass transfer correlation equations. Aqueous solution of vitamin B 12 clearances were obtained for REXEED-15L as a low flux dialyzer, and APS-15EA and APS-15UA as high flux dialyzers. All the other design specifications were identical for these dialyzers except for filtration coefficient. The overall mass transfer coefficient was calculated, moreover, the exponents of Reynolds number (Re) and film mass transfer coefficient of the dialysis-side fluid (k D ) for each flow rate were derived from the Wilson plot and dimensionless correlation equation. The exponents of Re were 0.4 for the low flux dialyzer whereas 0.5 for the high flux dialyzers. Dialysis fluid of the low flux dialyzer was close to laminar flow because of its low filtration coefficient. On the other hand, dialysis fluid of the high flux dialyzers was assumed to be orthogonal flow. Higher filtration coefficient was associated with higher k D influenced by mass transfer rate through diffusion and internal filtration. Higher filtration coefficient of dialyzers and internal filtration affect orthogonal flow of dialysis fluid.
Mass transfer of nonvolatile organic compounds from porous media
Khachikian, Crist Simon
This thesis presents data pertaining to the mass transfer of nonvolatile organic compounds from porous media. Physical properties of porous solids, including surface and pore areas, are studied. Information from these studies, along with dissolution data, are used to develop correlations relating the Sherwood Number to the Peclet Number. The contaminant used in this study is naphthalene; the solids used are Moffett Sand (MS), Borden Sand (BS), Lampblack (LB), and Silica Gel (SG). Surface area results indicate that contamination at 0.1% reduces the area of MS and SG by 48 and 37%, respectively, while contamination at 1.0% reduces the area of MS, BS, and SG by 59, 56, and 40%, respectively. Most of the reduction in area originates in the reduction of pore areas and volumes, where the contaminant precipitates. After long-term storage, surface areas did not recover to their original values due to an "irreversible" fraction of naphthalene. Treatment with heat or solvent or both was necessary to completely remove the contamination. For lampblack, treatment at 100°C decreased areas while treatment at 250°C increased them. Treatment at 250°°C probably opened pores while that at 100°C may have blocked more pores by redistributing the tar-like contaminant characteristic of lampblack. Contaminated MS and SG solids are packed in columns through which water is pumped. The effluent began at a relatively high concentration (˜70% of solubility) for both samples. However, SG column concentrations dropped quickly, never achieving steady state while the MS samples declined more gradually towards steady state. The high pore areas of the SG samples are believed to cause this behavior. The steady state portion of the MS dissolution history is used to develop mass transfer correlations. The correlation in this study differs from previous work in two major ways: (1) the exponent on the Pe is three times larger and (2) the limiting Sh is 106 times smaller. These results suggest that
Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and concentration profiles for a wide range of processes and conditions, for both film and penetration model. With the aid of this mass transfer model it is demonstrated that the absorption rates in syst...
Heterogeneous studies in pulping of wood: Modelling mass transfer of alkali
Simão, João P. F.; Egas, Ana P. V.; Carvalho, M. Graça; Baptista, Cristina M. S. G.; Castro, José Almiro A. M.
2008-01-01
In this paper a heterogeneous lumped parameter model is proposed to describe the mass transfer of effective alkali during the kraft pulping of wood. This model, based on the spatial mean of the concentration profile of effective alkali along the chip thickness, enables the estimation of the effective diffusion coefficient that characterizes the internal resistance to mass transfer and the contribution of the external resistance to mass transfer which has often been neglected. http://www.sc...
DEFF Research Database (Denmark)
Nielsen, Anders Michael; Nielsen, Lars Peter; Feilberg, Anders
2009-01-01
A membrane inlet mass spectrometer (MIMS) was used in combination with a developed computer model to study and improve management of a biofilter (BF) treating malodorous ventilation air from a meat rendering facility. The MIMS was used to determine percentage removal efficiencies (REs) of selected...... sulfur gases and to provide toluene retention profiles for the model to determine the air velocity and overall mass-transfer coefficient of toluene. The mass-transfer coefficient of toluene was used as a reference for determining the mass transfer of sulfur gases. By presenting the model to scenarios...... of a filter bed with a consortium of effective sulfur oxidizers, the most likely mechanism for incomplete removal of sulfur compounds from the exhaust air was elucidated. This was found to be insufficient mass transfer and not inadequate bacterial activity as anticipated by the manager of the BF. Thus...
nTiO{sub 2} mass transfer and deposition behavior in an aquatic environment
Energy Technology Data Exchange (ETDEWEB)
Wei, Xiuzhen, E-mail: xzwei@zjut.edu.cn; He, Junhui; Wang, Meng; Fang, Jinfeng; Chen, Jinyuan, E-mail: cjy1128@zjut.edu.cn; Lv, Bosheng, E-mail: zjhzlbs@zjut.edu.cn [Zhejiang University of Technology, College of Environment (China)
2016-12-15
Nano-TiO{sub 2} (nTiO{sub 2}) is widely used in industry, and some of it is inevitably released into natural aquatic environments. nTiO{sub 2} can be deposited on the streambed or transported along the stream and streambed, and it can also undergo exchange-transfer processes in these systems. The behavior of nTiO{sub 2} in rivers includes deposition-transfer processes in the stream and exchange-transfer processes between the stream and streambed. In this work, the deposition, mass transfer, exchange, and aggregation behavior of nTiO{sub 2} in a simulated river were studied as a function of the solution pH, stream velocity, and anionic, cationic, and neutral surfactant concentrations. In these experiments, a recirculating flume was used to simulate a natural stream. The nTiO{sub 2} deposition and aggregation phenomena in the river and streambed were characterized. Of the three surfactants studied, the anionic surfactant enhanced the nTiO{sub 2} stability in the river and limited its aggregation most effectively, resulting in slow nTiO{sub 2} deposition and nTiO{sub 2} transport over long distances. This study provides information about nanoparticle transport phenomena in simulated natural aquatic systems.
nTiO_2 mass transfer and deposition behavior in an aquatic environment
International Nuclear Information System (INIS)
Wei, Xiuzhen; He, Junhui; Wang, Meng; Fang, Jinfeng; Chen, Jinyuan; Lv, Bosheng
2016-01-01
Nano-TiO_2 (nTiO_2) is widely used in industry, and some of it is inevitably released into natural aquatic environments. nTiO_2 can be deposited on the streambed or transported along the stream and streambed, and it can also undergo exchange-transfer processes in these systems. The behavior of nTiO_2 in rivers includes deposition-transfer processes in the stream and exchange-transfer processes between the stream and streambed. In this work, the deposition, mass transfer, exchange, and aggregation behavior of nTiO_2 in a simulated river were studied as a function of the solution pH, stream velocity, and anionic, cationic, and neutral surfactant concentrations. In these experiments, a recirculating flume was used to simulate a natural stream. The nTiO_2 deposition and aggregation phenomena in the river and streambed were characterized. Of the three surfactants studied, the anionic surfactant enhanced the nTiO_2 stability in the river and limited its aggregation most effectively, resulting in slow nTiO_2 deposition and nTiO_2 transport over long distances. This study provides information about nanoparticle transport phenomena in simulated natural aquatic systems.
Heat and mass transfer in a vertical flue ring furnace
Energy Technology Data Exchange (ETDEWEB)
Jacobsen, Mona
1997-12-31
The main emphasis of this thesis was the design of a mathematical simulation model for studying details in the baking of anodes in the Hydro Aluminium anode baking furnace. The change of thermal conductivity, density, porosity and permeability during heat treatment was investigated. The Transient Plane Source technique for measuring thermal conductivity of solids was used on green carbon materials during the baking process in the temperature range 20-600 {sup o}C. Next, change of mass, density, porosity and permeability of anode samples were measured after being baked to temperatures between 300 and 1200 {sup o}C. The experimental data were used for parameter estimation and verification of property models for use in the anode baking models. Two distinct mathematical models have been modified to study the anode baking. A transient one-dimensional model for studying temperature, pressure and gas evolution in porous anodes during baking was developed. This was extended to a two-dimensional model incorporating the flue gas flow. The mathematical model which included porous heat and mass transfer, pitch pyrolysis, combustion of volatiles, radiation and turbulent channel flow, was developed by source code modification of the Computational Fluid Dynamics code FLUENT. The two-dimensional geometry of a flue gas channel adjacent to a porous flue gas wall, packing coke and anode was used for studying the effect of different firing strategies, raw materials properties and packing coke thickness. The model proved useful for studying the effects of heating rate, geometry and anode properties. 152 refs., 73 figs, 11 tabs.
Micro-scale mass-transfer variations during electrodeposition
Energy Technology Data Exchange (ETDEWEB)
Sutija, D.P.
1991-08-01
Results of two studies on micro-scale mass-transfer enhancement are reported: (1) Profiled cross-sections of striated zinc surfaces deposited in laminar channel flow were analyzed with fast-fourier transforms (FFT) to determine preferred striation wavelengths. Striation frequency increases with current density until a minimum separation between striae of 150 {mu}m is reached. Beyond this point, independent of substrate used, striae meld together and form a relatively smooth, nodular deposit. Substrates equipped with artificial micron-sized protrusions result in significantly different macro-morphology in zinc deposits. Micro-patterned electrodes (MPE) with hemispherical protrusions 5 {mu}m in diameter yield thin zinc striae at current densities that ordinarily produce random nodular deposits. MPEs with artificial hemi-cylinders, 2.5 {mu}m in height and spaced 250 {mu}m apart, form striae with a period which matches the spacing of micron-sized ridges. (2) A novel, corrosion-resistant micromosaic electrode was fabricated on a silicon wafer. Measurements of mass-transport enhancement to a vertical micromosaic electrode caused by parallel bubble streams rising inside of the diffusion boundary-layer demonstrated the presence of two co-temporal enhancement mechanisms: surface-renewal increases the limiting current within five bubble diameters of the rising column, while bubble-induced laminar flows cause weaker enhancement over a much broader swath. The enhancement caused by bubble curtains is predicted accurately by linear superposition of single-column enhancements. Two columns of smaller H{sub 2} bubbles generated at the same volumetric rate as a single column of larger bubbles cause higher peak and far-field enhancements. 168 refs., 96 figs., 6 tabs.
Peidou, Athina C.; Fotopoulos, Georgia; Pagiatakis, Spiros
2017-10-01
The main focus of this paper is to assess the feasibility of utilizing dedicated satellite gravity missions in order to detect large-scale solid mass transfer events (e.g. landslides). Specifically, a sensitivity analysis of Gravity Recovery and Climate Experiment (GRACE) gravity field solutions in conjunction with simulated case studies is employed to predict gravity changes due to past subaerial and submarine mass transfer events, namely the Agulhas slump in southeastern Africa and the Heart Mountain Landslide in northwestern Wyoming. The detectability of these events is evaluated by taking into account the expected noise level in the GRACE gravity field solutions and simulating their impact on the gravity field through forward modelling of the mass transfer. The spectral content of the estimated gravity changes induced by a simulated large-scale landslide event is estimated for the known spatial resolution of the GRACE observations using wavelet multiresolution analysis. The results indicate that both the Agulhas slump and the Heart Mountain Landslide could have been detected by GRACE, resulting in {\\vert }0.4{\\vert } and {\\vert }0.18{\\vert } mGal change on GRACE solutions, respectively. The suggested methodology is further extended to the case studies of the submarine landslide in Tohoku, Japan, and the Grand Banks landslide in Newfoundland, Canada. The detectability of these events using GRACE solutions is assessed through their impact on the gravity field.
Lee, Jung Gil; Jeong, Sanghyun; Alsaadi, Ahmad Salem; Ghaffour, NorEddine
2017-01-01
(>2.1×10−6kg/m2sPa: membranes under development) were simulated using an experimentally validated model at different ranges of convection heat transfer by varying the inlet flow rates and spacer enhancement factor. The effect of mass transfer
Energy Technology Data Exchange (ETDEWEB)
Kitatsuji, Yoshihiro; Yoshida, Zenko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kudo, Hiroshi [Tohoku Univ., Graduate School of Science, Sendai, Miyagi (Japan); Kihara, Sorin [Kyoto Inst. of Technolgy, Dept. of Chemistry, Kyoto (Japan)
2002-04-01
A novel electrochemical method on the basis of a controlled electrolysis has been developed for the study of the ion transfer at the interface of two immiscible electrolyte solutions (ITIES). The controlled-potential electrolysis for ITIES (CPEITIES) was applied to the transfer of actinide ions, and Gibbs energies for the transfer of UO{sub 2}{sup 2+} and Am{sup 3+} from aqueous solution (w) to nitrobenzene solution (nb) were determined to be 71.7 and 113 kJ mol{sup -1}, respectively. The ion transfer potentials for the facilitated transfer of UO{sub 2{sup +}} and Am{sup 3+} from w to nb in the presence of bis(diphenylphosphoryl)methane were determined, from which the stability constants of UO{sub 2}(BDPPM){sub 3}{sup 2+} and Am(BDPPM){sub 3}{sup 3+} complexes involved in the facilitated ion transfer reaction, were calculated to be 10{sup 23.9} and 10{sup 27.5}, respectively. On the basis of the results of CPEITIES, a feasibility of a new separation method, i.e., an electrolytic ion transfer separation, of actinide ions is evaluated. (author)
The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....
75 FR 22406 - Avaya Government Solutions; Transfer of Data
2010-04-28
... obligations of the contract. DATES: Avaya Government Solutions will be given access to this information on or....307(h)(3) and 2.308(i)(2). Avaya Government Solutions has been awarded multiple contracts to perform... contract numbers, the contractor will perform the following: Under Contract No. EP10H001162, The contractor...
The phenomenon of microscale flow and mass transfer in medicinal herb materials
Energy Technology Data Exchange (ETDEWEB)
Yang, J.H.; Di, Q.Q.; Sun, M.D. [Tianjin Univ., Tianjin (China). School of Mechanical Engineering; Zhang, T.J.; Gong, S.X. [Tianjin Inst. of Pharmaceutical Research, Tianjin (China)
2008-07-01
Microwave assisted extraction (MAE) is a combination of a microwave technique and conventional solvent extraction used in the modernization of traditional Chinese medicine. The effective component of medicinal herbs is mostly cellular material which can be released via solvent extraction. The material is diffused to solvents via the porous membrane wall. The structure of herb morphology and characteristics of the solute's molecular weight play an important role in the extraction process of target compounds. Astragalus pieces were chosen for this study in which an ultra-filtration membrane method was used to determine the molecular weight distribution characteristics of Astragalus water extraction liquid in the process of MAE. The fine structure of matrix materials was also characterized by scanning election microscopy (SEM). The phenomenon of mass flow and mass transfer in the plant porous media was discussed along with the enhancement mechanism of microwave field on medicinal plant solvent extraction. The results showed that the water-soluble components in the parenchyma cells of Astragalus pieces pass through the plasmodesma with a diameter of 10 nm to adjacent cell, then through an aperture with a diameter of 0.1 {mu}m to 1 {mu}m into a trachea with a diameter of about 10 {mu}m. The water-soluble components then come onto the surface of matrix material and the main solution via the trachea. The main mass transfer occurs by the trachea and its aperture. It was concluded that in order to promote the dissolution of effective components in medicinal herb in the extraction process, a suitable extraction technology is needed to maintain the permeability of transportation tissue and parenchyma in materials. 11 refs., 1 tab., 3 figs.
Energy Technology Data Exchange (ETDEWEB)
Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)
1996-04-01
Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.
Sigma Orionis E as a mass-transfer binary system
International Nuclear Information System (INIS)
Hesser, J.E.; Walborn, N.R.; Ugarte, P.
1976-01-01
It is stated that this star, which was the first He-rich B star to be discovered, has been found to show a very broad and rapidly varying Hα emission feature. Spectroscopic, spectrophotometric and photometric observations made independently in December 1974 showed the star to be variable, with a period of about 1.19 days. Incomplete phase coverage in the data, as well as uncertainty about the nature of the periodicity, has, however, hampered the development of a model to account for the observations. The results of new continuous uvbyβ photometry carried out in December 1975 and January 1976 are here given, together with some possible interpretations. The observations were made using a single channel refrigerated pulse counting 1P21 photometer on the 0.4 m telescope at the Cerro Tololo Inter-American Observatory. Differential photometric techniques were employed. The comparison star was HR1861, a uvby standard star with colours nearly identical with those of sigma Ori E. The resultant light and colour curves are reproduced, and show two distinct minima, which are discussed. An improved estimate of the period was obtained, and comparison with earlier data indicated that the period is reasonably stable over a two to three year interval. Some characteristics of the rather peculiar light curves are pointed out. The data are interpreted in terms of a mass transfer binary in which a collapsed white dwarf is surrounded by a rapidly rotating accretion disk containing a uv bright spot with energy provided by the impinging stream of gas from the other star. If this model is correct, high frequency optical monitoring might provide additional information. The implications of the model for current theories of stellar evolution in massive binaries are thought to be sufficiently significant to justify further extensive observations. (U.K.)
The solution of heat transfer problems using HEATRAN
International Nuclear Information System (INIS)
Collier, W.D.
1976-07-01
HEATRAN solves the heat diffusion equation over a two dimensional area of any shape or material distribution. Transfer by radiation across voids is allowed and special provsion is made for narrow gaps. A wide range of boundary conditions is available. (author)
Reversible Energy Transfer and Fluorescence Decay in Solid Solutions
Shealy, David L.; Hoover, Richard B.; Gabardi, David R.
1988-07-01
The article deals with the influence of reversible excitation energy transfer on the fluorescence decay in systems with random distribution of molecules. On the basis of a hopping model, we have obtained an expression for the Laplace transform of the decay function and an expression for the average decay time. The case of dipole-dipole interaction is discussed in detail.
Mass and heat transfer on B7 ordered packing in hydrogen isotope separation by distillation
International Nuclear Information System (INIS)
Croitoru, Cornelia; Pop, Floarea; Titescu, Gheorghe; Stefanescu, Ioan; Trancota, Dan; Peculea, Marius
2002-01-01
This work presents theoretical and experimental data referring to mass and heat transfer on B7 ordered packing in deuterium isotope separation by distillation. The first part is devoted to the study of mass transfer in hydrogen isotopic distillation while the second one treats the mass and heat transfer in water isotopic distillation. A stationary mathematical model for the mass and heat transfer was developed based on multitubular column model with wet wall. This model allowed the calculation starting from theoretical data of the ordered packing efficiency, expressed by the transfer unit height, TUH. Also, from theoretical data the mass and heat transfer coefficients were determined. A test of the mathematical model was performed with the experimental data obtained from two laboratory installations for hydrogen isotope separation by distillation. From the first installation, experimental data concerning the B7 ordered packing efficiency were obtained for the deuterium separation by cryogenic distillation at the - 250 deg C level. With the second one data referring to the mass and heat transfer on the same packing were obtained for the deuterium separation by water distillation under vacuum at the 60 deg C level. The values of TUH, mass and heat transfer coefficients as theoretically evaluate and experimentally checked are in agreement with the respective values obtained in separation processes in chemical industry. This is the fact which endorses utilization of the model of multitubular column with wet wall for describing the transfer processes in distillation columns equipped with B7 ordered packing
DEFF Research Database (Denmark)
Morelli, Nicola; Nielsen, Louise Møller
2007-01-01
and consumption patterns. The reference to a paradigm shift helps emphasising the inherent limits of industrial production and the elements of changes brought about by the possibility to generate highly individualised solutions. The concept of mass customisation was introduced to extend the domain of industrial...... production beyond its original limitations, however it is strongly linked to the paradigm of industrial production and not always usable to support and explain new ways of organising value creation. This paper proposes an analysis of this paradigm shift through three cases, which emphasise some elements...... of mass customisation that are still relevant to the new paradigm. At the same time the paper emphasises the limits of this concept and the need for a new perspective view to interpret the ongoing change in production and consumption systems....
Mixing and mass transfer in a pilot scale U-loop bioreactor
DEFF Research Database (Denmark)
Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay
2017-01-01
A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...
Racz, I.G.; Groot Wassink, J.; Klaassen, R.
1986-01-01
Concentration polarisation, decreasing the efficiency in membrane separation processes, can be reduced by increasing mass transfer between membrane surface and bulk of the feed stream. Analogous to techniques used in plate heat exchangers efforts have been made to enhance mass transfer in a plate
Analysis of combined heat and mass transfer of water- Vapor in a ...
African Journals Online (AJOL)
In this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System {lJ program, inserting the proper initial and ...
Analysis of combined heat and mass transfer of water-vapor in a ...
African Journals Online (AJOL)
Jn this paper, the combined heat and mass transfer of water-vapor into a cylindrical zeolite adsorber has been numerically simulated The twodimensional heat and mass transfer equations are numerically solved using gPROMS program - a general Process Modeling System [J] program, inserting the proper initial and ...
Abstracts of international symposium on heat and mass transfer under plasma conditions
International Nuclear Information System (INIS)
1994-01-01
The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting
Abstracts of international symposium on heat and mass transfer under plasma conditions
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-12-31
The international symposium on heat and mass transfer under plasma conditions was held on 4-8 July 1994 in Cesme, Izmir, Turkey. The spesialists discussed heat and mass transfer in the field of plasma processing at the meeting. More than 70 papers were presented in the meeting.
Mass transfer with complex reversible chemical reactions—II. parallel reversible chemical reactions
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and
Mass transfer with complex reversible chemical reactions. II: Parallel reversible chemical reactions
Versteeg, Geert; van Beckum, F.P.H.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and
Mass transfer with complex reversible chemical reactions. II: parallel reversible chemical reactions
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, van F.P.H.; van Swaaij, W.P.M.
1990-01-01
An absorption model has been developed which can be used to calculate rapidly absorption rates for the phenomenon mass transfer accompanied by multiple complex parallel reversible chemical reactions. This model can be applied for the calculation of the mass transfer rates, enhancement factors and
Marcelis, C.L.M.; Leeuwen, van M.; Polderman, H.G.; Janssen, A.J.H.; Lettinga, G.
2003-01-01
A mathematical model was developed in order to describe the mass transfer rate of dibenzothiophene within the oil droplet to the oil/water interface of droplets created in a stirred tank reactor. The mass transfer rate of dibenzothiophene was calculated for various complex hydrocarbon distillates
Mass transfer Simulation of Two-dimensional Natural Convection of Mixture Layer in an IVR
Energy Technology Data Exchange (ETDEWEB)
Kim, Su-Hyeon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
This study is focusing on the angle dependent heat flux distribution at the reactor vessel plenum due to mixture layer natural convection experiment. We simulated heat transfer using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. An S-bend shaped copper is used as the volumetric heat source, which is simulated as a heater in previous heat transfer studies. The advantage of mass transfer experiment is the achievement of the high buoyancy condition similar to reactor vessel because of high Pr. This study performed mass transfer experiment using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. The experimental result was compared with previous 2D study (SIGMA CP)
Mittermaier, M.; Ziegler, F.
2018-04-01
In this article we present a model describing a laminar film flow over a vertical isothermal plate whilst heat and mass transfer is occurring. We focus on a formulation where most common assumptions, such as constant property data and constant film thickness, have been cancelled. The hydrodynamic model results in longitudinal and transversal velocity components and their evolution in the entrance region. Heat and mass transfer occurs simultaneously and is modelled with respect to release of differential heat of solution as well as heat flow due to interdiffusion. The numerical solution is obtained by utilising a Newton-Raphson method to solve the finite difference formulation of the governing equations. Mass transfer across the film affects the development of both longitudinal and transversal velocity components. The hydrodynamics are modelled using a boundary layer approximation of the Navier-Stokes equations. The significance of simplifications on the hydrodynamic model are illustrated and discussed using a fully developed velocity profile (Nusselt flow) and a plug flow at the inlet for comparison. Even if a Nusselt profile is assumed, it develops further since mass is absorbed or desorbed. It is found that the onset of absorption occurs at shorter flow length when applying a plug flow at the inlet. If the film is initially in equilibrium, this results in a 9.3% increase in absorbed mass over a length of 0.03 m as compared with the Nusselt flow. A fluid with a viscosity five times the one of lithium bromide solution but sharing comparable properties apart from that, leads to lower overall heat and mass transfer rates. If the respective fluids are saturated at the inlet, the accumulated mass flux absorbed by lithium bromide solution is 2.2 times higher than the one absorbed by a high viscous fluid. However, when a plug flow is applied and the fluid is sub-cooled, ab initio the absorbed mass flux is slightly higher for a high viscous fluid. Assuming a sub
Heat or mass transfer at low Péclet number for Brinkman and Darcy flow round a sphere
Bell, Christopher G.
2014-01-01
Prior research into the effect of convection on steady-state mass transfer from a spherical particle embedded in a porous medium has used the Darcy model to describe the flow. However, a limitation of the Darcy model is that it does not account for viscous effects near boundaries. Brinkman modified the Darcy model to include these effects by introducing an extra viscous term. Here we investigate the impact of this extra viscous term on the steady-state mass transfer from a sphere at low Péclet number, Pe 1. We use singular perturbation techniques to find the approximate asymptotic solution for the concentration profile. Mass-release from the surface of the sphere is described by a Robin boundary condition, which represents a first-order chemical reaction. We find that a larger Brinkman viscous boundary layer renders mass transport by convection less effective, and reduces the asymmetry in the peri-sphere concentration profiles. We provide simple analytical expressions that can be used to calculate the concentration profiles, as well as the local and average Sherwood numbers; and comparison to numerical simulations verifies the order of magnitude of the error in the asymptotic expansions. In the appropriate limits, the asymptotic results agree with solutions previously obtained for Stokes and Darcy flow. The solution for Darcy flow with a Robin boundary condition has not been considered previously in the literature and is a new result. Whilst the article has been formulated in terms of mass transfer, the analysis is also applicable to heat transfer, with concentration replaced by temperature and the Sherwood number by the Nusselt number. © 2013 Elsevier Ltd. All rights reserved.
Sambath, P.; Pullepu, Bapuji; Hussain, T.; Ali Shehzad, Sabir
2018-03-01
The consequence of thermal radiation in laminar natural convective hydromagnetic flow of viscous incompressible fluid past a vertical cone with mass transfer under the influence of chemical reaction with heat source/sink is presented here. The surface of the cone is focused to a variable wall temperature (VWT) and wall concentration (VWC). The fluid considered here is a gray absorbing and emitting, but non-scattering medium. The boundary layer dimensionless equations governing the flow are solved by an implicit finite-difference scheme of Crank-Nicolson which has speedy convergence and stable. This method converts the dimensionless equations into a system of tri-diagonal equations and which are then solved by using well known Thomas algorithm. Numerical solutions are obtained for momentum, temperature, concentration, local and average shear stress, heat and mass transfer rates for various values of parameters Pr, Sc, λ, Δ, Rd are established with graphical representations. We observed that the liquid velocity decreased for higher values of Prandtl and Schmidt numbers. The temperature is boost up for decreasing values of Schimdt and Prandtl numbers. The enhancement in radiative parameter gives more heat to liquid due to which temperature is enhanced significantly.
International Nuclear Information System (INIS)
Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.
2011-01-01
A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)
International Nuclear Information System (INIS)
Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra
2013-01-01
Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L"−"1) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K_s, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined
Energy Technology Data Exchange (ETDEWEB)
Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra [Anna University, Chennai (India)
2013-04-15
Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L{sup −1}) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K{sub s}, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined.
Impact of gamma-irradiation on some mass transfer driven operations in food processing
Energy Technology Data Exchange (ETDEWEB)
Rastogi, N.K. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020 (India)]. E-mail: nkrastogi@cftri.com
2005-08-01
The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity.
Impact of gamma-irradiation on some mass transfer driven operations in food processing
International Nuclear Information System (INIS)
Rastogi, N.K.
2005-01-01
The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity
Directory of Open Access Journals (Sweden)
Jiazhou Wu
2018-06-01
Full Text Available A three-dimensional multiphysical transient model was developed to investigate keyhole formation, weld pool dynamics, and mass transfer in laser welding of dissimilar materials. The coupling of heat transfer, fluid flow, keyhole free surface evolution, and solute diffusion between dissimilar metals was simulated. The adaptive heat source model was used to trace the change of keyhole shape, and the Rayleigh scattering of the laser beam was considered. The keyhole wall was calculated using the fluid volume equation, primarily considering the recoil pressure induced by metal evaporation, surface tension, and hydrostatic pressure. Fluid flow, diffusion, and keyhole formation were considered simultaneously in mass transport processes. Welding experiments of 304L stainless steel and industrial pure titanium TA2 were performed to verify the simulation results. It is shown that spatters are shaped during the welding process. The thickness of the intermetallic reaction layer between the two metals and the diffusion of elements in the weld are calculated, which are important criteria for welding quality. The simulation results correspond well with the experimental results.
A study of heat and mass transfer on magnetohydrodynamic (MHD flow of nanoparticles
Directory of Open Access Journals (Sweden)
Syed Tauseef Mohyud-Din
2018-03-01
Full Text Available Investigation of the flow, heat and mass transfer of a nanofluid over a suddenly moved flat plate is presented using Buongiorno's model. This study is different from some of the previous studies as the effects of Brownian motion and thermophoresis on nanoparticles volume fraction are passively controlled on the boundary rather than actively. The partial differential equations governing the flow are reduced to a system of nonlinear ordinary differential equations. Viable similarity transforms are used for this purpose. A well-known numerical scheme called Runge-Kutta-Fehlberg method coupled with shooting procedure has been used to find the solution of resulting system of equations. Discussions on the effects of different emerging parameters is provided using graphical aid. A table is also given that provides the results of different parameters on local Nusselt and Sherwood numbers. The passive control model can be used to control the boundary layer thickness as well as the rate of mass transfer at the wall. Keywords: Nanofluid, Brownian motion, Thermophoresis, Nusselt number, Sherwood number
Directory of Open Access Journals (Sweden)
Medhat M. Helal
2013-10-01
Full Text Available The problem of heat and mass transfer in a power law, two-dimensional, laminar, boundary layer flow of a viscous incompressible fluid over an inclined plate with heat generation and thermophoresis is investigated by the characteristic function method. The governing non-linear partial differential equations describing the flow and heat transfer problem are transformed into a set of coupled non-linear ordinary differential equation which was solved using Runge–Kutta shooting method. Exact solutions for the dimensionless temperature and concentration profiles, are presented graphically for different physical parameters and for the different power law exponents 0 0.5.
Determination and correlation of mass transfer coefficients in a stirred cell
International Nuclear Information System (INIS)
Herranz, J.; Bloxom, S.R.; Keeler, J.B.; Roth, S.R.
1975-01-01
In the proposed Molten Salt Breeder Reactor flowsheet, a fraction of the rare earth fission products is removed from the fuel salt in mass transfer cells. To obtain design parameters for this extraction, the effect of cell size, blade diameter, phase volume, and agitation rate on the mass transfer for a high density ratio system (mercury/water) in nondispersing square cross section contactors was determined. Aqueous side mass transfer coefficients were measured by polarography over a wide range of operating conditions. Correlations for the experimental mass transfer coefficients as functions of the operating parameters are presented. Several techniques for measuring mercury-side mass transfer coefficients were evaluated and a new one is recommended
Mass and heat transfer at the outer surface of helical coils under single and two phase flow
International Nuclear Information System (INIS)
Abdel-Aziz, M.H.; Nirdosh, I.; Sedahmed, G.H.
2016-01-01
Highlights: • The work aims to develop reactors which need rapid temperature control. • Mass and heat transfer at the outer surface of helical coils was studied experimentally. • The experiments were conducted under gas sparing, single and two phase flow. • Variables were helical tube diameter, physical properties, and gas and liquid velocity. • Results verification in terms of natural convection and surface renewal mechanism was explained. - Abstract: The mass transfer behavior of the outer surface of vertical helical coil was studied by the electrochemical technique under single phase flow, gas sparging and two phase flow. Variables studied were helical tube diameter, physical properties of the solution, solution velocity and superficial gas velocity. The mass transfer data were correlated by dimensionless equations. Mass transfer enhancement ratio in case of two phase flow ranged from 1.1 to 4.9 compared to single phase flow. Implication of the results for the design and operation of helical coil reactors used to conduct L–S exothermic diffusion controlled reactions which need rapid temperature control were outlined. In this case the inner coil surface will act as a cooler while the outer surface will act a reaction surface. Immobilized enzyme catalyzed biochemical reactions where heat sensitive materials may be involved represent an example for the reactions which can employ the helical coil reactor. Also the importance of the results in the design of and operation of diffusion controlled membrane processes which employ helical coil membrane was noted. In view of the analogy between heat and mass transfer the possibility of using the results in the design and operation of helical coil heat exchangers was highlighted.
Mass transfer in electromembrane extraction - The link between theory and experiments
DEFF Research Database (Denmark)
Huang, Chuixiu; Jensen, Henrik; Seip, Knut Fredrik
2016-01-01
typically been combined with chromatography, mass spectrometry, and electrophoresis for analyte separation and detection. At the moment, close to 125 research papers have been published with focus on electromembrane extraction. Electromembrane extraction is a hybrid technique between electrophoresis....... This review summarizes recent efforts to describe the fundamentals of mass transfer in electromembrane extraction, and aim to give an up-to-date understanding of the processes involved....... and liquid–liquid extraction, and the fundamental principles for mass transfer have only partly been investigated. Thus, although there is great interest in electromembrane extraction, the fundamental principle for mass transfer has to be described in more detail for the scientific acceptance of the concept...
Global existence of a generalized solution for the radiative transfer equations
International Nuclear Information System (INIS)
Golse, F.; Perthame, B.
1984-01-01
We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr
Mass transfer effects in feeder flow-accelerated corrosion wall thinning
International Nuclear Information System (INIS)
Pietralik, J.
2008-01-01
Flow conditions play a dominant role in Flow-Accelerated Corrosion (FAC) under certain conditions, e.g., in CANDU feeders. While chemistry and materials set the overall potential for FAC, flow conditions determine the local distribution of wall thinning. Recent plant data of feeders and laboratory tests confirms that there is a close relationship between local flow conditions, expressed by mass transfer coefficient, and FAC rate in CANDU feeder bends. The knowledge of local effects can be useful for minimizing the number of inspected components, predicting the location of the highest FAC rate for a given piping component, and determining what components or feeders should be replaced. A similar evaluation applies also to FAC in heat transfer equipment such as heat exchangers and steam generators. The objective of this paper is to examine the relationship between FAC rate and local mass transfer parameters. For FAC where the flow is dominant, the FAC rate is proportional to mass flux of ferrous ions. The mass flux is the product of the mass transfer coefficient and the concentration difference, or degree of saturation. The mass transfer coefficient describes the intensity of the transport of corrosion products (ferrous ions) from the oxide-water interface into the bulk water. Therefore, this parameter can be used for predicting the local distribution of FAC rate in the mass-transfer controlled FAC. The degree of saturation reduces the mass flux, thus reducing the FAC rate. This effect can be significant in long piping, e.g., in outlet feeders. The paper presents plant and laboratory evidence for the relationship between local mass transfer conditions and the FAC rate. It shows correlations for mass transfer coefficient in components that are highly susceptible to FAC and most important flow parameters that affect mass transfer coefficient. The role of surface roughness, wall shear stress, and local turbulence is also discussed. (author)
Czech Academy of Sciences Publication Activity Database
Samec, Zdeněk
2009-01-01
Roč. 55, č. 2 (2009), s. 75-81 ISSN 0034-6691 R&D Projects: GA ČR(CZ) GA203/07/1257 Institutional research plan: CEZ:AV0Z40400503 Keywords : interface between two immiscible electrolyte solutions * interfacial electron transfer * standard electron trasfer potential * homogeneous electron transfer Subject RIV: CG - Electrochemistry
Direct interaction between linear electron transfer chains and solute transport systems in bacteria
Elferink, Marieke G.L.; Hellingwerf, Klaas J.; Belkum, Marco J. van; Poolman, Bert; Konings, Wil N.
1984-01-01
In studies on alanine and lactose transport in Rhodopseudomonas sphaeroides we have demonstrated that the rate of solute uptake in this phototrophic bacterium is regulated by the rate of light-induced cyclic electron transfer. In the present paper the interaction between linear electron transfer
Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage
Energy Technology Data Exchange (ETDEWEB)
Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br
2010-07-01
This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)
DEFF Research Database (Denmark)
Tirunehe, Gossay; Norddahl, B.
2016-01-01
Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...... membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (KLa) by a factor of 1.2–1.9 compared to the flat sheet membrane....
Methods to increase the rate of mass transfer during osmotic dehydration of foods.
Chwastek, Anna
2014-01-01
Traditional methods of food preservation such as freezing, freeze drying (lyophilization), vacuum drying, convection drying are often supplemented by new technologies that enable obtaining of high quality products. Osmotic dehydration is more and more often used during processing of fruits and vegetables. This method allows maintaining good organoleptic and functional properties in the finished product. Obtaining the desired degree of dehydration or saturation of the material with an osmoactive substance often requires elongation of time or use of high temperatures. In recent years much attention was devoted to techniques aimed at increasing the mass transfer between the dehydrated material and the hypertonic solution. The work reviews the literature focused on methods of streamlining the process of osmotic dehydration which include the use of: ultrasound, high hydrostatic pressure, vacuum osmotic dehydration and pulsed electric field.
A metaheuristic for a numerical approximation to the mass transfer problem
Directory of Open Access Journals (Sweden)
Avendaño-Garrido Martha L.
2016-12-01
Full Text Available This work presents an improvement of the approximation scheme for the Monge-Kantorovich (MK mass transfer problem on compact spaces, which is studied by Gabriel et al. (2010, whose scheme discretizes the MK problem, reduced to solve a sequence of finite transport problems. The improvement presented in this work uses a metaheuristic algorithm inspired by scatter search in order to reduce the dimensionality of each transport problem. The new scheme solves a sequence of linear programming problems similar to the transport ones but with a lower dimension. The proposed metaheuristic is supported by a convergence theorem. Finally, examples with an exact solution are used to illustrate the performance of our proposal.
Heat or mass transfer from a sphere in Stokes flow at low Péclet number
Bell, Christopher G.
2013-04-01
We consider the low Péclet number, Pe≪1, asymptotic solution for steady-state heat or mass transfer from a sphere immersed in Stokes flow with a Robin boundary condition on its surface, representing Newton cooling or a first-order chemical reaction. The application of Van Dyke\\'s rule up to terms of O(Pe3) shows that the O(Pe3logPe) terms in the expression for the average Nusselt/Sherwood number are twice those previously derived in the literature. Inclusion of the O(Pe3) terms is shown to increase the range of validity of the expansion. © 2012 Elsevier Ltd. All rights reserved.
Formal Solutions for Polarized Radiative Transfer. I. The DELO Family
Energy Technology Data Exchange (ETDEWEB)
Janett, Gioele; Carlin, Edgar S.; Steiner, Oskar; Belluzzi, Luca, E-mail: gioele.janett@irsol.ch [Istituto Ricerche Solari Locarno (IRSOL), 6605 Locarno-Monti (Switzerland)
2017-05-10
The discussion regarding the numerical integration of the polarized radiative transfer equation is still open and the comparison between the different numerical schemes proposed by different authors in the past is not fully clear. Aiming at facilitating the comprehension of the advantages and drawbacks of the different formal solvers, this work presents a reference paradigm for their characterization based on the concepts of order of accuracy , stability , and computational cost . Special attention is paid to understand the numerical methods belonging to the Diagonal Element Lambda Operator family, in an attempt to highlight their specificities.
Sugiyama, Atsushi; Morisaki, Shigeyoshi; Aogaki, Ryoichi
2003-08-01
When an external magnetic field is vertically imposed on a solid-liquid interface, the mass transfer process of a solute dissolving from or depositing on the interface was theoretically examined. In a heterogeneous vertical magnetic field, a material receives a magnetic force in proportion to the product of the magnetic susceptibility, the magnetic flux density B and its gradient (dB/dz). As the reaction proceeds, a diffusion layer of the solute with changing susceptibility is formed at the interface because of the difference of the the magnetic susceptibility on the concentration of the solute. In the case of an unstable condition where the dimensionless number of magneto-convection S takes a positive value, the magnetic force is applied to the layer and induces numerous minute convection cells. The mass transfer of the solute is thus accelerated, so that it is predicted that the mass flux increases with the 1/3rd order of B(dB/dz) and the 4/3rd order of the concentration. The experiment was then performed by measuring the rate of the dissolution of copper sulfate pentahydrate crystal in water.
Directory of Open Access Journals (Sweden)
A. Rauf
2015-07-01
Full Text Available This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)
2015-07-15
This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Electron transfer reactions to probe the electrode/solution interface
Energy Technology Data Exchange (ETDEWEB)
Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry
2008-07-01
The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.
Turbulent heat/mass transfer at oceanic interfaces
Energy Technology Data Exchange (ETDEWEB)
Enstad, Lars Inge
2005-07-01
The thesis studies heat/mass transfer and uses various simulation techniques. A numerical method has been developed. 4 papers which describes the work, are included. In the first paper we look at such flow configuration where the flow is driven by a constant pressure gradient and the interface is cooled from above. Papers 2 and 3. 2: The effect of stable density stratification on turbulent vortical structures near an atmosphere-ocean interface driven by low wind shear. 3: Low shear turbulence structures beneath a gas-liquid interface under neutral and stable stratified conditions. A well known feature of the upper layer of the ocean is the presence of counter-rotating streamwise vorticity, so called Langmuir circulation. Earlier numerical investigations show that similar vortex structures appear on small scale induced by shear instability only. Short wave solar radiation may create a stable situation which affects the turbulence near the interface. In these papers we investigate such a flow situation by employing a uniform and constant shear stress at the interface together with a similar heat flux into the interface. In both articles we also use a two-point correlation to give a statistical representation of the streamwise vorticity. The spatial extent and intensity are decreased by stable stratification. In addition, in article 3, we find that the Reynolds stress is damped by stable stratification. This leads to an increased mean velocity since decreased Reynolds stress is compensated by a larger mean velocity gradient. The cospectra of the Reynolds stress in the spanwise direction show that the production of Reynolds stress is decreased at lower wave numbers and thus shifted to higher wave numbers in the presence of stable stratification. The streak structure created by the streamwise vorticity is disorganized by stable stratification. Article 4: A numerical study of a density interface using the General Ocean Turbulence Model (GOTM) coupled with a Navier Stokes
Directory of Open Access Journals (Sweden)
Khan A.
2017-12-01
Full Text Available An exact solution and analysis of an initial unsteady two dimensional free convection flow, heat and mass transfer in the presence of thermal radiation along an infinite fixed vertical plate when the plate temperature is instantaneously raised, is presented. The fluid considered is a gray, absorbing emitting radiation but a nonscattering medium. Three cases have been discussed, in particular, namely, (i when, the plate temperature is instantaneously raised to a higher constant value, (ii when, the plate temperature varies linearly with time and (iii when, the plate temperature varies non-linearly with time. A close form general solution for all the cases has been obtained in terms of repeated integrals of error functions. In two particular cases, the solutions in terms of the repeated integrals of error functions have been further simplified to forms containing only error functions. It is observed that for an increase in the radiation parameter N or a decrease in the Grashof number Gr or Gm, there is a fall in the velocity or temperature, but compared to the no radiation case or no diffusing species, there is a rise in the velocity and temperature of the fluid.
Brusseau, Mark L.; Guo, Zhilin
2018-01-01
It is evident based on historical data that groundwater contaminant plumes persist at many sites, requiring costly long-term management. High-resolution site-characterization methods are needed to support accurate risk assessments and to select, design, and operate effective remediation operations. Most subsurface characterization methods are generally limited in their ability to provide unambiguous, real-time delineation of specific processes affecting mass-transfer, transformation, and mass removal, and accurate estimation of associated rates. An integrated contaminant elution and tracer test toolkit, comprising a set of local-scale groundwater extraction-and injection tests, was developed to ameliorate the primary limitations associated with standard characterization methods. The test employs extended groundwater extraction to stress the system and induce hydraulic and concentration gradients. Clean water can be injected, which removes the resident aqueous contaminant mass present in the higher-permeability zones and isolates the test zone from the surrounding plume. This ensures that the concentrations and fluxes measured within the isolated area are directly and predominantly influenced by the local mass-transfer and transformation processes controlling mass removal. A suite of standard and novel tracers can be used to delineate specific mass-transfer and attenuation processes that are active at a given site, and to quantify the associated mass-transfer and transformation rates. The conceptual basis for the test is first presented, followed by an illustrative application based on simulations produced with a 3-D mathematical model and a brief case study application.
Simultaneous Heat and Mass Transfer Model for Convective Drying of Building Material
Upadhyay, Ashwani; Chandramohan, V. P.
2018-04-01
A mathematical model of simultaneous heat and moisture transfer is developed for convective drying of building material. A rectangular brick is considered for sample object. Finite-difference method with semi-implicit scheme is used for solving the transient governing heat and mass transfer equation. Convective boundary condition is used, as the product is exposed in hot air. The heat and mass transfer equations are coupled through diffusion coefficient which is assumed as the function of temperature of the product. Set of algebraic equations are generated through space and time discretization. The discretized algebraic equations are solved by Gauss-Siedel method via iteration. Grid and time independent studies are performed for finding the optimum number of nodal points and time steps respectively. A MATLAB computer code is developed to solve the heat and mass transfer equations simultaneously. Transient heat and mass transfer simulations are performed to find the temperature and moisture distribution inside the brick.
Mass-transfer characterization in a parallel-plate electrochemical reactor with convergent flow
International Nuclear Information System (INIS)
Colli, A.N.; Bisang, J.M.
2013-01-01
Highlights: • A convergent laminar flow enhances and becomes more uniform the mass-transfer rate. • The mass-transfer rate is increased under convergent turbulent flow conditions. • The mass-transfer rate under convergent laminar flow can be theoretically predicted. • A convergent duct improves the reactor behaviour and the concept is easily applicable. -- Abstract: A continuous reduction in the cross-section area is analysed as a means of improving mass-transfer in a parallel-plate electrochemical reactor. Experimental local mass-transfer coefficients along the electrode length are reported for different values of the convergent ratio and Reynolds numbers, using the reduction of ferricyanide as a test reaction. The Reynolds numbers evaluated at the reactor inlet range from 85 to 4600 with interelectrode gaps of 2 and 4 mm. The convergent flow improves the mean mass-transfer coefficient by 10–60% and mass-transfer distribution under laminar flow conditions becomes more uniform. The experimental data under laminar flow conditions are compared with theoretical calculations obtained by a computational fluid dynamics software and also with an analytical simplified model. A suitable agreement is observed between both theoretical treatments and with the experimental results. The pressure drop across the reactor is reported and compared with theoretical predictions
E-Learning Barriers and Solutions to Knowledge Management and Transfer
Oye, Nathaniel David; Salleh, Mazleena
2013-01-01
This paper present a systematic overview of barriers and solutions of e-learning in knowledge management (KM) and knowledge transfer (KT) with more focus on organizations. The paper also discusses KT in organizational settings and KT in the field of e-learning. Here, an e-learning initiative shows adaptive solutions to overcome knowledge transfer…
Lorah, Michelle M.; Herman, Janet S.
1988-01-01
This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.
Energy Technology Data Exchange (ETDEWEB)
Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics
1997-02-01
The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.
Subcooled flow boiling heat transfer of ethanol aqueous solutions in vertical annulus space
Directory of Open Access Journals (Sweden)
Sarafraz M.M.
2012-01-01
Full Text Available The subcooled flow boiling heat-transfer characteristics of water and ethanol solutions in a vertical annulus have been investigated up to heat flux 132kW/m2. The variations in the effects of heat flux and fluid velocity, and concentration of ethanol on the observed heat-transfer coefficients over a range of ethanol concentrations implied an enhanced contribution of nucleate boiling heat transfer in flow boiling, where both forced convection and nucleate boiling heat transfer occurred. Increasing the ethanol concentration led to a significant deterioration in the observed heat-transfer coefficient because of a mixture effect, that resulted in a local rise in the saturation temperature of ethanol/water solution at the vapor-liquid interface. The reduction in the heat-transfer coefficient with increasing ethanol concentration is also attributed to changes in the fluid properties (for example, viscosity and heat capacity of tested solutions with different ethanol content. The experimental data were compared with some well-established existing correlations. Results of comparisons indicate existing correlations are unable to obtain the acceptable values. Therefore a modified correlation based on Gnielinski correlation has been proposed that predicts the heat transfer coefficient for ethanol/water solution with uncertainty about 8% that is the least in comparison to other well-known existing correlations.
New exact solution for the exterior gravitational field of a spinning mass
International Nuclear Information System (INIS)
Manko, V.S.
1990-01-01
An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented
International Nuclear Information System (INIS)
Akram, Safia; Nadeem, S.; Hussain, Anwar
2014-01-01
In the present analysis we discussed the influence of heat and mass transfer on the peristaltic flow of a Bingham in an inclined magnetic field and channel with different wave forms. The governing two dimensional equations of momentum, heat and mass transfer are simplified under the assumptions of long wavelength and low Reynolds number approximation. The exact solutions of momentum, heat and mass transfer are calculated. Finally, graphical behaviors of various physical parameters are also discussed through the graphical behavior of pressure rise, pressure gradient, temperature concentration and stream functions. - Highlights: • Combine effects of heat and mass transfer on peristaltic flow problem is discussed. • Effects of inclined magnetic field and channel on new fluid model are discussed. • Effects of different wave forms are also discussed in the present flow problem
Heat and mass transfer and hydrodynamics in two-phase flows in nuclear power plants
International Nuclear Information System (INIS)
Styrikovich, M.A.; Polonskii, V.S.; Tsiklauri, G.V.
1986-01-01
This book examines nuclear power plant equipment from the point of view of heat and mass transfer and the behavior of impurities contained in water and in steam, with reference to real water regimes of nuclear power plants. The transfer processes of equipment are considered. Heat and mass transfer are analyzed in the pre-crisis regions of steam-generating passages with non-permeable surfaces, and in capillary-porous structures. Attention is given to forced convection boiling crises and top post-DNB heat transfer. Data on two-phase hydrodynamics in straight and curved channels are correlated and safety aspects of nuclear power plants are discussed
Energy transfer from triplet aromatic hydrocarbons to Tb3+ and Eu3+ in aqueous micellar solutions
International Nuclear Information System (INIS)
Almgren, M.; Grieser, F.; Thomas, J.K.
1979-01-01
The sensitization of Tb 3+ and Eu 3+ luminescence by energy transfer from aromatic triplet donors like naphthalene, bromonaphthalene, biphenyl, and phenanthrene in micellar sodium lauryl sulfate solution has been studied. Formal second-order rate constants for the energy transfer process in the micellar solutions were determined as 5 x 10 5 and 1.8 x 10 5 M -1 S -1 for transfer from biphenyl to Tb 3+ . The method of converting these rate constants to second-order constants pertaining to the micellar microenvironment is discussed; it is estimated that the transfer process at the micelles is charaterized by rate constants about one order of magnitude smaller than the formal ones. The transfer process is thus extremely slow. 7 figures
Molecular theory of mass transfer kinetics and dynamics at gas-water interface
International Nuclear Information System (INIS)
Morita, Akihiro; Garrett, Bruce C
2008-01-01
The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.
International Nuclear Information System (INIS)
Bai, Peng; Fan, Kaigong; Guo, Xianghai; Zhang, Haocui
2016-01-01
Highlights: • We propose a non-equilibrium mass transfer absorption model instead of a distillation equilibrium model to calculate boron isotopes separation. • We apply the model to calculate the needed column height to meet prescribed separation requirements. - Abstract: To interpret the phenomenon of chemical exchange in boron isotopes separation accurately, the process is specified as an absorption–reaction–desorption hybrid process instead of a distillation equilibrium model, the non-equilibrium mass transfer absorption model is put forward and a mass transfer enhancement factor E is introduced to find the packing height needed to meet the specified separation requirements with MATLAB.
Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang
2015-08-03
We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heat and Mass Transfer in the Drying of a Cylindrical Body in an Oscillating Magnetic Field
Rudobashta, S. P.; Zueva, G. A.; Kartashov, É. M.
2018-01-01
A problem on the heating of a cylindrical body of infinite length in an oscillating electromagnetic field in the process of its drying has been formulated and solved analytically with account of the intermittence of irradiation of the body defined by the Heaviside unit function, the exponential-law absorption of electromagnetic energy by it, and the convective heat and mass exchange between the surface of the body and the environment having constant parameters. The intensity of evaporation of moisture from the surface of the body was determined on the basis of analytical solution of the problem on the mass transfer (moisture diffusion) in it on the assumption that the phase transformations of the body proceed near its surface. Solutions of the problem on the heating of the cylindrical body have been obtained for the cases of nonuniform and uniform distributions of its local temperature, the temperature of the body averaged over its volume, and the temperature gradient near the surface of the body. The "serviceability" of these solutions was verified on the basis of numerical simulation, with them, of the drying of a seed shaped as a cylinder under the action of an oscillating infrared radiation. As a result of the numerical simulation performed, a technological regime of drying of seeds at minimum and maximum temperatures of their heating by on oscillating infrared radiation for a definite period of time in a cycle, providing not only the drying of the seeds but also substantial improvement of their sowing properties (the sprouting energy and the germination power), has been found. It is shown that the oscillating infrared heating of seeds can be used for their drying in pseudofluidized and vibrofluidized beds.
International Nuclear Information System (INIS)
Jang, Seok Pil; Kim, Sung Jin; Choi, Do Hyung
2000-01-01
As a mass flow controller is widely used in many manufacturing processes for controlling a mass flow rate of gas with accuracy of 1%, several investigators have tried to describe the heat transfer phenomena in a sensor tube of an MFC. They suggested a few analytic solutions and numerical models based on simple assumptions, which are physically unrealistic. In the present work, the heat transfer phenomena in the sensor tube of the MFC are studied by using both experimental and numerical methods. The numerical model is introduced to estimate the temperature profile in the sensor tube as well as in the gas stream. In the numerical model, the conjugate heat transfer problem comprising the tube wall and the gas stream is analyzed to fully understand the heat transfer interaction between the sensor tube and the fluid stream using a single domain approach. This numerical model is further verified by experimental investigation. In order to describe the transport of heat energy in both the flow region and the sensor tube, the Nusselt number at the interface between the tube wall and the gas stream as well as heatlines is presented from the numerical solution
Pedretti, D.; Fernàndez-Garcia, D.; Sanchez-Vila, X.; Bolster, D.; Benson, D. A.
2014-02-01
Aquifer hydraulic properties such as hydraulic conductivity (K) are ubiquitously heterogeneous and typically only a statistical characterization can be sought. Additionally, statistical anisotropy at typical characterization scales is the rule. Thus, regardless of the processes governing solute transport at the local (pore) scale, transport becomes non-Fickian. Mass-transfer models provide an efficient tool that reproduces observed anomalous transport; in some cases though, these models lack predictability as model parameters cannot readily be connected to the physical properties of aquifers. In this study, we focus on a multirate mass-transfer model (MRMT), and in particular the apparent capacity coefficient (β), which is a strong indicator of the potential of immobile zones to capture moving solute. We aim to find if the choice of an apparent β can be phenomenologically related to measures of statistical anisotropy. We analyzed an ensemble of random simulations of three-dimensional log-transformed multi-Gaussian permeability fields with stationary anisotropic correlation under convergent flow conditions. It was found that apparent β also displays an anisotropic behavior, physically controlled by the aquifer directional connectivity, which in turn is controlled by the anisotropic correlation model. A high hydraulic connectivity results in large β values. These results provide new insights into the practical use of mass-transfer models for predictive purposes.
Frumkin-Butler-Volmer theory and mass transfer
Soestbergen, van M.
2012-01-01
An accurate mathematical description of the charge transfer rate at electrodes due to an electro chemical reaction is an indispensable component of any electrochemical model. In the current work we use the generalized Frumkin-Butler-Volmer (gFBV) equation to describe electrochemical reactions, an
Marinho, Belisa A; Cristóvão, Raquel O; Djellabi, Ridha; Caseiro, Ana; Miranda, Sandra M; Loureiro, José M; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P
2018-07-01
The current work presents different approaches to overcome mass and photon transfer limitations in heterogeneous photocatalytic processes applied to the reduction of hexavalent chromium to its trivalent form in the presence of a sacrificial agent. Two reactor designs were tested, a monolithic tubular photoreactor (MTP) and a micro-meso-structured photoreactor (NETmix), both presenting a high catalyst surface area per reaction liquid volume. In order to reduce photon transfer limitations, the tubular photoreactor was packed with transparent cellulose acetate monolithic structures (CAM) coated with the catalyst by a dip-coating method. For the NETmix reactor, a thin film of photocatalyst was uniformly deposited on the front glass slab (GS) or on the network of channels and chambers imprinted in the back stainless steel slab (SSS) using a spray system. The reaction rate for the NETmix photoreactor was evaluated for two illumination sources, solar light or UVA-LEDs, using the NETmix with the front glass slab or/and back stainless steel slab coated with TiO 2 -P25. The reusability of the photocatalytic films on the NETmix walls was also evaluated for three consecutive cycles using fresh Cr(VI) solutions. The catalyst reactivity in combination with the NETmix-SSS photoreactor is almost 70 times superior to one obtained with the MTP. Copyright © 2018 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Cheng, C.-Y.
2006-01-01
This work examines the effects of the modified Darcy number, the buoyancy ratio and the inner radius-gap ratio on the fully developed natural convection heat and mass transfer in a vertical annular non-Darcy porous medium with asymmetric wall temperatures and concentrations. The exact solutions for the important characteristics of fluid flow, heat transfer, and mass transfer are derived by using a non-Darcy flow model. The modified Darcy number is related to the flow resistance of the porous matrix. For the free convection heat and mass transfer in an annular duct filled with porous media, increasing the modified Darcy number tends to increase the volume flow rate, total heat rate added to the fluid, and the total species rate added to the fluid. Moreover, an increase in the buoyancy ratio or in the inner radius-gap ratio leads to an increase in the volume flow rate, the total heat rate added to the fluid, and the total species rate added to the fluid
Bomba, A. Ya.; Safonik, A. P.
2018-03-01
A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.
Bomba, A. Ya.; Safonik, A. P.
2018-05-01
A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.
Fuzzy cluster quantitative computations of component mass transfer in rocks or minerals
International Nuclear Information System (INIS)
Liu Dezheng
2000-01-01
The author advances a new component mass transfer quantitative computation method on the basis of closure nature of mass percentage of components in rocks or minerals. Using fuzzy dynamic cluster analysis, and calculating restore closure difference, and determining type of difference, and assisted by relevant diagnostic parameters, the method gradually screens out the true constant component. Then, true mass percentage and mass transfer quantity of components of metabolic rocks or minerals are calculated by applying the true constant component fixed coefficient. This method is called true constant component fixed method (TCF method)
Interpretation of soil-to-plant transfer on the basis of soil solution chemical composition
International Nuclear Information System (INIS)
Lembrechts, J.F.; Van Loon, L.R.; Van Ginkel, J.H.; Desmet, G.M.
1988-01-01
Soil-to-plant translocation of a radionuclide depends on its availability on the one hand and on the efficiency of the uptake process on the other. Criticism on the use of transfer coefficients for the description of translocation mainly concerns the fact that the complex variety of processes, a.o. dependent on plant characteristics and soil type and treatment, is integrated in a single ratio. For the interpretation of the effect of counter-measures the static transfer coefficient proved to be hard to handle and knowledge of the separate underlying processes and their time dependence showed to be indispensible. Based upon translocation experiments with technetium, cobalt, strontium and zinc transfer was shown to be primarily related to the concentration of the plant available fraction in the soil solution as well as to the soil solution chemistry in general. The transfer factor of the first three elements expressed in the basis of soil solution activity (ml/g), was observed to decrease when the nutrient content of the soil solution -- reflected by its conductivity -- increased. The characteristics of the soil matrix (solid phase) furthermore showed to be of secondary importance for the explanation of the observed accumulation. Since the interstitial soil liquid phase mediates between solid phase and plant root, reliable interpretations of soil-to-plant transfer might as a rule be based on a separate study of the effect of soil properties on availability on the one hand of the uptake from nutrient solutions on the other
A mass transfer origin for blue stragglers in NGC 188 as revealed by half-solar-mass companions.
Geller, Aaron M; Mathieu, Robert D
2011-10-19
In open star clusters, where all members formed at about the same time, blue straggler stars are typically observed to be brighter and bluer than hydrogen-burning main-sequence stars, and therefore should already have evolved into giant stars and stellar remnants. Correlations between blue straggler frequency and cluster binary star fraction, core mass and radial position suggest that mass transfer or mergers in binary stars dominates the production of blue stragglers in open clusters. Analytic models, detailed observations and sophisticated N-body simulations, however, argue in favour of stellar collisions. Here we report that the blue stragglers in long-period binaries in the old (7 × 10(9)-year) open cluster NGC 188 have companions with masses of about half a solar mass, with a surprisingly narrow mass distribution. This conclusively rules out a collisional origin, as the collision hypothesis predicts a companion mass distribution with significantly higher masses. Mergers in hierarchical triple stars are marginally permitted by the data, but the observations do not favour this hypothesis. The data are highly consistent with a mass transfer origin for the long-period blue straggler binaries in NGC 188, in which the companions would be white dwarfs of about half a solar mass.
Heat and mass transfer intensification and shape optimization a multi-scale approach
2013-01-01
Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes. A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...
Experimental assessment of heat and mass transfer of modular nozzles of cooling towers
Merentsov, N. A.; Lebedev, V. N.; Golovanchikov, A. B.; Balashov, V. A.; Nefed'eva, E. E.
2018-01-01
Data of experimental study of hydrodynamics, heat and mass transfer of modular nozzles of cooling towers and some comparative characteristics of the packed device with nozzles, which have wide industrial application, are given in the article.
Energy Technology Data Exchange (ETDEWEB)
Randrup, J.
1979-07-01
This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references.
International Nuclear Information System (INIS)
Vorotyntsev, M.A.
1991-01-01
Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs
Calculation of Post-Closure Natural Convection Heat and Mass Transfer in Yucca Mountain Drifts
International Nuclear Information System (INIS)
Webb, S.; Itamura, M.
2004-01-01
Natural convection heat and mass transfer under post-closure conditions has been calculated for Yucca Mountain drifts using the computational fluid dynamics (CFD) code FLUENT. Calculations have been performed for 300, 1000, 3000, and 10,000 years after repository closure. Effective dispersion coefficients that can be used to calculate mass transfer in the drift have been evaluated as a function of time and boundary temperature tilt
The evolution of the mass-transfer functions in liquid Yukawa systems
Energy Technology Data Exchange (ETDEWEB)
Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2016-09-15
The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.
Mass transfer and slag-metal reaction in ladle refining : a CFD approach
Ramström, Eva
2009-01-01
In order to optimise the ladle treatment mass transfer modelling of aluminium addition and homogenisation time was carried out. It was stressed that incorporating slag-metal reactions into the mass transfer modelling strongly would enhance the reliability and amount of information to be analyzed from the CFD calculations. In the present work, a thermodynamic model taking all the involved slag metal reactions into consideration was incorporated into a 2-D fluid flow model of an argon stirr...
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The mathematical models and numerical methods employed by the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multi-component flow in porous media, are described. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The component models of FEHM are discussed. The first major component, Flow- and Energy-Transport Equations, deals with heat conduction; heat and mass transfer with pressure- and temperature-dependent properties, relative permeabilities and capillary pressures; isothermal air-water transport; and heat and mass transfer with noncondensible gas. The second component, Dual-Porosity and Double-Porosity/Double-Permeability Formulation, is designed for problems dominated by fracture flow. Another component, The Solute-Transport Models, includes both a reactive-transport model that simulates transport of multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Constitutive Relationships, deals with pressure- and temperature-dependent fluid/air/gas properties, relative permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes. Each of these components is discussed in detail, including purpose, assumptions and limitations, derivation, applications, numerical method type, derivation of numerical model, location in the FEHM code flow, numerical stability and accuracy, and alternative approaches to modeling the component
FEHM, Finite Element Heat and Mass Transfer Code
International Nuclear Information System (INIS)
Zyvoloski, G.A.
2002-01-01
1 - Description of program or function: FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities. 2 - Methods: FEHM uses a preconditioned conjugate gradient solution of coupled linear equations and a fully implicit, fully coupled Newton Raphson solution of nonlinear equations. It has the capability of simulating transport using either a advection/diffusion solution or a particle tracking method. 3 - Restriction on the complexity of the problem: Disk space and machine memory are the only limitations
Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor
Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van
1995-01-01
A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by
Modeling of heat and mass transfer in lateritic building envelopes
International Nuclear Information System (INIS)
Meukam, Pierre
2004-10-01
The aim of the present work is to investigate the behavior of building envelopes made of local lateritic soil bricks subjected to different climatic conditions. The analysis is developed for the prediction of the temperature, relative humidity and water content behavior within the walls. The building envelopes studied in this work consist of lateritic soil bricks with incorporation of natural pozzolan or sawdust in order to obtain small thermal conductivity and low-density materials, and limit the heat transfer between the atmospheric climate and the inside environment. In order to describe coupled heat and moisture transfer in wet porous materials, the coupled equations were solved by the introduction of diffusion coefficients. A numerical model HMtrans, developed for prediction of beat and moisture transfer in multi-layered building components, was used to simulate the temperature, water content and relative humidity profiles within the building envelopes. The results allow the prediction of the duration of the exposed building walls to the local weather conditions. They show that for any of three climatic conditions considered, relative humidity and water content do not exceed 87% and 5% respectively. There is therefore minimum possibility of water condensation in the materials studied. The durability of building envelopes made of lateritic soil bricks with incorporation of natural pozzolan or sawdust is not strongly affected by the climatic conditions in tropical and equatorial regions. (author)
Pore to core scale simulation of the mass transfer with mineral reaction in porous media
International Nuclear Information System (INIS)
Bekri, S.; Renard, S.; Delprat-Jannaud, F.
2015-01-01
Pore Network Model (PNM) is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP) curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff's laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/ permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damkohler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted. (authors)
Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan
2017-09-01
To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.
Energy Technology Data Exchange (ETDEWEB)
He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian
2017-12-01
The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.
Mass-transfer studies in an electrochemical reactor with a small interelectrode gap
International Nuclear Information System (INIS)
Colli, A.N.; Toelzer, R.; Bergmann, M.E.H.; Bisang, J.M.
2013-01-01
Highlights: • Turbulence promoters increase from two to eight times the mass-transfer coefficients. • Turbulence promoters become more uniform the mass-transfer distribution. • Expanded plastics with an open structure are appropriate as turbulence promoters. -- Abstract: This paper reports the distribution of the local mass-transfer coefficient along the electrode length for an electrochemical reactor with parallel-plate electrodes and narrow interelectrode gaps of 1 and 2.2 mm, using the reduction of ferricyanide as a test reaction. The studies were performed at different flow rates, Reynolds numbers ranging from 370 to 3700, with the empty reactor and also the interelectrode gap was filled with two types of expanded plastics and a woven plastic mesh as turbulence promoters. The effect of both the interelectrode gap and the partial placing of the turbulence promoter along the electrode length on the mass-transfer behaviour was also analyzed. In all cases the pressure drop across the reactor was measured. A more uniform distribution of the local mass-transfer coefficient, ±15% related to its mean value, and an important increase of the mean mass-transfer coefficient, enhancement factor ranging from 2 to 8, were observed, depending on the type of turbulence promoter, the volumetric flow rate, and the interelectrode gap
Mass transfer in liquid phase catalytic exchange column of trickle bed type
International Nuclear Information System (INIS)
Yamanishi, Toshihiko; Iwai, Yasunori; Okuno, Kenji
1995-09-01
The mechanism of mass transfer in a liquid phase catalytic exchange column was discussed for a trickle bed type. A new model has been proposed on the basis of this mass transfer mechanism; and several problems for the previous reported models were pointed out in the derivation of the model. An overall rate equation was first derived from the vapor-hydrogen exchange in the model. The mass transfer for the vapor-hydrogen exchange was decomposed to the following three steps: the mass transfer in a gas boundary layer on a catalyst particle; the mass transfer within the pores in the catalyst; and the chemical reaction on the surface of the catalyst. The water-vapor scrubbing process was considered as a series of the mass transfers in gas and liquid boundary layers on the wetted surfaces of the catalyst and packings or wall of the column. Significant subjects to be studied were proposed from the viewpoint of the validity of the model and the optimization of the column. (author)
Mass transfer and the period gap of cataclysmic variables
International Nuclear Information System (INIS)
Verbunt, F.
1984-01-01
Three different explanations for the period gap of cataclysmic variables are investigated in some detail, and compared with the observations. The static picture is ruled out; strong continued magnetic braking is shown to be unlikely; disrupted magnetic braking is shown to provide a good explanation. A simple derivation is given for the magnetic braking of a star as a function of the magnetic-field strength and the wind mass flux. A field strength of >= 100 gauss and a wind of 10 -10 Msub(solar mass) yr -1 are needed for the secondary of a cataclysmic variable to explain the braking. These values are rather high, but perhaps not unfeasible. (author)
Directory of Open Access Journals (Sweden)
Ben Minnaert
2017-09-01
Full Text Available Wireless power transfer from one transmitter to multiple receivers through inductive coupling is slowly entering the market. However, for certain applications, capacitive wireless power transfer (CWPT using electric coupling might be preferable. In this work, we determine closed-form expressions for a CWPT system with one transmitter and two receivers. We determine the optimal solution for two design requirements: (i maximum power transfer, and (ii maximum system efficiency. We derive the optimal loads and provide the analytical expressions for the efficiency and power. We show that the optimal load conductances for the maximum power configuration are always larger than for the maximum efficiency configuration. Furthermore, it is demonstrated that if the receivers are coupled, this can be compensated for by introducing susceptances that have the same value for both configurations. Finally, we numerically verify our results. We illustrate the similarities to the inductive wireless power transfer (IWPT solution and find that the same, but dual, expressions apply.
High-order solution methods for grey discrete ordinates thermal radiative transfer
Energy Technology Data Exchange (ETDEWEB)
Maginot, Peter G., E-mail: maginot1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Morel, Jim E., E-mail: morel@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)
2016-12-15
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation is accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.
Mass Transfer to Clean Bubbles at Low Turbulent Energy Dissipation.
Czech Academy of Sciences Publication Activity Database
Alves, S. S.; Vasconcelos, J.M.T.; Orvalho, Sandra
2006-01-01
Roč. 61, 4 (2006) , s. 1334-1337 ISSN 0009-2509 Grant - others:FEDER(PT) POCTI/EQU/47689/2002 Institutional research plan: CEZ:AV0Z40720504 Keywords : bubble * mass tranfer * turbulence Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.629, year: 2006
Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian
2013-04-01
Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M
Energy Technology Data Exchange (ETDEWEB)
Gurler, O. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey)], E-mail: ogurler@uludag.edu.tr; Oz, H. [Physics Department, Faculty of Arts and Sciences, Uludag University, Gorukle Campus, 16059 Bursa (Turkey); Yalcin, S. [Education Faculty, Kastamonu University, 37200 Kastamonu (Turkey); Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); NCCPM, Medical Physics, Royal Surrey County Hospital, GU2 7XX (United Kingdom)
2009-01-15
The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature.
International Nuclear Information System (INIS)
Gurler, O.; Oz, H.; Yalcin, S.; Gundogdu, O.
2009-01-01
The mass energy absorption, the mass energy transfer and mass absorption coefficients have been widely used for problems and applications involving dose calculations. Direct measurements of the coefficients are difficult, and theoretical computations are usually employed. In this paper, analytical equations are presented for determining the mass energy transfer and mass absorption coefficients for gamma rays with an incident energy range between 0.4 and 10 MeV in nitrogen, silicon, carbon, copper and sodium iodide. The mass absorption and mass energy transfer coefficients for gamma rays were calculated, and the results obtained were compared with the values reported in the literature
An analytical solution to the heat transfer problem in thick-walled hunt flow
International Nuclear Information System (INIS)
Bluck, Michael J; Wolfendale, Michael J
2017-01-01
Highlights: • Convective heat transfer in Hunt type flow of a liquid metal in a rectangular duct. • Analytical solution to the H1 constant peripheral temperature in a rectangular duct. • New H1 result demonstrating the enhancement of heat transfer due to flow distortion by the applied magnetic field. • Analytical solution to the H2 constant peripheral heat flux in a rectangular duct. • New H2 result demonstrating the reduction of heat transfer due to flow distortion by the applied magnetic field. • Results are important for validation of CFD in magnetohydrodynamics and for implementation of systems code approaches. - Abstract: The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.
Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.
2011-01-01
Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…
Dynamics and mass transport of solutal convection in a closed porous media system
Wen, Baole; Akhbari, Daria; Hesse, Marc
2016-11-01
Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.
Energy Technology Data Exchange (ETDEWEB)
Koyama, Shigeru; Yu, Jian; Ishibashi, Akira
1999-07-01
In the face of the phase-out of HCFC22 for its effect on globe environment, the alternative refrigerant has been paid attention in the refrigeration and heat pump industry. In the present stage, it is found that any pure refrigerant is not a good substitute of HCFC22 for the system in use. The authors have to use binary or ternary refrigerant mixtures as the substitute to meet industrial requirement. But until now, although the heat transfer characteristics of the refrigerant mixtures can be measured in experiments and predicted in some degree, the mass transfer characteristics in condensation process, which is a main part in most systems, can not be clarified by both experimental and theoretical methods. In the present study a non-equilibrium model for condensation of binary refrigerant mixtures inside a horizontal microfin tube is proposed. In this model it is assumed that the phase equilibrium is only established at the vapor-liquid interface, while the bulk vapor and the bulk liquid are in non-equilibrium in the same cross section. The mass transfer characteristic in vapor core is obtained from the analogy between mass and momentum transfer. In the liquid layer, the mass fraction distribution is neglected, but the mass transfer coefficient is treated as infinite that can keep a finite value for the mass transfer rate in liquid phase. From the calculation results compared with the experimental ones for the condensation of HFC134a/HCFC123 and HCFC22/CFC114 mixtures, it is found that the calculated heat flux distribution along the tube axis is in good agreement with that of experiment, and the calculated values of condensing length agree well with the experimental ones. Using the present model, the local mass faction distribution, the diffusion mass transfer rate and the mass transfer characteristics in both vapor and liquid phase are demonstrated. From these results, the effect of mass transfer resistance on condensation heat transfer characteristics for binary
Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters
Energy Technology Data Exchange (ETDEWEB)
Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Day-Lewis, Fred [U.S. Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John [U.S. Geological Survey, Storrs, CT (United States)
2014-03-20
Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3
Mass transfer with complex reversible chemical reactions—I. Single reversible chemical reaction
Versteeg, G.F.; Kuipers, J.A.M.; Beckum, F.P.H. van; Swaaij, W.P.M. van
1989-01-01
An improved numerical technique was used in order to develop an absorption model with which it is possible to calculate rapidly absorption rates for the phenomenon of mass transfer accompanied by a complex reversible chemical reaction. This model can be applied for the calculation of the mass
Intensification of mass transfer in wet textile processes by power ultrasound
Moholkar, V.S.; Nierstrasz, Vincent; Warmoeskerken, Marinus
2003-01-01
In industrial textile pre-treatment and finishing processes, mass transfer and mass transport are often rate-limiting. As a result, these processes require a relatively long residence time, large amounts of water and chemicals, and are also energy-consuming. In most of these processes, diffusion and
Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study
Kokkinaki, A.; Sleep, B. E.
2011-12-01
The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and
Evaluation of mixing and mass transfer in a stirred pilot scale bioreactor utilizing CFD
DEFF Research Database (Denmark)
Bach, Christian; Yang, Jifeng; Larsson, Hilde Kristina
2017-01-01
Knowledge and prediction of mixing and mass transfer in agitated bioreactors is fundamental for process development and scale up. In particular key process parameters such as mixing time and volumetric mass transfer coefficient are essential for bioprocess development. In this work the mixing...... and mass transfer performance of a high power agitated pilot scale bioreactor has been characterized using a novel combination of computational fluid dynamics (CFD) and experimental investigations. The effect of turbulence inside the vessel was predicted using a standard RANS k-ε model. Mixing time...... transfer coefficients were in accordance with the experimental data. This work illustrates the possibility of predicting the two phase fluid dynamic performance of an agitated pilot scale bioreactor using validated CFD models. These models can be applied to illustrate the effect of changing the physical...
DEFF Research Database (Denmark)
Nie, Jinzhe; Fang, Lei
2014-01-01
Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...... could transfer from exhaust air to supply air through the enthalpy recovery unit. The mass transfer efficiency of contaminants was independent of the hygro-thermal differences between indoor and outdoor climate conditions. The mass transfer ratio of the chemical contaminants in the total heat recovery...
DEFF Research Database (Denmark)
Grathwohl, Peter; Haberer, Cristina; Ye, Yu
Diffusive–dispersive mass transfer in the capillary fringe is important for many groundwater quality issues such as transfer of volatile compounds into (and out of) the groundwater, the supply of oxygen for aerobic degradation of hydrocarbons as well as for precipitation of minerals (e.g. iron...... hydroxides). 2D-laboratory scale experiments were used to investigate the transfer of oxygen into groundwater under non-reactive and reactive conditions, at steady state and with water table fluctuations. Results show that transfer of oxygen is limited by transverse dispersion in the capillary fringe...... and the dispersion coefficients are the same as below the water table. Water table fluctuations cause temporarily increased fluxes of oxygen into groundwater during draining conditions and entrapped air after water table rise. High-permeability inclusions in the capillary fringe enhance mass transfer of oxygen...
3D modelling of coupled mass and heat transfer of a convection-oven roasting process
DEFF Research Database (Denmark)
Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist
2013-01-01
A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations...... are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change...
Aroudam, El. H.
In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.
Prediction of transpiration effects on heat and mass transfer by different turbulence models
International Nuclear Information System (INIS)
Bucci, M.; Sharabi, M.; Ambrosini, W.; Forgione, N.; Oriolo, F.; He, S.
2008-01-01
The paper reports the results of a study related to transpirating flows, stimulated by the interest that these phenomena, occurring in the presence of simultaneous heat and mass transfer, have for nuclear reactor applications. The work includes a summary and the follow-up of previous experimental and numerical investigations on filmwise condensation and falling film evaporation and of a recent review of different forms of the heat and mass transfer analogy. The particular objective here pursued is to compare transpiration effects as predicted by different turbulence models with classical suction and blowing multipliers based on stagnant layer theories, in the attempt to clarify their quantitative implications on the predicted mass transfer rates. A commercial and an in-house CFD code have been adopted for evaluating the heat and mass transfer rates occurring over a flat plate exposed to an air-vapour stream, with uniform bulk steam mass fraction and temperature boundary conditions at the wall. This simple configuration was purposely selected since it is a simplified representation of the test section of an experimental facility presently in operation at the University of Pisa. This allows a direct comparison between the heat and mass transfer coefficients predicted by CFD models and classical correlations for Nusselt and Sherwood numbers
Simulation of heat and mass transfer in boiling water with the Melodif code
International Nuclear Information System (INIS)
Freydier, P.; Chen, O.; Olive, J.; Simonin, O.
1991-04-01
The Melodif code is developed at Electricite de France, Research and Development Division. It is an eulerian two dimensional code for the simulation of turbulent two phase flows (a three dimensional code derived from Melodif, ASTRID, is currently being prepared). Melodif is based on the two fluid model, solving the equations of conservation for mass, momentum and energy, for both phases. In such a two fluid model, the description of interfacial transfers between phases is a crucial issue. The model used applies to a dominant continuous phase, and a dispersed phase. A good description of interfacial momentum transfer exists in the standard MELODIF code: the drag force, the apparent mass force... are taken into account. An important factor for interfacial transfers is the interfacial area per volume unit. With the assumption of spherical gas bubbles, an equation has been written for this variable. In the present wok, a model has been tested for interfacial heat and mass transfer in the case of boiling water: it is assumed that mass transfer is controlled by heat transfer through the latent massic energy taken in the phase that vaporizes (or condenses). This heat and mass transfer model has been tested in various configurations: - a cylinder with water flowing inside, is being heated. Boiling takes place near the wall, while bubbles migrating to the core of the flow recondense. This roughly simulates a sub-cooled boiling phenomenon. - a box containing liquid water is depressurized. Boiling takes place in the whole volume of the fluid. The Melodif code can simulate this configuration due to the implicitation of the relation between interphase mass transfer and the pressure variable
The response matrix discrete ordinates solution to the 1D radiative transfer equation
International Nuclear Information System (INIS)
Ganapol, Barry D.
2015-01-01
The discrete ordinates method (DOM) of solution to the 1D radiative transfer equation has been an effective method of solution for nearly 70 years. During that time, the method has experienced numerous improvements as numerical and computational techniques have become more powerful and efficient. Here, we again consider the analytical solution to the discrete radiative transfer equation in a homogeneous medium by proposing a new, and consistent, form of solution that improves upon previous forms. Aided by a Wynn-epsilon convergence acceleration, its numerical evaluation can achieve extreme precision as demonstrated by comparison with published benchmarks. Finally, we readily extend the solution to a heterogeneous medium through the star product formulation producing a novel benchmark for closed form Henyey–Greenstein scattering as an example. - Highlights: • Presents a new solution to the RTE called the response matrix DOM (RM/DOM). • Solution representations avoid the instability common in exponential solutions. • Explicit form in terms of matrix hyperbolic functions. • Extreme accuracy through Wynn-epsilon acceleration checked by published benchmarks. • Provides a more transparent numerical evaluation than found previously
A computational procedure for finding multiple solutions of convective heat transfer equations
International Nuclear Information System (INIS)
Mishra, S; DebRoy, T
2005-01-01
In recent years numerical solutions of the convective heat transfer equations have provided significant insight into the complex materials processing operations. However, these computational methods suffer from two major shortcomings. First, these procedures are designed to calculate temperature fields and cooling rates as output and the unidirectional structure of these solutions preclude specification of these variables as input even when their desired values are known. Second, and more important, these procedures cannot determine multiple pathways or multiple sets of input variables to achieve a particular output from the convective heat transfer equations. Here we propose a new method that overcomes the aforementioned shortcomings of the commonly used solutions of the convective heat transfer equations. The procedure combines the conventional numerical solution methods with a real number based genetic algorithm (GA) to achieve bi-directionality, i.e. the ability to calculate the required input variables to achieve a specific output such as temperature field or cooling rate. More important, the ability of the GA to find a population of solutions enables this procedure to search for and find multiple sets of input variables, all of which can lead to the desired specific output. The proposed computational procedure has been applied to convective heat transfer in a liquid layer locally heated on its free surface by an electric arc, where various sets of input variables are computed to achieve a specific fusion zone geometry defined by an equilibrium temperature. Good agreement is achieved between the model predictions and the independent experimental results, indicating significant promise for the application of this procedure in finding multiple solutions of convective heat transfer equations
International Nuclear Information System (INIS)
Lim, S.C.; Lee, K.J.
1993-01-01
The Galerkin finite element method is used to solve the problem of one-dimensional, vertical flow of water and mass transport of conservative-nonconservative solutes in unsaturated porous media. Numerical approximations based on different forms of the governing equation, although they are equivalent in continuous forms, can result in remarkably different solutions in an unsaturated flow problem. Solutions given by a simple Galerkin method based on the h-based Richards equation yield a large mass balance error and an underestimation of the infiltration depth. With the employment of the ROMV (restoration of main variable) concept in the discretization step, the mass conservative numerical solution algorithm for water flow has been derived. The resulting computational schemes for water flow and mass transport are applied to sandy soil. The ROMV method shows good mass conservation in water flow analysis, whereas it seems to have a minor effect on mass transport. However, it may relax the time-step size restriction and so ensure an improved calculation output. (author)
Samsudin, Hayati; Auras, Rafael; Burgess, Gary; Dolan, Kirk; Soto-Valdez, Herlinda
2018-03-01
A two-step solution based on the boundary conditions of Crank's equations for mass transfer in a film was developed. Three driving factors, the diffusion (D), partition (K p,f ) and convective mass transfer coefficients (h), govern the sorption and/or desorption kinetics of migrants from polymer films. These three parameters were simultaneously estimated. They provide in-depth insight into the physics of a migration process. The first step was used to find the combination of D, K p,f and h that minimized the sums of squared errors (SSE) between the predicted and actual results. In step 2, an ordinary least square (OLS) estimation was performed by using the proposed analytical solution containing D, K p,f and h. Three selected migration studies of PLA/antioxidant-based films were used to demonstrate the use of this two-step solution. Additional parameter estimation approaches such as sequential and bootstrap were also performed to acquire a better knowledge about the kinetics of migration. The proposed model successfully provided the initial guesses for D, K p,f and h. The h value was determined without performing a specific experiment for it. By determining h together with D, under or overestimation issues pertaining to a migration process can be avoided since these two parameters are correlated. Copyright © 2017 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Nabian, Nima; Ghoreyshi, Ali Asghar; Rahimpour, Ahmad; Shakeri, Mohsen
2015-01-01
The performance of gas-liquid membrane contactor for CO 2 capture was investigated using a novel polysulfone (PSF) flat membrane prepared via non-solvent phase inversion method. Polyvinyl pyrrolidone (PVP) was used as an additive in the dope solution of PSF membranes. Morphological studies by scanning electron microscopy (SEM) analysis revealed that PSF membrane with PVP has a finger-like structure, but the PSF membrane without PVP has a sponge-like structure. Also, characterization results through atomic force microscopy (AFM) and contact angle measurement demonstrated that the porosity, surface roughness and hydrophobicity of the PSF membrane increased with addition of PVP to the dope solution. Mass transfer resistance analysis, based on CO 2 absorption flux, displayed that addition of PVP to the dope solution of PSF membrane decreased membrane mass transfer resistance, and significantly improved CO 2 absorption flux up to 2.7 and 1.8 times of absorption fluxes of PSF membrane without PVP and commercial PVDF, respectively.
International Nuclear Information System (INIS)
Oulaid, Othmane; Benhamou, Brahim; Galanis, Nicolas
2010-01-01
This paper, deals with a numerical study of the effects of buoyancy forces on an upward, steady state, laminar flow of humid air in a vertical parallel-plate channel. The plates are wetted by a thin liquid water film and maintained at a constant temperature which is lower than that of the air entering the channel. A 2D fully elliptical model, associated with the Boussinesq assumption, is used to take into account axial diffusion. The solution of this mathematical model is based on the finite volume method and the velocity-pressure coupling is handled by the SIMPLER algorithm. Numerical results show that buoyancy forces have a significant effect on the hydrodynamic, thermal and mass fraction fields. Additionally, these forces induce flow reversal for high air temperatures and mass fractions at the channel entrance. It is established that heat transfer associated with phase change is, sometimes, more significant than sensible heat transfer. Furthermore, this importance depends on the mass fraction gradient. The conditions for the existence of flow reversal are presented in charts and analytical expressions specifying the critical thermal Grashof number as a function of the Reynolds number for different values of the solutal Grashof number and different aspect ratios of the channel.
Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow
Energy Technology Data Exchange (ETDEWEB)
Kang, Chang Woo; Yang, Kyung Soo [Inha University, Incheon (Korea, Republic of)
2014-12-15
Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re{sub r} = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in
Effects of Schmidt number on near-wall turbulent mass transfer in pipe flow
International Nuclear Information System (INIS)
Kang, Chang Woo; Yang, Kyung Soo
2014-01-01
Large Eddy simulation (LES) of turbulent mass transfer in circular-pipe flow has been performed to investigate the characteristics of turbulent mass transfer in the near-wall region. We consider a fully-developed turbulent pipe flow with a constant wall concentration. The Reynolds number under consideration is Re r = 500 based on the friction velocity and the pipe radius, and the selected Schmidt numbers (Sc) are 0.71, 5, 10, 20 and 100. Dynamic subgrid-scale (SGS) models for the turbulent SGS stresses and turbulent mass fluxes were employed to close the governing equations. The current paper reports a comprehensive characterization of turbulent mass transfer in circular-pipe flow, focusing on its near-wall characteristics and Sc dependency. We start with mean fields by presenting mean velocity and concentration profiles, mean Sherwood numbers and mean mass transfer coefficients for the selected values of the parameters. After that, we present the characteristics of fluctuations including root-mean-square (rms) profiles of velocity, concentration, and mass transfer coefficient fluctuations. Turbulent mass fluxes and correlations between velocity and concentration fluctuations are also discussed. The near-wall behaviour of turbulent diffusivity and turbulent Schmidt number is shown, and other authors' correlations on their limiting behaviour towards the pipe wall are evaluated based on our LES results. The intermittent characteristics of turbulent mass transfer in pipe flow are depicted by probability density functions (pdf) of velocity and concentration fluctuations; joint pdfs between them are also presented. Instantaneous snapshots of velocity and concentration fluctuations are shown to supplement our discussion on the turbulence statistics. Finally, we report the results of octant analysis and budget calculation of concentration variance to clarify Sc-dependency of the correlation between near-wall turbulence structures and concentration fluctuation in the
Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study
Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang
2018-01-01
A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.
User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code
Energy Technology Data Exchange (ETDEWEB)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.
Rehman, Khalil Ur; Malik, Aneeqa Ashfaq; Malik, M. Y.; Tahir, M.; Zehra, Iffat
2018-03-01
A short communication is structured to offer a set of scaling group of transformation for Prandtl-Eyring fluid flow yields by stretching flat porous surface. The fluid flow regime is carried with both heat and mass transfer characteristics. To seek solution of flow problem a set of scaling group of transformation is proposed by adopting Lie approach. These transformations are used to step down the partial differential equations into ordinary differential equations. The reduced system is solved by numerical method termed as shooting method. A self-coded algorithm is executed in this regard. The obtain results are elaborated by means of figures and tables.
Several numerical and analytical solutions of the radiative transfer equation (RTE) for plane albedo were compared for solar light reflection by sea water. The study incorporated the simplest case, that being a semi-infinite one-dimensional plane-parallel absorbing and scattering...
Exact traveling wave solutions for a new nonlinear heat transfer equation
Directory of Open Access Journals (Sweden)
Gao Feng
2017-01-01
Full Text Available In this paper, we propose a new non-linear partial differential equation to de-scribe the heat transfer problems at the extreme excess temperatures. Its exact traveling wave solutions are obtained by using Cornejo-Perez and Rosu method.
77 FR 4815 - Ace Info Solutions, Inc., and Information International Associates; Transfer of Data
2012-01-31
... Confidential Business Information (CBI) by the submitter, will be transferred to Ace Info Solutions, Inc., and... Chemical Libraries and Repository; 4. Information architecture support, consultation on site structure and..., Business and industry, Government contracts, Government property, Security measures. Dated: January 19...
PN solutions of radiative heat transfer in a slab with reflective boundaries
International Nuclear Information System (INIS)
Atalay, M.A.
2006-01-01
The spherical harmonics method is used to obtain solution for the radiative heat transfer equation for a slab with reflective boundaries. An absorbing, emitting, non-isothermal, gray medium is considered with linearly anisotropic scattering. Under the condition of the thermal equilibrium, the slab boundaries are subjected to specular and diffuse reflection. The analytical form of solutions is obtained for both conservative and non-conservative cases. The accuracy of the method was verified by benchmark comparisons against the solutions of an earlier work performed by the normal-mode expansion technique. The present predictions of heat flux were found to be in good agreement with the benchmark data. a
Energy Technology Data Exchange (ETDEWEB)
Liu, L.H. [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)]. E-mail: lhliu@hit.edu.cn
2006-11-15
In graded index media, the ray goes along a curved path determined by Fermat principle. Generally, the curved ray trajectory in graded index media is a complex implicit function, and the curved ray tracing is very difficult and complex. Only for some special refractive index distributions, the curved ray trajectory can be expressed as a simple explicit function. Two important examples are the layered and the radial graded index distributions. In this paper, the radiative heat transfer problems in two-dimensional square semitransparent with layered and radial graded index distributions are analyzed. After deduction of the ray trajectory, the radiative heat transfer problems are solved by using the Monte Carlo curved ray-tracing method. Some numerical solutions of dimensionless net radiative heat flux and medium temperature are tabulated as the benchmark solutions for the future development of approximation techniques for multi-dimensional radiative heat transfer in graded index media.
Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme
Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping
2018-06-01
The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.
Heat and mass transfer in the HYLIFE ICF reactor cavity
International Nuclear Information System (INIS)
Glenn, L.A.
1981-01-01
A quasi-one dimensional method was developed for calculating transient, compressible, viscous flow across a complex array of tubes or jets. The method also accounts for the diffusion of radiation and for heat and mass exchange between the fluid and the jets. The application was to the impulsive crossflow of a lithium plasma through a close-packed annular arrangement of liquid lithium jets, a problem that arises in the design of inertial confinement fusion reactors. It was found that approximately 2/3 of the energy initially contained in the plasma will diffuse into the liquid jets, not including an additional 7-10% which will go towards jet surface vaporization. Nevertheless, the peak hoop stress in the first wall of the reactor appears to derive from direct impact of the plasma, rather than from the subsequent impact of the jets or fragments thereof. (orig.)
Heat and Mass Transfer with Condensation in Capillary Porous Bodies
Directory of Open Access Journals (Sweden)
Salah Larbi
2014-01-01
Full Text Available The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study.
Heat and mass transfer with condensation in capillary porous bodies.
Larbi, Salah
2014-01-01
The purpose of this present work is related to wetting process analysis caused by condensation phenomena in capillary porous material by using a numerical simulation. Special emphasis is given to the study of the mechanism involved and the evaluation of classical theoretical models used as a predictive tool. A further discussion will be given for the distribution of the liquid phase for both its pendular and its funicular state and its consequence on diffusion coefficients of the mathematical model used. Beyond the complexity of the interaction effects between vaporisation-condensation processes on the gas-liquid interfaces, the comparison between experimental and numerical simulations permits to identify the specific contribution and the relative part of mass and energy transport parameters. This analysis allows us to understand the contribution of each part of the mathematical model used and to simplify the study.
Numerical study of heat and mass transfer in inertial suspensions in pipes.
Niazi Ardekani, Mehdi; Brandt, Luca
2017-11-01
Controlling heat and mass transfer in particulate suspensions has many important applications such as packed and fluidized bed reactors and industrial dryers. In this work, we study the heat and mass transfer within a suspension of spherical particles in a laminar pipe flow, using the immersed boundary method (IBM) to account for the solid fluid interactions and a volume of fluid (VoF) method to resolve temperature equation both inside and outside of the particles. Tracers that follow the fluid streamlines are considered to investigate mass transfer within the suspension. Different particle volume fractions 5, 15, 30 and 40% are simulated for different pipe to particle diameter ratios: 5, 10 and 15. The preliminary results quantify the heat and mass transfer enhancement with respect to a single-phase laminar pipe flow. We show in particular that the heat transfer from the wall saturates for volume fractions more than 30%, however at high particle Reynolds numbers (small diameter ratios) the heat transfer continues to increase. Regarding the dispersion of tracer particles we show that the diffusivity of tracers increases with volume fraction in radial and stream-wise directions however it goes through a peak at 15% in the azimuthal direction. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).
Numerical Study on Mass Transfer of a Vapor Bubble Rising in Very High Viscous Fluid
Directory of Open Access Journals (Sweden)
T. Kunugi
2014-09-01
Full Text Available This study focused on a bubble rising behavior in a molten glass because it is important to improve the efficiency of removal of bubbles from the molten glass. On the other hand, it is expected that some gas species which exists in a bubble are transferred into the molten glass through the bubble interface, i.e., the mass transfer, subsequently, it may cause a bubble contraction in the molten glass. In this paper, in order to understand the bubble rising behavior with its contraction caused by the mass transfer through the bubble interface in the very high viscous fluid such as the molten glass, a bubble contraction model has been developed. The direct numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver coupled with the mass transfer equation and the bubble contraction model regarding the mass transfer from the rising bubble in very high viscous fluid have been performed. Here, the working fluids were water vapor as the gas species and the molten glass as the very high viscous fluid. Also, the jump conditions at the bubble interface for the mass transfer were examined. Furthermore, the influence of the bubble contraction for the bubble rising compared to that in the water as a normal viscous fluid was investigated. From the result of the numerical simulations, it was found that the bubble rising behavior was strongly affected not only by the viscosity of the working fluid but also by the bubble contraction due to the mass transfer through the bubble interface.
Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column
International Nuclear Information System (INIS)
Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong
2015-01-01
Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k L a), interfacial area (a) and liquid side true mass transfer coefficient (k L ) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O 2 and chemical absorption of CO 2 in the column. The values of k L a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k L increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases
Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column
Energy Technology Data Exchange (ETDEWEB)
Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)
2015-02-15
Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k{sub L}a), interfacial area (a) and liquid side true mass transfer coefficient (k{sub L}) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O{sub 2} and chemical absorption of CO{sub 2} in the column. The values of k{sub L}a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k{sub L} increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.
Calculation of the mass transfer coefficient for the combustion of a carbon particle
Energy Technology Data Exchange (ETDEWEB)
Scala, Fabrizio [Istituto di Ricerche sulla Combustione - CNR, P.le Tecchio 80, 80125 Napoli (Italy)
2010-01-15
In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)
To the generalization of experimental data on heat and mass transfer in evaporation and condensation
International Nuclear Information System (INIS)
Berman, L.D.
1980-01-01
Similarity equations for heat-and-mass transfer in binary gas or steam-gas layers in the processes of liquid evaporation, condensation and desublimation of vapours, desorption and absorption and porous body cooling are considered. It is accepted that steam-gas components obey to the equation of ideal gas state and that evaporation and condensation condititons permit to neglect the influence of compressability of gas (steam-gas) mixture, non-isothermality of boundary layer and interphase kinetic resistance to mass transfer onto the interfaces. It is concluded that the results of considered experimental and theoretical investigations of the above processes are in a satisfactory agreement and show insignificance of the effect of hydrodynamic conditions determining the regime of main steam-gas mixture flow on relative heat-and-mass transfer coefficients. According to the theoretical calculation results with increase of the factor of M steam-gas mixture non-uniformity mass transfer intensity in evaporation decreases, while in condensation it grows, but M effect on the mass transfer coefficient is rather small and sowhat increases in the case of a turbulent boundary layer evaporation. In condensation it is less than in evaporation
Determination of external and internal mass transfer limitation in nitrifying microbial aggregates.
Wilén, Britt-Marie; Gapes, Daniel; Keller, Jürg
2004-05-20
In this article we present a study of the effects of external and internal mass transfer limitation of oxygen in a nitrifying system. The oxygen uptake rates (OUR) were measured on both a macro-scale with a respirometric reactor using off-gas analysis (Titrimetric and Off-Gas Analysis (TOGA) sensor) and on a micro-scale with microsensors. These two methods provide independent, accurate measurements of the reaction rates and concentration profiles around and in the granules. The TOGA sensor and microsensor measurements showed a significant external mass transfer effect at low dissolved oxygen (DO) concentrations in the bulk liquid while it was insignificant at higher DO concentrations. The oxygen distribution with anaerobic or anoxic conditions in the center clearly shows major mass transfer limitation in the aggregate interior. The large drop in DO concentration of 22-80% between the bulk liquid and aggregate surface demonstrates that the external mass transfer resistance is also highly important. The maximum OUR even for floccular biomass was only attained at much higher DO concentrations (approximately 8 mg/L) than typically used in such systems. For granules, the DO required for maximal activity was estimated to be >20 mg/L, clearly indicating the effects of the major external and internal mass transfer limitations on the overall biomass activity. Smaller aggregates had a larger volumetric OUR indicating that the granules may have a lower activity in the interior part of the aggregate. Copyright 2004 Wiley Periodicals, Inc.
Heat and mass transfers between two stratified liquid phases in a bubbly flow
International Nuclear Information System (INIS)
Lapuerta, C.
2006-10-01
During an hypothetical major accident in a pressurized water reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow. This latter strongly impacts the heat transfers, whose intensities are crucial in the progression of the accident. In this context, this work is devoted to the diffuse interface modelling for the study of an-isothermal incompressible flows, composed of three immiscible components, with no phase change. In the diffuse interface methods, the system evolution is driven by the minimization of a free energy. The originality of our approach, derived from the Cahn-Hilliard model, is based on the particular form of the energy we proposed, which enables to have an algebraically and dynamically consistent model, in the following sense: on the one hand, the triphasic free energy is equal to the diphasic one when only two phases are present; on the other, if a phase is not initially present then it will not appear during system evolution, this last property being stable with respect to numerical errors. The existence and the uniqueness of weak and strong solutions are proved in two and three dimensions as well as a stability result for metastable states. The modelling of an an-isothermal three phase flow is further accomplished by coupling the Cahn-Hilliard equations with the energy balance and Navier-Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space in order to preserve properties of continuous model (volume conservation, energy estimate). Different numerical results are given, from the validation case of the lens spreading between two phases, to the study of the heat and mass transfers through a liquid/liquid interface crossed by a single bubble or a series of bubbles. (author)
Standard Gibbs free energies for transfer of actinyl ions at the aqueous/organic solution interface
International Nuclear Information System (INIS)
Kitatsuji, Yoshihiro; Okugaki, Tomohiko; Kasuno, Megumi; Kubota, Hiroki; Maeda, Kohji; Kimura, Takaumi; Yoshida, Zenko; Kihara, Sorin
2011-01-01
Research highlights: → Standard Gibbs free energies for ion-transfer of tri- to hexavalent actinide ions. → Determination is based on distribution method combined with ion-transfer voltammetry. → Organic solvents examined are nitrobenzene, DCE, benzonitrile, acetophenone and NPOE. → Gibbs free energies of U(VI), Np(VI) and Pu(VI) are similar to each other. → Gibbs free energies of Np(V) is very large, comparing with ordinary monovalent cations. - Abstract: Standard Gibbs free energies for transfer (ΔG tr 0 ) of actinyl ions (AnO 2 z+ ; z = 2 or 1; An: U, Np, or Pu) between an aqueous solution and an organic solution were determined based on distribution method combined with voltammetry for ion transfer at the interface of two immiscible electrolyte solutions. The organic solutions examined were nitrobenzene, 1,2-dichloroethane, benzonitrile, acetophenone, and 2-nitrophenyl octyl ether. Irrespective of the type of organic solutions, ΔG tr 0 of UO 2 2+ ,NpO 2 2+ , and PuO 2 2+ were nearly equal to each other and slightly larger than that of Mg 2+ . The ΔG tr 0 of NpO 2 + was extraordinary large compared with those of ordinary monovalent cations. The dependence of ΔG tr 0 of AnO 2 z+ on the type of organic solutions was similar to that of H + or Mg 2+ . The ΔG tr 0 of An 3+ and An 4+ were also discussed briefly.
Sorba, Robert; Sawicki, Marcin
2018-05-01
We perform spatially resolved, pixel-by-pixel Spectral Energy Distribution (SED) fitting on galaxies up to z ˜ 2.5 in the Hubble eXtreme Deep Field (XDF). Comparing stellar mass estimates from spatially resolved and spatially unresolved photometry we find that unresolved masses can be systematically underestimated by factors of up to 5. The ratio of the unresolved to resolved mass measurement depends on the galaxy's specific star formation rate (sSFR): at low sSFRs the bias is small, but above sSFR ˜ 10-9.5 yr-1 the discrepancy increases rapidly such that galaxies with sSFRs ˜ 10-8 yr-1 have unresolved mass estimates of only one-half to one-fifth of the resolved value. This result indicates that stellar masses estimated from spatially unresolved data sets need to be systematically corrected, in some cases by large amounts, and we provide an analytic prescription for applying this correction. We show that correcting stellar mass measurements for this bias changes the normalization and slope of the star-forming main sequence and reduces its intrinsic width; most dramatically, correcting for the mass bias increases the stellar mass density of the Universe at high redshift and can resolve the long-standing discrepancy between the directly measured cosmic SFR density at z ≳ 1 and that inferred from stellar mass densities (`the missing mass problem').
Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind
Energy Technology Data Exchange (ETDEWEB)
Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)
2017-09-10
A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.
A Stefan model for mass transfer in a rotating disk reaction vessel
BOHUN, C. S.
2015-05-04
Copyright © Cambridge University Press 2015. In this paper, we focus on the process of mass transfer in the rotating disk apparatus formulated as a Stefan problem with consideration given to both the hydrodynamics of the process and the specific chemical reactions occurring in the bulk. The wide range in the reaction rates of the underlying chemistry allows for a natural decoupling of the problem into a simplified set of weakly coupled convective-reaction-diffusion equations for the slowly reacting chemical species and a set of algebraic relations for the species that react rapidly. An analysis of the chemical equilibrium conditions identifies an expansion parameter and a reduced model that remains valid for arbitrarily large times. Numerical solutions of the model are compared to an asymptotic analysis revealing three distinct time scales and chemical diffusion boundary layer that lies completely inside the hydrodynamic layer. Formulated as a Stefan problem, the model generalizes the work of Levich (Levich and Spalding (1962) Physicochemical hydrodynamics, vol. 689, Prentice-Hall Englewood Cliffs, NJ) and will help better understand the natural limitations of the rotating disk reaction vessel when consideration is made for the reacting chemical species.
Devic, Emilie; Guyot, Sylvain; Daudin, Jean-Dominique; Bonazzi, Catherine
2010-01-13
Several cultivars of apples (Malus domestica) were chosen for their variable concentrations and compositions in phenolic compounds. Cubed samples (1 cm3) were subjected to osmotic dehydration, and the effect of temperature was studied at 45 and 60 degrees C. Water loss, sucrose impregnation, and the evolution of some natural components of the product were followed to quantify mass transfer. Ascorbic acid and polyphenols were quantified by HPLC for several osmotic dehydration times and regardless of the quantity of impregnated sugar. Changes in antioxidant components differed as a function of the nature of molecules. Their concentrations decreased in line with temperature, and few differences were observed between cultivars. Processing at a lower temperature (45 degrees C) caused a total loss in ascorbic acid but allowed the retention of between 74 and 85% of initial polyphenols, depending on the cultivar. Cultivars containing highly polymerized procyanidins (such as Guillevic) experienced less loss. Hydroxycinnamic acids and monomeric catechins displayed the most marked changes. Leaching with water into the soaking solution was the principal mechanism retained to explain these losses.
Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold
DEFF Research Database (Denmark)
Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof
2015-01-01
We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic...... response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics...... of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design. (C)2015 Optical Society of America...
Effect of Reynolds number on flow and mass transfer characteristics of a 90 degree elbow
Fujisawa, Nobuyuki; Ikarashi, Yuya; Yamagata, Takayuki; Taguchi, Syoichi
2016-11-01
The flow and mass transfer characteristics of a 90 degree elbow was studied experimentally by using the mass transfer measurement by plaster dissolution method, the surface flow visualization by oil film method and stereo PIV measurement. The experiments are carried out in a water tunnel of a circular pipe of 56mm in diameter with a working fluid of water. The Reynolds number was varied from 30000 to 200000. The experimental result indicated the change of the mass transfer coefficient distribution in the elbow with increasing the Reynolds number. This phenomenon is further examined by the surface flow visualization and measurement of secondary flow pattern in the elbow, and the results showed the suggested change of the secondary flow pattern in the elbow with increasing the Reynolds numbers.
Extraction of chlorophyll from pandan leaves using ethanol and mass transfer study
Directory of Open Access Journals (Sweden)
Putra Meilana Dharma
2017-01-01
Full Text Available Green pigments are used in many industrial branches including food, drinks, soap and cosmetics. Chlorophyll can substitute synthetic dyes which may affect health. Chlorophyll can be extracted from pandan leaves; the pandan crop grows in many tropical areas. The effects of temperature, 30–70°C and agitation speed, 100–400 rpm on chlorophyll extraction from pandan leaves, using ethanol and the evaluation of mass transfer coefficient, using dimensionless analysis were investigated. The optimal conditions of extraction was obtained at 60°C and 300 rpm; the chlorophyll concentration was 107.1 mg L-1. The volumetric mass transfer coefficient increased with the temperature and agitation speed. Determination of volumetric mass transfer coefficient and dimensionless correlations are useful for further process development or industrial applications.
The Updated Bottom Up Solution (UBUS) was recently applied to atmospheric pressure chemical ionization (APCI) mass spectrometry (MS) of triacylglycerols (TAGs). This report demonstrates that the UBUS applies equally well to atmospheric pressure photoionization (APPI) MS and to electrospray ionizatio...
New exact solution for the exterior gravitational field of a charged spinning mass
International Nuclear Information System (INIS)
Chamorro, A.; Manko, V.S.; Denisova, T.E.
1991-01-01
An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly
The mass transfer dynamics of gaseous methyl-iodide adsorption by silver-exchanged sodium mordenite
International Nuclear Information System (INIS)
Jubin, R.T.
1994-12-01
The adsorption of methyl iodide onto hydrogen-reduced silver-exchange mordenite was studied. The removal of organic iodides from off-gas streams is an important step in controlling the release of radioactive iodine to the environment during the treatment of radioactive wastes or the processing of some irradiated materials. Nine well accepted mass transfer models were evaluated for their ability to adequately explain the observed CH 3 I uptake behavior onto the Ag-Z. Linear and multidimensional regression techniques were utilized in the estimation of the diffusion constants and other model parameters which then permitted the selection of an appropriate mass transfer model. To date, only bulk loading data exist for the adsorption of CH 3 I onto Ag-Z. Hence this is believed to be the first study to quantify the controlling mass transfer mechanisms of this process. It can be concluded from the analysis of the experimental data obtained by the single-pellet type experiments and for the process conditions used in this study that the overall mass transfer rate associated with the adsorption of CH 3 I onto Ag-Z is affected by both micropore and macropore diffusion. The macropore diffusion rate was significantly faster than the micropore diffusion, resulting in a two-step adsorption behavior which was adequately modeled by a bimodal pore distribution model. The micropore diffusivity was determined to be on the order of 2 x 10 -14 cm 2 /s. The system was also shown to be isothermal under all conditions of this study. Two other conclusions were also obtained. First, the gas film resistance to mass transfer for the 1/16 and 1/8-in.-diam Ag-Z pellets can be ignored under the conditions used in this study. Finally, it was shown that by decreasing the water vapor content of the feed gas, the chemical reaction rate appeared to become the initial rate-limiting factor for the mass transfer. 75 refs
Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles
Directory of Open Access Journals (Sweden)
Jaćimovski Darko R.
2014-01-01
Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022
Wagner, Brian J.; Harvey, Judson W.
1997-01-01
Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute
Implementation of a new interfacial mass and energy transfer model in RETRAN-3D
International Nuclear Information System (INIS)
Macian, R.; Cebulh, P.; Coddington, P.; Paulsen, M.
1999-01-01
The RETRAN-3D MOD002.0 best estimate code includes a five-equation flow field model developed to deal with situations in which thermodynamic non-equilibrium phenomena are important. Several applications of this model to depressurization and pressurization transients showed serious convergence problems. An analysis of the causes for the numerical instabilities identified the models for interfacial heat and mass transfer as the source of the problems. A new interfacial mass and energy transfer model has thus been developed and implemented in RETRAN-3D. The heat transfer for each phase is equal to the product of the interfacial area density, a heat transfer coefficient and the temperature difference between the interface at saturation and the bulk temperature of the respective phase. However, in the context of RETRAN-3D, the vapor remains saturated in a two-phase volume, and no vapor heat transfer is thus calculated. The values of interfacial area density and heat transfer coefficient are obtained based on correlations appropriate for different flow regimes. A flow regime map, based on the work of Taitel and Dukler, with void fraction and mixture mass flux as map coordinates, is used to identify the flow regime present in a given volume. The new model has performed well when assessed against data from four experimental facilities covering depressurization, condensation and steady state void distribution. The results also demonstrate the viability of the approach followed to develop the new model for a five-equation based code. (author)
Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model
International Nuclear Information System (INIS)
Park, Jehun; Lee, Jae W.
2016-01-01
This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.
Influence of drying air parameters on mass transfer characteristics of apple slices
Beigi, Mohsen
2016-10-01
To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.
A multi-fluid model to simulate heat and mass transfer in a PEM fuel cell
DEFF Research Database (Denmark)
Berning, Torsten; Odgaard, Madeleine; Kær, Søren Knudsen
2011-01-01
This article summarizes a multi-phase model of a polymer electrolyte membrane fuel cell based on the formerly commercial CFD code CFX-4. It is three-dimensional in nature and includes multiphase heat and mass transfer in porous media. An overview is given and some numerical issues are discussed...... heat and mass transfer properties are superior. Another important aspect of this study is the wetting status of the electrolyte menbrane and the effective drag of water through the menbrane, which indicates what fraction of the product water created at the cathode side diffuses through the membrane...
Convective mass transfer in helical pipes: effect of curvature and torsion
Energy Technology Data Exchange (ETDEWEB)
Litster, S.; Djilali, N. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Pharoah, J.G. [University of Victoria, Department of Mechanical Engineering, Victoria, BC (Canada); Queen' s University at Kingston, Department of Mechanical Engineering, Kingston, ON (Canada)
2006-03-01
A 3D numerical analysis of the flow and mass transfer in helical pipes is presented. The interpretation of the flow patterns and their impact on mass transfer is shown to require a non-orthogonal pseudo-stream function based visualization. The strong coupling between torsion and curvature effects, and the resulting secondary flow regimes are well characterized by a parameter combining both the Dean (Dn) and Germano numbers (Gn). For membrane separation applications, helical modules combining high curvature with low torsion would alleviate concentration polarization and yield appreciable flux improvement. (orig.)
Heat-And-Mass Transfer Relationship to Determine Shear Stress in Tubular Membrane Systems
DEFF Research Database (Denmark)
Ratkovich, Nicolas Rios; Nopens, Ingmar
2012-01-01
The main drawback of Membrane Bioreactors (MBRs) is the fouling of the membrane. One way to reduce this fouling is through controlling the hydrodynamics of the two-phase slug flow near the membrane surface. It has been proven in literature that the slug flow pattern has a higher scouring effect...... to remove particulates due to the high shear rates and high mass transfer between the membrane surface and the bulk region. However, to calculate the mass transfer coefficient in an efficient and accurate way is not straightforward. Indeed, for accurate determination, numerous complex experimental...
Mass Transfer Coefficients and Bubble Sizes in Oxidative Ladle Refining of Silicon
Bjørnstad, Erlend Lunnan
2016-01-01
The mass transfer of [Al] and [Ca] between three synthetic SiO_{2}-CaO-Al_{2}O_{3} slags, and 8N silicon, has been investigated to find the overall mass transfer coefficient k_{i,t} for the individual species. Samples were kept at 1873K for 5, 10, 20, 30 and 180min before quenching. The metal phase was later analyzed by ICP-MS to view how the concentrations of impurities change with respect to time. This work then compares these results to industrial data gathered from ladles used for oxidati...
Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate
DEFF Research Database (Denmark)
Han, B.; Qu, H. Y.; Niemi, H.
2014-01-01
Precipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)(2)) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman...... on the dissolution of Mg(OH)(2). In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3 center dot 3H(2)O), as needle-like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation...
Energy Technology Data Exchange (ETDEWEB)
Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)
2015-12-28
The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.
An analytical solution for modeling thermal energy transfer in a confined aquifer system
Shaw-Yang, Yang; Hund-der, Yeh
2008-12-01
A mathematical model is developed for simulating the thermal energy transfer in a confined aquifer with different geological properties in the underlying and overlying rocks. The solutions for temperature distributions in the aquifer, underlying rock, and overlying rock are derived by the Laplace transforms and their corresponding time-domain solutions are evaluated by the modified Crump method. Field data adopted from the literature are used as examples to demonstrate the applicability of the solutions in modeling the heat transfer in an aquifer thermal energy storage (ATES) system. The results show that the aquifer temperature increases with time, injection flow rate, and water temperature. However, the temperature decreases with increasing radial and vertical distances. The heat transfer in the rocks is slow and has an effect on the aquifer temperature only after a long period of injection time. The influence distance depends on the aquifer physical and thermal properties, injection flow rate, and injected water temperature. A larger value of thermal diffusivity or injection flow rate will result in a longer influence distance. The present solution can be used as a tool for designing the heat injection facilities for an ATES system.
DEFF Research Database (Denmark)
Merayo Garcia, Eugenia; Nielsen, Rasmus; Hoff, Ayoe
2018-01-01
Individual Transferable Quotas stand in large parts of the fisheries economic literature as the panacea that solves all problems of overfishing and overcapacity of world´s fisheries. However, they are also criticized by a number of authors based on their negative social effects. Individual...... in local fishing communities compared to the national average was found. The Danish experience proves that Individual Transferable Quotas can be an adequate solution with regards to overfishing and overcapacity with also positive effects on the environment due to reduced fuel consumption and fishing...
Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa
2018-05-01
The aim of this research work is to find the EFGM solutions of the unsteady magnetohydromagnetic natural convection heat transfer flow of a rotating, incompressible, viscous, Boussinesq fluid is presented in this study in the presence of radiative heat transfer. The Rosseland approximation for an optically thick fluid is invoked to describe the radiative flux. Numerical results obtained show that a decrease in the temperature boundary layer occurs when the Prandtl number and the radiation parameter are increased and the flow velocity approaches steady state as the time parameter t is increased. These findings are in quantitative agreement with earlier reported studies.
Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi
2016-05-01
An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.
User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code
Energy Technology Data Exchange (ETDEWEB)
George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease
1997-07-07
This document is a manual for the use of the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. The code is also capable of incorporating the various adsorption mechanisms, ranging from simple linear relations to nonlinear isotherms, needed to describe the very complex transport processes at Yucca Mountain. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data
Flooding and mass transfer in Goodloe-packed columns, Part 2
International Nuclear Information System (INIS)
Ayala, J.S.; Brian, B.W.; Sharon, A.C.
1977-01-01
Krypton gas is recovered from HTGR off-gas streams by countercurrent absorption in liquid carbon dioxide. Goodloe stainless steel wire mesh packing was chosen for the absorption columns since the process operates at -20 0 C and about 20 atm pressure. Flooding points and an overall mass transfer coefficient for Goodloe-packed columns were determined with a carbon dioxide-air-water system for 6.4 and 15.2-cm-ID columns. Flood points were obtained for liquid-to-gas mass velocity ratios of 20 to 800. A mixing model, assuming plug flow for the gas and dispersed flow for the liquid, was used to calculate an overall mass transfer coefficient, K/sub L/a. K/sub L/a, based on mass concentrations, ranged from 0.01 to 0.08 sec/sup -T/ and was found to increase with increasing liquid flow rate
Velpula, Priyadarshini; Ghuge, Santosh; Saroha, Anil K.
2018-04-01
Ozonation is a chemical treatment process in which ozone reacts with the pollutants present in the effluent by infusion of ozone into the effluent. This study includes the effect of various parameters such as inlet ozone dose, pH of solution and initial concentration of dye on decolorization of dye in terms CRE. The maximum CRE of 98.62% with the reaction rate constant of 0.26 min-1 is achieved in 18 minutes of reaction time at inlet ozone dose of 11.5 g/m3, solution pH of 11 and 30 mg/L of initial concentration of dye. The presence of radical scavenger (Tertiary Butyl Alcohol) suppressed the CRE from 98.62% to 95.4% at high pH values indicates that the indirect mechanism dominates due to the presence of hydroxyl radicals which are formed by the decomposition of ozone. The diffusive and convective mass transfer coefficients of ozone are calculated as 1.78 × 10-5 cm2/sec and 0.075 min-1. It is observed that the fraction of resistance offered by liquid is very much high compared to gas phase indicates that the ozonation is a liquid phase mass transfer controlled operation.
Hay, Michael B.; Stoliker, Deborah L.; Davis, James A.; Zachara, John M.
2011-01-01
Although "intragranular" pore space within grain aggregates, grain fractures, and mineral surface coatings may contain a relatively small fraction of the total porosity within a porous medium, it often contains a significant fraction of the reactive surface area, and can thus strongly affect the transport of sorbing solutes. In this work, we demonstrate a batch experiment procedure using tritiated water as a high-resolution diffusive tracer to characterize the intragranular pore space. The method was tested using uranium-contaminated sediments from the vadose and capillary fringe zones beneath the former 300A process ponds at the Hanford site (Washington). Sediments were contacted with tracers in artificial groundwater, followed by a replacement of bulk solution with tracer-free groundwater and the monitoring of tracer release. From these data, intragranular pore volumes were calculated and mass transfer rates were quantified using a multirate first-order mass transfer model. Tritium-hydrogen exchange on surface hydroxyls was accounted for by conducting additional tracer experiments on sediment that was vacuum dried after reaction. The complementary ("wet" and "dry") techniques allowed for the simultaneous determination of intragranular porosity and surface area using tritium. The Hanford 300A samples exhibited intragranular pore volumes of ~1% of the solid volume and intragranular surface areas of ~20%–35% of the total surface area. Analogous experiments using bromide ion as a tracer yielded very different results, suggesting very little penetration of bromide into the intragranular porosity.
Gross, Deborah S.; Van Ryswyk, Hal
2014-01-01
Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool for examining the charge of proteins in solution. The charge can be manipulated through choice of solvent and pH. Furthermore, solution-accessible, protonated lysine side chains can be specifically tagged with 18-crown-6 ether to form noncovalent adducts. Chemical derivatization…
International Nuclear Information System (INIS)
Sharma, D.
1982-01-01
This paper presents the formulation and applications of a mathematical model designed to predict the fluid dynamics and associated mass transfers in variably saturated porous media. Novelties in the formulation are emphasized and demonstrated to provide several computational advantages. The numerical procedure employed is of the integrated finite-difference variety which employs a hybrid differencing scheme. This procedure, while solving the coupled governing equations in conservative form, permits accommodation of substantial heterogeneities and anisotropies in material properties of the porous media. Accordingly, it is capable of making reliable predictions of steeply varying moisture and chemical-specie concentration fronts. The paper provides several examples of application of the model to the solution of practical problems. It is demonstrated that economical solutions to highly non-linear problems associated with solid and liquid waste disposal practices can be obtained
Petit, Jean-Pierre; D'Agostini, G.
2015-03-01
We reconsider the classical Schwarzschild solution in the context of a Janus cosmological model. We show that the central singularity can be eliminated through a simple coordinate change and that the subsequent transit from one fold to the other is accompanied by mass inversion. In such scenario matter swallowed by black holes could be ejected as invisible negative mass and dispersed in space.
DEFF Research Database (Denmark)
Rong, Li; Nielsen, Peter V.; Zhang, Guoqiang
2010-01-01
greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation...... constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under...... the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related....
Curry, D. M.; Cox, J. E.
1972-01-01
Coupled nonlinear partial differential equations describing heat and mass transfer in a porous matrix are solved in finite difference form with the aid of a new iterative technique (the strongly implicit procedure). Example numerical results demonstrate the characteristics of heat and mass transport in a porous matrix such as a charring ablator. It is emphasized that multidimensional flow must be considered when predicting the thermal response of a porous material subjected to nonuniform boundary conditions.
Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation
International Nuclear Information System (INIS)
Hayoun, Marc
1990-11-01
Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr
Tang, Bing; Song, Haoliang; Bin, Liying; Huang, Shaosong; Zhang, Wenxiang; Fu, Fenglian; Zhao, Yiliang; Chen, Qianyu
2017-10-01
The work aims at illustrating the profile of DO and its mass transferring process in a biofilm reactor packed with a novel semi-suspended bio-carrier, and further revealing the main factors that influence the mass transferring coefficient of DO within the biofilm. Results showed that the biofilm was very easy to attach and grow on the semi-suspended bio-carrier, which obviously changed the DO profile inside and outside the biofilm. The semi-suspended bio-carrier caused three different mass transfer zones occurring in the bioreactor, including the zones of bulk solution, boundary layer and biofilm, in which, the boundary layer zone had an obvious higher mass transfer resistance. Increasing the aeration rate might improve the hydrodynamic conditions in the bioreactor and accelerate the mass transfer of DO, but it also detached the biofilm from the surface of bio-carrier, which reduced the consumption of DO, and accordingly, decreased the DO gradient in the bioreactor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Light-Time Effect and Mass Transfer in the Triple Star SW Lyncis
Directory of Open Access Journals (Sweden)
Chun-Hwey Kim
1999-06-01
Full Text Available In this paper all the photoelectric times of minimum for the triple star SW Lyn have been analyzed in terms of light-time e ect due to the third-body and secular period decreases induced by mass transfer process. The light-time orbit determined recently by Ogloza et al.(1998 were modi ed and improved. And it is found that the orbital period of SW Lyn have been decreasing secularly. The third-body revolves around the mass center of triple stars every 5y.77 in a highly eccentric elliptical orbit(e=0.61. The third-body with a minimum mass of 1.13M may be a binary or a white dwarf. The rate of secular period-decrease were obtained as ¡âP/P = -12.45 x 10^-11, implying the mass-transfer from the massive primary star to the secondary. The mass losing rate from the primary were calculated as about 1.24 x 10^-8M /y. It is noticed that the mass-transfer in SW Lyn system is opposite in direction to that deduced from it's Roche geometry by previous investigators.
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
International Nuclear Information System (INIS)
2009-01-01
This book contains the short papers from the International Symposium on Convective heat and Mass Transfer in sustainable Energy ( Conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
International Nuclear Information System (INIS)
2009-01-01
This book contains the short papers from the International Symposium on convective heat and Mass Transfer in sustainable Energy ( conv-09), organized on behalf of the International Centre for Heat and Mass Transfer, it was held on April 26- 1st May, In Hammamet, Tunisia. The objective of this conference is to bring together researchers in a forum to exchange innovative ideas, methods and results, and visions of the future related to the general theme of convective heat and mass transfer
Methods for the solution of the two-dimensional radiation-transfer equation
International Nuclear Information System (INIS)
Weaver, R.; Mihalas, D.; Olson, G.
1982-01-01
We use the variable Eddington factor (VEF) approximation to solve the time-dependent two-dimensional radiation transfer equation. The transfer equation and its moments are derived for an inertial frame of reference in cylindrical geometry. Using the VEF tensor to close the moment equations, we manipulate them into a combined moment equation that results in an energy equation, which is automatically flux limited. There are two separable facets in this method of solution. First, given the variable Eddington tensor, we discuss the efficient solution of the combined moment matrix equation. The second facet of the problem is the calculation of the variable Eddington tensor. Several options for this calculation, as well as physical limitations on the use of locally-calculated Eddington factors, are discussed
The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer
International Nuclear Information System (INIS)
Modest, M.F.
1991-01-01
In this paper the weighted-sum-of-gray-gases approach for radiative transfer in non-gray participating media, first developed by Hottel in the context of the zonal method, has been shown to be applicable to the general radiative equation of transfer. Within the limits of the weighted-sum-of-gray-gases model (non-scattering media within a black-walled enclosure) any non-gray radiation problem can be solved by any desired solution method after replacing the medium by an equivalent small number of gray media with constant absorption coefficients. Some examples are presented for isothermal media and media at radiative equilibrium, using the exact integral equations as well as the popular P-1 approximation of the equivalent gray media solution. The results demonstrate the equivalency of the method with the quadrature of spectral results, as well as the tremendous computer times savings (by a minimum of 95%) which are achieved
Flow friction and heat transfer of ethanol–water solutions through silicon microchannels
International Nuclear Information System (INIS)
Wu Huiying; Wu Xinyu; Wei Zhen
2009-01-01
An experimental investigation was performed on the flow friction and convective heat transfer characteristics of the ethanol–water solutions flowing through five sets of trapezoidal silicon microchannels having hydraulic diameters ranging from 141.7 µm to 268.6 µm. Four kinds of ethanol–water solutions with the ethanol volume concentrations ranging from 0 to 0.8 were tested under different flow and heating conditions. It was found that the cross-sectional geometric parameters had great effect on the flow friction and heat transfer, and the microchannels with a larger W b /W t (bottom width-to-top width ratio) and a smaller H/W t (depth-to-top width ratio) usually had a larger friction constant and a higher Nusselt number. Entrance effects were significant for the flow friction and heat transfer in silicon microchannels, and decreased with the increase of dimensionless hydrodynamic length L and dimensionless thermal length L + h . When L > 1.0, the hydrodynamic entrance effect on the flow friction was ignorable. For the developed laminar flow in silicon microchannels, the Navier–Stokes equation was applicable. It was also found that the volume concentrations had different effects on the flow friction and heat transfer. Within the experimental range, the effect of volume concentrations on the flow friction was ignorable, and the friction constants of the ethanol–water solutions having different concentrations were the same as those of the pure water. However, volume concentrations had great effect on the convection heat transfer in silicon microchannels. With the increase of the volume concentrations, the Nusselt number of the ethanol–water solutions increased obviously, which was attributed to the combination effect of the increase in the Prantdtl number as well as the volatilization effect of the ethanol. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of the ethanol–water solutions in the silicon
Photoinduced partial charge transfer between conjugated polymer and fullerene in solutions
International Nuclear Information System (INIS)
Lin Hongzhen; Weng Yufeng; Huang Hongmin; He Qingguo; Zheng Min; Bai Fenglian
2004-01-01
Photoinduced charge transfer between a conjugated polymer and C 60 and the related processes were investigated in dilute solutions. The substantial fluorescence quenching is correlated with the efficient exciton diffusion within the polymer chains, according to which a sphere-of-action mechanism is proposed. An emissive exciplex was found formed between the conjugated polymer and fullerene in a nonpolar solvent, indicating the occurrence of a photoinduced partial charge transfer process. The low-energy sites in the polymer are believed to play a crucial role in the partial charge transfer. The asymmetry of the exciplex provides a method for evaluating the tendency of photoinduced charge separation between the donor and the acceptor. This method allows screening candidates for photovoltaic applications
Xiong, Jun Ying
2016-12-29
A comprehensive analysis of fluid motion, mass transport, thermodynamics and power generation during pressure retarded osmotic (PRO) processes was conducted. This work aims to (1) elucidate the fundamental relationship among various membrane properties and operation parameters and (2) analyse their individual and combined impacts on PRO module performance. A state-of-the-art inner-selective thin-film composite (TFC) hollow fiber membrane was employed in the modelling. The analyses of mass transfer and Gibbs free energy of mixing indicate that the asymmetric nature of hollow fibers results in more significant external concentration polarization (ECP) in the lumen side of the inner-selective hollow fiber membranes. In addition, a trade-off relationship exists between the power density (PD) and the specific energy (SE). The PD vs. SE trade-off upper bound may provide a useful guidance whether the flowrates of the feed and draw solutions should be further optimized in order to (1) minimize the boundary thickness and (2) maximize the osmotic power generation. Two new terms, mass transfer efficiency and power harvesting efficiency for osmotic power generation, have been proposed. This work may provide useful insights to design and operate PRO modules with enhanced performance so that the PRO process becomes more promising in real applications in the near future.
Exact solutions for MHD flow of couple stress fluid with heat transfer
Directory of Open Access Journals (Sweden)
Najeeb Alam Khan
2016-01-01
Full Text Available This paper aims at presenting exact solutions for MHD flow of couple stress fluid with heat transfer. The governing partial differential equations (PDEs for an incompressible MHD flow of couple stress fluid are reduced to ordinary differential equations by employing wave parameter. The methodology is implemented for linearizing the flow equations without extra transformation and restrictive assumptions. Comparison is made with the result obtained previously.
Ogorzalek Loo, Rachel R.; Mitchell, Charles; Stevenson, Tracy I.; Loo, Joseph A.; Andrews, Philip C.
1997-12-01
Diffusive transfer was examined as a blotting method to transfer proteins from polyacrylamide gels to membranes for ultraviolet matrix-assisted laser desorption ionization (MALDI) mass spectrometry. The method is well-suited for transfers from isoelectric focusing (IEF) gels. Spectra have been obtained for 11 pmol of 66 kDa albumin loaded onto an IEF gel and subsequently blotted to polyethylene. Similarly, masses of intact carbonic anhydrase and hemoglobin were obtained from 14 and 20 pmol loadings. This methodology is also compatible with blotting high molecular weight proteins, as seen for 6 pmol of the 150 kDa monoclonal antibody anti-[beta]-galactosidase transferred to Goretex. Polypropylene, Teflon, Nafion and polyvinylidene difluoride (PVDF) also produced good spectra following diffusive transfer. Only analysis from PVDF required that the membrane be kept wet prior to application of matrix. Considerations in mass accuracy for analysis from large-area membranes with continuous extraction and delayed extraction were explored, as were remedies for surface charging. Vapor phase CNBr cleavage was applied to membrane-bound samples for peptide mapping.
Mass transfer between gas and particles in a gas-solid trickle flow reactor
Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria
1992-01-01
Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at
Directory of Open Access Journals (Sweden)
Eric Monflier
2012-11-01
Full Text Available The replacement of hazardous solvents and the utilization of catalytic processes are two key points of the green chemistry movement, so aqueous organometallic catalytic processes are of great interest in this context. Nevertheless, these processes require not only the use of water-soluble ligands such as phosphanes to solubilise the transition metals in water, but also the use of mass transfer agents to increase the solubility of organic substrates in water. In this context, phosphanes based on a cyclodextrin skeleton are an interesting alternative since these compounds can simultaneously act as mass transfer agents and as coordinating species towards transition metals. For twenty years, various cyclodextrin-functionalized phosphanes have been described in the literature. Nevertheless, while their coordinating properties towards transition metals and their catalytic properties were fully detailed, their mass transfer agent properties were much less discussed. As these mass transfer agent properties are directly linked to the availability of the cyclodextrin cavity, the aim of this review is to demonstrate that the nature of the reaction solvent and the nature of the linker between cyclodextrin and phosphorous moieties can deeply influence the recognition properties. In addition, the impact on the catalytic activity will be also discussed.
Heat and Mass Transfer of Vacuum Cooling for Porous Foods-Parameter Sensitivity Analysis
Directory of Open Access Journals (Sweden)
Zhijun Zhang
2014-01-01
Full Text Available Based on the theory of heat and mass transfer, a coupled model for the porous food vacuum cooling process is constructed. Sensitivity analyses of the process to food density, thermal conductivity, specific heat, latent heat of evaporation, diameter of pores, mass transfer coefficient, viscosity of gas, and porosity were examined. The simulation results show that the food density would affect the vacuum cooling process but not the vacuum cooling end temperature. The surface temperature of food was slightly affected and the core temperature is not affected by the changed thermal conductivity. The core temperature and surface temperature are affected by the changed specific heat. The core temperature and surface temperature are affected by the changed latent heat of evaporation. The core temperature is affected by the diameter of pores. But the surface temperature is not affected obviously. The core temperature and surface temperature are not affected by the changed gas viscosity. The parameter sensitivity of mass transfer coefficient is obvious. The core temperature and surface temperature are affected by the changed mass transfer coefficient. In all the simulations, the end temperature of core and surface is not affected. The vacuum cooling process of porous medium is a process controlled by outside process.
Evaporation of Ventilated Water Droplet: Connection Between Heat and Mass Transfer
Czech Academy of Sciences Publication Activity Database
Smolík, Jiří; Ondráčková, Lucie; Schwarz, Jaroslav; Kulmala, M.
2001-01-01
Roč. 32, č. 6 (2001), s. 739-748 ISSN 0021-8502 Institutional research plan: CEZ:AV0Z4072921 Keywords : droplet evaporation * heat and mass transfer Subject RIV: CC - Organic Chemistry Impact factor: 1.605, year: 2001
International Nuclear Information System (INIS)
Do, Chuong; Hussey, Dennis; Wells, Daniel M.; Epperson, Kenny
2016-01-01
Optimization numerical method was implemented to determine several mass transfer coefficients in a crud-induced power shift risk assessment code. The approach was to utilize a multilevel strategy that targets different model parameters that first changes the major order variables, mass transfer inputs, then calibrates the minor order variables, crud source terms, according to available plant data. In this manner, the mass transfer inputs are effectively simplified as 'dependent' on the crud source terms. Two optimization studies were performed using DAKOTA, a design and analysis toolkit, with the difference between the runs, being the number of model runs using BOA, allowed for adjusting the crud source terms, therefore, reducing the uncertainty with calibration. The result of the first case showed that the current best estimated values for the mass transfer coefficients, which were derived from first principle analysis, can be considered an optimized set. When the run limit of BOA was increased for the second case, an improvement in the prediction was obtained with the results deviating slightly from the best estimated values. (author)
Impact of Heat and Mass Transfer on MHD Oscillatory Flow of Jeffery ...
African Journals Online (AJOL)
The objective of this paper is to study Dufour, Soret and thermal conductivity on unsteady heat and mass transfer of magneto hydrodynamic (MHD) oscillatory flow of Jeffery fluid through a porous medium in a channel. The partial differential equations governing the flow have been solved numerically using semi-implicit ...
Demonstrating the Effect of Interphase Mass Transfer in a Transparent Fluidized Bed Reactor
Saayman, Jean; Nicol, Willie
2011-01-01
A demonstration experiment is described that employs the ozone decomposition reaction at ambient conditions on Fe2O3 impregnated Fluidized Catalytic Cracking (FCC) catalyst. Using a two-dimensional see-through column the importance of interphase mass transfer is clearly illustrated by the significant difference in ozone conversion between the…
Analysis of coupled mass transfer and sol-gel reaction in a two-phase system
Castelijns, H.J.; Huinink, H.P.; Pel, L.; Zitha, P.L.J.
2006-01-01
The coupled mass transfer and chemical reactions of a gel-forming compound in a two-phase system were studied in detail. Tetra-methyl-ortho-silicate (TMOS) is often used as a precursor in sol-gel chemistry to produce silica gels in aqueous systems. TMOS can also be mixed with many hydrocarbons
Development of a model to determine mass transfer coefficient and oxygen solubility in bioreactors
Directory of Open Access Journals (Sweden)
Johnny Lee
2017-02-01
where T is in degree Kelvin, and the subscripts refer to degree Celsius; E, ρ, σ are properties of water. Furthermore, using data from published data on oxygen solubility in water, it was found that solubility bears a linear and inverse relationship with the mass transfer coefficient.
Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.
Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R
2001-01-01
Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.
Solid foam packings for multiphase reactors: Modelling of liquid holdup and mass transfer
Stemmet, C.P.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.
2006-01-01
In this paper, experimental and modeling results are presented of the liquid holdup and gas–liquid mass transfer characteristics of solid foam packings. Experiments were done in a semi-2D transparent bubble column with solid foam packings of aluminum in the range of 5–40 pores per inch (ppi). The
Magnetic resonance imaging of flow and mass transfer in electrohydrodynamic liquid bridges
Wexler, Adam D.; Drusová, Sandra; Fuchs, Elmar C.; Woisetschläger, Jakob; Reiter, Gert; Fuchsjäger, Michael; Reiter, Ursula
2017-01-01
Abstract: Here, we report on the feasibility and use of magnetic resonance imaging-based methods to the study of electrohydrodynamic (EHD) liquid bridges. High-speed tomographic recordings through the longitudinal axis of water bridges were used to characterize the mass transfer dynamics, mixing,
Irradiation of a barrier film: analysis of some mass transfer aspects
International Nuclear Information System (INIS)
Deschenes, L.; Arbour, A.; Brunet, F.; Court, M.A.; Doyon, G.J.; Fortin, J.; Rodrigue, N.
1995-01-01
Irradiation of a Nylon/PVDC/EVA barrier film caused changes in mass transfers of the packaging material. Sensory evaluation of irradiated water indicated development of off-odours and taints, even at 1 kGy. This behaviour differed with the irradiation source (gamma or beta). Aldehydes and polymer hydrocarbons were involved in the development of irradiation tainting from packaging film. (Author)
Heat and Mass Transfer at Hot Surface Ignition of Coal Particle
Glushkov Dmitrii O.; Kosintsev Andrey. G.; Shlegel Nikita E.; Vershinina Ksenia Yu.
2015-01-01
This paper describes the experimental investigations of the characteristics of heat and mass transfer during the conductive heating of a coal particle. We have established the boundary conditions of combustion initiation, and the conditions of thermal decomposition and solid fuel particles decay, characterized by the temperature of a heat source, and the duration of the respective stages.
Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle
Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.
1985-01-01
The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers
Visualization and mass transfer with a bistable two-slot impinging jet
Czech Academy of Sciences Publication Activity Database
Trávníček, Zdeněk; Maršík, František
2003-01-01
Roč. 6, č. 4 (2003), s. 337-441 ISSN 1343-8875 R&D Projects: GA AV ČR IAA2076203 Institutional research plan: CEZ:AV0Z2076919 Keywords : visualization * mass transfer * impinging jet Subject RIV: BK - Fluid Dynamics Impact factor: 0.279, year: 2002
Mass transfer in supercritical fluids instancing selected fluids in supercritical carbon dioxide
Hu, Miao; Benning, Rainer; Delgado, Antonio; Ertunc, Oezguer
The research interests lie in a deeper understanding of the mechanisms of diffusion and nucle-ation of organic solutes in near-and supercritical state of a solvent, which count as important means of mass transfer in the process engineering industry. The use of supercritical fluids in industrial processes, such as extraction and particle handling, has become a more and more popular method. Take a closer look at the two processes one would find that there are obviously two sub-processes involved in each of the process, namely the diffusion/nucleation as well as a phase transition procedure. Because of the operational limitations in the practice, this phase transition can-not be neglected. So it is also included in the theoretical approach. Classically to deduce conclusions from experiment results, mathematical/physical models outlining property changes and summarizing characteristics of the two processes are expected. In order to become an insight of these phenomena from the origin, and also to serve as a fundamental attribute for the numerical simulation later, the theories of statistical thermodynamics are adopted here as a proper means to describe the behaviors of the two processes. As the diffusion coefficients of the samples in our case are only of an order of approx. 10-8m2s-1, it can be assumed that the processes are in equilibrium (local changes are neglectably small), a model can be built on a general macroscopic approach for equilibrium systems, namely the Boltzmann-Gibbs distri-bution. And some rather general methods e.g. linear response theory can be applied. But as the transfer phenomena are genuinely not equilibrium systems, from this aspect a model can also be built based on the microscopic description -the kinetic theory of the behaviors of the particles of this non-equilibrium system. The characteristics under compensated gravity are also to be considered in the models. The differences and constraints between the models are to be compared and
Directory of Open Access Journals (Sweden)
E. R. Gouveia
2000-12-01
Full Text Available In the present work rheological characteristics and volumetric oxygen transfer coefficient (kLa were investigated during batch cultivations of Streptomyces clavuligerus NRRL 3585 for production of clavulanic acid. The experimental rheological data could be adequately described in terms of the power law model and logistic equation. Significant changes in the rheological parameters consistency index (K and flow behavior index (n were observed with the fermentation evolution. Interesting correlations between the consistency index (K/biomass concentration (C X and the flow behavior index (n/biomass concentration were proposed. Volumetric oxygen mass transfer coefficient (kLa was determined by the gas balance method. Classical correlation relating the volumetric oxygen mass transfer coefficient to the operating conditions, physical and to transport properties, including apparent viscosity (muap, could be applied to the experimental results.
Erosion and mass transfer of Mo, W and Nb under neutron irradiation of high temperature materials
International Nuclear Information System (INIS)
Berzhatyj, V.I.; Luk'yanov, A.N.; Zavalishin, A.A.; Tkach, V.N.; Fedorenko, A.I.
1980-01-01
Studies have been made of the medium composition in thermionic fuel elements of two types during reactor tests; erosion and mass transfer of electrode materials have been investigated in the after-reactor analysis of the tested fuel elements. The studies of electrode material evaporation at the conditions approaching (in environment temperature and composition) those of reactor tests of thermionic fuel elements have shown that the process proceeds in the form of metal oxides. Evaporation rates are determined, the mechanism of evaporation is discussed, and the analytical dependences are obtained for calculating the evaporation rates of Mo and W at certain temperature and gaseous medium composition. It is found that the main contribution to the material transfer off the Mo and Nb surfaces under a high-temperature reactor irradiation comes through the thermal evaporation; in the case of tungsten at the same experimental conditions the rates of mass transfer due to thermal evaporation and neutron sputtering are nearly the same [ru
Modelling of the processes of heat and mass transfer in adiabatic steam and drop flows
International Nuclear Information System (INIS)
Andrizhievskij, A.A.; Mikhalevich, A.A.; Nesterenko, V.B.; Trifonov, A.G.
1983-01-01
The mathematical models for investigating the local and integral characteristics of heat and mass transfer processes during simultaneous motion of adiabatic steam and drop flow and a flux of impurity particles are given. The mathematical model is constrUcted on the basis of one-dimensional stationary eqUations of conservation of mass, thermal energy and momentum of liquid and vapor phases. Dispersion composition of condensed moisture is described by the Nukiyama-Tanasava distribution function formed taking into account the Veber number critical value. Equations of motion and mass balance conservation for impurity particles are included into the mathematical model. These equations are considered as additional inactive phase
Energy Technology Data Exchange (ETDEWEB)
Samin, Adib; Lahti, Erik; Zhang, Jinsuo, E-mail: zhang.3558@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19" t" h Avenue, Columbus, Ohio 43210 (United States)
2015-08-15
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes.
International Nuclear Information System (INIS)
th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Samin, Adib; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Lahti, Erik; th Avenue, Columbus, Ohio 43210 (United States))" data-affiliation=" (Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W 19th Avenue, Columbus, Ohio 43210 (United States))" >Zhang, Jinsuo
2015-01-01
Cyclic voltammetry is a powerful tool that is used for characterizing electrochemical processes. Models of cyclic voltammetry take into account the mass transport of species and the kinetics at the electrode surface. Analytical solutions of these models are not well-known due to the complexity of the boundary conditions. In this study we present closed form analytical solutions of the planar voltammetry model for two soluble species with fast electron transfer and equal diffusivities using the eigenfunction expansion method. Our solution methodology does not incorporate Laplace transforms and yields good agreement with the numerical solution. This solution method can be extended to cases that are more general and may be useful for benchmarking purposes
International Nuclear Information System (INIS)
Wannachod, Pharannalak; Chaturabul, Srestha; Pancharoen, Ura; Lothongkum, Anchaleeporn W.; Patthaveekongka, Weerawat
2011-01-01
Graphical abstract: Display Omitted Research highlights: → Maximum percentage of praseodymium extraction at 91.7% from 10% (v/v) bis (2,4,4-trimethylpentyl) phosphinic acid as extractant carrier in multi cycle operation through single HFLSM module. → Mass transfer mechanism of this system was investigated. → The rate-controlling step of this system was the diffusion of praseodymium ions through the film layer between the feed solution and the liquid membrane. → Model prediction of the dimensionless concentrations and separation factors showed promising agreement with the experimental data. - Abstract: The recovery of praseodymium from mixed rare earths via a hollow fiber supported liquid membrane (HFSLM) was examined. Bis(2,4,4-trimethylpentyl) phosphinic acid - known as Cyanex 272 - was used as an extractant carrier. The stripping solution was hydrochloric acid solution. The experiments examined in functions of the concentrations of the carrier in liquid membrane, the (initial) pH's of initial feed solution within the acidic-pH range, the concentrations of hydrochloric acid, the flow rates of feed and stripping solution, and the operation mode of runs through the hollow fiber module. In addition, the influence of circulation of the stripping solution at various numbers of runs through the HFSLM on the outlet concentration of praseodymium ions in the stripping solution was observed. Mass transfer mechanism in the system was investigated. Extraction equilibrium constant (K ex ), distribution ratio (D), permeability (P) and mass transfer coefficients were determined. The aqueous-phase mass-transfer coefficient (k i ) and organic-phase mass-transfer coefficient (k m ) were reported to 0.0103 and 0.788 cm s -1 , respectively, in which k m is much higher than the k i . Thus it suggests the rate-controlling step is the diffusion of praseodymium ions through the film layer between the feed solution and the liquid membrane. Model prediction of the dimensionless
Infrared fixed point solution for the top quark mass and unification of couplings in the MSSM
International Nuclear Information System (INIS)
Bardeen, W.A.; Carena, M.; Pokorski, S.; Wagner, C.E.M.
1993-08-01
We analyze the implications of the infrared quasi fixed point solution for the top quark mass in the Minimal Supersymmetric Standard Model. This solution could explain in a natural way the relatively large value of the top quark mass and, if confirmed experimentally, may be suggestive of the onset of nonperturbative physics at very high energy scales. In the framework of grand unification, the expected bottom quark -- tau lepton Yukawa coupling unification is very sensitive to the fixed point structure of the top quark mass. For the presently allowed values of the electroweak parameters and the bottom quark mass, the Yukawa coupling unification implies that the top quark mass must be within ten percent of its fixed point values
Analysis of mass transfer characteristics in a tubular membrane using CFD modeling.
Yang, Jixiang; Vedantam, Sreepriya; Spanjers, Henri; Nopens, Ingmar; van Lier, Jules B
2012-10-01
In contrast to the large amount of research into aerobic membrane bioreactors, little work has been reported on anaerobic membrane bioreactors (AMBRs). As to the application of membrane bioreactors, membrane fouling is a key issue. Membrane fouling generally occurs more seriously in AMBRs than in aerobic membrane bioreactors. However, membrane fouling could be managed through the application of suitable shear stress that can be introduced by the application of a two-phase flow. When the two-phase flow is applied in AMBRs, little is known about the mass transfer characteristics, which is of particular importance, in tubular membranes of AMBRs. In our present work, we have employed fluid dynamic modeling to analyze the mass transfer characteristics in the tubular membrane of a side stream AMBR in which, gas-lift two-phase flow was applied. The modeling indicated that the mass transfer capacity at the membrane surface at the noses of gas bubbles was higher than the mass transfer capacity at the tails of the bubbles, which is in contrast to the results when water instead of sludge is applied. At the given mass transfer rate, the filterability of the sludge was found to have a strong influence on the transmembrane pressure at a steady flux. In addition, the model also showed that the shear stress in the internal space of the tubular membrane was mainly around 20 Pa but could be as high as about 40 Pa due to gas bubble movements. Nonetheless, at these shear stresses a stable particle size distribution was found for sludge particles. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effect of heat and mass transfer coefficients on the performance of automotive catalytic converters
Energy Technology Data Exchange (ETDEWEB)
Shamim, T. [Michigan Univ., Dept. of Mechanical Engineering, Dearborn, MI (United States)
2003-06-01
This paper numerically investigates the role of heat and mass transfer coefficients on the performance of automotive catalytic converters, which are employed to reduce engine exhaust emissions. The pollutant conversion performance of a converter is influenced by a number of physical and chemical processes that take place in gaseous and solid phases as the exhaust gases flow through the catalyst. A quantitative predictive understanding of these complex catalyst processes involving flow dynamics, heterogeneous surface reactions and heat and mass transport mechanisms is important in improving the converter design. The role of convective transport phenomena becomes important at high temperature when the mass transfer becomes rate-limiting to an increasing extent. The objective of the present study is to elucidate the influence of convective heat and mass transfer coefficients (mechanisms). The mathematical model considers the conservation of mass, momentum and energy in both gaseous and solid phases. In addition to the heterogeneous surface reactions, the model also takes into account the adsorption/desorption of oxygen in the catalyst during non-stoichiometric composition of air/fuel mixtures. The governing equations are solved by an implicit scheme using a successive line under a relaxation method. The converter performance under the transient conditions as simulated by the US Federal Test Procedure (US-FTP) is analysed. (Author)
Mass transfer during sulfuric acid concentration by evaporation into the air flow
Directory of Open Access Journals (Sweden)
V. K. Lukashov
2016-12-01
Full Text Available This article shows the results of the study of mass transfer under periodic concentration of sulfuric acid by evaporation inthe gas flow, neutral with respect to the components of acid.Used mathematical model for mass transferbases on the proposed simplified physical representations.This model has allowed to construct an algorithm for calculation the coefficient of mass transfer from the liquid phase into the gas flow. The algorithm uses the experimental data of change the amount of acid and concentration of the water taken from the laboratory tests. Time-based Nusselt diffusion criterion represent the results of the study at different modes of the evaporation process.It has been found that the character of the influence of temperature and initial acid concentration on Nusselt diffusion criterion depends on the variation range of the mass fraction of water in the acid.It is shown that these dependences are well approximated by an exponential function from the dimensionless parameters of the process. This allows usingthem for calculation the mass transfer coefficient into the gas phase in a batch process of concentrating in the range of investigated modes.
Mass savings domain of plasma propulsion for LEO to GEO transfer
International Nuclear Information System (INIS)
Choueiri, E.Y.; Kelly, A.J.; Jahn, R.G.
1993-01-01
A parametric model is used to study the mass savings of plasma propulsion over advanced chemical propulsion for lower earth orbit (LEO) to geosynchronous orbit (GEO) transfer. Such savings are characterized by stringent requirements of massive payloads (O(10) metric tons) and high power levels (O(100) kW). Mass savings on the order of the payload mass are possible but at the expense of longer transfer times (8--20 months). Typical of the savings domain is the case of a self-field magnetoplasmadynamic (MPD) thruster running quasi-steadily, at an I s of 2000 s, with 600 kW of input power, raising a 50 metric ton satellite in 270 days. The initial mass at LEO will be 65 tons less than a 155 ton LO 2 /LH 2 advanced chemical high thrust spacecraft. An optimum I s can only be found if the cost savings associated with mass savings are counterbalanced by the cost losses incurred by longer transfer times. A simplistic cost model that illustrates the overall trends in the optimization yielded an optimum I s of about 2200 s for a cost effective baseline MPD system
Complete heat transfer solutions of an insulated regular polygonal pipe by using a PWTR model
International Nuclear Information System (INIS)
Wong, K.-L.; Chou, H.-M.; Li, Y.-H.
2004-01-01
The heat transfer characteristics for insulated long regular polygonal (including circular) pipes are analyzed by using the same PWRT model in the present study as that used by Chou and Wong previously [Energy Convers. Manage. 44 (4) (2003) 629]. The thermal resistance of the inner convection term and the pipe conduction term in the heat transfer rate are not neglected in the present study. Thus, the complete heat transfer solution will be obtained. The present results can be applied more extensively to practical situations, such as heat exchangers. The results of the critical thickness t cr and the neutral thickness t e are independent of the values of J (generated by the combined effect of the inner convection term and the pipe conduction term). However, the heat transfer rates are dependent on the values of J. The present study shows that the thermal resistance of the inner convection term and the pipe conduction term cannot be neglected in the heat transfer equation in situations of low to medium inner convection coefficients h i and/or low to medium pipe conductivities K, especially in situations with large pipe sizes or/and great outer convection coefficients h 0
Bibliography on augmentation of convective heat and mass transfer-II
Energy Technology Data Exchange (ETDEWEB)
Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.
1983-12-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.
International Nuclear Information System (INIS)
Boccaccini, L.V.
1986-07-01
To take advantages of the semi-implicit computer models - to solve the two phase flow differential system - a proper averaging procedure is also needed for the source terms. In fact, in some cases, the correlations normally used for the source terms - not time averaged - fail using the theoretical time step that arises from the linear stability analysis used on the right handside. Such a time averaging procedure is developed with reference to the bubbly flow regime. Moreover, the concept of mass that must be exchanged to reach equilibrium from a non-equilibrium state is introduced to limit the mass transfer during a time step. Finally some practical calculations are performed to compare the different correlations for the average mass transfer rate developed in this work. (orig.) [de
Netcher, Andrea C; Duranceau, Steven J
2016-03-01
In surface water treatment, ultrafiltration (UF) membranes are widely used because of their ability to supply safe drinking water. Although UF membranes produce high-quality water, their efficiency is limited by fouling. Improving UF filtrate productivity is economically desirable and has been attempted by incorporating sustainable biofiltration processes as pretreatment to UF with varying success. The availability of models that can be applied to describe the effectiveness of biofiltration on membrane mass transfer are lacking. In this work, UF water productivity was empirically modeled as a function of biofilter feed water quality using either a quadratic or Gaussian relationship. UF membrane mass transfer variability was found to be governed by the dimensionless mass ratio between the alkalinity (ALK) and dissolved organic carbon (DOC). UF membrane productivity was optimized when the biofilter feed water ALK to DOC ratio fell between 10 and 14. Copyright © 2015 Elsevier Ltd. All rights reserved.
The influence of surface treatment on mass transfer between air and building material
DEFF Research Database (Denmark)
Kwiatkowski, Jerzy; Rode, Carsten; Hansen, Kurt Kielsgaard
2008-01-01
for the experiments: gypsum board and calcium silicate. The wallpaper and paint were used as finishing materials. Impact of the following parameters for changes of RH was studied: coating, temperature and air movement. The measurements showed that acryl paint (diffusion open) can significantly decrease mass uptake......The processes of mass transfer between air and building structure and in the material influence not only the conditions within the material but also inside the connected air spaces. The material which absorbs and desorbs water vapour can be used to moderate the amplitude of indoor relative humidity...... and therefore to participate in the improvement of the indoor air quality and energy saving. Many parameters influence water vapour exchange between indoor air and building material. The aim of this work is to present the change of mass transfer under different climatic and material conditions. The measurements...
Category Theory Approach to Solution Searching Based on Photoexcitation Transfer Dynamics
Directory of Open Access Journals (Sweden)
Makoto Naruse
2017-07-01
Full Text Available Solution searching that accompanies combinatorial explosion is one of the most important issues in the age of artificial intelligence. Natural intelligence, which exploits natural processes for intelligent functions, is expected to help resolve or alleviate the difficulties of conventional computing paradigms and technologies. In fact, we have shown that a single-celled organism such as an amoeba can solve constraint satisfaction problems and related optimization problems as well as demonstrate experimental systems based on non-organic systems such as optical energy transfer involving near-field interactions. However, the fundamental mechanisms and limitations behind solution searching based on natural processes have not yet been understood. Herein, we present a theoretical background of solution searching based on optical excitation transfer from a category-theoretic standpoint. One important indication inspired by the category theory is that the satisfaction of short exact sequences is critical for an adequate computational operation that determines the flow of time for the system and is termed as “short-exact-sequence-based time.” In addition, the octahedral and braid structures known in triangulated categories provide a clear understanding of the underlying mechanisms, including a quantitative indication of the difficulties of obtaining solutions based on homology dimension. This study contributes to providing a fundamental background of natural intelligence.
International Nuclear Information System (INIS)
Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck
2010-01-01
In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower
Heat and mass transfer analysis intermediate temperature solid oxide fuel cells (IT-SOFC)
International Nuclear Information System (INIS)
Timurkutluk, B.; Mat, M. M.; Kaplan, Y.
2007-01-01
Solid oxide fuel cells (SOFCs) have been considered as next generation energy conversion system due to their high efficiency, clean and quite operation with fuel flexibility. To date, yittria stabilized zirconia (YSZ) electrolytes have been mainly used for SOFC applications at high temperatures around 1000 degree C because of their high ionic conductivity, chemical stability and good mechanical properties. However, such a high temperature is undesirable for fuel cell operations in the viewpoint of stability. Moreover, high operation temperature necessitates high cost interconnect and seal materials. Thus, the reduction in the operation temperature of SOFCs is one of the key issues in the aspects of the cost reduction and the long term operation without degradation as well as commercialization of the SOFC systems. With the reducing temperature, not only low cost stainless steels and glass materials can be used as interconnect and sealing materials respectively but the manufacturing technology will also extend. Therefore, the design of complex geometrical SOFC component will also be possible. One way to reduce the operation temperature of SOFC is use of an alternative electrolyte material to YSZ showing acceptable properties at intermediate temperatures (600-800 degree C). As being one of IT-SOFC electrolyte materials, gadolinium doped ceria (GDC) has been taken great deals. In this study, a mathematical model for mass and heat transfer for a single cell GDC electrolyte SOFC system was developed and numerical solutions were evaluated. In order to verify the mathematical model, set of experiments were performed by taking species from four different samples randomly and five various temperature measurements. The numerical results reasonably agree with experimental data
2013-01-01
In this study, a miniature stirred tank bioreactor was designed for treatment of waste gas containing benzene, toluene and xylene. Oxygen mass transfer characteristics for various twin and single-impeller systems were investigated for 6 configurations in a vessel with 10 cm of inner diameter and working volume of 1.77L. Three types of impellers, namely, Rushton turbine, Pitched 4blades and Pitched 2blades impellers with downward pumping have been used. Deionized water was used as a liquid phase. With respect to other independent variables such as agitation speed, aeration rate, type of sparger, number of impellers, the relative performance of these impellers was assessed by comparing the values of (KLa) as a key parameter. Based on the experimental data, empirical correlations as a function of the operational conditions have been proposed, to study the oxygen transfer rates from air bubbles generated in the bioreactor. It was shown that twin Rushton turbine configuration demonstrates superior performance (23% to 77% enhancement in KLa) compared with other impeller compositions and that sparger type has negligible effect on oxygen mass transfer rate. Agitation speeds of 400 to 800 rpm were the most efficient speeds for oxygen mass transfer in the stirred bioreactor. PMID:23369581
International Nuclear Information System (INIS)
Agarwal, B.
2012-01-01
Proton Transfer Reaction Mass Spectrometry (PTR-MS) is a mass spectrometric technique based on chemical ionization, which provides very rapid measurements (within seconds) of volatile organic compounds in air, usually without special sample preparation, and with a very low detection limit. The detection and study of product ion patterns of threat agents such as explosives and drugs and some major environmental pollutants (isocyanates and polychlorinated biphenyls (PCBs)) is explored in detail here using PTR-MS, specifically Proton Transfer Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS). The proton transfer reaction (PTR) principle works on the detection of the compound in the vapor phase. For some compounds, which have extremely low vapor pressures, both sample and inlet line heating were needed. Generally, the protonated parent molecule (MH+) is found to be the dominant product ion, which therefore provides us with a higher level of confidence in the assignment of a trace compound. However, for several compounds, dissociative proton transfer can occur at various degrees resulting in other product ions. Analysis of other compounds, such as the presence of taggants and impurities were carried out, and in certain compounds unusual E/N anomalies were discovered (E/N is an instrumental set of parameters, where E is the electric field strength and N is the number density). Head space measurements above four different drinks (plain water, tea, red wine and white wine) spiked with four different 'date rape' drugs were also conducted. (author)
Explicit thin-lens solution for an arbitrary four by four uncoupled beam transfer matrix
Energy Technology Data Exchange (ETDEWEB)
Balandin, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Orlov, S. [Moscow State Univ. (Russian Federation). Faculty of Computational Mathematics and Cybernetics
2011-10-15
In the design of beam transport lines one often meets the problem of constructing a quadrupole lens system that will produce desired transfer matrices in both the horizontal and vertical planes. Nowadays this problem is typically approached with the help of computer routines, but searching for the numerical solution one has to remember that it is not proven yet that an arbitrary four by four uncoupled beam transfer matrix can be represented by using a finite number of drifts and quadrupoles (representation problem) and the answer to this questions is not known not only for more or less realistic quadrupole field models but also for the both most commonly used approximations of quadrupole focusing, namely thick and thin quadrupole lenses. In this paper we make a step forward in resolving the representation problem and, by giving an explicit solution, we prove that an arbitrary four by four uncoupled beam transfer matrix actually can be obtained as a product of a finite number of thin-lenses and drifts. (orig.)
Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor
Energy Technology Data Exchange (ETDEWEB)
Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno [University of Zagreb, Zagreb (Croatia)
2015-06-15
Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R{sup 2}=0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k{sub L}a=4,652-1,9807 h{sup -1}.
Mass Transfer Coefficientin Stirred Tank for p -Cresol Extraction Process from Coal Tar
International Nuclear Information System (INIS)
Fardhyanti, D S; Tyaningsih, D S; Afifah, S N
2017-01-01
Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such as p -cresol (11% v/v). It is widely used as a disinfectant. Extractionof p -Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p -Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted in the baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p -Cresol extraction increasesthe yield of p -Cresol and the mass transfer coefficient. The highest yield of p -Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10 -6 kg/m 2 s. (paper)
Mass Transfer Coefficientin Stirred Tank for p-Cresol Extraction Process from Coal Tar
Fardhyanti, D. S.; Tyaningsih, D. S.; Afifah, S. N.
2017-04-01
Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such asp-cresol (11% v/v). It is widely used as a disinfectant. Extractionof p-Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p-Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted inthe baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p-Cresol extraction increasesthe yield of p-Cresol and the mass transfer coefficient. The highest yield of p-Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10-6kg/m2s.
Mass transfer coefficient of slug flow for organic solvent-aqueous system in a microreactor
International Nuclear Information System (INIS)
Tuek, Ana Jurinjak; Anic, Iva; Kurtanjek, Zelimir; Zelic, Bruno
2015-01-01
Application of microreactor systems could be the next break-through in the intensification of chemical and biochemical processes. The common flow regime for organic solvent-aqueous phase two-phase systems is a segmented flow. Internal circulations in segments cause high mass transfer and conversion. We analyzed slug flow in seven systems of organic solvents and aqueous phase. To analyze how slug lengths in tested systems depend on linear velocity and physical and chemical properties of used organic solvents, regression models were proposed. It was shown that models based on linearization of approximation by potentials give low correlation for slug length prediction; however, application of an essential nonlinear model of multiple layer perception (MLP) neural network gives high correlation with R 2 =0.9. General sensitivity analysis was applied for the MLP neural network model, which showed that 80% of variance in slug length for the both phases is accounted for the viscosity and density of the organic phases; 10% is accounted by surface tension of the organic phase, while molecular masses and flow rates each account for 5%. For defined geometry of microreactor, mass transfer has been determined by carrying out the neutralization experiment with NaOH where acetic acid diffuses from organic phase (hexane) into aqueous phase. Estimated mass transfer coefficients were in the range k L a=4,652-1,9807 h -1
Numerical study of heat and mass transfer during evaporation of a thin liquid film
Directory of Open Access Journals (Sweden)
Oubella M’hand
2015-01-01
Full Text Available A numerical study of mixed convection heat and mass transfer with film evaporation in a vertical channel is developed. The emphasis is focused on the effects of vaporization of three different liquid films having widely different properties, along the isothermal and wetted walls on the heat and mass transfer rates in the channel. The induced laminar downward flow is a mixture of blowing dry air and vapour of water, methanol or acetone, assumed as ideal gases. A two-dimensional steady state and elliptical flow model, connected with variable thermo-physical properties, is used and the phase change problem is based on thin liquid film assumptions. The governing equations of the model are solved by a finite volume method and the velocity-pressure fields are linked by SIMPLE algorithm. The numerical results, including the velocity, temperature and concentration profiles, as well as axial variations of Nusselt numbers, Sherwood number and dimensionless film evaporation rate are presented for two values of inlet temperature and Reynolds number. It was found that lower the inlet temperature and Re, the higher the induced flows cooling with respect of most volatile film. The better mass transfer rates related with film evaporation are found for a system with low mass diffusion coefficient.
Interferometric study on the mass transfer in cryogenic distillation under magnetic field
Bao, S. R.; Zhang, R. P.; Y Rong, Y.; Zhi, X. Q.; Qiu, L. M.
2017-12-01
Cryogenic distillation has long been used for the mass production of industrial gases because of its features of high efficiency, high purity, and capability to produce noble gases. It is of great theoretical and practical significance to explore methods to improve the mass transfer efficiency in cryogenic distillation. The negative correlation between the susceptibility of paramagnetic oxygen and temperature provides a new possibility of comprehensive utilization of boiling point and susceptibility differences in cryogenic distillation. Starting from this concept, we proposed a novel distillation intensifying method by using gradient magnetic field, in which the magnetic forces enhance the transport of the oxygen molecules to the liquid phase in the distillation. In this study, a cryogenic testbed was designed and fabricated to study the diffusion between oxygen and nitrogen under magnetic field. A Mach-Zehnder interferometer was used to visualize the concentration distribution during the diffusion process. The mass transfer characteristics with and without magnetic field, in the chamber filled with the magnetized medium, were systematically studied. The concentration redistribution of oxygen was observed, and the stable stratified diffusion between liquid oxygen and nitrogen was prolonged by the non-uniform magnetic field. The experimental results show that the magnetic field can efficiently influence the mass transfer in cryogenic distillation, which can provide a new mechanism for the optimization of air separation process.
Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model
International Nuclear Information System (INIS)
Lee, Young Duk; Bae, Ho June; Ahn, Kook Young; Yu, Sang Seok; Hwang, Joon Young
2009-01-01
The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/Simulink □ environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier
Flow and Mass Transfer Performance in Short Pin-Fin Channels with Different Fin Shapes
Goldstein, R. J.; Chen, S. B.
1998-01-01
The mass transfer (analogous to heat transfer) and pressure loss characteristics of staggered short pin-fin arrays are investigated experimentally in the range of Reynolds number 3000 to 18,000 based on fin diameter and mean approach-flow velocity. Three different shapes of fins with aspect ratio of 2 are examined: one uniform-diameter circular fin (UDCF) and two stepped-diameter circular fins (SDCF1 and SDCF2). Flow visualization using oil-lampblack reveals complex flow characteristics assoc...
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
International Nuclear Information System (INIS)
Lemaitre, P.; Porcheron, E.
2008-01-01
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B M , which is useful in describing heat transfer associated with two-phase flow. (orig.)
Analysis of heat and mass transfers in two-phase flow by coupling optical diagnostic techniques
Energy Technology Data Exchange (ETDEWEB)
Lemaitre, P.; Porcheron, E. [Institut de Radioprotection et de Surete Nucleaire, Saclay (France)
2008-08-15
During the course of a hypothetical accident in a nuclear power plant, spraying might be actuated to reduce static pressure in the containment. To acquire a better understanding of the heat and mass transfers between a spray and the surrounding confined gas, non-intrusive optical measurements have to be carried out simultaneously on both phases. The coupling of global rainbow refractometry with out-of-focus imaging and spontaneous Raman scattering spectroscopy allows us to calculate the local Spalding parameter B{sub M}, which is useful in describing heat transfer associated with two-phase flow. (orig.)
Analysis of trace gases at ppb levels by proton transfer reaction mass spectrometry (PTR-MS)
International Nuclear Information System (INIS)
Lindinger, W.; Hansel, A.
1996-01-01
A proton transfer reaction mass spectrometry (PTR-MS) system has been developed which allows for on-line measurements of trace gas components with concentrations as low as 1 ppb. The method is based on reactions of H 3 O + ions, which perform non-dissociative proton transfer to most of the common organic trace constituents but do not react with any of the components present in clean air. Examples of medical information obtained by means of breath analysis, of environmental trace analysis, and examples in the field of food chemistry demonstrate the wide applicability of the method. (Authors)
DEFF Research Database (Denmark)
Gilbert, Dorthea; Jakobsen, Hans H.; Winding, Anne
2014-01-01
as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement...
Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.
2011-01-01
The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of
Flow and mass transfer downstream of an orifice under flow accelerated corrosion conditions
International Nuclear Information System (INIS)
Ahmed, Wael H.; Bello, Mufatiu M.; El Nakla, Meamer; Al Sarkhi, Abdelsalam
2012-01-01
Highlights: ► Mass transfer downstream of orifices was numerically and experimentally investigated. ► The surface wear pattern is measured and used to validate the present numerical results. ► The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. ► The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. ► The current study offered very useful information for FAC engineers for better preparation of nuclear plant inspection scope. - Abstract: Local flow parameters play an important role in characterizing flow accelerated corrosion (FAC) downstream of sudden area change in power plant piping systems. Accurate prediction of the highest FAC wear rate locations enables the mitigation of sudden and catastrophic failures, and the improvement of the plant capacity factor. The objective of the present study is to evaluate the effect of the local flow and mass transfer parameters on flow accelerated corrosion downstream of an orifice. In the present study, orifice to pipe diameter ratios of 0.25, 0.5 and 0.74 were investigated numerically by solving the continuity and momentum equations at Reynolds number of Re = 20,000. Laboratory experiments, using test sections made of hydrocal (CaSO 4 ·½H 2 O) were carried out in order to determine the surface wear pattern and validate the present numerical results. The numerical results were compared to the plants data as well as to the present experiments. The maximum mass transfer coefficient found to occur at approximately 2–3 pipe diameters downstream of the orifice. This location was also found to correspond to the location of elevated turbulent kinetic energy generated within the flow separation vortices downstream of the orifice. The FAC wear rates were correlated with the turbulence kinetic energy and wall mass transfer in terms of Sherwood number. The current study found to offer very
Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio
Hoffman, Aaron; Wright, J. Douglas
2017-11-01
Consider an infinite chain of masses, each connected to its nearest neighbors by a (nonlinear) spring. This is a Fermi-Pasta-Ulam-Tsingou lattice. We prove the existence of traveling waves in the setting where the masses alternate in size. In particular we address the limit where the mass ratio tends to zero. The problem is inherently singular and we find that the traveling waves are not true solitary waves but rather ;nanopterons;, which is to say, waves which are asymptotic at spatial infinity to very small amplitude periodic waves. Moreover, we can only find solutions when the mass ratio lies in a certain open set. The difficulties in the problem all revolve around understanding Jost solutions of a nonlocal Schrödinger operator in its semi-classical limit.
U-233 fuelled low critical mass solution reactor experiment PURNIMA II
International Nuclear Information System (INIS)
Srinivasan, M.; Chandramoleshwar, K.; Pasupathy, C.S.; Rasheed, K.K.; Subba Rao, K.
1987-01-01
A homogeneous U-233 uranyl nitrate solution fuelled BeO reflected, low critical mass reactor has been built at the Bhabha Atomic Research Centre, India. Christened PURNIMA II, the reactor was used for the study of the variation of critical mass as a function of fuel solution concentration to determine the minimum critical mass achievable for this geometry. Other experiments performed include the determination of temperature coefficient of reactivity, study of time behaviour of photoneutrons produced due to interaction between decaying U-233 fission product gammas and the beryllium reflector and reactor noise measurements. Besides being the only operational U-233 fuelled reactor at present, PURNIMA II also has the distinction of having attained the lowest critical mass of 397 g of fissile fuel for any operating reactor at the current time. The paper briefly describes the facility and gives an account of the experiments performed and results achieved. (author)
Mass transfer between a fluid and an immersed object in liquid–solid packed and fluidized beds
Directory of Open Access Journals (Sweden)
NEVENKA BOSKOVIC-VRAGOLOVIC
2005-11-01
Full Text Available Themass transfer coefficient between fluid and an immersed sphere in liquid packed and fluidized beds of inert spherical particles have been studied experimentally using a column 40 mm in diameter. The mass transfer data were obtained by studying the transfer of benzoic acid from the immersed sphere to flowing water using the dissolution method. In all runs, the mass transfer rates were determined in the presence of inert glass particles 0.50-2.98 mm in diameter. The influence of different parameters, such as: liquid velocity, particles size and bed voidage, on the mass transfer in packed and fluidized beds is presented. The obtained experimental data for mass transfer in the packed and particulate fluidized bed were correlated by a single correlation, thus confirming the similarity between the two systems.
Energy Technology Data Exchange (ETDEWEB)
Kafka, P; Meszaros, P [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (Germany, F.R.)
1976-11-01
Stationary spherically symmetric solutions of the equations for accretion of large mass flows onto a black hole, including the interaction of matter and radiation due to Thomson scattering in diffusion approximation are constructed. The relevance of these solutions is discussed with respect to the question of whether the limitation of the luminosity (Eddington limit) also implies an upper bound to the possible rate of mass flow. The question remains open until all instabilities have been studied. At the moment a negative answer is favoured.
Solution of the conjugated heat transfer problem for the fuel elements assemblies
International Nuclear Information System (INIS)
Golba, V.S.; Ivanenko, I.J.; Zinina, G.A.
1997-01-01
The paper presents the assemblies conjugated heat conductivity problem calculation and experimental method. The method is based on the temperature superposition modified concept and subchannel method and allows to predict the fuel elements surface temperatures with availability of fuel elements inside structure of any complication caused by technological and working defects and with availability of depositions with low heat conductivity on the fuel elements surfaces. According to the method developed the partial solutions of the heat conductivity equation at the heat removal boundaries (solid-liquid) are found separately for the fuel elements and for the liquid. The heat conductivity equation partial solutions for the fuel elements are predicted by calculations. The coolant heat conductivity equation partial solution ('influence functions') data massif is obtained in present work experimentally in the fuel assembly model consists of 7 tube bundle of fuel elements imitators placed in right grating with relative grating step equal to 1.1 and cooled by eutectic alloy Pb-Bi. It is shown that 'subchannel prediction method' decreases the crosswise heat transfer in comparison with crosswise heat transfer, when the fuel element inside structure is taken into account. Also in the paper it is shown that it is possible to realize the assembly temperature prediction method suggested without carrying out the experiments in the assembly's model in order to get the external problem influence functions'. (author)
Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M
2018-04-01
Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of
Yang, Lurong; Wang, Xinyu; Mendoza-Sanchez, Itza; Abriola, Linda M.
2018-04-01
Sequestered mass in low permeability zones has been increasingly recognized as an important source of organic chemical contamination that acts to sustain downgradient plume concentrations above regulated levels. However, few modeling studies have investigated the influence of this sequestered mass and associated (coupled) mass transfer processes on plume persistence in complex dense nonaqueous phase liquid (DNAPL) source zones. This paper employs a multiphase flow and transport simulator (a modified version of the modular transport simulator MT3DMS) to explore the two- and three-dimensional evolution of source zone mass distribution and near-source plume persistence for two ensembles of highly heterogeneous DNAPL source zone realizations. Simulations reveal the strong influence of subsurface heterogeneity on the complexity of DNAPL and sequestered (immobile/sorbed) mass distribution. Small zones of entrapped DNAPL are shown to serve as a persistent source of low concentration plumes, difficult to distinguish from other (sorbed and immobile dissolved) sequestered mass sources. Results suggest that the presence of DNAPL tends to control plume longevity in the near-source area; for the examined scenarios, a substantial fraction (43.3-99.2%) of plume life was sustained by DNAPL dissolution processes. The presence of sorptive media and the extent of sorption non-ideality are shown to greatly affect predictions of near-source plume persistence following DNAPL depletion, with plume persistence varying one to two orders of magnitude with the selected sorption model. Results demonstrate the importance of sorption-controlled back diffusion from low permeability zones and reveal the importance of selecting the appropriate sorption model for accurate prediction of plume longevity. Large discrepancies for both DNAPL depletion time and plume longevity were observed between 2-D and 3-D model simulations. Differences between 2- and 3-D predictions increased in the presence of
Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.
Kumar, Dinesh; Kumar, P; Rai, K N
2017-11-01
This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.
Thermo-mechanical analysis of FG nanobeam with attached tip mass: an exact solution
Ghadiri, Majid; Jafari, Ali
2016-12-01
Present disquisition proposes an analytical solution method for exploring the vibration characteristics of a cantilever functionally graded nanobeam with a concentrated mass exposed to thermal loading for the first time. Thermo-mechanical properties of FGM nanobeam are supposed to change through the thickness direction of beam based on the rule of power-law (P-FGM). The small-scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. Linear temperature rise (LTR) through thickness direction is studied. Existence of centralized mass in the free end of nanobeam influences the mechanical and physical properties. Timoshenko beam theory is employed to derive the nonlocal governing equations and boundary conditions of FGM beam attached with a tip mass under temperature field via Hamilton's principle. An exact solution procedure is exploited to achieve the non-dimensional frequency of FG nanobeam exposed to temperature field with a tip mass. A parametric study is led to assess the efficacy of temperature changes, tip mass, small scale, beam thickness, power-law exponent, slenderness and thermal loading on the natural frequencies of FG cantilever nanobeam with a point mass at the free end. It is concluded that these parameters play remarkable roles on the dynamic behavior of FG nanobeam subjected to LTR with a tip mass. The results for simpler states are confirmed with known data in the literature. Presented numerical results can serve as benchmarks for future thermo-mechanical analyses of FG nanobeam with tip mass.
Directory of Open Access Journals (Sweden)
Mišljenović Nevena M.
2011-01-01
Full Text Available The applicability of Peleg equation was examined for the description of mass transfer during osmotic dehydration (OD of apple in sugar beet molasses. Mass transfer was investigated in terms of water loss (WL and solid gain (SG, during OD in 40-80% sugar beet molasses solutions, at 45, 55 and 65ºC. High regression coefficients obtained for Peleg constants (R2>0.975 indicate good fit to the experimental data. The Peleg rate constant varied from 0.144 to 0.785 (g/g i.s.w. and from 2.006 to 4.436 (g/g i.s.w. for WL and SG, respectively. The Peleg capacity constant varied from 1.142 to 1.553 (h g/g i.s.w. and from 8.254 to 11.930 (h g/g i.s.w. for WL and SG, respectively. The equilibrium WL∞ and SG∞ were estimated using the Peleg model. In addition, the activation energy (Ea for WL and SG was determined from the relationship between the Peleg rate constant and Arrhenius equation.
TRIP: a finite element computer program for the solution of convection heat transfer problems
International Nuclear Information System (INIS)
Slagter, W.; Roodbergen, H.A.
1976-01-01
The theory and use of the finite element code TRIP are described. The code calculates temperature distributions in three-dimensional continua subjected to convection heat transfer. A variational principle for transport phenomena is applied to solve the convection heat transfer problem with temperature and heat flux boundary conditions. The finite element discretization technique is used to reduce the continuous spatial solution into a finite number of unknowns. The method is developed in detail to determine temperature distributions in coolant passages of fuel rod bundles which are idealized by hexahedral elements. The development of the TRIP code is discussed and the listing of the program is given in FORTRAN IV. An example is given to illustrate the validity and practicality of the method
Why a New Code for Novae Evolution and Mass Transfer in Binaries?
Directory of Open Access Journals (Sweden)
G. Shaviv
2015-02-01
Full Text Available One of the most interesting problems in Cataclysmic Variables is the long time scale evolution. This problem appears in long time evolution, which is also very important in the search for the progenitor of SN Ia. The classical approach to overcome this problem in the simulation of novae evolution is to assume: (1 A constant in time, rate of mass transfer. (2 The mass transfer rate that does not vary throughout the life time of the nova, even when many eruptions are considered. Here we show that these assumptions are valid only for a single thermonuclear flash and such a calculation cannot be the basis for extrapolation of the behavior over many flashes. In particular, such calculation cannot be used to predict under what conditions an accreting WD may reach the Chandrasekhar mass and collapse. We report on a new code to attack this problem. The basic idea is to create two parallel processes, one calculating the mass losing star and the other the accreting white dwarf. The two processes communicate continuously with each other and follow the time depended mass loss.
Transfer matrix in 1D Schroedinger problems with constant and position-dependent mass
International Nuclear Information System (INIS)
Perez-Alvarez, R.; Rodriguez-Coppola, H.
1987-10-01
We consider the transfer matrix method for obtaining properties of standard wells and barriers in one-dimensional Schroedinger problems with constant and position-dependent mass. We report the formulae for the energy levels of a well and the transmission coefficient of a barrier. We demonstrate the continuity between virtual bound states and bound states in a well of position-dependent mass and the relation between the zero energy gap states of a periodic potential problem with the corresponding energies of the non-periodic ones with transmission coefficient equal to one. The calculations were carried out for a wide class of potential profiles. (author). 30 refs, 2 figs
Directory of Open Access Journals (Sweden)
Rosinski Stefan
2003-01-01
Full Text Available On the long way to clinical transplantable hybrid systems, comprising of cells, acting as immuno-protected bioreactors microencapsulated in a polymeric matrix and delivering desired factors (proteins, hormones, enzymes etc to the patient's body, an important step is the optimization of the microcapsule. This topic includes the selection of a proper coating membrane which could fulfil, first of all, the mass transfer as well as biocompatibility, stability and durability requirements. Three different membranes from polymerised aminoacids, formed around exactly identical alginate gel cores, were considered, concerning their mass transport properties, as potential candidates in this task. The results of the evaluation of the mass ingress and mass transfer coefficient h for the selected low molecular mass marker, vitamin B12, in poly-L-lysine (HPLL poly-L-ornithine (HPLO and poly-methylene-co-guanidine hydrochloride (HPMCG membrane alginate microcapsules demonstrate the advantage of using the mass transfer approach to a preliminary screening of various microcapsule formulations. Applying a single marker and evaluating mass transfer coefficients can help to quickly rank the investigated membranes and microcapsules according to their permeability. It has been demonstrated that HPLL, HPLO and HPMCG microcapsules differ from each other by a factor of two concerning the rate of low molecular mass marker transport. Interesting differences in mass transfer through the membrane in both directions in-out was also found, which could possibly be related to the membrane asymmetry.
Energy Technology Data Exchange (ETDEWEB)
Busigin, A. [NITEK USA Inc., Ocala, FL (United States)
2015-03-15
Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.
Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin
2018-04-01
This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.
Mass transfer of Disperse Red 153 and its crude dye in supercritical CO2 fluid
Directory of Open Access Journals (Sweden)
Zheng Huan-Da
2017-01-01
Full Text Available In this paper, polyester fibers were dyed with Disperse Red 153 and its crude dye in supercritical CO2. The effect of dyeing temperature, dyeing time, dyeing pressure, as well as auxiliaries in the commercialized Disperse Red 153 on the dyeing performance of polyester fibers was investigated. The obtained results showed that the dyeing effect of crude dye for polyester was better than that of Disperse Red 153 in the same dyeing condition. The color strength values of the dyed polyester samples were increased gradually with the increase of temperature and pressure since mass transfer of dye was improved. In addition, the mass transfer model of Disperse Red 153 in supercritical CO2 was also proposed.